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Abstract 

 

 Bordetella pertussis is the causative agent of whooping cough, a highly 

contagious infection of the upper respiratory tract that can lead to particularly severe 

disease in infants and young children, including death.  A whole cell vaccine was 

introduced in the 1940s leading to a rapid decline in the number of cases; however 

adverse events from the vaccine led to the development and release of a safer acellular 

vaccine in the 1990s.   Since the introduction of the acellular vaccine, pertussis cases 

began to rise.   The past few years have seen a particularly large resurgence in cases; in 

2012 the number of reported cases in the United States was the highest since 1955.  

Reasons for this resurgence are not entirely clear.  As a large proportion of cases are in 

fully vaccinated individuals, we hypothesized that interactions with host microbiota 

through coaggregation interactions may play a role in who gets infected.    We further 

hypothesized that vaccination selected for B. pertussis strains without the antigens 

included in the vaccine. 

 To explore the ability of B. pertussis to coaggregate with common commensals of 

the nasopharynx we developed a high-throughput method for its detection.  I applied 

this method to screen for coaggregation between 10 B. pertussis strains with 20 

nasopharygeal commensal strains. We also used whole genome sequencing and 

phylogenetic analysis of 100 B. pertussis isolates randomly selected from 8 vaccination 

time periods to test whether vaccination produced a bottleneck in the B. pertussis 

genome. 

  There was apparent coaggregation between B. pertussis and strains of H. 

influenzae, P. aeriginosa, S. aureus, S. pyogenes, and S. pneumoniae; however visual 

examination using the FlowCam™ runs and confocal microscopy suggested induction of 
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autoaggregation in B. pertussis by S. aureus and P. aeruginosa, and no interaction 

between B. pertussis and the other strains.  By inducing autoaggregation in B. pertussis, 

S. aureus and P. aeriginosa may be able to prevent B. pertussis from colonizing the host.  

Analysis of the genetic sequence data suggests that pre-vaccine era isolates are distinct 

from post-vaccination strains (p<0.0001) and that B. pertussis underwent a bottleneck.  
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Chapter 1. Introduction 

1.1      Bordetella pertussis: Clinical Symptoms and Changing Epidemiology 

 Pertussis infection (whooping cough) is caused by the bacterium Bordetella 

pertussis, a Gram negative coccobacillus that attaches to the ciliated epithelial cells of 

the nasopharynx (Melvin et al. 2014).  Pertussis is a highly contagious infection of the 

upper respiratory tract and is characterized by severe episodes of paroxysmal coughing 

followed by an inspiratory whoop (Council of State and Territorial Epidemiologists 

2010).  Pertussis is clinically defined as a cough illness that lasts more than two weeks 

and includes one or more of the following symptoms: paroxysms of coughing, 

inspiratory whoop, posttussive vomiting, and – for infants under one year - apnea  

(Centers for Disease Control and Prevention 2016).  The natural history of clinical 

pertussis has three separate stages.  The first stage, catarrhal, typically begins with 

general upper respiratory tract symptoms (rhinorrhea and cough).  One to two weeks 

later the paroxysmal stage begins and includes severe coughing episodes typically 

ending in an inspiratory whoop.  The final stage, the convalescent stage, occurs 2-4 

weeks later and is characterized by improvement of symptoms, although a cough can 

remain for one to three months (Halperin SA 2012).  Individuals of all ages can be 

infected, but adults and adolescents typically have milder cases or may be 

asymptomatic, whereas infection in infants can lead to severe complications and can be 

fatal (Halperin SA 2012).  

 A whole cell pertussis, diphtheria, and tetanus combination vaccine (DTP) was 

introduced in the United States in the mid-1940’s (Centers for Disease Control and 

Prevention 2016).  Since widespread vaccination began in North America, the number of 
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reported cases has decreased by over 90% (Halperin SA 2012).  Due to concerns over 

reactogenicity with the whole cell vaccine, an acellular vaccine (DTaP) was introduced in 

the United States and licensed for the fourth and fifth doses of the childhood 

vaccinations series in 1991 and for the entire  five dose series by 1997 (Schmidtke et al. 

2012).  An acellular adolescent and adult booster (Tdap) was recommended in 2005. 

 In the pre-vaccine era, pertussis infection was common causing an average of 

178,000 reported cases per year and affecting mostly children aged 1-9 years (Figure 1) 

(Centers for Disease Control and Prevention 2016; Melvin et al. 2014).  Following the 

introduction of the whole cell vaccine in the 1940s, the number of reported cases fell to 

approximately 17,000 annually during 1950-1990 (Figure 1) (Centers for Disease Control 

and Prevention 2016).   A resurgence in reported cases coincided with the introduction 

of the acellular vaccine in 1991 and by 2012, the number of reported cases increased to 

nearly 42,000 per year (Figure 1) (Centers for Disease Control and Prevention 2016).  

The epidemiology since the resurgence has changed substantially: with pertussis 

infection being more common in infants (<1 years) and older children (ages 9-19) 

(Melvin et al. 2014).  Further, cases in older children and adults often occur in fully 

vaccinated individuals.  During a B. pertussis outbreak in California during 2010, 79% of 

the infected children ages 7-10 were fully vaccinated (Winter et al. 2012).  Population 

data from 1996-2010 in Norway found 90% of the cases among those 14 and older were 

fully vaccinated (Lavine et al. 2010).  Although the whole cell vaccine appears to provide 

a longer duration of immunity, both the whole cell vaccine and the acellular vaccine fail 

to induce sterilizing immunity (Locht 2016; Warfel et al. 2014; Witt et al. 2012).    
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Figure 1.1  Reported National Notifiable Disease Surveillance System (NNDSS) 
reported pertussis cases:  1922-2014 

 

 

 Reasons for this resurgence are not entirely clear.  Some current hypotheses 

include:  waning immunity over time following vaccination or infection (Tan et al. 2005; 

Wearing & Rohani 2009), antigenic divergence of circulating strains in response to 

selective pressures from vaccines (Mooi et al. 2001), decreased vaccination rates (Omer 

et al. 2009), variable vaccine efficacy (Crowcroft & Pebody 2006; Ntezayabo et al. 2003), 

age-structured contact patterns (Rohani et al. 2010), and acellular vaccines failing to 

prevent transmission by protecting against disease but not infection leading to an 

increase in asymptomatic carriage (Warfel et al. 2014).  Lending further support to 

acellular vaccines resulting in asymptomatic carriage, in a secondary analysis of an 

acellular vaccine efficacy trial, researchers found that while the vaccine did prevent the 

disease, it did not protect against infection or colonization (Storsaeter et al. 1990).  In 
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addition, an antibody study in a vaccinated cohort of healthy one-year olds found 5-10% 

had evidence of recent B. pertussis infection although few clinical cases were recognized 

in the community at the time (von Linstow et al. 2010).  

1.2      Pertussis Vaccine and Antigenic Divergence 

 The current acellular pertussis vaccines contain five B. pertussis components:  

pertussis toxin (ptxP and ptxS1), filamentous hemagglutinin (fha), fimbrial agglutinogens 

2 and 3 (fim2 and fim3), and pertactin (prn) (Decker & Edwards 2000) (Figure 1.2).  The 

two main manufacturers of the acellular vaccine used in the United States are 

GlaxoSmithKline and Sanofi Pasteur.  The strain used for the manufacture of the 

GlaxoSmithKline vaccine in the United States is Tohama 1, a strain first isolated in Japan, 

which has an allelic variant profile of prn (1)-ptxP(1)-ptxS1B-fim2(1)-fim3(A) (Schmidtke 

et al. 2012; Bottero et al. 2007). The Sanofi Pasteur acellular pertussis vaccine is 

manufactured from B. pertussis strain 10536 (prn(1)-ptxP(1)-ptxS1D-fim2(1)-

fim3(A))(Bottero et al. 2012) obtained from the Michigan Department of Health 

(Grabenstein 2012).   

 Since the introduction of the acellular vaccine, the most common circulating 

strains in the United States have diverged away from vaccine strain alleles (Table 1.2). 

For example, since 1991 the ptxP3 allele – associated with increased toxin production - 

has become the dominant ptxP allele in the United States replacing the ptxP1 allele 

found in both vaccine strains (Schmidtke et al. 2012; Mooi et al. 2009). Antigenic 

divergence of circulating strains in response to selective pressures from vaccines has 

been observed worldwide (Mooi et al. 2001; Mooi et al. 2009; Bart et al. 2014; Bart et 

al. 2010).  Antigenic divergence of circulating strains away from vaccine strains might 

render the vaccine less effective resulting in an increase in cases.  This has already been 

observed in the Netherlands, where the shift to ptxP3 toxin was associated with an 

increase in pertussis infection notifications (Mooi et al. 2009).     
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Table 1.1 Genotype of vaccine strains, number of circulating alleles, and predominate 
allele in the United States 

 Acellular Vaccine Components 
Sources 

prn ptxP ptxS1 fim2 fim3 

V
ac

ci
n

e
 

St
ra

in
s Tohama 1 genotype 1 1 B 1 A 

(Schmidtke et al. 
2012; Bottero et 

al. 2012) 

10536 genotype 1 1 D 1 A 
(Bottero et al. 

2012; Grabenstein 
2012) 

Number of circulating alleles 2 11 6 2 4 
(Kallonen & He 

2009; Mooi et al. 
2009; Locht 2007) 

Predominate allele in US 2 3 A  B 
(Schmidtke et al. 
2012; Cassiday et 

al. 2000) 

 

1.3      Asymptomatic Carriage 

 Individuals with unrecognized pertussis infections can serve as reservoirs for 

transmission in hospital settings and within families (Conover & Sloan 2010).  While little 

is known about the prevalence of asymptomatic carriage in the absence of vaccination, 

neither the acellular nor whole cell vaccines were able to prevent colonization and 

Figure 1.2.  Acellular vaccine component locations on B. pertussis cellular surface 
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asymptomatic infection as well as natural immunity from a previous infection (Warfel et 

al. 2014).  Using a baboon model for B. pertussis infection, Warfel et al. and found that 

while vaccination with acellular pertussis (ap) protected against severe symptoms, it did 

not protect against colonization (Warfel et al. 2014).  Importantly, vaccinated baboons 

did not clear the infection any faster than naïve animals and could readily transmit B. 

pertussis to their unvaccinated contacts (Warfel et al. 2014).  By comparison, the whole 

cell vaccine induced more rapid clearance in both aP-vaccinated and naïve animals 

(Warfel et al. 2014).  Natural infection completely prevented colonization upon 

secondary infection (Warfel et al. 2014).  Warfel et al. propose that asymptomatic 

infection and subsequent transmission by individuals vaccinated with the acellular 

vaccine could, in part, explain the increase in observed B. pertussis incidence (Warfel et 

al. 2014).  In a study examining the household contacts of 16 infants hospitalized with B. 

pertussis infection, parents and siblings, nearly half of which were asymptomatic, were 

found to serve as an important source of infection (Raymond et al. 2007).     

1.4      Nasopharyngeal Microbiota may Mediate Risk of Pertussis Infection 

The human microbiota is comprised of the ecological community of commensal, 

symbiotic, and pathogenic microorganisms found in and on the human body (Lederberg 

2001).  These organisms can protect the host from potentially invading pathogens 

through both microorganism-mediated direct inhibition and indirectly by enhancing 

host immunity (Buffie & Pamer 2013).  There is some evidence that host microbiota can 

influence the ability of B. pertussis to colonize. Using a murine model Weyrich et al. 

determined that delivering a broad-spectrum antibiotic treatment before B. pertussis 

inoculation reduced the infectious dose from 10,000 CFU to less than 100 CFU and that 

reintroduction of a single Staphylococcus or Klebsiella species was sufficient to inhibit B. 

pertussis colonization in antibiotic-treated mice (Weyrich et al. 2014).  These results 

show that host microbiota can influence host specificity and prevent colonization by B. 

pertussis in mice (Weyrich et al. 2014). We hypothesize that interactions with host 

microbiota are also an important determinant in the ability of B. pertussis to colonize 
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humans.  With a large number of infections occurring in fully vaccinated individuals, 

clearly other factors contribute to who becomes infected.  

B. pertussis might interact with the host microbiota through several mechanisms.  

Bordetella species contain many mechanisms for interbacterial competition including a 

type IV secretion system for secretion of pertussis toxin, bacteriophages, and potentially 

contact-dependent growth inhibition (Weyrich et al. 2014). Coaggregation, the highly 

specific recognition of surface molecules between two genetically distinct bacterial cell 

types, is common among oral bacteria and may be another mechanism through which B. 

pertussis interacts with the host microbiota (Hughes et al. 1988).  Coaggregating 

organisms and multi-species biofilms have many advantages compared to planktonic 

cells such as resistance to antimicrobials, the host immune system, and shear forces, 

and are able to share nutrients (Rickard et al. 2003; Mishra & Parise 2005; Watnick & 

Kolter 2000).   

The ability to coaggregate is important for the development of multispecies 

biofilms, which may allow B. pertussis to persist in the nasopharynx of the host.  Biofilms 

consisting solely of B. pertussis are well documented, but whether it is able to jointly 

form biofilms with other species, particularly nasopharyngeal commensals in human 

hosts, is unstudied (Arnal et al. 2015; Conover & Sloan 2010; Serra et al. 2011; Mishra & 

Parise 2005; Conover et al. 2012).  Coaggregation interactions are likely important for 

adherence and colonization of bacteria to a variety of host surfaces (Kolenbrander 

1988).    It may be that the presence of certain nasopharyngeal commensals is necessary 

for B. pertussis to attach or the presence of certain commensals may actively prevent B. 

pertussis attachment through antagonistic coaggregation interactions.  

 With a large proportion of cases occurring in fully vaccinated individuals, 

interaction with host microbiota may play a deciding factor in who gets infected among 

vaccinated individuals. If B. pertussis is able to coaggregate with nasopharyngeal 

commensals, it might lead to persistence in the nasopharynx.  Persistence in the 

nasopharynx may result in asymptomatic carriage which is common in adolescents and 
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adults (Halperin SA 2012).  Asymptomatic carriage also is believed to be increasing due 

to the acellular vaccine preventing disease, but failing to prevent transmission and may 

be a key component of transmission dynamics (Warfel et al. 2014; Althouse & Scarpino 

2015).  Lastly, the acellular vaccine is targeted against only a few B. pertussis antigens 

and may result in selection of non-vaccine strains resulting in vaccine failure.  Antigenic 

divergence with respect to several of the vaccine components has already occurred 

(Mooi et al. 2001; Bart et al. 2014; Borisova et al. 2007; Schmidtke et al. 2012).    

1.5      Dissertation Aims 

The overall goal of this dissertation is to evaluate some of the hypothesized 

mechanisms leading to the resurgence of pertussis in the United States.  Chapters 2 and 

3 evaluate the role of coaggregation.  To do so, we first developed a high-throughput, 

quantitative method to screen for coaggregation among bacterial species (Chapter 2).  

The method uses optical density in a 96-well plate format to simultaneously assess for 

coaggregation among multiple replicates of a large number of test crosses and then 

confirms these results with a FlowCam™ device for measuring size of particles over time 

in a flowing environment, and confocal microscopy.  In Chapter 3 we apply this high-

throughput screening method to assess for coaggregation between B. pertussis strains 

and common commensals of the nasopharynx.  In Chapter 4, we screen nasopharygeal 

swab samples taken from 519 healthy adults from 115 households in Vinh Thanh, 

Vietnam to estimate of the rate of asymptomatic carriage of B. pertussis.  We also 

screen this collection for co-occurrence of B. pertussis with the nasopharyngeal 

commensals that we found to interact with B. pertussis in Chapter 3. As noted earlier, 

screening for commensals identified a problem with this collection and raised serious 

questions about the validity of the resulting estimates.  Chapter 5 describes results of 

whole genome sequencing and phylogenetic analysis to identify whether vaccination 

resulted in a genetic bottleneck.  The last chapter provides a general summary of the 

knowledge and skills gained through this dissertation work, including a reflection on the 

challenges of inherent variability of coaggregation, finding and obtaining a large 
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collection of isolates for sequencing, using archival collections, and of learning the very 

diverse set of skills necessary to conduct these various studies. 
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2.1 Significance and Impact of the Study  

Coaggregation between bacterial species is integral to multi-species biofilm 

development. Difficulties in rapidly and reproducibly identifying and quantifying 

coaggregation have limited mechanistic studies. This paper demonstrates two 

complementary quantitative methods to screen for coaggregation.  The first approach 

uses a microplate-based high-throughput approach and the other uses a FlowCam™ 

device. The microplate-based approach enables rapid detection of coaggregation 

between candidate coaggregating pairs of strains simultaneously while controlling for 

variation between replicates. The FlowCam™ approach allows for in-depth analysis of 

the rates of coaggregation and size of aggregates formed. 

2.2 Abstract 

This paper describes a high throughput method that relies upon a microplate 

reader to score coaggregation 60 minutes post mixing, and use of a high-speed real-time 

imaging technology to describe the rate of coaggregation over time. The results of 

visual, microplate, and FlowCam™ aggregation scores for oral bacteria Streptococcus 
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gordonii, Streptococcus oralis, and Actinomyces oris, whose ability to coaggregate are 

well characterized, are compared. Following mixing of all possible pairs, the top fraction 

of the supernatant was added to a microplate to quantify cell-density. Pairs were also 

passed through a flow cell within a FlowCam™ to quantify the rate of coaggregation of 

each pair. Results from both the microplate and FlowCam™ approaches correlated with 

corresponding visual coaggregation scores and microscopic observations.  The 

microplate-based assay enables high throughput screening, whereas the FlowCam™-

based assay validates and quantifies the extent that autoaggregation and coaggregation 

occur.  Together these assays open the door for future in-depth studies of 

autoaggregation and coaggregation among large panels of test strains. 

2.3 Introduction  

Coaggregation is defined as the highly specific recognition and adherence of 

different species of bacteria with each other (Kolenbrander 1988; Rickard et al. 2003).  

Coaggregation typically occurs as a consequence of the expression of protein adhesins 

on the cell-surface of one bacterial species, and complementary polysaccharide-

containing receptors expressed on the surface of the other bacterial species 

(Kolenbrander 1988; Rickard et al. 2003).   

Coaggregation interactions are important for the development of multi-species 

biofilms (e.g. dental plaque).  It contributes to biofilm development via at least two 

mechanisms: i) free floating planktonic cells of one species specifically recognize cells of 

another species type and co-adhere to the developing biofilm, and/or ii) bacterial cells 

of a planktonic species recognize and coaggregate with cells of another species within 

an established biofilm community (Rickard et al. 2003; Kolenbrander et al. 2010).  It is 

likely that these interactions are important for adherence and colonization of bacteria to 

a variety of biotic and abiotic surfaces, and provide selective advantages against non-

coaggregated bacterial species contained within a biofilm (Kolenbrander et al. 1990; 

Busscher & Van Der Mei 1995; Burmølle et al. 2006; Kolenbrander et al. 2010). 



 

16 

 

The oral microorganisms Streptococcus oralis, Streptococcus gordonii and 

Actinomyces oris strongly coaggregate and are considered early colonizers in the 

process of dental plaque formation (Kolenbrander 2000).  Early colonizers anchor the 

biofilm to the substratum surface and thereby contribute to recalcitrance of the biofilm 

to removal (Busscher & Van Der Mei 1995). For example, the presence of A. oris greatly 

reduces the ability of the S. oralis to be removed by shear force when compared with 

direct attachment of S. oralis to the pellicle (proteinaceous conditioning film formed on 

the tooth surface) (Busscher & Van Der Mei 1995).    Furthermore, early colonizers 

provide a foundation for other species to adhere, forming a mature biofilm community 

(Busscher & Van Der Mei 1995). Through autoaggregation (aggregation within a single 

species) or coaggregation, organisms can individually and collectively obtain increased 

resistance towards antimicrobials and shear forces, communicate via cell-cell signaling, 

and share nutrients (Kinder & Holt 1994; Watnick & Kolter 2000; Rickard et al. 2003).  

Research using model dental plaque systems has shown nutritionally mutualistic 

relationships occurring between coaggregating organisms (Bradshaw et al. 1994; Palmer 

et al. 2001).  For example, A. oris and S. oralis displayed limited to no growth when 

grown in monoculture with saliva as the nutrient source, but thrived when allowed to 

coaggregate (Palmer et al. 2001). 

Traditionally, coaggregation is assessed using a visual scoring system based on the 

size of the coaggregates and turbidity of the supernatant fluid (Cisar et al. 1979; Gilbert 

et al. 2002; Vornhagen et al. 2013).  However, as visual scoring is only semi-quantitative, 

it is subject to inconsistency and bias in scoring (Busscher & Van Der Mei 1995).  

Another method, measuring the percent change in optical density, provides a 

quantitative assessment and greatly improves reliability and reproducibility.  However, 

current methods are not amenable to screening of larger numbers of samples 

simultaneously (Ikegami et al. 2004; Ledder et al. 2008; Nagaoka et al. 2008; Arzmi et al. 

2015) and these technological insufficiencies have limited the in depth study of 

coaggregation (Katharios-Lanwermeyer et al. 2014).  The ability to include multiple 



 

17 

 

replicates in a single experiment is highly desirable, as there may be strain variations in 

coaggregation requiring multiple crosses to determine if the observed coaggregation 

occurs generally between two species.  Furthermore, because bacterial coaggregation is 

sensitive to a variety of influences including presence of chelating agents 

(Taweechaisupapong & Doyle 2000), temperature (Postollec et al. 2005), growth media, 

and pH (Min et al. 2010), and growth phase of the batch culture cells (Rickard et al. 

2000), high throughput methods would be highly desirable to improve reproducibility of 

results.   

Cognizant of these issues,   we developed a quantitative method for high 

throughput screening for coaggregation among bacterial species. Our high throughput 

method allows for simultaneous analysis of multiple replicates so that experimental 

variation is reduced and possible subjective bias is minimized. This method’s accuracy as 

a preliminary screening tool was validated using confocal microcopy and a recently 

developed approach using FlowCam™ technology (Segaloff et al. 2014).  A FlowCam™ is 

a dynamic imaging particle analyzer that examines fluid through a microscope and 

captures images of the particles as they are pumped through a flow cell via a computer 

controlled syringe pump.  Specifically, a FlowCam™ characterizes the particles using a 

variety of measurements such as area-based diameter.  It has been used in a variety of 

different industries including aquatic research, algae technology, waste management, 

pharmaceutical, and oil and gases for purposes such as monitoring algae for biofuels, 

quantifying protein aggregates in pharmaceuticals, and analyzing drilling products 

(http://www.fluidimaging.com/).  In practice, the high throughput method can be used 

to screen a large panel of test strains for potential coaggregation.  Ideally, strains giving 

a positive result with the high throughput method would then be tested further using 

either confocal microscopy or FlowCam™. 

Without a high throughput, quantitative method for assessing coaggregation, it is 

difficult to explore the importance of coaggregation for the development of biofilms.  A 

better understanding of coaggregation can provide a deeper knowledge of how 
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organisms interact and biofilms form.  For example, the presence of biofilms can result 

in the corrosion of sewer pipes.  An improved understanding of if and how organisms 

coaggregate in these biofilms could help in developing strategies to reduce the 

detrimental effects of species in biofilms on pipe surfaces (Jensen et al. 2016).  A high 

throughput screening method would also be of interest to the dental research 

community as identifying coaggregation between oral bacterial species (beyond those 

already known) could be an important step in developing a fuller understanding of 

dental plaque development (Kolenbrander et al. 1990).  Coaggregation may also be an 

important mechanism through which pathogens interact with the host microbiota.  

Younes et al. demonstrated a rapid anti-pathogen effect of probiotic lactobacilli with 

toxic shock syndrome toxin 1-producing Staphylococcus aureus strains as a result of 

coaggregation (Younes et al. 2012). High throughput studies of coaggregation between 

organisms could be useful in identifying probiotic species.  

2.4 Results and Discussion: 

2.4.1 High throughput quantitative method increases validity and reliability of 

results 

 Three strains of oral bacteria were used:  Streptococcus oralis 34, Streptococcus 

gordonii DL1, and Actinomyces oris T14V.  S. gordonii is a primary colonizer in dental 

plaques and was previously found to coaggregate with both A. oris T14V and S. oralis 34 

(Cisar et al. 1979).  All possible pairwise combinations of these three strains were tested, 

resulting in six potential coaggregative or autoaggregative pairings.  Coaggregation was 

first assessed in a low throughput format and scored using the visual scoring system 

developed by Cisar and colleagues (Cisar et al. 1979).   As shown in Figure 1A, the 

maximum visual coaggregation (score = 4) is easily distinguished from no coaggregation 

(score = 0), but visual intermediate scoring is more subjective and as a consequence is 

less reproducible.      
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Using the microplate-based approach with OD 620 nm, it was determined that S. 

gordonii DL1 + A. oris T14V, S. oralis 34 + A. oris T14V, and S. oralis 34+ S. gordonii DL1 

all strongly coaggregated (Figure 1B).  No autoaggregation was detected for S. oralis 34 

or S. gordonii DL1.  Some autoaggregation was observed for A. oris T14V, although the 

OD did not differ significantly from that of non-autoaggregating strains.   

Within each micro-plate run, pairs were assayed in triplicate.  The average 

coefficient of variation (standard error / mean) for the triplicates was 14% with a 

median of 9%.  The coefficient of variations differed by specific crosses with 

autoaggregation by A. oris being the most variable (ranging from 1-66%).  An increase in 

the coefficient of variation for coaggregation was also observed when A. oris was a 

component of a coaggregating pair.  

Many factors contribute to between run variations:  bacteria are harvested from 

separately grown batch cultures, which may differ slightly in length of growth time, 

exact nutrient content and pH of media, pH of buffers used for washing and re-

suspension, number of times strain has been passaged before current growth, and 

natural biological variation.  To minimize these variations, bacteria of a given species 

were harvested from the same batch culture, although some variation might remain due 

to the slight variations in timing between admixture and measurement, and true 

biologic variation in the amount of autoaggregation occurring within each species of a 

given candidate coaggregative pairing.  

Between run and within run variation highlight the need for multiple replicates of 

each candidate coaggregative pair in addition to replicates of each strain on its own (to 

assess autoaggregation) within a single run.  This is easily possible using the high-

throughput 96-well plate method.  Quantitatively comparing coaggregative and 

autoaggregative behavior within a single run also enables more accurate assessments of 

coaggregation by controlling for any autoaggregation that may occur, and multiple 
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replicates of all strains and strain pairs allow for construction of confidence intervals 

around the mean OD value for a given strain or strain pair. 

2.4.2 FlowCam™ Technology can measure particle sizes and quantify rate of 

coaggregation 

 FlowCam™ technology was used to validate the high-throughput 96-well plate 

system, providing an in-depth analysis of the rates of coaggregation, and visual and 

quantitative assessment of the size of aggregates formed (Segaloff et al. 2014).  The 

average particle size per minute increased over time for all three coaggregative pairings 

(Figure 2).  By minute three (two minutes post-mixing) all coaggregating strains 

experienced a statistically significant increase in average particle area per minute as 

calculated using area-based diameter.  Strong coaggregation occurred when S. gordonii 

and A. oris were combined, with particles averaging 212 µm2 per minute and reaching as 

large as 3,800 µm2 in area.  The coaggregation between S. oralis and S. gordonii was not 

as strong.  Particle sizes averaged 122 µm2 by the final minute of data collection and 

reached a maximum area of approximately 2,950 µm2, but many cells did not 

coaggregate and remained in suspension.  This variation in coaggregation between this 

pair resulted in large confidence intervals around each time point.  S. oralis and A. oris 

coaggregated strongly with particle sizes averaging 215 µm2 in area by minute two and 

reaching sizes as large as 3,180 µm2.  In the autoaggregation assays, the average area of 

A. oris particles (83 µm2) was significantly larger than those of S. oralis (35 µm2) and S. 

gordonii (51 µm2), indicating strong autoaggregation in this species.  Here, the use of 

FlowCam™ allowed for quantification of rates of coaggregation and measurement of the 

particle size associated with coaggregation.  Results from FlowCam™ correlated well 

with the results of the high throughput screen, with coaggregation indicated by 

increases in particle size over time following the addition of the second organism and 

autoaggregation indicated by larger particle sizes.  FlowCam™ was more useful for 

detecting autoaggregation than the high throughput screening method on its own, 

which did not show a statistically significant difference between autoaggregating and 
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non-autoaggregating strains.  These results validate the use of the high throughput 

method as an initial screening step to be followed up with a more confirmatory assay 

such as FlowCam™ or confocal microscopy. 

2.4.3 Confocal microscopy confirms presence of coaggregation   

As a further confirmation, the strains were stained using Syto-9 (green) or Syto-61 

(red) nucleic acid stains before crossing them for coaggregation, and then visualized 

using a confocal microscope (Figure 3).  Confocal microscopy images confirmed that S. 

oralis and S. gordonii do not autoaggregate (Figure 3, A and C).  Visualization of A. oris 

alone confirmed strong autoaggregative behavior (Figure 3B).  This was not immediately 

apparent from initial absorbance readings from the high throughput screening method 

because autoaggregation was not followed by immediate sedimentation (Figure 1B).  

This finding is consistent with previous reports. Koop and colleagues showed 

autoaggregation without associated sedimentation could be missed by 

spectrophotometry (Koop et al. 1989), highlighting the importance of using a 

combination of methods for detection.  The high-throughput 96-well plate method is 

most appropriately applied as a screen for potentially coaggregating pairs from a large 

pool of candidates.  Potentially coaggregating pairs should be further evaluated using 

FlowCam™ or confocal microscopy, ideally both.  Moreover, if coaggregation is 

suspected, autoaggregation should be ruled out.  

 S. oralis + S. gordonii showed moderate coaggregation (Figure 3D) while S. 

gordonii + A. oris (Figure 3E) and S. oralis + A. oris (Figure 3F) showed strong 

coaggregation.  S. oralis and S. gordonii appeared to coaggregate in a more even 

manner, suggesting absence of autoaggregation within the two species (Figure 3D), 

while S. oralis + A. oris and S. gordonii + A. oris showed clumps of the same color (red or 

green) indicating strong autoaggregative behavior by A. oris (Figure 3, E and F).  

 



 

22 

 

2.5 Summary  

Focusing on the interactions between three well-documented coaggregating 

strains of oral bacteria, we demonstrated that coaggregation can be quantified, and the 

kinetics of coaggregation and the size of coaggregates formed can be measured. The 

microplate-based assay enables high throughput screening to identify potentially 

coaggregating strains, whereas the FlowCam-based assay validates and quantifies the 

extent that aggregation and coaggregation occur.  In the absence of FlowCam™, or in 

combination with its use, confocal microscopy is a useful tool for confirming the 

presence or absence of coaggregation following screening of a large panel of strains 

with the high throughput method.  Together these assays open the door for in-depth 

studies of aggregation and coaggregation among large panels of test strains.  

2.6 Materials and Methods: 

2.6.1 Growth Conditions 

S. oralis 34 and S. gordonii DL1 were incubated aerobically with CO2 at 37°C in 

Schaedler’s broth for 24 hours.  A. oris T14V was incubated aerobically with CO2 at 37°C 

in Brain Heart Infusion broth for 48 hours.  Cells were harvested from batch culture 

through centrifugation for 12.5 minutes at 3,000 X g and then washed 3 times in 

coaggregation buffer (Cisar et al. 1979; Rickard et al. 2000).  After each centrifugation 

step, the supernatant was discarded and the pellet was re-suspended in coaggregation 

buffer.  The washed pellets were then suspended in coaggregation buffer to achieve an 

optical density at 600 nm of 1.5 (±0.1).      

2.6.2 Coaggregation and Autoaggregation assays 

Coaggregation and autoaggregation were first assessed using a visual 

coaggregation assay developed by Cisar et al. where visual scores ranged from 0 (no 

visible aggregates in the suspension) to 4 (large aggregates form and settle leaving a 

clear supernatant) (Cisar et al. 1979).  To assess coaggregation between two strains, 200 
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µl of each bacterial suspension were combined in a glass culture tube.  To assess 

autoaggregation 400 µl of the single bacterial suspension as placed in a glass culture 

tube.  The culture tubes were then vortexed for ten seconds and rolled gently for an 

additional 30 seconds (Rickard et al. 2000). Each pair was assayed in triplicate.    

Samples were allowed to sit 60 minutes to let coaggregates settle to the bottom 

of the tube.  Any changes in visual coaggregation score following the 60-minute time 

period were documented.  This endpoint was selected after initial testing of the 

supernatant at 30 minute time intervals over 3 hours; 60 minutes was ideal for good 

separation between coaggregating and non-coaggregating strains.  One hundred 

microliters of supernatant were removed from each sample and placed in a 96 well flat-

bottom plate.  Absorbance of the supernatant was measured at 620 (A) using a 

PerkinElmer 2030 workstation (PerkinElmer Life and Analytical Sciences, Turku, Finland).  

Mean OD and associated 95% confidence intervals were calculated over all trials for 

each of the strain pairs and for each strain alone.   Because strains were set to the same 

optical density (1.5) before they were combined, an expected value for the combined 

pair was calculated based on the average experimental OD of the two components.  The 

mean OD, 95% confidence interval, minimum and maximum for each pair was then 

compared with the calculated expected value for the pair.  Coaggregation was 

suspected when the expected value was above the upper limit for the 95% confidence 

interval and was considered when the mean OD was below the expected value.   In all 

cases meeting these criteria, further screening was conducted using FlowCam™ and 

confocal microscopy. 

As an additional visual test of autoaggregation and coaggregation between strains, 

300 μl of each bacterial suspension in coaggregation buffer were stained with either 

Syto-9 (green: Excitation:  488, Emission: 503) or Syto-61 (red: Excitation: 561, Emission: 

645) nucleic acid stains (Invitrogen, Carlsbad, CA, USA).  Each bacterial suspension was 

incubated for 30 minutes at room temperature to allow staining of the cells. Cells were 

washed three times with coaggregation buffer and collected by centrifugation, as 
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mentioned above. Each bacterial strain was re-suspended in coaggregation buffer and 

combined for coaggregation. For autoaggregation studies, Syto-9 and Syto-61 stained 

cells of that species were mixed together.  Twenty microliters of each sample were 

added to the slide and viewed under the microscope.  The entire droplet was scanned 

and a minimum of three representative fields of view were captured for each pair and 

for each strain alone using Leica confocal laser scanning microscopy (CLSM, SPE, Leica, 

IL, USA) with a HCX PL APO 40X/0.85 CORR CS objective.  Staining and microscopy were 

repeated twice to ensure consistency of results.”  Once the microscopy images were 

taken, the image files were rendered using Imaris (Bitplane, Zurich, Switzerland) 

computer imaging software.   

2.6.3 FlowCam™ Imaging and Quantification of Coaggregation  

To confirm the results of our findings, coaggregation was quantified using 

FlowCam™ technology (Fluid Imaging Technologies, ME, USA).  S. oralis 34, S. gordonii 

DL1 and A. oris T14V were harvested from batch cultures and washed as described 

above.  The washed pellets were re-suspended in coaggregation buffer to achieve an 

optical density of 1.0 (±0.1) at 600 nm.  Prior to loading the cells into the FlowCam™ 

device, cell suspensions were further diluted 5X in coaggregation buffer to prevent 

clogging of flow cell.  The first species was added to the device and was pumped 

through until it reached the flow cell.  Data collection began once the Olympus UPlanFL 

N 10X/0.30 objective was successfully focused on the flowing particles.  The second 

species was added to the vessel containing the first species and gently mixed 1 minute 

after initiation of data collection.  FlowCam™ was run for 10 minutes at a flow rate of 

0.3 ml/min with images acquired at a rate of 10 frames per second.  Flash duration was 

set to 8 µSec.   Particle size was measured using area based diameter (ABD) and a 

particle filter of 5 to 10000 μm.  Visual spreadsheet software was used for data 

collection.  A minimum of 5 FlowCam runs was conducted for each pair with similar 

results. 
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Figure 2.1. (A) Test crosses of pairwise combinations of S. gordonii, S. oralis, and A. oris with 
associated visual coaggregation score based on methodology by Cisar et al. 1979.  (B)  Mean 
Optical Density (620 nm) of supernatant with associated 95% confidence intervals of test 
crosses. 
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Figure 2.2.  Change in average particle area (µm) per minute during 10 minute time period 
with associated 95% confidence intervals calculated from number of particles scanned per 
minute for potential (A) coaggregating (S. gordonii + A. oris, S. oralis + S. gordonii, S. oralis +A. 
oris) and (B) autoaggregating (S. gordonii, A. oris, S. oralis) pairs as measured with the 
FlowCam™ device.  Calculations were based on an average of 2,009 particles per minute 
(median = 707, maximum = 5,867, minimum = 24). 
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Figure 2.3.  Visualization of selection bacterial pairings using confocal microscopy.  Confocal 
microscopy images are represented in the x-y plane. Nucleic acid stains syto-9 (green) and 
syto-61 (red) was used to detect autoaggregation and coaggregation of oral microbes. Bars 
represent 40 μM. 
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 Interactions between B. pertussis and other Common Nasopharyngeal Chapter 3.

Commensals 

 

3.1      Abstract 

 Bordetella pertussis infection can result in severe morbidity and even mortality in 

unvaccinated infants and young children, but infection in vaccinated adolescents and 

adults is often asymptomatic or results in milder symptoms such as a prolonged cough.  

Asymptomatic carriers are reservoirs for infection and help maintain ongoing 

transmission.  In recent years, the majority of cases have been in fully vaccinated 

individuals.  We hypothesized that coaggregation between B. pertussis and members of 

the host microbiota might be an initial step in B. pertussis colonization of the 

nasopharynx.  Whether B. pertussis coaggregates is unknown.  We tested whether B. 

pertussis coaggregates with common commensals  of the human oropharynx (10 strains 

of B. pertussis and 20 nasopharyngeal commensal test strains including H. influenzae, S. 

pneumoniae, N. meningitidis, and S. aureus.) using a high-throughput screening method. 

Strains positive for coaggregation in the high-throughput assay were further evaluated 

using a FlowCam™ device and confocal microscopy.  Using the high-throughput assay 

there was apparent coaggregation between B. pertussis and strains of H. influenzae, P. 

aeriginosa, S. aureus, S. pyogenes, and S. pneumoniae; however visual examination 

using the FlowCam™ runs and confocal microscopy suggested induction of 

autoaggregation in B. pertussis by S. aureus and P. aeruginosa, and no interaction 

between B. pertussis and the other strains.  By inducing autoaggregation in B. pertussis, 

S. aureus and P. aeriginosa may be able to prevent B. pertussis from colonizing the host.
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3.2      Introduction 

3.2.1 Pertussis can be Carried Asymptomatically or with Minimal Symptoms  

While pertussis infection can result in severe morbidity and even mortality in 

unvaccinated infants and young children, infection in vaccinated adolescents and adults 

is generally milder and results in a prolonged cough (Conover & Sloan 2010).  Several 

studies among vaccinated and unvaccinated adults and adolescents with a cough lasting 

longer than one week, show high rates of B. pertussis in this group: from 12-32% (Cherry 

1999; Mink et al. 1992; Schmitt-Grohé et al. 1995; Wirsing von König et al. 1995; Wright 

et al. 1995; Rosenthal et al. 1995; Nennig et al. 1996). Individuals with unrecognized 

pertussis infections can serve as reservoirs for transmission in hospital settings and 

within families (Conover & Sloan 2010).  In a study of 41 infants under age 4 months and 

their household contacts, parents and siblings, nearly half of which were asymptomatic, 

were found to serve as an important source of infection (Raymond et al. 2007). 

 Only a few studies have estimated the prevalence of asymptomatic carriage.  

Among a cohort of 242 vaccinated, healthy Danish infants,  5-10% showed IgG and IgA 

antibodies to pertussis toxin (PT) and filamentous hemagglutinin (FHA) by age 1 

although only a few clinical cases were recognized in the community at the time, (von 

Linstow et al. 2010).  This strongly suggests ongoing asymptomatic transmission.  

Further, among 279 children ages 5-15 years presenting to the Nuffield Department of 

Primary Care Health Sciences at Oxford University from 2010 to 2012 with a cough 

illness of two-eight weeks duration, 56 (20% ±5%) had an oral fluid anti-pertussis toxin 

IgG titre consistent with a recent pertussis infection and of those children, 39 (70%) 

were fully vaccinated (Wang et al. 2014).  

One hypothesized mechanism for B. pertussis’ ability to persist for long periods 

in the oropharynx is that B. pertussis can form biofilms (Conover & Sloan 2010; Serra et 

al. 2011; Sloan et al. 2007; Conover et al. 2011)  (Arnal et al. 2015; Conover & Sloan 

2010; Serra et al. 2011; Mishra & Parise 2005; Conover et al. 2012).  Biofilms consisting 
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solely of B. pertussis are well documented, but whether it is able to jointly form biofilms 

with other species, particularly bacteria found in the nasopharynx of human hosts, is 

unstudied.  When in a biofilm, bacteria are more resistant to antimicrobial agents such 

as detergents, antibiotics, and reactive oxygen species and are more resistant to 

clearance by the host’s immune system (Conover & Sloan 2010).  High levels of 

resistance to erythromycin and ciprofloxacin among Bordetella species in biofilms have 

been reported (Mishra & Parise 2005) and strains containing Bps, the polysaccharide 

responsible for biofilm development in Bordetella species, took an entire month to be 

fully cleared from the nose in a murine model (Conover & Sloan 2010).  This resistance 

to clearance by the host’s immune system when in biofilm form may allow B. pertussis 

to persist in the nasopharynx of asymptomatic hosts and allow them to serve as 

reservoirs of infection for unvaccinated infants (Conover & Sloan 2010; Tan et al. 2005).     

 

3.2.2 Oropharyngeal Microbiota may Influence Risk of B. pertussis Colonization 

 Household contacts of pertussis cases vary in risk of infection (including 

asymptomatic carriage) in ways not entirely explained by vaccination status or previous 

infection (Raymond et al. 2007; Cherry 1997; Ward et al. 2006).  According to the 

Centers for Disease Control and Prevention, only 9% of the children ages 6 months to 6 

years infected during 2015 had not been vaccinated. In a study following the large 2010 

pertussis outbreak in Marin County, California, no difference in attack rates were found 

between fully vaccinated and under- and un-vaccinated children demonstrating that 

vaccination status is not the primary determinant for who gets infected (Witt et al. 

2012).  

The majority of those infected are unaware that they are infected and are able 

to transmit to others (de Melker et al. 2006).  Among infants with a known source of 

infection, more than 66% of the sources of infection were immediate family members 

(Skoff et al. 2015).   In a study of IgG-PT levels (an indicator of recent pertussis infection) 

in the Netherlands, researchers estimated the incidence of recent infection in the Dutch 
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population at 6.6%, which was significantly higher than the reported incidence of 0.01% 

per year.  In addition, a study of B. pertussis seroprevalence in the Netherlands 

demonstrated that although increased vaccination has reduced morbidity due to 

pertussis among children, the infection rate in adults and adolescents has remained 

unaffected (de Greeff et al. 2010).  

 One hypothesized mediator of B. pertussis colonization is the oropharyngeal 

microbiota.  Some commensals individually or collectively may enhance and others may 

resist B. pertussis colonization.  Results from a murine model support this hypothesis. 

Among mice treated with antibiotics to remove commensals from the nasal cavity, the 

infectious dose required to obtain B. pertussis colonization was significantly reduced: to 

<100 CFU compared with the 10,000 CFU required before treatment.  However, 

reintroduction of even a single Staphylococcus or Klebsiella species to the nasal cavity 

blocked B. pertussis colonization following an inoculation of 5,000 CFU of B. pertussis, 

which is greater than ten times the dose required in antibiotic-treated mice (Weyrich et 

al. 2014).  Thus, interactions with host microbiota may mediate the ability of B. pertussis 

to form biofilms and colonize.   

 Biofilm formation often begins with coaggregation, the highly specific 

recognition and adherence of two distinct bacterial species (Rickard et al. 2003).   

Superinfection with other respiratory pathogens such as H. influenza, S. pneumoniae, 

and S. aureus is common during and after infection with B. pertussis, which hints that 

polymicrobial interactions may be an important aspect of B. pertussis infection (Sawal et 

al. 2009).  To gain insight into whether coaggregation might help explain why vaccinated 

individuals might still asymptomatically carry B. pertussis, we assessed the ability of 10 

different B. pertussis strains to coaggregate with common nasopharyngeal commensals: 

S. pneumoniae, S. aureus, and H. influenzae, S. pyogenes, P. aeriginosa, and N. 

meningitidis.  
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3.3 Methods 

3.3.1 Growth Conditions and Strains Used 

Haemophilus influenzae (strains 007.2.12, I247, G1322, I316, K29RE2.10) and 

Neisseria meningitidis, Streptococcus pyogenes, Staphylococcus aureus (strains 1263, 

25923), Pseudomonas aeriginosa, and Streptococcus pneumonia (serotypes 1, 10, 12F, 

16F, 20, 23F, 33, 34, 35B, 7F) strains were incubated aerobically with CO2 at 37°C in 

Brain Heart Infusion broth for 24 hours.  Cells were harvested from batch culture 

through centrifugation for 12.5 minutes at 3,000 X g.  B. pertussis (strains CDC_F657, 

CDC_F964, CDC_G710, CDC_H971, CDC_I220, CDC_I240, CDC_I369, WA_H174, 

WA_H930, WA_H962) was grown on Regan-Lowe agar plates at 37°C for 4 days.  

Coaggregation is known to be highly variable (Levin-Sparenberg et al. 2016), therefore, 

we also repeated experiments reducing the growth time from 24 to 18 hours for test 

strains and an increasing growth time from 4 to 5 days for B. pertussis. 

  B. pertussis cells were harvested by swabbing the surface of the agar with a 

coaggregation buffer-soaked, nylon-tipped swab and suspending the cells in 

coaggregation buffer before centrifugation for 12.5 minutes at 3,000 X g.  All cells were 

washed 3 times in coaggregation buffer (Cisar et al. 1979; Rickard et al. 2000).  After 

each centrifugation step, the supernatant was discarded and the pellet re-suspended in 

coaggregation buffer.  The washed pellets were then suspended in coaggregation buffer 

to achieve an optical density at 600 nm of 1.5 (±0.1).      

 

3.3.2 High Throughput Coaggregation and Autoaggregation Assays 

To assess coaggregation between two strains, 200 µl of each bacterial 

suspension were combined in a glass culture tube.  Autoaggregation was assessed by 

examining 400 µl of each sample and continuing with the same protocol.  The culture 
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tubes were vortexed for ten seconds and rolled gently for an additional 30 seconds 

(Rickard et al. 2000).  Samples were allowed to sit 60 minutes to let coaggregates settle 

to the bottom of the tube.  One hundred microliters of supernatant were removed from 

each sample and placed in a 96 well flat-bottom plate.  Absorbance of the supernatant 

was measured at 620 (A) using a PerkinElmer 2030 workstation (Levin-Sparenberg et al. 

2016).  All coaggregation and autoaggregation assays were conducted in triplicate.  S. 

gordonii, S. oralis, and A. oris pairs were used as positive controls on all 96-well plate 

assays. 

Results of the high-throughput screen were used to calculate mean absorbance 

and associated 95% confidence intervals for each strain pair.  Because strains were set 

to the same optical density (1.5) before combining, an expected value for the combined 

pair was calculated based on the average experimental OD of the two components.  The 

mean absorbance, 95% confidence interval, minimum and maximum for each pair was 

then compared with the expected value for the pair.  Coaggregation was suspected 

when the upper limit for the 95% confidence interval was below the expected value and 

was considered when the mean OD was below the expected value (Levin-Sparenberg et 

al. 2016). 

 

Example Calculation of Expected 
Value: 
 
CONTENTS N 

Mean over 3 
trials 

ODBUG
1 

ODBUG
2 EXPECTED VALUE 

CDC_F657+CDC_F657 3 0.31 0.31 0.31   

S. aureus 1263+S. aureus 1263 3 0.39 0.39 0.39   

CDC_F657+S. aureus 1263 3 0.23 0.31 0.39 
(0.31+0.39)/2= 

0.35 

 

The empirically determined mean OD over the three replicates of CDC_F657+S. aureus 

1263 was 0.23 (95% CI:   0.18, 0.28) which is less the expected value for the pair based 

on the average of the empirically determined OD for each of the components. As the 

value is less than the expected value this suggests that CDC_F657+S. aureus 1263 

coaggregate.   
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3.3.3 FlowCam™ Imaging and Quantification of Coaggregation 

Following an initial screen of our strain pairs using the high-throughput method, 

we identified pairs where the mean observed OD for the pair was less than the expected 

value.  These pairs were further evaluated for coaggregation using FlowCam™ 

technology (Fluid Imaging Technologies, ME, USA), which uses flow cytometry to 

measure particle size over time (Levin-Sparenberg et al. 2016).  P. aeriginosa, H. 

influenzae 007.2.12 and 1247, S. aureus 1263, S. pneumoniae serotype 10, and N. 

meningitidis were harvested from batch cultures and washed as described above.  The 

washed pellets were suspended in coaggregation buffer to achieve an optical density of 

1.0 (±0.1) at 600 nm.  Prior to loading the cells into the FlowCam device, cell 

suspensions were further diluted 10X in coaggregation buffer to prevent clogging of the 

flow cell.  We experimented with both 5X and 10X dilution and found a 5X dilution 

factor resulted in repeated clogging of the flow cell (Levin-Sparenberg et al. 2016; 

Segaloff et al. 2014).  The first species was added to the device and was pumped 

through until it reached the flow cell.  Data collection began once the Olympus UPlanFL 

N 10X/0.30 objective was successfully focused on the flowing particles.  The second 

species was added to the vessel containing the first species and gently mixed one 

minute after initiation of data collection.  FlowCam was run at a flow rate of 0.3 ml/min 

with images acquired at a rate of 10 frames per second, until the entire sample ran 

through the machine (45-55 min).  Flash duration was set to 8 µSec.   Particle size was 

measured using area based diameter (ABD) and a particle filter of 0.5 to 10,000 μM.  

Visual spreadsheet software was used for data collection. 

 

3.3.4 Confocal Microscopy 

As an additional visual test of autoaggregation and coaggregation between strains, 

300 μl of each bacterial suspension in coaggregation buffer were stained with either 
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syto-9 (green: Excitation:  488, Emission: 503) or syto-61 (red: Excitation: 561, Emission: 

645) nucleic acid stains (Invitrogen, Carlsbad, CA, USA). Each bacterial suspension was 

incubated for 30 minutes at room temperature to allow staining of the cells.  Cells were 

washed three times with 1X PBS (phosphate buffer solution) and collected by 

centrifugation, as described above. Each bacterial strain was re-suspended in 

coaggregation buffer and combined for coaggregation.  Autoaggregation studies consist 

of only one color stained cells.   Twenty microliters of each sample were added to the 

slide and viewed under the microscope.  The entire droplet was scanned and a 

minimum of three representative fields of view were captured for each pair and for 

each strain alone using Leica confocal laser scanning microscopy (CLSM, SPE, Leica, IL, 

USA) with a HCX PL APO 40X/0.85 CORR CS objective.  Staining and microscopy were 

repeated twice to ensure consistency of results.  Once the microscopy images were 

taken, the image files were rendered using Imaris (Bitplane, Zurich, Switzerland) 

computer imaging software.   

3.4 Results and Discussion 

3.4.1 Autoaggregation not detected by high-throughput screen 

 None of the B. pertussis or commensal strains showed autoaggregation on the 

high-throughput screen. However, when examined using confocal microscopy, 

autoaggregation was apparent in N. meningitidis.  Autoaggregation in N. meningitidis is 

mediated by PilX, a type IV pilus-associated pilin-like protein (Lappann et al. 2006). 

3.4.2 High-throughput screen identifies potentially coaggregating pairs 

 Using the high-throughput screening method, we examined 133 unique pairs of 

bacteria for coaggregation and autoaggregation.  Each pair was screened at least three 

times, and as many as 33 times, with an average of six screens per pair.  Based on an 

experimentally determined OD value that was significantly less than the calculated 

expected value for the pair, H. influenzae (strains 007.2.12, I247, I316, K29RE2.10), P. 
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aeriginosa, S. aureus (strains 1263 and 25923), S. pyogenes, and S. pneumoniae 

(serotypes 1, 10, 16F, 20, 23F, 33, 34, 35B) were suspected as coaggregating with at 

least one of the ten B. pertussis strains tested (green circles, Figure 3.1).   In addition S. 

pneumoniae 7F and 12F, N. meningitidis, H. influenzae G1322 also potentially 

coaggregated with at least one strain of pertussis based on OD values less than the 

expected values, although not significantly so (yellow circles, Figure 3.1).   

Results were quite variable.   An organism would coaggregate with one strain of 

B. pertussis, but not others, or coaggregated with a particular strain one day and not the 

next.  This variation is strikingly evident when examining the results of the control strain 

pairings, A. oris+ S. oralis, S. oralis + S. gordonii, and A. oris + S. gordonii (Figure 3.1).  

Although these strains are known to strongly coaggregate, results varied by day from 

coaggregating significantly to not at all.  Many factors could contribute to between day 

variations:  bacteria are harvested from separately grown batch cultures, which may 

differ slightly in length of growth time, exact nutrient content and pH of media, pH of 

buffers used for washing and re-suspension, number of times a strain has been 

passaged before current growth, and natural biological variation in amount of 

autoaggregation or coaggregation within a given species or species pair.   

 Based on the results of the high-throughput screen, summarized in Figure 3.1, 

and visual assessment of test crosses, we selected one B. pertussis strain, CDC-F567, and 

7 test strains (H. influenza I247, N. meningitidis, P. aeriginosa, S. aureus 1263, and S. 

pneumoniae serotypes 10 and 16F, and S. pyogenes) for further analysis using 

FlowCam™ and confocal microscopy. 
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Table 3.1 Summary of high-throughput coaggregation screen results.  Green circles represent 
OD values significantly less than expected value.  Yellow dots represent OD values less than 
expected values.  Red dots represent no difference between OD and expected value or OD 
higher than expected value. 

 

A. oris CDC_F657 CDC_F964 CDC_G710 CDC_H971 CDC_I220 CDC_I240 CDC_I369 H. flu 007.2.12 H. flu I247 H. flu G1322

A. oris

CDC_F657

CDC_F964

CDC_G710

CDC_H971

CDC_I220

CDC_I240

CDC_I369

WA_H174

WA_H930

WA_H962

H. flu 007.2.12

H. flu G1322

H. flu I316

H. flu K29RE2.10

N. meningitidis

P. aeriginosa

S. aureus 1263

S. aureus 25923

S. gordonii

S. oralis

S. pyogenes

SP1

SP10

SP12F

SP16F

SP17F

SP20

SP23F

SP33

SP34

SP35B

SP7F
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H. flu I316 H. flu K29RE2.10 N. meningitidis P. aeriginosa S. aureus 1263 S. aureus 25923 S. gordonii S. oralis S. pyogenes SP1 (vaccine)

SP10 (10 is in 

23valent 

A. oris

CDC_F657

CDC_F964

CDC_G710

CDC_H971

CDC_I220

CDC_I240

CDC_I369

WA_H174

WA_H930

WA_H962

H. flu 007.2.12

H. flu G1322

H. flu I316

H. flu K29RE2.10

N. meningitidis

P. aeriginosa

S. aureus 1263

S. aureus 25923

S. gordonii

S. oralis

S. pyogenes

SP1

SP10

SP12F

SP16F

SP17F

SP20

SP23F

SP33

SP34

SP35B

SP7F

0.33 0.56 0.11 0.5 0.38 0.13

0.5 0.5

0.5 0.5

0.64 0.18 0.18
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3.4.3 FlowCam results inconclusive 

The FlowCam™ device allows individual particles to be photographed and the 

particle characteristics measured.  As a coaggregation assay it can be used to measure 

the change in particle size over time (Levin-Sparenberg et al. 2016).  None of the B. 

pertussis pairings appeared to strongly coaggregate in the FlowCam™ device.  The large 

SP12F (in 23 

valent)

SP16F (not 

vaccine) SP20 (23 valent) SP23F (vaccine) SP33 (23 valent)

SP34 (not 

vaccine)

SP35B (not 

vaccine) SP7F (vaccine) WA_H174 WA_H930 WA_H962

A. oris

CDC_F657

CDC_F964

CDC_G710

CDC_H971

CDC_I220

CDC_I240

CDC_I369

WA_H174

WA_H930

WA_H962

H. flu 007.2.12

H. flu G1322

H. flu I316

H. flu K29RE2.10

N. meningitidis

P. aeriginosa

S. aureus 1263

S. aureus 25923

S. gordonii

S. oralis

S. pyogenes

SP1

SP10

SP12F

SP16F

SP17F

SP20

SP23F

SP33

SP34

SP35B

SP7F

0.5 0.5 0.5 0.5

0.5 0.5
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confidence intervals in the B. pertussis + H. influenzae H1247 pairing are reflective of the 

large variability of particle sizes through the flow cell at a given time point (Figure 3.2, 

Panel A).  This indicates a combination of single bacterial cells and cell aggregates.  Any 

cell aggregates formed are not large enough to rapidly drop out of the suspension 

resulting in no significant time component.  Coaggregation in this pair was not strong 

enough to detect with a visual assay.  Another study that examined coaggregation 

between H. influenzae and 30 other species also detected no visual coaggregation with 

H. influenzae (Stevens et al. 2015).  In the B. pertussis F657+ P. aeriginosa pairing, there 

were significant increases in particle area starting around minute 53 (Figure 3.2, Panel 

B).  In the combination of B. pertussis F657+ N. meningitidis a slight, although 

statistically significant, increase in particle area began at minute 14 (Figure 3.2, Panel C).  

In combinations of B. pertussis F657 with S. pneumonia 16F and S. pyogenes, a 

significant increase in particle size occurred immediately followed by a sharp decrease in 

particle size (Figure 3.2, Panel D and E).  This could potentially occur if larger particles 

immediately fall out of suspension and are captured in the flow cell first, leaving only 

single cells remaining. 

As with the visual assay and high-throughput screening method, there was a lot 

of run to run variation.  Runs with stronger aggregation were more likely to be thrown 

out due to the larger particle sizes clogging the flow cell and interrupting the run.  While 

the second bacterial species was added one minute after initiation of data collection to 

create a separation between B. pertussis alone and when combined with another 

species, increases in particle size could be due to either coaggregation or either species 

inducing autoaggregation in the other.  Due to inconsistencies between runs and issues 

with clogged flow cells, we were unable to reach any general conclusions as to the 

ability of B. pertussis F657 to coaggregate with these other species.      

In an attempt to clarify our conclusions and obtain more consistent results we 

tested the effect of changing growth times for the bacteria by reducing growth time 

from 24 hours to 18 hours for the test strains, and increased growth time from four to 

five days for B. pertussis.  We found no noticeable effect on our results by manipulating 
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growth times.  We also experimented with changing the dilution factor from 1:10 to 1:5 

in hopes of inducing coaggregation.  This resulted in blocked flow cells which may have 

been a result of increased coaggregation, but also resulted in unusable data.  We also 

assessed the effects of switching from coaggregation buffer to PCR-grade water and 

from the use of Schaedler’s broth to BHI broth for growth of test strains, but found no 

noticeable difference in results. 

 

 

Figure 3.1  Average particle area per minute with associated 95% confidence intervals as 
measured with FlowCam device. 
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3.4.4 Confocal microscopy  

To further understand the interactions between B. pertussis and other 

nasopharyngeal commensals, we stained our strains using Syto-9 (green) or Syto-61 

(red) nucleic acid stains before crossing them for coaggregation, and then visualized 

using a confocal microscope.  Each strain was also imaged on its own to rule out any 

autoaggregation.  N. meningitidis appears to be the only strain that auto-aggregated 

(Figure 3.3, panel C).  If coaggregation were present, we would expect to see large 

clusters of overlapping green and red cells, which was not apparent in any of our 

crosses.  Mixing B. pertussis with S. aureus appeared to result in auto-aggregation of S. 

aureus (Figure 3.3, panel A).  Mixing B. pertussis with H. influenzae HI247 appeared to 

result in slight auto-aggregation in H. influenzae (Figure 3.3, panel B).  Crossing B. 

pertussis with N. meningitidis appeared to enhance autoaggregation of N. meningitidis 

(Figure 3.3, panel C).   Combining B. pertussis with P. aeriginosa induced 

autoaggregation in both strains (Figure 3.3, panel D).  The combination of B. pertussis 

with S. pneumoniae serotype 10 appeared to induce slight autoaggregation in S. 

pneumoniae (Figure 3.3, panel E.) 

Based on our findings that the presence of B. pertussis may result in 

autoaggregation of one or both species, we attempted to determine if B. pertussis was 

excreting a molecule that induces autoaggregation.  For this experiment we grew B. 

pertussis and suspended the cells in coaggregation buffer as described in the methods.  

The cells were allowed to remain in the buffer for an hour and then were filtered out.  

The buffer was saved and added to the other test strain cells in the FlowCam™ device 

rather than adding the B. pertussis cells themselves.  This method did not induce auto-

aggregation in the test strains.   
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F657 

 

Figure 3.2. FlowCam Visualization of selected bacterial pairings using confocal microscopy.  
Confocal microscopy images are represented in the x-y plane. Nucleic acid stains syto-9 
(green) and syto-61 (red) was used to detect autoaggregation and coaggregation of bacterial 
strains. Bars represent 10 μM. 
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3.4.5 Conclusion 

We did not identify autoaggregation in any of the B. pertussis or commensals 

strains with the use of the high throughput screen.  Further screening with confocal 

microscopy identified autoaggregation in N. meningitidis.   

While there appears to be an interaction between B. pertussis and selected 

commensals, we conclude that it is not due to coaggregation between B. pertussis and 

the nasopharyngeal test strains.  Based on our confocal microscopy results, the co-

occurrence of B. pertussis with one of the test strains may induce auto-aggregation in 

one or both strains, although we were unable to confirm this.  

Superinfection with other respiratory pathogens such as H. influenzae, S. 

pneumoniae, and S. aureus is common during and after infection with B. pertussis, 

which hints that polymicrobial interactions may be an important aspect of B. pertussis 

infection (Sawal et al. 2009).  The specific mechanism of interaction between B. 

pertussis and the resident bacteria is unknown. Bordetella species contain many 

mechanisms for interbacterial competition that could be at play, including a type IV 

secretion system for secretion of pertussis toxin, bacteriophages, and potentially 

contact-dependent growth inhibition (Weyrich et al. 2014). Coaggregation is common 

among oral bacterial and would be a reasonable mechanism if certain resident 

microorganisms are necessary for B. pertussis to attach.  However if the findings from 

the murine model hold in humans, that the presence of nasopharyngeal microbiota 

prevents efficient colonization by B. pertussis, antagonistic coaggregation interactions 

could be responsible, or as we saw some evidence of in our results, induced 

autoaggregation on one or both species in the presence of B. pertussis. 

To the authors’ knowledge, this is the first study of coaggregation in B. pertussis.  

While we did not find evidence to support coaggregation between B. pertussis and the 

organisms studied, we did find some indication that autoaggregation of one or both 

species is induced in the presence of B. pertussis.  Further study is needed to better 

understand the role of microbiota in aiding or abating B. pertussis infection in humans.  
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A better understanding of how the microbiota is involved could result in better 

treatment and prevention methods for B. pertussis infection.   
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 Epidemiologic Evidence for Co-colonization of Selected Commensals and Chapter 4.

Asymptomatic B. pertussis Carriage  

 

4.1 Abstract 

We hypothesized that the presence of commensals in the oropharynx might 

enhance or decrease Bordetella pertussis colonization.  To test this hypothesis, we 

planned to screen an archival collection of nasopharyngeal swab specimens collected as 

part of a cross-sectional study of nasopharyngeal S. pneumonia carriage in Phu Vinh 

hamlet of Vinh Thanh commune, Nha Trang district, Vietnam during October, 2006, for 

asymptomatic B. pertussis carriage and that of selected commensals.  Since the 

Expanded Programme on Immunization was introduced in Vietnam in 1981, vaccination 

rates with the whole cell vaccine increased and remain high. Four samples were positive 

for B. pertussis, but the prevalence of S. aureus was significantly less than expected 

based on previous studies suggesting that during handling or storage that the quality of 

the samples was compromised.  Thus it is likely that the estimated prevalence of B. 

pertussis is also in error. Due to issues with sample quality, the study ended early with 

inconclusive results.   

4.2 Introduction 

The United States has seen a dramatic increase in the number of reported B. 

pertussis cases since the introduction of the acellular vaccine in the 1990s (Centers for 

Disease Control and Prevention 2016).  Some studies have proposed asymptomatic 

transmission from individuals vaccinated with acellular vaccines as a potential 

mechanism for the increase in number of cases although little is known about the actual 
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prevalence of asymptomatic carriage (Althouse & Scarpino 2015; Zhang et al. 2014; 

Cortese et al. 2007; de Melker et al. 2006).  Another important aspect of this resurgence 

is that a large proportion of these cases have occurred in fully vaccinated individuals 

making it clear that factors outside of vaccination status also influence who becomes 

infected (Centers for Disease Control and Prevention 2016).  We hypothesized that 

bacterial commensals in the nasopharynx of potential hosts might enhance or decrease 

the risk of B. pertussis colonization.  We screen archival nasopharyngeal swabs collected 

from healthy individuals to estimate the prevalence of asymptomatic carriage of B. 

pertussis and co-occurrence with select commensals. 

 

4.2.1 Asymptomatic Carriage as a Mechanism for Resurgence in Reported Cases 

Warfel et al. propose that asymptomatic infection and subsequent transmission 

by individuals vaccinated with the acellular vaccine could, in part, explain the increase in 

observed B. pertussis incidence (Warfel et al. 2014).  Using a baboon model for B. 

pertussis infection, Warfel et al. and found that while vaccination with acellular 

pertussis (ap) protected against severe symptoms, it did not protect against colonization 

(Warfel et al. 2014).  Moreover, vaccinated animals did not clear the infection any faster 

than naïve animals and could readily transmit B. pertussis to their unvaccinated contacts 

(Warfel et al. 2014).  By comparison, more rapid clearance was induced by the whole 

cell vaccine and animals that were previously infected were not colonized upon 

secondary infection (Warfel et al. 2014).  In addition, re-analyses of aP efficacy studies 

using more sensitive serologic diagnostic criteria found that while pertussis toxoid alone 

protects against typical laboratory-confirmed pertussis infection, it does not protect 

against colonization or infection (Storsaeter et al. 1990).  To provide further evidence 

for the importance of asymptomatic transmission, Althouse and Scarpino used wavelet 

analysis of B. pertussis incidence and phylodynamic analysis of clinical isolates.  Their 

analysis of the sequences showed more genetic diversity in the bacterial population 

than could be explained by the observed number of infections without the possibility of 
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asymptomatic carriage and that the time of changes in age-specific attach rates were 

consistent with asymptomatic transmission (Althouse & Scarpino 2015). 

While these studies point out the potential importance of asymptomatic carriage 

in transmission dynamics, only a limited number of studies aimed at estimating the 

prevalence of asymptomatic carriage have been conducted.  Using IgG and IgA 

antibodies to pertussis toxin (PT) and filamentous hemagglutinin (FHA), von Linstow et 

al. found that 5-10% of a cohort of vaccinated, healthy children had evidence of B. 

pertussis infection during their first year of life despite few clinical cases recognized in 

the community at the time (von Linstow et al. 2010).  In a sample of nasopharyngeal 

swabs from asymptomatic Chinese school children ages 7 to 15, 2/629 (0.3%) were both 

culture-positive and PCR-positive and 30/269 (4.8%) were PCR-positive (Zhang et al. 

2014). Although the prevalence was low, positive samples were found in all four 

counties studied (Zhang et al. 2014).   

To understand if the prevalence of asymptomatic carriage has increased with the 

introduction of acellular vaccines, it is important to have estimates of the prevalence in 

countries where vaccination rates with the whole cell vaccine are high as a comparison.  

The Expanded Programme on Immunization (EPI) was introduced in Vietnam in 1981 (Jit 

et al. 2015).  By 2009, 96% of children under age one had received three or more doses 

of whole cell pertussis vaccine (Jit et al. 2015; Anh et al. 2015).  We screened archival 

nasopharyngeal swabs collected from healthy individuals in Vietnam to estimate the 

prevalence of asymptomatic carriage in this highly vaccinated population.   

 

4.2.2 Nasopharyngeal Commensals as a Determinant of B. pertussis Infection 

Superinfection with other respiratory commensals such as H. influenza, S. 

pneumoniae, and S. aureus is common during and after infection with B. pertussis 

hinting that polymicrobial interactions may be an important aspect of B. pertussis 

infection (Sawal et al. 2009).  As further evidence of the importance of nasopharyngeal 

commensals as a determinant of pertussis infection, Weyrich et al. demonstrated that 
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treating mice with antibiotics to remove resident microorganisms from the murine nasal 

cavity greatly enhanced B. pertussis colonization.  For B. pertussis to colonize in 

presence of even a single naval cavity bacterial species required ten times the dose 

needed in antibiotic treated mice (Weyrich et al. 2014).  This led us to hypothesize that 

specific interactions between B. pertussis and nasopharyngeal commensals might 

enhance or decrease B. pertussis colonization and help explain why vaccinated 

individuals might still asymptomatically carry B. pertussis.  

 In a preliminary screen for coaggregation (specific recognition and adherence 

between distinct bacterial species) between 10 different B. pertussis strains with 

common nasopharyngeal commensals: S. pneumoniae, S. aureus, H. influenzae, S. 

pyogenes, P. aeriginosa, and N. meningitidis, we obtained results consistent with 

coaggregation between B. pertussis and H. influenzae, P. aeriginosa, S. aureus, S. 

pyogenes, and S. pneumoniae with the use of our high-throughput, quantitative 

screening method (Levin-Sparenberg 2016).  Based on further analysis using FlowCam™ 

and confocal microscopy, we did not find evidence to support coaggregation between B. 

pertussis and the organisms studied, but did find some indication that autoaggregation 

of one or both species is induced in the presence of B. pertussis (Levin-Sparenberg 

2016).  Autoaggregation was particularly apparent between B. pertussis and P. 

aeriginosa and S. aureus  species (Levin-Sparenberg 2016).  The purpose of this study 

was to determine if there was evidence that these in vitro interactions between B. 

pertussis and selected commensals also occurred in vivo. 

 

4.2.3 Study Objectives 

 This study had two objectives:  1) to assess the prevalence of asymptomatic B. 

pertussis carriage in a population with high whole cell vaccination rates, and 2) to 

determine if specific nasopharyngeal commensals co-occur with B. pertussis in the 

nasopharynx of healthy individuals in an effort to better understand why some 

individuals get colonized while others do not.  For this study, we screened archival 
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nasopharyngeal swabs from a sample of 519 healthy individuals collected from Phu Vinh 

hamlet of Vinh Thanh commune, Nha Trang district, Vietnam during October, 2006, to 

estimate the prevalence of asymptomatic carriage of B. pertussis in a population with 

high whole cell vaccination rates.  We additionally screened for the prevalence of H. 

influenzae, S. pneumoniae, P. aeriginosa, and S. aureus to determine if they co-occur 

with B. pertussis. 

4.3 Methods 

4.3.1 Archival Collection 

The archival nasopharyngeal swabs were collected as part of a cross-sectional 

study of nasopharyngeal (NP) S. pneumonia carriage in Phu Vinh hamlet of Vinh Thanh 

commune, Nha Trang district, Vietnam during October, 2006 (Talerico et al. 2009).  

Households in Phu Vinh with at least one child five years or younger and households 

with adults only (≥ 18 years) were randomly selected from a detailed census list 

compiled by the Khanh Hoa Provincial Health Service and invited to participate.  

Households were recruited by trained interviewers until 75 households with children (≤ 

5 years) and 40 households comprised of only adults were enrolled.  All current 

household members were invited to participate in an interview survey and NP swab 

procedure. Out of the 146 households that were approached, 115 participated (79%).  

Out of the 96 households with young children that were approached, 75 (78%) agreed 

to participate.  Forty households containing only adults, out of the fifty households 

approached, agreed to participate (80%).  The reason most commonly cited for refusal 

was that all household members were not available to participate due to extensive 

travel required for employment (Talerico et al. 2009).  

NP swab procedures took place at the Vinh Thanh Commune Health Center and 

were obtained from all participants by trained physicians, in accordance with World 

Health Organization recommendations (O’Brien et al. 2003).  Three households, which 

previously contained only adults, switched to the households with one child ≤ 5 years 

group in the analysis due to the birth of a child between recruitment and survey 
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administration.  Therefore, 78 households contained at least one child ≤ 5 years and 37 

households contained only adults (≥ 18 years) (Talerico et al. 2009). 

Specimens were collected using calcium alginate-tipped wire swabs (Calgiswab® 

Type 1, Puritan Medical Products Company LLC, Guilford, ME).  Swabs were passed 

through the anterior nares to the back of the nasopharynx, held in place for two 

seconds, and rotated 180° before removal.  After collection, swab specimens were 

placed in STGG transport media and held at 4°C for no more than four hours at the 

Commune Health Center before being transported to the local hospital where they were 

stored at -20°C for one week (Talerico et al. 2009).  NP swabs were ultimately shipped 

on dry ice to the University of Michigan and stored at -80°C (O’Brien et al. 2003). 

Informed consent for the original study was obtained from all adults (≥ 18 years) 

and parents of children prior to participation (Talerico et al. 2009). In addition, oral 

assent was obtained from participants 6-17 years old prior to the NP swab procedure 

(Talerico et al. 2009).  All study procedures were approved by the Health Sciences 

Institutional Review Board (IRB) at the University of Michigan (HUM00006257), the IRB 

of the National Institute of Hygiene and Epidemiology in Hanoi, Vietnam, and the IRB of 

the International Vaccine Institute in Seoul, Korea (2006-009).  Use of the archival swab 

samples for this project received a determination of “Not Regulated” Status by the 

University of Michigan (HUM00115197). 

 

4.3.2 Laboratory Methods 

DNA was extracted using a QIAGEN (Venlo, Netherlands) DNeasy Blood & Tissue 

kit.  One hundred microliters of each sample was first incubated at 37°C with an 80 μL 

enzyme cocktail comprised of Promega cell lysis solution (Madison, WI, USA), lysozyme, 

mutanolysin, RNase A, and lysostaphin (Sigma Aldrich) in 22.5:4.5:1.125: 1.125:1 parts, 

respectively for 30 minutes. After extraction, DNA quantity and quality was measured 

using a Nanodrop 2000C spectrophotometer (Thermo Scientific, Waltham, MA, USA) 

and stored at −80°C.  
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4.3.3 Identification of B. pertussis and commensals 

To identify B. pertussis, we first screened for IS481, an insertion sequence found in 

multiple copies in B. pertussis, and then screened positive samples with primers specific 

to pertussis toxin subunit S1 (ptxS1), B. parapertussis IS1001 (pIS1001), and B. holmesii 

IS1001-like (hIS1001) targets (Table 1) (Tatti et al. 2011).  This combination of primers 

can be used to distinguish B. pertussis from other Bordetella species (Table 2).  Samples 

positive for B. pertussis were also screened for P. aeriginosa using primers for gyrB and 

S. aureus with primers specific to nucA (Table 1) (O G Brakstad 1992; Lee et al. 2011). A 

random sample of the remaining isolates (n=213) was screened for P. aeriginosa and S. 

aureus to determine the background rate of these organisms in the collection.  We used 

a 50 µl reaction mixture for all reactions composed of 25 µl GoTaq Green Master Mix 2X, 

1 µl forward primer, 1 µl reverse primer, 15 µl sample DNA, and 8 µl PCR-Grade H20.  

The following program was used to amplify IS481:  1 = 95°C for 2 min, 2 = 95°C for 30 

sec, 3 = 65°C for 30 sec, 4 = 72°C for 20 sex, 5 = GOTO 2 29 times, 6 = 4°C forever.   Step 

3 was switched to 57°C for ptxS1 and to 60°C for all other primer sets.  PCR products 

were visualized on 2% agarose gels.  All PCR reactions were conducted in duplicate. 

To identify samples positive for H. influenzae, NP swabs from all participants were 

plated on chocolate bacitracin agar and incubated overnight at 37°C with 5% CO2.  Thirty 

colonies were picked and patched on chocolate agar plates without bacitracin.  A 

porphyrin test was performed on each patch.  Positive results were considered para-

influenza.  Samples were also plated on Brain Heart Infusion (BHI) agar with hemin only 

(X), NADH only (V) and hemin and NADH (X and V).  Samples positive for H. influenzae 

will only grow on BHI with hemin and NADH.  Stocks were prepared from the BHI (X and 

V) plates.  PCR was performed on these samples using primers specific for lgA and LgtC.  

Samples were considered positive for H. influenzae if they were porphyrin negative, BHI 

(X and V) positive and IgA and LgtC positive (Patel 2009).   

To identify samples positive for S. pneumoniae, NP samples from all participants 

were inoculated on trypticase soy agar with 5% sheep blood (TSA II) containing 

gentamicin (2.5 mg/L) and separately on non-selective media (TSA II).  Plates were 
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incubated at 37°C in 5% CO2 overnight (O/N).  Presumptive identification of S. 

pneumoniae was based on colony morphology and α-hemolysis on blood agar (O’Brien 

et al. 2003). Confirmatory identification was based on optochin sensitivity (zone ≥14 mm 

with 6mm P discs after O/N incubation at 37°C in 5% CO2), solubility in 10% 

deoxycholate using the plate method, and Gram stain ((O’Brien et al. 2003; Talerico et 

al. 2009).  Capsular typing was performed as described elsewhere and also served as a 

confirmatory measure for presence of S. pneumoniae (Talerico et al. 2009). 

 

Table 4.1.  Sequences and amplicon lengths of primers used in PCR assays 

Primer Sequence (5’ -> 3’) Amplicon length (bp) Source 

IS481 
GAT TCA ATA GGT TGT ATG CAT GGT T 

390 (Fry et al. 2009) 
TTC AGG CAC ACA AAC TTG ATG GGC G 

ptxS1 
CGCCAGCTCGTACTTC 

55 (Tatti et al. 2011) 
GATACGGCCGGCATT 

pis1001 
TCGAACGCGTGGAATGG 

65 (Tatti et al. 2011) 
GGCCGTTGGCTTCAAATAGA 

his1001 
GGCGACAGCGAGACAGAATC 

67 (Tatti et al. 2011) 
GCCGCCTTGGCTCACTT 

gyrB 
GGCGTGGGTGTGGAAGTC 

190 (Lee et al. 2011) 
TGGTGGCGATCTTGAACTTCTT 

nucA 
GCGATTGATGGTGATACGGTI 

270 (O G Brakstad 1992) 
AGCCAAGCCTTGACGAACTAAAGC 
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Table 4.2.  Algorithm for single target PCR assays 

 IS481 ptxS1 pIS1001 hIS1001 

B. pertussis + + - - 

B. parapertussis a  + +  

B. holmseii +   + 

B. pertussis + B. parapertussis a + + +  

B. pertussis + B. holmseii + +  + 

a A specimen positive for pIS1001 most likely contains B. parapertussis, but B. 
bronchiseptica cannot be ruled out.  (Tatti et al. 2011; European Centre for Disease 
Prevention and Control 2012) 

 

4.4 Results 

Out of the 519 samples, four were positive for IS481 (ID numbers 143014008, 

143019605, 143019603, 143019604).  The same four samples were also positive for 

ptxS1 and negative for pIS1001 and hIS1001 and as such were identified as positive for 

Bordetella pertussis.  These four samples were negative for P. aeriginosa and S. aureus 

based on PCR results and were negative for S. pneumoniae and H. influenzae based on 

historical data collected from the samples using the methods described above (Talerico 

et al. 2009).   

Fifty-six of the 519 samples (11%) were positive for S. pneumoniae (Talerico et al. 

2009).  Thirty-nine samples were positive for H. influenzae (8%) (Patel 2009).  H. 

influenzae was found only in samples that also contained S. pneumoniae. 

To determine the number of samples we needed to screen to estimate the 

background carriage rates for S. aureus and P. aeriginosa, we used estimates of the S. 

aureaus carriage rate, which required the larger sample size, from the literature in a 

power calculation.  In a meta-analysis conducted by Kluytmans et al. consisting of 18 

cross-sectional studies of oropharyngeal S. aureus carriage in the general population 

representing 13,873 people, the mean carriage rate was estimated at 37.2% and ranged 
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from 19.0% to 55.1% (Kluytmans et al. 1997).  In a study of 497 healthy children ages 6-

17, 53.1% were identified as S. aureus carriers (Esposito et al. 2014).  Based on our 

power calculation, we needed to screen 200 samples. Of the first 88 samples screened, 

none were positive for S. aureus.  As this was highly-inconsistent with the literature, no 

further samples were screened.  

4.5 Discussion 

This study aimed to determine the prevalence of B. pertussis carriage in a sample 

of healthy Vietnam residents and to determine its co-occurrence with other common 

nasopharyngeal commensals.  As we only found four samples that were positive for B. 

pertussis, less than we expected based on the sparse literature available, we were 

severely underpowered to make any statistically valid estimates of co-occurrence 

between B. pertussis and any of the commensals.  Ideally, in addressing this question, 

one would sample based on B. pertussis case status to have more power to detect 

commensals correlated with infection status.  However, we were also interested in 

determining the prevalence of asymptomatic B. pertussis carriage so this sample 

addressed our needs for that question.  Consistent with the literature, we did find that 

none of the commensals we screened for (H. influenzae, S. pneumoniae, S. aureus, P. 

aeriginosa) were present in the samples that were positive for B. pertussis (Weyrich et 

al. 2014). 

Expected background rates for the commensals were taken from the literature to 

estimate the number of samples in our study that we would expect to see positive for 

each of the species.  This was used to calculate the number of specimens from our 

sample that should be screened to calculate background rates for each of the samples in 

our collection.  Based on the literature, we expected roughly 40% of our specimens to 

be positive for S. aureus (Kluytmans et al. 1997; Ebruke et al. 2016; Sivaraman et al. 

2009; Esposito et al. 2014).  After screening the first 88 specimens of the 213 specimen 

sample we generated to calculate background rates for each of the commensals, none 

were found positive for S. aureus.  This is highly inconsistent with the literature.  As such 
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the historical specimens used were deemed unreliable for additional study, and the 

study ended.   

It is likely that the true number of positive B. pertussis samples in the collection is 

higher than we were able to detect.  The DNA was tested for viability at the beginning of 

the experiment by taking a random sample of specimens deemed positive for S. 

pneumoniae by the researcher who originally collected the samples, and then screening 

for S. pneumoniae using PCR for the lytA gene.  Out of the ten presumptive positive 

samples that we screened, nine resulted in positive determination giving us the false 

impression that the rest of the samples would be viable.  Questionable quality is an 

inherent risk of archival samples, and further screening of the samples before use in the 

study could have prevented this outcome. 
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 Effects of Widespread Vaccination on the Bordetella pertussis Genome Chapter 5.

 

5.1 Abstract 

Following the implementation of widespread vaccination in the 1940s in the 

United States, the number of reported pertussis cases in North America decreased by 

over 90%; however, since introduction of the acellular vaccine in the 1990s, the annual 

number of reported pertussis cases in the United States has increased 18-fold. The 

reason for this increase is not entirely clear; one hypothesized mechanism is antigenic 

divergence of circulating strains in response to selective pressures from vaccines.  We 

conducted whole genome sequencing on a collection of 100 isolates dating from 1935 

(pre-vaccine era) to 2013 (current vaccine components and schedule).  Isolates were 

randomly selected from 8 different vaccine-related time periods: 1935-1945 Pre-vaccine 

era, 1946-1969 Early whole cell vaccine era, 1970-1990 Late whole cell vaccine era, 

1991-1996 Combination of whole cell vaccine and acellular vaccine for 4th and 5th 

doses, 1997-1999 Early acellular vaccine era, 2000-2002 Middle acellular vaccine era, 

2003-2005 Late acellular vaccine era, and 2006-2013 Tdap booster era.  Across all 

samples, this collection varied from the Tohama 1 reference genome by 3,018 single 

nucleotide polymorphisms (SNPs).  The phylogeny revealed 2 main clades and a distinct 

separation between the pre-vaccine era isolates and the rest of the collection 

(p<0.0001).  These results support a significant effect of vaccination on extinction of 

strains resulting in a replacement of populations. 

5.2 Introduction 

Pertussis (Whooping Cough) is a highly infectious upper respiratory infection 

caused by the bacteria Bordetella pertussis, characterized by violent and uncontrollable 
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coughing (Halperin SA 2012).  Although individuals of all ages can be infected, 

complications in infants are more common and can result in permanent disability or 

death (Halperin SA 2012).  Widespread vaccination has decreased the number of 

reported pertussis cases in North America by over 90% since vaccination began in the 

1940s (Halperin SA 2012); however, the past few years have seen a resurgence of 

pertussis cases in the United States that coincides with the introduction of the acellular 

vaccine (Centers for Disease Control and Prevention 2016).  In 2012, 41,880 pertussis 

cases were reported, which is the highest number of reported cases in the United States 

since 1955 (Centers for Disease Control and Prevention 2016).  Although a resurgence of 

pertussis has been reported in other highly vaccinated countries including Norway, 

Australia, and the Netherlands, there is considerable geographic heterogeneity in 

resurgence (Jackson & Rohani 2013).  Spain and some other highly vaccinated countries 

have seen a significant decrease in cases, and Argentina has seen no significant change 

in pertussis incidence (Jackson & Rohani 2013).  

The reason for the increase in number of pertussis cases reported in the US is 

not entirely clear.  Some of the current hypotheses include:  waning immunity over time 

following vaccination or infection (Tan et al. 2005; Wearing & Rohani 2009), decreased 

vaccination rates (Omer et al. 2009), variable vaccine efficacy (Crowcroft & Pebody 

2006; Ntezayabo et al. 2003), age-structured contact patterns (Rohani et al. 2010), 

acellular vaccines (first implemented in 1991) protect against disease but not infection 

and thus fail to prevent transmission (Warfel & Merkel 2012), and antigenic divergence 

of circulating strains in response to selective pressures from vaccines (Mooi et al. 2001; 

Mooi et al. 2009; Marieke J. Bart et al. 2014; Bart et al. 2010).  Evidence for these 

hypotheses has been reviewed elsewhere (Sealey et al. 2016; Burns et al. 2014). 

This study will address the extent to which the current resurgence in reported 

cases in the United States can be explained by genetic variation in circulating strains in 

response to selective pressure from vaccines. 
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5.2.1 Vaccine Composition 

The whole cell pertussis vaccine, first introduced in the United States in the 

1940’s was generally composed of 1-3 different strains, which varied between 

manufacturers and were selected from the predominant circulating types (Guiso 2009; 

Schmidtke et al. 2012).  It is unclear specifically which strains were used.  Due to 

concerns over reactogenicity of the whole cell vaccine, an acellular vaccine was 

introduced in the United States in 1991 as a safer alternative (Centers for Disease 

Control and Prevention 2016). 

 The current acellular pertussis vaccines contain five B. pertussis components:  

pertussis toxin (PT), filamentous hemagglutinin (FHA), fimbrial agglutinogens 2 and 3 

(FIM2 and FIM3), and pertactin (PRN) (Decker & Edwards 2000).  The two main 

manufacturers of the acellular vaccine used in the United States are GlaxoSmithKline 

and Sanofi Pasteur.  The strain used for the manufacture of the GlaxoSmithKline vaccine 

in the United States is Tohama 1, a strain first isolated in Japan, which has an allelic 

variant profile of prn (1)-ptxP(1)-ptxS1B-fim2(1)-fim3(A) (Schmidtke et al. 2012; Bottero 

et al. 2007). The Sanofi Pasteur acellular pertussis vaccine is manufactured from B. 

pertussis strain 10536 (prn(1)-ptxP(1)-ptxS1D-fim2(1)-fim3(A))(Bottero et al. 

2012)obtained from the Michigan Department of Health (Grabenstein 2012).  Studies 

worldwide document antigenic divergence between vaccine strains and currently 

circulating isolates with respect to several of these surface proteins (Schmidtke et al. 

2012; Cassiday et al. 2000; Kallonen & He 2009; Octavia et al. 2012; Advani et al. 2011; 

Bart et al. 2010; Borisova et al. 2007; Mooi et al. 1998).  The main components of these 

acellular vaccines and the current predominately circulating allele in the United States 

are listed below (Table 5.1). 
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Table 5.1  Genotype of vaccine strains, number of circulating alleles, and predominant 
allele in United States. 

 prn ptxP ptxS1 fim2 fim3 Sources 

Tohama 1 genotype 1 1 B 1 A 
Schmidtke et al. 

2012 
Bottero et al. 2012 

10536 genotype 1 1 D 1 A 
Bottero et al. 2012 
Grabenstein 2012 

Number of circulating 
alleles 

2 11 6 2 4 

Kallonen and He 
2009 

Mooi et al. 2009 
Locht 2007 

Predominate allele in 
US 

2 3 A  B 
Schmidtke et al. 

2012 
Cassiday 2000 

 

5.2.2 Pertussis Particularly Susceptible to Vaccine-Induced Selection 

Diseases like pertussis can be particularly susceptible to vaccine-induced 

selection because the acellular vaccine may not be completely effective at blocking 

transmission and there is an abundance of evidence that immunity wanes within a few 

years of vaccination creating leaky hosts (Warfel et al. 2014; Klein et al. 2012; Tartof et 

al. 2013; Mooi 2010; Read & Mackinnon 2007).  When a vaccine fails to induce sterilizing 

immunity, natural selection has the opportunity to act on wildtype pathogens as they 

pass through vaccinated hosts allowing identification of weakness in vaccine-induced 

immunity (Read & Mackinnon 2007).  In addition, the acellular vaccines only target 3-5 

pathogen antigens (Read & Mackinnon 2007).  By only targeting a subset of strains 

within a population, variants not included in the vaccine are given a competitive 

advantage (Read & Mackinnon 2007).  Even without strain-specific effects, wide-spread 

vaccination reduces the number of hosts who are fully susceptible within a population 

thereby reducing the probability that B. pertussis will encounter and be amplified in a 

susceptible host.  This dependency on the immune status of the host in determination 

of relative pathogen fitness also prompts pathogen evolution through variable selection 

(Read & Mackinnon 2007).  While the mutations occur at random, selective pressures 
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can increase the frequency of advantageous mutations.  When mutations arise in the 

surface antigens to which the vaccine has induced protective immunity against, the 

encoded protein structure may differ so greatly that it is not recognizable by the host 

immune system creating a vaccine-escape mutant (Read & Mackinnon 2007).  Even 

under strong selection, advantageous mutations can go undetected within a population 

for decades before the balance is tipped in favor of vaccine-escape mutants (Read & 

Mackinnon 2007).  The presence of vaccine-escape mutants fits with the epidemiologic 

profile of B. pertussis; in 2015 86% of pertussis cases under age 7 with known 

vaccination status had received at least one dose of vaccine (Centers for Disease Control 

and Prevention 2016). 

5.2.3 Evidence for vaccine-driven evolution 

Pertussis toxin (ptxP1 allele) is a component of all acellular vaccines.  The ptxP3 

allele was first identified in the United States in 1989 and since 1991 has been the 

dominant ptxP allele in the United States replacing the ptxP1 allele found in both of the 

vaccine strains (Schmidtke et al. 2012).  The ptxP3 allele is associated with increased 

toxin production (Schmidtke et al. 2012; Mooi et al. 2009).   Bart et al. examined the 

sequences of 343 B. pertussis strains that were collected from around the world during 

1920-2010 and found that introduction of the acellular vaccine coincided with an 

expansion of the ptxP3 lineage resulting from the acquisition of the fim3–2 allele and 

with the decline of the ptxA1 carrying lineage (Marieke J. Bart et al. 2014).  These results 

support a vaccine-induced bottleneck resulting in a reduction in diversity followed by an 

expansion of the ptxP3 genotype (Marieke J. Bart et al. 2014).   

 Pertactin, another component of acellular vaccines, is a surface adhesin involved 

in attachment of the bacterium to integrin proteins on the surface of ciliated epithelial 

cells in the nasopharynx (Halperin SA 2012).  A transition from the vaccine allele of prn1 

to prn2 as the dominate allele in the United States occurred during the early 1990’s 

(Schmidtke et al. 2012; Cassiday et al. 2000).  Recently there has been a dramatic 
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increase in the number of strains that do not express pertactin (prn), with large 

variation occurring between countries (Belcher & Preston 2015).  The increase in prn-

deficient strains seems to occur mainly in countries using the acellular vaccine.   A study 

in Finland identified 2/76 strains as prn-deficient (Barkoff et al. 2012).  In Japan 27% of 

121 strains (Otsuka et al. 2012), in Australia 30% of 320 strains (Lam et al. 2014), and in 

the United States approximately 50% of the strains were identified as prn-deficient 

(Pawloski et al. 2014).    In the global collection analyzed by Bart et al. (discussed above), 

no strains were found to be prn-deficient (Marieke J. Bart et al. 2014).  The majority of 

these strains were isolated before 2008, which may indicate that prn-deficiency has 

arisen more recently (Marieke J. Bart et al. 2014).  Those infected with Prn-deficient 

strains and those infected with prn-expressing strains have displayed no difference in 

clinical presentation (Martin et al. 2015).  Interestingly, those infected with a prn-

deficient strain were more likely to be fully-vaccinated suggesting there may be a 

selective advantage for this state in areas where acellular vaccination coverage is high 

(Martin et al. 2015).  In a study examining B. pertussis clearance in mice, prn-expressing 

strains were cleared more rapidly than prn-deficient strains which suggests a potential 

fitness advantage to prn-deficiency in hosts vaccinated with the acellular vaccine 

(Hegerle et al. 2014).       

 In a study of 100 United Kingdom B. pertussis isolates dating from 1920-2012, 

with particular emphasis on isolates from the 2012 outbreak, Sealey et al. provided 

evidence that the genes encoding the acellular vaccine antigens are evolving more 

rapidly than genes encoding other cell surface proteins, based on a significantly higher 

frequency of synonymous and non-synonymous SNPs in vaccine antigen-encoding genes 

compared with cell surface protein-encoding genes, in all of the vaccine eras including 

the pre-vaccine era (Sealey et al. 2015).  Even in the absence of vaccination, the immune 

response to these antigens likely creates selective pressure (Sealey et al. 2015).  

However, since the introduction of acellular vaccines, the acellular vaccine antigen-

encoding gene evolution rates have significantly increased, which suggests that selective 

pressure on these antigens has increased since introduction of acellular vaccines (Sealey 
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et al. 2015).  Bart et al. calculated SNP densities for different categories of genes and 

found that SNP densities were higher than the genome average in the “virulence” and 

“transport and binding” genes categories.  Being on the surface of the bacteria, these 

genes are more likely to be subjected to selection pressure by the immune system.  

The findings of these studies support the hypothesis of vaccine-induced 

divergent selection pressure on B. pertussis and that there are fitness advantages to 

certain genotypes under this pressure, specifically those genotypes that allow for 

vaccine escape (Belcher & Preston 2015).   In this paper we use whole genome 

sequencing on a collection of isolates dating from 1935 (pre-vaccine era) to 2013 

(current vaccination composition and schedule) to determine how selective pressures 

from vaccination may have influenced the evolution of B. pertussis with a specific focus 

on the USA.   

5.3  Methods 

 We selected one hundred B. pertussis isolates from the CDC, FDA, and from a 

2012 Washington outbreak for whole genome sequencing to better understand the 

effect of vaccination on the B. pertussis population.  The isolates, dating from 1935-

2013, were randomly selected by location and vaccination time period to try and 

maximize the diversity within our collection.  We also included an oversample of isolates 

from the Washington 2012 outbreak to better understand diversity within a single 

outbreak.   

5.3.1 Selection of Isolates 

5.3.1.1 Selection of CDC isolates: 

Isolates were selected from the CDC Schmidtke et al. collection (Schmidtke et al. 

2012) based on unique year and state isolated combinations. Isolates of the same year 

and state are likely to be from the same outbreak and are likely to be highly clonal 

(Mooi 2010).   This selection method identified 234 different isolates from 46 different 
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states plus the US Virgin Islands and St. Croix.  An additional 23 isolates were randomly 

selected from the Washington 2012 outbreak collection (Table 5.2).   

5.3.1.2 Selection of FDA isolates: 

All available pertussis isolates with information on isolation date were selected 

from the FDA’s collection of historic isolates.  Analysis was limited to isolates that could 

be grown from the lyophilized samples, included information on date isolated, and were 

isolated in the United States (n=15) (Table 5.2). 

5.3.1.3 Selection of MDCH isolates: 

All available isolates from Michigan Department of Community Health (MDCH) 

were obtained (n=4) (Table 5.2). 

5.3.1.4 Selection of Washington isolates: 

The 2012 Washington outbreak collection contained 234 isolates.  Ten percent of 

this collection (23 isolates) were randomly selected and included in this study (Table 

5.2). 

5.3.2 Sampling of isolates for whole genome sequencing: 

Funding was available to sequence 100 of the isolates.  Our selection of isolates 

for sequencing was a follows. Isolates were first stratified by time period following the 

scheme proposed by Schmidtke et al:  period 1 (pre-vaccine era) 1935-1945, period 2 

(early whole cell vaccine era) 1946-1969, period 3 (late whole cell vaccine era) 1970-

1990, period 4 (combination of whole cell vaccine and acellular vaccine for 4th and 5th 

doses) 1991-1996, period 5 (early acellular vaccine era) 1997-1999, period 6 (middle 

acellular vaccine era) 2000-2002, period 7 (late acellular vaccine era) 2003-2005, and 

period 8 (Tdap booster era) 2006-2013 (Figure 5.1) (Schmidtke et al. 2012).   All five 

isolates from period 1 were sequenced (both FDA and CDC isolates).  To reduce as much 

variation due to source as possible, we limited selection for the other time periods to 

isolates from CDC (including the WA isolates).  Ten isolates were randomly selected 

from periods 2-7 to provide adequate coverage of all time periods.  Thirty-five isolates 

were selected from period 8 for sequencing: 25 were a random sample from the time 



 

76 
 

period and an additional 10 were randomly selected from the Washington 2012 

outbreak to allow us to answer questions about diversity within a single outbreak (Table 

5.2).  A larger sample from period 8 allows for more in depth study of this most recent 

time period. 

Table 5.2  Vaccination time periods with number of isolates and source, 1953-2013 

 

 

 

 

 

 

 

 

 

Time 

Period 
Years Vaccine Era 

Number of Isolates 
Selected for 

Sequencing 

CDC FDA MDCH WA Total  

1 1935-1945 Pre-vaccine era 3 2   5 5 

2 1946-1969 Early whole cell vaccine era 16 2   18 10 

3 1970-1990 Late whole cell vaccine era 42 11   53 10 

4 1991-1996 

Combination of whole cell 

vaccine and acellular 

vaccine for 4th and 5th doses 

35    35 10 

5 1997-1999 Early acellular vaccine era 45    47 10 

6 2000-2002 Middle acellular vaccine era 34    34 10 

7 2003-2005 Late acellular vaccine era 28    28 10 

8 2006-2013 Tdap booster era 28  4 23 55 35 



 

77 
 

 

 

 

  

 

 

 

 

 

 

 

 

5.3.3 DNA extraction and purification: 

DNA was extracted using a QIAGEN (Venlo, Netherlands) DNeasy Blood & Tissue 

kit and the QIAcube automated DNA extraction system.  One hundred microliters of 

each sample was first incubated at 37°C with an 80 μL enzyme cocktail comprised of 

Promega cell lysis solution (Madison, WI, USA), lysozyme, mutanolysin, RNase A, and 

lysostaphin (Sigma Aldrich) in 22.5:4.5:1.125: 1.125:1 parts, respectively for 30 minutes. 

After extraction, DNA quantity and quality was measured using a Nanodrop 2000C 

spectrophotometer (Thermo Scientific, Waltham, MA, USA), a picogreen quantification 

assay, and agarose quantification against a Lambda HindIII ladder (New England 

Biolabs).  Extracted DNA was stored at −80°C.  

5.3.4 Library Preparation and Base Calling: 

Library preparation (conversion of genomic DNA into sequencer-ready 

fragments) and high-throughput DNA sequencing was conducted by the Center for 

Microbial Genetics and Genomics at Northern Arizona University.  Base calling and 

image analysis was completed using the Illumina System with at least 25X coverage.        

8 7 6 5 4 3 2 
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Figure 5.1  Timeline of vaccine introduction into the United States with key periods 
for changes in vaccine selection pressure 
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5.3.5 Quality Control: 

 In addition to the quality control provided by the Illumina manufacturer, 

FastQValidator was applied to check for errors, establish minimum read length, and 

examine deviation from expected GC content and the average phred quality per cycle 

and overall average quality 

(http://genome.sph.umich.edu.proxy.lib.umich.edu/wiki/FastQValidator). 

5.3.6 Alignment: 

Reads were aligned against the Bordetella pertussis Tohama 1 genome (Parkhill 

et al. 2003)  using the Burrows-Wheeler Aligner BWA-mem algorithm (available:  

http://bio-bwa.sourceforge.net/).  The resulting .sam files were converted to .bam files 

then sorted and indexed using samtools (Li et al. 2009).  The MarkDuplicates tool of 

Picard was used to identify and remove PCR optical duplicate reads originating from a 

single fragment of DNA that can occur during sample preparation 

(https://broadinstitute.github.io/picard/index.html).  The MarkDuplicates tool was used 

with REMOVE_DUPLICATES=True, CREATE_INDEX=true, and 

VALIDATION_STRINGENCY=lenient.   The Picard output was then indexed using Samtools  

(Li et al. 2009).   

5.3.7 Variant calling and filtration: 

Samtools mpileup (http://samtools.sourceforge.net/mpileup.shtml) was used 

to collect summary information from the input bam files.  It calculates the likelihood of 

data given each possible genotype then stores the results in BCF format.  The resulting 

BCF files were piped into Bcftools for variant calling 

(https://samtools.github.io/bcftools/bcftools.html#call).  The following options were 

selected for samtools mpileup:  -u (generates uncompressed output which is better for 

piping), -g (generates genotype likelihoods and output them bcf), and -f (indexed 

reference file is in FASTA format.  The following options were selected for Bcftools call:  -

http://bio-bwa.sourceforge.net/
http://samtools.sourceforge.net/mpileup.shtml
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Ov (output type uncompressed vcf), -v (output variant sites only), -c (consensus-caller 

method), -o (specify output file). 

Variant filtering was conducted using the GATK -VariantFiltration tool 

(https://software.broadinstitute.org/gatk/guide/tooldocs/org_broadinstitute_gatk_tool

s_walkers_filters_VariantFiltration.php).   We used the --filterExpression argument with 

FQ<0.025 (consensus quality - positive indicates heterozygote, negative indicates 

homozygote.  In bacterial samples it provides evidence as to whether a particular gene 

was duplicated in the sample), MQ > 50 (Root mean square mapping quality is an 

estimate of the overall mapping quality of reads supporting a particular variant call), 

QUAL>100 (selects for phred-scaled quality score greater than 100), and DP>15 

(requires more than 15 to support a variant call at a given position).  Vcftools was used 

to remove indels and keep only the SNPs that passed the GATK filtering criteria 

(Danecek et al. 2011) 

5.3.8 Generation of consensus sequences and multi-alignment FASTA file 

After filtration and removal of indels, the VCF files were zipped and indexed with 

bzip (http://www.htslib.org/doc/tabix.html) and bcftools 

(https://samtools.github.io/bcftools/bcftools.html#index), respectively.  A consensus 

sequence for each B. pertussis isolate was generated by applying the filtered VCF files to 

the B. pertussis Tohama 1 reference FASTA files with the use of bcftools consensus 

(https://samtools.github.io/bcftools/bcftools.html#consensus).  Once the consensus 

sequences were generated, the headers were changed to reflect the isolate name and 

date rather than the referent name.  The consensus sequences were then concatenated 

to generate a single multi-alignment FASTA file.  Snp-sites was used to extract SNPs from 

the multi-alignment file (Keane et al. 2016) 

5.3.9 Annotation and Analysis 

SNPs were annotated using script provided by Yancy Lo.  A neighbor joining tree 

with 100 bootstrap replicates was created using Seaview.  Invariable sites and across 

https://samtools.github.io/bcftools/bcftools.html#index
https://samtools.github.io/bcftools/bcftools.html#consensus
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site variation were both set to “none”.  Default parameters were used for Tree 

searching operations and Starting tree (Gouy et al. 2010).  The tree was then uploaded 

into iTOL, midpoint rooted, and color-coded by vaccine era (Letunic & Bork 2016). 

A pairwise distance matrix was created with the ape package in R (http://ape-

package.ird.fr/).   Histograms of SNP locations and pairwise distances were also created 

using R.  Further analysis of branch length and pairwise distance by vaccination period 

was conducted using SAS software version 9.4 (SAS Institute, Cary, NC).  The corr 

procedure was used to assess correlation between branch length and isolation date and 

pairwise distance from FDA-2 and isolation date.  ANOVA was used to detect overall 

differences in branch length or pairwise distance by vaccination period and the tukey 

test to assess specifically which vaccination periods differed from one another.  Analyses 

were conducted with and without the FDA-2 isolate as it was an outlier in the analyses 

and strongly influenced the results. 

 This project (HUM00052197) received exempt status from the University of 
Michigan Institutional Review Board on June 27, 2011.   

 

5.4 Preliminary Results  

Of the 100 B. pertussis isolates sent for whole genome sequences, 93 produced 

high-quality sequences that could be used in the analyses.  One isolated from period 6 

(Middle Acellular Vaccine Era), 1 isolate from period 7 (late acellular vaccine era), and 5 

isolates from period 8 (Tdap booster era) were excluded from the analysis due to 

absence of usable sequence data. 

The phylogeny revealed 2 main clades similar to the phylogeny produced by a 

global collection of 343 strains isolated between 1920 and 2010 (Figure 5.3) (Marieke J. 

Bart et al. 2014).  There was a distinct separation between the pre-vaccine era isolates 

and the rest of the collection (p<0.0001).  These results support a significant effect of 

vaccination on extinction of strains resulting in a replacement of populations.  
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Many of the smaller clades had low bootstrap values indicating little support for 

evolutionary relationships between strains.  All pre-vaccine strains were in clades that 

contained no post-vaccine strains.   
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Figure 5.2  Neighbor-joining tree with 100 bootstrap replicates. Color shading 
represents vaccine time period.  The branch length depicted in the legend represents 
an average of 0.1 nucleotide substitutions per site. 
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We found 3,018 SNPs between this collection and the Tohama 1 reference 

genome.  Similarly Bart et al. found limited genetic diversity in their collection, 

identifying only 5414 SNPs and an average SNP density of 0.0013 SNPs/bp (Marieke J. 

Bart et al. 2014).  There did not appear to be any hot spots in the genome for 

substitution (Figure 5.3).   

 

Figure 5.3  Count of SNPS per genome region from multi-sequence alignment 

 

 

Since the introduction of vaccination, the diversity between strains has reduced.  

The average pairwise difference between strains during the pre-vaccine era was 0.01 

(range: 0.01-0.02) and decreased to an average of 0.0007 (range:  0.0007-0.1) after the 

introduction of vaccination indicating a smaller population size.  Vaccination likely 

created a genetic bottleneck, where a very small subset of the population survived.  This 

is contrary to findings in a global collection of B. pertussis isolates which found no loss in 

diversity following the introduction of vaccination (Marieke J. Bart et al. 2014).   
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However, studies in more globally restricted populations, such as ours, also observed a 

decrease in population diversity after introduction of vaccination as would be expected 

if selective pressure from vaccination resulted in a population bottleneck where strains 

immune to the vaccine are more likely to survive (Litt et al. 2009; Van Loo & Mooi 2002; 

Weber et al. 2001). 

In the histogram of pairwise distances for all isolates, there are three bars; the 

largest is at the smallest pairwise distance because the post-vaccine era isolates are so 

similar to one another (Figure 5.4).  The second largest bar was also at a very small 

pairwise difference, because although the pre-vaccine era isolates were distinctly 

clustered from the post-vaccine era isolates they were still highly similar.  The largest 

pairwise differences were the distances of all the isolates from FDA-2, a pre-vaccine era 

isolate. 

Additional analyses, as outlined below, are needed to explore the effect of 

acellular vaccination on the B. pertussis population, characterize diversity within a single 

outbreak, and to explore the possibility of asymptomatic carriage as a major reservoir of 

pertussis infection. 
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Figure 5.4  Count of isolates for each pairwise distance by pre-vaccine and post-
vaccine era 
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5.5 Future Analyses 

5.5.1 Re-align to closed genome to explore genome rearrangement in our strains 

 The first task will be to re-align the reads from our strains to a closed, ordered 

genome that was created using a combination of long-read sequencing and restriction 

optical mapping.  This will give us a better picture of the presentation and variation in 

location of insertion sequence elements.  The majority of B. pertussis sequences 

generated so far were created with the use of Illumina short-read sequencing, which 

creates reads that are not long enough to span the 1kb IS481 repeat regions making it 

impossible to create a closed, ordered genome sequence from the data (Belcher & 

Preston 2015).  With the introduction of long-read sequence platforms, it is now 

possible to generate long-range scaffolds and create closed genome sequences (Liao et 

al. 2015).  A study of 31 statewide epidemic strains and 2 re-sequenced vaccine strains 

combined short- and long-read sequencing platforms with restriction optical mapping to 

create a closed genome de novo assembly.  Using this method, they were able to 

identify 16 distinct genome rearrangement profiles among the epidemic strains, all of 

which were distinct from the vaccine isolates (Bowden et al. 2016).  More copies of 

IS481 were also identified in the majority of epidemic strains as compared with the 

vaccine strains indicating that gene inactivation by insertion of IS481 may be an 

important method for allowing B. pertussis to evade acellular vaccine-induced immunity 

in the host (Bowden et al. 2016). As further evidence, an IS481 was found within the prn 

gene locus in the majority of prn-deficient strains in the U.S. (Pawloski et al. 2014; 

Bowden et al. 2014).  Closed genomes were also assembled for two Dutch strains with 

three large inversions identified between the strains suggesting the potential for 

extensive variation in genome arrangement among B. pertussis strains (Marieke J Bart et 

al. 2014; Belcher & Preston 2015).  Given the apparent importance of genome 

rearrangement as a source of variation between B. pertussis strains, alignment to a 

closed genome will allow us to explore this in our strains.  For example, if we identify 

prn-deficiency in our strains, is it due to an insertion of IS481? 
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5.5.2 Identify temporal trends in strain frequencies for vaccine antigen alleles  

 Studies worldwide document divergence between vaccine strains and currently 

circulating strains with respect to the antigens contained in the acellular vaccines 

(Schmidtke et al. 2012; Cassiday et al. 2000; Kallonen & He 2009; Octavia et al. 2012; 

Advani et al. 2011; Bart et al. 2010; Borisova et al. 2007; Mooi et al. 1998).  To assess 

how vaccination may have affected our B. pertussis population, we will assess the strain 

frequencies for each of the acellular vaccine antigen (fim2, fim3, ptxA, ptxP, prn) alleles 

by the eight vaccination time periods outlined.  This will allow us to determine if any 

allele shifts over time, such as the ptxP1 to ptxP3 identified by Bart et al. can be 

observed in our collection (Marieke J. Bart et al. 2014). 

5.5.3 Further Characterize Identified SNPs and Calculate SNP Densities and Mutation 

Rates in Regions of Interest 

 We will classify the SNPs identified as non-coding, synonymous, or non-

synonymous.  A synonymous SNP is one that changes the codon to a different codon 

which codes for the same amino acid while a non-synonymous SNP codes for a different 

amino acid.  Exploring the synonymous versus non-synonymous mutation rate in regions 

of interest, such as the antigen encoding genes, will provide information as to whether 

selection is acting on that particular region.  The non-synonymous mutations can be 

further explored by identifying the functional classification of the predicted protein 

categories using a database of functional annotation such as EggNOG 4.5 (Huerta-Cepas 

et al. 2016).  Studies in a global collection of B. pertussis isolates and a collection of 

isolates from two statewide outbreaks in the United States both found an 

overrepresentation of non-synonymous SNPS in transport proteins which may suggest 

this as a method of adaption to vaccination (Marieke J. Bart et al. 2014; Bowden et al. 

2016).  Whether particular gene categories are evolving faster than others can be 

explored by determining if the SNP densities in these regions of interest differ 

significantly from the overall SNP density of the genome as a whole.  SNP densities in 

the vaccine antigen-encoding genes will also be compared between eras to determine if 
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selection pressure has increased on these regions since the introduction of acellular 

vaccines. 

5.5.4   Further Study Outbreak Strains to Characterize Diversity Within a Single 

Outbreak 

 In a study of 100 United Kingdom B. pertussis isolates dating from 1920-2012, 

with particular emphasis on isolates from the 2012 outbreak, Sealey et al. showed that 

many distinct strains contributed to the 2012 outbreak and that it was not due to the 

emergence of a novel and more virulent clone or to the expansion of an individual 

lineage (Sealey et al. 2015).  They also found very little difference between outbreak 

strains and strains isolated during periods of low pertussis incidence (Sealey et al. 2015).  

Further analyses of our outbreak strains are needed to determine if there is evidence of 

clonal spread of an individual lineage or novel clone within the outbreak or if many 

strains contributed.   

5.5.5 Determine Whether Our Population of Strains Support Asymptomatic Cases as 

a Significant Reservoir for Infection 

In an analysis of 36 U.S. B. pertussis clinical isolates, Althouse and Scarpino found 

more genetic diversity in the bacterial population than could be explained by the 

observed number of infections without the possibility of asymptomatic carriage and that 

the time of changes in age-specific attack rates were consistent with asymptomatic 

transmission (Althouse & Scarpino 2015).  Seroprevalence studies suggest that many 

more people are infected with B. pertussis than actually present with disease (HUYGEN 

et al. 2014; RØNN et al. 2014; Scott et al. 2015). These studies suggest that B. pertussis 

is endemic in the population, but only causes disease in a fraction of those infected 

(Belcher & Preston 2015).  Preliminary analysis of our isolates suggests limited 

asymptomatic carriage in the pre-vaccine era although further analysis is needed to 

confirm this and to assess whether there is evidence to support a larger role of 

asymptomatic carriage since the introduction of the acellular vaccine.  Although all of 
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our isolates were recovered from symptomatic individuals, it would be interesting to 

obtain isolates from asymptomatic individuals to determine if they represent a separate 

lineage (Belcher & Preston 2015). 
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 Summary and Conclusions Chapter 6.

6.1 What I Learned From 5.5 Years as a PhD Student 

6.1.1 Collecting Data and Samples Takes Time and Lots of It 

 For this study, I gathered 275 B. pertussis isolates dating from 1935-2012, ten 

years of pertussis case report data from the California Department of Public Health, and 

case report data from Marin County Health and Human Services.   The isolates took over 

two years to obtain and came from the Food and Drug Administration (FDA), Centers for 

Disease and Prevention (CDC), Michigan Department of Community Health (MDCH), and 

Seattle Children’s Hospital.   

The FDA collection came about when my Co-Adviser ran into an FDA pertussis 

researcher at a conference who offered access to his collection.  Never underestimate 

the power of networking.  After months of emailing back and forth, I was finally granted 

access to drive out to Bethesda and dig through the samples in their freezers myself to 

select what I wanted.  As an interesting side note, I also learned how to ship infectious 

agents on dry ice.  The isolates from the CDC proved to be the most challenging to 

obtain and the ones nobody thought could be obtained.  From the time I first identified 

the collection in a journal article and contacted the author to when the isolates finally 

arrived in the lab, over two years had passed. On my part, it took persuasion, a proposal 

demonstrating that I had a good idea and the right people working with me to carry out 

the project, authorship agreements, and a few precious, pre-vaccine era samples that 

were not yet a part of their collection.  It also took months of back-and-forth between 

the legal departments at both institutions to work out the material transfer agreements.  

The other samples were a little easier; my contacts at the CDC connected me to a 
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contact at Seattle Children’s Hospital and my adviser connected me with a colleague 

and friend at MDCH who agreed to provide samples.  In between these successes, there 

were plenty of failures.  Not everyone I contacted was equally helpful or willing to share 

data and samples; however, most people were willing to help a genuinely interested 

and enthusiastic graduate student. 

 As a Marin County Epidemiologist before I returned to graduate school, I was 

able to obtain permission from the Public Health Officer to bring case report data with 

me for use on my dissertation.  The data from CDPH was a little more challenging to 

obtain and involved over a year of back-and-forth emails and phone calls, and IRB 

applications at both institutions.  It was important to keep in mind that these data 

requests create work for other people and that they also put considerable effort into 

the initial collection of data and samples.  Being gracious yet persistent with requests 

and offering acknowledgement of the work of others through promises of authorship 

was instrumental in getting the job done.  The most important lesson learned from this 

was to not underestimate the amount of time and effort required to find and obtain the 

appropriate data and specimens, and to not be afraid to reach out to other researchers 

in the field.  Most were happy to help out a graduate student. 

6.1.2 Projects Fail - Know When to Move On 

 I had great plans for the California case report data.  I was going to examine how 

community factors such as vaccination rates, health care utilization, poverty level, and 

education affected an individual’s probability of being infected.  I spent a great deal of 

effort merging the California data with data from the US Census, California Department 

of Finance, California Expanded California Kindergarten Retrospective Survey of 

vaccination status, and California Vital Statistics. I excitedly analyzed the data according 

to my plan and sought advice from other committee members and colleagues on an 

appropriate analytic strategy.  The problem was CDPH only releases data at the County 

level to protect the privacy of those infected.  There was too much variability within a 

single county to identify community factors that predicted pertussis infection.  I needed 



 

98 
 

geographically higher resolution data such as census tract level or smaller that would 

never be released to me.   It was difficult to fathom dropping a project that was 

supposed to be a significant portion of my dissertation and that took so much effort and 

time to set up.  My adviser matter-of-factly told me to cut bait and come up with an 

idea for a new project.  She was right; it was a waste to throw more time and energy at 

a project that wasn’t going to work. 

 Another failed project involved screening archival throat swabs from healthy 

individuals and individuals with influenza-like illness.  From everything I’d read on 

pertussis, I knew testing was typically done using nasopharyngeal swabs.  There might 

not be enough B. pertussis DNA in the throat to actually be detected.  If we found B. 

pertussis, it would not only be great to have a positive result but also good to know that 

it can be picked up with a throat swab rather than the slightly more invasive 

nasopharyngeal swab.  If we didn’t find B. pertussis, we wouldn’t know if it was because 

it truly wasn’t there or if we were simply unable to detect it.  I extracted the DNA, 

learned how to do qPCR, and started screening my samples.  After screening about half 

of the samples, I had not found any positives.  I quickly realized that the results would 

be meaningless.  Zero positive samples didn’t tell us anything, either none of the 

samples contained B. pertussis or we couldn’t detect it from the throat swabs.  I learned 

new laboratory skills in the process, but there was no use continuing with the project. 

6.1.3 Biological Variability Exists - Challenges in the Lab 

 Outside of specimen and data collection, the project that took up the most 

amount of time was creating a high-throughput method for assessing for coaggregation 

among bacterial species and applying this method to the study of B. pertussis 

interactions with nasopharyngeal commensals.  This was my first hands on experience 

with true biological variability.  I would see exciting results of coaggregation between B. 

pertussis and a commensal strain one day, and then nothing the next.  The same thing 

would even happen with my positive control strains that were well-documented in the 

literature as coaggregating strains.  I experimented with changing the media, growth 
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times, and pH.  I swapped coaggregation buffer for PCR-grade water and swapped the 

bacterial stock I was using for stock that had been passaged fewer times.  After more 

than 30 trials on some of my crosses, I could not figure out why sometimes my 

coaggregation assays would work and sometimes they didn't.  After some persuasion 

from my adviser, I finally presented my results at lab meeting.  No one was surprised by 

my inability to get consistent results and everyone was wondering why I kept repeating 

my experiments determined to do so.  It turns out that the species I was working with 

change phases and are known for being highly variable.  Presenting my results earlier 

would have saved a lot of time and frustration.  I was too concerned about having a 

completely finished project before presenting the results when I should have been 

seeking input from my colleagues throughout the project.  Luckily, experiencing all of 

the variability helped me design a high-throughput methodology that allows for multiple 

replicates of a particular pair under identical conditions so outside factors that influence 

coaggregation can be further studied.   

6.1.4 Working with Archival Specimens 

 I was excited to obtain a collection of nasopharyngeal swabs collected from 

healthy individuals that were collected as part of a former student’s dissertation work 

on S. pneumoniae and felt they would be perfect for coming up with a prevalence 

estimate of asymptomatic B. pertussis carriage in a population highly vaccinated with 

the whole cell vaccine.  Realizing that the samples were nearly a decade old and that 

there were no guarantees as to their current quality, I selected a random sample of 

isolates that the former student had identified as positive for S. pneumoniae based on 

culture and tried to duplicate her results using PCR.  Out of the ten presumptive positive 

samples that I screened, nine resulted in positive determination giving me the false 

impression that the rest of the samples would be viable.  I went ahead and extracted 

DNA from each of the samples and carried on with my experiment.  I screened all of the 

samples for B. pertussis and got halfway through screening for S. aureus, when it 

became obvious that I was obtaining prevalence estimates for S. aureus (zero positive 
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samples) that were not even close to estimates from the literature of 19.0% to 55.1% 

(Kluytmans et al. 1997).  It was clear that there was an issue with the archival samples.  

To prevent the wasted time, I should have put more time up front in screening more 

samples and made sure to screen samples from every freezer box.  Working with 

archival specimens can be highly informative as new project ideas and technologies 

come to light, but it extremely important to thoroughly screen the samples for quality 

and viability. 

6.1.5 It Takes a Village 

 During my final year of graduate school, I finally learned the importance of taking 

on undergraduate students to help with my projects.  Once I developed a particular 

repetitive aspect of my protocol, such as DNA extraction, PCR, or coaggregation assays, 

it made way more sense to train an undergraduate researcher to help with the work 

rather than to try and do it all myself.  I was able to develop a protocol and learn the 

skills necessary to carry it out, a student had the benefit of gaining research experience, 

and the project was completed much faster.  Providing training, delegating tasks, and 

overseeing the work of others are all important skills gained from allowing 

undergraduate researches to help with projects.  

 Seek input early on and throughout a project.  Presenting protocols while still in 

development and preliminary results can improve projects, get the work done faster, 

and might prevent failed projects.  Rather than re-inventing the wheel, seek guidance 

from your committee and other researchers in the field.  It’s not cheating, it’s efficient. 

6.1.6 Gaining an Incredible Skill Set 

 While some of my projects failed and others I wasn’t able to complete as much 

as I’d have liked too, I still gained an incredible skill set.  I learned laboratory skills such 

as DNA extraction, PCR, qPCR, and how to carry out a Picogreen DNA quantification 

assay.  I learned how to develop and troubleshoot protocols and work with numerous 

types of laboratory equipment such as a confocal microscope and a FlowCam device.  I 
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became competent in working with many different bacterial species.  Most importantly, 

I became competent and confident in learning new techniques and where and how to 

search for answers to my questions. 

 Outside of the lab, I became comfortable developing research questions and 

setting up a study that could answer those questions.  I could identify potential sources 

of bias and think of ways a project could be improved.  I became skilled at creating 

protocols that could obtain clear and consistent results between researchers and 

learned to develop a manuscript for a peer-reviewed journal. 

 For my genomics project, I was fortunate to be selected to attend a Working 

with Pathogen Genomes Workshop at the Wellcome Trust Sanger Institute.  Here I 

learned to use Unix and work with programs from the command line, map and assemble 

genetic sequence data, call SNPs and identify regions of difference between genomes, 

annotate genomes, and develop phylogenetic trees.  Working with big data, learning 

and troubleshooting new software, and blending software programs together to create 

a pipeline that carried out all of the necessary tasks proved to be extremely difficult, but 

I did it.  Unfortunately the learning curve on this project was so steep, I barely scratched 

the surface of the analyses I’d planned to do.  I was able to create a pipeline that 

worked, create a tree, and conduct some preliminary analysis.  I walked away with these 

skills and a better understanding of how genetic sequence data can be used to answer 

questions of epidemiologic importance. 

 Outside of my dissertation work, I was also given the opportunity to teach.  I 

gained experience in developing lesson plans, assignments, and tests; public speaking, 

working with a diverse group of students, and tailoring my instruction to meet the 

needs of my students. 
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6.2 Outstanding Issues and Future Directions for My B. pertussis Work 

6.2.1 High-throughput Method for Assessing Coaggregation Among Bacterial Species 

(Chapter 2) 

 Combining the high-throughput screening method with confocal microscopy and 

the FlowCam device opens the door for in-depth studies of aggregation and 

coaggregation among large panels of test strains.  These methods can be used to 

identify the factors that contribute to high variability in coaggregation assay and to 

determine if coaggregation occurs in other biological systems.   

6.2.2 Coaggregation between B. pertussis and NP commensals (Chapter 3) 

 Further study is needed to better understand how B. pertussis interacts with 

nasopharyngeal microbiota.  While we provided evidence that some interaction is 

occurring, we were unable to clearly identify the type of interaction. 

 A case-control study in which nasopharyngeal swabs are taken from those with 

and without B. pertussis would be useful to identify differences in the microbiota 

between the two groups.  DNA from the swabs could be extracted and sequenced to 

give an idea of community composition (Foxman & Rosenthal 2013).  The swabs could 

also be cultured to capture the specific strains that frequently co-occur with one 

another and ones that never do.  Our research on B. pertussis showed there can be 

considerable strain variation in type and extent of interactions observed.   

Further studies could be done to assess for coaggregation or interbacterial 

competition between strains.  B. pertussis contains several mechanisms, such as 

bacteriophages and a type IV secretion system for secreting pertussis toxin, which may 

be important for interaction with the host microbiota and the ability to colonize a host 

(Weyrich et al. 2014).  Understanding the interaction between B. pertussis and the host 

microbiota may have implications for control and treatment.  Weyrich et al. point out 

that susceptibility to colonization by B. pertussis may be increased by disruption to the 

resident microbiota of the nasal cavity and hypothesize that this may contribute to why 
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infants, without a mature nasal cavity microbiota, are more susceptible to pertussis 

infections than healthy adults (Weyrich et al. 2014).  If the microbiota is important for 

fighting off B. pertussis colonization, the administration of broad-spectrum antibiotics 

could potentially increase risk colonization and disease among infants (Weyrich et al. 

2014). 

6.2.3 Estimation of B. pertussis asymptomatic carriage rates and co-occurrence with 

NP commensals (Chapter 4) 

Understanding the prevalence of asymptomatic carriage is important for 

determining the role it plays in the transmission system.  A study of nasopharyngeal B. 

pertussis carriage in healthy people is warranted – although getting healthy people to 

submit to an NP swab poses a challenge.  DNA could be extracted from these swabs and 

sequenced to identify organisms present.  This would be much more efficient than using 

PCR to screen for selected organisms and would require no a priori list of organisms of 

interest.  As this method often can’t resolve below the genera level, a mix of untargeted 

and targeted screening would likely be necessary.  

6.2.4 Evolution of B. pertussis in response to vaccination (Chapter 5) 

We have barely scratched the surface in terms of what can be done with the B. 

pertussis sequences.  As the samples for sequencing included an oversample of isolates 

from a single 2010 outbreak in Seattle, Washington, we can further explore these 

sequences to better understand diversity within a single outbreak.   Additionally, given 

that we have an external clock (1935-2013) based on the isolation dates, we can 

estimate the molecular clock for B. pertussis.  The SNP annotation we created can be 

used to determine the presence of positive selection on gene regions throughout the 

genome and to identify gene regions that are highly conserved.  We can also determine 

if allele frequencies differ in gene regions that code for the antigens commonly found in 

vaccines compared with other gene regions to see if selective pressures differ by gene 

region.  Other regions of interest include the gene regions that code for adenylate 

cyclase, lipopolysaccharide endotoxin, dermonecrotic heat-labile toxin, tracheal cytoxin, 
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the bvgAS locus, and various serotype specific agglutinogens and envelope proteins that 

may be important for virulence or immune escape and have demonstrated sequence 

variation (Packard 2004; Bart et al. 2010).   

Mooi et al. suggest that vaccination may have selected for strains that can 

transmit through vaccinated hosts more efficiently by delaying the immune response; 

vaccines effectively remove infants as a major factor in transmission, changing the 

ecology of B. pertussis.  We can explore this hypothesis by determining if any of the 

mutations we have identified could be involved in immune suppression (Mooi 2010).  

We can also determine how phylogenetic trees based on SNPs identified from whole 

genome sequences align with currently published predictions of B. pertussis genome 

evolution based on MLST patterns.  We can also compare the results of our analyses 

from mapping to the Tohama 1 reference genome with those from a de novo assembly 

and to a more recently published closed genome created with PacBio. 

6.3 Implications for pertussis intervention 

 In this dissertation we explored several mechanisms that may contribute to 

resurgence of B. pertussis in the United States:  interaction with nasopharyngeal 

microbiota, asymptomatic carriage, and divergence of circulating strains from vaccine 

strains.  Understanding how B. pertussis interacts with the host microbiota may give 

insight into the sources of variation in risk of colonization given exposure, particularly 

considering that so many pertussis cases occur in fully vaccinated individuals.  It may 

also explain why infants with an underdeveloped microbiota are more susceptible to 

infection (Weyrich et al. 2014).  Given recent evidence that acellular vaccines may 

protect against disease but not against colonization, a better understanding of the 

actual prevalence of asymptomatic carriage is important for assessing its role in 

transmission and for decision-making regarding pertussis control.  Lastly, understanding 

how B. pertussis evolves in response to vaccination is essential for developing vaccines 

with the most effective components and determining the best vaccination strategies. 
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