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Abstract

Herpes zoster (shingles) is a disease that approximately 90% of the US population

is at risk of developing. This disease causes intense pain which can affect quality of life

and has a substantial economic burden. A vaccine is available to prevent the disease,

and currently this is the best tool available for combating this disease. However,

the vaccine does not have lifelong durability, and it has less efficacy in older people.

Therefore, it is important to make good decisions on how and when to administer

this vaccine so that we maximize both its benefit and our available resources.

This dissertation uses the techniques of cost-effectiveness analysis, stochastic

dynamic optimization, and value of information analysis to focus on decision making

about how to best use the vaccine. First, cost-effectiveness was completed to show

the value at different ages of vaccination. Stochastic dynamic optimization built upon

the cost-effectiveness models to determine the optimal time to administer the vaccine.

Finally, value of information analysis examined how the optimal policy may change if

perfect information were available on some of the key uncertain parameters.

Results indicate that age 67 is the most cost-effective age to vaccinate men and

women. The optimal policy results from the stochastic dynamic program suggest it

would be best to start vaccinating men and women at age 66 and to stop at 74 (men)

or 77 (women). Results show that there is some value to determining the additional

information on key uncertain model parameters. However, the value we can gain is

unlikely to be worth the investment in the additional research that would be required.

Overall this dissertation shows that the recommended policies in the US of

vaccination at 60 and older could be sub-optimal. Given the results of the models

it may be more optimal to change the recommendation to 65 and older so that the

benefits of the vaccine are conferred at the best times.

xvii



Chapter 1

Introduction

“If you play football for a long time like I did, youre gonna

learn to deal with a lot of pain...but it is nothing like the

pain that shingles causes.”

— Terry Bradshaw, NFL Hall of Fame Quarterback [1]

Terry Bradshaw’s story is just one of many about the herpes zoster virus, commonly

known as shingles. This is a disease that nearly every person in America can develop,

and yet is not well understood by the general population [2]. It is estimated that

more than 1 million new infections occur each year in the US [3]; assigning herpes

zoster (HZ) the highest incidence rate of any neurological disease. In the US, more

will people develop HZ annually than Alzheimers, Huntingtons disease, ALS, and

brain and nervous system cancers, combined [4–7].

To develop HZ one only needs to have had the chickenpox virus or the chick-

enpox vaccine. Because nearly every child will get chickenpox or the vaccination,

approximately 95% of Americans are at risk for developing HZ [2]. To date, age is

the best known risk factor. Categorically, people over age 50 are at the highest risk

of infection; this risk continues to increase with age, as does the risk of additional

complications. For context, there are more than 90 million people older than age 50

living in the US [8]. It is estimated that one third of adults will develop HZ in their

lives and half of adults older than age 85 will experience or have already experienced
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HZ [2].

The most common symptoms of HZ are pain and a blistering rash. While a

typical disease course for HZ is about one month, the pain associated with HZ can

be debilitating, and nearly all patients will experience some pain during the course of

the infection [9]. Patients describe the impact of the pain on daily life:

“For two weeks I sat up in bed because I couldnt lay down...I didnt want

to do anything except sleep and have the pain be over [10].”

“The pain from shingles just made it impossible to even want to move [11].”

Other descriptions of pain include: “sharp,” “stabbing,” “piercing needles in the

skin,” and “burning” [12]. This pain substantially impacts daily functioning, severely

reduces quality of life, and can lead to lost productivity. Thus, despite the short

disease course [13], HZ carries high health burden.

The main complication associated with HZ is postherpetic neuralgia (PHN) which

can present incapacitating pain that can be intense than the pain experienced during

the HZ infection. The pain caused by PHN continues after the HZ rash disappears,

often lasting several months, or years in rarer cases [12]. The risk of PHN increases

with age, a sharp increase occurs after age 60. The pain intensity and duration due

to PHN place an additional and severe burden on patients who experience it. Disease

incidence, pain intensity, and pain duration allow PHN to have a substantial impact

on patients quality of life; making PHN particularly import when discussing HZ, and

its treatment and prevention.

While pain presents a major personal burden to patients, the economic burden

of this disease is also substantial. The majority of people who develop HZ will seek

medical attention and require prescription drugs for the pain and the rash. Including

costs for hospital admissions, outpatient visits, emergency department visits, and

prescription drugs, the average HZ infection costs about $1000 [14]. The average

cost of PHN is estimated at $5000 over a 12 month period [14]. With more than

1 million estimated new HZ infections annually, this equates to well over $1 billion

spent on direct medical costs for HZ and PHN alone. Accounting for costs of other
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complications such as neurological palsies and skin infections, and lost productivity

increase the estimate of the total cost burden. The cost burden is currently unknown.

HZ cannot be cured, and medications have only allowed people to endure the

disease. However, a vaccine was approved for use in 2006 by the US Food and Drug

Administration (FDA) that can be used to prevent the disease and its complications

[15,16] making it an extremely important tool for public health practice, and the best

option to date for reducing the burden of disease. The vaccine is approved for any

person over age 50, and is currently recommended for any person over age 60 [17].

The HZ vaccine has been shown effective at reducing the burden of disease by lowering

the risk of HZ, and perhaps most importantly, “works even better at preventing

the really severe cases likeliest to lead to postherpetic neuralgia” [18]. However, the

initial efficacy and longevity of the vaccine are both age-dependent [15, 16, 19–22].

Therefore, because people are more at risk of infection and disease complications as

they age, and because the vaccine provides different levels of protection based on

when it is administered, understanding how the administration of the vaccine affects

health outcomes and costs and then making good decisions about when to vaccinate

is vital in the attempt to provide the maximum benefit to society by minimizing the

burden of HZ and PHN.

Disease prevention is a core tenet of public health [23–26]. However, no disease can

be prevented effectively without deciding on a strategy, which requires synthesizing

information on the disease, the intervention, and its risks, benefits and costs. Making

good decisions on prevention strategies can save resources, which can be used elsewhere

and allows us to maximize the resources we have. Given the population at risk, the

high cumulative incidence, the impact on quality of life, and the cost, it is evident

that HZ is an important disease to both understand and prevent. However, we

must also decide how to effectively prevent and reduce the burden of this disease to

maximize the use of our resources; this is equally important from the public health

perspective [26]. In this dissertation, I will use the decision analytic techniques of

cost-effectiveness analysis, stochastic dynamic programming and value of information

analysis to provide more understanding of this disease and evaluate strategies for

vaccination which can be utilized to make good decisions on how to minimize the
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burden of HZ and maximize our resources.

1.1 Disease Etiology and Progression

This section provides a brief overview of the key features of the HZ virus and the

disease progression.

Varicella Zoster Virus

Chickenpox is a very common childhood disease [27] caused by the varicella zoster

virus (VZV). The disease is transmitted by direct contact or by air through breathing

or sneezing [28]. VZV is extremely contagious with between 60 – 100% of exposures

leading to infection [28]. Common symptoms of a VZV infection are a pruritic (itchy)

vesicular rash, swelling of the cervical lymph nodes, and fever [29]. The rash typically

forms on the face, trunk, and scalp; a healthy child can expect to experience between

100 – 300 rash lesions during the infection [30]. Fortunately, most VZV infections

will resolve without severe complications.

Figure 1.1: Spinal Nerves [31]

A vaccine was licensed for use in 1995

and since then the incidence of chicken-

pox in the US has reduced by as much

as 90% [28]. Given the high chance of

infection before the vaccine was intro-

duced and the near universal coverage of

the vaccine since 1995, 90-95% of adults

in the US still test positive for serologic

evidence of the virus [28, 32]; this is due

to virus’ behavior. Once introduced into

the body, VZV virus seeks out and ac-

cesses nerve clusters called ganglia. Dur-

ing an infection, the virus can access any

ganglion attached to an afferent neuron (a neuron that sends a signal toward the
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central nervous system) that is also attached to a VZV rash vesicle on the skin surface.

Because the chickenpox rash can develop almost anywhere on the body, the virus

theoretically has access to every ganglion on along the neuraxis (brain and spinal

cord) [29, 33]. However, the dorsal root ganglion in the spinal cord, shown in Figure

1.1, is the most commonly accessed site by VZV. Once inside a ganglion, the virus

enters a latent state. This ability of the virus to establish a latent infection in the

host is a defining feature of the herpes virus (Herpesviridae) family, and a necessary

condition for the herpes zoster virus [27].

Herpes Zoster Activation

Herpes zoster is initiated by the reactivation of the latent VZV inside a single

ganglion [3]. Reactivation of the virus occurs in approximately 25% of all people

who carry the latent VZV [34]. It is the seroprevalence of VZV in adults and high

chance of re-activation that lead to the high annual incidence of HZ in the US and

throughout the world. Unlike other viruses in the Herpesviridae family, the exact

triggering mechanism for VZV reactivation is unknown. The predominating theory

suggests that, due to age, cell-mediated immunity declines below a level sufficient to

keep the virus in its latent state. When this happens the VZV begins to replicate

and spread [32,34,35]. This helps explain why age is the best known risk factor for

an HZ infection.

Herpes Zoster Disease Progression

Once the virus begins to spread, there are three main periods for the HZ infection: 1)

Prodromal (pre-rash); 2) Rash; 3) Post-rash. In the prodromal phase, the virus travels

from the ganglion back toward the skin surface along the sensory nerves causing

necrosis along the way. This is commonly associated with abnormal sensations in the

skin such as tickling, tingling, numbness, itchiness, or burning [12,36]. The prodromal

period usually lasts between 48-72 hours in the area where the sensory nerves are

infected with the virus. This phase terminates when the virus reaches the skin and

the rash phase begins [32, 34].
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Rash Phase

The start of the rash phase is signaled by the formation of a vesicular rash. The most

common places for a rash to form are anywhere between T1 and L2 vertebrae [32] and

near the V1 branch of the trigeminal nerve, shown in Figure 1.2. These dermatomes

(areas of skin supplied by a single spinal or cranial nerve) typically contain the highest

concentration of lesions during a chickenpox infection and are thus the most likely

to be affected during an HZ infection. During the rash phase, the initial vesicular

lesions will develop into pustules, and then crust over. The HZ rash will resolve and

skin will begin to health within two to four weeks after onset. A rash will typically

be contained to a single dermatome, unlike the chicken pox rash which affects many

dermatomes at once.

Figure 1.2: Trigeminal Nerve [31]

Aside from the rash, the main symp-

tom during this phase is pain, and nearly

all patients will experience some pain

during the course of the infection [9].

The pain experienced by patients in the

rash phase has been described as “sharp,”

“stabbing,” and “burning” [12]. This pain

substantially impact daily functioning,

severely reduce quality of life, and can

lead to lost-productivity during the du-

ration of the HZ infection. Thus, de-

spite the short disease course and the

minimal chances for mortality and com-

plications [13], HZ carries high health

burden.

Post-Rash Phase and PHN

Pain that persists after a certain duration of time in the post-rash phase will often be

diagnosed as PHN. Unfortunately, there is no formal medical definition for the length
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of time pain must be present to be considered PHN [37] thus consistent diagnosis

can be challenging due to ambiguity. The two most commonly used definitions for

PHN in the literature are: 1) pain that persists for more than 90 days after the

initial infection (PHN3); 2) pain that persists for more than 30 days after the initial

infection (PHN1) [38].

Regardless of the definition used, PHN is the most common complication of HZ

and is estimated to occur after approximately 10 – 30% of all HZ infections [39,40].

Similar to HZ, the risk of PHN increases with age; with risk increasing sharply

after age 60. There are five distinct types of pain commonly associated with PHN:

1) throbbing pain; 2) stable burning pain; 3) sporadic sharp or shooting pain; 4)

allodynia (burning or shooting pain that is caused by simulating the dermatome in a

way that normally would not cause pain); 5) hyper-pathia (strong pain reaction by

stimulating the dermatome, usually repetitively) [41]. The pain produced by PHN

can be more intense than pain experienced during the HZ infection and can last

several months, or years in rare cases [42]. Disease incidence, pain intensity, and pain

duration allow PHN to have a substantial impact on patients quality of life; making

PHN important to consider when deciding on possible HZ prevention strategies.

1.2 Decision Making

Making good decisions is difficult. This is especially true in health care, as it requires

balancing and integrating risks, benefits, costs, preferences and other evidence to arrive

at a conclusion likely to produce the best outcome [43]. And, unlike many decisions,

making poor decisions in health care can result in serious or fatal consequences. A

principal challenge to making good decisions is that most decisions are made under

conditions of uncertainty [44]. That is, while we know the outcomes of the decision, we

have limited information on the chance of achieving that outcome. Decision analytic

techniques are available that allow for the aggregation of the available information,

the accounting of uncertainty, and the testing of different assumptions. It is these

techniques that help provide clarity and additional information to people or agencies

that make health care decisions or recommendations [43].
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In the US, the Advisory Committee on Immunization Practices (ACIP) is a

group of public health experts supporting the Centers for Disease Control and

Prevention (CDC) that decide on how to recommend the use of vaccines to prevent

and control disease [45]. During the decision process, the ACIP considers the

following aspects in its recommendations: disease epidemiology, disease burden,

vaccine safety, vaccine efficacy, vaccine effectiveness, vaccine implementation, and

economic evaluation [45]. Current recommendations on HZ vaccination from the ACIP

have focused on results from decision analysis and economic evaluation technique of

cost-effectiveness analysis [17].

1.3 Economic Evaluation

Resources are scarce in health care, therefore decisions on what resources (e.g.,

treatment, procedures, medications) to provide can and must be made [46–50].

Economic evaluation is a method that examines the costs and consequences of a

decision or set of decisions to provide information on the allocation of these resources.

This type of evaluation is often best used when questions of efficacy, effectiveness,

and availability have been adequately addressed [47]. In the case of HZ vaccination,

the questions of efficacy and effectiveness (i.e., can it work?; does it work?) were

addressed by the clinical trials for the vaccine [16, 20, 21, 51]. The vaccine is also

readily available to the population. Therefore, the economic evaluation conducted by

the ACIP for the HZ vaccine examines the costs and consequences of two alternatives

(vaccination and no vaccination) to provide information for the recommendations on

how the vaccine should be best allocated.

Cost-benefit Analysis

There are two common methods for health economic evaluation, cost-benefit analysis

(CBA) and cost-effectiveness analysis (CEA) [52–54]. CBA is the most common form

of economic evaluation used outside of the health care sector. Money is one of the

broadest value measures and CBA monetizes both costs and outcomes to determine if
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benefits outweigh costs [55]. That is, CBA values resources used compared to resources

gained or to be gained; if more value is created than lost the treatment or intervention

is considered cost-beneficial. The main advantage to CBA is its cross-compatibility

with other sectors given the common units of measurement. Because more sectors

use CBA than CEA, results from CBAs can be compared together to decide which

interventions or projects create the most value and should be prioritized [46,47].

Cost-effectiveness Analysis

However, monetizing health outcomes is both difficult and controversial. This is a

primary reason why CEA is preferred in health care [48,49,52]. The goal of CEA is

similar nevertheless; costs and outcomes data are aggregated to determine how much

money needs to be spent to achieve the desired level of benefit. However, while costs

are still measured in monetary units, outcomes are measured in quality adjusted life

years (QALYs), which is a metric that accounts for time spent in a certain state of

health and the utility of that health state. A QALY will value each health outcome on

the same scale [56]. The utility scale used for health states is typically bound between

1 and 0, where 1 is assumed to be equal to perfect health and 0 is assumed to be

equal to being dead [46,47]. These costs and outcomes are combined and compared

to a pre-defined threshold of cost-effectiveness. If the result of the CEA produces a

value below this threshold, the intervention is considered cost-effective. If the result

is over this threshold the intervention is considered not cost-effective.

CEA provides the ability for comparison within the health care sector as the use

of the QALY provides a generic outcome measure for health economic evaluation.

Thus studies that use CEA can be compared against one another to determine how

much benefit can be gained given a certain budget. The ACIP used CEA in the

formulation of their most recent recommendation [17]. The knowledge that a vaccine

or treatment is cost-effective provides additional information in a decision making

process and can help set recommendations for its use.
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Limitations of Economic Evaluation

While cost-effectiveness and other forms of economic evaluation are very useful and

can provide insights into decision problems, they do have some limitations. Any

model is only as good as its inputs and assumptions. If poor quality data is used for

the model, or if poor assumptions are made then the outcomes of the model will not

likely be informative or worse, misleading [57]. Therefore, in any model, the structure,

assumptions, and data must be explicitly presented so that the model can be properly

assessed [58]. Additionally, economic evaluation should be seen and used as a tool

to inform decision making. However, the results of the model should not be applied

mechanically without consideration for other important variables (e.g., epidemiology,

equity, safety of the treatment, disease burden, policy implementation, etc.) [48].

That is, while these techniques serve as tools to help influence decision making they

are not incontrovertible. The risk with the direct application of conclusions from

economic evaluations without considerations of other important factors would likely

lead to decisions that would be difficult to alter [48]. Therefore, great care must be

taken with the application of the information. Further, results should be updated as

new information or data becomes available and decision makers must be flexible in

their inclusion of that or any new information into their decision [48].

1.4 Herpes Zoster Cost-effectiveness Literature

To date, there have been 16 CEAs for HZ vaccination; four have been published from

the US perspective [59–62], the remaining 12 are from Canada or Europe [63–74].

The US CEAs present conflicting results; brief overviews are presented in Table 1.1.

Three of the four studies examined vaccination of people greater than age 60, the

other for people between 50 – 59. Three US studies use a $50,000 per QALY threshold

to define if the vaccine is considered cost effective [59–61]. In three US CEAs, the

incremental cost-effectiveness ratio (ICER) exceeded the cost-effectiveness threshold,

thus the vaccine was considered not cost-effective. However, it is important to note

that there is no commonly agreed upon cost-effectiveness threshold in the US. Further,
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recent studies have shown that a threshold of $50,000 would be too low in the US;

research suggests that a US would be between $100,000 and $250,000 [75]. However,

results are stark when comparing US CEAs to more non-US CEAs; 11 of the 12

international studies produced an ICER less than $50,000 per QALY [63,65–74], with

4 producing ICERs less than $30,000 per QALY. Most international studies are newer,

and majority used newer data and more advanced models.

The results of any cost-effectiveness study are dependent on available data and the

assumptions made. A recent systematic review of HZ vaccination CEAs found that, in

a majority of studies, duration of vaccine efficacy and vaccination age had the highest

impact on vaccine cost-effectiveness [76]. Other categories that received a mark of

highest or high impact on the cost-effectiveness results included: PHN costs, PHN

length, vaccine costs, discount rates, pain state split (e.g., mild, moderate, severe),

HZ incidence, and HZ duration [76]. It is important to understand the assumptions

and inputs in any cost-effectiveness study to determine how the final results may be

impacted.
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Study Ages Perspective
Mean
ICER

Results Most Sensitive To
Vaccine
Duration

Limitations

Hornberger
[59]

≥ 60 Societal 118,764
Most cost-
effective for
ages 60 – 64

Age, QALY adjustments (HZ,
PHN), Vaccine (cost, dura-
tion), Time horizon, PHN
(duration), Discount rate

30 years

Data on vaccine
efficacy beyond
three years is
lacking

Pellissier
[60]

≥ 60 Societal 27,325

Cost-
effective for
ages 60 –
64, 65 – 69,
and 70 – 74

PHN (costs), Complications
(costs), Vaccine (duration, ef-
ficacy, PHN efficacy, HZ effi-
cacy), QALY adjustments

Life-long
No vaccine waning.
No description of
time in each state.

Rothberg
[61]

≥ 60 Societal 155,361
Most cost-
effective for
ages 70 – 79

Vaccine (duration, cost, effi-
cacy), PHN (incidence, dura-
tion, utility), HZ (incidence,
severity), Discount rate

10 years

Assumes no reduc-
tion in PHN due to
vaccination beyond
prevention of HZ

Le [62]
50–
59

Societal 351,517
Most cost-
effective for
age 59

Vaccine (cost, efficacy), PHN
(duration)

≈ 10 years

Assumes linear
decline in vaccine.
Uses costs from
previous paper
which are from UK
study in 1990s

Table 1.1: US CEA studies. ICERs reported in 2015 US Dollars ($).
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Assessment of US Cost-effectiveness Analyses

There are notable differences between the US CEAs. Overall, the model constructed

by Rothberg et al [61] was sensitive to characteristics of the vaccine, PHN, and

HZ. Unfortunately there was limited methodology for how the vaccines efficacy and

waning was calculated, and limited information on the time spent in a PHN health

state. The authors assume there is no decrease in PHN incidence beyond the decrease

attributed to reducing HZ incidence with vaccination. That is, they assume that the

vaccine does not impact the severity of the disease for those who still become infected.

Brisson et al [77] suggest that just accounting for the additional reduction of PHN

can reduce the cost per QALY by as much as 40%. Rothberg et al also assume that

an individual either spends less than 12 months with PHN, or several years with

PHN. And, there is no account for PHN severity as only one PHN utility score is

given. This CEA helps to illustrate the potential importance of PHN and the impact

that assumptions about this condition could have on results of the CEA.

Le and Rothberg [62] provide the newest estimate for the cost-effectiveness in the

US. They do make use of the new vaccine waning data as well. However, there are

some complications with their paper. First, they assume the vaccine wanes using a

strictly linear rate. While this assumption may have been more plausible for older

studies, current data suggests that the vaccine has a step decline in the efficacy during

the first year which would not be captured in the linear model [20, 78]. Second, PHN

cost data is from a 1994 study from the UK, which was also used in their previous

CEA [61]. The cost of one of the most important parameters (PHN) in many HZ

CEA models, in this paper, is 20 years old and from a country where the health care

financing structure is very different than in the US. Finally, some epidemiological

model inputs (e.g., probability of PHN) are defined by age groups. It was unclear if

the authors implemented these probabilities directly into the model as a discontinuity,

or they attempted to do some types of fitting for the data. This CEA is the first

in the US to examine the impact of the vaccine for people ages 50 – 59. It is an

important paper for this reason, but leaves room for improvement on determining

the value of vaccination for this group.
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Hornberger and Robertus [59] make assumptions about PHN, and vaccine efficacy

that may impact the CEA results. First, the authors assume that PHN does not

result unless pain has been persistent for 182 days from the start of the rash phase.

This definition of PHN may underestimate the proportion of people who actually

experience PHN. Prior to developing PHN, people in persistent pain for 6 months are

assumed to have the utility value of HZ, which was much higher than PHN. If people

develop PHN, there is no severity distinction as there is only one PHN utility value

given. Therefore, by using a definition that may underrepresent the incidence of PHN

and giving people more utility for longer, this paper may underestimate the QALYs

gained by vaccination which can impact the cost-effectiveness results. The authors

also admit to having limited data on vaccine efficacy beyond the initial 2005 clinical

trial results [59]. The assume an upper limit of 30 years vaccine efficacy based on

unreferenced VZV vaccine waning models. This assumption could be problematic as

VZV vaccination is a) a different vaccine and b) is typically given during childhood

when there is less risk of immunity loss thus longer vaccine duration may be more

reasonable. These assumptions are extremely important to this paper as the vaccine

was only considered cost-effective if it was assumed to last for the upper limit of 30

years and given to people 70 years old or younger.

Pellissier et al present the best methods of any US CEA for describing how the

vaccine efficacy and waning was calculated, however, they do not assume any vaccine

waning in the base case analysis [60]. However, the authors only had limited data on

the vaccines waning and efficacy at the time of publication. Their model also does

not examine the length of time spent with HZ, PHN, or other complications within

the model itself. All costs and QALYs in the model were pre-determined and entered

into a model where every state is assumed transient. The authors do distinguish

between the severity of HZ infections, but not the severity of PHN cases. PHN costs

had the highest impact on the results in the probabilistic sensitivity analysis and

the second highest impact on results in the one-way sensitivity analysis (vaccine cost

was highest). Vaccine efficacy against PHN also had an important impact on the

sensitivity analysis. Cost of PHN is likely to vary both by severity [79] and time

spent with PHN. Vaccine efficacy will have an important impact on control the costs
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of PHN. This paper again shows the ability of vaccine efficacy and PHN to affect the

results of the CEA.

1.5 Research Gaps and Opportunities

Based on the assessment of the US CEAs and economic evaluations, it is evident

that all make assumptions that impact the results; with efficacy and waning effect of

the vaccine, and the characteristics (time, cost, severity) of PHN being two potential

crucial drivers of results. With regard to assumptions made about the vaccines effect

on HZ and PHN, it is important to note that three of US studies are among the

oldest CEAs available [59–61]. The most recent of these three being published by

Pellissier et al [60] approximately 18 months after approval of the vaccine by the

FDA. Since then, new data on short-term and long-term vaccine efficacy [20,21,78]

has been published. This data is vital to better establishing both the age-specific

initial vaccine efficacy, and also how the vaccine wanes over time. Further, work done

by Bilcke et al [19] and van Hoek et al [72] provide methods for using published data

to create efficacy and waning estimates for the vaccines protection against HZ and

PHN. Incorporating these data and methods into current health economic models

will allow for a more accurate prediction of the value of the vaccine and can aid with

future recommendations.

In addition to new data on short-term and long-term vaccine efficacy, research has

also been published on vaccine efficacy for people ages 50-59 [51]. Currently, there

are three non-US CEAs [68,71,74] that have included a 50-59 age group. Vaccination

of this group was considered cost-effective. While this group was included in the most

recent US CEA, the vaccine was not found to be cost-effective for this age group [62].

There have been new publications on the costs and decrements in quality of life from

HZ and PHN [14,80–87]. Further, HZ is unique among vaccine preventable diseases

in that much of its total burden is in the form of intangible costs (i.e., pain and

suffering) that is borne exclusively by individuals. There is now data available that

helps to characterize these intangible costs [88, 89] associated with HZ and PHN.

Recent CEAs from Europe [65,68,76] have modeled HZ and PHN in ways that better
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capture the severity of the condition and can be adapted to account for the impact

of time with PHN. Including these additional costs and quality of life data as well

adapting the model structure to better account for the impact of HZ and PHN will

allow for the creation of a more comprehensive estimate of the cost-effectiveness and

the burden of disease. Further, this will be the first US specific evaluation of the HZ

vaccine to include both broad age groups (i.e., ACIP recommendations (60 and older)

and FDA approval (50 and older)) in the same analysis.

The question of an optimal age for HZ vaccination remains largely unanswered.

One CEA study from Belgium explored impact of vaccination at single ages from

60-85; vaccination at age 60 was the most cost-effective [64]. No other study to date

has examined the impact of vaccinating at individual years. Further, one complication

with some decision models is the ability to only compare one decision at a time (e.g.,

vaccinate or not at some age). These types of evaluations typically do not account

for the decision to defer vaccination or the prior risk of disease. Accounting for these

things can help to determine the optimal policy of deciding when people should

get vaccinated rather than determining if the vaccine is cost-effective at some age.

Finally, no study to date has examined the value of information on model parameters

for HZ or the vaccine. Based on the literature, it is evident that certain sets of

parameters greatly affect the outcomes of the models. Minimizing the uncertainty of

these parameters could help improve recommendations, or help prioritize research

about the vaccine.

1.6 Contribution to Literature

This dissertation will add to the existing literature in three ways. First, I will provide

a new estimate of the cost-effectiveness for the HZ vaccine from the US perspective.

This estimate will incorporate new information on the vaccines waning and efficacy

over time. It will also utilize new data on disease costs, and utility lost to better

account for the total burden of disease. Finally, it will be the first US study to include

a 50-59 age group alongside the 60 and older group. As a result, this research should

provide the best estimate of the cost-effectiveness to date. Second, I will examine the
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question for the optimal timing of vaccination against HZ. Providing a prediction

of the optimal age for the vaccine will be useful in setting policy recommendations

and be important to minimizing the burden of disease. I will also investigate the

importance of the booster vaccine in making this decision about the optimal age to

vaccinate, as having the option for a booster vaccine may change recommendations

and further help reduce the burden. Finally, I will provide an estimate of the value of

additional information and research for parameters that affect the results and impact

possibly policy recommendations. Understanding the value of added research will be

important for future research prioritization.
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Overview of Chapters

Chapter 2

Cost-effectiveness Analysis of Herpes Zoster Vaccination

The objective of this chapter is to determine the cost-effectiveness of the HZ vaccine

at every age between 50 and 100. This chapter will use a cohort state-transition

model to estimate the cost-effectiveness.

Chapter 3

Optimal Timing of HZ Vaccination: One vs Two Dose Administration

The objective of this chapter is to determine the optimal age for administering the

HZ vaccine to people between ages 50 and 100. This chapter will use a discrete

time Markov decision process to determine if people should get vaccinated or defer

vaccination at every starting at 50 years old.

Chapter 4

Value of Information Analysis

The objective of this chapter is to determine the value or perfect information on two

key vaccine parameters. This chapter uses three different modeling techniques to

estimate the value of this information. A comparison of method efficiency is also

provided.
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Chapter 2

Cost-Effectiveness of Herpes

Zoster Vaccination

2.1 Introduction

The objective of this chapter is to determine the cost-effectiveness of the HZ vaccine

using a decision analytic model. Only one US CEA has used the most current

estimates for vaccine efficacy and waning [62]. In general, studies from the US have

also made simplifying assumptions about the impact of PHN which may influence the

cost-effectiveness of the vaccine given the ability of PHN to have a severe influence on

quality of life. Providing a new estimate of the cost-effectiveness of the HZ vaccine by

accounting for the waning and efficacy of the vaccine as well as the impact of PHN

will be important for setting future recommendations on vaccination.

The Utility of Simulation Models

Simulation models provide a useful platform to better predict outcomes and costs,

and to explore multiple long-term pathways of illness for conditions with uncertain

prognoses. To construct a decision analytic model, the best available evidence must

be aggregated and synthesized from all available sources (e.g., clinical trials, meta-

analyses, cohort studies, etc.) [43]. This chapter will utilize a specific subclass of a
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decision analytic simulation called a Markov-like state-transition model to estimate

the cost-effectiveness of the HZ vaccine.

State-transition models are commonly used for clinical decision making and

decision analytic research when a clinical situation of interest can be deconstructed into

conditions or states that describe the health of a patient (e.g., disease free, sick, etc.)

and the movement between those different states can be properly characterized. These

movements, or transitions (e.g., disease free to sick) are governed by probabilities that

occur over explicitly defined time cycles (e.g., the one year probability of transitioning

from disease free to sick) [90]. Compared to decision tree models, state-transition

models are useful when the timing of an event may change (e.g., incidence increases

with age), or if an event may be recurrent [43].

Each state-transition model is constructed by including a set of mutually exclusive

and collectively exhaustive health states that define the disease course, and a set of

transition probabilities that define movement between states. State-transition models

are composed of two or more component models: the natural history model and

the intervention model(s). The natural history model simulates the course of the

disease assuming no intervention. The intervention model(s) will follow the same

disease progression, but the transition probabilities between states will change to

reflect the effects of the intervention(s) under consideration [91]. A cohort model

was used for this chapter. Cohort models simulate the progression of a medical

condition or intervention for a group of people. Because the group is examined as

a whole, the model reports the mean effect of the condition or intervention for the

specific group or population being studied (e.g., 50 year women who receive a vaccine).

Examining the mean effect is a benefit of the cohort model and makes these models

easier to interpret, build, and modify. The disadvantage of the cohort model is that

the model must abide by the “memoryless” Markovian assumption. This means that

the history of previous health states is not accounted for; rather the only health state

that affects the transition is the health state the cohort was last in. As a result of

this assumption, clinical history (such as time spent in a health state) can be difficult

to add to cohort models without including many more model states to account for

the variety of different clinical scenarios.
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2.2 Methods

Model Structure

To determine the cost-effectiveness of the HZ vaccine a cohort model was constructed

to calculate costs and QALYs to formulate incremental cost-effectiveness ratios

(ICERs). Model construction and simulation was completed using TreeAge Pro 2016,

R1.0. TreeAge is a decision modeling software that provides a graphical user interface

for creating basic decision trees, cohort state-transition models, and other types of

decision models. To construct the model, established modeling guidelines for general

simulation setup, comparison of alternative system configurations, incorporated

complexity, and model transparency were followed [58,90,92–94].

The model calculated the cost-effectiveness of current zoster vaccine for ages 50 –

100. Figure 2.1 provides an overview of the model. Model health states are defined by

ovals and transitions are defined by arcs or lines between health states. Transitions

between disease free to HZ, and HZ to PHN are regulated by the vaccine; these

transitions are indicated in the Figure 2.1 by yellow circles. The cohort starts in

either the natural history model or the intervention model in the disease free health

state. The time period between transitions (cycle time) for this model was set to 1

month (30 days). From the initial disease free health state, after each cycle there

is a chance of staying disease free or developing HZ. The probability of developing

HZ was dependent on age of the cohort and, if vaccinated, the initial efficacy and

waning rate of the vaccine; vaccine characteristics are further discussed in Vaccine

Parametrization and Appendix A.4 on page 185. Once HZ occurs, it was initially

characterized as no pain, mild pain, moderate pain, or severe pain. This classification

is defined by the Zoster Brief Pain Inventory (ZBPI). The ZBPI is an adapted 11-point

Likert scale (0–10) used to quantify four types of pain (worst, least, average, now) [95].

The cut points in the ZBPI scale that characterize these four HZ pain states (no,

mild, moderate, severe) are presented in Table 2.1. Further complications can arise

due to HZ, however, only those who experience some HZ pain have the chance to

experience further complications.
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HZ – No Pain

Other 
Complications

PHN Severe

PHN Mild

PHN Moderate

Disease Free Disease Free 
with HZ History

Death

HZ – Mild Pain

HZ – Severe 
Pain

HZ – Moderate 
Pain

Figure 2.1: State transition model. Yellow circles indicate where the vaccine can have an
effect.

The main complication of HZ is PHN. For this model, PHN is defined as any

pain persisting for more than 90 days after the initial infection (PHN3). This is

one of the two most commonly used definitions of PHN [37]. One benefit of this

model structure is the ability to test changes in PHN status over time conditional

upon the initial characterization of PHN. Characterization of PHN states is a feature

included in recent cost-effectiveness models from Europe [63,65,68,70], but has not

been examined in US models. This structure is shown on the right portion of Figure

2.1. If PHN develops, it is initially characterized as mild, moderate, or severe. This

characterization is also defined by the ZBPI; scales are presented in Table 2.1. Current

literature suggests that the older an individual is, the more likely he/she will develop

PHN and the more severe the episode will be [70]. Once in a PHN health state

transitions can occur to move to the next best PHN state at the end of each cycle.

The length of time spent in PHN was based on data from the average length of time

spent in different PHN states [79]. The assumption for this model is that all people

must transition through all better states of PHN before reaching the disease free with

HZ history state. Utilizing this ladder-like progression allows for better estimates of

22



Health States Description
Disease Free People start model here, “No HZ”
HZ – No pain HZ with ZBPI score = 0
HZ – Mild Pain HZ with ZBPI score = 1 – 3
HZ – Moderate Pain HZ with ZBPI score = 4 – 6
HZ – Severe Pain HZ with ZBPI score = 7 – 10
PHN – Mild Pain PHN with ZBPI score = 1 – 3
PHN – Moderate Pain PHN with ZBPI score = 4 – 6
PHN – Severe Pain PHN with ZBPI score = 7 – 10

Ocular Complications
Any complication involving the eye that due to an
HZ infection

Neurological Complications
Any complication involving the nervous system
due to an HZ infection

Cosmetic Complications
Any outward or visible damage caused by HZ after
the rash has disappeared

Disease Free with HZ History
Health state for when people have gone through
the course of their infection

Table 2.1: Model states

disutility associated with PHN.

People can also develop non-pain complications. Ocular complications are the

most common of the non-pain complications. These complications arise when a case

of HZ directly affects the eye. In the majority of cases, symptoms resolve quickly and

leave no long-standing issues. In this model we assume that all ocular complications

resolve within an average time of 3 months [14] and that no long-standing issues occur.

This assumption was made because there were minimal data on the epidemiology

(incidence and duration) and disutilities associated with long-standing issues due to

zoster-related ocular complications. Other non-pain complications can also occur.

These other non-pain complications include: neurologic complications – symptoms

include Ramsay Hunt Syndrome (facial paralysis and hearing loss) – and cosmetic

complications – symptoms include conditions like scarring, or bacterial superinfection

of rash lesions [35,96]

The probability of developing these other non-pain complications (neurologic and
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cosmetic) in the base case analysis was set to 0. This assumption was made because

the probability of developing these conditions is low, and there were limited data

available on the duration and disutility associated with these health states. Therefore,

it was predicted that due to the low probability of occurrence, these states would have

a minimal impact on the cost-effectiveness. This assumption tested by including these

complications in scenario analysis. From the non-pain complications or the PHN

health state, the patient will then transfer to the disease free health state. This model

allowed for disease recurrence. No recurrence of PHN or non-pain complications was

allowed. The death state could be reached from any health state in the model at any

cycle.

Model Inputs & Data

Evidence-based estimates for the parameter inputs were required for the model.

Parameters were defined using best available data, and evidence synthesis techniques

were used to combine data from published studies. The model required three general

categories of specific parameters: transition probabilities, costs, and health outcome

values.

• Transition probabilities represent the chance of movement between model states.

If data were available, parameters were adjusted for age and gender.

• Costs included direct medical costs, and lost productivity costs. All direct

medical costs were adjusted to 2015 dollars using medical care component of

the Consumer Price Index (CPI). Lost productivity was applied to all people

regardless of employment status.

• Health outcome values reflect the health-related quality of life associated with

the included short-term and long-term health states. The inclusion of quality

adjustment values for each state of health in the simulation model allowed for

the calculation of quality-adjusted life years.

Data were collected from the societal perspective, the most common for decision

analysis and recommended by the US Panel on Cost-effectiveness [46]. The societal
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perspective accounts for costs and outcomes beyond the health system; this perspective

is more inclusive and allows the vaccine to be evaluated on a more comprehensive

level. A scenario analysis was included that examines the analysis from the health

care perspective.

To collect data, a systematic literature review was conducted for each category

of model input required. These reviews assessed the published data relating to

the vaccine efficacy, epidemiology, costs, and QALYs associated with HZ and its

complications. Search terms for each review were selected based on their use in

similar systematic reviews. More information on the systematic literature review is

available in Appendix A.6 on page 205. All literature reviews focused on peer-reviewed

published literature relating to HZ in the US. Peer-reviewed articles relating to HZ

outside the US was considered for disease epidemiology and quality of life (depending

on data quality and transferability). All cost data were limited to studies within the

US due to transferability issues and differences in health care systems [97]. Data

collected from the literature reviews were used to generate transition probabilities,

costs, and health outcomes for the model. Inputs were adjusted accordingly to account

for demographic factors, including age and gender. Model inputs generated from

the systematic reviews are presented in Tables 2.2 – 2.4. Model inputs were also

converted from discrete values to distributions to allow for probabilistic sensitivity

analyses (PSA) to be conducted; Table 2.5 provides the distributions of the PSA –

further discussed in Sensitivity Analysis.
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Variable Base Value Lower Value Upper Value Reference

All-cause mortality Age Dependent [98]

HZ mortality 5.10e-7 4.30e-7 5.60e-7 [99]

HZ recurrence

Ages 50 – 69 0.0010 0 0.0020 [100]

Ages 70+ 0.0027 0 0.0054 [100]

HZ incidence*

Male – (asymp, xmid, scale)

(13.935,

773.204,

184.470)

(11.148,

773.204,

184.470)

(17.418,

773.204,

184.470)

[101–103]

Female – (asymp, xmid, scale)

(19.227,

824.028,

199.408)

(15.382,

824.028,

199.408)

(24.033,

824.028,

199.408)

[101–103]

Probability of Any Pain | HZ 0.95 0.73 1.00 [15,84]

Probability of Mild Pain | Any Pain HZ 0.12 0.06 0.43 [15,84]

Probability of Moderate Pain | Moderate

or Severe Pain HZ
0.44 0.20 0.56 [15,84]

Risk of PHN** – (b1, b2)
(1.772e-07,

2.013)

(8.86e-08,

2.013)

(3.544e-07,

2.013)
[42,79,104–108]

Probability of Moderate or Severe PHN

Ages 50 – 59 0.46 0.36 0.56 [79], Assumption

Ages 60 – 69 0.56 0.46 0.66 [79], Assumption

Ages 70 – 79 0.61 0.51 0.71 [79], Assumption

Ages 80 – 85 0.65 0.55 0.75 [79], Assumption

Ages 85+ 0.68 0.58 0.78 [79], Assumption
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Variable Base Value Lower Value Upper Value Reference

Probability of Moderate PHN | Moderate

or Severe PHN
0.50 0.30 0.80 Assumption

Duration of Mild PHN 6.7 6.1 7.4 [79]

Duration of Moderate PHN 10.0 9.4 10.7 [79]

Duration of Severe PHN 12.5 11.1 14.1 [79]

Probability of Ocular Complications

Ages 50 – 59 0.03 0.01 0.05 [108], Assumption

Ages 60 – 69 0.04 0.02 0.06 [108], Assumption

Ages 70 – 79 0.05 0.03 0.07 [108], Assumption

Ages 80+ 0.07 0.05 0.09 [108], Assumption

Duration of Ocular Complications 3.0 1.0 6.0 [14], Assumption

Probability of Neurological Complications 0 0.02 0.05 [108]

Duration of Neurological Complications 6.0 1.0 12.0 [14]

Probability of Cosmetic Complications 0 0.02 0.05 [108]

Duration of Cosmetic Complications 6.0 1.0 12.0 [14]

Vaccine Efficacy – Initial*** Age Dependent -0.15 +0.10 [15,22,51]

Vaccine Efficacy – Waning**** Age Dependent 0.70 1.30 [15,22,51]

Table 2.2: Model inputs – epidemiology. *Logistic function used for HZ incidence: asymp

1+e(
xmid−age

scale )
. **Power Function used for PHN risk:

b1 × ageb2 . ***Absolute change made to initial vaccine efficacy. ****Relative change of made to vaccine waning.
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Variable Base Value Lower Value Upper Value Reference
Costs
HZ 957 867 1051 [14]
PHN 5831 4055 7936 [14]
Ocular Complications 4163 2986 5543 [14]
Neurological Complications 9872 5520 15253 [14]
Skin Complications 9873 3036 19883 [14]
Vaccine 173.97 150 250 [109–112]
Vaccine – Administration 31.38 30.03 32.73 [110–113]
Vaccine – Severe Adverse
Reaction *

0.18 0.11 0.25 [114,115]

Productivity Lost
No Pain HZ 5 3 6 [63,116]
Mild HZ 6 4 8 [63,116,117]
Moderate HZ 22 15 30 [63,116,117]
Severe HZ 61 39 82 [63,116,117]
Mild Pain PHN 4 3 5 [63]
Moderate Pain PHN 30 20 41 [63]
Severe Pain PHN 81 53 110 [63]

Table 2.3: Model inputs – economic. Cost values are presented in 2015 US Dollars ($). Hours of
productivity lost are converted into 2015 US dollars ($) by multiplying by the mean hourly wage of
$25.20 [118] – Additional detail provided in Appendix. * Detail on cost of severe adverse event cost
calculation is available in the Appendix.

Variable Base Value Lower Value Upper Value Reference
No Pain HZ 0.150 0.100 0.200 Assumption
Mild HZ 0.200 0.133 0.267 [88]
Moderate HZ 0.300 0.200 0.400 [88]
Severe HZ 0.450 0.300 0.600 Assumption
Mild Pain PHN 0.310 0.211 0.433 [88]
Moderate Pain PHN 0.550 0.389 0.731 [88]
Severe Pain PHN 0.770 0.498 0.992 [88]
Ocular Complications 0.240 0.178 0.311 [88]
Cosmetic Complications 0.350 0.200 0.500 Assumption
Neurologic Complications 0.350 0.200 0.500 Assumption
Vaccine – Common Adverse
Reaction

0.001 0.0005 0.002 [15,22]

Vaccine – Severe Adverse
Reaction

2.13e-05 6.41e-06 4.57e-05 [115,119]

Table 2.4: Model inputs – disutilities. Disutilities subtracted from age-dependent baseline QOL
[120] – Additional detail provided in Appendix.
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Category Distribution

Probability – HZ* – asymp lnN (0, 0.099)

Probability – Any Pain | HZ β(10.17, 0.82)

Probability – Mild Pain | Any Pain HZ β(1.22, 8.95)

Probability – Moderate Pain | Moderate or Severe Pain HZ β(13.212, 17.871)

Probability – PHN* – b1 lnN (0, 0.295)

Probability – Moderate or Severe PHN** N (0, 0.05)

Probability – Moderate PHN | Moderate or Severe PHN lnN (−0.693, 0.199)

Duration – Mild PHN lnN (1.902, 0.05)

Duration – Moderate PHN lnN (2.30, 0.05)

Duration – Severe PHN lnN (2.52, 0.07)

Probability – Ocular Complications** N (0, 0.01)

Duration – Ocular Complications lnN (1.098, 0.223)

Vaccine – Initial Efficacy (η)** N (0, 0.035)

Vaccine – Waning Rate (ζ)* N (1, 0.12)

Cost – HZ Γ(414.598, 1/2.308)

Cost – PHN Γ(34.691, 1/168.084)

Cost – Ocular Complications Γ(40.767, 1/102.114)

Cost – Vaccine Γ(23.33, 1/7.5)

Cost – Vaccine Administration Γ(2196.6, 70)

Cost – Vaccine Severe Reactions Γ(18, 100)

Hours Productivity Lost – No Pain HZ* † N (1, 0.13)

Hours Productivity Lost – Mild HZ* † 6/5

Hours Productivity Lost – Moderate HZ* † 22/5

Hours Productivity Lost – Severe HZ* † 61/5

Hours Productivity Lost – Mild PHN* ‡ N (1, 0.13)

Hours Productivity Lost – Moderate PHN* ‡ 30/4

Hours Productivity Lost – Severe PHN* ‡ 81/4

Disutility – No Pain HZ †† β(24.75, 140.25)

Disutility – Mild HZ †† 20/15
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Category Distribution

Disutility – Moderate HZ †† 30/15

Disutility – Severe HZ †† 45/15

Disutility – Mild PHN ‡‡ 32/77

Disutility – Moderate PHN ‡‡ 55/77

Disutility – Severe PHN ‡‡ β(8.85, 2.65)

Disutility – Ocular Complications β(38, 120)

Disutility – Common Vaccine Complications β(6, 6000)

Disutility – Severe Vaccine Complications β(2.13, 100000)

Table 2.5: Parameter distributions for probabilistic sensitivity analysis. * – A scaling

factor for the parameter was sampled and multiplied by the base value for that parameter.

** – A parameter was sampled and added to base case parameter value. † – Hours of

productivity lost for HZ are correlated with no pain HZ state, all other HZ health states

are multiplied by factors listed in the table. ‡ – Hours of productivity lost for PHN are

correlated with mild PHN state, all other PHN health states are multiplied by factors listed

in the table. †† – Disutility for HZ states are correlated with no pain HZ state, all other HZ

health states are multiplied by factors listed in the table. ‡‡ – Disutility for PHN states are

correlated with severe PHN state, all other PHN health states are multiplied by factors

listed in the table.

Vaccine Parameterization

This section describes how the vaccine was parameterized in the model. The protection

of the vaccine against HZ (efficacy) was comprised of two parts. First, the initial

vaccine efficacy (β0jHZ
). This was defined as the efficacy from the time of the

vaccination through the first year (t = [0, 1)); j is the age of vaccination, t is measured

in years. This initial efficacy changes by age [22]. Second, the waning of the vaccine

(V Ei). Vaccine waning was assumed to occur from the time of the vaccination through

the time when the vaccine provided no further protection, (t = [0, X]), where X is

a some random number of years in the future. For this model, I assume that the

components (initial efficacy and waning) are combined using the form of a linear
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Age 0 1 2 3 4 5 6 7 8 9
5 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.780
6 0.779 0.776 0.771 0.765 0.757 0.746 0.733 0.718 0.701 0.681
7 0.659 0.635 0.610 0.584 0.557 0.529 0.501 0.472 0.442 0.414
8 0.384 0.355 0.327 0.298 0.269 0.240 0.211 0.182 0.153 0.124
9 0.095 0.066 0.037 0.008 0 0 0 0 0 0
10 0

Table 2.6: β0jHZ fitted values

equation (y = mt+ b) to create the age-specific efficacy and waning of the vaccine

(V Eij). That is, the initial protection was assumed to be the intercept (b), the waning

was assumed to be the slope (m), t was the number of years vaccinated from [0, X],

and y was the protection of the vaccine against HZ. Note, this does not assume

that the components (initial efficacy and waning) are strictly linear; rather these

components were estimated separately and then combined using this equation form.

The minimum value for vaccine efficacy was 0%. That is, I assume that the vaccine

will not ever increase the incidence of HZ. Data on the initial vaccine efficacy and

waning came from from clinical trial and observational data [20–22,51,78] and were

combined using statistical methods similar to those used in other studies [19,60]. For

all analyses, I assume that V Eij changes through the combination of two restricted

cubic spline (RCS) models. These models were selected using best fit statistics. The

outcomes of the two RCS models are presented in Table 2.6 – 2.7. The general form of

the vaccine efficacy equation is shown by Equation 2.1, where i is the number of years

vaccinated from [0, X], j is the age of vaccination from [50, 100], η is the adjustor

for the initial efficacy in sensitivity analysis (base value = 0), and ζ is the adjustor

for waning efficacy in sensitivity analysis (base value = 1). The base results of this

equation are shown in Figure 2.2. More detail on how data were fit and combined is

available in Appendix A.4 on page 185.
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β1 β2 β3 β4 β5
-0.20834831 0.031716085 -0.065752089 0.034499987 -0.000463984

Table 2.7: V Ei fitted values

V EijHZ
= max(0, β0jHZ

+ η)

+ β1ζi

+ β2ζ max(i, 0)3

+ β3ζ max(i− 1, 0)3

+ β4ζ max(i− 2, 0)3

+ β5ζ max(i− 7, 0)3

(2.1)

There is some data that suggests that the vaccine provides additional protection

against PHN beyond the reduction in HZ incidence [22]. Data were used to provide an

estimate of the initial additional protection benefit of the vaccine against PHN, where

additional protection is defined as any reduction beyond what can be attributed to a

reduction in HZ incidence. Using a synthetic data set created from available data [22]

I constructed seven possible models for this initial protection benefit against PHN

(β0jPHN
) from t = [0, 1). I selected the model presented in Table 2.8 to represent the

base case. This selection was based on understanding of the disease, the vaccine, and

discussions with zoster vaccine experts at the US Centers for Disease Control and

Prevention (CDC). There is unfortunately no data on how the additional protection

benefit wanes with time. Therefore, I made the assumption that the additional

protection benefit against PHN lasts only as long as the protection against HZ

incidence. That is, if the vaccine is assumed to provide X years of protection against

HZ, then the individual is assumed to also receive the same number of years of extra

protection against PHN. I also make the assumption that the additional protection

wanes at the same rate as the vaccines protection against PHN; this was accomplished

using Equation 2.2. I finally assume that the vaccine provides a minimum of 0%

extra protection against PHN. At 0% additional protection, an individual who was

vaccinated would have the same likelihood of acquiring PHN given HZ as someone

32



Age of Vaccination

60
70

80
90

100

Years Vaccinated

0

5

10

15

E
fficacy

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: Age-specific vaccine waning model against HZ

without the vaccine. The base case additional protection benefit assuming the initial

additional protection as shown in Table 2.8 and the waning rate as defined by Equation

2.2 is shown in Figure 2.3.

V EijPHN
=

β0jPHN
× V EijHZ

β0jHZ
if β0jHZ

> 0

0 if β0jHZ
= 0

(2.2)
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Age 0 1 2 3 4 5 6 7 8 9
5 0.040 0.57 0.075 0.093 0.110 0.128 0.146 0.164 0.182 0.199
6 0.217 0.234 0.252 0.270 0.288 0.305 0.323 0.341 0.359 0.376
7 0.394 0.412 0.429 0.447 0.465 0.465 0.465 0.465 0.465 0.465
8 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465
9 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465 0.465
10 0.465

Table 2.8: β0jPHN fitted values
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Figure 2.3: Age-specific vaccine waning model of additional protection against PHN
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Analysis Plan

Model results were generated using TreeAge software. Results were then exported

and imported into R (v.3.2.3) – an open-source data analytic software. Data were

cleaned, analyzed, and figures were generated. TreeAge is capable of data analysis

and visualization however, there are more options for data analysis and visualization

using R and its many packages.

For the analysis, I compared the results of the two mutually exclusive options for

this model: vaccination and no vaccination. The costs and effectiveness (measured in

QALYs) from each component model were calculated and entered into Equation 2.3 to

create incremental cost-effectiveness ratios (ICERs). The ICER provides information

on the additional cost per unit of benefit between an option and the next less expensive

alternative.

ICER =
∆Costs

∆Effectiveness
(2.3)

To determine if an intervention is cost-effective, it must be compared to a cost-

effectiveness threshold. This threshold represents the maximum willingness to pay

(WTP) for a single unit of benefit (one QALY). The base case analysis assumes a

WTP of $100,000 / QALY. However, because there is no standard WTP/QALY in

the US [75] I also evaluated model outcomes using against additional WTP values.

The base case analysis examined the cost-effectiveness of the HZ vaccine under the

assumption that there is zero probability of neurological and cosmetic complications

(i.e., only PHN and ocular complications were allowed to follow an episode of HZ).

Cohort model were independently simulated for each age and gender from 50 – 100

using a lifetime time horizon, to determine the cost-effectiveness of the vaccine at

that age. For each model, I assumed no prior history or risk of HZ. The probability

of death was set to 100% at age 100. Age-dependent probabilities in the model were

altered to reflect the age of the cohort being simulated.

I added additional payoff variables to the model to determine intermediate (epi-

demiological) outcomes. Intermediate outcomes for the model included: number of

HZ cases prevented with vaccination; the number of PHN cases prevented with vacci-

nation; and the number of ocular complications prevented with vaccination. For all
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intermediate outcomes, a cohort model was simulated to give the lifetime probability

of developing HZ, PHN or ocular complications with and without vaccination. I

multiplied these final probabilities by 10,000 (i.e., assuming a cohort size of 10,000

men or women) to determine the number of cases of HZ, PHN or ocular complications

for a cohort of 10,000 men or women. The difference in the number of cases between

the vaccination and no vaccination arms of the model were the number of cases

prevented given vaccination.

Sensitivity Analysis

Several sensitivity analyses, a method that examines how responsive outcomes are

to changes in parameter inputs and model assumptions, were completed. First, I

conducted a one-way sensitivity analysis by varying each of the model parameters

independently at the ends of their ranges (shown in Tables 2.2 – 2.4) to examine the

effect on outcomes and create a tornado diagram. This identified the model parameters

that the cost-effectiveness results were most sensitive to. For any parameters that the

model was very sensitive to I conducted additional two-way analyses to determine how

interactions between these parameters would change the cost-effectiveness results.

I also performed first order Monte Carlo probabilistic sensitivity analysis with the

model to estimate the ICERs given the uncertainty of multiple model parameters

simultaneously. To accomplish this, I converted model inputs from discrete values

to distributions. For cost inputs, I utilized a gamma (Γ) distribution. For hours of

productivity lost, I correlated hours within each overall health state (i.e., HZ or PHN)

with one another. No pain HZ and mild PHN were used to correlate all other pain

states for HZ and PHN, respectively. This was done so that the possibility of a more

severe case of HZ, for example, would not produce fewer hours of productivity loss

than a less severe case (additional detail is provided in Table 2.5). For disutilities,

I assumed a beta (β) distribution. For disutilities, I also correlated within each

overall health state to avoid the situation where a more severe form of disease would

have a smaller disutility than a less severe form. For HZ disutilities, all pain states

were correlated with mild HZ. For PHN disutilities, all pain states were correlated
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with severe PHN; this was done to avoid having a disutility value greater than

1.0. For probabilities that were adjusted by additive means a normal distribution,

(mean = 0), was used (e.g., η for initial vaccine efficacy). For probabilities that

were adjusted by multiplicative means, a log normal distribution, (mean = 1), was

used (e.g., ζ for vaccine waning). The results from the PSA were used to generate

cost-effectiveness acceptability curves (CEACs) to determine the probability that the

vaccine was cost-effective at different WTPs. All sensitivity analyses were conducted

using recommended procedures and guidelines [94].

Scenario Analysis

I also conducted several scenario analyses. I first examined the cost-effectiveness

given a non-zero probability of neurologic and cosmetic complications in the base

case model. Then I tested the cost-effectiveness of the HZ vaccine using a third

order polynomial function to predict V EijHZ
; see section A.4 for further detail on

this combination. The third-order polynomial model was the second best model

behind the RCS model based on best fit statistics. Finally, I tested the remaining six

models for the additional protection against PHN. I assumed that all of these models

waned at the same rate as the vaccines protection against HZ. I then performed an

additional analysis where I held the waning of the vaccines protection against HZ

constant and altered the waning of the protection against PHN independently. This

was done to gain further insight into the possible effects of protection against PHN.

Model Validation

I performed several validation checks on the model. First, I set all baseline QOL

to 1.0, removed the disutilities associated with the health states, and removed the

discount rate. I then performed simulations with different age groups and compared

the results of the model to the CDC life tables [98]. This procedure provided a check

that the cohorts in the model were dying at the expected rate as the removal of

QOL and discounting provides an estimation of remaining life-expectancy. Next, I

removed the costs and disutilities associated with the vaccine from the base case
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Age Life Expectancy – Model Life Expectancy – CDC [98]
50 32.75 33.3
60 24.03 24.5
70 16.11 16.4
80 9.41 9.6
90 4.5 4.7
100 0.08* 2.3

Table 2.9: Model validation – life expectancy check – Women. *People at age 100 in the
model only live 1 month

model. Under these circumstances the vaccine was predicted to dominate the choice

of no vaccination for every age from 50 – 93 and be indifferent between 94 – 100

(the vaccine is assumed to have no benefit after age 93, see Figure 2.2). Finally, to

ensure that the vaccine equations were entered into the model correctly, I selected

different ages and numbers of years vaccinated and performed the calculations on

what the probability of an event should be by hand. I then changed the TreeAge

model to reflect the scenarios I was testing and used the evaluator tool to ensure that

the probabilities calculated by the model matched the probabilities I had calculated.

2.3 Results

Model Validation

The results from the model validation are presented in Tables 2.9 – 2.11. Table 2.9

shows the comparison of life expectancy in the model to the CDC life table [98].

There are small differences in the life expectancy between the CDC life tables and

the results produced by the model. The biggest difference is at age 100, where the

CDC life tables predict a life expectancy of 2.3 years and the model estimates life

expectancy of 0.08 years (1 month). The main difference between these two estimates

is that in the model the probability of death was set to 100% at age 100. Table

2.10 shows the comparison between V EijHZ
as calculated by hand (using data from

Tables 2.6 – 2.7 and Equation 2.1) compared to the values calculated by TreeAge.
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Scenario V EijHZ
– Calculated V EijHZ

– From TreeAge
j: 50, i: 0 0.7814 0.7814
j: 55, i: 10 0.1322 0.1322
j: 60, i: 4 0.4762 0.4762
j: 65, i: 7 0.2769 0.2769
j: 70, i: 2 0.4304 0.4304
j: 75, i: 8 0.0000 0.0000
j: 80, i: 3 0.1245 0.1245
j: 85, i: 5 0.0000 0.0000
j: 90, i: 0 0.0950 0.0950

Table 2.10: Model validation – vaccine efficacy check

All hand calculated values match the values produced by TreeAge indicating that the

vaccine efficacy was implemented into the model correctly. Finally, Table 2.11 shows

data from an analysis where the costs and disutilities associated with the vaccine

were removed. As predicted, the option to vaccinate dominated the do not vaccinate

option for every age between 50 – 93 (where the vaccine had some benefit) and the

model was indifferent between the options from ages 94 – 100 as the vaccine confers

no benefit but also presents no risk or cost to the recipient.

Age Option Cost Effect Inc Cost Inc Eff Inc Analysis

50 Vaccine 349.19 15.94 0 0

50 No Vaccine 391.41 15.94 42.22 -1.20E-2 (Dominates)

55 Vaccine 352.26 14.35 0 0

55 No Vaccine 406.09 14.34 53.82 -1.54E-2 (Dominates)

60 Vaccine 344.29 12.66 0 0

60 No Vaccine 411.39 12.66 67.09 -1.95E-2 (Dominates)

65 Vaccine 330.04 10.92 0 0

65 No Vaccine 405.54 10.92 75.49 -2.28E-2 (Dominates)

70 Vaccine 315.94 9.15 0 0

70 No Vaccine 386.36 9.15 70.42 -2.29E-2 (Dominates)

75 Vaccine 299.77 7.40 0 0
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Age Option Cost Effect Inc Cost Inc Eff Inc Analysis

75 No Vaccine 352.92 7.40 53.14 -1.92E-2 (Dominates)

80 Vaccine 275.77 5.72 0 0

80 No Vaccine 306.28 5.72 30.50 -1.25E-2 (Dominates)

85 Vaccine 239.37 4.17 0 0

85 No Vaccine 249.56 4.17 10.18 -4.88E-3 (Dominates)

90 Vaccine 187.85 2.88 0 0

90 No Vaccine 190.23 2.87 2.37 -1.34E-3 (Dominates)

93 Vaccine 154.85 2.22 0 0

93 No Vaccine 154.88 2.22 3.12E-2 -1.18E-5 (Dominates)

94 Vaccine 142.48 2.00 0 0

94 No Vaccine 142.48 2.00 0 0 (Indifferent)

99 Vaccine 43.02 0.61 0 0

99 No Vaccine 43.02 0.61 0 0 (Indifferent)

100 Vaccine 0 5.65E-2 0 0

100 No Vaccine 0 5.65E-2 0 0 (Indifferent)

Table 2.11: CEA model validation – model check. Costs in 2015 US dollars ($). Effect in

QALYs. Inc: Incremental. ICER: Incremental cost-effectiveness ratio. Dominates: Denotes

if vaccination strategy dominates no vaccination strategy.

Base Case Analysis

This section highlights the cost-effectiveness results of the base case analysis. The

base case model produces a mean incremental cost-effectiveness ratio (ICER) of

$137,843 when adjusted for the population and gender balance of the US for age

50-85 [8]. Ages over 85 were removed from this mean to not skew the ICER. The

ICER for the current US policy (i.e., 60 and older) is $135,036, adjusting for the

population and gender composition of the US for people 60 and older. Figure 2.4

shows the results of the base case analysis. For men and women, vaccination at age

67 produces the lowest ICER with values of $96,278 and $69,961, respectively. For
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Figure 2.4: ICER by age for men and women. Dots indicate the ICER at age of vaccination.
White dot indicates the age with lowest ICER.

women, the vaccine produces an ICER less than $100,000/QALY for ages 59 – 74. For

men, the vaccine produces an ICER less than $100,000/QALY for ages 64 – 69. After

age 80 for women and men there is a rapid increase in the ICER. The the y-axis on

Figure 2.4 only shows values up to $1,000,000. After ages 86 and 85 for women and

men, respectively, the ICER reaches values of greater than $1,000,000/QALY, until

age 91 when it becomes dominated. The vaccine is more cost-effective for females at

every age.

Table 2.12 provides data on intermediate outcomes for the base case analysis

for women. The table for men is available in the end of chapter appendix on page

67. Vaccination of 10,000 women at age 50 prevents 180 cases of HZ, 11 cases of

PHN, and 5 ocular complications. Using US census projections for the population,
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vaccination of every 50 year old would prevent 40,758 cases of HZ in women, 35,475,

in men, 76,233 total. Vaccination at ages 64 or 65 prevents the most cases of HZ per

10,000 people (288). Vaccination at ages 69 – 72 prevents the most cases of PHN

(49). Using the US population estimates, vaccination of all women at age 67 produces

the highest number of PHN cases prevented, 8,489 over their lifetime. This is also

the age with the lowest ICER for women. The results of the intermediate outcomes

were validated against studies that reported data similarly. Because I parameterized

the vaccine in a different way compared to all other cost-effectiveness analyses, I was

only able to use data from no vaccination strategies for validation. In total, four

studies [59,62,67,69] reported intermediate outcomes data that could be compared.

Data generated by this study fell within the reported range from these four studies.

Age ∆ HZ ∆ PHN ∆ OC $ – VX Q – VX $ – no VX Q – no VX

50 180 11 5 554.73 15.949 391.42 15.948

51 189 12 6 556.11 15.636 394.95 15.635

52 197 14 6 557.14 15.320 398.22 15.319

53 206 16 7 557.79 15.001 401.18 15.000

54 215 18 7 558.01 14.678 403.82 14.677

55 224 20 8 557.79 14.351 406.09 14.350

56 233 22 8 557.10 14.020 407.98 14.018

57 242 24 9 555.92 13.685 409.46 13.683

58 252 27 9 554.25 13.346 410.53 13.345

59 261 29 10 552.18 13.005 411.17 13.003

60 269 32 10 549.83 12.662 411.39 12.660

61 276 34 11 547.24 12.317 411.18 12.315

62 282 37 11 544.47 11.971 410.52 11.969

63 286 39 12 541.57 11.623 409.38 11.621

64 288 42 12 538.58 11.274 407.73 11.272

65 288 44 12 535.58 10.923 405.54 10.921

66 285 46 13 532.63 10.570 402.82 10.568

67 280 47 13 529.79 10.218 399.56 10.216
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Age ∆ HZ ∆ PHN ∆ OC $ – VX Q – VX $ – no VX Q – no VX

68 272 48 12 527.03 9.865 395.76 9.863

69 262 49 12 524.28 9.512 391.37 9.510

70 249 49 12 521.47 9.158 386.37 9.157

71 235 49 11 518.55 8.805 380.76 8.803

72 219 49 11 515.49 8.452 374.60 8.450

73 203 48 10 512.25 8.101 367.90 8.099

74 186 47 9 508.78 7.753 360.68 7.751

75 168 45 9 505.31 7.407 352.93 7.405

76 150 42 8 501.44 7.063 344.61 7.061

77 133 40 7 497.11 6.721 335.74 6.720

78 116 37 6 492.30 6.383 326.35 6.382

79 99 33 5 487.02 6.050 316.52 6.049

80 84 30 5 481.30 5.723 306.28 5.722

81 69 26 4 475.10 5.401 295.62 5.400

82 55 23 3 468.35 5.084 284.52 5.084

83 43 19 2 461.08 4.774 273.06 4.773

84 32 15 2 453.33 4.472 261.40 4.472

85 23 12 1 444.91 4.180 249.56 4.179

86 16 9 1 435.39 3.896 237.58 3.896

87 12 7 1 425.12 3.625 225.63 3.625

88 9 6 1 414.63 3.365 213.75 3.365

89 6 5 0 404.04 3.117 201.95 3.117

90 4 3 0 393.39 2.880 190.23 2.880

91 2 2 0 382.66 2.653 178.55 2.653

92 1 1 0 371.76 2.434 166.82 2.434

93 0 0 0 360.38 2.221 154.89 2.221

Table 2.12: Intermediate model outcomes – Women. ∆: The number of cases prevented

due to vaccination. OC: Ocular complications. $: Costs, in 2015 US dollars. Q: QALYs.

VX: Vaccine option. no VX: No vaccine option.
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Sensitivity Analysis

One-way Sensitivity Analysis

p(death | HZ)
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Figure 2.5: Tornado diagram for base case analysis. Ages

50 – 85.

A tornado diagram for all

model input is shown in Fig-

ure 2.5. This indicates the

model is most sensitive to the

initial efficacy of the vaccine,

the waning of the vaccine, the

cost of the vaccine, the prob-

ability of PHN, the probabil-

ity of HZ, and the probability

of any pain given HZ. Figures

2.6 and 2.7 show the results

of the one-way sensitivity anal-

ysis of the probability of HZ

and PHN for men, respectively.

These analyses show that the

probability of HZ does not im-

pact the age that produces the

lowest ICER. That is, for all

probabilities of HZ, age 67 has

the lowest ICER. The curves in

Figure 2.6 suggest that chang-

ing the probability of HZ has

the most effect on younger ages. This can be seen on the left where there is more

space between the curves than at any other point. Unlike the impact of HZ, changing

the probability of PHN does impact the age with the lowest ICER. At the bounds

of the lowest probability, the age that produces the lowest ICER for vaccination is

66. At the highest probability of PHN, the age the produces the lowest ICER is

68. Changing the probability of PHN affects both earlier and later ages. With a
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higher probability of PHN the curve is much flatter and produces ICERs less than

$100,000/QALY from ages 56 – 77. With a low probability of PHN, there are no

ICERs less than $100,000/QALY.

Two-way Sensitivity Analysis

Figures 2.8 – 2.10 provide the two-way sensitivity analyses on the three parameters

that have the biggest impact on the cost-effectiveness: initial vaccine efficacy, vaccine

waning, vaccination cost (including administration fees). All two-way sensitivity

analyses in this section are for women age 67. This group was selected because it

was the most cost-effective age and gender combination. Further figures for multiple

ages are presented in the appendix for this chapter beginning on page 66. Figure 2.8

shows that the base case ICER is less than $75,000 and under most circumstances

the ICER will be less than $100,000 for age 67. If the waning ‘speed’ is increased

by 20% (i.e., ζ = 1.2) the ICER will be greater than $100,000 if the initial efficacy

remains constant. If the initial efficacy is increased by 10% (i.e., η = 0.10) and there

is no change in the waning, the ICER will be ≤ $50,000.

The interaction between vaccination cost and initial vaccine efficacy is shown in

Figure 2.9. Assuming a 10% increase in the initial efficacy of the vaccine the ICER
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Figure 2.6: Sensitivity analysis of p(HZ)
by age – Men. Top line: asymp = 11.148.
Middle line: asymp = 13.935. Bottom
line: asymp = 17.418
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Figure 2.8: Sensitivity analysis of vaccine efficacy vs. vaccine waning – women. Black dot
= base case. Contours represent ICER values of vaccination vs. no vaccination.

will be less than $50,000/QALY. Under most circumstances the vaccine produces an

ICER less than $100,000. Figure 2.10 shows the interaction between vaccine waning

and vaccine cost. A 20% reduction in the waning ‘speed’ (i.e., ζ = 0.80) and no

change in the cost of vaccination will produce an ICER less than $50,000. At the

base case vaccination cost, $205 (including administration fees), the ICER would only

be greater than $100,000 if the vaccine waned more than 30% faster than predicted.

If vaccination costs more than $250, the ICER would also be greater than $100,000.

Figures 2.11 – 2.14 show two-way sensitivity results from some of the other key

parameters. Figure 2.11 shows the analysis between the probability of HZ and the

probability of PHN (given HZ). This analysis suggests that under most conditions

the ICER for the vaccine is less than $100,000. Only if the incidence of HZ drops

below 9.5/1000 people and the risk of PHN given HZ drops below 11% is the ICER
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Figure 2.9: Sensitivity analysis of vaccine efficacy vs. vaccination cost – women. Black
dot = base case. Contours represent ICER values of vaccination vs. no vaccination.

greater than $100,000. Figure 2.12 shows the interaction between the probability of

HZ and the probability of pain (given HZ). In the base case analysis the probability of

pain with HZ was 95%. In the majority of circumstances the ICER is below $100,000

unless the probability of pain falls below 70% and the incidence of HZ falls below

9/1000.

Figure 2.13 shows the results of the sensitivity analysis between the probability

of HZ and cost of vaccination. If vaccination costs only $175, the ICER can be less

that $50,000 if the annual incidence of HZ is greater than 11/1000. At this same

probability of infection, vaccination can cost more than $250 and still produce an

ICER less than $100,000. Figure 2.14 shows the results of the sensitivity analysis

between the probability of PHN given HZ and the cost of vaccination. Under most

conditions, the ICER is less than $100,000. If there is a low probability of PHN
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Figure 2.10: Sensitivity analysis of vaccine waning vs. vaccination cost – Women. Black
dot = base case. Contours represent ICER values of vaccination vs. no vaccination.

and vaccination is more expensive by approximately $25.00 the ICER greater is

than $100,000. With a high chance of PHN and a decrease in vaccination cost to

approximately $150, the ICER for vaccination at age 67 can be lower than $25,000.

Additional figures for all two-way sensitivity analyses are available in section 2.A.

Probabilistic Sensitivity Analysis

Figures 2.15 – 2.16 provide the results from the probabilistic sensitivity analysis for

women and men, respectively. For women, there is at least a 40% probability that the

vaccine is cost-effective at a WTP of $100,000 for ages 56 – 76. The vaccine has at

least a 60% chance of being cost-effective at a WTP of $100,000 for ages 60 – 73. At

the lowest permitted vaccination age (50), the vaccine has a ≥ 60% chance of being

cost-effective if the WTP is approximately $200,000. Assuming a WTP of $200,000
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Figure 2.11: p(HZ) vs. p(PHN) –
Women. Black dot = base case. Contours
represent ICER values of vaccination vs.
no vaccination.
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Figure 2.12: p(HZ) vs. p(HZ – any
pain) – Women. Black dot = base case.
Contours represent ICER values of vacci-
nation vs. no vaccination.
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Figure 2.13: p(HZ) vs. vaccination cost
– Women. Black dot = base case. Con-
tours represent ICER values of vaccina-
tion vs. no vaccination.
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Figure 2.14: p(PHN) vs. vaccination
cost – Women. Black dot = base case.
Contours represent ICER values of vacci-
nation vs. no vaccination.
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Figure 2.15: Cost-effectiveness acceptability contour – Women. Lines represent probability
that vaccination is cost-effective compared to no vaccination.

the vaccine has at least a 90% probability of being cost-effective for ages 56 – 75.

Under this WTP, it has a 99% chance of being cost-effective for ages 64 – 69.

For men, the vaccine does not have as high a probability of being cost-effective. For

a WTP of $100,000, the vaccine has at least a 40% probability of being cost-effective

for ages 60 – 73. Assuming a WTP of $200,000, the vaccine has at least a 20%

probability of being cost-effective for age 50 – 81. For ages 57 – 74, this probability

increases to 80% with a WTP of $200,000. The WTP needs to be greater than

$200,000 for any age to have a 99% chance of being cost-effective. At a WTP of

approximately $250,000, the vaccine has a 99% probability of being cost-effective for

ages 60 – 71.
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Figure 2.16: Cost-effectiveness acceptability contour contour – Men. Lines represent
probability that vaccination is cost-effective compared to no vaccination.

Scenario Analysis

Additional PHN Protection

This section provides the results from the scenario analyses on additional PHN

protection. Figures 2.18 and 2.19 show the results from the different options for initial

additional protection against PHN; these options are further described on page 205.

Figure 2.17 provides a reference guide for the figures in this section. Only figures for

women are provided; figures for men are provided in the end of chapter appendix

on page 75. Figure 2.18 shows that for every option of initial additional protection

against PHN, with the exception of the no additional protection option, the results

after age 81 are the same. If there is no additional protection against PHN, the

vaccine is less cost-effective at every age with the ICER becoming much greater at
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earlier ages. Figure 2.19 provides a zoomed in version of Figure 2.18 between the

ages of 60 – 75. The largest difference in range between the ICERs, excluding the

no additional protection option is approximately $20,000 at age 70. The minimum

ICER for all curves occurs between 65 – 70. The results of this scenario analysis

indicate that the choice of the initial additional protection benefit does impact the

cost-effectiveness of the vaccine, however, it does not greatly change the age with the

lowest ICER.

Figures 2.18 – 2.19 provide insight to the issue of the initial additional protection

benefit against PHN. However, the results from these figures also assume that the

additional protection benefit wanes at the same rate as the protection against HZ.

Figure 2.20 shows the results of a two-way analysis where each of the seven initial

additional protection options was tested with altering the waning speed of the

additional protection benefit (while holding the waning speed of the HZ vaccine

constant (i.e., ζ = 1)). Results show that regardless of how slow or fast the additional

protection wanes, the lowest ICERs still fall between 60 – 75 (using $100,000 or less

as the reference). The speed of the additional protection does reduce the ICER for

older ages. However, the largest differences are achieved for people older than 85 and

even assuming a 40% reduction in the waning speed, the ICERs produced are still

greater than $250,000.

52



−100
−90
−80
−70
−60
−50
−40
−30
−20
−10

0
10
20
30
40
50
60
70
80
90

100

50 55 60 65 70 75 80 85 90 95 100

Age Vaccinated

Ad
di

tio
na

l P
ro

te
ct

io
n 

Ag
ai

ns
t P

H
N

G

F

B
A ED C

Figure 2.17: Initial additional protection against PHN – reference guide
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Figure 2.18: Scenario analysis – PHN
intercept – Women
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Figure 2.19: Scenario analysis – PHN
intercept – Women – zoomed
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Red dots = base case including complications.

Other Complications

Including other complications (neurological and cosmetic) into the model improved

the cost-effectiveness of the vaccine. Figure 2.21 shows the results for women when

other complications were included. Comparing these scenarios, the vaccine is always

more cost-effective when the other complications are included. The ICER for women

is approximately $20,000 less at age 50, $15,000 less at age 67, and $17,000 less at

age 75. Additional figures on the sensitivity of these complications are included in

the end of chapter appendix. Figures 2.37 – 2.42 on page 76 show that adjusting the

probability of other complications had the biggest impact on the cost-effectiveness.

Changing the disutilities associated with these complications has a larger impact of

the cost-effectiveness than changing the cost of the complications.
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Figure 2.22: Scenario analysis – polynomial waning

Polynomial Vaccine Waning

Figures 2.22 – 2.23 contain the results of the scenario analysis where the polynomial

waning function was tested. The base case restricted spline function is also plotted

for comparison. Figure 2.22 shows that there is a minimal difference between the two

functions at every age. The polynomial function produces the lowest ICER at age

68. Figure 2.23 shows the differences between the ICERs from ages 50 – 80. The

zoomed-in figure shows that there is more of a difference between the two function

choices on the left side of their respective minimums with the RCS function producing

lower ICERs from 50 – 68. After age 68, the ICERs begin to converge and remain

close from ages 69 – 80. These plots show that there is a minimal difference in the

results depending on the choice of waning function.

No Productivity Loss

Figures 2.24 – 2.25 show the results of the scenario analysis were productivity loss

was excluded from the analysis. This scenario represents the health care perspective.
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Figure 2.23: Scenario analysis – polynomial waning – zoomed

Without lost productivity being included as a cost the vaccine is less cost-effective at

every age as evidenced by comparing the base case values (in red). Age 67 remains

the most cost-effective age to vaccinate and the pattern for men and women remain

the same with the vaccine being more cost-effective at every age.
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Figure 2.24: Scenario analysis – pro-
ductivity loss – Women
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Figure 2.25: Scenario analysis – pro-
ductivity loss – Men
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Community Rated Disutilities

Figures 2.26 – 2.27 provide the results of the scenario analysis where community

ratings were used for the disutility values. Table 2.13 shows differences in the values.

Using community ratings, disutility values for HZ are much higher and the values for

PHN are much lower. This results in the vaccine being more cost-effective at younger

ages for both men and women. This result can be see by the difference between the

two lines in Figure 2.26 and 2.27. With community ratings the most cost-effective age

for vaccination drops to age 65 for both men and women (as indicated by the white

dot). After age 70, the two lines in the graph cross which indicates that when using

community rating the vaccine is less cost-effective at older ages than in the base case.
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Figure 2.26: Scenario analysis – Com-
munity ratings – Women
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Figure 2.27: Scenario analysis – Com-
munity ratings – Men
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Variable Base Case Community Rating Reference
HZ – No Pain 0.15 0.30 [88]
HZ – No Pain 0.20 0.50 [88]
HZ – No Pain 0.30 0.70 [88]
HZ – No Pain 0.45 0.90 [88]

PHN – No Pain 0.31 0.18 [88]
PHN – No Pain 0.55 0.18 [88]
PHN – No Pain 0.77 0.22 [88]

Table 2.13: Community disutility ratings

2.4 Discussion

In this chapter, I examine the cost-effectiveness of the current herpes zoster vaccine

for every age between 50 and 100 for women and men. The vaccine is always more

cost-effective for women than men in the ages where the vaccine is not dominated.

This is likely due to women being more susceptible to developing HZ and having

a longer life expectancy. For both men and women, age 67 produces the lowest

ICER. One-way and two-way sensitivity analysis show that the cost-effectiveness is

most sensitive to the initial efficacy of the vaccine, the speed the vaccine wanes, and

the cost of the vaccine. Probabilistic sensitivity analysis confirms that vaccinating

between the ages of 65 – 70 has the highest chance to be cost-effective assuming a

WTP of $100,000.

Vaccine

The vaccine data and its parameterization were two strengths of this research. This

was the first US cost-effectiveness analysis to use the new long-term zoster vaccine trial

data [20] for an age group over 50 [62]. It was the first study to use new observational

data from a large managed-care cohort on the vaccine’s waning pattern [78]. Using

this data to parameterize the age-specific waning and initial efficacy of the vaccine

was accomplished with the aid of zoster vaccine experts at the CDC. For example,

their input ensured that the steep decline in efficacy over the first year of vaccination

was featured; this decline has not been accounted for in other US studies. Feedback
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from the CDC was crucial as it enabled the parameterization of the vaccine to be

the best that it could be. However, there is still uncertainty about the vaccine

parameters. This was shown in the two-way sensitivity analysis; the initial efficacy

and the waning of the vaccine have a large potential impact on the on the results.

Given this impact further research may be needed to better predict vaccines efficacy

and waning. Techniques like value of information analysis will be important to

determine the potential value of this added research.

One limitation of this paper is the effect of the vaccine on pain. There is some

evidence that the vaccine reduces the burden of PHN [15] which I have accounted

for through the additional protection benefit. But there is also some evidence that

those who were vaccinated and develop HZ may develop a less severe case of HZ

than unvaccinated individuals [15]. However, these data were not translatable into

probabilities for the model. The sensitivity analysis shows that the HZ pain states

do have some impact on the ICER. Being able to accurately account for difference in

HZ pain states for vaccinated vs non-vaccinated individuals would likely to further

reduce the ICERs.

The scenario analysis between the two different waning functions showed minimal

differences in the ICERs at every age. The minimum ICER was found at age 67 using

the base case restricted cubic spline model and 68 using the third order polynomial

model. It is interesting to note that the age that produced the lowest ICER was only

different by one year when there was a difference of approximately two years in the

durability of the vaccine; this can be seen in Figures A.10 and A.11 on page 200.

PHN and Vaccination

From the beginning of this research, I assumed that the vaccine’s additional protection

against PHN would be a key driver of the results. However, this was not found.

Rather it was the impact of the vaccine against HZ that had the most effect. Seven

options for the vaccines initial additional protection and waning (independent of

the vaccines waning against HZ) were tested in scenario analysis. The selection of

the initial additional protection against PHN (shown in Figures 2.18 and 2.36) was

60



shown to make some difference to the ICER, however, the base case selection was

near the middle of the extremes for the majority of the ages. Further, when the

waning of this additional protection was tested independently of waning against HZ

(shown in Figure 2.20) I show that the ages where the vaccine is most cost-effective

remains between ages 60 – 75. Panel G in Figure 2.20 shows the benefit of assuming

a 45% additional protection benefit for all ages; even adding this benefit to the earlier

ages (e.g., 50 – 60) and slowing the waning ‘speed’ against PHN independent of the

waning speed against HZ did not greatly change the age range where the vaccine was

most cost-effective. Therefore, while being able to correctly determine the additional

protection is important for being able to get an exact estimate of the cost effectiveness,

the additional protection against PHN did not have as great of an impact on the

results as just protection against HZ or the probability of PHN.

Impact of PHN

The impact of the probability of PHN on the ICER was shown in both the one-way

and two-way sensitivity analyses. Of all of the non-vaccine epidemiological parameters,

this had the greatest impact on the results. One of the strengths of this analysis

was the characterization of the PHN states and the use of the ladder-like progression

through PHN. This model structure was adapted from recent zoster vaccine models

from Europe [63,65,68,70], and provides a better way to characterize the disutility

associated with PHN as a whole. The disutility of mild PHN had the largest impact

of all PHN related disutilities, most likely because all people with PHN must pass

through this state before reaching a disease free health state. It is interesting to note

that it was the probability of PHN that had the biggest impact on the results, while

all individual components of the PHN had only smaller impacts. Using a concept

from “systems thinking” it could be that these model components work together to

make their impact greater than the sum of their parts [121]. I see this laddering

structure as an important piece to the model. However, for future model simplicity

I think it would be reasonable to build a ladder-like PHN sub-model to generate a

age-specific PHN disutility values that could then be used for a general PHN health
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state.

While the ladder like structure was a strength in its ability to emulate the true

disease progression it does have limitations. First, this structure does assume that

all people must pass through all better states of PHN before reaching a disease free

health state. This assumption was based on available data and while it was the

best assumption that could be made given these data, it may not perfectly reflect

the underlying disease process. That is, it may be possible for cases of severe or

moderate PHN to resolve without the patient experiencing mild PHN. This is an area

for future research. In addition, using this structure was a disadvantage from the

cost perspective. The best available data were used for costs in this model, however,

US specific cost data were not available by PHN state. Papers from Europe [70,79]

have shown that higher costs are associated with worse PHN states. However, due

to complications with transferring costs from other countries and health systems

where the financing structure may be very different, costs from these papers were

not included in the model [97]. The cost of PHN in this model was varied widely in

sensitivity analysis and was shown to have little impact on the ICER. Nonetheless,

for a more accurate representation of the costs associated with PHN conditions, this

is also an area for future research.

Comparisons with other US models

Four previous CEAs have been published for the HZ vaccine in the US [59–62]. Three

of these CEAs were published in 2007 or earlier [59–61]; this was near the time when

HZ vaccine data were first released as part of the shingles prevention study (SPS).

Because the SPS only included people ages 60 and older, the earliest CEAs only

includes groups ages 60 and older. When comparing against the other US studies,

this research shares the most in common with the 2007 study by Pellissier et al [60].

For characterizing the disease, they also used differing levels of HZ pain using the

ZBPI. However, they did not use differing levels of PHN. They also fit vaccine data

from the SPS in a similar manner to this paper; using an initial age based efficacy

and waning. However, their waning function did not account for the severe drop in
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efficacy through the first year, rather it was a linear function. This research shares a

common fit pattern of the age specific initial efficacy as both assume a concave shape

for similar fitted values. Results from Pellissier et al suggest a minimal change in

the ICER between ages 60 – 80. The ICERs produced by my models are the most

consistent between ages 60 – 75.

Hornberger and Robertus [59] published a CEA that shows that the only time

the vaccine can produce an ICER less than $100,000 is when the vaccine is less than

$200, the recipient is less than 70 years old and the vaccine effectiveness lasts more

than 30 years. Current information [20,78] suggests that the vaccine is not likely to

last 30 years. Based on my fits of the vaccine data with more current information, at

a best case scenario (+0.10% initial efficacy and 30% slower waning at age 50) the

vaccine would only last 20 years. The authors also admit to having limited data on

vaccine efficacy beyond the initial 2005 clinical trial results [59]. The authors also

assume that PHN does not result unless pain has been persistent for 182 days from

the start of the rash phase. This definition of PHN may underestimate the proportion

of people who actually experience PHN, and allow people to have higher utility for

longer periods of time. Thus, Hornberger and Robertus [59] may underestimate the

QALYs gained by vaccination which could negatively impact the cost-effectiveness

results.

The model constructed by Rothberg et al [61] was sensitive to characteristics of

the vaccine, PHN, and HZ. Unfortunately there was limited methodology for how

the vaccine’s efficacy and waning was calculated. The authors assume there is no

decrease in PHN incidence beyond the decrease attributed to reducing HZ incidence

with vaccination (i.e., they do not assume an additional protection benefit). Brisson

et al [77] suggest that just accounting for the additional reduction of PHN can reduce

the cost per QALY by as much as 40%. Rothberg et al also assume that an individual

either spends less than 12 months with PHN, or several years with PHN. And, there

is no accounting for PHN severity as only one PHN utility score is given. The paper

by Le and Rothberg [62] provides the newest estimate for the cost-effectiveness in the

US and is an update of the Rothberg et al CEA [61]. Le and Rothberg do make use

of newer vaccine waning data. However, they assume that the vaccine wanes using a
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strictly linear rate. Second, cost data on PHN is from their previous CEA model [61].

The CEA model by Rothberg et al [61] used cost data from a 1994 cost study from

the UK. The cost of PHN is one of the most important parameters in many HZ CEA

models. Using cost data that is more than 20 years old and from a country where the

health care costs are known to be cheaper than in the US [122, 123] would likely lead

to misleading results. Even if these costs had been recent, it is not common practice

to transfer costs [97] across health systems due to structure and financing differences.

Other Limitations

One limitation of this paper was the exclusion of cosmetic and neurological complica-

tions from the base case analysis. These were included in scenario analysis and their

inclusion did lower ICER for every age. However, the results from these scenario

analyses are best to not be over-interpreted. There is still only a small body of

evidence about these other complications (compared to evidence for complications

like PHN). Additional data would be needed, specifically about the disutility and the

time spent in this health state before each should be included in the base case analysis.

As a result of the possible impact of these parameters, the base case analysis should

be seen as a the upper bound for the cost-effectiveness of the HZ vaccine. Another

limitation was truncating the model at age 100; this assumption may underestimate

the benefit of the vaccine. Despite the probability of death due to HZ being very low,

vaccinated individuals would be less likely to experience this event as they would

be less likely to experience HZ. Therefore, there is likely to be a bias against the

vaccination strategy due to the assumption of a truncated life expectancy as the

difference is QALYs would likely be slightly greater than what is reported in this

study.

Conclusions

This study was the first in the US to include the 50 – 59 age group alongside the 60+

age group. With the aid of collaborators at the CDC, the vaccine parameterization

should be the most realistic representation of how the vaccine behaves. The complex
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modeling structure shows the impact on health utility that can be attributed to

PHN. Using a threshold of $100,000 this research shows that the vaccine would

be cost-effective for women between the ages of 59 – 74 and 64 – 69 for men.

There are some policy implications that can be examined from the results. The

current recommendation from the ACIP is open-ended (i.e., 60 and above without a

stopping age). Results of the CEA as shown by Figure 2.4 and the cost-effectiveness

acceptability contours (Figures 2.15 – 2.16) show that the vaccine is not likely to be

considered cost-effective using a threshold between $100,000 – $150,000 for people

older than age 80. Further using this same threshold it is unlikely to be cost-effective

for people younger than 60 (at the very earliest age 55). Therefore, the results of

this research indicate that the open-ended recommendation may be recommending

vaccination over too wide of a range, and that there may be benefit to reducing that

age range.

These results give an indication of the most cost-effective range for vaccination for

men and women, but do not address the question of the optimal policy. Each ICER

assumes that the cohort does not assume a prior risk of HZ. Because this is a disease

that most are at risk for, it will be important to examine the decision to vaccinate or

defer when aiding future recommendations. Further, additional work may be needed

to determine the true values of vaccines waning and efficacy as both had a substantial

impact on the results. However, techniques like value of information should first be

used. While this research does provide an update to the cost-effectiveness of the

vaccine, further work should be done provide the best possible information to decision

makers for developing future recommendations.
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2.A Additional Figures and Tables

Age ∆ HZ ∆ PHN ∆ OC $ – VX Q – VX $ – no VX Q – no VX

50 162 11 5 466.69 15.597 297.60 15.596

51 169 12 5 467.10 15.272 299.84 15.272

52 176 14 6 467.22 14.945 301.85 14.944

53 183 15 6 467.03 14.617 303.63 14.616

54 190 17 6 466.54 14.286 305.15 14.285

55 198 18 7 465.71 13.954 306.41 13.953

56 206 20 7 464.56 13.620 307.39 13.619

57 213 22 8 463.06 13.286 308.09 13.285

58 221 24 8 461.19 12.950 308.48 12.949

59 228 26 9 459.02 12.613 308.53 12.611

60 235 28 9 456.61 12.272 308.19 12.270

61 240 31 10 453.98 11.928 307.45 11.927

62 245 33 10 451.19 11.581 306.29 11.580

63 247 35 10 448.28 11.232 304.68 11.230

64 248 36 11 445.32 10.880 302.64 10.878

65 247 38 11 442.38 10.527 300.17 10.525

66 243 39 11 439.52 10.173 297.28 10.172

67 238 40 11 436.81 9.821 293.99 9.820

68 230 41 11 434.19 9.469 290.28 9.468

69 220 41 10 431.62 9.118 286.13 9.116

70 209 41 10 429.04 8.766 281.52 8.765

71 196 41 9 426.39 8.415 276.45 8.414

72 183 40 9 423.64 8.064 270.93 8.063

73 168 39 8 420.76 7.715 265.02 7.714

74 153 38 8 417.71 7.370 258.73 7.368

75 138 36 7 414.75 7.028 252.11 7.027

76 123 34 6 411.53 6.691 245.16 6.690

77 108 32 6 408.00 6.357 237.84 6.356
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Age ∆ HZ ∆ PHN ∆ OC $ – VX Q – VX $ – no VX Q – no VX

78 94 29 5 404.19 6.028 230.24 6.027

79 80 26 4 400.07 5.705 222.38 5.705

80 68 24 4 395.670 5.389 214.30 5.388

81 56 21 3 391.00 5.081 206.05 5.080

82 44 18 2 386.10 4.781 197.67 4.780

83 34 15 2 380.87 4.489 189.14 4.488

84 26 12 1 375.21 4.202 180.38 4.201

85 18 9 1 369.35 3.930 171.84 3.930

86 13 7 1 362.87 3.671 163.41 3.671

87 10 6 1 355.91 3.424 155.11 3.424

88 7 5 0 348.87 3.189 146.97 3.189

89 5 4 0 341.84 2.966 138.99 2.966

90 3 3 0 334.84 2.754 131.15 2.754

91 2 2 0 327.85 2.552 123.42 2.552

92 1 1 0 320.80 2.357 115.73 2.357

93 0 0 0 313.47 2.168 107.96 2.168

Table 2.14: Intermediate model outcomes – Men. ∆: Number of cases prevented due to

vaccination.
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Figure 2.28: Vaccine Efficacy vs. Vaccine Waning Panel – Women. Contours represent ICER values of vaccination
vs. no vaccination.
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Figure 2.29: Vaccine Efficacy vs. Vaccination Cost Panel – Women. Contours represent ICER values of vaccination
vs. no vaccination.
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Figure 2.30: Vaccine Waning vs. Vaccination Cost Panel – Women. Contours represent ICER values of vaccination
vs. no vaccination.
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Figure 2.31: p(HZ) vs. p(PHN) Panel – Women. Contours represent ICER values of vaccination vs. no vaccination.
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Figure 2.32: p(HZ) vs. p(HZ – Any Pain) Panel – Women. Contours represent ICER values of vaccination vs. no
vaccination.
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Figure 2.33: p(HZ) vs. Vaccination Cost Panel – Women. Contours represent ICER values of vaccination vs. no
vaccination.
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Figure 2.34: p(PHN) vs. Vaccination Cost Panel – Women. Contours represent ICER values of vaccination vs. no
vaccination.
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Figure 2.35: Scenario Analysis – PHN Intercept – Men
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Figure 2.36: Scenario Analysis – PHN Intercept – Men – Zoomed
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Figure 2.38: Scenario analysis – other
complications – Men – probability. White
dots - base case analysis. Top red
line: p(comps) = lowest, Middle red
line: p(comps) = mean. Bottom red line:
p(comps) = highest.
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Figure 2.39: Scenario analysis – other
complications – Women – costs. White
dots - base case analysis. Top red line:
cost = lowest, Middle red line: cost =
mean. Bottom red line: cost = highest.
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Figure 2.40: Scenario analysis – other
complications – Men – costs. White dots
- base case analysis. Top red line: cost
= lowest, Middle red line: cost = mean.
Bottom red line: cost = highest.
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Figure 2.41: Scenario analysis – other
complications – Women – QOL. White
dots - base case analysis. Top red line:
lost QOL = lowest, Middle red line: lost
QOL = mean. Bottom red line: lost QOL
= highest.

0

40000

80000

120000

160000

200000

240000

300000

400000

500000

600000

50 60 70 80 90

Age

IC
E

R

Figure 2.42: Scenario analysis – other
complications – Men – QOL. White dots
- base case analysis. Top red line: lost
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Chapter 3

Markov Decision Processes:

One & Two Dose Administration

3.1 Introduction

The question of an optimal policy for the age of administering the herpes zoster

vaccine remains largely unanswered. Cost-effectiveness analyses have given some

indication of the most cost-effective age group (e.g., people ages 65 – 70) but results

vary across studies [59–61]. The optimal policy is of particular importance given that

vaccine efficacy and duration can change greatly depending on the age at vaccination.

Thus even marginal changes in the age of administration could affect the long term

outcomes and produce sub-optimal results if not administered at the correct time.

The objective of this chapter is to estimate the optimal timing of the vaccination

against HZ by answering the following two questions:

1. Conditional upon only one dose being available, at what ages is it optimal to

receive the HZ vaccine?

2. Conditional upon an individual having received the initial vaccine at any

previous age X, where X falls in the range of [50, 99], is it ever optimal for that

individual to receive a second dose of the vaccine?
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Utility and Background on Markov Decision Processes

This chapter will build on the results from Chapter 2 and utilize a different type of

decision analytic simulation model. In a state-transition model, only one decision

can be evaluated in each model iteration [124]. State-transition models can provide

information on a current decision but it is difficult to account for future decision

options, and outcomes. And, while these models are common, they can be less valuable

if there are many decisions required for a certain treatment, or if the same decision

needs to be evaluated at different time points. Therefore, using state-transition

models in those situations may lead to sub-optimal performance [125].

The Markov decision process (MDP) model, however, is a class of decision model

that allows for the consideration of multiple or sequential decisions over time. MDP

models are over 60 years old and come from the field of stochastic, dynamic opti-

mization [126, 127]. They have only recently been applied to optimal allocation of

medication or treatment policy problems in health care [128–133]. The MDP method

optimizes a dynamic policy over a particular decision objective. For example, the

method could determine the age of vaccination that maximizes the quality of life

gained or minimizes the costs incurred [128]. Thus, the MDP model could be used

to determine the optimal vaccination age that could help to minimize the burden of

disease.

Five sets of information are required for every MDP [125]:

1. Decision epochs

2. System states

3. Available actions

4. Rewards dependent on state and action taken

5. Probabilities dependent on state and action taken

Decision epochs are time points in the model when a decision on an action is made.

The time between epochs is called a period and these periods are analogous to cycles
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in state-transition models [124]. System states are the set of mutually exclusive and

collectively exhaustive states that define the outcomes in the model. Similar to a

state-transition model, transition probabilities are used to defined the movement

between the possible states of the model. Actions are the decisions that are made at

each decision epoch. Rewards (monetary or other) are assigned for the actions taken

at some epoch. When an action is selected the decision maker receives the award and

the “system evolves to a possibly different state at the next decision epoch” [125].

3.2 Methods

Two separate MDP models: 1) One Dose MDP; 2) Two Dose MDP, were created

to answer the the questions for this chapter. Each model and its methods will be

discussed in turn.

One Dose Model

Structure

An overview of the one dose MDP model is shown in Figure 3.1. In this model a

cohort is assumed to start at age 49, and an initial decision on vaccination is made

when reaching the first decision epoch at age 50 (t = 0). The MDP model has two

states: 1) Vaccinate (v); 2) Wait (defer vaccination) (w). Decisions are made at

annual decision epochs from age 50 (t = 0), to age 100 (t = 50). In choosing vaccinate,

the cohort gains immediate rewards for being vaccinated at that age. If the decision is

to wait, the cohort remains unvaccinated for 1 period (1 year), and faces the choice to

vaccinate or defer again at the next decision epoch. Data for the MDP model comes

from cohort state-transiton models similar to the models used in the cost-effectiveness

analysis in Chapter 2.

The cohort state-transition models (STMs) were constructed in R (v.3.2.3) to give

the lifetime costs and QALYs for a cohort who either receives the vaccine or develops

HZ at any age between 50 and 100. These costs and QALYs are the immediate

rewards that are associated with the states and actions of the MDP. Figure 3.1 is
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Figure 3.1: One dose MDP model

further deconstructed in Figure 3.2; this figure shows where the STM outputs are

implemented within the MDP. Any red triangle in Figures 3.1 and 3.2 implies a

terminal state; it is in these states where STM outputs are assigned. If one chooses to

vaccinate (v), then immediate rewards are collected. These rewards are the lifetime

costs and QALYs associated with vaccinating at that age. The vaccination STM,

shown in the top half of Figure 3.2, has four states: 1) disease free, 2) herpes zoster,

3) disease free 2, 4) death. In this model, the cohort starts as disease free and has the

chance to transition to HZ or death at the end of each model cycle. Cycle time for all

STMs was set to 1 year to match the period length of the MDP. HZ is an all-inclusive

health state that provides a cumulative estimate of the QALYs and costs with a case

of HZ, which may include PHN or ocular complications. A further description of this

STM is available in Appendix B.1 on page 208.

If the decision is wait (w), then the cohort is assumed to stay disease free for the

current model period, and has the chance of transition into HZ, death, or back to

disease free at the start of the next period (shown in the bottom half of Figure 3.2).

The lifetime costs and QALYs associated from developing HZ in the next period were
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derived from a HZ STM where a cohort starts in a HZ health state rather than a

disease free health state. Similar to the vaccine STM, this HZ health state provides a

cumulative estimate of the HZ, which can include PHN or ocular complications. The

reward for death in all models is assumed to be 0.

Figure 3.2: One dose MDP model breakdown. DF: Disease Free; HZ: Herpes Zoster,
DF-2: Disease Free 2; D: Death.

The one dose MDP model is governed by the optimal value function, shown by

Equation 3.1. In this equation Vt(st) is the optimal value function for the model at

time t (t = 1, ..., T ) in state s. The action set a at time t includes only two actions

that correspond to the states in the model: {v, w}. Rt(v) is the immediate rewards

gained from vaccinating at time t as determined by the vaccine STM. Rt(w) is the

immediate QALY reward gained for spending one cycle in a disease free state at time

t. Rt(w) is summed with the discounted lifetime rewards associated with dying, p(D),

or transitioning to HZ, p(HZ), in the next cycle (t + 1). Vt+1(st+1) is the optimal

value function at t+ 1. Vt+1(st+1) is initially set by the boundary condition of the

model, VT (sT ), at age 100. At age 100 (t = 50), Vt+1(st+1) = 0 and the probability of
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death, p(D), is 100%. Therefore, VT (sT ) is the optimal value function at the boundary

of the model and is the maximum between the immediate rewards for vaccinating and

not vaccinating at age 100; shown by Equation 3.2. The optimal value function at the

boundary is substituted for Vt+1(st+1) at age 99 (t = 49) and once this condition is

set, the model runs recursively from age 99 to age 50, updating Vt+1(st+1) each year.

Discounting in the model (shown by λ) was set to 3% (0.97)). Further information

on the STMs and the data used to generate them is available in the appendix on

page 208.

Vt(st) = max
at∈{v,w}

{
Rt(v), Rt(w) + λ

(
p(D|st, w)Rt+1(D)

+ p(HZ|st, w)Rt+1(HZ)

+ p(DF |st, w)Vt+1(st+1)
)} (3.1)

For all st and t = 1, ..., T − 1

VT (sT ) = max
aT∈{v,w}

{RT (v), RT (w)} (3.2)

Analysis Plan

The MDP was built using R (v.3.2.3). First, the STMs outputs were loaded into

the R environment. The MDP was constructed by programming Equation 3.1 using

the base language. Care was taken to ensure that there was continuity between the

structures of the MDP and the STM (i.e., that transitions were occurring at the

same time and that rewards were being assigned in the same way). To run the model

recursively, a loop was created that started the MDP at the boundary condition and

worked backwards through each age from 100 to 50 selecting the optimal decision at

each decision epoch. This method is known as backwards induction [125].

Table 3.1 provides the data used to generate the base case results of the one dose

MDP model. The data in this table is representative of women only; data for men
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is given in at the end of the chapter appendix on page 115. Transition probabilities

for this model were taken from the data used for the cost-effectiveness analysis in

Chapter 2. The probability of death comes from the CDC life tables [98]; the model

assumes no death from zoster cases. The probability of developing HZ was determined

by using the logistic equation and its parameters presented in Table 2.2 on page 27.

The rewards for vaccination and HZ (Rt(v), Rt(HZ)), in Table 3.1 are expressed as

net monetary benefits (NMB). The STMs provided both lifetime costs and QALYs

and Equation 3.3 was used to convert those values into NMB, under an assumed

willingness-to-pay (WTP) of $100,000. The immediate reward for waiting (Rt(w))

was the baseline QOL for the cohort multiplied by the WTP [120].

NMB = WTP ×QALY − Cost (3.3)

Age Rt(v) Rt(w) Rt(HZ) p(HZ) p(D) p(DF )

50 1, 608, 177 82, 900 1, 571, 554 0.005 0.003 0.992

51 1, 577, 634 82, 600 1, 540, 585 0.005 0.004 0.992

52 1, 546, 759 82, 300 1, 509, 260 0.005 0.004 0.991

53 1, 515, 540 82, 000 1, 477, 528 0.005 0.004 0.991

54 1, 483, 918 81, 700 1, 445, 387 0.006 0.004 0.990

55 1, 451, 892 81, 400 1, 412, 821 0.006 0.005 0.990

56 1, 419, 445 81, 100 1, 379, 851 0.006 0.005 0.989

57 1, 386, 599 80, 800 1, 346, 547 0.006 0.005 0.988

58 1, 353, 414 80, 500 1, 312, 944 0.007 0.006 0.988

59 1, 319, 944 80, 200 1, 279, 128 0.007 0.006 0.987

60 1, 286, 263 79, 900 1, 245, 139 0.007 0.007 0.986

61 1, 252, 415 79, 600 1, 210, 993 0.007 0.008 0.985

62 1, 218, 411 79, 300 1, 176, 683 0.008 0.008 0.984

63 1, 184, 248 79, 000 1, 142, 186 0.008 0.009 0.983

64 1, 149, 893 78, 700 1, 107, 483 0.008 0.010 0.982

65 1, 115, 344 78, 400 1, 072, 663 0.009 0.011 0.981

66 1, 080, 679 78, 100 1, 037, 793 0.009 0.012 0.979
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Age Rt(v) Rt(w) Rt(HZ) p(HZ) p(D) p(DF )

67 1, 045, 967 77, 800 1, 002, 892 0.009 0.013 0.978

68 1, 011, 226 77, 500 967, 927 0.009 0.014 0.976

69 976, 425 77, 200 932, 899 0.010 0.015 0.975

70 941, 563 76, 900 897, 834 0.010 0.017 0.973

71 906, 659 76, 600 862, 836 0.010 0.018 0.971

72 871, 834 76, 300 828, 008 0.011 0.020 0.969

73 837, 181 76, 000 793, 421 0.011 0.022 0.967

74 802, 774 75, 700 759, 051 0.011 0.025 0.964

75 768, 585 75, 400 724, 866 0.011 0.027 0.962

76 734, 587 75, 100 690, 934 0.012 0.030 0.959

77 700, 836 74, 800 657, 307 0.012 0.033 0.955

78 667, 405 74, 500 624, 153 0.012 0.036 0.951

79 634, 449 74, 200 591, 550 0.013 0.040 0.947

80 602, 051 73, 900 559, 470 0.013 0.045 0.942

81 570, 178 73, 600 527, 872 0.013 0.050 0.937

82 538, 795 73, 300 496, 903 0.013 0.055 0.932

83 508, 036 73, 000 466, 827 0.014 0.062 0.925

84 478, 184 72, 700 437, 626 0.014 0.069 0.917

85 449, 214 72, 400 409, 361 0.014 0.077 0.909

86 421, 188 72, 100 382, 276 0.014 0.087 0.899

87 394, 347 71, 800 356, 389 0.014 0.098 0.888

88 368, 715 71, 500 331, 691 0.015 0.109 0.876

89 344, 269 71, 200 308, 123 0.015 0.122 0.863

90 320, 964 70, 900 285, 616 0.015 0.136 0.849

91 298, 725 70, 600 264, 044 0.015 0.151 0.833

92 277, 425 70, 300 243, 207 0.015 0.168 0.817

93 256, 864 70, 000 222, 802 0.016 0.185 0.799

94 236, 748 69, 700 202, 369 0.016 0.204 0.781

95 216, 615 69, 400 181, 200 0.016 0.223 0.761

96 195, 752 69, 100 158, 133 0.016 0.244 0.740
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Age Rt(v) Rt(w) Rt(HZ) p(HZ) p(D) p(DF )

97 173, 021 68, 800 131, 305 0.016 0.265 0.719

98 146, 563 68, 500 97, 570 0.016 0.287 0.697

99 113, 255 68, 200 51, 479 0.017 0.309 0.675

100 67, 686 67, 900 0 0 1 0

Table 3.1: One vaccine MDP input parameters – Women. WTP = $100,000.

Optimal Value Curve

To examine the impact of WTP on the optimal policy, an optimal value curve analysis

was conducted [134]. As WTP changes the optimal policy will also change; the

optimal value curve is used to show changes in expected costs and expected QALYs

as WTP changes. To generate this curve the following procedure was used:

1. Load raw cost and QALY data from the STMs needed for the MDP

2. Set WTP to 0

3. Use WTP to convert raw costs and QALYs to NMB for immediate MDP rewards

4. Run MDP

5. Save optimal policy

6. Increase WTP

7. If maximum WTP reached then stop; otherwise return to Step 3

This loop was completed for each WTP from $0 to $2,000,000 by $2,000 increments,

and each MDP provided an optimal policy for its corresponding WTP. Next another

procedural loop was conducted to determine only the costs and QALYs associated

with each optimal policy for each WTP. Each iteration of following loop produced

one set of costs and QALYs (a cost,QALY set) associated with the optimal policy at

a particular WTP.

1. Load MDP structure with raw costs and QALYs as rewards for actions (not

NMB)
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2. Load WTP

3. Load optimal policy associated with WTP

4. Run MDP where decisions are fixed based on loaded optimal policy

5. Record costs associated with optimal policy

6. Run MDP where decisions are fixed based on loaded optimal policy

7. Record QALYs associated with optimal policy

8. Save costs, QALYs, WTP, and optimal policy (one cost,QALY set)

9. Update WTP

10. Return to Step 3

This second loop was completed for all WTPs run in the first loop. This provided

a set of cost and QALY data that could be plotted. The data collected from these

loops provide information that can be used to visualize the changes in costs and

QALYs gained as WTP changes.

Sensitivity Analysis

I conducted two sets of sensitivity analyses, a method that examines how responsive

outcomes are to changes in parameter inputs and model assumptions, were completed.

First, I conducted a one-way sensitivity analysis by varying each of the model

parameters independently at the ends of their ranges to examine the effect on

outcomes. This identified the model parameters that the results were most sensitive

to. Inputs for the one-way sensitivity analysis are presented in Table 3.2.

I also performed second order Monte Carlo probabilistic sensitivity analysis

(PSA) to estimate the optimal policy given uncertainty of multiple model parameters

simultaneously. To accomplish this, I converted model inputs from discrete values to

distributions. For cost inputs, I utilized a gamma (Γ) distribution. For disutilities, I

assumed a beta (β) distribution. I then performed Monte Carlo simulations on the

STMs and used those results to perform independent MDP simulations to determine

the optimal policy. I used seeding to ensure the same variables were being used in
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Variable Base Lower Upper STM MDP
Vaccine – Initial Efficacy 0.00 -0.10 0.10 ×
Vaccine – Waning Rate 1.00 0.70 1.30 ×
p(HZ) – asymp – Women 19.277 15.382 24.033 × ×
p(HZ) – asymp – Men 13.935 11.148 17.418 × ×
p(PHN |HZ) – b1 1.772E-7 8.86E-8 3.544E-7 ×
p(OC|HZ) 0.00 -0.02 0.02 ×
Cost – HZ (without compli-
cations)

1934 1559 2287 ×

Cost – HZ with PHN † ×
Cost – HZ with OC 4163 2896 5543 ×
Cost – Vaccine 205.53 180.14 282.98 ×
Disutility – HZ (without
complication)

0.03 0.019 0.0415 ×

Disutility – HZ with PHN † ×
Disutility – HZ with OC 0.09 0.065 0.129 ×
Disutility – Vaccine Compli-
cations

8.397E-5 4.16E-5 1.68E-4 ×

Table 3.2: Inputs for one-way sensitivity analysis. OC: ocular complications. † – Age
dependent variables, tables with all data available on page 214. × in the table indicates
what model (STM or MDP) the variable is contained within.

each STM and MDP in the same iterations (e.g., STM and MDP PSA iteration one

share the same probability of HZ – prior to adjustment for vaccination). More detail

is available in the Appendix on page 212.

The results of the PSA were used to generate two pieces of information. First

results of the PSA were used to estimate the probability that vaccination was optimal

at any age. To accomplish this, individual MDP models were run for each Monte

Carlo iteration performed (e.g., 1000 Monte Carlo runs = 1000 MDP models). Once

all 1000 MDPs were run, an R code was developed that searched all 1000 policies and

determined which policies recommended vaccination at any age. The total number

of policies where vaccination was recommended was divided by the total number of

Monte Carlo iterations to determine this probability. Second, the same 1000 policies

produced by the MDPs were searched by age to determine the chance that a certain
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age would be selected into the optimal policy (from 0 - 100%). The total number of

times an age was selected into an optimal policy was divided by the total number of

Monte Carlo iterations (1000).

Variable Distribution

Vaccine – Initial Efficacy* N (0, 0.035)

Vaccine – Waning Rate** N (1, 0.12)

Probability – HZ** – asymp lnN (0, 0.099)

Probability – PHN** – b1 lnN (0, 0.295)

Probability – Ocular Complications* N (0, 0.01)

Cost – HZ Γ(106.14, 1/18.02)

Cost – PHN †
Cost – Ocular Complications Γ(41.96, 1/99.20)

Cost – Vaccine Γ(23.33, 1/7.5)

Cost – Vaccine Administration Γ(2196.6, 70)

Cost – Vaccine Severe Reactions Γ(18, 100)

Disutility – HZ β(24.39, 804.59)

Disutility – PHN †
Disutility – Ocular Complications β(16.4, 254.81)

Disutility – Common Vaccine Complications β(6, 6000)× (30/365)

Disutility – Severe Vaccine Complications β(2.13, 100000)× (30/365)

Table 3.3: Parameter distributions for PSA. * – A parameter was sampled and added

to base case parameter value. ** – A scaling factor for the parameter was sampled and

multiplied by the base value for that parameter. † – Age dependent distributions, table of

distributions available on page 218

Two Dose Model

There is currently no booster vaccine available for HZ. However, one study has

investigated the immunogenicity of a second dose of the HZ vaccine [135]. Given

that the vaccine is available for purchase and a first dose could have been given at a
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sub-optimal time in the past, it is important to consider if and when a person should

get a second dose. To answer this question I make the following assumptions for the

base case analysis. First, the second dose of the vaccine is not a booster vaccine.

Rather it is the administration of the original vaccine a second time. Therefore, it is

assumed to have the same risks and costs as the first dose. Second, I assume that the

second dose does not provide any additional benefit from remaining efficacy from the

first vaccine. For example, if a person is originally vaccinated at age 50, his/her first

dose is projected to last 12 years. If he/she was vaccinated with a second dose at age

57, there would be no added benefit from the extra five years of efficacy remaining

with the first dose. I relax this assumption in scenario analysis.

Structure

An overview of the two dose model is shown in Figure 3.3. This model is evaluated

in two pieces, each piece has two states: 1) Vaccinate/Vaccinate Again (v or va);

2) Wait (w). The model that covers the second dose decision was the first to be

evaluated, this is shown by the vertical arms in Figure 3.3 that begin with jv, where j

is an age from [50, 99]. Each of these arms is a MDP sub-model (second dose model)

that is evaluated independently. In these two dose models, it is assumed that the

cohort receives in first dose at age j. After this initial dose, each subsequent year the

choice must be made to either vaccinate again va, or wait. These second dose models

are governed by optimal value function in Equation 3.4. The notable differences

between Equations 3.1 and 3.4 are the the probability and reward for HZ. In the

second dose model, p(HZ|s, w, vj) is adjusted by the age when the initial vaccine

j was given and then adjusted by its waning function, shown by vj. Rt+1(HZ|vj)
is calculated from an R STM model that simulated the lifetime QALYs and costs

for people who developed HZ at some age Y given they had been vaccinated at age

j. This is further discussed in Appendix B.1. To evaluate the two dose MDP, 50

independent MDPs were run that evaluated all possible combinations of st and vj,

each conditional upon the initial age of the first dose j. Each of these MDPs started

at the boundary condition where age = 100, and worked recursively to the age of the
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first dose j.

Vt(st|vj) = max
at∈{va,w}

{
Rt(va), Rt(w) + λ

(
p(D|st, w)Rt+1(D)

+ p(HZ|st, w, vj)Rt+1(HZ|vj)

+ p(DF |st, w)Vt+1(st+1)
)} (3.4)

For all j, st and t = 1, ..., T − 1

VT (sT |vj) = max
aT∈{va,w}

{RT (va), RT (w)} (3.5)
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Figure 3.3: Two dose MDP model. White boxes indicate the age of initial vaccination.
Vertical arms from the white boxes are the second dose MDP models.
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Figure 3.4: Two dose MDP model – second

step

Evaluation of the two dose models

provided an update for the initial esti-

mates of the lifetime QALYs and costs;

shown in Figure 3.4 by blue squares. Us-

ing these new estimates of the lifetime

QALYs and costs conditional upon a sec-

ond vaccination being available at some

time in the future, Equation 3.1 was used

to evaluate the model shown in Figure

3.4. This provided an estimate of the

optimal policy of evaluating two doses

versus one dose.

Sensitivity Analysis

Sensitivity analysis was also performed in the two dose models. First, parameters of

interest from the one dose model were adjusted to the ends of their ranges to examine

the impact on the results. This helped identify if there were any parameters that

also greatly impacted the two dose model. I then performed first order Monte Carlo

PSA with the model to estimate the optimal policy given the uncertainty of multiple

model parameters simultaneously. For this analysis, I utilized the same procedure

as for the one dose model. In brief, I ran PSA on the STM models used as inputs

for the two dose MDP. I then adjusted shared parameters in the MDP by the same

values and ran a separate MDP for each set of PSA results from the STMs. More

detail is available in the Appendix on page 212.

The results of the PSA were used to generate two pieces of information. The 1000

policies per age of initial vaccination were searched by age to determine the chance

that a certain age would be selected into the optimal policy for the second dose (from

0 - 100%). The total number of times an age was selected into an optimal policy

was divided by the total number of Monte Carlo iterations (1000). I performed this

analysis of PSA data for the model structures in Figure 3.3 and 3.4. This analysis for
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Figure 3.3 provided the probability that an age for the second dose would be selected

into an optimal policy conditional upon the age when the first dose was received.

The analysis using the structure in 3.4 provided the probability for the initial age of

vaccination to be selected into a policy where two doses would be optimal compared

to one.

Scenario Analysis

One benefit of modeling studies is the ability to test scenarios that may be too

difficult to test with clinical trials or observational studies. For the two dose model,

I ran two scenario analyses to examine research questions that have not been well

researched using other methods. First, as previously discussed, there is no indication

that a second dose of vaccine provides additional benefits [135]. To examine the

difference that a possible boost in efficacy could create I tested two scenarios. In

these scenarios the initial efficacy of the second dose was increased by a fixed amount.

In the first case, I assume that the initial efficacy was increased by two percentage

points above its expected value at some age (e.g., V Eij +0.02). In the second analysis,

I increased the initial efficacy by five percentage points above its expected value (e.g.,

V Eij + 0.05).

For the other scenario analysis, I examined the policy regarding a new HZ vaccine.

A new vaccine in development and early data suggests that it will have a much higher

initial efficacy than the current vaccine [136]. No data are currently available on

the waning of this vaccine. Given the new vaccine may be a large improvement over

the current vaccine, I sought to determine at what age a person should receive this

new vaccine, given that he/she may have had the current vaccine at some previous

age. To do this, I made the following assumptions. First, the vaccine has an initial

efficacy of 97% across all age groups [136]. Second, the new vaccine will wane at

the same rate as the current vaccine. Third, the new vaccine does not provide any

additional protection against PHN. Forth, as no price has been set, I assume that

the new vaccine will cost the same at the current vaccine. Finally, I assume the new

vaccine as the same safety profile as the current vaccine (i.e., the same QALY loss).
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Vaccine Parameterization – All Models

In all (non-scenario) analyses the initial efficacy and waning of the vaccines protection

against HZ and PHN were assumed to to be the same as for the cost-effectiveness

model in Chapter 2. The protection of the vaccine was comprised of two parts.

First, the initial efficacy of the vaccine (β0jHZ
). This was defined as the efficacy

from the time of the vaccination through the first year (t = [0, 1)); j is the age of

vaccination and t is measured in years. Second, the waning of the vaccine. Vaccine

waning was assumed to occur from the time of the vaccination through the time

when the vaccine provided no further protection benefit, (t = [0, X]), where X is

some number of years in the future. These component pieces were combined using

the form of a linear equation (y = mt + b) to create the age specific efficacy and

waning of the vaccine (V Eij). That is, the initial efficacy was assumed to be the

intercept (b), the waning was assumed to be the slope (m), t was the number of years

vaccinated (t = [0, X]), and y was the protection of the vaccine against HZ. These

components are not strictly linear, rather they were fit using restricted cubic spline

functions (RCS) and then combined using this equation form. The minimum value

for vaccine efficacy was 0%; that is, the vaccine could not have a negative effect. Data

on the initial vaccine efficacies and waning over time came from from clinical trial and

observational data [20–22,51,78] and were combined using statistical methods [19].

More detail on how this data was fit and combined is available in Appendix A.4 on

page 185. Equation 3.6 shows the equation used to model vaccine efficacy and waning,

where i is the number of years vaccinated and j is the age of vaccination.

V EijHZ
= β0jHZ

+ β1i

+ β2 max(i, 0)3

+ β3 max(i− 1, 0)3

+ β4 max(i− 2, 0)3

+ β5 max(i− 7, 0)3

(3.6)

This model also assumed the same base case initial protection against PHN as the

cost-effectiveness analysis. There is some evidence that the vaccine provides additional
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protection against PHN beyond the reduction in HZ incidence [22]. This data was

used to provide an estimate of the initial additional protection benefit of the vaccine

against PHN, where additional protection is defined as any reduction beyond what

can be attributed to a reduction in HZ incidence. However, available data only covers

the initial additional protection against PHN (β0jPHN
) from t = [0, 1) and there is

unfortunately no data on how this additional protection benefit wanes with time.

Therefore, the assumption was made that the additional protection benefit against

PHN lasts only as long as the protection against HZ incidence. I also assume that the

the additional protection wanes at the same rate as the vaccines protection against

HZ; this was accomplished using Equation 3.7. I finally assume that the vaccine

provides a minimum of 0% extra protection against PHN. At 0% additional protection,

an individual who was vaccinated would have a same likelihood of acquiring PHN

given a HZ infection as someone without the vaccine.

V EijPHN
=

β0jPHN
× V EijHZ

β0jHZ
if β0jHZ

> 0

0 if β0jHZ
= 0

(3.7)

Model Validation

Validation of the models was done in two steps. The STMs were first validated to

ensure they were producing the correct data. Next the MDP was validated to ensure it

was using the data correctly. To validate the STMs I first set all baseline QOL to 1.0,

removed the disutilities associated with the health states, and removed the discount

rate. I then performed simulations with different age groups and compared the results

of the model to the CDC life tables [98]. This procedure provided a check that the

cohorts in the model were dying at or close to the expected rate as the removal of

QOL and discounting provides an estimation of remaining life-expectancy. Next, I ran

a cost-effectiveness simulation between the arms of the STM models to further test

the results. To do this, I removed the costs and disutilities associated with the vaccine

from the base case model. I also changed the starting state of the HZ STM to ensure

that every person started as disease free. Under these circumstances the vaccine was
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predicted to dominate the choice of no vaccination for every age from 50 – 93 and be

indifferent between 94 – 100 (the vaccine is assumed to have no benefit after age 93,

as shown in Figure 2.2.) Finally, to ensure that the vaccine equations were entered

into the model correctly, I selected different ages and numbers of years vaccinated

and manually performed the calculations on what the probability of an HZ or PHN

should be. I then changed the VX STM in R to reflect these scenarios, to ensure that

the probabilities calculated by the model matched the probabilities I had calculated.

Data from STMs was then implemented into the MDP structure. To validate the

MDP model, I first removed the cost and disutility associated with vaccination. I

then changed the initial efficacy function from the restricted cubic spline model to a

linear model that predicted 100% efficacy at age 50 and 0% efficacy at age 100 (thus,

2% absolute decrements per year). Under this scenario, there was was no cost or

QALY penalty associated with getting vaccinated, and the vaccination (in terms of

efficacy) would be less optimal (in terms of initial efficacy and durability) each year.

Therefore, it was predicted that the model should always select the vaccinate option

as vaccination will always have benefit (expect at age 100), it will be free of cost

and QALY penalties, and each earlier age would confer more benefit than the next

later age (i.e., there would be no reason to delay vaccination). I also utilized print

statements within the code to ensure that the equations were running correctly and

using the correct probabilities. Finally, to verify the results, I built a MDP model

using Microsoft excel and data from Table 3.1 to calculate the policy manually; I

then compared those results to the MDP simulation built in R.

3.3 Results

Model Validation

The results from the model validation are presented in Tables 3.4 – 3.6. Table 3.4

shows the comparison of life expectancy in the model (calculated by setting the

background health utility to 1.0 for all ages and removing the discount rate). There is

a difference in the life expectancy between the CDC life tables and the life expectancy

96



Age Life Expectancy – Model Life Expectancy – CDC [98]
55 28.80 28.80
65 20.42 20.30
75 13.06 12.90
85 7.17 6.90
95 3.31 3.30
100 1* 2.3

Table 3.4: Model validation – life expectancy check – Women. *People at age 100 in the
model are set to only live 1 year

produced by the model. The biggest difference is at age 100, where the CDC life

tables predict a life expectancy of 2.3 years and the model estimates life expectancy

of 1 year. The main difference between these two estimates is that in the STM the

probability of death was set to 100% at age 100. Table 3.5 shows the comparison

between V EijHZ
as calculated by hand compared to the values calculated within the

R STMs. For consistency, I used the same scenarios as the cost-effectiveness model

in Chapter 2. All hand calculated values match the values produced by R indicating

that the vaccine efficacy was implemented into the model correctly. Finally, Table

3.6 shows data from an analysis where the costs and disutilities associated with the

vaccine were removed. As predicted, the option to vaccinate dominated the do not

vaccinate option for every age between 50 – 93 (where the vaccine had some benefit)

as demonstrated by the negative ICERs (due to less cost with more effect). When the

model was indifferent between the options from ages 94 – 100 as the vaccine confers

no benefit but also presents no risk or cost to the recipient. Figure 3.5 shows the

results of the MDP validation. Here, as predicted, the model selected vaccination

as the optimal choice at every age. This indicated the the code for the model was

making the correct choices based on the input data it received.

One Dose Model

The results from the base case analysis for women are presented in Figure 3.6.

Assuming a WTP of $100,000, the model recommends vaccination between the ages of
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Scenario V EijHZ
– Calculated V EijHZ

– From R
j: 50, i: 0 0.7814 0.7814
j: 55, i: 10 0.1322 0.1322
j: 60, i: 4 0.4762 0.4762
j: 65, i: 7 0.2769 0.2769
j: 70, i: 2 0.4304 0.4304
j: 75, i: 8 0.0000 0.0000
j: 80, i: 3 0.1245 0.1245
j: 85, i: 5 0.0000 0.0000
j: 90, i: 0 0.0950 0.0950

Table 3.5: Model validation – vaccine efficacy check

Age VX Q VX C NV Q NV C I.C I.Q I.Analysis
50 16.09 340.22 16.09 384.75 -44.53 0.001 (Dominates)
55 14.52 344.82 14.52 401.65 -56.83 0.001 (Dominates)
60 12.87 338.88 12.87 409.80 -70.91 0.002 (Dominates)
65 11.16 327.20 11.16 407.46 -80.26 0.002 (Dominates)
70 9.42 316.64 9.42 392.55 -75.91 0.002 (Dominates)
75 7.69 305.20 7.69 363.90 -58.69 0.002 (Dominates)
80 6.03 286.51 6.02 322.00 -35.49 0.001 (Dominates)
85 4.50 256.47 4.50 269.74 -13.27 0.0005 (Dominates)
90 3.21 210.00 3.21 214.18 -4.18 0.0001 (Dominates)
94 2.37 167.84 2.37 167.84 0 0 (Indifferent)
100 0.68 0 0.68 0 0 0 (Indifferent)

Table 3.6: CEA validation results. VX: Vaccine arm, NV: No Vaccine arm, C: costs, Q:
QALYs, I.C: Incremental costs, I.Q: Incremental QALYs, I.Analysis: Incremental analysis,
denotes if vaccination strategy dominates no vaccination strategy.
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Figure 3.5: Optimal policy – validation
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Figure 3.6: Optimal policy – one dose
model – Women
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Figure 3.7: Optimal policy – one dose
model – Men

66 – 77. Taking the perspective of a 50 year old woman (the age at the first decision

epoch), following the optimal policy would mean vaccinating at age 66 and would

produce a net monetary benefit of approximately $1.6 million. The results of the

optimal policy for men are presented in Figure 3.7. Assuming a WTP of $100,000,

the model recommends vaccination between the ages of 66 – 74.

Figure 3.8 presents the results from the optimal value curve for women. This

analysis takes the perspective of a 50 year old woman. Assuming a WTP of $0, it
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Figure 3.8: Optimal value curve – Women. WTP / QALY is written above curve points.

would never be optimal to vaccinate any women and the expected lifetime discounted

costs of that policy would be approximately $375 per person; no additional QALYs

would be gained. As the WTP increases to $56,000 age 67 would be the first age

where vaccination is recommended. Following this policy would lead to an increase of

approximately 10 QALYS for 10,000 50 year olds and an expected lifetime cost of

$440 per person. As the WTP increases, the optimal policy changes to recommend

vaccination at earlier ages as shown by Figure 3.8. This pattern plateaus at age

62 under a WTP of $1,028,000. The figure shows that vaccination at earlier ages

(e.g., 60 or 61) produces higher costs and lower QALYs, thus these policies are

dominated. Using the base parameter values, for women, age 62 is the youngest age

where vaccination would ever be recommended. The optimal value curve for men is

shown in Figure 3.17 in the end of chapter appendix on page 116. This curve shows

a similar pattern to the optimal curve for women. For men, the WTP is higher for

initiating vaccination at newer ages. The lowest WTP is $72,000 for vaccination at

age 67. The other main difference is that age 61 is the lowest age recommended for

vaccinating men at a WTP of $1,470,000.
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Sensitivity Analysis

Figure 3.9 shows the results from the one-way sensitivity analysis for women. Overall,

the model was robust to changes in most parameters. At a WTP of $100,000 the

earliest age where vaccination would be recommended is 64; this assumes that the

vaccine is waning at the slowest possible rate (30% slower). Based on deviation

from the base case (either direction), vaccine efficacy, vaccine waning, vaccine cost,

disutility of PHN, and p(PHN |HZ) had the most effect on the policy. For women,

the latest initial age for vaccination is 67, this occurs if the vaccine is expensive,

the initial efficacy of the vaccine is lower (-10%), or the vaccine is waning at the

fastest possible rate (30% faster). Figure 3.18 on page 117 shows the results of the

one-way sensitivity analysis for men. The model for men is most sensitive to, based

on deviation from the base case (either direction), vaccine efficacy, vaccine waning,

vaccine cost, disutility of PHN, p(PHN |HZ), and p(HZ). At the fastest waning

rate, the lowest initial efficacy, the highest vaccine cost, and the lowest probability of

PHN given HZ, the optimal policy does not recommend vaccinating men at any age.

The results from the probabilistic sensitivity analysis are shown in Figures 3.10 –

3.11. Figure 3.10 shows the probability (for men and women) of vaccination being

recommended at any age. For men, the PSA shows that in approximately 23% of

simulations, the optimal policy would not include vaccination at any age at a WTP

of $100,000. For women, this probability drops to approximately 9%.

Results from Figure 3.11 are to be interpreted as the probability from 0 – 100% of

any one age being selected into the optimal policy for women. Figure 3.11 shows the

results assuming WTP was fixed at $100,000. At this WTP the model suggests that

ages 63 – 85 have some probability of being selected into the model. Ages 67 – 71

have more than an 85% chance of being selected; age 68 has the highest probability

of any ages of being selected into an optimal policy. Figures for men can be found

in the appendix at the end of the chapter appendix on page 118. For men, the age

range extends from 62 – 84; age 68 also has the highest probability of being selected.

However, none of the ages in the range has over an 75% chance of being selected.
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Figure 3.9: One-way sensitivity analysis results – Women. Blue line indicates the base
case age range. WTP = $100,000/QALY

Two Dose Model

The results from the base case analysis for the two dose model are presented in Figure

3.12. This figure provides the results for women only; the figure for men can be found

at the end of chapter appendix on page 119. For women, results show that receiving

a second dose is optimal if an individual was initially vaccinated between the ages

of 50 – 67. Using base case parameter estimates it is never optimal to administer

the booster vaccine until the original vaccine has been exhausted completely. For

men, receiving the second dose would only be optimal if the individual was originally

vaccinated between the ages of 50 – 63.
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Figure 3.11: Probabilistic sensitivity analysis – Women – WTP: $100,000
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Figure 3.13 shows the policy for women when considering if it is ever optimal to

have a two dose policy compared to a one dose policy. Results suggest that it would

be optimal for women between the ages of 62 – 67 to receive two doses of the HZ

vaccine. If the first dose was administered between 62 – 67, then, using Figure 3.12 it

would be optimal to receive the second dose at between the ages 72 – 76 (depending

on the age of the first dose). Figure 3.21 on page 120 shows the policy for men when

considering if it would ever be optimal to receive two doses of the vaccine. Results

suggest that, under base case assumptions, it would never be optimal to recommend

a two dose policy for men.
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Figure 3.12: Optimal policy – two dose model – Women

Sensitivity Analyses

Results from the one-way sensitivity analysis are presented in the end of chapter

appendix on pages 121 – 123. The one-way sensitivity analysis shows that the second

dose is also responsive to some of the key parameters in the one-way sensitivity

analysis from the one dose model. The response of the second dose follows the same

pattern as the one dose model. If the vaccine if more efficacious, wanes slower, or
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Figure 3.13: Optimal policy – two dose model, second step – Women

the probability of PHN is higher, the second dose is recommended over a wider

range. If evaluated using the model structure from Figure 3.4, it becomes optimal

to recommend the two dose compared to one dose policy over a wider age range.

Conversely, if the vaccine has worst parameters (i.e., faster waning or lower efficacy)

or the probability of PHN is lower, then the policy space for a second dose is reduced,

and a two dose policy is never optimal compared to a one dose policy.

Figure 3.14 shows a heat map of the probability of an age of the second dose

being selected into the optimal policy conditional upon the initial age of the first dose.

This figure is specific to women only. Based on Figure 3.14, ages 67 – 73 have the

highest probability of being recommended for an optimal policy for the second dose

with a probability of between 80 – 89%. The range of ages for the second dose for

women extends from 64 – 84, depending on the age of the initial dose. Ages 81 – 84

never have more than a 19% chance of being selected into an optimal policy. Figure

3.34 on page 124 shows the PSA results for men. Similar to the one dose PSA, there

is less chance for the second dose to be optimal at any age. For men, ages 67 – 70

have the greatest chance of being selected into an optimal policy with a probability
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Figure 3.14: Probabilistic sensitivity analysis – two dose model – Women

of between 70 – 79%. The range of ages for a second dose for men extends from 64 –

83. Ages 81 – 83, regardless of the age of the initial vaccine have less than a 10%

chance of being selected into an optimal policy.

Figure 3.15 shows the probability, for women, of a single age being selected into

an optimal two dose policy. The ages on this plot are when the first dose would be

given. Therefore, for women, ages 54 – 70 all have some probability of being selected

into a policy where it would be optimal to vaccinate with two doses. Age 62 has the

highest probability of any of the ages to be selected into a policy, with approximately

a 55% chance. Ages 61 – 65 all have over a 40% chance of being selected into an

optimal policy. The same figure for men is presented on page 124. For men, ages 55 –

69 have some chance of being selected into an optimal two dose policy. Age 62 has

the highest chance at approximately 32%. Ages 61 – 64 have a 25% or greater chance

for being selected into a policy that would recommend two doses versus one.
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Figure 3.15: Probabilistic sensitivity analysis – two dose model, second step – Women

Scenario Analyses

The results for the scenario analysis assuming a higher initial efficacy for the second

dose are available in Figures 3.36 – 3.39 on page 125. Compared to the base case

figures, the scenario analysis shows that if you assume a two percentage point increase

in initial efficacy for the second dose, the second dose is recommended at more ages

compared to the base case analysis. Increasing the initial efficacy by five percentage

points above base case further increases the policy space. When examining the

optimality of a two dose vs. one dose policy, increasing the initial efficacy results

in the two dose policy being optimal over a wider age range. Figure 3.16 shows the

results of the scenario analysis of determining the age that the new vaccine should

be given as a second dose conditional upon the current vaccine being given at some

previous age as a first dose. The earliest recommended age for a second dose with

the new vaccine is 69; this is four years after the earliest recommended age of the

second dose when using the current vaccine. For any women who were vaccinated at

age 80 or older with the current vaccine, it would be optimal to vaccinate with the
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Figure 3.16: Scenario analysis – two dose model, new vaccine – Women

new dose the following year. The policy space for receiving a second dose with the

new vaccine is much larger than the policy space for receiving a second dose of the

current vaccine.

3.4 Discussion

This research determined the optimal policy for the HZ vaccine for women and men.

As it is difficult to use state-transition models to account for multiple decisions or

sequential decisions over time, a MDP model was utilized to decide when to vaccinate

women and men. The model made decisions at annual decision epochs for a cohort

starting at age 49. This research also examined the opportunity of receiving a second

dose of the herpes zoster vaccine given that the original dose may have been given at

some time in the past.

In the base case analysis, results suggest that age 66 is the first age recommended

for vaccination. For women, there are more ages where vaccination is recommended

compared to men, (66 – 77) and (66 – 74) respectively. Some possible explanations
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for the differences are life expectancy and disease incidence. Women have a longer

life expectancy than men [98]. Therefore, recommending vaccination at later ages

for women could be because more women are likely to be alive in those later years.

Women also have an increased risk of disease compared to men (see Figure A.1 on

page 178). Thus, more women are likely to be alive and those who are alive are more

likely to get the disease than their male counterparts.

When examining the one-way sensitivity analysis there are no scenarios when

the vaccine is not recommended at some age for women. Conversely, there are four

situations in the one-way sensitivity analysis where no vaccination is the optimal

policy for men (fastest waning speed, lowest initial efficacy, lowest probability of

PHN, highest vaccine cost). The probabilistic sensitivity analysis also shows that

there are more scenarios where the vaccine would not be optimal for men compared

to women (see Figure 3.10). From the one dose model it is evident that the vaccine is

more likely to be beneficial under more circumstances for women than for men. This

finding is consistent with the results of the cost-effectiveness analysis in Chapter 2.

Two Dose Model

The results from the two dose model match the same trend presented by the one dose

model. In the base case analysis the objective was to determine if and when a person

should receive a second dose conditional upon having received the initial dose at some

time in the past. The results for women show that it would be optimal to receive the

second dose over a wider range of ages compared to men. When the data from this

question was used to determine if there were policies where it was optimal to ever

receive two doses compared to one; there were ages where it was optimal for women

to receive two doses (62 – 67). However, under the base case assumptions, it was only

ever optimal for men to receive one dose even when a second dose was available.

The PSA for the two dose models provides some further insight into the two dose

recommendation for men versus women. In comparing the two heat maps for the

determining the probability of an age for a second dose being recommended given

vaccination at some first age (Figures 3.14 and 3.34), women are much more likely to
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have a second dose recommended over more ages. For example, if the initial dose of

the HZ vaccine was given at age 50, for women ages 67 – 73 have a 80 – 89% chance of

being selected as part of an optimal policy for the second dose. For men, ages 67 – 70

were the most likely to be selected with a probability of 70 – 79%. Similar to the one

dose model, the PSA suggests that that second dose is more likely to be recommended,

and more likely to be recommended over a wider age range for women than men.

When examining the PSA for the two dose policy compared to the one dose policy,

the results show that the two dose policy would be optimal for women approximately

50% of the time. For men it would only be optimal 30% of the time (See Figures 3.15

and 3.35). Because women are more likely to live longer than men [98], they are more

at risk for the disease, and are more likely to develop complications (due to increased

life expectancy and increased probability of complications with age), it makes sense

that it would be more likely to recommend a second dose for women so that they are

covered during the periods when they are most at risk.

The results of this research also highlight the importance of modeling studies.

There has only been one clinical study that has examined the impact of receiving a

second dose [135]. Levin et al examined the impact of the second dose 10 years after

receiving the first dose. Their study did include the comparison of patients who were

receiving an initial dose, however the metric of efficacy was cellular response to the

vaccine. While cellular responses have been shown to be able to predict efficacy in the

zoster vaccine [137], clinical trial or long-term observational data on the protective

effect of a second dose is not available. Levin et al [135] did not show a significant

difference in the cellular response between those who were receiving the second dose

10 years after the initial dose and those who were receiving the vaccine for the first

time. Their study was also restrictive to a sample of people age 70 and older. In this

research, we show that assuming the second dose of the vaccine confers no additional

protection (as the results presented by Levin et al [135] suggest) that the second

dose could still be optimal to receive for women. Further, this research examines the

results assuming the option to get a second dose at any time after the first dose. In

their paper, Levin et al [135] call for further research to be done on the multiple dose

question to determine the benefits of the receiving the second dose. If the objective
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of future studies is to determine the potential benefit of the second dose, we have

shown, using a modeling study, that even if the second dose confers no additional

benefit there is still a 50% chance for women and a 30% for men that receiving two

doses of the vaccine would be optimal. If further studies found that the second dose

produced more benefit, the range of ages for the second dose would likely increase, as

shown by the scenario analysis.

Limitations

This study does have limitations. The MDP and its state-transition models were

run in annual epochs and cycles. This was in part done for simplicity but also to

reflect what could be actual policies. The cost-effectiveness in Chapter 2 was run in

monthly cycles and shorter cycles should give a better estimate of the durability of

the vaccine. That is, if the vaccine were to last seven years and one month in a model

that uses monthly cycles, it would last a full eight years in a model that uses annual

cycles. Therefore, the waning models used in this research may slightly overestimate

the benefit of the vaccine. However, any additional benefit gained by the choice of

annual cycles should never be greater than 11 months. Further, this additional benefit

should be minimal (estimated at less than 2%). The choice of annual cycles does more

accurately reflect the policy space for the vaccine. If the MDP were run in monthly

epochs, the model could have suggested that it would be optimal to vaccinate at 65

years and 8 months (for example). While this may more optimal than vaccinating

at 66 years of age, it would be unlikely to reflect an actual policy. The STMs also

uses a collapsed health state for HZ; all potential complications occur within this

HZ health state. The results from the CEA in Chapter 2 used a more complicated

model, but results show that the model was robust to small changes in within the

PHN state. For simplicity, the structure was collapsed for this paper. While this may

have impacted the results, sensitivity analysis showed that the MDP was only slightly

impacted by the changes in costs and utilities of PHN. Similar to the the CEA, the

probability of PHN had one of the biggest impacts on the results. Therefore, while

the collapsed health state may not provide as accurate of results, it did provide a
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similar pattern of results and make model construction much simpler, which aided in

ability to perform PSA on both the one and two dose models. The uncertainty in the

parameters is also a limitation of this research. However, the PSA and the sensitivity

analyses help to address these concerns and show what parameters the model is most

sensitive and robust to. The PSA is of particular importance as it helps to narrow

show the likely range of the optimal policy for both men and women.

Policy Implications

The results from this model have important policy implications. In the CEA presented

in Chapter 2, I found that the vaccine is unlikely to be cost-effective (at a WTP of

$100,000) for people below age 60 and greater than age 80. In this analysis, the MDP

model narrows that range while simultaneously accounting for the risk of deferring

vaccination. The MDP shows (based on Figures 3.6 – 3.7) that the optimal range

is 66 – 77 for women and 66 – 74 for men. This analysis agrees with the CEA that

the vaccine is likely to provide more benefit to women, however it also shows that

delaying the start of vaccination until the mid-to-late 60s is more optimal even if

the vaccine is considered cost-effective for women in their early 60s (as shown by the

CEA). The Monte Carlo simulations for the MDP further support the decision to wait

until the mid-to-late 60s to vaccinate. This is evidenced by age 65 being included in

less than 50% of all optimal policies for women, with ages 64 and 63 being included

in less than 15% of all optimal policies; results for men share a similar pattern. Given

the results of this analysis, putting a cap on the recommendations at (or near) age 80

moving the starting age to (or near) 66 would provide a more optimal vaccination

policy than the current policy. It is also evident that a second dose of the current

vaccine may be valuable to consider for women, especially for those women who may

have received their first dose at a sub-optimal time. Finally, while the new vaccine

has not come to market yet, the two-dose MDP shows that it will likely be optimal

for women and men to receive this new vaccine as a second dose even if the current

vaccine has already been given.

The MDP is important as it provides policy-makers with an optimal policy (i.e.,
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a clear start and stop age). It is important to note that STMs could be setup to

determine the most optimal age of vaccination by comparing all possible vaccination

ages against one another for a cohort starting at age 50 (i.e., 50 different options).

However to determine the optimal policy (not just the optimal age) using STMs

would require 250 different simulations (in theory) as there are 50 decision epochs in

this model, each with two actions. When expanding the problem to include a second

dose it becomes apparent that an STM is likely not a reasonable solution. Therefore,

the MDP and the CEA should be seen as complements to one another. The CEA

can provide insight as to the possible range for a policy and the MDP can provide a

means to optimize that range in an efficient manner.

Conclusions

This paper shows that the vaccine is likely to be optimal over a wider range for

women than men, similar to the cost-effectiveness analysis of Chapter 2. Based on a

search of the literature, this is the first paper, to my knowledge, that uses a MDP

structure to evaluate the question of multiple vaccine doses. Further, this paper adds a

probabilistic sensitivity analysis for both the one and two dose questions, accomplished

in part due a simple model structure. This is uncommon due to complications with

probabilistic sensitivity analysis with MDPs [138]. Results indicate that there is likely

to be a stopping time for both men and women. Current ACIP recommendations

are open-ended (i.e., there is no stopping age); this research is potentially valuable

for future recommendations given that it shows a narrower range where the vaccine

is most likely to be optimal. Finally, similar to the cost-effectiveness, the vaccine

parameters (efficacy and waning) had the biggest impact on the optimal policy. Future

research on these parameters may be necessary to make the best recommendations

possible.
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3.A Additional Figures and Tables

Age Rt(v) Rt(w) Rt(HZ) p(HZ) p(D) p(DF )

50 1, 576, 803 85, 900 1, 538, 623 0.004 0.005 0.991

51 1, 545, 038 85, 700 1, 506, 499 0.004 0.006 0.990

52 1, 513, 013 85, 400 1, 474, 199 0.004 0.006 0.990

53 1, 480, 824 85, 200 1, 441, 664 0.004 0.007 0.989

54 1, 448, 404 84, 900 1, 409, 012 0.005 0.007 0.988

55 1, 415, 870 84, 700 1, 376, 180 0.005 0.008 0.987

56 1, 383, 160 84, 400 1, 343, 281 0.005 0.008 0.986

57 1, 350, 387 84, 200 1, 310, 184 0.005 0.009 0.986

58 1, 317, 412 83, 900 1, 276, 912 0.006 0.010 0.985

59 1, 284, 274 83, 700 1, 243, 292 0.006 0.010 0.984

60 1, 250, 792 83, 400 1, 209, 395 0.006 0.011 0.983

61 1, 217, 037 83, 200 1, 175, 120 0.006 0.012 0.982

62 1, 182, 907 82, 900 1, 140, 599 0.006 0.013 0.981

63 1, 148, 534 82, 700 1, 105, 793 0.007 0.013 0.980

64 1, 113, 872 82, 400 1, 070, 890 0.007 0.015 0.979

65 1, 079, 123 82, 200 1, 035, 905 0.007 0.016 0.977

66 1, 044, 295 81, 900 1, 001, 037 0.007 0.017 0.975

67 1, 009, 586 81, 700 966, 165 0.008 0.019 0.974

68 974, 876 81, 400 931, 337 0.008 0.020 0.972

69 940, 212 81, 200 896, 451 0.008 0.022 0.970

70 905, 492 80, 900 861, 623 0.008 0.024 0.968

71 870, 827 80, 700 826, 770 0.008 0.026 0.966

72 836, 146 80, 400 792, 150 0.009 0.028 0.963

73 801, 703 80, 200 757, 759 0.009 0.031 0.960

74 767, 492 79, 900 723, 835 0.009 0.034 0.957

75 733, 749 79, 700 690, 233 0.009 0.037 0.954

76 700, 333 79, 400 656, 992 0.009 0.041 0.950

77 667, 272 79, 200 624, 234 0.010 0.045 0.946
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Age Rt(v) Rt(w) Rt(HZ) p(HZ) p(D) p(DF )

78 634, 708 78, 900 592, 095 0.010 0.049 0.941

79 602, 766 78, 700 560, 559 0.010 0.054 0.936

80 571, 431 78, 400 529, 821 0.010 0.060 0.930

81 540, 898 78, 200 499, 867 0.010 0.067 0.923

82 511, 154 77, 900 470, 697 0.011 0.073 0.916

83 482, 188 77, 700 442, 038 0.011 0.081 0.909

84 453, 747 77, 400 414, 942 0.011 0.091 0.898

85 426, 874 77, 200 389, 027 0.011 0.101 0.888

86 401, 189 76, 900 364, 402 0.011 0.112 0.876

87 376, 796 76, 700 340, 946 0.011 0.125 0.864

88 353, 583 76, 400 318, 744 0.011 0.138 0.851

89 331, 618 76, 200 297, 609 0.012 0.152 0.836

90 310, 733 75, 900 277, 566 0.012 0.167 0.821

91 290, 942 75, 700 258, 366 0.012 0.183 0.805

92 271, 998 75, 400 239, 912 0.012 0.201 0.787

93 253, 805 75, 200 221, 774 0.012 0.219 0.769

94 235, 937 74, 900 203, 583 0.012 0.237 0.750

95 218, 025 74, 700 184, 469 0.012 0.257 0.731

96 199, 193 74, 400 163, 282 0.012 0.277 0.711

97 178, 314 74, 200 137, 819 0.012 0.298 0.690

98 153, 187 73, 900 104, 577 0.013 0.318 0.669

99 120, 325 73, 700 56, 979 0.013 0.339 0.648

100 73, 186 73, 400 0 0 1 0

Table 3.7: One vaccine MDP input parameters – Men. WTP = $100,000.

115



0

72000
82000

114000
168000 270000 484000 1470000 None

0.0

2.5

5.0

7.5

10.0

300 325 350 375

Expected lifetime cost of policy per 50 year old ($)

Q
A

LY
s 

ga
in

ed
 p

er
 1

0,
00

0 
50

 y
ea

r 
ol

ds

Earliest Age
Vaccine is
Optimal

61

62

63

64

65

66

67

None

60

Figure 3.17: Optimal value curve – Men

116



Base Case
p(HZ) − Lower
p(HZ) − Upper

p(PHN|HZ) − Lower
p(PHN|HZ) − Upper

p(OC|HZ) − Lower
p(OC|HZ) − Upper

VX − Initial Efficacy − Lower
VX − Initial Efficacy − Upper

VX − Waning − Slower
VX − Waning − Faster

Cost − HZ − Lower
Cost − HZ − Upper

Cost − PHN − Lower
Cost − PHN − Upper

Cost − OC − Lower
Cost − OC − Upper
Cost − VX − Lower
Cost − VX − Upper

Disutility − HZ − Lower
Disutility − HZ − Upper

Disutility − PHN − Lower
Disutility − PHN − Upper

Disutility − OC − Lower
Disutility − OC − Upper
Disutility − VX − Lower
Disutility − VX − Upper

50 55 60 65 70 75 80 85 90 95 100

Age

Decision
Vaccinate

Wait

Figure 3.18: One-way sensitivity analysis – Men

117



0

10

20

30

40

50

60

70

80

90

100

50 60 70 80 90 100

Age

P
ro

ba
bi

lit
y 

S
el

ec
te

d 
(%

)

Figure 3.19: Probabilisitic sensitivity analysis – Men
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Figure 3.20: Optimal policy – two dose model – Men
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Figure 3.21: Optimal policy – two dose model, second step – Men
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Figure 3.22: Sensitivity analysis – two
dose model – initial efficacy, higher,
women
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Figure 3.23: Sensitivity analysis – two
dose model – initial efficacy, lower, women
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Figure 3.24: Sensitivity analysis – two
dose model, second step – initial efficacy,
higher, women
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Figure 3.25: Sensitivity analysis – two
dose model, second step – initial efficacy,
lower, women
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Figure 3.26: Sensitivity analysis –
two dose model – waning speed, slower,
women
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Figure 3.27: Sensitivity analysis – two
dose model – waning speed, faster, women
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Figure 3.28: Sensitivity analysis – two
dose model, second step – waning speed,
slower, women
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Figure 3.29: Sensitivity analysis – two
dose model, second step – waning speed,
faster, women
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Figure 3.30: Sensitivity analysis – two
dose model – p(PHN|HZ), upper, women
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Figure 3.31: Sensitivity analysis – two
dose model – p(PHN|HZ), lower, women
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Figure 3.32: Sensitivity analysis – two
dose model, second step – p(PHN|HZ),
upper, women
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Figure 3.33: Sensitivity analysis – two
dose model, second step – p(PHN|HZ),
lower, women
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Figure 3.34: Probabilisitic sensitivity analysis – two dose model – Men
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Figure 3.35: Probabilisitic sensitivity analysis – two dose model, second step – Men
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Figure 3.36: Scenario analysis – two
dose model – + 2 percentage points
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Figure 3.37: Scenario analysis – two
dose model, second step – + 2 percentage
points
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Figure 3.38: Scenario analysis – two
dose model – + 5 percentage points
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Figure 3.39: Scenario analysis – two
dose model, second step – + 5 percentage
points
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Chapter 4

Value of Information Analysis:

Vaccine Waning & Efficacy

4.1 Introduction

The objective of this chapter is to determine the value of information on the initial

efficacy and waning characteristics of the herpes zoster vaccine. As shown by the

previous two chapters, the waning speed of the vaccine and its initial efficacy can

substantially impact the cost-effectiveness and the optimal policy. For example, in

men, having a lower vaccine efficacy or a vaccine that wanes more quickly produces a

policy that does not recommend vaccination at any age assuming all other parameters

are held at base case values. Because these parameters can have this impact on

vaccine recommendations it may be valuable to gather additional information to

determine how recommendations may change. However, before any additional research

is undertaken, it is important to estimate the value of the information that could be

gained.

Background and Utility of Value of Information Analysis

The underlying objective of health economic evaluation is to make decisions that

maximize the health gains from available resources [46–50,55]. To make the most of
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the available resources in health care, good decisions must be made, and to make good

decisions two questions which must be answered [139]. First, should a technology (e.g.,

treatment, medication, device) be recommended? Second, is there further evidence

needed to support the decision? Answering the first question is often accomplished

with the aid of modeling exercises such as using a state-transition model to predict

the cost-effectiveness (similar to Chapter 2, more common), or using an MDP to

determine the optimal policy (similar to Chapter 3, less common). If there is sufficient

evidence that a technology should be recommended, for example showing a high

probability of cost-effectiveness, that provides valuable information to decision makers.

However, decisions based on current information are dependent on the quality of

that information [139]. Further, due to uncertainty, there is always a chance that

a “wrong” decision will be made based on the current information. Therefore, if

there is uncertainty in the model or model parameters, that uncertainty could impact

the recommendation and additional research may be needed. Should this occur, the

technology could either be recommended with a request for additional research, or

not recommended until the additional research is completed. The HZ vaccine fits into

the first of these two categories as it has been widely adopted around the world but

further work may be needed to improve recommendations. This has been a general

objective of this dissertation thus far. However, because resources are scarce, the

potential value that could be gained should be quantified so as to not waste resources

in the pursuit of information that may be little value to decision makers. This is

the objective of value of information (VOI) analysis; to assess the potential value

of additional research to help set priorities and ensure that resources are efficiently

allocated. VOI analysis comes from foundations in Bayesian and statistical decision

theory. These techniques have and have been applied successfully to health care in

recent years for a number of different technologies [140–143] and have been used in

setting research priorities [139].
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4.2 Methods

To complete a value of information analysis three steps must be completed. First,

a decision model must be constructed. Decision models were created for Chapter

2 and 3 as part of this dissertation. Second, the decision model must be subjected

to a probabilistic analysis. This was also accomplished in Chapters 2 and 3 in

doing probabilistic sensitivity analysis (PSA). Finally, a sampling algorithm must be

applied to the probabilistic form of the model to determine the value of the unknown

information.

Expected Value of Partially Perfect Information

It is most common to determine the expected value of perfect information (EVPI)

first. EVPI selects the optimal decision under the assumption of perfect information

on all model parameters. To perform an EVPI analysis, Equation 4.1 is needed. The

EVPI is the difference in expected payoff assuming perfect information compared to

the payoff under current information (uncertainty). In Equation 4.1, θ is the set of

all unknown parameters in the model. Given these unknowns, the optimal decision

that can be made is the age of vaccination j that produces the highest average

net monetary benefit (NMB) (where j ∈ {⊗, 50, ..., J}; where ⊗ designates never

vaccinate). This is shown on the right side of Equation 4.1 by maxj EθNMB(j, θ).

EV PI = Eθ[max
j
NMB(j, θ)]−max

j
Eθ[NMB(j, θ)] (4.1)

With perfect information, θ would be known; as a result the future outcomes of

the model would be certain and the age of vaccination j that produces the maximum

net benefit could be selected each time with each new set of θ parameters. This

selection would be given by maxj NMB(j, θ) [139]. However, as θ is unknown the

values of simulations under perfect information must be averaged over all values of θ.

This is shown on the left side of Equation 4.1 by Eθ maxj NMB(j, θ).

However, I am interested in the value of perfect information on two specific

parameters in the model: 1) the initial efficacy of the vaccine, 2) the waning speed

128



of the vaccine. Therefore, this analysis will focus on the expected value of partially

perfect information (EVPPI) to determine the value of those parameters rather than

the EVPI which evaluates the value of perfect information for every parameter in the

model. EVPPI analysis uses Equation 4.2.

EV PPIϕ = Eϕ

[
max
j
Eψ|ϕ[NMB(j, ϕ, ψ)]

]
−max

j
Eθ[NMB(j, θ)] (4.2)

Equation 4.2 shares one maximization term with Equation 4.1: maxj EθNMB(j, θ).

This again shows that the optimal age of vaccination, j, given all the unknown pa-

rameters, θ, is the expectation of all simulated outcomes of θ. In Equation 4.2,

the two parameters of interest (initial efficacy and waning speed) are represented

by ϕ. Assuming perfect information about these parameters, it would be possible

to make a decision about the optimal age of vaccination j by averaging over all

remaining unknown variables in the model (ψ, where ψ ( θ). This is shown by:

maxj Eψ|ϕ[NMB(j, ϕ, ψ)] in Equation 4.2. However, similar to EVPI, the values of

ϕ are not known and therefore must be averaged over their simulated values of ϕ

(where ϕ ( θ, ϕ∪ ψ = θ and ϕ⊥⊥ ψ). The EVPPI analysis will always be positive or

0, but never negative. In the case of vaccination, if the optimal age j under perfect

information is the same as the optimal age without information (i.e., under current

information), then the value of information is zero as the decision does not change.

If, under perfect information, j is different than the recommendation under current

information, the NMB under perfect information will be greater than the NMB under

current information, thus the EVPPI will always be ≥ 0.

Three separate EVPPI analyses were conducted. Each of these analyses used

a different probabilistic modeling approach to estimate the EVPPI. The method

used for each analysis will be discussed in turn below. In brief, EVPPI analysis was

conducted using the MDP model structure from Chapter 3. EVPPI analysis was then

completed using a forward simulation state-transition model. Finally, EVPPI analysis

was completed using a non-parametric regression technique for efficient computation.

Of note, in a standard EVPPI analysis, it would be important to consider the

EVPPI for every age group that could be affected by the results (e.g., people age: 50,
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51, ..., 100). However, for the following analyses, I assume the perspective of a people

age 64. This decision was made given the projected lifetime over which the information

would be valuable. There is currently a new vaccine in development. Early trial data

suggests that the new vaccine will be more efficacious than the current vaccine [136].

Because of this increase in efficacy I assume the new vaccine will be more highly

utilized than the current vaccine when it is released to market. However, the new

vaccine is not likely to be available to the public for 24 – 48 months. Therefore,

I assume the lifetime of the information generated by this analysis of the current

vaccine is approximately 3 years (36 months). Given the projections of the MDP in

Chapter 3 (with 66 being the optimal age of vaccination in the base case analysis),

assuming the perspective of a cohort at age 64 would allow for the information to

be valuable for the next 2 – 4 years. Therefore, the decision to vaccinate can be

optimized from ages 64 – 68 when it is most likely optimal to vaccinate people. If,

for example, the analysis took the perspective of a 50 year old and it was optimal to

vaccinate between 64 – 68, the information would have to be valuable for the next 14

– 18 years, which is unlikely given the circumstances.

MDP Structure Analysis

DF-2

HZ

D

DF DF-2

HZ

D

Figure 4.1: State-transition model. DF: Disease-free. HZ: Herpes zoster. DF-2: Disease
free 2. D: Death.

The first EVPPI analysis was conducted using the MDP model structure from

the one dose analysis in Chapter 3. Probabilistic state-transition models (STMs)
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were needed to generate the data for the MDP structure. The STMs shared the same

structure as the STMs used to inform the MDP analysis in Chapter 3. These models

were created using R (v.3.2.3), and are shown by Figure 4.1. In the vaccination STM

the cohort starts in the disease free state and each cycle has the chance to transition

to the HZ state or the death state. If a transition to HZ occurs, the cohort will stay

in HZ for one cycle and then either transition to disease free 2 or death, if death

occurs. HZ is an all-inclusive health state that provides a cumulative estimate of the

QALYs and costs with a case of HZ, which may include PHN or ocular complications.

If disease free 2 is reached, the cohort will remain in this state until death occurs.

The vaccination model calculates the lifetime costs and QALYs for someone who has

been vaccinated at some age. The HZ natural history model starts a cohort in the

HZ state at some age. Like the vaccination model, HZ is a transient state and the

cohort will only spend one cycle with HZ. This model calculates the lifetime costs

and QALYs for for developing HZ at some age. The probability of HZ related death

was set to 0 for this analysis, and the probability of death was set to 100% at age

100. The cycle time for these state-transition models was set to 1 year. The model

takes the lifetime perspective and assumes a 3% discounting per year (0.97).

Once the STMs were constructed, a sampling algorithm was implemented to

generate the data needed. This sampling algorithm uses two nested levels of Monte

Carlo sampling over the plausible ranges for both the parameters of interest and

the remaining uncertain parameters. First, values for the initial vaccine efficacy and

waning speed (ϕ) were drawn from their respective distributions and fixed. This was

the outer loop of the sampling algorithm. Once outer values were fixed, one set of the

remaining unknown variables (ψ) were drawn from there respective distributions and

one probabilistic model was run; this was the inner loop of the sampling algorithm.

A total of 1000 inner loops were run for each outer loop; 1000 outer loops were run

creating a 1000×1000 sampling simulation.

Because the MDP structure requires data for all ages of vaccination tested, the

two-level Monte Carlo simulation was required for every age from 64 (the start age of

the analysis) to 100. This lead to a total of 1000×1000×37×2 simulations to generate

the data needed for men and women. Because the HZ STM has no vaccination
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component a first order Monte Carlo simulation was run to generate the data needed

to estimate the lifetime costs and QALYs for those who developed HZ at some age

(i.e., 1000×37×2 HZ PSA simulations). Seeding of the distributions was used to

ensure continuity across all STMs.

Once all data was generated from the STMs it was implemented into the MDP

structure – which was an adaptation of the model built in Chapter 3 for the one dose

optimization problem. A WTP of $100,000 was used to convert all STM data to NMB

for use in the MDP structure. The goal of this structure was to determine which

of the possible ages of vaccination produced the highest net monetary benefit using

the same backwards induction method as in Chapter 3. Models were run that fixed

vaccination between the ages of 64 – 72; a no vaccination policy was also included.

Note that this is MDP structure is not a true MDP as the decision is being fixed

at different ages rather than the model selecting the best ages to vaccinate. The

structure of the model is the same, but the decision process is fixed. The models

were run using parallel processing.

After all MDP structures had been simulated, all data were averaged by age of

vaccination j over all inner and outer loops to determine the optimal age of vaccination

under current information jc. Then, results for each outer loop were averaged by age

of vaccination j over all inner loops. This provided the optimal age of vaccination jp

under the perfect information provided by each outer loop. The NMBs for each outer

loop iteration o were evaluated by comparing jp to jc.

Forward Simulation Analysis

The second EVPPI analysis used forward simulation STMs to determine which age

of vaccination j would produce the highest NMB. The forward simulation models

were built as an adaptation of the vaccination STM presented in Figure 4.1. In the

forward simulation models, a cohort started in the disease free state and had the

chance to transition to the HZ state or the death state at every cycle. HZ was a

one cycle transient health state, from which the cohort would either transition to

disease free 2 or death, if death occurred. If disease free 2 was reached, the cohort
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would remain in the disease free 2 state until death occurs. The probability of disease

related death was set to 0 for this analysis, and the probability of death was set to

100% at age 100. The cycle time for this state-transition model was set to 1 year.

The model takes the lifetime perspective and assumes a 3% discounting per year.

In these forward simulation models, the cohort started at age 64 and was vaccinated

at age j. When vaccinated, the transition probability from disease free to HZ is

reduced by the age when the vaccine was received and was adjusted by the waning

function for subsequent cycles. This model fixes the time when the vaccine was given

to evaluate multiple vaccination possibilities. Vaccination was fixed from ages 64 –

72, and independent forward simulations were run for each fixed age of vaccination.

A never vaccinate option was also included. The forward simulation models provided

the lifetime costs and QALYs for a cohort of 64 year olds who were either never

vaccinated (j = ⊗) vaccinated at some point in the future (j ≥ 64). Once the model

structure had been set up, the same methods from the EVPPI analysis using the MDP

structure were used to apply the two-level Monte Carlo simulation to the forward

simulation models. One 1000×1000 simulation was run for each age of vaccination

between 64 and 72. Simulations were run for men and women leading to a total of

1000×1000×9×2 simulations. Once all simulations were complete, the lifetime costs

and QALYs associated with each age of vaccination were converted to NMB using

the following formula: NMB(joi) = λQALY(joi) − Cost(joi), where λ is the WTP, j is

the age of vaccination, o is the outer loop iteration, and i is the inner loop iteration.

All NMBs were averaged by j over all iterations of o and i to determine the optimal

age of vaccination under current information jc. The NMBs were then averaged by j

over all values of i to determine the optimal age of vaccination the given perfection

information in the outer loop jp. Once finished, jp was compared to jc for each outer

loop iteration to determine the EVPPI for each outer loop, EV PPIo. All values of

EV PPIo were averaged to determine EV PPIϕ. This procedure was done for varying

WTP values from $0 to $1,000,000 to determine how the EVPPI changes with WTP.
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Strong’s Regression Analysis

One of the main issues with the two-level Monte Carlo simulation required for

EVPPI is computational burden. For example, using the two-level method for this

analysis requires 1000×1000×9×2 simulations using forward simulation. When the

MDP was used to evaluate the same set of decisions from age 64, it would required

1000×1000×37×2 simulations to simulate the required data, plus an additional

1000×1000×9×2 simulations in the MDP to determine the same information. Using

parallel processing or high performance computing (HPC) can significantly decrease

computation time, however, this also assumes that the modeler has access to those

technologies, and knowledge of how to best utilize them. As a result of these

limitations, newer and more efficient EVPPI methods have emerged [144–148]. Strong

et al have developed methods using non-parametric regression techniques to provide

an efficient method to estimate the EVPPI [145–147]. This section will discuss these

methods and their application to this problem.

Strong’s method works by using generalized additive model (GAM) regression.

Regression analysis is a useful statistical technique for estimating relationships between

variables. Linear regression is perhaps the most commonly used method, however,

many relationships do not follow a linear form [149]. GAM regression is a flexible

method that can be used for estimating non-linear relationships. This method

alters the typical regression equation by replacing coefficients with functions. These

functions are then predicted based on the data available. A benefit of GAM models

is that no prior assumption is required about the distributional form of the function,

which is what makes these models flexible and ‘non-parametric’. Functions are

predicted using an algorithm that smooths the relationship between the data [149].

In order to utilize this method, steps need to be taken to alter the EVPPI equation

(Equation 4.2). First, as shown in Equation 4.3, the right maximization term is

changed using the the Law of Total Expectation and the independence between ϕ

and ψ.

EV PPIϕ = Eϕ

[
max
j
Eψ|ϕ[NMB(j, ϕ, ψ)]

]
−max

j
Eϕ

[
Eψ|ϕ[NMB(j, ϕ, ψ)]

]
(4.3)
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Once this change has been made, the inner expectation, Eψ|ϕ[NMB(j, ϕ, ψ)], can

be manipulated. This expectation will be reframed as a regression problem. This

is done in three steps. First, results from a probabilistic sensitivity analysis (PSA)

of N samples, indexed by n = 1, ..., N , are needed. Given these N PSA samples,

it is possible to express the net monetary benefit for the age of vaccination j using

PSA sample n as a conditional expectation plus an error term; shown by Equation

4.4 [147].

NMB(j, θ(n)) = Eψ|ϕ(n) [NMB(j, ϕ(n), ψ)] + ε(n) (4.4)

Once the inner expectation is reframed, it can be seen that Equation 4.4 changes

for each value of ϕ(n). This implies that NMB can be written as some unknown

function f(j, ϕ). This is then used to determine the net monetary benefit for each of

the N PSA simulations. This is shown by Equation 4.5 [147].

NMB(j, θ(n)) = f(j, ϕ(n)) + ε(n) (4.5)

The final step is to make the following assumption. For each age of vaccination

j (j ∈ {⊗, 64, 65, ..., J}), we assume that the net benefits produced by the different

values of the PSA {NMB(j, θ(1)), ..., NMB(j, θ(N))} represent the data that can be

regressed to learn about the target function: f(j, ϕ(n)). This can be thought of as solv-

ing J total regression problems. Once a GAM model was fit for each of the J options,

the fitted values were extracted. These are denoted by: {f̂(j, ϕ(1)), ..., f̂(j, ϕ(N))}.
Once these values were extracted, the estimated EVPI is given by Equation 4.6 [147].

̂EV PPI(ϕ) =
1

N

N∑
n=1

max
j
f̂(j, ϕ(n))−max

j

1

N

N∑
n=1

f̂(j, ϕ(n)) (4.6)

R was used to accomplish Strong’s method for EVPPI. First, second order Monte

Carlo PSA was performed on the forward simulation models described in the previous

section. To run the PSA models, the two-loop algorithm was replaced with a single

loop and 1000 samples from the same distributions used for the MDP structure and

the forward simulations. Once the PSA was completed, I utilized the R code that had
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been previously published online by Strong et al as part of the Sheffield Accelerated

Value of Information (SAVI) tool to perform the EVPPI [150]. Mark Strong’s GitHub

repository provided the R code to perform regressions and EVPPI calculations (using

Equations 4.4 – 4.6) with PSA output from any model. Upon deconstructing his code,

I was able to modify it to determine the age of vaccination that provided the highest

NMB. Using this information I was able to generate policy plots to determine what the

optimal age of vaccination would be given perfect information on vaccine parameters.

Given the computational efficiency of this method, I tested several starting ages from

62 – 68, with each analysis fixing vaccination at every age between the starting age –

72 (e.g., 62 – 72,..., 68 – 72). A scenario analysis was conducted which shortened the

time horizon of the model from lifetime to three years for completeness.

Population EVPPI

Once all simulations had been completed, the population EVPPI was calculated.

Population EVPPI is the EVPPI scaled up to the population level to determine

the upper bound for the value of the information. For both the MDP and forward

simulation models, the number of 64 year old men and women in the United States [8]

was multiplied by the EVPPI for men and women, respectively. For results using

Strong’s method, multiple starting ages were tested. The EVPPI for men and women

was multiplied by their respective population sizes to give the population EVPPI for

different age groups.

Model Inputs

Table 4.1 provides the distributions for the EVPPI analysis. These distributions were

used in both two-level Monte Carlo simulations for EVPPI and the GAM regression

models.

Variable Distribution Category

Vaccine – Initial Efficacy** N (0, 0.035) ϕ

Vaccine – Waning Rate* N (1, 0.12) ϕ

Probability – HZ* – asymp lnN (0, 0.099) ψ
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Variable Distribution Category

Probability – PHN* – b1 lnN (0, 0.295) ψ

Probability – Ocular Complications** N (0, 0.01) ψ

Cost – HZ Γ(106.143, 1/18.021) ψ

Cost – PHN See page 218 ψ

Cost – Ocular Complications Γ(41.961, 1/99.201) ψ

Cost – Vaccine Γ(23.33, 1/7.5) ψ

Cost – Vaccine Administration Γ(2196.6, 70) ψ

Cost – Vaccine Severe Reactions Γ(18, 100) ψ

Disutility – HZ β(24.39, 804.59) ψ

Disutility – PHN See page 218 ψ

Disutility – Ocular Complications β(16.4, 254.81) ψ

Disutility – Common Vaccine Complications β(6, 6000)× (30/365) ψ

Disutility – Severe Vaccine Complications β(2.13, 100000)× (30/365) ψ

Table 4.1: Parameter distributions for EVPPI. * – A parameter was sampled and added

to base case parameter value. ** – A scaling factor for the parameter was sampled and

multiplied by the base value for that parameter.

4.3 Results

Results from the three EVPPI analyses will be presented in order. A comparison of

the computation times of the methods will be shown at the end of the results section.

MDP Model

The EVPPI for women starting at age 64 and a WTP of $100,000 is $0.68. For men,

the EVPPI is projected to be $1.52. For the cohort of all 64 year old women and men

in the US the population EVPPIs are estimated to be $1,248,843 and $2,523,492,

respectively. The total EVPPI is $3,772,335. Figure 4.2 shows the recommended

policy for vaccination given perfect information on the vaccine, for women assuming
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a WTP of $100,000. If the base case values for vaccine efficacy and waning were the

“true” values (i.e., 0.00, 1.00, respectively), Figure 4.2 shows that it would be optimal

to vaccinate at age 66. Only if the vaccine waning speed was very slow, approximately

30% slower than the base case, would it be optimal to vaccinate as early as 64. The

figure also shows that if the vaccine was fast waning and had a lower initial efficacy,

there are circumstances when it would not be optimal to vaccinate women. Under

current information, for women and men, the policy would recommend vaccination at

age 66.

Forward Simulation

Figures 4.4 – 4.5 show the EVPPI for 64 year old women and men at varying WTPs

between $0, and $300,000, respectively. For women the highest EVPPI is at a WTP of

$50,000. Here EVPPI equals $9.42. For men, EVPPI is greatest at a WTP of $70,000.

At this WTP, EVPPI equals $11.19. Figure 4.6 shows the population EVPPI for men

and women. At the WTP corresponding to the highest EVPPI values for women

and men, the population EVPPI equals $17,070,360 and $18,504,254, respectively.

For men and women, at a WTP of $100,000 the EVPPI was equivalent to the MDP
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structure simulation at $0.68 and $1.52 for women and men, respectively.

Figure 4.7 shows the policy results of the optimal vaccination policy given perfect

information for women at varying levels of WTP. It also shows the optimal policy

under current information. At a WTP of $50,000/QALY for women under current

information, it would be optimal to never vaccinate. Conversely, with perfect informa-

tion, it would be optimal to vaccinate people as early as age 65. For vaccination to be

optimal for women given a WTP of $50,000/QALY, the vaccine must have a higher

initial efficacy, a slower waning rate or a combination of both. Figure 4.8 shows the

policy results for men. At a WTP of $70,000/QALY it would be optimal to vaccinate

at age 66 under current information. Under perfect information, if the vaccine has

faster waning or lower initial efficacy, it would be optimal to never vaccinate.

Assuming a WTP of $100,000, it would be optimal to vaccinate a cohort of 64 year

olds at age 66 assuming that the base case assumptions about the vaccine efficacy

and waning were the “true” values. However, the policy plot also shows that a

slight increase in vaccine efficacy or a slight decrease in waning speed would shift the

recommendation to vaccination at age 65. Under current information, assuming a

WTP of $100,000 we would recommend vaccination at age 66. The policy plots help

to interpret the why the EVPPI may be higher at certain WTPs than others.

Strong’s Regression Method

Individual and population EVPPI results are presented in Figures 4.9 – 4.12. Figures

4.9 – 4.10 show the individual EVPPI results for women and men at varying WTPs,

respectively. The highest EVPPI for women is at a WTP of $50,000 with a value of

$9.88 (vs. $9.42). For men, the highest EVPPI is $11.62 (vs. $11.19) at a WTP of

$70,000. Scaled to the population level, the EVPPI is $17,910,454 and $19,216,874 for

women and men, respectively. At a WTP of $100,000/QALY the EVPPI is $2.04 and

$0.91 for men and women, respectively. The EVPPI results from Strong’s method

are marginally greater at every WTP compared to forward simulation and the MDP

model.

Figure 4.11 shows the population EVPPI results for starting ages between 63 – 67
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Figure 4.12: Population EVPPI – all ages combined – Strong’s method

at varying levels of WTP. Results suggest information may be more valuable to men

than women, and more valuable to younger ages than older ages. When combining

all possible starting ages together, as shown by Figure 4.12, the highest values of

population EVPPI for men and women between the ages of 63 – 67 are $99,542,341

and $93,967,997, respectively. At a WTP of $100,000 the population EVPPIs for the

same groups of men and women are $15,516,265 and $6,177,378, respectively. The

total population of men and women between 63 – 67 is 17,191,928, which equates to

an average EVPPI of $1.26 / person at a WTP of $100,000.

Policy results for a cohort of 64 year old women are presented in Figure 4.13.

Policy results for women and men starting between ages 62 – 68 can be found in

Figures 4.15 – 4.27 on pages 155 – 167 in the end of chapter appendix. For a cohort

of 64 year women, this figure shows nearly the same results as the Figure 4.7 from

the forward simulation. The policy results indicate that under a WTP of $100,000

and assuming that the base case assumptions about the vaccine’s efficacy and waning

were the “true” values, that 66 would be the optimal age for vaccination. If the

vaccine was more efficacious or the vaccine had a slightly slower waning rate then it

would be optimal to vaccinate at age 65. Under current information, age 66 would

be the optimal age for vaccination. As WTP increases, the age of vaccination under
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current information decreases. Under perfect information the younger ages for optimal

vaccination increase in presence on the plots, moving in from the left side. This trend

can be seen on all policy plots (see Figures 4.7 and 4.15 – 4.27).

In examining Figures 4.15 – 4.27, for women, the earliest age where vaccination

is recommended under current information is 63, for a cohort starting at age 62

assuming a WTP of $500,000. Under perfect information, WTP needs to be at least

$500,000 for vaccination at age 62 to be included as an option. For men, vaccination

at age 62 is considered optimal under current information at a WTP of $500,000. At

ages 67 – 68, the current policy has nearly the same recommendation as the policy

under perfect information for WTPs above $100,000.

Comparison of Method Efficiency

This section outlines the differences between the methods in terms of computation

time. As mentioned previously, two-level EVPPI can be computationally and time

intensive. Table 4.2 shows the computation time that was required to generate the

data for each of the possible methods for this chapter. This table only presents the

data generation times, not data analysis times. All computation was done on the

same computer and parallel processing was used when possible (not used for Strong’s

methods). For parallel processing, eight CPU cores were used for each simulation on

an Intel Core i7-2600 3.4GHz processor with 8.00GB of ram. Profiling methods used

during the analysis, showed the processor working at 100% capacity; RAM was not

highly utilized during computations. This indicates that the run times were limited

by processor capability, not memory capability. Table 4.3 shows the computation

time that would be required to process the data generated in Table 4.2.

Data generation for using a MDP model structure requires both more data

generation and processing time. An important distinction about this method is that

the processing times listed in Table 4.3 are for only one value of WTP. This is due to

the nature of the MDP structure, where costs and QALYs must be first converted

into NMB before they can be analyzed in the model; thus the MDP must be run

again for each new WTP. Conversely with forward simulation, the costs and QALYs
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Figure 4.13: Policy Plot – Women, age: 64 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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generated by the model reflect the lifetime costs and QALYs of cohort starting at 64

and being vaccinated at some age j. These costs and QALYs can be converted to

NMBs easily. Analysis time results show that generating a 1,000 sample PSA and

calculating the EVPPI using Strong’s methods was more than 4 times faster than

just processing the data for the 1000×1000 forward simulation (3.66 min vs. 15 min).

Method Model Iterations CPU time
MDP 1000×1000×37×2 52 hours
Forward simulation 1000×1000×13×2 31 hours
Strong’s method 1000×13×2 3 min

Table 4.2: Computation times for data generation for EVPPI analysis

Method ‘Outer loops’ for ϕ CPU time
MDP* 1000 7 hours
Forward simulation** 1000 15 min
Strong’s method** 1000 20 seconds

Table 4.3: Computation times for data processing for EVPPI analysis. For one gender
only. * – For one value of WTP ($100,000) only. ** – For 31 values of WTP ($0 – $300,000,
by $10,000)

.

Scenario Analysis

Figures 4.28 – 4.29 in the end of chapter appendix provide the results of the scenario

analysis where the time horizon of the model was shortened to three years. In this

scenario the cohort started at age 64 but only decisions to vaccinate at ⊗, 64, 65,

and 66 were allowed (given the truncated time horizon). Results indicate that with a

truncate time line, the value of information is $0 for all WTP less than $200,000 for

women and $260,000 for men. Once a high enough WTP was reached ($210,000 for

women, $270,000 for men) some of the simulation results suggest that there would

be circumstances where it would be optimal to vaccinate at age 64. Similar to all

previous results, the EVPPI was highest when the distribution of simulation results
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was approximately equivalent between no vaccination and vaccination at age 64; this

can be seen by examining the policy plots in Figures 4.30 and 4.31. Vaccination at

65 or 66 was never recommended under the truncated time horizon model.

4.4 Discussion

The objective of this chapter was to determine the value of additional research for

two of the key parameters from both of the previous chapter analyses. Results from

the cost-effectiveness and from the MDP indicated that the initial efficacy of the

vaccine and its waning speed could have a substantial impact on the results. These

parameters were considered to be the most important for determining the value of

perfect information. In this chapter I used three different modeling techniques to

assess the value of information for these parameters. The results from the analyses

provide some useful insight.

The EVPPI was greatest when the simulation results were approximately equally

distributed between never vaccinate or vaccinate at some age under perfect information.

This can be seen by comparing the policy plot figures to the EVPPI figures. For

women, the highest value of information came at a WTP of $50,000. In this situation,

under current information, the recommended policy would be to not vaccinate,

and under perfect information, approximately half of the points in the policy plot

recommended vaccination. For men, the highest EVPPI was at a WTP of $70,000.

At this WTP, the optimal vaccination strategy for (every cohort younger than age 68)

was vaccination at age 67. Under perfect information, approximately half of points in

the policy plot recommend no vaccination.

As WTP increases, results shift to include more simulation results in favor of

vaccination vs. no vaccination. As this happens the value of information decreases.

As WTP increased younger ages move in from the left hand side, “pushing” the older

ages to the right. This observation has a logic to it. If the policy plots were divided

into quadrants (an example is shown in Figure 4.14) the NW quadrant would be the

best possible quadrant for the vaccine. Here, the vaccine is waning slowest, and has a

higher initial efficacy. It is in this quadrant that younger ages for vaccination appear
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Figure 4.14: Quadrant plot – Women – Age: 64 – Strong’s Method – WTP: $100,000

first. If we knew with certainty the vaccine would wane more slowly and would have

a higher initial efficacy it would seem reasonable to recommend vaccination at earlier

ages as the vaccine would confer more benefit for longer.

Conversely, the SE quadrant would be the worst for the vaccine. Here, the

vaccine would be waning quickest and have the least initial efficacy. It is in this

quadrant where the oldest ages or do not vaccinate are the most common. Given these

characteristics, it would be logical to postpone vaccination until a time where the

vaccine could be administered to those at higher risk. The NE and the SW quadrants

assume that there fast waning with higher initial efficacy, or slower waning with lower

initial efficacy, respectively. Compared to the SW, the NE quadrant has more older

ages were vaccination is recommended. For example, for 64 year old women, under

WTPs from $50,000 – $70,000, age 68 is recommended as an optimal policy in only

the NE quadrant. This suggests that even under fast waning conditions, a higher

initial efficacy could make vaccination optimal at older ages. Based only on a visual

comparison of these plots it appears that the vaccines waning speed has more of an

impact on recommending lower ages of vaccination than does the vaccines efficacy, as
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younger ages are more frequent in the SW quadrant compared to the NE.

Analyses suggest that there is a high value in determining the uncertain information

at WTPs associated with the greatest decision uncertainty. At lower WTPs under

perfect information no vaccination would be recommended approximately 50% of the

time (assuming vaccine characteristics in the SE quadrant). However, assuming a

WTP of $100,000 or more, which is not unreasonable for the US [75,151], the value of

information about these parameters declines. Therefore, the most value occurs with

the decision to vaccinate or not, not in the ability to optimize when the vaccine would

be given. That is there may only be a marginal value in determining the perfect

information to change the optimal recommendation by one or two years. Further, as

one moves to older starting ages (e.g., 67 – 68), the VOI at higher WTP drops to near

zero or zero. This is because there is not as much “room” to optimize the decision.

For example at a WTP of $200,000 for women starting at age 62 there are four

optimal decisions under perfect information (vaccinate between 63 – 67, depending on

information). Comparatively, for women at age 67 there is only one optimal decision

given perfect information (vaccinate at 67). At 67 the perfect information matches

the current information, thus the information is not valuable.

Despite the value of information on an individual basis being low, the population

EVPPI for this analysis was high. This is due to the population at risk for disease;

with an estimated 90% or greater of the US population being at risk for HZ. For a

group of 64 year olds the population EVPPI was still greater than $3.5 million at a

WTP of $100,000. If we assume that the WTP in the US is at least $100,000 and

decision makers were only interested in 64 year olds, the additional research would

need to cost less than $3.5 million to be recommended. The type of research needed

would likely be a clinical trial with several years follow-up. The price of clinical

trials varies considerably, with an approximate range of $1million – $100million or

more [152]. It could be possible to use observational data to answer this question.

However, that could also be costly unless data collection infrastructure was already in

place. Given the new vaccine on the horizon [136], there are fewer age groups where

the information would be valuable. Figure 4.12 does indicate that if more ages could

be affected the value of information could be quite high. Overall, while there may a

150



lower value of information about determining the optimal age, it does not mean this

information is value-less. However, given the constraints with a new vaccine coming

to market and the higher WTP in the US [75, 151], the additional research needed to

be able to optimize the delivery from current information over the small 1 – 2 year

window would not likely be worth the investment.

A potential limitation to these conclusions is the data used for the models. VOI

assumes that perfect information would be known and indeed could be known to the

decision maker. The data used here encompasses a wide range or possible options

and based on our understanding of the disease and the vaccine I have confidence

that the ‘true’ value of the parameters tested would be within the distributions

used. Further, the results of the policy ploys show that there are ranges within the

results under perfect information, so while it may never be possible to gain perfect

information, narrowing the range on what the ‘true’ value is would still allow for

further optimization. However, narrowing the range would not provide as much

value as determining perfect information and we have shown that obtaining perfect

information is not likely to be worth the investment at this time.

Model Comparisons

One unique feature about this analysis was the use of three different methods to

compare the EVPPI. The first method utilized was the MDP where the decisions were

fixed to determine which age would produce the best age. This MDP structure did use

backward induction, but it did not use the same maximization function implemented

in Chapter 3, rather the model was using a fixed policy. This fixed policy was then

used to determine the NMB at every age which could then be used to determine the

optimal age of vaccination.

Because the MDP structure was using a fixed policy rather than an optimization

policy, it was able to be replicated as a forward simulation. Turning the backward

induction model into a forward simulation had several advantages. First, no additional

data was needed to run the model. A MDP structure requires a large amount of data.

Generating this data was the biggest time constraint in using the MDP structure as
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shown by Table 4.2. To run the MDP structure for one gender required 37 vaccine

STMs, each run for a two-level 1000×1000 Monte Carlo (i.e., 37,000,000 STMs). PSA

was also required for the lifetime costs and QALYs of developing HZ. Once all the

data was generated, it was run through the MDP structure. Therefore 1,000,000

MDPs were run for each fixed age of vaccination. Conversely, the forward simulation

started a cohort of people at age 64 and then fixed the vaccination policy at some

age in the future. Because this model included the chance of HZ and the benefit of

vaccination, no additional data was needed. Therefore, each age of vaccination tested

only required a 1000×1000 two-level Monte Carlo implementation. This drastically

decreased simulation and analysis time. Another benefit of the forward simulation

is that the model provided the lifetime costs and QALYs associated with the fixed

vaccination policy for the cohort starting at age 64. The STM data needed for the

MDP model only provided the lifetime costs and QALYs for being vaccinated at

some age but did not include the prior risk of disease – that is the goal of the MDP

structure to determine. Therefore, to determine the NMB for each of these are

very different tasks. For the MDP structure, all input data must be converted into

NMBs using a predefined threshold of WTP/QALY and then run through the MDP

structure to determine the value of the fixed policy. This takes approximately 7 hours.

Conversely, the forward simulation already provides the lifetime costs and QALYs of

each possible policy assuming prior risks. To convert to NMB, a WTP can be applied

directly to the QALYs and costs are then subtracted. This process takes less than

two seconds even with a large amount of data. Because in the forward simulation this

conversion is a simple multiplication and subtraction problem, many more WTPs

can be tested much faster compared the MDP structure. Therefore, in comparing

forward simulation the MDP structure for the purposes of EVPPI, it is evident that

the forward simulation is a faster method for this problem; this is shown in Tables

4.2 – 4.3.

In comparing the forward simulation method to Strong’s regression method it is

obvious there is another large advantage in computation time. Strong’s method is

also simpler as all that is required is a second order Monte Carlo PSA; this method

does not require a complicated two-level sampling algorithm. The pattern in the
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results is nearly the same under the same WTP, Figures 4.7 and 4.13 are nearly

identical. When comparing the results of the EVPPI analysis in terms of magnitude,

Strong’s method does produce a EVPPI that is higher than the EVPPI produced by

the gold standard two-level Monte Carlo methods. Indeed, Strong recognizes that

his method does add an upward bias to the results [145–147]. This upward bias is

a limitation of this method. In this research, the maximum impact of this bias was

seen at the from a WTP range of $50,000 – $70,000/QALY which were the WTPs

that produced the largest EVPPIs. The bias resulted in population EVPPI estimates

of $700,000 and $800,000 more than the forward simulation estimates for men and

women, respectively. This difference was lower at higher WTPs. While Strong’s

method does introduce an upward bias into the results, it does work well for a first

step in estimating the EVPPI. Given the dramatic savings in computation time, this

method provides a check of the value of information and can hopefully provide fast

insight into if additional research would be valuable. If the value of information is

near the expected cost of the research design that would be needed to acquire that

information, then the traditional two-level algorithm methods could be used, along

with techniques like expected value of sample information (EVSI) to better predict

the value. However if the EVPPI is very high or very low then two-level methods

may not be needed. Therefore, despite the bias, I would still recommend Strong’s

methods as a first approach to determine the ceiling for the EVPPI.

Conclusion

In conclusion, this chapter sought to determine the value of perfect information

on two key parameters in the models from the previous chapters. This research

showed the benefit, in terms of time, on using efficient estimation techniques to

determine the EVPPI. While these techniques may not be as accurate as the gold

standard two-level Monte Carlo simulation methods, they do provide very similar

results at a fraction of the computation time. For this problem, methodologically,

Strong’s method provided useful information and given the results could have likely

been sufficient without further analysis. There has been a call for using EVPPI in
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situations that involve multiple interventions or multiple decisions [153]. While this

research only investigated one intervention, multiple options for vaccination timing

were considered. Based on a cursory scan of the literature, EVPPI analysis has not

been widely applied to the issue of treatment timing. This work also presents policy

plots to assist in the interpretation of the EVPPI plots. I have not seen these types

of plots used in the literature but I do feel that they add value to the analysis and

provide insight to why EVPPI may be higher at certain WTP thresholds compared

to others. Results suggest that there is value to this information, but that most of

the value comes at WTPs that are less than the typical WTP assumed for health

technologies in the US. I found that there was more value in deciding whether to use

the vaccine at all rather than optimizing the age of administration. Therefore, while

there would be some value in determining more about this vaccine in an effort to

optimize the age of administration, it is unlikely that the research required would be

worth the investment. Further, with a new vaccine on the horizon [136], the time

that this information could be valuable is diminished. However, this research does

lay ground work for further value of information studies on the new HZ vaccine or

for other vaccines where optimal timing is important. Given the impact that the

vaccines efficacy and waning make on the outcomes of the cost-effectiveness and the

optimal timing of the vaccine it will be important for new studies on the new vaccine

to pay close attention to these parameters.
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4.A Additional Figures and Tables

Current Information Perfect Information
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Figure 4.15: Policy Plot – Women, age: 62 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.16: Policy Plot – Women, age: 63 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.

156



Current Information Perfect Information

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

0
5

0
0

0
0

6
0

0
0

0
7

0
0

0
0

8
0

0
0

0
9

0
0

0
0

1
e

+
0

5
1

1
0

0
0

0
1

5
0

0
0

0
2

e
+

0
5

3
e

+
0

5
5

e
+

0
5

1
e

+
0

6

0.7 0.9 1.1 1.3 0.7 0.9 1.1 1.3

Vaccine Waning 'Speed'

In
iti

a
l V

a
c
c
in

e
 E

ff
ic

a
c
y

Policy

Do Not Vaccinate

Vaccinate at 65

Vaccinate at 66

Vaccinate at 67

Vaccinate at 68

Policy, Starting Age: 65

Figure 4.17: Policy Plot – Women, age: 65 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.18: Policy Plot – Women, age: 66 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.19: Policy Plot – Women, age: 67 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.20: Policy Plot – Women, age: 68 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.21: Policy Plot – Men, age: 62 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.22: Policy Plot – Men, age: 63 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.23: Policy Plot – Men, age: 64 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.24: Policy Plot – Men, age: 65 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.25: Policy Plot – Men, age: 66 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.26: Policy Plot – Men, age: 67 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.27: Policy Plot – Men, age: 68 – Strong’s Method. Waning speed: relative
change. Initial vaccine efficacy: additive change.
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Figure 4.28: EVPPI – Women, age: 64 – Strong’s Method – Scenario analysis (truncated
timeline)
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Figure 4.29: EVPPI – Men, age: 64 – Strong’s Method – Scenario analysis (truncated
timeline)
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Figure 4.30: Policy Plot – Women, age: 64 – Strong’s Method – Scenario analysis
(truncated time line). Waning speed: relative change. Initial vaccine efficacy: additive
change.
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Figure 4.31: Policy Plot – Men, age: 64 – Strong’s Method – Scenario analysis (truncated
time line). Waning speed: relative change. Initial vaccine efficacy: additive change.
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Chapter 5

Discussion & Conclusion

The aim of this dissertation was to use techniques in decision science and operations

research to better determine the benefit and policies for administering the HZ vaccine.

Herpes zoster is a disease that most people are at risk for [2]; it can have deleterious

effects on quality of life and a high economic impact. The current vaccine is the best

tool available to combat this disease. However, because the vaccine does not have a

lifetime durability, it is important to make good decisions on when to use the vaccine

so that we can maximize its benefits. The ACIP recommends vaccination for people

ages 60 and older.

Cost-Effectiveness Analysis & Markov Decision Processes

The cost-effectiveness analysis shows the vaccine is more cost-effective for women than

men at every age. The most cost-effective age to vaccinate using this model was 67

for men and women. Likewise, the MDP suggests the vaccine is likely more optimal

for women than men. The MDP optimization model suggests that vaccination for

both men and women should not begin until age 66, assuming only one dose will

be given. The results from these models are very similar. The modeling structures

were slightly different, which could explain the one year difference in the optimal

recommendations. The MDP used a collapsed HZ health state that included the

costs and disutilities associated with HZ and its complications, whereas the CEA
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model used a more complicated structure. The MDP used annual epochs which may

have slightly overestimated the benefit of the vaccine, compared to the CEA which

was run in monthly cycles. While the results of the models are similar, the MDP

does not recommend vaccination earlier than 66 in the base case. Comparatively,

using a WTP of $100,000 in the CEA, ages younger than 67 still had ICERs less

than $100,000. An important distinction between the CEA and the MDP is that

the MDP tries to optimize the time when the person should get the vaccine rather

than evaluate the cost-effectiveness. Therefore, it does assess the benefits of getting

vaccinated at ages earlier than 66, but the model suggests that vaccinating at those

earlier ages is not optimal, even if in an ICER would be less than $100,000.

Comparatively, one benefit of the MDP model is the ability to evaluate many

different options quickly. Theoretically, there 250 different policy options evaluated

by the one dose MDP (50 epochs, 2 action options per epoch) compared to the 50

decisions that were required to be evaluated independently in the CEA model. To

replicate the results of the MDP with a CEA model would have taken much more

computation time. Adding the second dose option further increases the policy options,

making the problem a huge computational burden through if only using standard

STMs. When two doses were available, it would be optimal to vaccinate women with

two doses in the base case, whereas it would never be optimal to vaccinate men with

two doses in the base case. Future studies on disease modeling should consider the

two dose question about when would be the optimal time to receive the new vaccine,

given that a person has received the current vaccine at some time in the past.

Value of Information

Both the CEA and the MDP models showed that the results were sensitive to the

waning speed and the initial efficacy of the vaccine. These two parameters had

the biggest impact on the results of both models. This lead to the decision to

focus on the value of additional research for these parameters. The analysis showed

that the value of information was highest at lower WTPs when the decision under

perfect information would be mostly split between vaccination at some age and no
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vaccination at all. However, under WTPs that are more commonly used in the US

(e.g., ≥ $100,000) [75, 151], the value of information decreased. When converting

the EVPPI to a population level estimate, the population EVPPI was high (e.g. >

$3.5million). However, the cost of the research to gain this information would also

likely cost several million dollars. Therefore, while there is some benefit to being

able to select the optimal age with perfect information, the benefit may be marginal,

especially as there is a new vaccine that will soon be coming to market. Given the

impact these parameters had on my models, these will be important parameters to

focus on for research and models on the new vaccine.

Limitations

This research does have limitations. All work done is specific to the US. The disutilities

used for health states were from direct elicitation time trade off study on herpes

zoster. All costs for the models are from US studies. Therefore, translating the

recommendations to other countries without further research on health utilities or

costs for a specific country should not be done. Modeling studies are only as good

as the data used. All data used in these models was collected using systematic

review procedures to ensure collection of the highest quality data. However, some

assumptions were made – which have been outlined in their respective chapters –

when data was not available. To account for uncertainty in the data many sensitivity

and scenario analyses were performed. While the sensitivity analyses do show

that the models were robust to certain changes, it does highlight the impact that

certain parameters can make. Like all modeling studies, the results of this research

are subject to change, and indeed should be updated as new information becomes

available [48]. It should also be noted that results for these analyses are only applicable

to immunocompetent patients. Immunocompromised patients are known to be at

a higher risk for both HZ and its complications [154]. However, event probabilities

do change between different types of immunocompromised patients, which adds a

further layer of complication to any analysis done for immunocompromised patients.

There is also minimal data on costs and health utilities for immunocompromised
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patients who experience HZ or its complications. If further epidemiology, health

utility, and cost studies were done, the methods used in this dissertation could be

applied to sub-groups of immunocompromised patients to determine how cost-effective

the vaccine may be and when it would be best to administer it.

Future Work

Coming from this work there are several research opportunities moving forward. First,

as there is a new vaccine in development [136], there will be the opportunity to repeat

the cost-effectiveness analysis and the MDP analysis for the new vaccine. There

will also be the opportunity to include the current vaccine in those analysis to do

comparative work. One interesting question which I have already started working

on in this dissertation is the question of multiple doses with both the current and

upcoming vaccine. The two dose scenario analysis in Chapter 3 on the new vaccine

showed that it would be optimal to administer that vaccine at age 69 and older under

several assumed conditions (same cost, same safety profile, same waning, better initial

efficacy). Because of the high efficacy of this vaccine, it appears that it is optimal to

further delay the administration of this vaccine such that it provides the most benefit

to people later in life when they are most at risk. However, it is also possible that the

new vaccine will be priced higher than the current vaccine given that it is likely to be

more efficacious. Therefore, once the new data is available on the new vaccine and it

has been priced, future work examining a two dose question should be examined. In

this work, I hope to investigate the question of it would be optimal to receive two

doses of the new vaccine, or if it would be optimal to receive two doses (one current,

one new) given that the current vaccine is does provide good protection at younger

ages and may be priced cheaper than the new vaccine.

Data Visualization

One part of this dissertation that I would like to continue is my work with data

visualization. In each chapter I have tried to think of unique ways to display data

that I have not seen used in other papers. In the CEA I created the cost-effectiveness
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acceptability contour (a way of displaying several cost-effectiveness acceptability

curves on one plot), and the contour plots for the two-way sensitivity analysis. In the

MDP analysis, I created optimal policy plots and optimal policy heat maps for the

PSA. In the VOI analysis, I made policy plots to help visualize why the EVPPI may

be higher at certain WTPs. These policy plots also showed all available decisions

on one plot. Health economic evaluation models typically produce a large amount

of data, are very complex, and often (in my anecdotal experience) are not easily

understood by a general audience. I think that data visualization is a technique that

helps bridge the gap between us as researchers and people with limited understanding

of what we do. In my future work I plan to continue to think of new ways to display

data to make results clear and easily accessible.

Conclusion

This dissertation has used advance decision modeling techniques to show that the

vaccine is cost-effective for men and women at several ages. However, when accounting

for risk of disease when deferring vaccination, it is likely that a policy to vaccinate

people under 65 years of age is sub-optimal. While there is uncertainty about the

vaccine parameters, in the US our WTP is typically great enough where there would

only be a marginal benefit to gaining the information required to make optimize the

decision beyond the our capabilities with current information. Vaccination is the

best option available to combat this disease. It is my hope that the results of this

dissertation can and will be used to make good decisions about the application of the

HZ vaccine in the attempt to maximize the benefit to society while maximizing our

available resources.
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Appendix A

Model Data for Dissertation

A.1 Epidemiology Data

Incidence of HZ

Data from three papers [101–103] were used to create the age-specifc incidence of

HZ for men and women. These papers were selected as each provided the incidence

rates for men and women separately. First, incidence rates from these selected papers

were checked against other papers and systematic reviews for face validity and were

deemed appropriate. To create an estimate of incidence, midpoints of the age ranges

provided were plotted against reported incidence. This data was then fit using a

logistic function (see Equation A.1) in R.

Incidence =

(
asymp

1 + e(
xmid−age

scale )

)
/1000 (A.1)

The logistic shape was selected a priori; data from a recent systematic review [13]

suggests that incidence follows a logistic growth pattern. To determine the confidence

interval, the asymptote parameter (asymp) of the logistic function was manually

altered to cover the range of data extracted from the literature reviews. Figure A.1

shows the fit and the confidence interval for HZ incidence. Note, data was fit from

ages 18 – 100, but only incidence data beyond age 50 was used.
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Figure A.1: Risk of HZ. Females: Data ∗, Purple fit and 95% CI region. Males: Data •,
Green fit and 95% CI region. Ages under 50 used for fitting. Data left of dashed line not
used in model.

Risk of PHN

To calculate the risk of PHN given HZ, six papers from a recent systematic review [13]

and one additional study from Italy were used [42,79, 104–108]. All papers from the

systematic review [13] were also found during the literature review for model inputs.

Papers were selected as each provided data on at least three age groups and used a

similar diagnosis strategy for PHN (risk at 90 days after infection). When available,

data was preferentially used from the systematic review [13] as age categories had all

been converted to the same range. Similar to HZ incidence methods, midpoints of the

age ranges were plotted against the corresponding risk of PHN; shown in Figure A.2.

Different functions were fit to the data using Microsoft Excel (v.2013). The power

function (see Equation A.2) was selected as it provided the highest R2. Data when

then transferred to R, and parameters from the Excel power function were used as

starting values for non-linear regression. Similar to HZ incidence, data for ages 18 –

100 were used to create the fits, but only data from age 50 and above was used in the

model. There is no distinction made between the risk of PHN for men and women.
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Figure A.2: Risk of PHN. Data: ∗. Solid line: Base case fit. Shaded region indicates
regions used for sensitivity analysis. Upper risk limited at 35%. Ages under 50 used for
fitting. Data left of dashed line not used in model.

Once the equation was fit, the b1 parameter was altered to provide a range for the

possible risk. The risk of PHN was limited to 35% at the upper bound. This limit

was used as without it, the risk of PHN risk would have been outside the value of

any of the literature used.

PHN Risk = b1 × ageb2 (A.2)

PHN Time and Severity

One paper provides data for the chance of developing moderate or severe PHN as well

as the duration of specific PHN health states (i.e., mild, moderate, severe) [79]. This

data was used to construct probabilities for transitioning into and between different

PHN health states. Data on PHN severity were extracted from the paper and fit

using a linear model using the midpoints of the age ranges provided. There were no

confidence estimates for these data so a range of ± 10% was used. Data on PHN

time are provided in Table A.1. To use this data, it is assumed that people starting
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PHN Severity Duration Lower CI Upper CI SE
Mild 6.7 6.1 7.4 0.325
Moderate 10 9.4 10.7 0.325
Severe 12.5 11.1 14.1 0.75

Table A.1: Time in PHN data. All durations in months.

in more severe PHN states must transition through all subsequent mild PHN states

before reaching the disease free state. To convert the duration data into probabilities

Equation A.3 was used.

1

DPHNj
−DPHNi

(A.3)

j: Worse state of PHN i: Better state of PHN

A.2 Cost Data

Disease Costs

Medical expenditures related to HZ and its complications were calculated using data

from one paper [14]. This paper was selected as it provided two time periods of

information and the most specific data of any of the papers found in the literature.

Costs were converted into 2015 US dollars using the medical care component of the

consumer price index (CPI) [155]. As recommended by Briggs et al (2006) [139]

costs were assumed to fit a gamma distribution. The α and β parameters were

calculated using Equations A.4 – A.7 and data from Table A.2. After fitting the data

to a distribution, each corresponding distribution was used to generate a confidence

interval for one-way sensitivity analysis.
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Parameter Mean SE CI Distribution
HZ 957 47 (867, 1,051) Γ(414.598, 2.308)
PHN 5,831 990 (4,055, 7,963) Γ(34.691, 168.084)
Ocular Complications 4,163 652 (2,986, 5,543) Γ(40.767, 102.114)
Neurologic Complications 9,872 2,979 (5,520, 15,253)∗ Γ(10.981, 898.950)
Cosmetic Complications 9,873 5,285 (3,036, 19,883)∗ Γ(3.489, 2829.051)

Table A.2: Direct medical expenditures. SE: Standard Error of the mean. CI: 95%
Confidence Intervals ( ∗ 90% Confidence Intervals used due to heavy tails). All costs in
2015 US dollars ($)

E[Costs] = µ̄ = αβ (A.4)

V ar[Costs] = s2 = αβ2 (A.5)

α =
µ̄2

s2
(A.6)

β =
s2

µ̄
(A.7)

Lost Productivity

Productivity losses for the model were calculated using data from three papers

[63, 116, 117] as well as data from the U.S. Bureau of Labor Statistics (BLS) [118].

Table A.3 provides an overview of the data. Mean hours lost were extracted for each

pain condition along with the percentage of the population that takes time away from

work given disease. These numbers were combined to give an estimate of the mean

number of working hours lost due to HZ or PHN. BLS data was used to determine

mean weekly earnings for the US population. Weekly earnings were converted into

hourly earnings assuming an average of 40 hours per week worked. The mean weekly

earnings for the US population in 2015 was $1007.00, which equals a mean hourly

earning rate of $25.20. This earning rate was multiplied by the mean number of

working hours lost given disease to give an estimate of the productivity lost due to

disease.
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Disease Pain State Hours1 Patients(%) Hours2 Cost($) Reference
HZ None 17.4 43 7.4 147.96 [116]

Mild 17.4 43 7.4 147.96
Moderate 41.9 69 28.9 571.72
Severe 51.6 67 34.5 683.66

HZ None – – – – [117]
Mild 3.8 100 3.8 75.10
Moderate 18.4 100 18.4 363.86
Severe 74.2 100 74.2 1467.31

HZ None 48.0 4 2.1 41.57 [63]
Mild 50.6 13 6.3 125.18
Moderate 50.6 39 19.9 394.35
Severe 93.6 78 73.0 1443.73

PHN Mild 49.3 9 4.5 89.51 [63]
Moderate 91.2 33 30.4 601.10
Severe 153.4 53 80.7 1595.42

Table A.3: Productivity lost data. Patients(%): proportion of patients who take time
away from work. Hours1: Hours lost not accounting for proportion of patients who take
time from work. Hours2: Hours lost accounting for proportion of patients who take time
from work. Costs presented in 2014 US Dollars.

Vaccine Costs

Costs for the vaccine were taken from the 2015 CDC adult vaccine price list [109].

Administration costs for the vaccine were taken from three papers [110–112]. These

data sources provided data on labor, supplies, and overhead costs. All data was

converted in to 2015 US dollars and then averaged to provide an estimate of the

administration costs for the vaccine. The main severe adverse event for the vaccine

was an allergic reaction that may or may not have lead to anaphylaxis [115]. In a large

cohort study (n = 193083) there were 71 cases of vaccination that required further

medical care due to an allergic reaction and 9 cases that resulted in anaphylaxis [115].

Costs were sourced from one study that examined the costs associated with allergic

reactions in adults [114]. Costs were converted to 2015 US dollars and then multiplied

by the probability of a general allergic reaction or anaphylaxis and then summed to
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estimate the costs of severe adverse reactions of the vaccine. It was assumed that the

there was no costs for common adverse reactions. The vaccine is not related with

increased risk of any other severe outcome [115].

A.3 QALY Data

Disease Disutilities

Data from Lieu et al (2008) [88] were selected to create the disutilities for the disease

states in the model. This data was selected as it provides the only US estimate of

health state disutilities using a direct elicitation time-trade off (TTO) method and

includes a large sample size including community members, HZ patients, and PHN

patients. Data from the paper was in a similar format to Table A.4 below. Each

condition is defined by a pain score (valued from 0 – 10) and a time duration in

months. The model assumes cut points in the pain scores to be: 1 – 3: Mild Pain; 4 –

6: Moderate Pain; and 7 – 10: Severe pain. Therefore, the condition 3×1 month is

considered 1 month of mild pain. Any condition with 1 month period is assumed to

be an HZ health state; any condition with > 1 month time period is assumed to be a

PHN health state.

Group Cmty HZ PHN
Condition T.Mean L.CI U.CI T.Mean L.CI U.CI T.Mean L.CI U.CI
3 × 1m 15 10 21 6 4 8 18 11 27
8 × 12m 76 58 96 100 81 120 301 181 443

Table A.4: Example TTO table. Cmty: Community Members. HZ: HZ Patients. PHN:
PHN Patients. T.Mean: Trimmed Mean – removal of the highest and lowest 2.5% values of
the mean distribution. L.CI: Lower 95% confidence interval of the trimmed mean. U.CI:
Upper 95% confidence interval of the trimmed mean.

To generate the disutilities the trimmed mean, upper, and lower confidence limits

were divided by the number of days in corresponding condition (1 month = 30

days). If there was more than condition for a health state (e.g., two severe PHN
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states), the utility generated from each was averaged. In the model, I elected to use

the disutilities generated from the corresponding patient group. For example, the

disutilities calculated from the HZ group were used to represent the disutilities for

the HZ health states in the model. All disutility values were limited at a maximum

value of 1.0. Lieu et al [88] also provide an estimate of the health state disutility

of herpes zoster ophthalmicus (HZO); this was used to generate the health state

disutility for ocular complications. For this estimate I used the estimates provided

by the community members. Each of the health state disutilities were entered into

the model as a decrement from a baseline QOL that corresponded with a persons

age. That is, if the disutility of the health state = 0.50, it was assumed that a person

would lose 0.50 utility from whatever his/her baseline health utility was at the time.

The QALY Calculation Examples box provides an example of how the health state

utilities were generated.

• 3 × 1 Month = Mild HZ for 30 days

• Mean Community Member Disutility = 15/30 = 0.50

• 8 × 12 Month = Severe PHN for 365 Days

• Mean PHN Patient Disutility = 301/365 = 0.825

• Upper CI PHN Patient Disutility = 443/365 = 1.21 Rounded to 1.0

QALY Calculation Examples

Vaccine Disutilities

The main severe adverse event for the vaccine was an allergic reaction that may or

may not have lead to anaphylaxis [115]. In a large cohort study (n = 193083) there

were 71 cases of vaccination that required further medical care due to an allergic
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reaction and 9 cases that resulted in anaphylaxis [115]. Disutility values for allergic

reactions were sourced from another cost-effectiveness analysis that examined allergic

reactions as an outcome of treatment [119]. Values from this study were in the form

of quality adjusted life days lost due to a reaction. These values were divided by 30

to estimate quality adjusted life months. The quality adjusted life month disutility

was then multiplied by the probability of event to provide an estimate of the average

disutility associated with receiving the vaccine. Common vaccine reactions occur

approximately 30% of the time with the main symptom being bruising at the injection

site [115]. It was assumed that all common reactions would not require any additional

medical treatment and would resolve within 2 – 5 days.

Background Utility

Data on the background quality of life was sourced from one study [120]. Data was

extracted from this study and fit using a linear regression to determine the background

QOL by age. The mean value using the EQ-5D US scoring algorithm was used as

the outcome variable. The predictors variables were the midpoint of the age ranges

provided and gender.

A.4 Vaccine – HZ Risk Reduction

This section examines the protection benefit against HZ given vaccination. Four

papers, an FDA statistical report, and a conference presentation were used to create

the estimates of protection [15,20–22,51,78]. Protection against HZ is the combination

of two components:

1. Waning Efficacy: The vaccines protection over time against HZ. This is

defined as the period of protection from t = [0, X], where t is measured in

years and X is some number of years in the future when the vaccine reaches

0% efficacy.
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2. Initial Efficacy: The vaccines initial protection against HZ. This is defined as

the as the period of protection from t = [0, 1), where t is measured in years.

For this model, the components (initial efficacy and waning) are combined using

the form of a linear equation (y = mt+ b). That is, the initial efficacy was assumed

to be the intercept (b), the waning efficacy was assumed to be the slope (m), t was

the number of years vaccinated from [0, X], and y was the protection of the vaccine

against HZ. Note, this does not assume that the components (initial efficacy and

waning) are strictly linear; rather these components were estimated separately and

then combined using this form. The minimum value for vaccine efficacy was 0%; that

is, the vaccine can not have a negative effect.

Waning Efficacy

The first step to determining the protection benefit of the vaccine was to determine the

waning efficacy of the vaccine. Data for this step came from four sources [20–22,78].

Data from the clinical trail and its follow-up [20–22] are given in Table A.5. Data

from the large cohort study [78] is given in Table A.6. First, these data were used to

generate synthetic observational data. This data was then combined and fit using

statistical methods. The process of creating each of the syntheitc observational

datasets will be discussed in turn.

Synthetic Data Generation – Zoster Clinical Trials

To generate the synthetic data using the clinical trial data, count data from Table

A.5 were used. First, it was that these data were Poisson distributed (see Equation

A.8). Twenty Poisson distributions (see Equation A.8) were created to reflect all

Trial Group and Years VX combinations from Table A.5. The corresponding λ

for each distribution was assumed to be the number of cases divided by the follow-up

time. To create one set of data points, Y random observations (person-years) were

sampled from each distribution to create 20 datasets, each corresponding to its

distribution. Because of further uncertainty with this data, the number of sampled
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Trial Group Years VX Cases Follow-up Time Reference
Vaccine 0–1 76 19132 [22]

1–2 103 18827 [22]
2–3 98 14505 [22]
3–4 49 6264 [21,22]
4–5 26 3180 [21,22]
5–6 48 4850 [21]
6–7 13 2243 [21]
7–8 50 6564 [20]
8–9 50 6280 [20]
9–10 50 5005 [20]

Placebo 0–1 201 19081 [22]
1–2 194 18679 [22]
2–3 171 14327 [22]
3–4 87 6158 [21,22]
4–5 42 2921 [21,22]
5–6 47 3295 [21]
6–7 11 896 [21]
7–8 66 6564 [20]
8–9 54 6280 [20]
9–10 57 5005 [20]

Table A.5: Data on vaccine efficacy over time – RCTs. Years VX: Years Vaccinated

observations, (person-years, Y ), varied for each distribution. The number of samples

was the average of the follow-up times (Vaccine and Placebo Trial Groups) for

the specific years vaccinated group. After these observations were collected the sum

of each dataset was taken. Equation A.9 was used to create one set of data points for

efficacy over time.

P (X = x) = e−λ
λx

x!
(A.8)

The data set was split into two pieces: years 0 – 6 and years 7 – 10. For years 0

– 6, 2250 data points were generated. Each newly generated data points using the

above procedure were assigned an integer value between [0,6] that corresponded with

its Years VX group. To determine the proportion of the 2250 data points that each
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year would contribute, the total person-years for each year of follow-up was divided

by the total person-years follow-up for years 0 – 6 (131,219) to create the proportion.

Example Box 1 provides an example of this process.

1−
∑
HZ CasesyHZ∑
HZ CasesyPL

(A.9)

y: year

V X: Vaccine group

PL: Placebo group

A similar procedure was followed for years 7 – 10 with two modifications. First,

only 250 data points were generated for years 7 – 10. This was due to uncertainty in

the data presented by Morrison et al [20] due to the study design and lack of control

group. Second, because no control group was present, the number of cases for the

Vaccine and Placebo group had to be estimated by holding the number of vaccine

cases constant and altering the number of placebo cases to correspond with the

vaccine efficacies presented in the paper; shown in Table A.5. Further, as there was

no control group, the number of person-years follow-up for each group was assumed

be the same. This 90:10 (years 0–6: years 7–10) weighting of the synthetic data was

done to weight the statistical fits more toward the first six years of data where more

certainty existed. This weighting decision was based on conversations with zoster

vaccine experts at the CDC.
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Years VX PY ≈ Proportion (%)

0–1 38213 29.12

1–2 37506 28.58

2–3 28832 21.97

3–4 12422 9.46

4–5 6101 4.65

5–6 8145 6.20

6–7 2243 10.40

7–8 6564 30.44

8–9 6280 29.12

9–10 5005 23.21

Repetitions, Years 0–1: 29.12% × 2500 ≈ 655

Repetitions, Years 8–9: 29.12% × 250 ≈ 72

Example 1

Synthetic Data Generation – Kaiser Observational Study

To generate the synthetic data using observational data, efficacy data from Table A.6

were used. The means were reported and the SD were estimated from the figures

provided by Tseng et al [78] (see Figure A.3). It was assumed that these data were

Normally distributed, due to the approximate symmetry of the confidence intervals

(exceptions occur at years 6–7 and 7–8). Eight total distributions were created

to correspond to reflect all Years VX groups from Table A.6. Each distribution

randomly sampled X number of times to create X data points per Years VX group.

In total 2500 data points were generate across all groups. To determine the number

of data points per Years VX group (X), weighting was used. Tseng et al [78]

provided the number of person-years follow-up for each year of data collection. These

person-years were summed for years 0–1 through 7–8. The person-years follow-up
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Figure A.3: Kaiser data

for the year group was divided by this sum to provide the weight (shown in Table

A.6). This weight was multiplied by 2500 to determine X, the number of data points

sampled for each Years VX group.

Years VX Mean SD Weight Follow-up Time Reference
0–1 0.700 0.010 0.240 180620 [78]
1–2 0.498 0.022 0.208 156444 [78]
2–3 0.418 0.027 0.165 124325 [78]
3–4 0.390 0.035 0.123 92789 [78]
4–5 0.347 0.037 0.094 71092 [78]
5–6 0.294 0.050 0.078 59006 [78]
6–7 0.102 0.070 0.058 43618 [78]
7–8 0.243 0.125 0.038 29224 [78]

Table A.6: Data on vaccine efficacy over time – Kaiser. Years VX: Years Vaccinated
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Synthetic Data – Statistical Fitting

Once the synthetic data was generated from both studies, it was treated as observa-

tional and combined. Each data set contained 2500 observations, so the data was

assumed to be equally weighted. The decision to equally weight this data was based

on a discussion with zoster vaccine experts at the CDC.

The combined data was then fit to estimate the efficacy of the vaccine over time

(V Ei, where i is number of years vaccinated (0–1, 1–2, etc.)). Linear, second order

polynomial, third order polynomial and restricted cubic spline (RCS) regression

models were used. Based on AIC score, the RCS and third order polynomial linear

regression models were selected. These models were also preferential due to the

observation that there is a visibly steep decline in efficacy over the first year [20, 78];

this decline is not accounted for when using linear or second order polynomials. The

form of the RCS and third order polynomial are shown by Equations A.10 and A.11,

respectively. Output from the models is shown in Table A.7.

V Ei = β0 + β1i+ β2 max(i, 0)3

+ β3 max(i− 1, 0)3

+ β4 max(i− 2, 0)3

+ β5 max(i− 7, 0)3

(A.10)

V Ei = β0 + β1i+ β2i
2 + β3i

3 (A.11)

Model β0 β1 β2 β3 β4 β5 AIC adj.R2

RCS 0.6574 -0.2083 0.0317 -0.0657 0.0344 -0.0004 -9923 0.772
Polynomial 0.6425 -0.1554 0.0273 -0.0019 – – -9576 0.701

Table A.7: V Ei regression output

Initial Efficacy

Data from the literature was used to estimate the initial protection of the vaccine

[15, 22, 51]. Two HZ vaccine clinical trails provided this data. The initial clinical

191



−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

0−1 1−2 2−3 3−4 4−5 5−6 6−7 7−8 8−9 9−10 10−11

Years Since Vaccine

V
ac

ci
ne

 E
ffi

ca
cy

Figure A.4: Vaccine efficacy by time since vaccination. Yellow fit – RCS model. Blue fit –
third order polynomial model. Grey data – synthetic RCT data. Green data – synthetic
Kaiser data

trial for the HZ vaccine includes only people over age 60 [15,22]. A subsequent trial

includes people from ages 50 – 59 [51]. Data from these trials were combined to

create the initial efficacy of the vaccine. To combine the data, a synthetic data set

was generated, adjusted, and then fit using statistical models.

Synthetic Data Generation

First, data (shown in Table A.8) was assumed to be Poisson distributed. In total,

16 poisson distributions (see Equation A.8) were created to account for each Trial

Group and Age Group combination from Table A.8. The λ for each distribution

was assumed to be the number of cases divided by follow-up time. To create an

estimate of the initial efficacy, 100,000 random observations (person-years) were

sampled from each distribution and 16 datasets were created using these observations
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Trial Group Age Group Cases Follow-up Time Reference
Vaccine 50 – 59 26 14124 [51]

59 – 64 54 15693 [15,22]
65 – 69 68 15630 [15,22]
70 – 74 89 13830 [15,22]
75 – 79 67 9329 [15,22]
80 – 84 31 3172 [15,22]
85 – 89 5 498 [15,22]
≥ 90 1 51 [15,22]

Placebo 50 – 59 94 14091 [51]
59 – 64 153 15384 [15,22]
65 – 69 181 15569 [15,22]
70 – 74 158 13814 [15,22]
75 – 79 103 9105 [15,22]
80 – 84 39 3189 [15,22]
85 – 89 7 605 [15,22]
≥ 90 1 70 [15,22]

Table A.8: Data on initial vaccine efficacy

(one dataset per distribution). The sum of each dataset was taken and efficacy was

determined by using Equation A.12. This created one estimate of initial vaccine

efficacy for each of the eight Age Groups in Table A.8. Random ages were then

drawn for each age group and assigned to the newly created estimate of initial vaccine

protection. The total number of person years from both trials were used to determine

how many estimates of initial protection should be generated. Across both trials

there were a total of 144,217 person-years follow-up. The sum the person-years for

vaccine and placebo patients for each age group was divided by the number of total

person-years to give a proportion of data points that were generated for each age

group; Example 2 provides an example of this process. In total 2,500 data points

were generated.

1−
∑
HZ CasesaV X∑
HZ CasesaPL

(A.12)
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a: Age group

V X: Vaccine group

PL: Placebo group

Age Group PY ≈ Proportion (%)

50 – 59 28215 19.56

59 – 64 31077 21.54

65 – 59 31262 21.67

70 – 74 27644 19.16

75 – 79 18434 12.78

80 – 84 6361 4.44

85 – 89 1103 0.076

90 – 95 121 0.008

PY: Person-years

Repetitions, Ages 59 – 64: 21.54% × 2500 ≈ 539

Repetitions, Ages 85 – 89: 0.076% × 2500 ≈ 19

Example 2

Synthetic Data – Adjustment

The synthetic data generated for estimating initial efficacy provides the vaccines

efficacy (V Ej) conditional upon being vaccinated at some age j. However, this data

needed to be adjusted to account only for the time period of interest. Data used

for people ages 60 and over was from a trial that reported three years of follow-up.

Data from people ages 50 – 59 was from a trial that reported two years of follow-up.

Therefore, the synthetic estimates were not specific to the time period from t = [0, 1),

the time period of interest. I used published methods [19] to adjust the data before

fitting. This adjustment was used to determine V Eij, where i is the number of years

vaccinated (i.e., 0–1, 1–2, etc.), and j is the age at vaccination.
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In order to make this adjustment, I made the following assumptions. First, the

initial efficacy declines with age. Second, the vaccine does wane at the same rate

for people of all ages. Third, the vaccine can not have less than 0% efficacy. Forth,

the synthetic estimate of vaccine efficacy (V Ej) is the weighted average of waning

vaccine efficacy; weights are determined by the person-years follow-up (from [19]; see

Equation A.13).

V Ej =
py0× V Eij(i = 0) + py1× V Eij(i = 1) + py2× V Eij(i = 2)

py0 + py1 + py2
(A.13)

To determine the age specific initial efficacy, a modification is first made the

waning function (V Ei, where i is the number of years vaccinated). For the remainder

of this section I will show equations assuming the vaccine wanes using the RCS

function, this same procedure was repeated for the third order polynomial function.

The initial waning function is shown in Equation A.14. In Equation A.14, β0 provides

the initial efficacy for the waning function (t = [0, 1)). Changing β0 to β0j, as shown

in Equation A.15, changes V Ei to V Eij as β0j provides the age specific initial efficacy

of the vaccine, where j is the age at vaccination. For simplicity, I will use βREM

(REM : Remainder; shown in Equation A.16) for the remaining the calculations.

V Ei = β0 + β1i+ β2 max(i, 0)3

+ β3 max(i− 1, 0)3

+ β4 max(i− 2, 0)3

+ β5 max(i− 7, 0)3

(A.14)

V Eij = β0j + β1i+ β2 max(i, 0)3

+ β3 max(i− 1, 0)3

+ β4 max(i− 2, 0)3

+ β5 max(i− 7, 0)3

(A.15)
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βREM = β1i+ β2 max(i, 0)3

+ β3 max(i− 1, 0)3

+ β4 max(i− 2, 0)3

+ β5 max(i− 7, 0)3

(A.16)

First, each synthetic data point for initial efficacy is assumed to represent one

estimate of V Ej and must be adjusted to determine β0j before the data can be fit

and combined. Substituting Equation A.15 into Equation A.13 yields Equation A.17,

where β0j is the only unknown. Substituting and solving for β0j adjusts the previous

synthetic data to provide an age-specific estimate of the initial vaccine efficacy. These

new estimates replace the estimates of initial vaccine efficacy V Ej produced by the

synthetic data, to create an adjusted synthetic data set of β0js.

V Ej × (py0 + py1 + py2) = py0× (β0j + βREM(i = 0))

+ py1× (β0j + βREM(i = 1))

+ py2× (β0j + βREM(i = 2))
(A.17)

To solve Equation A.17 person-years were taken from the clinical trial data [22,51].

As noted, the trial for 50 – 59 year olds only included 2 years of follow-up and the trial

for people ≥ 60 included 3 years of follow-up on average. Person-years follow-up data

are presented in Table A.9. For people ≥ 60, pyX was calculated from data in [22]

as the person-years follow-up for specific age groups was not reported. First, total

person years for years 0 - 2 were summed (19132 + 18827 + 14505 = 52464). Next

the person years for each year was made a fraction by dividing the total follow-up for

that year by the grand total (e.g., 19312/52464). Finally, these fractions were applied

to the total person-years follow-up for each age group. Figures A.5 and A.6 show the

synthetic dataset pre- and post-adjustment, respectively.
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Age Group Total py py0 py1 py2 Reference
50 – 59 15040 10956 4084 0 [51]
60 – 64 15384 5610 5521 4253 [22]
65 – 69 15569 5678 5587 4304 [22]
70 – 74 13814 5038 4957 3819 [22]
75 – 79 9105 3320 3267 2517 [22]
80 – 84 3189 1163 1144 882 [22]
≥ 85 605 221 217 167 [22]

Table A.9: Person Year Inputs. pyX: person-years for year x – x+1 of trial
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Figure A.5: Vaccine efficacy by age –
pre-adjustment
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Figure A.6: Vaccine efficacy by age –
post-adjustment

Synthetic Data – Statistical Fitting

Once the synthetic data on initial efficacy was adjusted it was fit using statistical

methods. This fit provided the adjusted age-specific initial efficacy of the vaccine (β0j ,

where j is the age vaccinated). Second order polynomial, and RCS linear regression

models were used based on the shape of the data (see Figure A.6). The initial fits of

the models are shown in Figure A.7. Based on AIC score, the RCS model was selected

over the polynomial model. The form of the RCS and second order polynomial are

shown by Equations A.18 and A.19, respectively. Output from the models is shown

in Table A.10. Both models showed a slight increase (approximately 1 percentage

point) in the age specific initial efficacy (β0j) from ages 50 – 58. This is because of the

adjustment and using two different data sets. This increase was manually changed so

that the vaccine had the same initial efficacy from age 50 – 58.
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Figure A.7: Age-specific initial efficacy fits – piecewise waning. Yellow fit – Piecewise
model. Blue fit – second order polynomial model.

β0j = α0 + α1j + α2 max(j − 54, 0)3

+ α3 max(j − 66, 0)3

+ α4 max(j − 77.4, 0)3

(A.18)

β0j = α0 + α1j + α2j
2 (A.19)

Model α0 α1 α2 α3 α4 AIC adj.R2

RCS 0.6900 0.0016 -3.63e-05 7.45e-05 -3.823e-05 -8228 0.894
Polynomial -1.351 0.0766 -0.0007 – – -7922 0.880

Table A.10: β0j Regression Output
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Synthetic Data – Combining

Once the age-specific initial efficacy was generated it was combined with the waning

function to create estimates of the age-specific efficacy and waning (shown in Equation

A.15). The final for the combination assuming a RCS waning and polynomial waning

model are shown by Equations A.20 and A.21, respectively. Simulating these equations

for values of age at vaccination, j, between 50 and 100, and different values of years

vaccinated, i, plots of the age-specific waning of the vaccine were created. These are

shown in Figures A.8 – A.13.

V Eij = β0j + β1i

+ β2 max(i, 0)3

+ β3 max(i− 1, 0)3

+ β4 max(i− 2, 0)3

+ β5 max(i− 7, 0)3

(A.20)

V Eij = β0j + β1i

+ β2i
2

+ β3i
3

(A.21)

A.5 PHN Risk Reduction

This section examines the potential additional benefit of protection against PHN given

HZ vaccination. The FDA statistical report [22] provides the only data available to

examine if the HZ vaccine provides an additional protection benefit against PHN (i.e.,

the incidence of PHN is further reduced beyond the reduction in HZ incidence). The

report provides the number of cases of HZ and PHN as well as the follow-up time for

the both vaccine and placebo groups; data from the statistical report [22] is presented

in Table A.11. Using Equation A.22, data in Table A.11 suggest that approximately

96% of the reduction in PHN cases in the 60 – 69 age group is attributable to the
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Figure A.8: RCS age-specific waning –
side. Top line – Vaccination age 50. Bot-
tom line – Vaccination age 94.
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Figure A.9: Polynomial age-specific
waning – side. Top line – Vaccination
age 50. Bottom line – Vaccination age
94.
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Figure A.10: RCS age-specific waning –
contour.
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Figure A.11: Polynomial age-specific
waning – contour.
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Figure A.12: RCS age-specific waning –
3D.
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Figure A.13: Polynomial age-specific
waning – 3D.
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reduction in HZ incidence (i.e., a 4% additional protection benefit). Conversely, in

the ≥ 70 group, approximately 51% of the reduction in PHN cases is attributable to

reduction in HZ incidence (i.e., a 49% additional protection benefit). Thus data from

Table A.11 suggests a discontinuity in additional protection benefit of the vaccine.

Trial Group Age Group Disease Category Cases Follow-up Time
Vaccine 60 – 69 HZ 122 31323

PHN 8 31323
≥ 70 HZ 193 26881

PHN 19 26881
Placebo 60 – 69 HZ 334 30953

PHN 23 30953
≥ 70 HZ 308 26783

PHN 57 26783

Table A.11: Data from FDA statistical report

As no additional data exists, simulation methods were used to create a synthetic

data set to examine possible trends. To create the synthetic data, count data in

Table A.11 were assumed to be Poisson distributed. Eight Poisson distributions (see

Equation A.8) were created to reflect all Trial Group, Age Group, and Disease

Category combinations from Table A.11. The corresponding λ for each distribution

was assumed to be the number of cases divided by the follow-up time. To create

one data point, 100,000 random observations (person-years) were sampled from each

distribution to create eight datasets, (one per distribution). After these observations

were collected the sum of each dataset was taken. Equation A.22 was used to create

one estimate of the additional protection benefit.

1−
(∑

PHN CasesaV X
/
∑
HZ CasesaV X∑

PHN CasesaPL
/
∑
HZ CasesaPL

)
(A.22)

a: Age group

V X: Vaccine group

PL: Placebo group

A newly generated estimate of additional protection was then randomly assigned

an age within its corresponding age group (e.g., 60 – 69, ≥ 70). The FDA statistical

201



report [22] provides data on number of patients enrolled by five-year age categories

(e.g., 59 – 64, 65 – 69, ...). This data was used to determine how many people from

each five year age cohort were sampled and randomly assigned to the estimates for

additional protection. In total this process of generating one estimate of additional

protection and assigning an age to that estimate was repeated 2500 times. This

ensured a large enough sample to include people in order age groups (e.g., ≥ 85).

Example 3 demonstrates the process of determining how many of the 2500 repetitions

(estimates) were assigned to each age group. Figure A.14 shows the final set of

synthetic data.

Data in Figure A.14 shows a discontinuity in the additional protection from age

69 – 70. Based on discussions with collaborators at the CDC, this is likely due

to the way in which the data from Table A.11 is categorized, rather than some

biological mechanism. In addition, the Poisson arrival process suggests that the

additional impact could be negative from the ages of 60 – 69. This finding is also not

supported by the understanding of how the vaccine works. Therefore, I made the

following assumptions. First, the vaccine can not have an additional protection benefit

below 0%. At 0% protection benefit, the reduction in PHN cases due to vaccination

would be entirely attributable to the number of HZ cases reduced. Second, there is

some function that represents the additional protection benefit. This assumption

suggests that the discontinuity presented by Table A.11 and Figure A.14 generated

by simulation of that data is an artifact of the way the data was grouped in the FDA

report.
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Figure A.14: Initial additional protection against PHN given vaccination – synthetic data

Age Group n Proportion (%)

59 – 64 5216 50.30

65 – 59 5154 49.70

70 – 74 4545 51.16

75 – 79 3076 34.62

80 – 84 1063 11.97

85 – 89 181 2.04

90 – 95 19 0.21

59 – 69 10370 53.8

≥ 70 8884 46.2

Repetitions, Ages 59 – 64: 53.8% × 50.30% × 2500 ≈ 677

Repetitions, Ages 85 – 89: 46.2% × 2.04% × 2500 ≈ 22

Example 3
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Synthetic Data – Approximation Methods

Because of the discontinuity in the synthetic data shown in Figure A.14, statistical

methods were found to produce models with clinically unlikely anomalies. Therefore,

approximation methods methods were used to estimate linear segments at different

breakpoints. Seven total approximations were generated; these are shown in Figure

A.15. Data on the breakpoints and assumed additional efficacies are given in Table

A.12. This method was selected as there is no further data on this additional

protection. Therefore, these approximation methods provide a best guess of the

additional protection without assuming some prior mathematical relationship. Based

on conversations with zoster vaccine experts at the CDC, model A was chosen as

the base case model to estimate the initial additional protection (β0jPHN
). There

is unfortunately no data on how the additional protection against PHN wanes with

time. Therefore, it was assumed that the additional protection against PHN would

wane at the same rate as the vaccines protection against HZ. This was accomplished

using Equation A.23.

V EijPHN
=

β0jPHN
× V EijHZ

β0jHZ
if β0jHZ

> 0

0 if β0jHZ
= 0

(A.23)

Model bp1 Efficacy bp1 bp2 Efficacy bp2 Color
A 75.4 0.4653 – – Grey
B 70 0.4653 – – Pink
C 64.2 0.0425 75.4 0.4653 Blue
D 59 0.0425 70 0.4653 Green
E 69 0.0425 81 0.4653 Red
F 64.2 0.0000 75.4 0.0000 Black
G 64.2 0.4653 75.4 0.4653 Orange

Table A.12: Additional PHN protection – approximation fits. bp: breakpoint. Ages 50
and 100, with efficacies 0.04 and Efficacy bp2, respectively, were the initial and final points
for approximations in all models.
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Figure A.15: Additional protection against PHN given vaccination. Model letter corre-
sponds to Table A.12.

A.6 Literature Review

The following section presents the information and on the systematic review to

collect model inputs. Systematic literature reviews were conducted to assess the

published data relating to costs, health utilities, and epidemiology of herpes zoster

and its complications. The search terms for each review are presented in Table A.13.

Search terms were selected based on their use in similar systematic reviews. Searches

were conducted by combining a Main Term along with a Epidemiology, Cost, or

QALY Term using the “AND” search operator.
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Main Term
Epidemiology
Term

Cost Term QALY Term

Herpes Zoster OR
Shingles

Epidemiology Cost QALYs

PHN OR Posther-
petic neuralgia

Incidence Cost of Illness
Quality Adjusted Life
Years

(HZ OR Shingles)
neurological

Incidence of Hos-
pitalization

Economic Quality Adjusted

(HZ OR Shingles)
(eye OR ocular OR
ophthalmic)

Morbidity Economic Burden
Quality Adjusted Cost
Per Life Year

(HZ OR Shingles)
complications

Mortality Economic Impact Cost(-)Effectiveness

(HZ OR Shingles)
secondary

Societal Cost Cost(-)Utility

(HZ OR Shingles)
vaccine

Direct Cost Utility

Indirect Cost
Presenteeism
Absenteeism
Productivity
Productivity Loss
Healthcare Utiliza-
tion
Health Expenditure

Table A.13: Search terms from systematic review

Literature reviews focused on peer-reviewed published literature relating to herpes

zoster in the US. Peer-reviewed articles relating to herpes zoster outside the US

were considered (depending on data quality and transferability). Search results from

the literature reviews were compiled and all duplicate articles were removed. The

remaining unique entries were subjected to a title and abstract review. Results were

excluded using pre-defined criteria. Any paper that was not a full scientific study, such

as letters to the editor, commentaries, or conference abstracts were excluded due to a

potential for selective reporting bias. A running list of all excluded studies was kept
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for reference. The remaining papers were subject to a full review. Exclusion criteria

for this step was also pre-defined. References for full review papers were inspected to

check for any record that may have been missed during the initial searches. Each

additional record was subject to the same title, abstract, and full review criteria.
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Appendix B

Models and Input Data for MDPs

B.1 State Transition Models for MDP

Main STM – One Dose MDP

Data for the one dose MDP was generated from a state-transition model (STM)

built in R. This model was designed to emulate the MDP (also built in R). A model

overview is shown in B.1. This model was used to generate the lifetime costs and

QALYs for people who were either vaccinated, or who developed a case of zoster

without vaccination. Those who were vaccinated started the model in the disease

free health state. After each cycle, the cohort had the chance to develop HZ, die, or

remain disease free. The cycle-time for the model was set to one year with a 3% (0.97)

discount rate for costs and QALYs. At age 100, the probability of death was set to

100%. If HZ occurs, the cohort spends one cycle with disease. Within that cycle,

there is the opportunity to develop further complications (HZ with PHN, or HZ with

ocular complications), however, these complications occur within the cycle only (as

shown by Figure B.2). The costs and QALYs for the intra-HZ states were determined

by sub-models that will be presented in the following sections of this appendix. This

model structure assumption was based on HZ without complications typically lasting

for one month and the majority of complications resolving within one year. At the

end of the HZ cycle, the cohort can transfer to disease free 2 health state, a transient
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Figure B.2: Intra-HZ transition model

state where the cohort remains until death, or to death should death occur. The

lifetime costs and QALYs for HZ without vaccination was determined by using the

same STM but starting the cohort in the HZ state at some age.

The results from this STM, and its sub-models (described further in the following

sections), were used to generate data for the base case analysis, the one-way sensitivity

analysis, and the probabilistic sensitivity analysis. All data for this STM and its

sub-models comes from data used in the Chapter 2 cost-effectiveness models, which

can be found in Tables 2.2 – 2.4 on pages 27 – 28.

HZ Sub-model

To determine the costs and disutility due to a case of HZ a decision tree model

was constructed in TreeAge. The model is shown in Figure B.3. In this model it is

assumed that every person starts with HZ. HZ is first differentiated as producing

pain or not. If the HZ does produce pain, the model then differentiates between mild,

moderate, or severe pain. The terminal nodes for the model (denoted by triangles in

Figure B.3) give both cost and disutility rewards. The result of this model produces

the average costs and disutility due of a case of HZ. The cycle time for this model is

assumed to be 1 month; therefore, the disutility due to HZ is divided by 12 before

being implemented into the main STM.
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Figure B.3: HZ sub-model

PHN Sub-model

To determine the costs and disutility due to a case of PHN a Markov-like model

was constructed in TreeAge, the model is shown in Figure B.4. In this model it is

assumed that the cohort starts with PHN. PHN is initially characterized as mild,

moderate, or severe; the likelihood of starting in any of these three states is age

dependent (as PHN severity increases with age). The data for these states are given

in Table 2.2 on page 27. This model contains the same type of laddering structure as

the cost-effectiveness model from Chapter 2, where a person must move through all

better states of PHN before eventually reaching the disease free state. At each cycle,

a person collects some disutility due to their PHN. There is no background QOL in

this model. Simulating this model produces the average disutility and cost due of

a case of PHN. The cycle time for this model is assumed to be 1 month; therefore,

the disutility due to PHN was divided by 12 before being implemented into the main

STM.

Ocular Complications Sub-model

To determine the disutility lost due to ocular complications given HZ, a Markov-like

model was constructed in TreeAge, shown in Figure B.5. In this models it is assumed

that every person starts with a complication, and has a chance of moving to disease

free after each model cycle. Unlike PHN, there is no stratification for severity. That

is, I assume that one complication is as bad/good as the next. While this is unlikely,
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Figure B.4: PHN sub-model

Figure B.5: Ocular complications sub-model

there is limited data on the epidemiology, costs, and disutility for differing levels of

severity with ocular complications. At each cycle, the cohort collects some disutility

due to their complication. There is no background QOL in this model. Simulating

this model produces the average costs and disutility due an ocular complication. The

cycle time for this model is assumed to be 1 month; therefore, the disutility lost due

to a complication are divided by 12 before being implemented into the main STM.
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Main STM Model – Two Dose MDP

Data for the two dose MDP was generated by creating a one additional STM in R.

The model follows the same structure as the HZ model presented in Figure B.1. This

model was used to generate the lifetime costs and QALYs for people who received

a vaccine at some age j and developed HZ at some age Y . Determining when HZ

occurs given the age of vaccination is important as the probability of developing PHN

increases with age as does the probability of more severe PHN. The probability of

developing PHN given HZ (as occurs in the intra-HZ model, see Figure B.2), was

adjusted by the age when the vaccine was originally received j and the number of

years the person had been vaccinated i. HZ was still a transient state so the initial

transition occurred within the cycle. At the end of the cycle, the cohort can transfer

to disease free 2, a transient state where the cohort remains until death, or to death

should death occur.

B.2 Sensitivity Analysis

One-way Sensitivity Analysis

To perform the one-way sensitivity analysis, first all sub-model inputs were converted

to distributions. The distributions used for each sub-model were the same distributions

for the cost-effectiveness analysis (available in Table 2.5). Once all sub-model inputs

had been replaced with distributions, PSAs were run on each sub-model. For PHN, a

PSA was run for every age between 50 – 100. The data from the PSAs was exported

from TreeAge and imported into R. The raw data was used to determine the mean

and confidence intervals for each of the sub-models. These means and confidence

intervals were used as the data for the intra-HZ states as part of the MDP analysis.

Data for PHN is presented in Table B.1, and data for HZ and ocular complications is

given in Table 3.2 in Chapter 3.

PHN Data
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Age Q – M Q – L Q – U $ – M $ – L $ – U

50 0.284 0.209 0.355 6, 235 4, 504 8, 236

51 0.285 0.209 0.356 6, 240 4, 510 8, 241

52 0.286 0.211 0.358 6, 245 4, 515 8, 245

53 0.287 0.211 0.359 6, 250 4, 520 8, 250

54 0.288 0.212 0.360 6, 255 4, 524 8, 255

55 0.289 0.213 0.361 6, 260 4, 529 8, 260

56 0.291 0.214 0.363 6, 264 4, 534 8, 265

57 0.292 0.215 0.363 6, 269 4, 538 8, 270

58 0.293 0.216 0.365 6, 274 4, 543 8, 275

59 0.294 0.217 0.366 6, 279 4, 548 8, 280

60 0.295 0.218 0.367 6, 284 4, 552 8, 285

61 0.296 0.218 0.368 6, 289 4, 557 8, 290

62 0.297 0.219 0.370 6, 294 4, 562 8, 295

63 0.298 0.220 0.371 6, 298 4, 566 8, 299

64 0.299 0.221 0.372 6, 303 4, 571 8, 304

65 0.301 0.222 0.374 6, 308 4, 575 8, 309

66 0.302 0.223 0.375 6, 313 4, 580 8, 314

67 0.303 0.224 0.376 6, 318 4, 585 8, 319

68 0.304 0.225 0.377 6, 323 4, 589 8, 324

69 0.305 0.225 0.378 6, 327 4, 594 8, 329

70 0.306 0.226 0.379 6, 332 4, 599 8, 334

71 0.307 0.227 0.380 6, 337 4, 603 8, 339

72 0.308 0.228 0.381 6, 342 4, 608 8, 344

73 0.309 0.229 0.383 6, 347 4, 613 8, 349

74 0.311 0.230 0.384 6, 352 4, 617 8, 354

75 0.312 0.231 0.385 6, 356 4, 622 8, 358

76 0.313 0.232 0.386 6, 361 4, 627 8, 363

77 0.314 0.232 0.388 6, 366 4, 631 8, 368

78 0.315 0.233 0.389 6, 371 4, 636 8, 373

79 0.316 0.234 0.390 6, 376 4, 641 8, 378
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Age Q – M Q – L Q – U $ – M $ – L $ – U

80 0.317 0.235 0.391 6, 381 4, 645 8, 383

81 0.318 0.236 0.393 6, 386 4, 650 8, 388

82 0.319 0.236 0.394 6, 390 4, 655 8, 393

83 0.321 0.237 0.395 6, 395 4, 659 8, 398

84 0.322 0.238 0.396 6, 400 4, 664 8, 403

85 0.323 0.239 0.398 6, 405 4, 668 8, 408

86 0.324 0.240 0.399 6, 410 4, 673 8, 413

87 0.325 0.241 0.400 6, 415 4, 678 8, 418

88 0.326 0.241 0.402 6, 419 4, 682 8, 423

89 0.327 0.242 0.403 6, 424 4, 687 8, 428

90 0.328 0.243 0.404 6, 429 4, 692 8, 433

91 0.329 0.244 0.405 6, 434 4, 696 8, 438

92 0.331 0.245 0.407 6, 439 4, 701 8, 443

93 0.332 0.246 0.408 6, 444 4, 705 8, 448

94 0.333 0.247 0.409 6, 448 4, 710 8, 453

95 0.334 0.248 0.410 6, 453 4, 714 8, 458

96 0.335 0.249 0.411 6, 458 4, 719 8, 462

97 0.336 0.249 0.412 6, 463 4, 724 8, 467

98 0.337 0.250 0.413 6, 468 4, 728 8, 472

99 0.338 0.251 0.415 6, 473 4, 733 8, 477

100 0.339 0.252 0.416 6, 477 4, 738 8, 482

Table B.1: MDP sensitivity analysis parameters – PHN. Q: QALYs. $: Costs. M: Mean.

L: Lower limit of 95% confidence interval. U: Upper limit of 95% confidence interval.

Probabilistic Sensitivity Analysis

A probabilistic sensitivity analysis was conducted for the one and two dose MDP

models. To conduct this analysis, the distributions created for the one-way sensitivity

analysis sub-models were used. Using R, the STM sub-model PSA output data was

analyzed to define distributions for the costs and QALY inputs for the STM. Following
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recommendations [139], gamma distributions ∼ Γ(α, β) were fit for cost data, and

beta distributions ∼ β(α, β) were fit for QALY data. Once all parameters had been

converted to distributions a first order Monte Carlo PSA was run for each STM (1000

iterations). To ensure continuity between the STMs, a priori seeded distributions

were used. To do this, distributions for the PSA analysis were created in a separate

R file; the distributions were drawn, saved, and loaded into each of the R files for the

STMs. Each saved distribution contained 1000 values. I coded the PSA STMs to

load variables into the model by position. Therefore, PSA STM 1 would load one

set of parameter values from position 1 of the distributions loaded into the file. This

allowed all STMs use one set of distributions across all models; this also guaranteed

that values that needed to be consistent across all models would be.

For the one dose model PSA was conducted for each age between 50 and 100

independently. Variables in the analysis were saved to check the continuity between

the models. Each age between 50 and 100 had 1000 data points, therefore there was an

opportunity to run 1000 different one dose MDP iterations, each with a complete set

of input data. Data was structured so that each MDP iteration sampled the complete

set of outcome data for ages 50 – 100, from each PSA sample (e.g., MDP iteration 1

used data from PSA iteration 1 for ages 50 – 100). A visualization of the methods is

shown by Figure B.6. Each of the 1000 MDP iterations produced a optimal policy

over the time horizon. Each policy was converted into a binary formatted vector (1

= vaccinate, 0 = wait), where each place in the vector corresponded to an age (e.g.,

vector place 1 = age 100). The sum of across each vector location age was taken and

divided by the total number of iterations to produce the probability that a particular

age would be part of the optimal policy given a certain WTP. The two dose PSA

followed the exact same procedure, I just also included the use of the two dose STM

that predicted the lifetime costs and QALYs for an individual who was vaccinated at

age j and developed HZ at some age Y . Age-dependent PHN distribution data is

given in Table B.2, and the remaining distributions used for the PSA analysis are

given in Chapter 3 in Table 3.3.
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Figure B.6: MDP PSA methods diagram

PHN Data

Age β – α Term β – β Term Γ – α Term Γ – β Term

50 39.600 102.180 42.773 145.800

51 39.800 102.210 42.835 145.705

52 39.970 102.080 42.896 145.609

53 40.030 101.690 42.957 145.514

54 40.070 101.240 43.019 145.419

55 40.280 101.290 43.080 145.324

56 40.060 100.180 43.141 145.230

57 40.400 100.550 43.202 145.136

58 40.330 99.840 43.264 145.043

59 40.270 99.170 43.325 144.949

60 40.420 99.000 43.386 144.856

61 40.500 98.730 43.447 144.764
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Age β – α Term β – β Term Γ – α Term Γ – β Term

62 40.480 98.160 43.509 144.671

63 40.410 97.460 43.570 144.579

64 40.460 97.120 43.631 144.487

65 40.410 96.490 43.692 144.396

66 40.460 96.100 43.753 144.305

67 40.650 96.110 43.814 144.214

68 40.760 95.910 43.876 144.123

69 40.930 95.870 43.937 144.033

70 41.170 95.990 43.998 143.943

71 41.370 95.950 44.059 143.853

72 41.380 95.480 44.120 143.764

73 41.170 94.490 44.181 143.675

74 41.320 94.410 44.242 143.586

75 41.290 93.910 44.303 143.497

76 41.260 93.350 44.364 143.409

77 41.210 92.760 44.425 143.321

78 41.290 92.560 44.486 143.233

79 41.360 92.240 44.547 143.146

80 41.260 91.490 44.608 143.059

81 41.190 90.920 44.669 142.972

82 41.000 90.040 44.730 142.886

83 41.090 89.850 44.791 142.800

84 41.120 89.490 44.851 142.714

85 41.220 89.270 44.912 142.628

86 41.110 88.630 44.973 142.543

87 41.060 88.070 45.034 142.458

88 40.990 87.480 45.095 142.373

89 41.050 87.150 45.155 142.289

90 41.010 86.690 45.216 142.205

91 41.010 86.250 45.277 142.121
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Age β – α Term β – β Term Γ – α Term Γ – β Term

92 41.050 85.890 45.338 142.037

93 41.230 85.880 45.398 141.954

94 41.320 85.700 45.459 141.871

95 41.380 85.440 45.520 141.788

96 41.550 85.370 45.580 141.706

97 41.490 84.870 45.641 141.624

98 41.460 84.370 45.702 141.542

99 41.470 84.030 45.762 141.460

100 41.520 83.700 45.823 141.379

Table B.2: MDP probabilistic sensitivity analysis parameters – PHN. β distribution for

QALYs. Γ distribution used for costs.
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Barberá, J. Navarro-Pérez, et al., “Epidemiology and cost of herpes zoster and

postherpetic neuralgia among patients treated in primary care centres in the

valencian community of spain,” BMC infectious diseases, vol. 11, no. 1, p. 302,

2011.

[105] L. E. Gialloreti, M. Merito, P. Pezzotti, L. Naldi, A. Gatti, M. Beillat, L. Ser-

radell, R. di Marzo, and A. Volpi, “Epidemiology and economic burden of herpes

zoster and post-herpetic neuralgia in italy: a retrospective, population-based

study,” BMC infectious diseases, vol. 10, no. 1, p. 230, 2010.

[106] R. Hope-Simpson, “Postherpetic neuralgia,” British Journal of General Practice,

vol. 25, no. 157, pp. 571–575, 1975.

[107] A. N. Stein, H. Britt, C. Harrison, E. L. Conway, A. Cunningham, and C. R.

MacIntyre, “Herpes zoster burden of illness and health care resource utilisation

in the australian population aged 50 years and older,” Vaccine, vol. 27, no. 4,

pp. 520–529, 2009.

[108] B. P. Yawn, P. Saddier, P. C. Wollan, J. L. S. Sauver, M. J. Kurland, and

L. S. Sy, “A population-based study of the incidence and complication rates of

herpes zoster before zoster vaccine introduction,” in Mayo Clinic Proceedings,

vol. 82, pp. 1341–1349, Elsevier, 2007.

[109] CDC, “CDC vaccine price list,” 2015.

[110] M. A. Hedden, P. G. Kuehl, and Y. Liu, “Economic analysis of a herpes zoster

vaccination program in 19 affiliated supermarket pharmacies.,” Journal of the

American Pharmacists Association: JAPhA, vol. 54, no. 4, pp. 390–396, 2014.

231



[111] H. M. Wood, R. P. McDonough, and W. R. Doucette, “Retrospective financial

analysis of a herpes zoster vaccination program from an independent community

pharmacy perspective.,” Journal of the American Pharmacists Association:

JAPhA, vol. 49, no. 1, pp. 12–17, 2008.

[112] W. R. Doucette, R. P. McDonough, M. M. Mormann, R. Vaschevici, J. M.

Urmie, and B. J. Patterson, “Three-year financial analysis of pharmacy services

at an independent community pharmacy,” Journal of the American Pharmacists

Association, vol. 52, no. 2, pp. 181–187, 2012.

[113] TransactRX, 2013.

[114] J. D. Dunn and D. A. Sclar, “Anaphylaxis: a payor’s perspective on epinephrine

autoinjectors,” The American journal of medicine, vol. 127, no. 1, pp. S45–S50,

2014.

[115] H. Tseng, A. Liu, L. Sy, S. Marcy, B. Fireman, E. Weintraub, J. Baggs,

S. Weinmann, R. Baxter, J. Nordin, et al., “Safety of zoster vaccine in adults

from a large managed-care cohort: a vaccine safety datalink study,” Journal of

internal medicine, vol. 271, no. 5, pp. 510–520, 2012.

[116] M. Drolet, M. J. Levin, K. E. Schmader, R. Johnson, M. N. Oxman, D. Patrick,

S. O. Fournier, J. A. Mansi, and M. Brisson, “Employment related productivity

loss associated with herpes zoster and postherpetic neuralgia: a 6-month

prospective study,” Vaccine, vol. 30, no. 12, pp. 2047–2050, 2012.

[117] P. K. Singhal, C. Makin, J. Pellissier, L. Sy, R. White, and P. Saddier, “Work

and productivity loss related to herpes zoster,” Journal of medical economics,

vol. 14, no. 5, pp. 639–645, 2011.

[118] Bureau of Labor Statistics, “National compenstation survey,” 2015.

[119] J. M. Neuner, M. B. Hamel, R. S. Phillips, K. Bona, and M. D. Aronson,

“Diagnosis and management of adults with pharyngitis: a cost-effectiveness

analysis,” Annals of internal medicine, vol. 139, no. 2, pp. 113–122, 2003.

232



[120] J. Hanmer, W. F. Lawrence, J. P. Anderson, R. M. Kaplan, and D. G. Fryback,

“Report of nationally representative values for the noninstitutionalized us adult

population for 7 health-related quality-of-life scores,” Medical Decision Making,

vol. 26, no. 4, pp. 391–400, 2006.

[121] D. H. Meadows and D. Wright, Thinking in systems: A primer. chelsea green

publishing, 2008.

[122] R. G. Feachem, J. Dixon, D. M. Berwick, A. C. Enthoven, N. K. Sekhri, and K. L.

White, “Getting more for their dollar: a comparison of the nhs with california’s

kaiser permanentecommentary: Funding is not the only factorcommentary:

Same price, better carecommentary: Competition made them do it,” Bmj,

vol. 324, no. 7330, pp. 135–143, 2002.

[123] M. Moran, Governing the health care state: a comparative study of the United

Kingdom, the United States, and Germany. Manchester University Press, 1999.

[124] O. Alagoz, H. Hsu, A. J. Schaefer, and M. S. Roberts, “Markov decision

processes: a tool for sequential decision making under uncertainty,” Medical

Decision Making, 2009.

[125] M. Puterman, Markov decision processes: discrete stochastic dynamic program-

ming. Wiley series in probability and statistics, Wiley-Interscience, 2005.

[126] R. Bellman, “A markovian decision process,” tech. rep., DTIC Document, 1957.

[127] R. Howard, Dynamic Programming and Markov Processes. Technology Press

Research Monographs, MIT Press, 1960.

[128] A. J. Schaefer, M. D. Bailey, S. M. Shechter, and M. S. Roberts, “Modeling

medical treatment using markov decision processes,” in Operations research

and health care, pp. 593–612, Springer, 2004.

[129] T. Ayer, O. Alagoz, and N. K. Stout, “Or forum-a pomdp approach to person-

alize mammography screening decisions,” Operations Research, vol. 60, no. 5,

pp. 1019–1034, 2012.

233



[130] S. M. Shechter, M. D. Bailey, A. J. Schaefer, and M. S. Roberts, “The optimal

time to initiate hiv therapy under ordered health states,” Operations Research,

vol. 56, no. 1, pp. 20–33, 2008.

[131] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts, “The optimal

timing of living-donor liver transplantation,” Management Science, vol. 50,

no. 10, pp. 1420–1430, 2004.

[132] L. G. N. Nunes, S. V. de Carvalho, and R. d. C. M. Rodrigues, “Markov

decision process applied to the control of hospital elective admissions,” Artificial

intelligence in medicine, vol. 47, no. 2, pp. 159–171, 2009.

[133] P. Magni, S. Quaglini, M. Marchetti, and G. Barosi, “Deciding when to inter-

vene: a markov decision process approach,” International Journal of Medical

Informatics, vol. 60, no. 3, pp. 237–253, 2000.

[134] J. E. Mason, B. T. Denton, N. D. Shah, and S. A. Smith, “Optimizing the

simultaneous management of blood pressure and cholesterol for type 2 diabetes

patients,” European Journal of Operational Research, vol. 233, no. 3, pp. 727–

738, 2014.

[135] M. J. Levin, K. E. Schmader, L. Pang, A. Williams-Diaz, G. Zerbe, J. Canniff,

M. J. Johnson, Y. Caldas, A. Cho, N. Lang, et al., “Cellular and humoral

responses to a second dose of herpes zoster vaccine administered 10 years after

the first dose among older adults,” Journal of Infectious Diseases, vol. 213,

no. 1, pp. 14–22, 2016.

[136] H. Lal, A. L. Cunningham, O. Godeaux, R. Chlibek, J. Diez-Domingo, S.-

J. Hwang, M. J. Levin, J. E. McElhaney, A. Poder, J. Puig-Barberà, et al.,
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