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Abstract 

In this thesis, we explore several fundamental issues in GNSS-R remote sensing. Global 

Navigation Satellite System - Reflectometry (GNSS-R) is a relatively young remote sensing 

technique proposed to measure geophysical surface features and processes, such as ocean 

surface wind speed and roughness. GNSS-R uses a bistatic geometry at L-band frequencies. 

These two factors imply GNSS-R sense longer surface waves than traditional radar 

scatterometers and altimeters. Longer waves are known to take a longer time and more 

spatial coverage to respond to wind and propagate further before decaying. Our focus in this 

thesis is on quantifying some of these effects in the context of GNSS-R sensing of windspeed. 

We first attempt to bound the response time of GNSS-R surface roughness due to wind, 

using in-situ buoy measurements. These measurements are then used to validate a surface 

wave model. Coupling this surface wave model with an electromagnetic scattering model, 

we develop a novel end-to-end forward model for GNSS-R. This model shows superior 

performance against spaceborne GNSS-R measurements, with significant skill improvements 

over a state-of-the-art model. Among its many uses, it sheds light on factors that can 

improve GNSS-R remote sensing of ocean surface windspeed. The results presented herein 

are applicable to L-band bistatic sensing techniques in general, including those leveraging 

reflectometry of communication signals of opportunity. 
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 Chapter 1  

Background and Theory 

 

Since the 1960s, microwave remote sensing has provided observations of the Earth 

unprecedented in resolution and coverage. These observations have been critical not only to 

the operational monitoring of our planet, but also to significant advances in the 

understanding of a wide range of physical phenomena. However, remote sensing itself 

requires a detailed understanding of the physical processes inherent to the technique in 

question – this, in fact, is the objective of study for many in the sensing community.  

In this thesis, our focus is on the properties of surface wave processes relevant to 

remote sensing. The motivation behind this dissertation, and its primary domain of 

application, lies in the remote sensing technique of GNSS-R (Global Navigation Satellite 

System Reflectometry). We examine topics on surface waves and their interaction with 

electromagnetic waves and wind in the context of wind sensing capability of GNSS-R.  

The need for ocean surface winds is well-known; many atmospheric and marine 

processes depend on near-surface winds on the first-order. For instance, wind is primary 

source of energy input in the generation ocean waves, and wind products are used solely, at 

the time of writing, to drive operational wave models, providing forecasts of marine weather 

in the United States [Tolman, 2014]. Determination of heat, momentum, and mass fluxes 

over the ocean also requires knowledge of surface winds [e.g., Smith, 1988, Atlas et al., 
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2011]. These fluxes are critical for weather predictions over land as well as climatological 

forecasts. 

 

Results in this work can be applied to other sensing techniques based on L-band quasi-

specular scattering (discussed in Section 1.5), such as those leveraging communication 

signals of opportunity (SoOP). In addition, they are useful in the study of fundamental 

mechanics of surface waves, of which much has yet to be understood. 

1.1 Remote Sensing of Ocean Surface Winds 

To date, airborne and spaceborne remote sensing techniques of surface winds have only 

been developed over water bodies – no such technique is yet available for land surface wind 

measurements, although, ground-based Doppler profilers have been developed and used 

operationally to remotely sense the wind profile in the atmospheric boundary layer over 

land. For ocean, the primary emission and scattering elements on the surface are water 

waves, which are absent over land and ice. 

The passive radiometry approach to the sensing of ocean winds depends 

fundamentally on changes in the thermal emission of the surface. For a beam-filling, semi-

infinite homogeneous medium, undulations of the surface, or roughness, causes only minor 

changes in its emission characteristics. Breaking of surface waves entrains air into the waves 

and results in foam, a material that is electrically different from salty water and thus has a 

different emissivity [e.g., Wilheit 1979] – much higher, in fact, because it presents a better 

match in intrinsic impedance to air. Thus, it is the presence of foam, or fraction of foam 
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coverage specifically, that is sensed in radiometric methods. Both wind speed and direction 

can be retrieved [e.g., Yueh et al., 1994; Li and Chang, 1996].  

A second technique actively transmits a radar pulse and measures the backscatter 

from the sea surface. The dominant contributor to the return signal in this monostatic 

(collocated transmitter and receiver) approach results from a process known as Bragg-

scattering, whereby periodic roughness elements with spacings consistent with the 

observation wavelength (modified by incidence angle dependencies) generate return pulses 

that add constructively [e.g., Ulaby et al., 1986; Apel, 1994]. These radars (see Section 1.6) 

typically operate in the C and Ku bands (e.g. QuikSCAT [Yueh et al., 2003] with a frequency of 

13.4 GHz or 2.24 cm in wavelength), which corresponds to centimeter-scale capillary waves. 

Active instruments are more expensive in general than passive radiometric instruments, as 

extra power is needed for pulse transmission, resulting in larger solar panels, heavier 

satellite, costlier launch methods, not to mention the extra RF instrumentation required. 

In both of the above techniques, at the frequencies commonly used in the past, the 

physical surface features sensed are highly coupled to the local winds: foaming due to micro-

breaking and Bragg-scattering capillary waves respond quickly to the local winds. Surface 

tension plays a significant role in the governing equations for these centimeter waves. They 

grow almost instantaneously in response to winds and also dissipate quickly when the winds 

die down, or as they propagate away from their source of generation.  

However, this is not the case for the relatively young remote sensing technique of 

GNSS-R [e.g., Komjathy et al., 2000; Gleason et al., 2009]. GNSS-R is most sensitive to gravity-

capillary waves with wavelengths on the order of tens of centimeters. For these waves, the 
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degree of coupling of wind and waves is less well known [e.g., Vos van Steenwijk et al., 2010; 

Cardellach et al., 2014]. GNSS-R has three important features for our discussion: 1) bistatic 

geometry, meaning the transmitter and receiver are not the same satellite nor are they 

collocated, 2) operation at microwave L-band (1-2 GHz) frequencies, and 3) use of GNSS 

signals.  

As will be discussed further in Section 1.5, factors 1) and 2) determine the surface 

waves’ wavelengths sensed by GNSS-R (and hence provides the raison d’être for this 

dissertation). Despite the issues in wind-wave coupling, there are several significant benefits 

of GNSS-R over the previous two techniques stemming from these three factors. These 

benefits have led to significant funding and development of many facets of the GNSS-R 

technique in the recent past, including theoretical modeling [e.g., Zavorotny and Voronovich, 

2000; Lin and Katzberg 1999], instrumentation [e.g., Gleason et al., 2016], and retrieval 

algorithms [e.g., Clarizia et al., 2014]. 

Firstly, L-band operation allows signals to penetrate precipitation. This is especially 

advantageous for tropical cyclone conditions – incidentally, hurricane winds are also 

structured [e.g. Willoughby and Rahn, 2004] and high-speed, which causes the wind-wave 

decorrelation mentioned previously to be not as pronounced. The wind and waves in 

hurricanes have, in fact, been found to obey certain growth laws very well [Hwang, 2016]. 

Secondly, many GNSS systems are already in operation, and thus do not contribute to the 

cost of GNSS-R infrastructure. In the United States, the Global Positioning System (GPS) is 

the main GNSS system, and finds many civilian geolocation and navigation applications. They 

can be received anywhere on Earth (land or sea, as no cell phone tower required) with 
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guaranteed levels of service. End-user receivers are ubiquitous in navigation and mobile 

devices. The availability of GPS has enabled explosive growth in location-based services and 

entertainment, including games such as Ingress and Pokémon GO on mobile platforms. The 

“reduction” in cost for GNSS-R is not just in the transmitting space segment – market 

incentives have spurred commercial development of high-performance GPS receivers with 

low power and low cost – granted, some modifications would be beneficial for GNSS-R, like 

removing floating gain control, for example (also mentioned in Chapter 3.) Thirdly and lastly, 

the fact that the signals leveraged by GNSS-R are used for navigation is also beneficial for 

remote sensing signal processing. The GPS transmitter satellites have crystal clocks which 

are tuned very accurately, taking relativistic effects into account, with uncertainties on the 

order of tens of nanoseconds. GPS is set up such that the code sent by the GPS transmitters 

can be replicated by the receiver with high fidelity. Having this reference signal is critical to 

the operation of the cross-correlation receiver, identifying the delay in the received signal 

necessary for the construction of the Delay Doppler Maps (DDMs) discussed in Section 1.5.  

1.2 Ocean Surface Waves 

The total ocean wave field at a given location consists of waves of various scales. The wind-

generated waves have periods of less than about 30 s. They can be further divided into 

capillary waves and gravity waves. Gravity waves can in turn, but loosely, classified as wind 

sea (short, locally-generated waves closely coupled to the wind) or swells (long waves that 

originated as wind waves elsewhere). The distinction between the wind sea and swell is 

seldom clear-cut (see Section 2.4). In Table 1 below, we summarize the nomenclature used 
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in the surface wave community for waves of various length scales [Munk, 1950; Holthuijsen, 

2007]; note the ranges indicated are necessarily approximate. 

Table 1: Surface wave length scales 

Name Period Wavelength 

Capillary waves < 0.25 s < 10 cm 

Gravity waves: Swell and 

wind sea 

  

0.25 s - 30 s 0.1 – 1500 m (deep water) 

Infra-gravity waves 30 s – 5 min. 1500 m to 100 km 

Tsunamis, surges, tides > 5 min. > 100 km 

 

The wave scales relevant to GNSS-R are discussed rigorously in Sections 1.3 and 1.5. 

In this thesis, the only waves sensed by and relevant to GNSS-R fall under wind-

generated waves, and gravity waves in particular (Sections 1.3 and 1.5). The growth of wind 

sea alone depends on many factors other than the local windspeed, such as wind duration, 

fetch, atmospheric stability, internal waves, currents, water depth, and presence of 

surfactants such as oil. Fetch at a location is the distance upwind of the location over which a 

uniform wind has been blowing [e.g., Hwang and Wang 2004 JPO]. The decay of wind waves, 

on the other hand, has not received as much attention in the wave community, but is 

equally important to GNSS-R wind sensing.  

Waves are often described statistically. When using and deriving these statistics from 

measurements, it is assumed that the wave processes are stationary, in a small time interval 
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around some time instant of interest, and some small distance away from the location of 

interest. To emphasize the main concepts, let us use a simple model for the surface 

elevation at some arbitrary location. It can be assumed to be a one-dimensional zero-mean 

stationary random process denoted by ( )' tζ with SI unit of meters. Its univariate auto-

correlation function is defined by 

 ( ) ( ) ( )' ' ' ,R t tζ τ ζ τ ζ< + >  (1.1) 

where .< >  is the ensemble mean operator. Let ( )'S f  be the Fourier transform of ( )Rζ τ ; 

the SI unit of ( )'S f  is m2/Hz. It can then be shown that 

 ( ) ( ) ( )2
'' 0 ' .t R S f df

∞

ζ
∞

ζ
−

< = => ∫  (1.2) 

Note all three (equal) quantities are not functions of time but single-number 

characterizations of  ( )' tζ , a consequence of the stationary assumption. This quantity is 

appropriately termed as the mean square elevation. ( )'S f  is also known as the power 

spectral density (PSD) of ( )' tζ , because ( )'S f has the interpretation of elevation variance 

per frequency at f . In literature, ( )'S f  is also referred to as elevation variance frequency 

spectrum, spectral wave density [NDBC, 2015b], omnidirectional spectrum [Elfouhaily et al., 

1997], or simply wave spectrum [Stewart, 2008]. It turns out that elevation variance and 

wave energy are intimately related. In particular, the total potential and kinetic energy per 

unit area, totalE  can be expressed as 

 ( )2'totalE g tρ ζ<= >  , (1.3) 



8 
 

where ρ  is the mass density of sea water and g is the gravitational constant. C

 Correspondingly, we can define the wave energy frequency spectrum ( )eS f  such 

that 

 ( )'total eS f dfE
∞

∞−

= ∫  . (1.4) 

Equating the right sides of (1.3) and (1.4), and using the last equality of (1.2), we see 

 ( ) ' )' (eS f gS fρ=  , (1.5) 

which is reason that '( )S f is sometimes loosely referred to as the wave energy density. 

For remote sensing, we are often interested in slope and curvature. Similar to the 

above development, we can define a one-dimensional random process as a function of 

position x , for a given instant of time. The elevation variance wavenumber spectrum is then 

analogously defined as 

 ( ) ( ) ( ) ],S k x u xζ ζ< + > F[   

where [.]F  is the Fourier Transform operator, and k   is the wavenumber. The elevation 

variance over a specific band is fixed, so that ( ) ( )S k dk S f df= . 

For linear waves in deep water, the following dispersion relation holds. Letting 

2 fω π  be the angular frequency, 

 2 gkω =  . 

It can then be shown 

 ( ) ( )28
gS k S f

fπ
=  , 
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with k  and f  related per the dispersion relation above. This equation allows us to convert 

between the frequency spectrum, which is measured by buoy accelerometers, and the 

wavenumber spectrum, which is of more relevance to remote sensing. 

The wave slope is defined as  

 ( )s
d

dx
xζ


  

in the context of our one-dimensional wave. Note that like ζ , 0s< >= . The mean square 

slope is then defined as 

 2mss s ><  . 

It can be shown that the slope variance wavenumber spectrum is equal to 2 ( )k S k , so that 

 ( )2 .mss k S k dk
∞

∞−

= ∫   (1.6) 

The factor k  arises due to the differentiation of a sinusoid, and the second power is due to 

the fact of it being a variance spectrum. Since mss is unitless, ( )S k  has units of m3, which 

we also expect from the units of ( )S f  by duality. 

 Extending this definition, the one-dimensional curvature or dimensionless spectrum 

is defined as ( )3k S k . 

For the discussion in this thesis, and a later simplifying assumption made on seas 

being isotropic ( Chapter 3), we will not need to use two-dimensional wave spectra. However, 

a discussion is included in Appendix A for the interested reader.  
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An example of the elevation wavenumber spectrum is shown in Figure 1. The wave 

spectra plotted are due to Elfouhaily et al. [1997], which is a strong function of U10 (the 

windspeed at 10 m height). 

 

 

Figure 1: Examples of elevation wavenumber spectra. The Elfouhaily model is used, for well-developed 
conditions. The maximum of a spectrum is known as the spectral peak.  

 

1.3 Surface Wave Models 

For phase-averaging surface wave models, one important goal is to quantify the spectral 

energy accurately in the form of a wave spectrum, which can range from a one-dimensional 
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directionally-integrated spectrum in the simplest case to a full three-dimensional frequency-

wavenumber-direction spectrum for nonlinear waves. These models can generally be 

divided into two types: 1. empirical models based on dimensional analysis and 

parameterized by wind speed and, possibly, wave age (stage of wave development 

dependent on duration and fetch), and 2. spectral evolution models based on the energy-

balance equation.  

The first type typically constrains the shape of the spectrum, which is usually a 

smooth function of the input parameters. Often, conditions are classified as duration- or 

fetch-limited [Hwang and Wang, 2004], and the wave age is computed accordingly. The 

wave age and windspeed are then used to parameterize the wave spectrum. The Pierson-

Muskowitz [Pierson and Moskowitz, 1964], JONSWAP [Hasselmann et al., 1973], Elfouhaily 

[Elfouhaily et al., 1997], and Hwang [Hwang et al., 2013] spectra are of this type. The second 

type of model includes WAVEWATCH3 [Tolman et al., 2014] (denoted by WW3 hereafter), 

University of Miami Wave Model [Donelan et al., 2012], SWAN [Booij et al., 1999], and WAM 

[Komen et al., 1994]. These models solve the energy balance equation numerically. A 

Eulerian form of this equation in simple cases (conditions given below) may be expressed as 

 , )( , ( , ,, ) ( , )g
E k E kx t x tc S kT x t

t x
+ =

∂ ∂
∂ ∂  , (1.7) 

where E is the one-dimensional wavenumber-direction spectrum with SI units of m3, with 

the wavenumber energy spectrum being Egρ with units of J/m. ρ is the mass density of sea 

water, and g is the gravitational constant. gc  is the group velocity in the x   direction. 

,( , )T kS x t  is the collective source term combining the effects of wind input, whitecapping 
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dissipation, and non-linear wave-wave interaction. Equation (1.7) models the temporal 

evolution and spatial propagation of the elevation variance of a one-dimensional wave in 

deep water and neglects the effects of currents. In practice, an equation of this type is 

discretized and integrated in time and space to solve for the wave spectrum at each time 

step and grid point. The source terms, with improved understanding of wave physics, have 

undergone significant development in the last 50 years, and are now in their “3rd generation” 

[Komen et al., 1994].  

For the second type of wave model, rather than having an a-priori form, the 

individual source terms are crafted, and the spectrum is left free to evolve. Before the 1950s, 

models of the first kind were used for wave forecasting. However, several aspects are 

challenging for the parametric models to handle, such as the accounting for swell generated 

afar, and irregular bathymetry and coastlines [Ardhuin, 2016 p.52]. In addition, Chen et al. 

[2016] found that two such empirical models show significant errors in modelling the 

response time of waves to wind in general conditions, while later investigations showed the 

third-generation model WW3 performs significantly better in comparisons with in-situ 

measurements.  

Despite its shortcomings, the parametric models and the associated experiments that 

led to them are widely used when modelling idealized duration and fetched-limited cases of 

wave growth (before the wave becomes “fully-developed” with the wind forcing). These 

ideal cases have been invaluable in the development of the spectral-evolution models’ 

source terms, and they continue to serve as reference calibration points for the state-of-the-

art third-generation models. Moreover, these parametric models are considered the current 
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state-of-the-art models for high frequency waves. The form and shape of the spectral tail 

assumed in the models is still an area of active research [Ex. Plant, 2015, Reichl et al., 2015, 

Hwang et al., 2013], partly due to the challenges in their accurate measurement [Hwang, 

2005]. Many electromagnetic models to-date have incorporated these parametric models 

[e.g., Voronovich and Zavorotny, 2001; Apel, 1994; Hwang and Fois, 2015] as the surface 

wave model, with the inverse wave age often set to 0.84 for “well-developed” conditions. It 

should be noted that formulations of source term balance of short Bragg waves have been 

attempted [e.g. Lyzenga et al., 1988], but much uncertainty remain [Hwang et al., 2013].  

As we will see in Section 1.5, the GNSS-R forward scatter can be modelled as quasi-

specular incoherent scatter in most conditions. This scattering mechanism is dependent on 

the long, tilting waves under the two-scale electromagnetic formulation. So, for GNSS-R, the 

surface roughness of relevance is the low-pass-filtered mean square slope (mss) 

 ( ) ( )2

0

uk

mss uLP k k S k dk∫  , (1.8) 

where uk  is known as the scale-dividing parameter, and sets an effective upper limit on the 

frequency of waves GNSS-R is sensitive to. It is this parameter that makes precise the 

otherwise ambiguous usage of “long waves” and “short waves”. Under the two-scale model, 

surface features are divided into two scales based on their size: the short Bragg waves and 

the long tilting waves. Just as division of roughness features into two distinct regimes is 

somewhat arbitrary, so is the dividing parameter itself. However, once the parameter is 

chosen, it applies equally well for both the short, Bragg regime, and the long tilting regime.  
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An empirical value of uk corresponding to 3λ  was suggested by Brown [1978], with 

λ  being the electromagnetic wavelength. Even though this parameter was introduced as the 

lower frequency limit for backscattering, it also sets the upper frequency limit for forward, 

quasi-specular scatter, and its use is implied in the thorough treatment of Brown [1990]. 

More recently, Garrison et al. [2002] extended the “three-lambda” criterion to take into 

account the dependence on incidence angle, resulting in  

 cos2
3uk π θ
λ

=  ,  (1.9) 

 

where θ  is the incidence angle of the measurement. For the GPS L1 carrier with a frequency 

of 1.575 GHz, and typical incidence angles of less than 35 degrees, 10uk ≈ rad/m, so waves 

of about 60 cm and longer are sensed by GNSS-R.  

 In 2005, this dividing parameter was further studied by Thompson et al. [2005], who 

developed a parameter that was dependent on U10. In 2015, Zavorotny et al. [2016] used a 

more accurate (but more computationally expensive) scattering model, known as the Small 

Slope Approximation (SSA) model, to evaluate the effects of the dividing parameter. The 

Elfouhaily et al. [1997] wave spectra is used assuming fully-developed conditions. They 

found no significant differences in using the two dividing parameters of Garrison [2002] and 

Thompson [2005], and the results also agree reasonably with the Katzberg et al. [2013] 

model developed from observations. For the modelling work in this thesis, Chapter 4, we are 

concerned with first-order effects, so we select the cutoff parameter suggested by Garrison 

[2002] in Equation (1.9). 
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We mention in passing that the quantity significant wave height, usually denoted as 

Hs and used in our analysis in Chapter 4, can be computed from the wavenumber spectrum 

as 

 ( )
0

4 k kHs S d
∞

= ∫  . (1.10) 

Once the wave spectrum is known, mssLP  can be readily calculated. Katzberg et al. 

[2013] developed a semi-empirical, one-to-one relationship between windspeed and mean 

squared slope by fitting data provided by airborne GNSS-R experiments and an adjusted high 

resolution windspeed model. The Katzberg model is even simpler than the parametric wave 

models because it does not involve the wave spectrum. This relationship is expressed as 

follows 

 

10 10

10 10 10

10 10 10

10 10 10

0.45(0.00316 ( ) 0.00192 ( ) 0.003)
( ) ,                  0 3.49 /
( ) 6 ln( ) 4,    3.49 46
( ) 0.411 ,         46

mssLP f U f U
f U U U m s
f U U U
f U U U

= + +
= < <
= − < <
= <

 , (1.11) 

where 10U is the windspeed at 10 m height. The Katzberg relationship is plotted in Figure.  
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Figure 2: Katzberg 2013’s empirical mss vs. windspeed relationship.  

 
The end-to-end forward model/simulator for CYGNSS [Ruf et al., 2016a], considered 

to be the state-of-the-art, ingests windspeed and generates the delay-Doppler-map. It 

currently uses the Katzberg relationship.  

According to the Elfouhaily spectra shown in Figure 3, the long waves contribute a 

considerable portion of the mssLP  sensitivity to wind. Such characteristics are similar to other 

spectra [e.g., Fig. 6 of Apel, 1994]. 
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Figure 3: Elfouhaily slope spectrum in area-conservative form. The relevant portion for GNSS-R is 
about 10 rad/m and below. 

 
As noted above, the inclusion of a third-generation model, which focuses on the 

energy-containing long waves, has not been of importance for other sensing techniques. 

Whether a model would benefit GNSS-R is a question we explore in Chapters 3 and 4. As 

third-generation wave models have demonstrated considerable skill in forecasting wave 

properties dominated by the energy-containing waves near the spectral peak (such as 

significant wave height and peak period) [e.g., The WAMDI Group, 1988; Ardhuin et al. 2010; 

Chu et al., 2004], we make use of this type of model in our work. In particular, in Chapters 3 

and 4, we select WAVEWATCH III ® (WW3) as the low-frequency wave model, which is run 

operationally by the National Weather Service (NWS). The source terms of WW3 include 

wind input, dissipation, non-linear interaction, bottom friction, ice scattering, among others. 
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1.4 The Need for the Spectral Tail 
Third-generation wave models do not explicitly resolve high frequency and high 

wavenumber waves; one reason is that the source terms have yet to be resolved with 

reasonable certainty. For GNSS-R, these unresolved waves constitute a sizable portion of the 

mean square slope, so to use the 3rd generation models, a high frequency tail needs to be 

attached.  

Here, we briefly introduce a two-dimensional tail that was recently developed for 

WW3. Reichl et. al [2015] at University Rhode Island conducted a study of wind stress in 

hurricane conditions, and how it is affected by the sea state, using WW3. The wave 

spectrum modifications for the spectral tail used in that study, with the cutoff frequency 

adapted for GNSS-R, are summarized below.  

1. Start with the stock WW3 spectrum. 

2. For the frequency range below 1.5 times the peak frequency, the frequency 

corresponding to the maximum of the stock WW3 spectrum is kept.  

3. From 1.5 times to 3 times the peak frequency, the curvature spectrum is linearly varied to 

a limiting value of 0.006 rad2. 

4. Above 3 times of the peak frequency, the saturation spectrum is kept constant at 0.006 

rad2 until the cutoff frequency (9.54 rad/m for CYGNSS). 

5. MSS is computed diagnostically by integrating the modified spectrum.  

The code segment implementing these modifications was received from Reichl et. al, 

and this was then integrated into the latest WW3 model, version 4.18, at the University of 
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Michigan by Chen (the author) et al. The Tolman-Chalikov [Tolman] source terms are used to 

model the base, stock spectrum. Hurricane Ivan, a Category 5 storm from the 2004 Atlantic 

hurricane season, is used as a test case. The time series of input wind vector fields are 

H*WIND product obtained from [NOAA]. The model is ran for 60 hours of simulation time 

(starting from 20040913 133000 and ending at 20040916 000000). A spatial MSS field is then 

generated by WW3 at regular time intervals. A sample snapshot of the wind speed input 

nearing landfall is shown in Figure 4.  

 

Figure 4: Windspeed snapshot at 20040916 00:00 

 
By matching each value of MSS with the magnitude of input windspeed 

geographically, a total MSS vs. local windspeed scatter plot can be generated. This is shown 

in Figure 5 below for the snapshot at Sep. 16, 2004 00:00 (simulation end time). 
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Figure 5: Total MSS vs. windspeed with modified spectral tail at 2004 09 16 00:00:00 for Hurricane 
Ivan 

 
It is seen that this MSS-windspeed relationship indeed follows the behavior shown in 

the Katzberg relationship qualitatively. However, there is still some scatter, which represents 

the errors in the retrieval of the windspeed if a one-to-one wind-mss relationship is used. An 

effort aimed at making this relationship more precise and more amenable to inversion by 

leveraging the knowledge of other ancillary parameters is an area of ongoing research, with 

some discussion included in Chapter 5. 

1.5 Electromagnetic Scattering and Signal Processing 

The bistatic geometry for GNSS-R is shown in Figure 6 below. In the case of GPS, the receiver 

would have direct line-of-sight contacts with at least 4 GPS transmitters (just like any other 

GPS receiver). Direct signal acquisition is currently required for all known GPS-R sensing 

instruments. 
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Figure 6: Scattering geometry for a receiver (with blue panels) and one transmitter satellite. The black 
lines are select rays of incident and scattered waves. The red dot denotes the specular point. The 
purple lines denote the favorable orientation (“slope”) of the local facet that results in reflection 
toward the receiver in a geometrical optics (GO) formulation. The pink line denotes the direct signal, 
required for present GNSS-R sensors. 

 
The direct signal, shown in pink above, is needed because the orbit ephemeris and 

PRN (pseudo-random noise) codes of the GPS constellation are not stored by the receivers. 

Thus, the only way to know the precise location of the receiver, transmitters, and the 

transmitter PRN codes is to compute them based on information gathered from the 

transmitters. Four pieces of information are needed to determine the scattering geometry: 

transmitter position, transmitter velocity vector, receiver position, and receiver velocity 

vector. The velocities are needed to compute the Doppler shift of the GPS signals, explained 

later. 

The specular point for a given geometry is the unique location on Earth’s surface for 

which the sum of distance to the transmitter and distance to the receiver is minimum. When 

the surface becomes rough, points other than the specular point can scatter the incident 

signal to the receiver as well.   
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The Doppler shift in the signal returns is caused by the relative motion of the 

transmitter, sea surface, and the receiver. Each point on the surface, due to possibly 

different scattering geometries, are associated with different Doppler shifts. This frequency 

shift can be detected by the receiver with appropriate filters. Combined with delay τ (output 

by the cross-correlation receiver), this allows us to create 2-dimensional plot of the received 

power as a function of delay τ  and Doppler frequency shift. This plot is known as the Delay-

Doppler Map (DDM). Figure 7 shows an example of a DDM, which is a simulation of a TDS-1 

(see Chapter 4) measurement geometry with an input wind of 6.1 m/s. 

 

Figure 7: Example DDM. This DDM has been normalized by the peak power. 

The ZV model developed by Zavorotny and Vornovich [2000] is a widely used 

scattering and signal processing model for the GNSS-R received signal. Because the ZV model 

connects the wave model and the GNSS-R observables and is pertinent to our signal 

processing methods used later, we discuss it here in some detail. The ZV model applies the 

theory of quasi-specular electromagnetic scattering from rough surfaces to GPS L1 signals. 
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This theory has been treated in detail in numerous works, such as Bass and Fuks [1979], 

Barrick [1968], Beckmann and Spizzichino [1987], Brown [1990], Valenzuela [1978], and 

Ulaby et al. [1982] Chapter 12. This model is based on the Kirchoff Approximation’s 

Geometrical Optics limit (KA-GO), which yields a simple form for the normalized radar cross 

section. However, it should be noted that only the incoherent component is modelled. Thus, 

the surface must be sufficiently rough to ensure a large Rayleigh parameter, and the 

incidence angle must be far from grazing. In practice, this equates to winds higher than 

about 3 m/s and an incidence angle smaller than 70 degrees.  

Under the ZV model, the signal power intercepted by the receiver antenna is  

expressed as 

 2
02 2, ) ,( ( ) ( )rant

s
t

t
t r

G GP C s dA
R R

f P fτ χ τ σ= ∆ ∆∫∫


 . (1.12) 

The surface integral is performed over an area large enough for the desired τ and f ranges, 

and is known as the glistening zone. For us, τ ranges over about 30 us and f  ranges over 

about 10 kHz. The glistening zone is chosen to be 200 km by 200 km centered at the specular 

point, which is sufficient for most scattering geometries of the TDS-1 instrument considered 

in  Chapter 4. 

| |gτ τ τ∆ = − , with gτ  being the delay associated with the location of the differential 

surface element, dA. ( ) /tg rR cRτ +=  and for a given geometry, it is a constant for a given 

surface location, independent of  and fτ . Similarly, gf ff∆ = − , and 

)( /g T TCW R Rf u u cvf v= − ⋅ + ⋅
  

. CWf is the frequency of the carrier wave; for GPS L1, it is 1.575 

GHz. Ru


is the unit vector from the specular point to the receiver, Rv


is the receiver velocity 
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vector, Tu


is the unit vector from the specular point to the transmitter, and Tv


is the 

transmitter velocity vector. 

, )(sP fτ is the signal power for delay τ  and frequency f . C  is a constant that 

depends on the electromagnetic wavelength and coherent integration period of the receiver. 

tP  is the GPS transmitter power and is assumed to be constant, as is tG , the product of 

transmitter antenna and instrument gains. rantG  is the receiver antenna gain. ,t rR R are the 

distances from the dummy integration position on the grid to the transmitter and receiver, 

respectively. χ  is dependent on the signal modulation and coding, and it is the product of a 

triangle and a sinc function. 2 ,( )fχ τ∆ ∆ is commonly known as the ambiguity function and 

models the selectivity of the radar system. Letting 0τ and 0f  be the delay and Doppler shift 

corresponding to the specular point, respectively, if the selectivity is sufficiently high such 

that 02 2
rantt

t r

G G
R R

σ  is constant for some small area A∆ around the specular point, then, because 

2 0,( 10)χ = , 

 0 0 0 02 2, )( rant
s s t

t r

tG GP P C
R R

f P Aτ σ= ∆  . (1.13) 

This equation is useful for our later work in Section 3.3.  

Similar to gτ  , gf  , , nt ra tG G , tR , and rR , s


 is also a constant for a given location 

(independent of , fτ ) – it specifies the favorable orientation (two perpendicular slope 

components) of a facet that reflects the incident ray toward the receiver. The scattering 
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cross section 0 ( )sσ


is where the surface roughness enters; it is proportional to the PDF of 

slopes as well as the square of the Fresnel surface reflectivity: 

 
2 4

0 4

| | (
ˆ| | )

z

q
q

P sπσ ℜ
=



 ,  (1.14) 

where ℜ  is the Fresnel reflection coefficient dependent on medium properties such as sea-

surface temperature and salinity; q̂  is the plane-normal unit vector to a facet of favorable 

orientation. More precisely, if we let n̂ be the unit vector of scattered wave (from surface 

point to receiver), and m̂  be the unit vector of the incident wave (from transmitter to 

surface point), then ˆ ˆ ˆq n m= − . zq  is the vertical component of the q̂ . 

 The PDF of slopes, )(P s


, is where the surface roughness dependence is introduced. 

For a two-dimensional Gaussian PDF, )(P s


 can be completely parameterized by the upwind 

and crosswind slope variances, which are equal to the mean-square-slope components. It 

should be remembered that the variances or mean square slopes of )(P s


 must be 

sufficiently large for the ZV model to remain valid. If the surface is calm, an additional 

coherent component becomes significant, and should be taken into account. Such a 

scattering model accounting for both components are currently under development for 

GNSS-R [personal communication, Zavorotny, 2016]. 

1.6 Survey of Spaceborne Ocean Surface Wind Missions 

A partial but representative list of vector wind missions in the past and undergoing 

development is presented in Table 2.   
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Table 2: Selected ocean surface wind missions.  

Name (Instrument); 

Agency 

Spatial Resolution 

(km) 

Operating 

Frequency (GHz) 

Period in Service 

SEASAT (SASS); 

NASA 

50  14.6 June 1978 to Oct. 

1978 

ERS-1 (AMI); ESA 50 5.3 July 1991 to June 

1996 

QuikSCAT 

(SeaWinds-1); NASA 

25 13.4 Jan. 2003 to - 

Coriolis (WindSat); 

US Navy 

25 6.8, 10.7, 18.7, 23.8 

and 37.0 

Jan. 2003 to - 

METOP-B (ASCAT-B); 

ESA 

50 5.255 Sept 2012 to - 

CYGNSS 25 1.575 GHz Nov. 2016 to - 

Sources: Martin [2014]; Remote Sensing Systems [2016]; COAPS FSU [2016] 

Of the list above, only WindSat is a passive sensor. With several frequencies, it can 

also retrieve Sea Surface Temperature (SST). All known scatterometers (including those not 

the representative list) operate in the C or Ku bands. This is because the atmospheric 

transmissivity is very high in those two bands. Scatterometers and radiometers are capable 

of sensing both the wind speed and wind direction. Scatterometers employ a variety of pulse 

shaping and signal processing techniques to reduce effects of clutter and improve spatial 

resolution, including range binning and Doppler binning. At oblique angles of incidence, 
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surface points closer the radar have a smaller delay times than those further away. This 

physical mechanism allows the separation of surface features to improve spatial resolution. 

A similar frequency filter is used in the receiver to achieve Doppler binning. On the other 

hand, the spatial resolution of passive radiometers is dictated by the antenna footprint.  

GNSS-R instruments uses similar delay and Doppler binning techniques. However, it 

should be noted that CYGNSS currently uses only pixels near the specular point as its 

baseline retrieval algorithm. Theoretically, however, pixels in other areas of the DDM can be 

used to retrieve winds elsewhere. A similar technique is being explored by Garrison et al. via 

a Kalman-filtering approach. 

For CYGNSS, it also has unprecedented coverage, deploying 8 observatories that are 

each capable of making up to 4 measurements simultaneously. Figure 8 shows the QuikSCAT 

satellite being tested in a thermal vacuum chamber before launch. Figure 9 shows several 

CYGNSS observatories undergoing the same test. As can be seen, the GNSS-R technique 

allows much smaller satellites to be used. 
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Figure 8: QuickSCAT undergoing tests in a thermal vaccuum chamber. Source: 
https://directory.eoportal.org/web/eoportal/satellite-missions/q/quikscat 
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Figure 9 CYGNSS observatories undergoing tests in a thermal vaccuum chamber. Source: 
http://www.nasa.gov/press-release/nasa-invites-media-to-learn-about-new-hurricane-mission 

 
CYGNSS also have a 25 km spatial resolution, but in addition to windspeed 

measurement at low winds, it will be adept at measuring tropical cyclone windspeeds, with 

less relative uncertainty. However, the ability of GNSS-R to measure wind direction is 

inconclusive at the time of writing.  

1.7 Topics of the Thesis 

Much of the efforts of the surface wave community have been devoted to the energy-

containing long waves near the spectral peak. On the other hand, the ocean remote sensing 

community have spent considerable efforts on scattering from capillary waves. As a result, 

these “intermediate-scale” waves appropriate for GNSS-R have not received adequate 
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attention. We present results on two wind-wave coupling studies for these “intermediate-

scale” waves in subsequent chapters.  

If we take windspeed as the input of a system and the surface waves as the output, it 

is clear such a system is not linear, owing to the complex non-linear processes involved. In 

Chapter 2, we try to determine the response time of this system empirically. The results of 

this study may find application in data assimilation of GNSS-R winds, for instance. 

Measurements using moored buoys are used, which, it turns out, are not capable of sensing 

all the waves relevant to GNSS-R. Nonetheless, we obtain concrete bounds and speculate 

results based on extrapolation. The surface wave models discussed previously are also 

compared and validated with these results. 

In Chapter 3, we attempt to augment the state-of-the-art forward models for GNSS-R 

by taking non-local wind dependencies into account. We compare modelled results with 

recently collected spaceborne measurements in Chapter 4. The skill of our model are also 

compared with that of one of the best existing models. 

Chapter 5 concludes the thesis, and provides detailed descriptions of future work. 
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 Chapter 2  

Temporal Response of MSS 

 

In this section, we attempt to characterize the response time (defined later) of mean square 

slope sensed by GNSS-R. We are interested in the response time as it provides insight on 

questions like “does the measured winds correspond to the winds 10 minutes or 2 hours 

ago?”, and the response time, if resolved satisfactorily, should be taken into account in 

assimilating GNSS-R measurements with atmospheric models. 

2.1 Introduction 
The evolution of ocean surface waves has been the subject of study for many 

decades. Much effort has been devoted to the study of two wave properties: wave height 

and peak frequency [e.g., Young, 1999; CERC, 1977]. Wave height is important to mariners, 

surfers, and coastal engineers. Peak frequency dictates the velocity of the dominant waves, 

and is therefore critical to the forecasting of the time of arrival of waves at the coast. 

The bulk of past studies on the growth of these two quantities has focused on two 

ideal cases: 

1. Temporal steady-state, in which a steady wind blows for a sufficiently long duration. The 

wave properties can then be described as a function of distance downwind. This case has 

been termed “fetch-limited” growth [e.g., Hasselmann et al., 1973]. 
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2. Spatial steady-state, in which the winds are steady over a sufficiently large distance. The 

wave properties are then only a function of time. The wind forcing is considered to be a step 

function starting from calm conditions. This scenario is known as “duration-limited” growth 

[e.g., Hwang et al., 2004a].  

In bistatic remote sensing and radar altimetry, the specular and quasi-specular 

reflection from large scale slopes is believed to be the dominant contributor to the 

measurement, and so the low-pass filtered mean square slope (defined in Chapter 1) is the 

quantity directly relatable to the radar cross section [Valenzuela, 1978; Zavorotny et al., 

2000]. In both cases, measurements related to mss are assumed to be, indirectly, proxy 

measurements of the local winds. The response time of the mss to wind is, then, of 

fundamental importance to these techniques of ocean wind remote sensing. 

Although there have been some studies of the mean square slope and the relevant 

portions of the wave spectrum, from modelling [e.g., Hwang et al., 2013], in-situ sensing 

[e.g., Hwang et al., 2004b], and remote sensing [e.g. Cox and Munk, 1954; Jackson et al. 

1992] approaches, empirical research on the evolution of mss as a function of fetch or 

duration has remained scarce. In this paper, we study the temporal evolution of low pass 

filtered mss in a variety of field conditions over many years – specifically, measurements by 

46 National Data Buoy Center (NDBC) buoys are analyzed. The dataset ranges from 2004 to 

2014, inclusive. 

2.2 Data Source and Processing 

The NOAA NDBC operates and maintains moored buoys in the coastal U.S. regions. The 3 m, 

6 m, and 10 m discus buoys are capable of measuring the wave frequency spectrum as well 
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as many other environmental parameters such as wind speed, wind direction, air 

temperature, and sea surface temperature (SST). The majority of the buoys are of the 3 m 

discus type. The non-directional wave spectrum is derived from a time series of heave 

acceleration measurements collected by hull-fixed accelerometers [NDBC, 1996]. The 

frequency range of the waves sensible by the buoys is dictated by the dimensions of the 

buoys.  

The wave spectra data typically range from 0.02 Hz to 0.485 Hz. For linear waves, this 

corresponds to 0.0016 rad/m to 0.95 rad/m in wavenumber, or about 4 km to 6.64 m in 

wavelength.  

From the data, it is seen that most wind speeds range from 5 to 15 m/s. The wind 

speeds are measured at a height of 5 meters. 

Most buoys acquire wave data for a duration of 20 minutes each hour, at 20 min. to 40 

min. after the hour. These measurements are then averaged to derive the wave spectrum, 

which is reported at hourly intervals. 

Not all measurements are taken continuously and simultaneously. A data product 

known as “continuous wind”, however, is measured continuously, and is averaged every 10 

minutes. The first continuous wind measurement of the hour starts at minute 0 and ends at 

minute 10.  

Meteorological data such as air temperature and SST are 8-minute averages, collected 

hourly from 42 to 50 minutes after the hour [NDBC, 2009b]. The air temperature is 

measured at a height of 4 meters. 
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NDBC historical data were accessed from [NDBC, 2015]. We take the time of each 

measurement to be at the center of the averaging period. For example, a wind 

measurement averaged from 10 to 20 min after the hour is taken to be the wind speed at 15 

min after the hour. Likewise, the wave measurements made between 20 and 40 min after 

the hour are taken to be the sea state at 30 min after the hour. (It should be noted, however, 

that the reported timestamps in NDBC datasets are not at the center but vary by the type of 

measurement [NDBC, 2012a]; care is taken to interpret the timestamps correctly.) To 

synchronize the wind and wave data, both datasets are interpolated to 5 minute intervals. A 

spectrum-preserving sinc interpolator is used. For other meteorological data, only long term 

averages are needed for our analysis and so no interpolation is necessary. 

Due to vandalism and possibly other issues (recovery and redeployment, for example) 

[Teng et al., 2010], the data sometime contain gaps. If the gap is less than 1.5 hours, data are 

filled in by interpolation. Otherwise, the data series is broken into chunks for processing. 

This is of relevance because our analysis techniques (see Sections 3.1 and 3.2) require a 

continuous series of data. 

A list of buoys selected for use in this analysis, along with their relevant properties, can 

be found in Appendix A: Table of Buoy Stations and Their Properties. The distance to the 

nearest coast is obtained from NASA's Ocean Biology Processing Group dataset [NASA, 2009]. 

For bathymetry, the cell-registered version of ETOPO1 [Amante et al., 2009] is used. 

Stations with any of the following characteristics are excluded from the analysis: 

- Nonstandard wave acquisition times [NDBC, 2012b; NDBC, 2002], 
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- Anemometer not at the usual 5 m height, or the air temperature sensor not at the usual 4 

m height [NDBC, 2009a], 

- Location with ocean depth less than 193 m (see Section 2.2 for explanation), and 

- Location less than 10 km from the coast. 

Older spectral data, which do not range from the typical 0.02 Hz to 0.485 Hz, are also 

excluded. 

2.3 Computation of Low-Pass Filtered Mean Square Slope 

Because the mss is a spatial property, the one-dimensional frequency spectrum measured by 

buoys first needs to be converted to a wavenumber spectrum. The linear dispersion relation 

in deep water is invoked to perform this conversion. To ensure that the deep water 

approximation holds, we exclude buoys in shallow coastal waters, in which the behavior of 

waves is significantly more complicated [Donelan et al., 2012]. To compute a depth 

threshold, we first note that the wind speeds measured by buoys rarely exceed 20 m/s. From 

the fully-developed Elfouhaily spectrum [Elfouhaily et al., 1997] at 20 m/s, the dominant 

waves have a wavenumber of approximately 0.0163 rad/m, and this corresponds to a 

wavelength of about 386 m. Since the deep water approximation is generally valid at depths 

of greater than ½ the wavelength, the depth threshold is set at 193 m. 

The low pass filtered mss (LPmss) is then computed from the wave elevation 

wavenumber spectrum according to Equation (1.8). As noted above, for the 3-m discus 

buoys, the upper wavenumber of the waves the buoys are capable of sensing is about 1 

rad/m. In practice, there is also a lower bound. This lower bound is small enough to be not of 
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significance, because not only is there little wave energy in the longer wavelengths, the mss 

statistic also emphasizes the higher wavenumber portions of the wave spectrum. 

For short waves, it is known that the current or longwave-induced Doppler shift may 

be a significant source of error in blind applications of the above conversion procedure. The 

Doppler frequency shift is equal to k c⋅


 , where k


 is the vector wavenumber and c  is the 

vector current velocity. The wavelengths measured by discus buoys are comparatively long, 

so, as will be discussed in a later section, a bound can only be computed for the microwave 

regime. These relatively long wavelengths fortuitously imply that the Doppler shift can be 

ignored given the typical magnitudes of current velocities [Hwang, 2005b]. 

2.4 Separation Frequency and Swell 

For this study, wind seas are of exclusive interest. Field data inevitably include both swells 

and wind seas. Winds in nature are also never truly constant nor steady in time or space, so 

the division between wind seas and swell is somewhat artificial. A common method used to 

separate swell and wind seas for a 1-D spectrum involves the designation of a “separation 

frequency”, above which the waves are classified as wind seas; the rest are taken to be swell 

[e.g., Hwang et al., 2012]. In this study, no separation frequency is used for the following 

reasons. First, the division between wind seas and swell is seldom clear-cut. As wind seas 

become more mature, the peak frequency downshifts and may occupy the same frequency 

band as swell, in which case the application of a separation frequency is no longer justified. 

Secondly, the mss is dependent on the wavenumber limits of integration. Even if the region 

of overlap between wind sea and swell wavenumber is small, if the separation frequency is 

changed at each instant in time, errors in the estimation of the separation frequency and in 
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their changes could introduce artificial signals in the mss that affect the correlation between 

wind and waves. Introducing a constant separation frequency would be equivalent to 

considering only a bandpass filtered version of the mss, which has been carried out in [Chen 

et al., 2012]. (It should be noted that the results in Chen et al. [2012] overestimate the lag 

time by approximately 25 min due to an erroneous interpretation of the wind and wave 

acquisition times.) 

Swell is, by definition, uncorrelated with the local wind. Swell may well be correlated 

(albeit indirectly) with the response of the waves, however. The level of swell, as well as its 

direction, is expected to be highly correlated with location, which in turn is related to the 

fetch, and, as shown in Section 5, fetch has a strong effect on the evolution of the wind sea. 

But this relationship is correlative only – swell does not cause the response time to shift, 

because it has zero correlation with temporal changes in the wind speed. Thus, whether 

swell is removed in processing or not is immaterial to the response time itself. In particular, 

given our method for determining response time (discussed in the next section), the 

presence of swell, or lack thereof, is only expected to shift the noise floor, but not the 

response time statistic itself. 

2.5 Response Time Analysis 

In deep water, the action balance of waves dictates that the growth of waves is dominated 

by three source terms: input due to wind forcing, dissipation due to breaking, and nonlinear 

quadruplet wave-wave interactions. When there is a net energy input, the waves grow 

continuously, and the rate of growth decreases over time. Whether there exists an 

asymptotic limit, the so-called “fully-developed” condition, remains an open question 
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[Hwang et al., 2004a]. Drawing from the theory of duration-limited and fetch-limited growth 

of dimensionless energy and frequency, we are led to propose that the growth of mss, a 

non-dimensional quantity, can be expressed as a function of dimensionless duration and 

dimensionless fetch: 

 ( )* *,  mss F t x=  

where * /t tg U=  is the dimensionless duration and * 2/  x xg U= is dimensionless fetch, both 

scaled by a wind speed U  at some arbitrary height. t  and x  are the corresponding 

dimensional quantities, and g  denotes the gravitational acceleration. 

In the following analysis, instead of attempting to derive the growth functions 

themselves, we restrict our analysis to the determination of a single characteristic response 

time. Because the winds are non-steady, there is no obvious choice for the wind speed 

scaling. We therefore focus on the determination of a dimensional response time in this 

study, and reserve consideration of a non-dimensional growth function for future work. 

Chen et al. [2012] previously presented a definition of response time based on the lag-

correlator.  The lag-correlation between two continuous-time signals ( )r τ  and ( )s τ  is 

defined as the convolution given by  

 ( ) ( ) ( )lim .
T

rs T
T

t r t s d
∞

ψ τ τ τ
→

−

′ ′+ ′∫   

The response time was then defined as the time lag, 𝑡𝑡, at which the lag correlation is 

maximized. We propose here an alternative definition for response time that is found to be 

much less susceptible to noise in the wind and wave data. The alternative procedure follows 

these steps: 
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1. Start with a time series of wind speed and mss data, ( )U τ  and ( )mss τ , for a given buoy. 

2. Form a population of sample pairs, ( ) ( ){ },U mss tτ τ − , where τ  is a (variable) time lag. 

3. Perform a least-squares, second order polynomial fit between ( )U τ  and ( )mss tτ − . Note 

the residual RMS difference in the fit. 

4. Vary the time lag, t , and find the lag which minimizes the residual RMS difference. This lag 

is defined as the response time. 

An example of this procedure is presented in the next subsection. We then use the 

procedure to derive a stable, long term response time, and discuss general characteristics 

applicable to all cases. In this paper, we will refer to this method as the RMS minimizer, in 

contrast to the lag-correlator.  

2.5.1 Example of Response Time Determination and Discussion 

We consider here the continuous 30-day wind and mss measurements made by Station 

42058 from Jan. 1 to Jan. 31 of 2009. A scatter plot of the wind speed and mss 

measurements with no lag time applied is shown in Figure 10. 
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Figure 10: Scatter plot of the wind speed and mss measurements made by Station 42058 from Jan. 1 
to Jan. 31, 2009, with no lag time applied. The quadratic fit is shown in red. 

 
The scatter could be due to swell, duration, and other factors considered in the 

following sections. In addition, scatter is also contributed by averaging and interpolation – 

we recall the waves are 1 hour averages while the winds are 10 min averages. We see, later, 

however, that by leveraging the data collected over eleven years, we can derive with some 

confidence a response time better than 1 hour in resolution. 

We note that the swell contributes a positive bias to the wind sea mss; the mss in the 

scatter plot is not just due to wind waves. However, as noted, the swell is uncorrelated with 

wind speed and changes in wind speed. Therefore, it does not impact the derived response 

time. However, note that inclusion of the swell mss is desirable if we are trying to derive a 

geophysical model function that relates wind speed to the remotely sensed mss observable, 

because the mss observable also includes swell contributions. 
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A least-squares, second order polynomial fit is applied to the data shown in Figure 10, 

and the residual RMS difference is noted. This is then repeated using time lags of between 0 

and 10 hours. The resulting residual difference vs. lag time is shown in Figure 11. 

 

Figure 11: Residual RMS difference vs. lag time, for Station 42058 from Jan. 1 to Jan. 31, 2009. 

 
The time lag at which the residual RMS difference is minimized is found to be 40 

minutes (~0.7 h). This, then, is the response time of the mss to the local wind speed for this 

30-day data set. 

It should be noted that the above procedure needs to be applied to continuous, gap-

free wind and wave signals to ensure the proper time match-up of lagged waves and wind. 

We apply the above method to all continuous 30 day signals over the full 11 years of data for 

the same buoy. A histogram of the resulting response times for Buoy Station 42058 is shown 

in Figure 12. 
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Figure 12: Histogram of response times derived from consecutive 30-day measurements of Station 
42058 over 11 years (2004 to 2014, inclusive). The response times are found by minimizing the 
residual RMS difference. 

 
Note that, while there is some spread in the derived response time over the 11 years, 

the distribution is not uniform but rather highly localized. The mean value of the response 

time is found to be ~0.8 hours (45 min). This value is considered as our best estimate of the 

response time for Station 42058. 

For comparison, we apply the lag-correlator technique used in Chen et al. [2012] to 

the same dataset in 30 day segments. Figure 13 shows the histogram of response times 

produced using its procedure. 
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Figure 13: Histogram of lag-correlation response times found derived from consecutive 30-day 
measurements of Station 42058 over 11 years. These response times are found to be less stable than 
the ones derived by minimizing the RMS residual, so they are not used in this paper. 

 
The lag-correlator method is seen to be less stable, and sometimes misidentifies the 

wind wave response resulting in a more than 10 hour lag. Response times greater than 10 

hours are not believed to be physically reasonable – when the signal lengths are increased, 

these anomalously long lags are no longer seen. Because of this, the lag-correlator is not 

used in this study. We note, however, that if the 10-hour-and-greater response times found 

by the lag-correlator are excluded, the mean response time found by both the RMS-

minimizer and the lag-correlator are reasonably close. 

2.6 Results for All Buoys 

Forty-six NDBC buoys were found to satisfy the criteria specified in Section 2.2. We apply the 

RMS minimization procedure to all 46 buoys, with 11 years of data, to obtain response times 
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for each location. Data in all field conditions are used. Figure 7 shows a map of the response 

time derived at each buoy location. 

 

Figure 14: Response times of the 46 buoy stations under study. 

 
The response times are seen to vary between 0.4 and 1.8 hrs. It is also seen that, in 

general, stations with a close proximity to one another have similar response times, likely 

because they are subjected to the same environmental conditions. In Sections 2.8 to 2.10, 

we investigate the dependencies of these response times on environmental factors. 
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2.7 Comparisons to Wave Models 

Hwang et al. [2013; 2015] and Elfouhaily et al. [1997] designed models of wave spectra that 

depend on wind speed and wave age. By using the second-order duration-limited growth 

functions from [Hwang et al., 2004a; Hwang et al., 2005a], the wave age can be computed 

knowing the duration and wind speed. The wave age and wind speed can then be used with 

the wave spectrum models to compute an LPmss bounded above by 1 rad/m (as measured 

by the buoys). The duration-limited growth of LPmss predicted by the two wave spectra are 

shown in Figures 15 and 16. 

 

Figure 15: Duration-limited growth of LPmss, as predicted by the wave-age dependent H spectrum. 
Note the unit for time on the abscissa is minutes. 
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Figure 16: Duration-limited growth of LPmss, as predicted by the wave-age dependent Elfouhaily 
spectrum. Note the unit for time on the abscissa is minutes. 

 
Duration-limited growth assumes a wind speed step function waveform starting at 0 

m/s up to the scaling wind speed magnitude (varied from 5 to 20 m/s in Figures 15 and 16). 

As mentioned in Section 2.1, duration-limited growth implies large fetch. In reality, wind 

speed fluctuations are not step functions starting from calm conditions, the fetch is finite, 

and the correlation of wind and waves incorporates wave growth as well as wave decay.  

However, the response time (as defined in Section 2.5) of wave growth in ideal 

duration-limited conditions can be derived from the results in Figures 15 and 16. An order-

of-magnitude estimate of the response time corresponds to the time the duration-limited 

LPmss grows to 50% of its final, steady state value (assuming one exists). Had the wave 

response been a ramp function, this estimate obtained with this method would be perfect. 

The response times derived thus are shown as a function of wind speed in Figure 17. 
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Figure 17: Response time vs. U10 magnitude, as predicted by the H and Elfouhaily spectra. Note the 
unit of the ordinate is minutes. 

 
The response times corresponding to wave growth, as predicted by the two models, 

are seen to be significantly lower than the empirical results found from the NDBC buoy data. 

This could be due to a much slower wave decay rate than growth rate, or the overestimation 

of the wave growth rate in the models. Further study, perhaps with data collected in 

carefully controlled conditions, is needed to resolve this question.  

Next, we use a third-generation wave model that does not restrict the shape of the 

spectrum. As mentioned in Chapter 1, WW3 [Tolman et al., 2014 ] is a third generation wave 

model that is run operationally by the National Weather Service (NWS). Our first task is to 

verify the consistency between WW3 output and our buoy mss results. There have been 
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many validation efforts involving the significant wave height product of WW3, which is of 

primary interest to mariners and sailors. The publicly available WW3 code consists of several 

source term packages, which can be selected at compile-time. Only one, however, has been 

validated with regards to mss, and only at low wind speeds. This is the “ST4” package due to 

Ardhuin et al. [2010].  

Since our buoy mss response results have not been generalized through non-

dimensionalization, we derive a dimensional response time from the wave model output to 

make an order-of-magnitude comparison. 

Again, we consider only deep water conditions, in which WW3 performs well. We set 

up an ideal duration-limited scenario, and select a location with a sufficiently large fetch.  

We note that our response times estimated from buoy measurements are due to 

both wave growth and decay. For wave growth, we apply a step function as the wind forcing, 

and to simulate wave decay, we apply a negative step function, shown in the top panels of 

Figures 18 and 19. The wind inputs applied are spatially uniform in both cases – a 

representative value of 7.5 m/s is chosen. The time series of LPmss for the downwind 

location can be derived from model output. We first consider LPmss with ku = 1 rad/m, the 

upper wavenumber sensed by buoys. The resulting LPmss time series for both cases are 

shown in the lower panels of Figures 18 and 19. 
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Figure 18: Wave growth time series: wind speed at 10 m height (top), and LPmss up to 1 rad/m 
(bottom) 

 

 

Figure 19: Wave decay time series: wind speed at 10 m height (top), and LPmss up to 1 rad/m 
(bottom) 

 
Next, we apply the same rms minimization method used to derive the response times 

from buoy measurements. The rms vs. lag time plots are shown in Figures 20 and 21, for 

wave growth and decay, respectively. The lag time corresponding to the minimum of the 

plots is the response time, which we find to be 1.83 hours for growth, and 1.17 hours for 

decay. 
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Interestingly, we see that in the case of wave decay, the rate of change is lower than 

that of wave growth. However, the response time for decay is shorter than growth – in wave 

growth, the wind takes some time to initiate significant growth, at which point the rate 

increases quickly. This can perhaps be attributed to the transition from “skin drag” to “form 

drag” mechanisms of wind input [Donelan et al., 2012].  

 

Figure 20: RMS mss vs. lag time for wave growth. The response time is found to be 1.83 hours. 

 

 

Figure 21: RMS mss vs. lag time for wave decay. The response time is found to be 1.17 hours. 
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The average of the response times for wave growth and decay is 1.5 hours, which is 

in keeping with the response time derived from buoy measurements. 

Our next step is to use the wave model to predict the response time of the CYGNSS 

LPmss. The appropriate ku for CYGNSS is found to be about 9.54 rad/m. By integrating the 

wave spectra output of WW3, as was done in comparison to buoy LPmss, we find the 

CYGNSS L-band wave growth response time to be 0.42 hours, and the decay response time 

to be 0.25 hours. These average to about 0.3 hours, or 20 minutes. 

2.8 Dependence of Response Time on Wind Speed 

The analysis based on parametric wave models, as illustrated in Figure 17, predicts that the 

response time decreases as wind speed increases. To assess whether this behavior is also 

exhibited by the NDBC buoy data, we apply the same RMS minimization procedure discussed 

previously to the wind speed and LPmss data of each buoy, except now we bin the data 

according to wind speed and consider the data in each bin separately. The response times 

identified for each bin are then averaged. We consider 3 wind speed bins: 0 – 6 m/s, 6 – 8.5 

m/s, and 8.5 – 20 m/s. The binning was made non-uniform because most data fall between 5 

and 15 m/s; even so, there is insufficient data for some bins for some buoys, in which case a 

response time cannot be determined reliably for that case.  

Due to the number of buoys, we present the results in two separate plots in Figure 

22 to avoid clutter: 
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(a) 
 

 

(b) 

Figure 22: Response time dependency on wind speed magnitude. 
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In almost all cases, a monotonically decreasing response time for increasing wind 

speed is evident, in agreement with the models. 

2.9 Dependence of Response Time on Fetch 

Fetch is often difficult to quantify. In this section, fetch is not explicitly calculated. We are 

able to make inferences of the relative magnitudes of fetch, however, by examining the 

dominant wind direction in some locations.  

The histogram wind direction for all 11 years of data is presented in Figure 23 for 

Station 42058 as an example. Station 42058 is located in the middle of the Caribbean Sea 

with a nominal position of 14°55'23" N, 74°55'4" W. The wind direction convention is 

clockwise from the North, and indicates where the wind is coming from.  

 

Figure 23: Wind direction histogram of 42058 over 11 years. The wind direction is clockwise from the 
North, and indicates the direction the wind is coming from. It is seen that the dominant wind direction 
is from East to West for Station 42058. 
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We define the dominant wind direction to be the direction where the distribution is 

maximum. The maximum is used instead of the average, because the wind direction 

distribution may be multimodal. 

In Figure 24, we plot the dominant wind directions for all 46 buoys. The arrow points 

downwind (in the direction of air flow).  

 

Figure 24: Dominant wind directions for the 46 buoys under study. The arrows point downwind. 

 
We then choose suitable locations for fetch studies. The locations should be close in 

proximity with approximately the same wind direction, because it is desirable that winds do 

not change appreciably over these distances. Only locations far from land are considered to 
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avoid coastal wave processes such as reflection and bottom refraction. The selected stations, 

along with the response times, are shown in Figure 25. 

 

Figure 25: The arrows point in the direction the wind is blowing towards. Numeric labels correspond 
to response time in hours. Stations 41043 (downwind) and 41044 (upwind) are circled in red; their 
response times in the context of fetch is discussed in the text. 

 
We see that in all cases but one, the downwind location, with larger fetch, has a longer 

response time. The one exception is circled in red. This is possibly because the downwind 

station, 41043, has a slightly higher average wind speed (0.3 m/s) than the upwind station. 

Section 6 indicates that the atmospheric stratification is less stable on average at 41043 than 

41044, which may also contribute to the lower response time of 41043. 
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2.10 Dependence of Response Time on Atmospheric Stability 

Kahma et al. [1992] analyzed six well-known fetch-limited datasets available at the time in 

an attempt to reconcile the differences in wave growth. They derived the fetch-limited 

growth relations separately for unstable and stable conditions, and noted that unstable 

stratification enhanced wave growth, even when using friction velocity as the scaling wind 

speed. Young et al. (1998) analyzed data from the Lake George experiment, which is 

documented in [Young and Verhagen, 1996], using the Bulk Richardson Number to 

characterize atmospheric stability. It is defined as 

 ( )
( )2/  
a

b
t a

g T SST
R

z T U z

−
=   (2.1) 

  
where SST  is the sea-surface temperature, aT  is the air temperature at height tz , and U  is 

the wind speed at height z . Thus, negative values are indicative of unstable stratification 

while positive values represent stable conditions. In addition to other findings, they 

concluded that wave growth is more pronounced (as a function of fetch) in unstable 

conditions, in agreement with Kahma et al. [1992]. Since duration-limited growth can be 

related to the fetch-limited growth using the space-time conversion relations [Hwang et al., 

2004a], we expect that waves grow more rapidly as a function of time in duration-limited 

cases as well. This implies a shorter response time in less stable conditions, which we now 

verify. 

In the following analysis, we also employ the Bulk Richardson Number as a measure 

of stability, using the averaged 5 m height wind speed for scaling. Averaged aT  and SST  
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values are used in Equation (2.1) to compute an bR  for each station, and this is then plotted 

against the response time in Figure 26. 

 

Figure 26: Wave response time vs. the Bulk Richardson Number. A positive correlation is seen, 
indicating lower atmospheric stability corresponds to a faster response. 

 
A positive correlation is seen, with lower atmospheric stability being associated with 

a shorter response time, in agreement with previous empirical studies. Our results, therefore, 

support the idea [Young, 1998] that wave growth similarity theory should be augmented 

with a dimensionless group characterizing atmospheric stability, in addition to dependencies 

on dimensionless fetch and duration. The apparent outlier in Figure 26, Station 46077, is 
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located just south of Alaska and north of an island. This station likely experiences short fetch 

wave conditions, and this may contribute to its short response time. 

2.11 Dependence of Response Time on Wavelength and Implications for L-band 

Remote Sensing 

We now investigate the behavior of the response time as the upper limit of integration in 

Equation (1.8) is varied. Note that, instead of analyzing the bandpass mss studied previously 

by Chen et al. [2012], we study the LPmss, which is of interest to bistatic sensors and radar 

altimeters. We choose 4 upper limits, and they are chosen so that the cumulative 

distribution function (CDF) of LPmss as a function of wavelength attains 25%, 50%, 75% and 

100% respectively for the 4 LPmss’es. (The CDF is computed using the Elfouhaily wave 

spectrum, which is very similar to the CDF derived from the H spectrum [Hwang et al., 2013].) 

Similar to the method used to analyze the wind speed dependency, we average the 

response times for each LPmss and each buoy for 11 years. The results are presented in the 

two plots of Figure 27. 
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(a) 
 

 

(b) 

Figure 27: Response time dependency on upper limit of integration of LPmss. The buoys have been 
divided into two sets and plotted separately in (a) and (b) to reduce clutter.  
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The response time is seen to decrease monotonically as the upper wavenumber is 

increased, for almost all of the buoys under study. This is consistent with the present 

understanding on wind-wave growth: shorter waves become well-developed first, when the 

energy they possess saturates. At this point, further energy input from wind is either 

dissipated by breaking or transferred to longer waves by nonlinear interactions. 

Spaceborne L-band bistatic remote sensing of ocean surface wind speed has recently 

been proposed by Ruf et al. [2012]. In the rest of this section, we obtain rough estimates of 

the response times at L-band by extrapolation. It was found that power functions of the 

form of Equation (2.2) fit the data well for almost all of the buoys under consideration. 

 ( ) bt k ak c= +  (2.2) 
Functional fittings are performed for all 46 stations, and the fitting function is then 

used to extrapolate to a response time at L-band (10 rad/m). The fitting function for one 

station resulted in a non-physical negative response time at L-band, which we take to be 0 

for the statistics presented in the rest of this section. The function fittings for two stations 

are shown in Figure 28 – these being the ones with the maximum and minimum (physical) 

response times. The parameters of the fitting functions for these two stations are listed in 

Table 3.  

Table 3: Parameters of the fitted power function (Equation 5) for the stations with extremal response 
times. 

 𝑎𝑎 𝑏𝑏 𝑐𝑐 

Station 46073 (Max. Response Time) 0.07758 -1.614 1.751   

Station 46071 (Min. Response Time) 0.996 -0.8508 0.1071 
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Figure 28: Power function (Equation 5) fittings of the wavenumber dependency of response time, for 
the two station with extremal response times at L-band. Note the logarithmic scale on the abscissa. 

 

Figure 29: Histogram of the estimated L-band response times for the 46 buoys under study. 
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A histogram of the L-band response times derived for the 46 buoys is shown in Figure 

29. It is seen that over 93% of the L-band response times fall between 0.3 and 1.4 hours, 

with a mean of 0.66 hours. 

Weissman et al. [1996] analyzed the spectral correlation of wind and waves using 

data from an L-band scatterometer and a sonic anemometer. The radar data consisted of 

about 4 days of data in records of about 5 minutes long, which confined the applicability of 

their results to fluctuations on the order of 0.01 Hz and higher. The low coherence they 

found at L-band implies that if an L-band response time can be identified, it would be greater 

than timescales of 100 seconds. Our results are, therefore, in general agreement with this 

conclusion. 

It should be noted that the response time extrapolation to L-band is speculative, and 

measurements of mss at these wavelengths, in a variety of conditions, would be needed 

validate this result. 

2.12 Concluding Remarks 

In this work, we analyzed collocated wind and wave data measured by 64 moored discus 

buoys over 11 years. We found the response times of mss to wind forcing for each buoy to 

be reasonably stable, and all response times are bounded between 0.4 and 1.8 hours. We 

also find that the mss response time is dependent on wind speed magnitude, fetch, 

atmospheric stability, and wavelength. The response times are, however, much greater than 

what current models of wave age dependent wave spectra predict. This may be due to 

effects of wave decay or inaccurate wave age dependency in the models.  
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Our results would be directly relevant to HF and VHF remote sensing of the ocean. 

They can also serve as bounds for L-band bistatic remote sensing. The Cyclone Global 

Navigation Satellite System (CYGNSS) is a spaceborne L-band bistatic mission to be launched 

in late 2016 [Ruf et al., 2016]. Integrations of the H spectrum reveal for wind speeds ranging 

from 5 m/s to 15 m/s, which constitutes most of the data collected by NDBC buoys, 50% of 

the LPmss sensitivity to wind is due to waves 6.6 m and longer (the NDBC buoy wavelength 

range). This percentage is very sensitive to wind speed, and becomes higher as the wind 

speed increases.  

For CYGNSS’s incidence angle, the upper wavenumber limit sensed is about 10 rad/m. 

We saw in Section 5.10 that the extrapolated L-band response exhibits a rather large 

variability about a mean of 0.66 hours. We noted that our results are in keeping with 

previous observations by Weissman and al. [1996]. Chen et al. [2012] showed that response 

times of bandpass filtered mss also decreases monotonically with increasing wavenumber, 

so our results are also applicable to L-band scatterometers like SMAP [Entekhabi et al., 2010]. 

Furthermore, this study indicates that ancillary data such SST and air temperature could be 

beneficial in improving the accuracy of the wind retrievals.  

Finally, we note that the data used in this analysis are limited in wavelengths sensed 

by the buoys (on the shorter end). In-situ measurements of short, intermediate-scale waves 

can be quite challenging [Hwang, 2005b]. Remotely sensed data, like those to be provided by 

CYGNSS, coupled with collocated in-situ wind measurements, will likely be invaluable for 

advancing our understanding of this topic. 
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 Chapter 3  

Investigation of Non-Local Sea State Dependencies Using a Coupled 

Wave and Electromagnetic Scattering Model 

 

Modelling GNSS-R ocean scattering at L-band presents novel challenges. Gravity-capillary 

waves tens of centimeters long are in a different regime than the millimeter capillary waves, 

because they are governed by different physics. With surface tension being negligible, these 

gravity-capillary waves take longer to dissipate and propagate further before decaying. 

There have been questions [Cardellach, 2014] and results showing non-negligible GNSS-R 

sensitivity to long gravity waves. However, such waves have yet to be taken into account in 

GNSS-R forward models. For example, the end-to-end simulator for the upcoming Cyclone 

Global Navigation Satellite System (CYGNSS) mission [Ruf et al., 2016a] uses the Katzberg 

relationship to model the roughness, which assumes that the scattering cross section is 

determined by the local, instantaneous wind speed alone [Ruf et al., 2016b]. The limitation 

of this assumption is illustrated in the follow-on Chapter 4, in which spaceborne scattering 

measurements are shown to exhibit large differences from those predicted by the Katzberg-

model (e.g., Figure 35 and Figure 36).  

Our objective is to develop (this chapter), and then experimentally validate (next 

chapter), a more accurate GNSS-R forward model by incorporating forcing effects other than 

local winds. In Section 3.1, we describe the model, which includes a third-generation wave 
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model that has not previously been incorporated into a GNSS-R forward model. The 

rationale for the choice of the surface model and parameters therein are discussed.  

3.1 The Forward Model 

Since our interest is in mss, we use the Ardhuin et al. [2010] source term package, which is 

the only reported source term package for WW3 validated for mss. As mentioned earlier in 

Chapter 1, the spectral tail of high frequency waves is not completely resolved. All third-

generation waves thus explicitly model the wave spectrum only up to a certain frequency, 

and attach a high-frequency tail thereafter. We select a simple 3k −  spectral tail, which is 

suggested by the work of Banner et al. [1989], Forristall [1981], and Phillips [1958]; it is also 

in keeping with tail used by Reichl et al. [2015] in a high-frequency model based on WW3 

(Chapter 1). The tail is attached at the last frequency modeled by WW3, and thus is 

completely determined by the value of the spectrum at that frequency. A more elaborate 

model may include a high-frequency model like that of Plant [2015], Hwang et al. [2013], or 

Elfouhaily [1997], but this option is not pursued here.  

Our WW3 run is driven by the ECMWF operational wind analysis, and has 3-hour 

temporal output resolution and 0.5-degrees latitude and longitude spatial resolution. The 

last wavenumber before spectral tail attachment is 2.06 rad/m. The 3k −  spectral tail ends at 

uk , which is determined by the incidence angle of the track under consideration. For our 

simulation, the model is driven by wind only; currents play a minimal role globally [Bidlot, 

personal communication, 2016] - however, in hurricane conditions, currents can have a 

significant role [Fan et al., 2009]. We limit ourselves to non-hurricane conditions in this work, 
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and thus neglect currents. In the following, we refer to the WW3 with spectral tail attached 

as the extended WW3 model.  

An example of the attachment of the spectral tail is shown in Figure 30. 

 

 

Figure 30: Example of extended WW3 slope spectrum with a) linear scale (plot upper limit adjusted to 
3 rad/m), b) area conservative form. 

 

3.2 GNSS-R Electromagnetic Scattering and Signal Processing Model 
We use the Zavorotny and Voronovich [2000] model introduced in Chapter 1. In using 

Equation (1.12), τ ’s range is over about 30 us and f  ranges over about 10 kHz. The 

glistening zone is chosen to be 200 km by 200 km centered at the specular point, which is 

sufficient for most scattering geometries of the TDS-1 instrument considered in Section 3.3. 

In order to focus on first-order effects, we make the simplifying assumption that the seas are 

isotropic and the two components of mss are equal. The two-dimensional Gaussian PDF in 

ZV, discussed in Appendix A, thus simplifies to 
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2 21( , ) exp u c

u c
s sP s s

mss mssπ
  + = −  
   

 , (3.1) 

where the subscripts u  and c  denote the upwind and crosswind components. At the 

specular point, (0,0)P is proportional to inverse of the mss. 

3.3 Model Configuration and Post-Processing for TDS-1 
TechDemoSat-1 (TDS-1) is a technology demonstration mission operated by Surrey Satellite 

Technology Limited (SSTL) [Jales and Unwin, 2015a], and one of the payloads is the Space 

GNSS Receiver Remote Sensing Instrument (SGR-ReSI), the GNSS-R instrument of interest. 

TDS-1 has a circular orbit with an altitude of about 630 km. Because there are other 

instruments on the TDS-1 mission, the SGR-ReSI has limited operating time, so the data it 

collects are limited. In this paper, all references to TDS measurements refer to data collected 

by the SGR-ReSI.  

From Section 3.2, several pieces of information are required to compute the received 

signal. The GPS transmitted power is not published, so it is assumed to be constant. The 

other parameters needed are: 

- transmitter position and velocity, 

- receiver position and velocity,  

- receiver antenna and instrument (RF and IF) gains, and 

- mss. 

All these quantities are functions of time. For a moving receiver, the specular point 

traces out a trajectory in time across the ground known as a track. In this work, two surface 

models are used for computing the mss: the Katzberg model and the extended WW3 model. 
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The GPS transmitter and TDS receiver positions and velocities, along with the TDS receive 

antenna pattern, are furnished by SSTL. However, the instrument gain is not available; in fact, 

the receiver has automatic gain control (AGC) turned on, so the instrument gain changes 

with signal level, and this time-varying gain is not recorded. We will subsequently process 

the DDMs in a way that is not sensitive to the gain value. 

The glistening zone is set to 200 km by 200 km. The wind and mss over the area of 

integration are assumed to be constant. 

In addition to the received signal power scattered by the ocean surface, sP  in 

Equation (1.12), the received signal also contains other components due to radiometric 

thermal emission by the scene, noise due to the receiver instrumentation (including the 

antenna), and radio-frequency interference (RFI) [e.g., Chen et al. 2015]. We neglect RFI in 

this paper. The total received signal (in uncalibrated units of counts) can then be modelled as: 

 )( ( ),T ri N sC G Pf Pτ = +  , (3.2) 

where riG is the receiver instrument gain (excluding the antenna gain) and NP  is the total 

noise power. NP includes the radiometric thermal emission from the scene referred to the 

output of the antenna and the noise due to receiver instrumentation. sP  is the GNSS-R signal 

power, given by the ZV model in Equation (1.12). To be precise, sP is the ensemble mean of 

the signal power. In practice, there will also be speckle noise present in the measurements. 

Our model neglects the speckle noise and estimates the ensemble mean.  

The noise contributions to the measurements are estimated by examining pixels of 

the DDM at delay values that correspond to altitudes higher than the surface. As such, these 
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pixels contain no scattered surface signal and PS=0 can be assumed. In that case, the 

uncalibrated measurements can be written as  

 ( )N ri NC G P=  . (3.3) 

The pixel in the DDM corresponding to the specular point is found as the pixel with 

the highest power. With two equations 0 0 0 0( (, ) , )( )T ri N sf G P P fC τ τ= + and ( )N ri NC G P= , we 

cannot completely resolve the three unknowns, 0 0,( )sP fτ , riG , and NP . It should be noted 

that the upcoming CYGNSS mission carries an augmented version of the receiver that 

incorporates calibration targets and fixed receiver gain, so these unknowns can be 

determined. For TDS, no absolute calibration can be performed and the DDMA observable 

[Clarizia et al., 2014] is not easily computed. (An observable is a single number 

characterization of the DDM.) 

Because of this, a proxy of the DDMA [Jales, 2015b] known as the SNR is now being 

used in the TDS community. It is defined by 

 
( ) ( )

( )
( )
( )

0 0( , ) ri N s ri N ri sT N s

N ri N ri N N

P Pf C PS
G P G P GC

G P
NR

PC G P
τ + −−

= = =  . (3.4) 

We see that the SNR observable is independent of gain as desired, but depends on the noise 

power. Gain varies much faster than the noise power – the dominant factor is changes due 

to instrument temperature and AGC adjustments.  

For our simulations, we only model sP  and do not model the thermal noise. To 

estimate NP , we compute the ratio between the measured SNR and the modeled sP  over an 

entire track. Thus: 
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sim

s
N TDS

PP
SNR
< >

=
< >

 , (3.5) 

where .< >  is the time average operator, sim
sP  is the simulated signal power, and TDSSNR is 

the TDS-measured SNR. This assumes that NP is constant over the track, and there are no 

biases to sP . With NP  known, the simulated SNR can then be computed.  

The computation of modelled SNR requires the extraction of a single parameter from 

the measurements. Note that there are other observables that could alternately be used, 

such as the DDM volume observable [Marchan-Hernandez et al, 2008]. This observable, 

fundamentally, makes use of the ratio of the signal powers from DDM bins far away from the 

specular point to those at or near the specular point. We have considered this observable in 

our analysis and the results are similar in character to those using the SNR presented in  

Chapter 4, but they are found to exhibit a larger noise level than the SNR observable. For this 

reason, we will use an SNR-related observable in the following discussions.  

To focus on the effects of sea state, we define the Scaled SNR as: 

 
2 2
t r

rant

R RSSNR SNR
G

=  . (3.6) 

We neglect scaling corrections for scattering area and incidence angle-dependent Fresnel 

reflectivity for simplicity and because the measurement geometries present in the TDS 

sample population (discussed in the next chapter) do not exhibit significant variations. 

Lastly, we note that higher mss values (greater roughness) correspond to smaller SNR 

values.  

  



72 
 

 

 

 Chapter 4  

Model Comparison with Spaceborne Measurements 

 

In this chapter, we compare spaceborne measurements with our model predictions and with 

the predictions produced by the Katzberg model. We also discuss of some of the non-local 

effects that contribute to the scattering measurements predicted by our model. 

4.1 Description of Track under Consideration 
We analyze one TDS track in this chapter: Track 407 in RD 17 of SSTL’s Version 0.3 dataset. 

This track contains 16 minutes of continuous data, collected by a single receiver channel and 

a single GPS transmitter (GPS PRN #10 and Receiver Channel #2, per SSTL’s numbering 

conventions). This track exhibits a good variation of coastal and oceanic conditions, as well 

as a variety of sea states. The track of the specular point is plotted in Figure 31. 
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Figure 31: The specular point track for RD17 TR407 is shown as the bold yellow line running from 
Antarctica into the South Pacific. 

 
The receive antenna gain along the track is plotted in Figure 32. The variation in gain 

results from the progression of transmitter and receiver locations, and the resulting change 

in measurement geometry, over time. 

 

Figure 32 Along-track antenna gain for RD17 TR407. 
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Because antenna gain can affect the signal quality, we consider only measurements 

with gain greater than 3 dB in our analysis. In addition, since our interest is in ocean GNSS-R, 

we filter out any data with its specular point located less than 100 km away from the coast. 

This is the rationale for restricting the grid size to be 200 km by 200 km as mentioned in  

Chapter 3. Relative to the specular point, delay and Doppler bins with less than 18 us and 

5000 Hz in either direction are considered, and this is the range plotted in the DDMs shown 

below. The average incidence angle for the track under consideration is 13.8 degrees, which 

results in a cut-off wavenumber, uk , of 10.59 rad/m or 59 cm in wavelength. 

4.2 Empirical Evidence of Measurement Sensitivity to Significant Wave Height 
As seen from Equations (1.8) and (1.10), significant wave height (Hs) is much more sensitive 

to long waves than the mean square slope. These long waves include swell that is not 

correlated with wind. In this subsection, we explore the dependence of SSNR (and thus mss) 

on Hs using TDS measurements.  

In Figure 33, U10 and Hs are plotted against sample number (SN) for Track 407. Each 

SN is separated by approximately one second, and, for this track, the specular points of two 

consecutive measurements are spaced about 6000 m apart. Hs is obtained from spatial 

interpolation of the same WW3 model run, as WW3 is skillful in modelling Hs. U10 comes 

from the same ECMWF wind reanalysis product that is used to force the WW3 model.  
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Figure 33: Along track U10 (left axis) and Hs (right axis). The green band denotes a narrow range of 
U10 values, the relevance of which is discussed in the text. 

 
Although U10 exhibits some correlation with Hs, there are many points where they 

deviate from one another. To control for U10 and examine the variance of the SSNR 

explained by Hs alone, we restrict our analysis to measurements for which U10 lies in the 

narrow range between 5.7 and 6.2 m/s. This region is shaded by a horizontal green band in 

Figure 33. A scatterplot of the measured SSNR vs. Hs values in this region is shown in Figure 

34. 
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Figure 34: Measurement SSNR observable vs. Hs within a narrow (0.5 m/s) range of U10. 

Hs is seen to have a strong effect on SSNR that cannot be accounted for by 

windspeed. Some scatter is also seen, indicating that SSNR has additional variability 

explained by neither Hs nor windspeed. In the figure, we have picked three representative 

measurements; these are circled in red with their SNs indicated. We examine their DDMs in 

this and the next subsections.  

The three DDMs measured by TDS are presented in Figure 35. Both the magnitude 

and shape of the DDMs change significantly. The magnitude decreases monotonically as Hs 

increases, which is consistent with theoretical expectations. 
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Figure 35: TDS Measurements. Top panel: SN 293 with Hs=1.34 m and U10=6.19 m/s. Middle panel: 
SN 301 with Hs=1.57 m and U10=6.18 m/s. Bottom panel: SN 386 with Hs=2.13 m and U10=5.70 m/s. 
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4.3 Modeling the Effect of Significant Wave Height on the Measurement 
In this subsection, we examine modelled results and compare them to the measurements in 

the previous subsection. First, we look at the modelled DDMs of the three cases considered. 

Second, we look at the dependence on Hs predicted by the models. Lastly, we look at the 

along-track plots of the SSNR. 

Because the windspeed is essentially the  same in all three cases, the Katzberg DDMs 

should all look about the same. This is indeed the case, as seen the modelled DDMs in 

Figures 36 to 38 (right panels). The left panels show the results of the extended WW3 model. 

Comparing to the TDS measurements in Figure 35, it is seen that the WW3-based model is 

much better able to represent the behavior of the measurements, compared to the Katzberg 

model, in both the magnitude and shape of the DDMs.  

 

 

Figure 36: DDMs predicted by the two forward models: WW3 (left) and Katzberg (right) given ocean 
conditions Hs=1.34 m and U10=6.19 m/s consistent with observation SN 293. Compare to the top 
panel in Figure 35. For WW3, the DDM is in good agreement with the observation. For Katzberg, both 
the shape and signal magnitude show large discrepancies. 
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Figure 37: DDMs predicted by the two forward models: WW3 (left) and Katzberg (right) given ocean 
conditions Hs=1.57 m and U10=6.18 m/s consistent with observation SN 301. Compare to the middle 
panel in Figure 35. For WW3, the DDM is in good agreement with the observation. For Katzberg, both 
the shape and signal magnitude show large discrepancies. 

 

 

Figure 38: DDMs predicted by the two forward models: WW3 (left) and Katzberg (right) given ocean 
conditions Hs=2.13 m and U10=5.70 m/s consistent with observation SN 386. Compare to the bottom 
panel in Figure 35. Both models are both in good agreement with the observations. 

 
We now plot modelled SSNR vs. Hs in Figure 39. These plots reaffirm WW3’s skill over 

the Katzberg model. In particular, significant improvement is seen for low Hs values; these 

were found to occur at the beginning of the track near the coast. In addition, the Katzberg 
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model demonstrates deficiencies in the “branch” near Hs=3 m and SSNR=3e24; these 

correspond to very low windspeeds of less than 3 m/s.  

 

 

(a) 
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(b) 

 

(c) 

Figure 39: SSNR vs. SWH, with U10 colorcoded. The figures in the right column are zoomed in versions 
of the ones on the left.(a) TDS measurements(b) Extended WW3 (c) Katzberg. Because of the inverse 
dependence of mss, SNR is much more sensitive to mss changes when mss is small. 

 
To gain additional insight, we plot the SSNR vs. along-track SN for the TDS 

measurements and both models in Figure 40. This figure should be used in conjunction with 

Figure 33, which shows the along-track U10 and Hs. Using the variance of the difference 
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between simulations and measurements as the metric, the extended WW3 model shows a 

68.7% improvement over the Katzberg model over the entire track. The improvements in the 

coastal region at the start of the track is one significant contributor. If we consider only SN 

342 and higher, we still see a 30.2% improvement in the skill of the extended WW3 model. 

This improvement can largely be attributed to the SNs 850 to 900, for which the windspeed 

is very low.  
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(a) 

 

  

(b) 

Figure 40. (a) Along track plot of measured SSNR, extended WW3 SSNR, Katzberg SSNR, and scaled Hs 
and U10. (b) Zoomed in version of a.  
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Another insight is that despite the attachment of a diagnostic tail, we see WW3 is 

also responsive to local wind: at SNs from about 900 to 950, Hs is decreasing but windspeed 

is increasing (see Figure 33). WW3 is able to model the decreasing behavior of the 

observable correctly.  

This analysis shows that the extended WW3 model has considerable skill modelling 

the GNSS-R observable, derived from its ability to take non-local long waves into account, 

and in modelling the sea state in low windspeed conditions. 

One implication of our results is that much of the sensitivity of the GNSS-R 

observable to the sea state derives from long and intermediate-scale waves of wavenumber 

2 rad/m and lower. This is consistent with predictions of the parametric Elfouhaily model 

shown in Figure 3. However, it should be noted that this track does not contain winds that 

change quickly in time. A track with rapid changes in wind temporally and spatially will be 

able to better evaluate whether the diagnostic tail should be replaced one that has an 

explicit wind speed dependence. Fast changes in wind may also necessitate that the model 

be run at a higher spatial and temporal resolution with the corresponding wind speed 

products. 

Lastly, we note that both models underestimate SSNRs between serial numbers 350 

and 500, while a slightly positive bias is seen between 600 and 850. These discrepancies can 

be the result of an overall, constant bias that is not removed before determining and 

applying the SSNR scale factor in Equation (3.5). Such a bias may be due to errors in the 
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cutoff uk , or the spectral level. This bias may also contribute to the difference in shapes of 

the measured and WW3 DDMs shown in Figure 35 and Figure 37. 

4.4 Chapter Conclusions 
In this work, we have developed a novel GNSS-R forward model that incorporates a third-

generation surface wave model. The analysis of one track of TDS measurements, with over 

700 consecutive DDMs, shows that this model can account for both local and non-local 

effects. In contrast to conventional remote sensing techniques, the non-local effects are 

significant for GNSS-R due to frequency and geometry. The new model demonstrates 

improved skill over the widely used Katzberg one-to-one windspeed-mss model. Significant 

improvements are seen in low wave height conditions, in particular. The novelty and 

strength of our model is derived from the WW3 model, the source terms of which are the 

fruits of decades of work by the wave modeling, experimental, and remote sensing 

communities.  
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 Chapter 5  

Conclusion and Future Work 

 

In the context of GNSS-R remote sensing of ocean surface windspeed, the issue of the 

coupling of wind and waves is far being completely resolved. However, in this thesis, we 

have conducted studies from empirical and modelling approaches that have led to 

characterizations, bounds, and a better understanding of some issues in this vast research 

field. A summary of the work is provided below. 

5.1 Contributions 

All present techniques of ocean surface wind remote sensing make use of surface wave 

properties. In the case of bistatic GNSS-R sensors, the mean square slope (mss), integrated 

over an appropriate spectral band, is the direct observable. We presented an empirical study 

of the response time of surface wave mean square slope to local wind forcing using data 

collected over eleven years by forty-six discus buoys moored at a wide variety of locations. 

The response time is defined as the time lag at which the time dependence of the waves 

exhibits the highest correlation with that of the local wind speed. The response time at each 

location is found to be fairly stable, with the time varying between 0.4 and 1.8 hours 

depending on the location. Examination of long-term statistics reveals response time 

dependencies on wind speed magnitude, fetch, atmospheric stability, and wavelength. 
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Because reliable measurements of L-band mss are virtually non-existent, we derived 

the response time of the mss of longer waves, which are measured reliably by moored discus 

buoys. We used these empirical results on buoy mss evolution to validate a phase-averaged 

wave model, and then used the model to estimate the response time of L-band waves. We 

found the response time of L-band waves to be on the order of 20 minutes. Our finding is in 

keeping with the previous empirical study by Weissman et al. (1996). These results provide 

useful insights and bounds for the use of GNSS-R remotely sensed wind data. 

Next, using a third-generation wave model that was validated with our buoy 

measurements, we presented a new, end-to-end forward model for GNSS-R. The model is 

motivated by recent spaceborne GNSS-R observations that indicate a strong scattering 

dependence on significant wave height, even after controlling for local wind speed. This 

behavior is not well represented by the most commonly used GNSS-R scattering model, 

which features a one-to-one relationship between wind speed and the mean-square-slope of 

the ocean surface. The new model includes WW3, an anchored spectral tail model, and a 

GNSS-R electromagnetic scattering model. In comparisons with the spaceborne 

measurements, the new model is much better able to reproduce the empirical behavior, 

especially in cases of low wave heights and low windspeeds. 
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5.2 Future Work 

5.2.1 Augmentations and Applications of the End-to-End Forward Model 
A GNSS-R forward model incorporating a third-generation wave model has many areas 

where it can be improved upon. Some of the future improvements to the forward model 

include: 

- The retrieval of mss from the measurements, and taking into account scattering area and 

Fresnel reflectivity, 

- Modelling of anisotropic seas with two mss components and a more sophisticated pdf of 

slopes, in effect creating a tighter coupling between the scattering and wave models, 

- Relaxation of assumption of uniformity of wind and mss fields over the 200 km by 200 km 

glistening zone, 

- Augmenting the scattering model by taking the coherent scattering component into 

account for low windspeeds,  

- Inclusion of the effects of wave-current interaction, atmospheric stability, and surfactants 
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- Usage of fully coupled atmospheric, ocean, and wave models. 

The availability of CYGNSS data will undoubtedly be very beneficial to the further 

development of the end-to-end forward model. There are several aspects of CYGNSS data 

that make it helpful: 

1. Volume of data. CYGNSS is a constellation of 8 satellites with 4 simultaneous 

measurements. This means a large volume of data will be available in a diverse set of 

conditions.  

2. Signal-to-noise ratio (SNR). As a result of higher antenna gain and lower altitude, CYGNSS 

data are expected to have a higher SNR than the available TDS-1 data. 

3. Absolute calibration. With absolute power calibration, observables like the DDMA can be 

used, instead of the SSNR observable used in this thesis. Not only is the DDMA expected 

to be less noisy, the mss can also be readily retrieved, which is more closely coupled to 

the sea state under study.  

4. If collocated measurements of wave spectra (or mss with known wavenumber bounds) 

are available, the accuracy of the effective cutoff frequency of low-pass-filtered mss uk  

used in the mss retrieval can be assessed. 

To understand the underlying physical phenomena modelled by WW3 that allow it to 

produce better long-wave mss, it would be helpful to examine the two-dimensional wave 

spectra, as well as the source term spectra. The insights may lead to the development of 

ancillary parameters that can be helpful in constructing better wind retrieval algorithms for 

GNSS-R. 
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The model developed here can also be used to improve our understanding of surface 

waves with GNSS-R measurements. Possibilities include the tuning of the spectral tail and 

development of appropriate source terms. The model is also expected to be helpful in the 

design of future GNSS-R missions and experiments. 

5.2.2 Investigation of Wind-Wave Coupling for Hurricanes 
Wind waves in tropical cyclone conditions is presently an active area of research [e.g., 

Hwang, 2016; Chen and Hwang, 2016; Fan and Hara, 2012]. One approach of modelling 

hurricane surface waves is to use WW3 driven by high-resolution winds and currents. One 

outcome of this study for GNSS-R is that through the use of ancillary data (which may be 

introduced in the retrieval process), a more precise MSS-windspeed relationship can be 

obtained after controlling for these conditions, leading an increased accuracy of the 

retrieved windspeed. For hurricanes, ancillary parameters under consideration include the 

location of the eye, velocity vector of the eye, radial distance from the eye, and distance 

from the coast. As an example, we consider a snapshot of Hurricane Ivan when it is in the 

middle of the Gulf of Mexico on Sep. 15, 2004 at 03:00. The wind field and the associated 

MSS-windspeed scatter plot obtained from a WW3 simulation are shown in Figure 41 below.  
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Figure 41: Ivan wind field at 2004 09 15 03:00. The storm track is shown in black and the magenta 
lines delineate the boundaries of the 4 quadrants under consideration (left). Scatter plot of MSS vs. 
windspeed (right). 

 
The storm can be divided into four quadrants based on the direction of movement of 

the storm, with the storm track obtained from the NOAA HURDAT2 Best-Track dataset. To 

focus on the storm, locations more than 634 km away from the eye, or within 108 km of 

coast are not considered. The result for the north-east quadrant is shown below: 

  

Figure 42: Portion of wind field included the northeast storm quadrant (left), and the corresponding 
scatter plot of MSS vs. windspeed (right). 
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It is observed that by subsetting the wind and MSS fields with respect to storm 

quadrant, distance from the eye, and distance from the coast, much scatter in the MSS-

windspeed relationship can be removed. Future work could include applying the same 

subsetter to other storms to assess the repeatability of this characteristic. 

5.2.3 Laboratory Measurements of Gravity-Capillary Waves 
In-situ wavenumber spectrum measurements of intermediate scale waves are very 

challenging. The usage of moored buoys is an infeasible technique; the short waves are 

susceptible to Doppler shifting by currents and longer waves, which means the linear 

dispersion relation specified in Chapter 1 can no longer be applied to convert frequency 

spectra to wavenumber spectra. 

 One method of alleviating the Doppler shift issue is to use a free-floating, current 

following structure with capacitance wave gauges mounted in the middle region. The use of 

more than one gauge can be helpful in the derivation of directional spectra. As with any 

technique, issues remain: short waves “bound” or phase-locked to longer waves [e.g., Plant 

et al., 1999] may still not satisfy the linear dispersion relation. Also, the free floating 

structure may come under the effect of wind, and “sail” with the wind instead of floating 

with the current.  

 Here, we discuss a conceptually simple experiment of optical imaging of waves that 

may be executed in an indoor wind-wave tank facility. The issues with this method are 

outlined in Section 5.2.3.4. It is expected, however, that some of these issues may be of less 

concern for longer, gravity-capillary waves than for centimeter capillary waves. 
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5.2.3.1 An Example of the Facility 
Many wave-tank facilities exist in the United States alone. The Air-Sea-Interaction Wind-

Wave Facility at University of Michigan’s Marine Hydrodynamics Lab (MHL) is one such 

facility; it features a 35-m long wind-wave tank fitted with glass panels on the side and on 

the bottom: 

 

Figure 43: Downwind view of the wind-wave tank from. The suction fan providing the wind forcing 
can be seen at the end. 

 
A suction fan at one end induces the air flow. The tank is covered at the top by glass 

or wood panels. Some specifications are listed below: 

Table 4: MHL Wave Tank Facility Specifications 

Basin Length 35 meters 

Basin Width 0.7 meters 

Maximum water depth 1.2 meters 

Wind speed range 2 m/s to ~15 m/s 
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Computer controlled wedge wave generator 10 Hz maximum 

Width of each glass panel 44 inches = 1.12 meters 

Height of each glass panel 55 inches = 1.40 meters 

 

The height of the tank increases downwind to accommodate the growing boundary 

layer. Most glass panels are tampered for strength. These tampered glass panels refract light 

differently than normal untampered glass. Only 2 glass panels are untampered; these have 

horizontal bars for support, as indicated by the red arrow: 

 

The horizontal bar is 2 inches in thickness, and it’s positioned 14 inches from the bottom and 

38.5 inches from the top of the glass panel.  

Anemometers can be deployed to measure the wind speed. Multiple fast-sampling 

capacitance wave gauges can also be deployed by mounting them on the ceiling of the tank 

to infer directional wave spectra. Although not of particular use to us, we note in passing 
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there are computer-controlled wedges on both ends of the tank that can generate 

mechanical waves up to 10 Hz.  

5.2.3.2 Measurement Technique 
This technique makes spatial measurement by optically imaging the wave profile as seen 

through the glass sidewall. The optical image is processed to construct a histogram of 

upwind-downwind slopes. A detailed procedure is as follows.  

A camera, an anemometer, and two wave gauges are deployed at a fixed location 

downwind. At the same time the suction fan is activated, the camera, anemometer, and 

wave gauges begin recording data. The synchronization is provided by a single computer. 

The camera captures the wave elevation seen through the glass sidewall. This is called a 

wave profile. 

 

Figure 44: Sample photograph to derive wave profile  

 
The camera would be stabilized by a tripod. Sufficient lighting, and a high shutter speed 

would minimize the noise due to blur. A normal camera light flash, though, may cause 
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undesirable reflections from the glass that makes the image difficult to digitize (discussed 

later). A laser sheet may need to be used to aid in the image capture and subsequent 

processing. 

After a sufficiently long period of time, another photo is taken. Waves of different 

frequencies propagate at different speeds, so if the next photo is taken immediately after 

the previous one, some longer waves would have passed while some shorter waves seen in 

the previous photo would still be present. This may lead to a biased sampling and an 

erroneous PDF. Therefore, the waiting period should be long enough to ensure consecutive 

photos are independent.  

The photograph is then digitized to produce the water elevation as a function of 

position. A laser sheet or LEDs may be used underneath the tank to accentuate the wave 

elevation, and facilitate the subsequent image processing. This technique has been used by 

Tian and Choi [2013] to study wind effects on mechanically generated waves, and to study 

mechanically generated waves in general [e.g., Tian and Perlin, 2008]. 

We assume the surface elevation in the photograph is statistically stationary (over 

1.12 meters). The slope as a function of position is estimated by taking the elevation’s first 

derivative. A histogram of the slope is constructed from all the photos to estimate the PDF. 

The experiment can be repeated until the statistics converge.  

For CYGNSS, it believed that waves with wavenumber 9.54 rad/m and below 

dominate the quasi-specular scatter. To include only these waves, we can apply a low-pass 

FFT filter to the elevation signal or the slope signal. 
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The benefit of the spatial technique is that few assumptions need to be made and 

thus the errors are expected to be small. No specialized instrument is required, barring the 

need for a high power laser sheet and optical lenses at the bottom of the tank. Even without 

a specialized laser, the image can be digitized manually. The very small scale noise (due to 

unavoidable hand jitters) can perhaps be removed by low-pass filtering. Also, high-resolution 

and high-speed cameras (such as Go-Pro Cameras) are readily available and affordable due 

to high market demand. 

5.2.3.3 Other uses of the dataset 
In addition to an investigation of the PDF, the dataset collected could be useful for 

investigation of other topics such as: 

- Wind wave growth: the measurements need to be taken before the reflected waves arrives. 

- The upwind wave spectrum can be derived and compared to modelled results, and if some 

function form of the full wave spectrum is assumed, it too can be estimated. 

- By using wave probes, these measurements can also yield PDFs and wave spectra. 

Comparison with the results from the photographs will reveal the errors resulting from the 

Doppler effect. 

In terms of instrumentation and techniques, it would be interesting to compare to 

the results of other instruments (like slope gauges) by deploying them at the same time. 
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5.2.3.4 Issues and Limitations 
1. Meniscus effects of the glass imply the measurement technique should not be applied to 

short, capillary waves. In addition, the effects of the wall on directional waves should be 

considered. 

2. Fetch is limited to the dimensions of the tank. 

3. Depending on the wave phenomena under study, reflections from the end of the tank 

may pose an issue. A gently sloping beach or horse hair may decrease the reflected levels, 

but these techniques are, of course, never perfect. One may of course make 

measurements in a short period before significant reflections arrive. On the other hand, 

these reflections may allow the study of conditions where a specific type of swell is 

superposed on the wind waves. 

4. There have been studies showing in-situ measurements in the open ocean sometimes 

show significant differences compared to those made in the lab.  

5. The crosswind PDF cannot be derived using this technique.  
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Appendix A 

Two-Dimensional Spectra and PDFs 

 

In our modelling work, we assumed isotropic (non-directional seas) to focus on first-order 

effects, so it was not necessary to present two-dimensional formulations. We present some 

of those concepts here; these equations may be useful for further work on the forward 

model. 

A.1 Directional Mean Square Slopes 

At any given instant in time, the surface elevation of a non-breaking wave field can be 

represented by a two-dimensional scalar function, ( , )x yη , where x  and y  are the two 

horizontal Cartesian spatial coordinates. Their orientations are arbitrary and immaterial to 

the present formulation, but it is common to select x  as the eastward and y  as the 

northward directions. The two components of the surface slopes are then defined as the two 

partials of η , the entries in the gradient vector or Jacobian of η : 
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 , 

where xs is the eastward slope, and ys is the northward slope. 
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If we let maxs  be the maximum slope (the slope in the direction of the gradient 

vector), and maxθ  be the angle (with respect to the x-axis) of this max slope, then 

 
co (
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)
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s s
s s
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=
=

 ,   

which is just a conversion between Cartesian and polar representations of the gradient 

vector of the scalar surface elevation function or field. 

The randomness of xs and ys is induced by the surface elevation random process. Let 

us for now consider η  to be stationary such that xs  and ys  are random variables 

independent of time. Then, xmss and ymss  are defined simply to be the second moment of 

the slope processes [Massel, 2013, p. 153] 
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 , (A.1) 

where σ  denotes standard deviation of the corresponding subscripted random variable. The 

last equality holds because the first moments 0yxs s< >=< >= . 

The upwind and crosswind slopes are just the directional derivatives of η  in the 

appropriate directions, similar to the definitions of eastward and northward slopes. Letting 

us be the upwind slope and cs  be the crosswind slope, 
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where ( )x yJ s s= is the Jacobian (row) vector and û  is the (column) unit vector in the 

subscripted direction. 

The mean square slope in the upwind and crosswind directions are defined as one 

would expect 
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If we let uθ   be the polar angle of upwind direction in the eastward-northward Cartesian 

coordinate system ( 0uθ
°= is East while 90uθ

°= is North),  

 )cos( sin( )u x u y us ss θ θ+=  . 

Similarly, )cos( sin( )c x c cys ss θ θ+= . With the crosswind direction is defined such that 

crosswind and upwind/downwind conforms the right-hand-rule, that is, 90c uθ θ °= + ,  

 s )in( cos( )c x u y us s sθ θ+= −  . 

In matrix form, 
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 . (A.2) 

The square conversion matrix above can be identified as a rotation matrix, which is 

always invertible (for all angles). The inverse is then 
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The reason for introducing upwind and crosswind directions is that us  and cs  can be 

assumed to be uncorrelated. Upon substituting (A.3) into (A.1), the covariance term vanishes, 

and 
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In matrix form, 
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Its inverse is 
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As an aside, we note that 

 2 2 2 2) )cos( sin( sin( cos() )yx u u c u u cu c uumss mss mss mss mss mss mss mssθ θ θ θ+ = + + + = +  . 

 

A.2 Two-dimensional PDF of Slopes 

The joint probability distribution of the two components of slopes, ( , )x yP s s , is of special 

interest in GNSS-R. Radar backscatter near normal incidence and forward scatter are both 

dependent on the PDF of slopes. In particular, the baseline mss retrieval algorithm of 

Cyclone Navigation Satellite System (CYGNSS), to be launched in late 2016, needs to have 
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prior knowledge about the PDF of slopes (currently assumed to be a 2-D Gaussian) in order 

to retrieve the mss. 

There have been many studies of the probability density function (PDF) of surface 

wave slopes. Cox and Munk [1954, JMarRes and JOS] took a series of photographs from flight 

campaigns in Monterey, CA and then in Maui, HI. They carefully corrected for the motion of 

the plane, and analyzed the distribution of reflected sunlight about the specular point, from 

which the tilts of facets can be inferred. Hwang and Shemdin [1988] provides a good review 

of this pioneering work. Cox and Munk’s results remain, to this date, the gold standard in 

characterizations of PDF of slopes. Liu et al. [1997] proposed a new form of the slope PDF 

which generalizes the Gaussian and Gram Charlier PDFs introduced by Cox and Munk. It is 

parameterized by the “peakedness coefficient”, which depends on some wave properties. 

This new PDF is shown be successful in predicting the measured cross-section of a C-band 

scatterometer. Many others [e.g., Ross et al. 2007; Hughes et al., 1977; Plant, 2003] have 

measured and attempted to explain the PDF of slopes. All studies suggest the PDF is 

Gaussian to the first order (especially the crosswind PDF). 

Following our formulation in the previous subsection, because of us  and cs  are 

assumed to be uncorrelated, the joint PDF is just the product of the univariate PDFs, which 

we assume to be Gaussian. The two-dimensional PDF can then be expressed in matrix form 

as: 
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with 
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As an aside, we note that the level curve of the ( , )u cP s s  at 
1
2max( )P e

−
 is an ellipse with 

umss  and cmss  as radii along the principal axes. 

It is straightforward to express this PDF in terms of xs  and ys , the eastward and 

northward slopes, if needed. For the GNSS-R forward model, the inputs to the PDF depends 

on the coordinate system used by the KA-GO cross section coefficient. Given xs  and ys , we 

can invoke Equation A.2 to get us  and cs , which can then be inserted in (A.4) to arrive at the 

desired expression. 

Of course, once is the PDF is specified, the mean square slope in any direction can be 

computed; for example, by definition,  

 2 ,) ( )(x x x x y y xs s dsmss s P s ds
∞ ∞

∞ ∞− −

= −∫ ∫  

gives the eastward mean square slope. 0xs =  as noted previously. 

A.3 Two-dimensional Spectra 

Surface waves are often characterized statistically by different types of wave spectra. The 

connection between wavenumber wave spectra and PDF of slopes is through the slope 

variance, commonly known as the mean squared slope (mss). Many different types of wave 

spectra exist [Elfouhaily et al., 1997, Appendix]. If we let ( , )x yk kΨ  be the 2-D wavenumber 

elevation spectrum with units of 4m , then the upwind, xmss , can be expressed as: 
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 2 ( , )x x x y y xk k k dkms ds k
∞ ∞

− ∞−∞

= Ψ∫ ∫  . 

We can also express the wavenumber elevation spectrum in polar coordinates, as is 

commonly done in wave modelling literature, such that: 

 ( , ) ( , )x y y xk k d dk k kdkdk φ φΨ=Ψ  , 

where 2 2
x yk k k= +   and φ is the polar argument. 

Thus, ( , )k φΨ also have units of 4m . And it can be shown that: 

 2 2
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) ( , )cos (xms k k d dks k
π

π

φ φ φ
−

∞

= Ψ∫ ∫   

Often, we will use the directionally integrated one-dimensional wavenumber spectrum, 

( )S k , with units of 3m , defined as: 

2

0

( ,( ) )k kS dk
π

φ φΨ= ∫ . 

It then follows 

2

0

( )mss k S k dk
∞

= ∫ , 

where mss is the sum of the mss components: 

 x uy cmss mss mss mss mss= + = +  . 

Our scattering model described in Section 3 is based on quasi-specular scatter from large-

scale facets. Thus, the upper limit of the mss integral must be adjusted to compute the low-

pass filtered mss, discussed previously.  
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Most wave models output the wave spectra, from which mss can be extracted and 

used to parameterize the PDF of slopes. 
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Appendix B  

Buoy Stations Used for Temporal Response Time Determination and 

Their Properties 

 

 
Station 
Number 

Latitude 
(Deg. 
North) 

Longitude 
(Deg. 
East) 

Ocean 
Depth 
(m) 

Distance 
to Coast 
(km) 

Average 
Wind 
Speed 
(m/s) 

Wind “From” 
Direction (Deg. 
Clockwise from 
North) 

Average Air 
Temperature 
(Celsius) 

Average 
SST 
(Celsius) 

41002 31.86 -74.84 4091 342 6.89 169 23.40 22.52 
41040 14.52 -53.02 4898 708 6.98 74 27.74 26.99 
41041 14.33 -46.08 3587 1233 7.1 80 26.82 26.18 
41043 21.02 -64.85 5286 256 6.26 94 27.32 26.44 
41044 21.58 -58.63 5418 543 6.13 86 27.07 26.13 
41046 23.89 -68.37 5570 386 6.07 96 27.01 26.02 
41047 27.52 -71.48 5291 482 6.1 79 25.85 24.57 
41048 31.87 -69.57 5358 447 6.82 225 23.93 22.51 
41049 27.54 -62.95 5433 553 5.65 98 25.66 24.55 
42002 26.09 -93.76 3063 341 6.44 129 25.63 25.29 
42039 28.74 -86.01 293 122 5.63 104 24.86 22.58 
42055 22.2 -94 3637 304 6.47 106 27.33 26.48 
42056 19.8 -84.86 4569 213 6.6 83 28.38 27.40 
42057 17 -81.5 423 225 6.71 75 28.35 27.83 
42058 14.92 -74.92 4158 356 8.7 82 27.98 27.81 
42059 15.18 -67.56 4780 307 7.32 89 28.23 27.76 
42060 16.33 -63.24 1572 83 6.67 76 28.22 27.51 
44018 42.14 -69.71 225 31 6.4 180 10.57 9.92 
46002 42.61 -130.49 3454 487 7.08 354 13.67 13.07 
46005 45.96 -131 2748 504 7.38 329 13.30 12.46 
46006 40.75 -137.46 4235 1096 7.3 180 14.86 14.00 
46011 34.96 -121.02 454 30 5.59 322 13.51 13.16 
46012 37.36 -122.88 237 35 5.88 325 12.87 12.36 
46014 39.24 -123.97 398 16 5.93 337 11.71 11.53 
46015 42.76 -124.83 456 22 6.94 360 11.41 11.21 
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46022 40.72 -124.53 357 22 5.88 356 11.76 11.90 
46025 33.75 -119.05 887 28 3.61 278 16.93 15.87 
46028 35.75 -121.88 1138 40 6.74 325 13.76 13.31 
46035 57.03 -177.74 3706 444 9.04 0 4.36 3.29 
46042 36.79 -122.45 2001 35 5.98 325 13.28 12.80 
46047 32.4 -119.54 1390 90 6.28 312 16.05 15.01 
46054 34.26 -120.48 488 20 7.28 315 13.71 13.55 
46059 38.05 -129.9 4570 538 7.02 360 15.11 14.26 
46066 52.79 -155.05 4445 334 8.06 270 7.47 6.74 
46071 51.14 179.12 1313 25 7.59 282 6.10 5.84 
46072 51.66 -172.16 3583 71 8.03 270 5.99 5.44 
46073 55.03 -172 3474 224 9 0 5.68 4.10 
46077 57.89 -154.29 206 20 7.19 40 7.03 5.12 
46078 55.99 -152.64 4357 100 7.96 306 7.98 6.82 
46082 59.67 -143.39 302 44 6.74 101 8.65 7.40 
46086 32.49 -118.03 1844 47 4.31 294 17.40 16.14 
46087 48.49 -124.73 259 11 5.09 109 10.02 9.51 
46089 45.89 -125.82 2401 141 6.34 346 12.72 11.71 
51000 23.54 -153.81 4856 377 6.53 78 23.47 22.35 
51004 17.6 -152.4 5098 330 7.55 279 25.35 24.81 
51101 24.32 -162.23 4839 145 6.69 79 24.84 23.78 
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