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ABSTRACT

Essays on Contest Design and Contract Design

by

Jiang Jiang

Co-Chairs: Yan Chen, Yusufcan Masatlioglu

This dissertation is broadly on the topic of behavioral economics and mechanism

design, using lab experiments to study two settings: contest design and contract

design.

The first chapter studies how designers of two-stage elimination contests should al-

locate prizes and reveal interim performance information to achieve desired outcomes.

To investigate the interactive effect of prize allocation and interim information reve-

lation, I design a two-stage contest experiment with different combinations of these

two instruments. While my theoretical model predicts a positive effect of awarding a

single prize on effort regardless of information structure, I find this effect in the lab

only when interim information is revealed. Moreover, revealing information motivates

effort only under a single prize. These findings are consistent with a framework that

ties together the intuitions of how these two instruments work on contestants: infor-

mation on others’ performance allows contestants to estimate their own probabilities

of achieving different ranks, and hence increases their sensitivity to changes in the

prize allocation that affects the ranks they are likely to reach. Given this interplay

of prize and information, my findings suggest that contest designers should take into

ix



account the state of one instrument when optimizing the other.

In the second chapter, we design a real-effort laboratory experiment to investigate

how group identity influences decisions in a principal-agent framework with hidden

action. Group identity is induced by random assignment to groups, and is further

enhanced using a collective puzzle solving task. We find that the principals show

ingroup favoritism towards ingroup agents by making more generous revenue-sharing

offers. While ingroup agents are less tolerant of low offers from their principals, they

exert greater effort in response to higher offers, relative to the control condition.

The impact of group identity and incentives on agents’ effort also depends on their

perceptions of fair offers.
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CHAPTER I

Prize Allocation and Information Revelation in

Two-Stage Contests: Theoretical and

Experimental Evidence

1.1 Introduction

Multi-stage contests are widely observed in real life and vary in terms of the

dispersion of prizes across stages. For example, in the U.S. presidential campaign,

each candidate first needs to win the nomination in his or her own party and then

competes with the nominees from other parties for the presidency, which is the single

prize in this contest. Sports tournaments also represent a large group of multiple-stage

contests and the prize structure varies across games. For example, the World Cup has

a single final prize, whereas tennis tournaments, such as U.S. Open, reward winners

at each stage. Recently, we also observe many online contest platforms which solicit

expertise around the world. Such online contest websites have become popular labor

markets for companies and individuals to outsource tasks. One example is Topcoder,

the largest software development website in the world, where both single- and multi-

stage contests are conducted with various prize structures. Though the effect of prize

allocation is well discussed under single-stage contest, few studies examine its effect

in multi-stage contest. Therefore, it is important to understand the optimal prize
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allocation in multi-stage contests.

In addition to the prize structure, contestants may fully or partially observe each

other’s performance in real-life contests. For example, in the World Cup, the perfor-

mance of each team in each stage is publicly observed. For workers climbing the job

ladder in a firm, their performance at each stage is at least partially observed by their

competitors. However, whether providing interim information has positive effects on

individual effort has mixed answers in the literature. In particular, how workers with

different ability levels respond to opponent’s performance is an open question. Fur-

thermore, most studies in the literature examine how information revelation affects

individuals’ future behavior, e.g., second-stage effort in multi-stage contest, while it

may also have impact on individuals’ first-stage effort.

Prize allocation and information revelation structures, however, may interact with

each other’s performance. On the one hand, varying the prize allocation rule changes

the rewards for different ranks. This change in reward affects contestants’ behaviors,

and the effect may intensify when a contestant knows his probability of achieving each

rank. For example, increasing the second-class award of a merit-based scholarship has

more motivating effect on students who realize that they are excellent but yet to be

the best, compared with their counterparts who know nothing of their positions. To

examine how information may influence the prize effect, Freeman and Gelber (2010)

engage subjects in a maze-solving task and vary the number of prizes as well as the

information being revealed on contestants’ pre-contest performance under a piece-rate

incentive scheme. They find that awarding multiple prizes induces better performance

by low-ability contestants than awarding a single prize. This prize effect, however, is

only observed when contestant’s pre-contest performance is publicly revealed so that

low-ability contestants know that they have little chance of winning under a single

prize.

On the other hand, revealing others’ performance provides information on a con-
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testant’s relative ability and hence on his probability of achieving each rank. This

information effect on the contestants behavior is enlarged when his winning proba-

bility is sufficiently large or small under certain prize allocation rule. For example,

telling runners that they will encounter strong rivals in a race may causes more people

to give up when only the fastest runner is awarded than the case when all top ten

performers are awarded. In line with this intuition on how prize allocation rule may

impact the information effect, Fershtman and Gneezy (2011) find that asking children

to run side by side, similar to providing them instantaneous feedback on their oppo-

nents performance, induces more quitting than having them run separately under a

single large prize. In comparison, they find no effect of information revelation under

a single small prize.

While both Freeman and Gelber (2010) and Fershtman and Gneezy (2011) lend

insight into the interplay between prize allocation and information revelation in one-

stage contests, this study asks how the designer of a two-stage contest might simul-

taneously choose the prize and information structures to achieve desirable outcomes.

Contest designers in the real life may have various objects, depending on the contexts

of the contests, and this paper uses three of them to assess the optimal prize and

information structures. The first object we look at is the average output in each

stage. This is analogous to the revenue in auction models if we think of it in the total

term. Corresponding real-life applications could be a sports tournament to motivate

physical exercise by all participants, or an academic paper competition to encourage

cutting-edge studies in a certain field. The second object we are interested in is the

highest output in each stage. The intuition is that sometimes contest designers care

about the best performance in addition to, or even instead of, the average perfor-

mance by contestants. For example, the organizer of a worldwide sports tournament

may care about breaking world records, and a user of the online labor market who

posts a question may care about the quality of the best answer. The last object
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we use to measure the optimality is the aggregate output by a contestant in the two

stages. In online labor markets such as TopCoder, it is common for contests designers

who post crowdsourcing tasks to have all participants submit proposals in the first

stage and promote only those with the best proposals into the second stage. Then

in the second stage, participants develop their proposals into complete submissions

to the task, based on which the final winner is chosen. In this real-life application,

the quality of one’s final submission is the quality of her proposal in the first stage

plus the additional value she adds to the proposal in the second stage. So the contest

designer cares about the aggregate output across stages.

Using a laboratory experiment that varies the prize dispersion and revelation of

contestants’ first-stage performance before the second stage in a two-stage elimina-

tion contest, this study allows a thorough comparison on performances of different

combinations of the two structures. The contest experiment employs real effort slider

task first introduced in Gill and Prowse (2012). Unlike my theoretical model which

predicts a positive effect of awarding a single prize on effort regardless of information

structure, I find this effect in the lab only when interim information is revealed. More-

over, revealing information motivates effort only under a single prize. These findings

are consistent with a framework that ties together the intuitions of how these two

instruments work on contestants: information on others’ performance allows con-

testants to estimate their own probabilities of achieving different ranks, and hence

increases their sensitivity to changes in the prize allocation that affects the ranks

they are likely to reach. Given this interplay of prize and information, the findings

suggest that contest designers should take into account the state of one instrument

when optimizing the other.

The rest of the paper is organized as follows. Section 1.2 reviews the contest liter-

ature on prize allocation and information revelation. Section 1.3 presents a two-stage

contest model to motivate the experiment. Section 1.4 describes the experimental
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design and procedures. Section 1.5 presents the analysis and results. Finally, Section

2.5 discusses the results and their implications in contest design.

1.2 Literature Review

This study fits into the contest literature on games in which players expend scarce

resources to impact their probabilities of winning prizes while forfeiting the costs of

expenditures regardless of winning. In this literature, three major frameworks have

been used to model a wide variety of contests depending on how players’ expenditures

are translated into their outputs and winning probabilities: (1) the Tullock contest

(Tullock, 1980), (2) the all-pay auction (Hillman and Riley, 1989; Baye et al., 1996),

and (3) the rank-order tournament (Lazear and Rosen, 1981).

The three frameworks can be unified using a nested formulation (Dechenaux et al.,

2015) as follows. Assume each player i expends effort ei at a cost of c(ei). The output

of player i is yi = ei+ εi, where εi is a noise term drawn independently for each player

from a common distribution. Given the outputs by all players, player i’s probability

of winning as a function of all players’ output profile y = (y1, y2, ..., yn) ≥ 0 is given

by

pi(yi, y−i) =
yγi∑n
j=1 y

γ
j

if
∑n

j=1 yj > 0 and 1
n

otherwise. The parameter γ measures the sensitivity of the

contest rule in picking the winner. This nested formulation evolves into a simple

Tullock contest when we assume a probabilistic contest outcome (0 ≤ γ < ∞), no

noise in the output (εi = 0) and an identity cost function (c(ei) = ei). A special

case of the Tullock contest occurs when γ = 1, which we refer to as the lottery

contest. In comparison, if we require a deterministic outcome (γ =∞) while keeping

the other two assumptions as above, the nested formulation evolves into a simple
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all-pay auction. In a generalized case where we relax the common cost function

requirement and allow c(ei) to be individual-specific, termed ci(ei), this auction model

is extended to an all-pay contest (Siegel, 2009). Lastly, the nested formulation evolves

into a simple rank-order tournament when we require a deterministic contest outcome

(γ = ∞) and a common cost function (ci(ei) = c(ei)), but allow noise in the output

(yi = ei + εi).

The present paper considers contests that pick the player with the highest output

as the winner and therefore requires a deterministic outcome (γ =∞). For simplicity,

our model assumes that players choose outputs directly instead of choosing effort; this

avoids noise in the output (εi = 0). This assumption of choosing outputs is reason-

able when we notice that athletes in sports tournaments and students in academic

competitions often set a goal for their grades or rankings and then strive for it. Ad-

ditionally, the model also lets cost depend on effort in an individual-specific pattern

as ci(ei) to capture heterogeneous abilities of contestants. Given these constraints,

the paper employs an all-pay contest model to motivate the experiment.

Since the seminal work of Rosen (1986), there has been a growing interest in

multi-stage elimination contests. Theoretical research within this area has explored

two types of elimination, which Fu and Lu (2012) refer to as matching protocol and

pooling protocol. Matching protocol divides contestants in each stage into groups.

A single winner from each group enters the next stage while losers are eliminated.

Relevant to the present study, Moldovanu and Sela (2006) characterize the subgame

perfect Nash equilibrium in a two-stage contest which is modeled as an all-pay contest

with incomplete information. The second type of elimination, the pooling protocol,

gathers contestants in the same stage such that each contestant confronts all others

to compete for a number of prizes. No one may win more than one prize. So win-

ners are eliminated from subsequent play and losers are promoted to the next stage.

While most studies exploring the pooling protocol adopt the Tullock contest frame-
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work, Clark and Riis (1998a) extend a classical all-pay auction model with complete

information from a single prize to multiple prizes and characterize the corresponding

subgroup perfect Nash equilibrium. In a comparison between these two elimination

protocols, Amegashie (2000) demonstrates in a two-stage Tullock contest that the

pooling protocol collects more effort in the first stage. Nevertheless, the current work

focuses on the matching protocol for two reasons. First, it is unclear to what extent

the result of this comparison translates to the all-pay setup. Second, and more im-

portantly, the matching protocol is a better approximation than the pooling protocol

to many real-life contests where competitions in early stages are conducted within

groups rather than in a large pool due to resource constraints.

A common theme among contest studies is to treat the contest structure as an

endogenous choice of the designer and explore the effort-maximizing structure along

various dimensions. The present paper is related to this theme with regard to two in-

struments, prize allocation and information revelation. Literature on prize allocation

allows designers to allocate a fixed amount of prize money across ranks. Compared

to the bulk body of theoretical work about one-stage contests (Glazer and Hassin,

1988; Barut and Kovenock, 1998; Clark and Riis, 1998b; Moldovanu and Sela, 2001;

Moldovanu et al., 2007; Cohen and Sela, 2008; Sisak, 2009), only a handful of pa-

pers have analyzed the optimal prize allocation in multi-stage elimination contests.

Rosen (1986) analytically addresses the importance of weighing the top prize heavily

in order to maintain incentives along the hierarchical ladder. Fu and Lu (2012) also

show that awarding the entire prize to the final winner generates the highest total

effort over all contestants and stages, in their case in a multi-stage Tullock contest.

However, a grand prize is not always optimal. In a two-stage all-pay contest with

incomplete information, Moldovanu and Sela (2006) show that a grand prize elicits

the highest total effort under linear cost-of-effort functions, whereas awarding mul-

tiple prizes among finalists may be optimal under convex costs. This conclusion is
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attributed to the role that cost convexity plays in the effect of secondary prizes on

heterogeneous contestants. Awarding secondary prizes discourages contestants with

high abilities while motivating low-ability contestants. This motivating effect gets

amplified by convex costs since low-ability contestants face relatively low marginal

costs, which may yield a higher total effort.

Experimental research on one-stage contests provides several interesting insights

into optimal prize allocation in a contest setting. Evidence shows that optimality

interacts with various features of a contest and its contestants. Sheremeta (2011) ob-

serves in a lottery contest that a single prize induces higher effort than multiple prizes.

Allowing more flexibility in the form of the cost function, Müller and Schotter (2010)

find support for the predictions of Moldovanu and Sela (2001) that a single-prize

all-pay contest is optimal in case of a linear cost function while having two prizes is

optimal given a convex cost function. While the aforementioned studies treat contes-

tants as risk neutral, Lim et al. (2009) design a rank-order tournament with the prize

spread endogenously determined using the elicited risk preference of subjects. They

show that awarding multiple prizes collects more effort than awarding a single prize,

consistent with the predictions of Kalra and Shi (2001). Furthermore, contestant het-

erogeneity can also be relevant. Chen et al. (2011) introduce two types of contestants

with different levels of endowments, denoted “favorites” and “underdogs”, in a rank-

order tournament. In a treatment with two favorites and one underdog, they find

that favorites exert more effort under two prizes than under a single prize, contrary

to the theory prediction. They explain this inconsistency using a social compari-

son model that allows psychological losses from losing for favorites and psychological

gains from winning for underdogs, since contestants’ types and outcomes are publicly

announced in their experiment. In summary, evidence across a wide range of specific

contest models seems to support a single prize as being optimal for one-stage contests

given basic assumptions, while multiple prizes may perform better when we take into
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account cost convexity, risk aversion or heterogeneity of contestants. However, it is

important to emphasize that there are many ways to distribute prize values across

ranks under a multiple-prize structure. So given that a multiple-prize structure is

optimal for an one-stage contest, the prize spread must be theoretically optimal as

well, which requires the designer to have ex ante knowledge on relevant parameters

and choose the prize spread accordingly, as satisfied in Müller and Schotter (2010)

and Lim et al. (2009). A multiple-prize design that fails to do so may yield under-

performance compared with a single-prize structure, even if awarding multiple prizes

is predicted to be optimal.

Two recent experiments on prize allocation rules in two-stage elimination contests

find divergent results. Altmann et al. (2012) compare two multiple-prize structures

in an all-pay contest with complete information and observe that, when the prize

spread gets more convex (i.e., more weighted toward the top prize), the first-stage

effort decreases by just 8% in spite of a striking decline by 43% in equilibrium. Since

both schemes yield excess effort in the first stage, this observation implies that the

overprovision of first-stage effort is boosted by a more convex prize spread. In con-

trast, Stracke et al. (2012) find that holding a single prize increases performance in the

second stage at the expense of first-stage performance compared with holding multi-

ple prizes in a lottery contest. A likely reason for the different findings of these two

experiments is that their designs differ in several ways: contest framework (all-pay

versus lottery), total prize money across competing prize structures (different versus

identical) and number of rounds (1 versus 30). Besides, Stracke et al. (2012) also ex-

amines optimality in terms of total effort over all contestants and both stages. They

find that, although the single-prize structure is predicted to be optimal, this optimal-

ity is attenuated by the attractiveness of the multiple-prize structure for risk-averse

subjects.

Literature on the other instrument relevant to this study, information revelation in
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contests, endogenizes the provision of feedback on contestants’ relative performance

for the designer. Among the theoretical work along this dimension, Zhang and Wang

(2009) examine the effect of revealing interim information in elimination contests. In

a two-stage contest modeled as an all-pay auction, they show the non-existence of

symmetric separating equilibrium strategies in the first stage when interim informa-

tion is provided between stages, which decreases efficiency and total revenue in the

first stage.

Experiments in the laboratory and the field about the effect of information reve-

lation on contestants’ behavior, although mostly concentrated on one-stage or multi-

stage non-elimination contests, yield mixed findings. Eriksson et al. (2009) manip-

ulate the degree of information revelation on rivals’ performance in a two-person

contest which asks subjects to add four two-digit numbers in 20 minutes. They find

that continuous provision of feedback decreases the performance quality of under-

dogs, which they suspect to be driven by underdogs’ anxiety and stress. However,

Berger and Pope (2011) observe that being slightly behind at halftime increases suc-

cess in professional basketball games where relative performance is instantaneously

announced and attribute this to the role of self-efficacy. Some other papers have

found the effect depends on contestants’ relative status. Ludwig and Lünser (2012),

for example, find in a two-stage rank-order tournament which promotes all contes-

tants that those who lag in the first stage tend to increase their effort in the second

stage and those who lead tend to reduce it. Besides the ex post effect, findings on the

ex ante effect are also mixed. Kuhnen and Tymula (2012) find in a one-stage tour-

nament that contestants work harder and expect to rank better when told that they

will learn their rankings, relative to cases when they know that no feedback will be

provided. Conversely, Sheremeta (2010) finds that disclosure of interim information

decreases first-stage effort in a two-stage elimination lottery contest with carryover

between stages. Although these studies are based on different theoretical models and
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thus are not directly comparable, the striking difference in findings highlights the

importance of investigating both ex ante and ex post effects of information revelation

in multi-stage elimination all-pay contests.

Different from Freeman and Gelber (2010) and Fershtman and Gneezy (2011)

that focus on the interactive effect of prize allocation and information revelation in

one-stage contests, this study is one of the first, to my knowledge, that examines

this relationship in a two-stage contest environment. By allowing the designer to

choose whether to reveal information on contestants’ first-stage performance before

the second stage, this experiment provides evidence on both ex ante and ex post effect

of this interactive relationship.

1.3 Theoretical Framework

This section depicts the theoretical framework from which comparative statics

predictions are derived as the basis of our experimental design and hypotheses. Fol-

lowing the model in Moldovanu and Sela (2006), we consider a two-stage elimination

contest with n contestants, all assumed to be risk-neutral. The total prize in the

contest is fixed at V to avoid the potential prize size effect.

Initially, the n contestants are evenly divided into t parallel groups, each with

k = n
t

members. In the first stage, contestants compete within each group by choosing

their first-stage performances, which can be considered as each choosing an output

level. The one who achieves the highest output within each group is awarded a

proportion α of the entire prize and promoted to the next stage. Then in the second

stage, the t first-stage winners, one from each group, compete against each other for

an single and additional award of the remaining prize (1−tα)V . All other contestants

are eliminated after the first stage. To make things well-defined, we assume 2 ≤ t ≤ n

and 0 ≤ α ≤ 1
t
.

Each contestant i is characterized by an individual-specific parameter ci that rep-
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resents his ability. A high ci implies a low ability for contestant i and vice versa.

Abilities are assumed to affect the contestants through the costs they bear when

producing in the contest. Specifically, each time contestant i produces output b, it

yields a cost of cib. This cost function captures the idea that it is more costly for

a low ability contestant to achieve a certain output level, compared with someone

with high ability. Furthermore, we adopt the separability assumption in Moldovanu

and Sela (2006) that first-stage outputs have no long-term effects on the second stage

in terms of costs. Therefore, if contestant i produces b1,i and b2,i in the two stages,

respectively, she bears a total cost of cib1,i + cib2,i.

The ability parameter ci is private information to contestant i and drawn indepen-

dently from the interval [m, 1] according to the cumulative density function F , which

is commonly known by all contestants. Without loss of generality, we assume F to be

continuously differentiable with f ≡ F ′ > 0. The lower bound m is restricted to be

strictly positive so as to refrain from infinite outputs due to zero costs. Later when

we investigate the effect of splitting the prize among finalists under no information

revelation, Proposition 1 further requires that m ∈ [1
2
, 1].

Given this contest model, two underlying features are worth paying attention to.

First, we note that the output of a contestant is a noisy function of his effort and

ability. Instead of choosing the invisible effort, contestants in our model choose the

visible output, which is deterministically translated into the outcome of the contest.

In this sense, our model fits into a perfectly discriminating contest. Second, the

feature of contests determines that contestants pay for their outputs regardless of

winning or not. In particular, the payoff of contestant i with ability parameter ci is

αV +(1−tα)V −cib1,i−cib2,i if she produces b1,i and b2,i in the two stages respectively

and becomes the final winner, or αV − cib1,i− cib2,i if she wins in stage 1 but loses in

stage 2, or −cib1,i if she loses in stage 1. For these two reasons, we model the contest

described above using the all-pay auction framework.
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The contest designer maximizes the expected average output among the partici-

pants in each stage by manipulating two characteristics of the contest: the number of

prizes and the degree of information revelation. To control the former, the designer

chooses α with α = 0 corresponding to the case in which the final winner receives the

entire prize and α > 0 corresponding to the case in which the prize is split among all

finalists in some certain way. To control the latter, the designer determines whether

to reveal contestants’ performance in the first stage before the second-stage compe-

tition. Taking the prize and information structures as exogenous, each contestant

decides her outputs in the two stages (conditional on entering stage 2) to maximize

her expected utility. In what follows, we characterize the comparative statics pre-

dictions by separately investigating the two-stage contest models with and without

information revelation. We also restrict ourselves to the specific case relevant to our

experimental design by assuming n = 4 and t = 2.

1.3.1 Two-Stage Elimination Contest without Information Revelation

When contestants’ outputs in the first stage are concealed until the end of the

contest, participants in the second stage know nothing about their opponents’ past

performance except that they won in the previous stage. Given this knowledge,

each contestant in the second stage updates her beliefs on the distribution of her

opponents’ abilities if they are assumed to play separating equilibrium strategies in

the first stage (which is verified by the equilibrium presented below). In particular,

when each contestant i’ first-stage output decreases in ci, only the one with the lowest

ability parameter in each group gets to enter the next stage. Since F represents the

ability distribution of contestants in the first stage and k represents the size of each

group, each second-stage contestant perceives the ability parameters of her opponents

as being randomly drawn from the distribution of G ≡ F(1,k) = F(1,2).
1 Here we denote

1We take n = 4 and t = 2 in the experiment, which implies k = n
t = 2.
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by F(1,k) the cumulative density function of the first order statistics, which means the

smallest value, of k independent random variables drawn from the distribution of F .

In this sense, the contest is equivalent to a two-stage nested all-pay auction with

incomplete information, and hence is solvable using backward induction. From the

analysis above, the two stages only differ in the distribution of contestants’ abilities,

the values of prizes (with the one in stage 2 being (1 − 2α)V and the one in stage

1 being αV plus the contestant’s expected payoff in the second stage conditional on

entering), and the numbers of participants. Moldovanu and Sela (2006) characterize

the corresponding subgame perfect equilibrium, which is unique under the assump-

tions of strict monotonicity and symmetry on the equilibrium strategy. 2 Specifically,

the equilibrium strategy in the first stage for a contestant with ability parameter c is

given by

β1(c) =

∫ 1

c

[αV + (1−G(c))(1− 2α)V − cβ2(c)]
1

s
dF (s) (1.1)

And the equilibrium strategy in the second stage is

β2(c) =

∫ 1

c

(1− 2α)V
1

s
dG(s) (1.2)

It is straightforward to find both β1(c) and β2(c) being strictly decreasing in c, in-

dicating that the stronger contestants produce more outputs in both stages. This

verifies the strict monotonicity assumption for the equilibrium.

This equilibrium allows us to make comparative statistics predictions on the effects

of splitting the entire prize among finalists in both stage when no interim information

2By “strict monotoncity and symmetry” we mean an equilibrium in which all players adopt
the same strategy that strictly decreases in their ability parameters. Later in this paper, we also
mention this equilibrium as a symmetric separating equilibrium, for players with different types
choose different equilibrium strategies. Besides, with the parameter values used in our experimental
design, direct competitions in both stages engage only two contestants. In this specific situation,
related literature (Amann and Leininger, 1996; Lizzeri and Persico, 2000) shows that the equilibrium
characterized here remains unique even if asymmetric strategies are considered.
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is revealed. For the first stage, Proposition 1 shows analytically that awarding only

the final winner decreases contestants’ expected average output when an additional

assumption of m ∈ [1
2
, 1] is imposed.

Proposition 1. When no interim information is revealed to contestant’s before the

second stage and under the assumption of m ∈ [1
2
, 1], the expected average output in

the first stage is higher when the entire prize is shared by the finalists than the case

when it is awarded only to the final winner.

Proof. See Appendix A.1.

Given this analytical result, we hypothesize that the effect is the similar when

m ∈ (0, 1
2
). For the second stage, Proposition 2 indicates that awarding only the final

winner increases contestants’ expected average output in the second stage.

Proposition 2. When no interim information is revealed to contestant’s before the

second stage, the expected average output in the second stage is lower when the entire

prize is shared by the finalists than the case when it is awarded only to the final winner.

Proof. See Appendix A.1.

Based on Propositions 1 and 2, we expect that a multiple-prize contest with no

information revelation should induce higher average output in the first stage but lower

average output in the second stage than a single-prize contest, all else being equal.

These predictions are formally stated in the following hypothesis:

Hypothesis 1 (Effect of Prize Split on Average Output, No Information Revelation).

When no interim information is revealed to contestants before the second stage,

a. Splitting the entire prize among finalists increases the average output in stage

1, compared with awarding only the final winner.

b. Splitting the entire prize among finalists decreases the average output in stage

2, compared with awarding only the final winner.
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Hypothesis 1 states that the effect of splitting the prize works oppositely in the

two stages. Intuitively, a prize split among the finalists is equivalent to an allocation

of the entire prize toward the first stage, leaving a smaller additional award to the

final winner. As a result, second-stage contestants with all abilities decrease their

outputs, which yields a lower average output in the second stage. To understand the

effect of such a prize split on contest in the first stage, we need to aggregate two con-

flicting influences: a larger monetary award to stage 1 winners and a lower expected

payoff of entering the second stage due to the smaller stage 2 award. The weight on

the second influence increases in contestants’ abilities, since strong contestants enjoy

larger winning probabilities and lower costs, which yields a larger expected payoff

in the second stage compared with weak contestants. However, the joint effect of

the first influence on all contestants exceeds that of the second influence, inducing a

higher average output in the first stage.

This prediction allows us to determine the prize structure in the experiment

through α under different objectives. The proof of Propositions 1 and 2 shows that α

uniformly increases the expected average output in the first stage under certain con-

straint on m, and uniformly decreases it in the second stage. Therefore, it is optimal

to choose α = 1
2

if the designer cares about stage 1 or α = 0 if he cares about stage

2. In the experiment, we let α = 0 for half of the treatments and α = 1
4

for the other

half. The reason of having 1
4

rather than 1
2

is to make the contest close to reality, as

α = 1
2

implies no additional prize for the last stage, which is rarely seen in real-life

contests. By setting α = 1
4
, we assume that the designer cares about outcomes in

both stages and hence uses an equal split of the entire prize between the two stage.

1.3.2 Two-Stage Elimination Contest with Information Revelation

When contestants’ outputs in the first stage are publicly revealed before the

second-stage competition, each finalist observes the first-stage outputs of all other
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finalists before competing with them. The release of this interim information affects

contestants’ behaviors in both stages. In particular, contestants in the second stage

will take the revealed information as a signal of their opponents’ abilities and respond

accordingly. In expectation of this response, each first-stage contestant may find it

profitable to take advantage of the signaling effect in an attempt to manipulate the

beliefs of her opponents in the next stage on her ability and thus their behaviors. For

example, by producing a high output in the first stage, a contestant signals a strong

ability to her potential opponents who will optimize by competing mildly. Knowing

this and if the contestant enters the second stage, she will be better off by choosing

fairly low outputs to minimize her cost while still enjoying a positive possibility of

winning. Alternatively, a contestant biases others’ beliefs of her ability downward

by choosing a low output in the first stage. Knowing that she will be perceived as a

weak type and hence encounter gentle competition in the second stage, the contestant

will be better off by choosing some output level in stage 2 that barely surpasses her

opponents to guarantee winning.

This intuition of how the information revelation mechanism works nullifies the

existence of a symmetric separating equilibrium for the contest. Suppose such an

equilibrium exists. It is required by the definition of a Nash equilibrium that no

contestant has an incentive to deviate unilaterally from the equilibrium strategy when

all other contestant are on the equilibrium path. The intuition discussed in the

previous paragraph indicates that a contestant has different incentives in increasing

and decreasing her output in the first stage. However, Zhang and Wang (2009) show

in a model with identical two-stage hierarchical mechanism that no strictly monotone

equilibrium function in the first stage satisfies the incentive compatibility constraints

in both directions. While they establish this in the canonical all-pay auction model,

we replicate their result in our contest environment, as presented by Proposition 3.

Accordingly, if an equilibrium exists in the contest with information revelation, it
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must involve contestants playing either pooling or non-monotone or asymmetric or

mixed strategies in the first stage.

Proposition 3. In the two-stage elimination contest in which interim information is

revealed before the second stage, no symmetric separating equilibrium exists in which

all contestants adopt the same strictly monotone equilibrium strategy in the first stage.

Proof. See Appendix A.2.

The nonexistence of a symmetric separating equilibrium implies a loss of efficiency

in the first stage. Simply put, efficiency in the first stage in our model means that

only contestants with the higher abilities in their respective groups win in stage 1 and

enter stage 2. To ensure efficiency given any realization of abilities, the equilibrium

strategy in the first stage must be symmetric and strictly increasing in ability, or

equivalently, strictly decreasing in ability parameter c. This requirement, however, is

not satisfied when interim information is revealed according to Proposition 3.

To understand how this loss of efficiency affects the expected average output in

the first stage, let us consider the competition within each group from the designer’s

perspective. Suppose that the contest designer’s objective is to maximize the expected

average output in each group. In doing so, he must select a group winner and award

her an invisible prize (which is the monetary prize in the first stage, if any, plus entry

into the next stage). This designer’s problem is almost identical to the one studied

in Myerson (1981), which investigates the optimal auction to achieve the highest

expected revenue. We call it “almost” because our environment distinguishes from

the Myerson environment in three ways: first of all, the contest designer can not

keep the prize for himself; second, our problem is interpreted as a contest instead of

an auction; and lastly, in our two-stage case, the prize of the first-stage contest is

the monetary prize plus the expected payoff from the second stage. However, these

differences do not deter us from using their conclusion as a benchmark. It is because,
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on the one hand, the Myerson environment nests our restriction on the designer by

setting his personal valuation of the object at zero. And on the other hand, we

show rigorously in Proposition 4 that comparable results hold in a grand contest

environment. In particular, the expected average output of a group is maximized if

the contestant with the higher ability wins.

Proposition 4. All else being equal, the expected average output in a grand contest

(i.e. one-stage contest with a single prize) is the highest when the contest achieves

efficiency with the highest ability contestant being the winner.

Proof. See Appendix A.3.

Based on Propositions 3 and 4, we hypothesize that the average output over the

whole group in the first stage is maximized when efficiency is achieved in both groups,

which is the case only under no information revelation. Due to the loss of efficiency in

the first stage under information revelation, contestants who enter the second stage

do not necessarily have higher abilities than their first-stage opponents. This biases

down the average abilities of contestants in the second stage, compared with the case

with no information revelation. Therefore, it is reasonable to expect that revealing

information also decreases the average output in the second stage. These conjectures

are formally summarized as:

Hypothesis 2 (Effect of Information Revelation on Average Output, Single and

Multiple Prizes). Revealing interim performance information decreases the average

outputs in both stages, regardless of the prize structure.

We next compare the average outputs under a single versus multiple prizes when

interim information is revealed. As we have no analytical solutions on the existence

of the equilibrium strategy or its specific form under information revelation, we hy-

pothesize this to be the same as the case with no information revelation.
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Hypothesis 3 (Effect of Prize Split on Average Output, With Information Revela-

tion). When interim information is revealed to contestants before the second stage,

a. Splitting the entire prize among finalists increases the average output in stage

1, compared with awarding only the final winner.

b. Splitting the entire prize among finalists decreases the average output in stage

2, compared with awarding only the final winner.

In addition to the average outputs, we are interested in the effects of prize allo-

cation and information revelation on the highest outputs in both stages. To obtain

hypotheses on the prize effect on highest outputs under no information revelation,

we follow similar procedures in Propositions 1 and 2. Our prediction for the prize

effect on average outputs under no information revelation is a derivative result of

the individual-level conclusion summarized by equations (1.1) and (1.2). The two

equations altogether indicate that, when no interim information is revealed, a player

in the single-prize case with any given ability parameter produces less in stage 1 and

more in stage 2 than in the multiple-prize case. By aggregating this individual-level

result, Propositions 1 and 2 present average patterns that are similar to patterns on

the individual level. Similarly, we can obtain the prize effect on the highest output in

each stage under no revelation of information as another derivative result of equations

(1.1) and (1.2). For the case with information revelation, we hypothesize that, just

like the case of average outputs, the prize effects on the highest outputs are preserved

when moving from no-information to with-information structure. Formally, we have

the following:

Hypothesis 4 (Effect of Prize Split on Highest Output). Regardless of the informa-

tion structure,

a. Splitting the entire prize among finalists increases the highest output in stage 1,

compared with awarding only the final winner.
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b. Splitting the entire prize among finalists decreases the highest output in stage 2,

compared with awarding only the final winner.

As for the effect of information revelation on the highest output, we obtain our

hypothesis from the intuition of how the information revelation mechanism works

on players with different abilities. When interim information is revealed before the

second stage, Proposition 3 shows that no symmetric separating equilibrium exists in

which players adopt the same and strictly monotone equilibrium output function in

the first stage. An intuitive explanation to this nonexistence of monotone equilibrium

strategies in the first stage is the manipulation incentive for players in the first stage.

Specifically, when players in the second stage observe their opponents’ first-stage

outcomes, they form up a belief on their opponents’ abilities and respond accordingly

in the second stage. They know their opponents will do the same thing inversely.

Going backward to the first stage, this gives them an incentive to manipulate the

beliefs of their second-stage opponents by hiding their true abilities. In particular,

those with high abilities have an incentive to restrict their outputs in stage 1 so as

to fool their stage 2 opponents, while those with low abilities have an incentive to

elevate their outputs in order to scare their stage 2 opponents. However, players in

the latter group are not able to increase their outputs by too much given their low

abilities and the resulting high costs. As a result, we expect the highest output in

stage 1 to decrease, compared with the case when no information is revealed.

Hypothesis 5 (Effect of Information Revelation on Highest Output). Revealing in-

formation on performance in the first stage before the second-stage competition de-

creases the highest output in both stages, regardless of the prize structure.

Lastly, it would be interesting to study the prize and information effects on the

aggregate of a contestant’s outputs in stage 1 and stage 2 given that she participates

in both stages. As there is little theoretical or empirical evidence on how prize and
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information structures affect the sum of outputs in the two stages, we are agnostic

to the directions of the impact. However, the analytical discussions in this section

demonstrates that both splitting the entire prize among finalists and revealing interim

information impact the theoretically predictions on contestants’ behaviors in both

stages. So it is reasonable to expect that the aggregate output is also affected.

Hypothesis 6 (Effect of Prize Split and Information Revelation on Aggregate Output

Across Stages). The aggregate output of the two stages differs under different prize

and information structures.

1.4 Experimental Design

To test the theoretical predictions in Section 1.3, a laboratory experiment is con-

ducted with alternative prize and information structures for a two-stage elimination

contest. For the content of the contest, subjects undertake a computerized real effort

task, which is derived from Gill and Prowse (2012) and referred to later as the ”slider

task”. In each stage of competition, subjects work on a computer screen displaying

48 sliders for 120 seconds. To complete each slider, they need to use the computer

mouse to position the cursor of the slider at exactly the midpoint. Their output is

measured as the number of sliders completed at the end of the 120 seconds. Figures

of the initial position for each slider, a completed slider, and a screen of the 48 sliders

altogether, are shown in the instructions as provided in Appendix B. In addition to

the desirable features of this slider task such as independence of preexisting exper-

tise and identity across repetitions, as mentioned in Gill and Prowse (2012), it is

chosen since it involves only routine physical activities with no practical value for

the output. This attribute minimizes utility resulting from enjoyment and intrinsic

motivation in undertaking real effort tasks (Brüggen and Strobel, 2007), which makes

this slider task consistent with the model in Section 1.3 and therefore suitable for the
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experiment.

Built upon this two-stage elimination contest as illustrated in Figure 1.1, the

experiment follows a 2 × 2 factorial design. Along the first dimension, the prize

allocation rule is varied. In the ”Single-Prize” treatments, the final winner of each

cohort receives 100 tokens. In the ”Multiple-Prize” treatments, the two finalists each

receive a milestone prize of 25 tokens at the end of the first stage and the one who

becomes the final winner receives an additional prize of 50 tokens at the end of the

second stage. All other subjects earn 0 tokens. The total prize money is fixed across

the two prize structures to avoid the size effect of the total prize.

Subject 1, Group A 

reports belief of prob(beating 

Subject 2 in stage 1) 

Subject 2, Group A 

reports belief of prob(beating 

Subject 1 in stage 1) 

Subject 3, Group B 

reports belief of prob(beating 

Subject 4 in stage 1) 

Subject 4, Group B 

reports belief of prob(beating 

Subject 3 in stage 1) 

Group A Finalist 

receives finalist prize;                          

(“With-Information” treatments only)  learns 

Group B Finalist’s output in stage 1 

reports belief of prob(beating 

Group B Finalist in stage 2) 

reports belief of prob(beating 

Group A Finalist in stage 2) 

Final Winner 

receives additional prize for 

final winner 

Stage 1 Stage 1 

Stage 2 

Group B Finalist 

receives finalist prize;                          

(“With-Information” treatments only)  learns 

Group A Finalist’s output in stage 1 

Figure 1.1: Flowchart of the Two-Stage Elimination Contest

Along the second dimension, the information revealed between the two stages is
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varied. In the ”No-Information” treatments, subjects learn only the first-stage out-

puts for themselves and their opponents within the group. In the ”With-Information”

treatments, subjects also learn the first-stage outputs for the two subjects from the

other group within their cohort. This difference in feedback about the first stage

implies different information structures for competition in the second stage. Specifi-

cally, since paired finalists in the second stage are from different groups of the same

cohort, they don’t know each other’s first-stage output in the ”No-Information” treat-

ments, but have the knowledge in the ”With-Information” treatments. A summary

of features for all four treatments is provided in Table 1.1 and instructions for the

Multiple-Prize-With-Information (MP-WI) treatment are included in Appendix B.

Table 1.1: Experimental Design

Treatments
Stage 1 Stage 2 Information Num.
Prize Prize Revelation Subjects

Single-Prize-No-Information (SP-NI) 0 100 No 3× 12
Multiple-Prize-No-Information (MP-NI) 25× 2 50 No 3× 12
Single-Prize-With-Information (SP-WI) 0 100 Yes 3× 12
Multiple-Prize-With-Information (MP-WI) 25× 2 50 Yes 3× 12

Before starting the contests, subjects take a computerized quiz on the two-stage

mechanism to enhance their understanding. Those who submit an incorrect entry to

any quiz question are informed of the correct answer and provided an explanation on

the screen. At the end of the experiment, subjects fill out a questionnaire on their de-

mographic information, personality traits, risk and loss attitudes, competitiveness as

well as their experience in the experiment. The questionnaire with response statistics

is included in Appendix C.

As displayed in Table 1.1, three independent sessions were run for each treatment,

with twelve subjects in each session. This yielded a total of twelve sessions con-

ducted at the Behavioral and Experimental Economics Laboratory at the University

of Michigan in July of 2012. Subjects were mostly students from the University of
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Michigan, with each participating in only one session. People who had previous ex-

perience in either the slider task or similar contest-based economics experiments were

excluded. Considering the feature of the slider task that asks for muscle movements

of subjects, all sessions were held at the same time of each day to avoid potential

confounds due to fluctuations in peoples physical statuses during the day. The exper-

iment was programmed using zTree (Fischbacher, 2007).3 Payoffs were denominated

in experimental tokens and converted into U.S. dollars at the exchange rate of 1 token

= $0.05. The average per subject earning was $19.17, including a $5 show-up fee.

Each session lasted approximately 60 minutes. Data are available from the author

upon request.

1.5 Results

Before analyzing the results, one data issue due to an important feature of the

experiment warrants some discussion. In the model described in Section 1.3, each

player is characterized by an ability parameter that represents his ability and affects

his cost in the contest. However, since the experiment requires subjects’ real effort,

each player’s task-relevant ability is innate and thus invisible. So it is impossible

to be measured directly. In dealing with this issue, we identify subjects’ abilities

using the number of sliders they complete in the second practice round.4 Given this

identification method, the only thing remaining before analyzing the data for the

treatment effects is to check whether players’ abilities in the slider task are randomly

distributed across treatments. Pairwise Kolmogorov-Smirnov tests comparing the

distribution of ability across treatments yield p > 0.1 for all comparisons, indicating

3I thank David Gill and Victoria Prowse for generously sharing their experiment program for the
slider task.

4I use the second instead of the first practice round, as data collected from the four piece-rate
sessions show that the average number of sliders completed increases by 18:429% (with p < 0.05)
from the first round to the second round. This indicates a sizable learning process between the first
two times that a player undertakes the slider task, which makes her ability in the second practice
round a more precise approximation of her ability during the contests.
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that the distributions of ability are comparable across different treatments. Results

from this comparability test serve as the basis for the study of the treatment effects.

The following two subsections present the results from the experiment. We pro-

ceed by first reporting in Section 1.5.1 the results directly related to the theoretical

predictions. Specifically, we investigate the effect of prize allocation and that of infor-

mation revelation on three outcomes: (1) the average number of sliders completed in

each stage; (2) the highest number of sliders completed in each stage; (3) the aggre-

gate number of sliders completed across the two stages. Then, Section 2.5 presents

data analysis results on the individual level. In the rest of the paper, output is defined

as the number of sliders completed (which means correctly positioned) at the end of

the two minutes if not particularly specified.

1.5.1 Treatment Effects

1.5.1.1 Average Output in Each Stage

We first examine the effect of prize allocation on the average output in each

stage. Based on Hypothesis 1, we expect the single-prize structure to yield lower av-

erage output in stage 1 but higher average output in stage 2 than the multiple-prize

structure in no-information treatments. Figure 1.2 presents the average number of

completed sliders in both stages for all treatments. The horizontal axis presents

the treatments: SP-NI (Single-Prize-No-Information), MP-NI (Multiple-Prize-No-

Information), SP-WI (Single-Prize-With-Information), and MP-WI (Multiple-Prize-

With-Information). For each treatment, the white bar denotes the mean (and stan-

dard deviation) of the groupwise average output in stage 1 while the black bar denotes

the mean (and standard deviation) of the groupwise average output in stage 2. These

observations lead to the following result.

Result 1 (Effect of Prize Split on Average Output, No Information Revelation).

For both stages, the average outputs are the same in the Single-Prize No-Information

26



Figure 1.2: Groupwise Average Output by Stage and Treatment
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treatment and the Multiple-Prize No-Information treatment.

Support. Table 1.2 presents the summary statistics and treatment effects for the

groupwise average outputs in both stages. Specifically, we find the average outputs in

both stages higher in the SP-NI treatment than in the MP-NI treatment (stage 1: 19.16

vs. 18.26; stage 2: 22.06 vs. 21.17). But neither of the differences is statistically

significant (p > 0.1, two-sided permutation tests).

Result 1 fails to reject the null of Hypothesis 1. Specifically, when no information

is revealed, we find that splitting the entire prize had no significant impact on the

average output in either stage.

We next analyze the effect of information revelation on the average output in each

stage. Based on Hypothesis 2, we expect the revelation of interim information before

the second-stage competition to yield lower average in both stages for single-prize

and multiple-prize treatments. To check this hypothesis, we present in the upper

panel of Table 1.3 the results from four Ordinary Least Squares (OLS) regressions to

investigate the treatment effects on the average outputs. The dependent variables are

27



Table 1.2: Treatment Effects on the Average Output

Stage 1 No-Information With-Information Information Effect
Single-Prize 19.16 19.12 p = 0.504
Multiple-Prize 18.26 17.58 p = 0.291
Prize Effect p = 0.104 p = 0.049

Stage 2 No-Information With-Information Information Effect
Single-Prize 22.06 22.26 p = 0.344
Multiple-Prize 21.17 20.63 p = 0.345
Prize Effect p = 0.200 p = 0.097

the groupwise average outputs in the two stages, respectively. In specifications (1)

and (3), the independent variables include the following (with omitted variables in

parentheses): dummy variable for the multiple-prize structure (single-prize), dummy

variable for the with-information structure (no-information) and the interaction term

between the two dummies. These three independent variables allows us to test the

effect of prize allocation and the effect of information revelation on the groupwise

average output level. Specifications (2) and (4) further control for round to capture

the possible learning effect in the slider task, and control for the groupwise average

ability to take care of the ability variations across different groups. The two latter

independent variables allows a robustness check on the results found in (1) and (3).

Standard errors in parentheses are clustered at the session level. The middle and

bottom panels of Table 1.3 present the results of the four pairwise comparisons across

treatments to give us a more direct idea of the treatment effects on the average output

in each stage.

In Table 1.3, we find the coefficient of the multiple-prize dummy negative but in-

significant in all the four specifications. This verifies Result 1 that splitting the entire

prize among finalists has no significant impact on the average output in either stage

when no information is revealed. Furthermore, the coefficient of the information rev-

elation dummy is significantly positive in (2) and weakly significant in (4), indicating

a positive effect of revealing interim information under a single prize. Specifically,
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from no-information revelation to with-information revelation, the groupwise average

output in either stage increases by 1. Lastly, the coefficient of the interaction term is

significantly negative in (2) while insignificant but still negative in (4). This indicates

that the increase in the average output driven by information revelation is larger for

the single-prize treatments than for the multiple-prize treatments, especially in stage

1. This interaction factor contributes to the effect of awarding multiple prizes under

information revelation and the effect of revealing interim information under multiple

prizes by working jointly with the two dummy variables. We summarize the results

below.

Result 2 (Effect of Information Revelation on Average Output, Single and Multiple

Prizes). While information revelation has no treatment effect in summary statistics

for either stage, it increases the average outputs in both stages (only) for the single-

prize treatments, after controlling for learning and groupwise average ability.

Support. Table 1.2 reports the p-values of two-sided permutation tests for the effect of

revealing interim information on the average output in each stage for both single-prize

and multiple-prize treatments. None of the comparisons yields significant difference at

the 10% level. In comparison, Table 1.3 reports the OLS regression results for average

outputs. The coefficient of the information revelation dummy is positive and signifi-

cant after controlling for learning and groupwise average ability (column (2): 0.882,

p < 0.01; column (3): 1.006, p < 0.10), indicating a positive effect of information

revelation for the single-prize treatments in both stages. The joint coefficient of the

information revelation dummy and the interaction term is insignificant at the 10%

level, indicating no effect of information revelation for the multiple-prize treatments

in either stage.

Result 2 suggests that revealing interim information before the second stage in-

creases the average outputs in both stages under a single prize. This allows us to
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Table 1.3: OLS: Determinants of Average Output

Groupwise Average Output
Stage 1 Stage 2

(1) (2) (3) (4)
Multiple Prizes (β1) -0.894 -0.166 -0.889 -0.248

(0.765) (0.539) (0.962) (0.913)
Info. Rev. (β2) -0.033 0.882*** 0.200 1.006*

(0.640) (0.284) (0.686) (0.562)
Multiple Prizes × Info. Rev. (β3) -0.650 -1.584** -0.733 -1.556

(0.925) (0.606) (1.240) (1.130)
Groupwise Average Ability 0.673*** 0.592***

(0.073) (0.106)
Round 0.498*** 0.531***

(0.084) (0.156)
Constant 19.156*** 5.986*** 22.056*** 10.187***

(0.616) (1.192) (0.401) (2.075)
Observations 180 180 180 180
Pseudo R2 0.074 0.420 0.057 0.286

Effect of Splitting a Prize: (baseline treatment comes first)
SP-NI vs MP-NI: (β1) -0.894 -0.166 -0.889 -0.248
SP-WI vs MP-WI: (β1 + β3) -1.544** -1.750*** -1.622* -1.803**

Effect of Revealing Info.: (baseline treatment comes first)
SP-NI vs SP-WI: (β2) -0.033 0.882*** 0.200 1.006*
MP-NI vs MP-WI: (β2 + β3) -0.683 -0.702 -0.533 -0.550

Notes:
1. Standard errors in parentheses are clustered on the session level.
2. * p < 10%; ** p < 5%; *** p < 1%.
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reject the null in favor of Hypothesis 2 in the single-prize case. This observation on

the first stage may be attributed to the incentive that first-stage contestants may

have to impress their second-stage opponents and hence manipulate their opponents’

behaviors in the second stage. The finding on the second stage may be caused by

the possibility that people feel pressured to work hard when they learn how well they

did compared with their opponents. We will explore this in Session 1.5.2. For the

multiple-prize case, however, we are not able to reject the null hypothesis based on

Result 2

Our next comparison result to check about the average output is the effect of split-

ting a single prize under information revelation. Based on Hypothesis 3, we expect

lower first-stage average output but higher second-stage average output under a single

prize than under multiple prizes, when interim information is revealed. Observations

from Tables 1.2 and 1.3 are summarized below:

Result 3 (Effect of Prize Split on Average Output, With Information Revelation).

For both stages, the average outputs are significantly higher in the Single-Prize With-

Information treatment than in the Multiple-Prize With-Information treatment.

Support. The summary statistics in Table 1.2 shows that the average output in stage

1 is significantly higher in the SP-WI treatment than in the MP-WI treatment (19.12

vs. 17.58, p = 0.049, two-sided permutation test). Furthermore, this difference is

weakly significant for the average output in stage 2 (22.26 vs. 20.63, p = 0.097, two-

sided permutation tests). This result is verified by the parametric regressions in Table

1.3. As reported in the middle panel of Table 1.3, the joint coefficient of the multiple-

prize dummy and the interaction term is significantly negatively after controlling for

learning and groupwise average ability (column (2): -1.750, p < 0.001; column (3):

-1.803, p < 0.05), indicating a negative effect of splitting the entire prize on the

average outputs in both stages when interim information is revealed.

Result 3 is inconsistent with Hypothesis 3a on the prize effect under information
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revelation in the first stage, but consistent with Hypothesis 3b in the second stage.

Specifically, when interim performance information is revealed, splitting the entire

prize increases the average outputs in both stages.

1.5.1.2 Highest Output in Each Stage

Now we move on to examine the prize and information effects on the second

measure: the highest output in each stage. Similar to the definition of the average

outputs, we define the highest output in stage 1 as the highest number of sliders

completed in stage 1 among the four players in the same group, and that in stage 2

as the higher number of sliders completed by the two second-stage players in stage 2.

The means (and standard deviations) of the groupwise highest outputs in both

stages are displayed in Table 1.4 and graphically presented in Figure 1.3. Table 1.4

also presents results from the significance tests for pairwise comparisons using two-

sided permutation tests. Specifically, we find:

Result 4 (Effect of Prize Splite on Highest Output). For both stages, the high-

est outputs are significantly higher in the Single-Prize With-Information treatment

than in the Multiple-Prize With-Information treatment. Comparisons between the

Single-Prize No-Information and Multiple-Prize No-Information treatments yield no

significant differences.

Support. In Table 1.4 that reports the summary statistics and treatment effects for

the groupwise highest outputs in both stages, we find the average output to be (weakly)

significantly higher in the SP-WI treatment than in the MP-WI treatment for both

stages (stage 1: 23.47 vs. 21.82, p = 0.097; stage 2: 24.40 vs. 22.53, p = 0.097;

two-sided permutation tests). In addition, the average outputs in both stages are also

higher in the SP-NI treatment than that in the MP-NI treatment (stage 1: 23.87

vs. 22.27; stage 2: 24.16 vs. 23.27). But neither of the differences is statistically

significant (p > 0.1, two-sided permutation tests).
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Figure 1.3: Groupwise Highest Output by Stage and Treatment
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Table 1.4: Treatment Effects on the Groupwise Highest Output

Stage 1 No-Information With-Information Information Effect
Single-Prize 23.87 23.47 p = 0.450
Multiple-Prize 22.27 21.82 p = 0.499
Prize Effect p = 0.200 p = 0.097

Stage 2 No-Information With-Information Information Effect
Single-Prize 24.16 24.40 p = 0.397
Multiple-Prize 23.27 22.53 p = 0.246
Prize Effect p = 0.303 p = 0.097

For the no-information treatments, Result 4 fails to reject the null of Hypothesis 4;

that is, splitting the entire prize has no imapct on the highest output in either stage

under no information revelation. For the information treatments, Result 4 rejects

Hypothesis 4a but fails to reject Hypothesis 4b; that is, splitting the entire prize

decreases the highest outputs in both stages under information revelation. This is

similar to our evaluations of Hypotheses 1 and 3. Since the prize effects on the average

outputs and on the highest outputs shows common pattern, it is natural to wonder

whether awarding a single prize increases the individual outputs in both stages for
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subjects regardless of their task-relevant abilities. We will explore this in Section

1.5.2.

Table 1.5: OLS: Determinants of Highest Output

Groupwise Highest Output
Stage 1 Stage 2

(1) (2) (3) (4)
Multiple Prizes (β1) -1.600 -0.982 -0.889 -0.323

(1.151) (1.154) (1.122) (1.167)
Info. Rev. (β2) -0.400 0.376 0.244 0.955

(0.701) (0.676) (0.755) (0.665)
Multiple Prizes × Info. Rev. (β3) -0.044 -0.836 -0.978 -1.703

(1.373) (1.377) (1.447) (1.419)
Ability of Highest-Output Achiever 0.570*** 0.522***

(0.075) (0.103)
Round 0.681*** 0.522**

(0.100) (0.181)
Constant 23.867*** 11.925*** 24.156*** 13.525***

(0.259) (1.405) (0.365) (1.907)
Observations 180 180 180 180
Pseudo R2 0.077 0.300 0.052 0.190

Effect of Splitting a Prize: (baseline treatment comes first)
SP-NI vs MP-NI: (β1) -1.6 -0.982 -0.889 -0.323
SP-WI vs MP-WI: (β1 + β3) -1.644* -1.819** -1.867* -2.026**

Effect of Revealing Info.: (baseline treatment comes first)
SP-NI vs SP-WI: (β2) -0.400 0.376 0.244 0.955
MP-NI vs MP-WI: (β2 + β3) -0.444 -0.460 -0.733 -0.748

Notes:
1. Standard errors in parentheses are clustered on the session level.
2. * p < 10%; ** p < 5%; *** p < 1%.

Table 1.5 displays the results from the OLS regressions on the highest output in

each stage. The dependent variables are the groupwise highest outputs in the two

stages, respectively. In specifications (1) and (3), we control for the multiple-prize

dummy, the information-revelation dummy and their interaction. In (2) and (4), we

further control for round and ability of the player who achieves the groupwise highest

output in the corresponding stage. If several group members tie for the highest output
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in any stage, we take their average ability as the ability of the highest output player.

Standard errors in parentheses are clustered at the session level. Similar to Table

1.3, we also report the results of direct pairwise comparisons across treatments in the

middle and bottom panel of Table 1.5.

Three findings in Table 1.5 bring up to our attention. First, the coefficient of the

multiple-prize dummy is negative but insignificant in all specifications. Second, the

joint coefficient of the multiple-prize dummy and the interaction term is significantly

negative, especially in specifications (2) and (4) where we control for round and the

ability of the highest-output achiever. These two findings are in line with Result

4 that splitting the entire prize among finalists elevates the highest output in both

stages only when a single prize is awarded. Finally, neither the coefficient of the

information revelation dummy nor its joint coefficient with that of the interaction

term shows any significant result, indicating no information effect in either stage on

the highest output. This last finding is formally stated below:

Result 5 (Effect of Information Revelation on Highest Output). Information reve-

lation has no treatment effect on the highest output in either stage, regardless of the

prize structure.

Support. Table 1.4 reports no significant treatment effect of information revelation

in summary statistics for either stage, regardless of the prize structure. This is further

verified in Table 1.5. Specifically, neither the coefficient of the information revelation

dummy and its joint coefficient with that of the interaction term is significant at the

10% level, indicating no effect of information revelation on the highest output in either

stage.

Result 5 allows us to reject Hypothesis 5. It indicates that, in both stages, the

information effect is weaker on the highest outputs than on the average outputs.

Noting that the highest outputs are more likely to be produced by subjects with
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high abilities, we suspect that subjects with high abilities are less responsive to the

revelation of interim information while subjects with low abilities are more responsive.

1.5.1.3 Finalist’s Aggregate of Output Across Stages

Finally, we would like to examine the treatment effects on the third measure: the

aggregate output in the two stages. Since this outcome is defined as the sum of the

numbers of sliders completed by a contestant in the two stages, it is available only

for finalists.

Table 1.6 presents the results from two OLS specifications that investigate the

factors affects the aggregate outputs in the two stages. The dependent variable is the

sum of a finalist’s outputs across stages while the independent variables of interest are

the multiple-prize dummy, the information revelation dummy, and their interaction

terms. Following similar reasons as in the previous regressions, we control for round

and individual-level ability. In comparison to the contest literature, we also control

for gender (with male being the omitted group) and the degree of risk aversion (on

a scale of 1 to 10). Standard errors in parentheses are clustered at the session level.

The middle and bottom panels of Table 1.6 display the results of direct pairwise

comparisons across treatments.

Result 6 (Effect of Prize Split and Information Revelation on Aggregate Out-

put Across Stages). The aggregate output of the two stages is significantly higher

in the Single-Prize With-Information Treatment than in the Multiple-Prize With-

Information Treatment. No treatment effect is found in other pairwise comparisons.

Support. In Table 1.6, the joint coefficient of the multiple-prize dummy and the

interaction term is negative and significant at the 10% level in specification (1). This

negative impact becomes more significant (i.e., at the 1% level) in specification (2)

once controlling for individual ability, risk attitude, gender and round.
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Table 1.6: OLS: Determinants of Finalist’s Aggregate Output in Two Stages

Finalist’s Aggregate Output
(1) (2)

Multiple Prizes (β1) -2.256 -0.726
(1.957) (1.013)

Info. Rev. (β2) -0.378 0.778
(1.263) (0.590)

Multiple Prizes × Info. Rev. (β3) -0.433 -1.648
(2.386) (1.175)

Ability 0.993***
(0.119)

Risk Aversion 0.325*
(0.163)

Female -2.482***
(0.752)

Round 1.078***
(0.149)

Constant 43.956*** 21.495***
(0.833) (2.503)

Observations 360 360
Pseudo R2 0.038 0.518
Effect of Splitting a Prize: (baseline treatment comes first)
SP-NI vs MP-NI: (β1) -2.256 -0.726
SP-WI vs MP-WI: (β1 + β3) -2.689* -2.374***
Effect of Revealing Info.: (baseline treatment comes first)
SP-NI vs SP-WI: (β2) -0.378 0.778
MP-NI vs MP-WI: (β2 + β3) -0.811 -0.870

Notes:
1. Standard errors in parentheses are clustered on the session level.
2. * p < 10%; ** p < 5%; *** p < 1%.
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In summary, we find three discrepancies between the hypotheses and the data. The

first is the interactive relationship between the prize and information effects. Based

on the theoretical model, Hypotheses 1, 3 and 4 make uniform predictions on the prize

effect regardless of the information structure, while the predictions in Hypotheses 2

and 5 on the information effect are also independent of the prize structure. However,

the data indicates that awarding only the final winner boosts the average (and highest)

outputs in both stage only when interim performance information is revealed. Besides,

revealing interim information motivates the average outputs in both stages only when

a single prize is awarded. Therefore, the effects of the prize and information structures

depends on the status of each other.

The second discrepancy lies in the directions of the information effect in both

stages. Based on Proposition 3 which demonstrates the nonexistence of a first-stage

separating equilibrium under information revelation, Hypothesis 2 predicts a negative

effect of revealing information on the average outputs in both stages when a single

prize is awarded. In contrast, Result 2 shows that information revelation actually

elevates the average outputs instead. Furthermore, Tables 1.5 and 1.6 provide more

supporting evidences of this disconsistency in direction using the information effects

on the highest output in each stage and the aggregate outputs across stages. Although

neither of the latter two effects is statistically significant, their magnitudes aggree with

the information effect on the average output in Result 2.

The third discrepancy lies in the prize effect in the first stage. Although Hypothe-

ses 3 and 4 predict positive effects of splitting the entire prize among finalists on the

average and highest outputs in stage 1, Results 3 and 4 show that both outcomes are

lower in the case with multiple prizes than the case with a single prize. The findings

in the prize effect in the second stage, however, is consistent with the corresponding

hypotheses.
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1.5.2 Individual Level Analysis

In this subsection, we investigate the extent to which the dicrepancies above are

driven by contestants’ different reactions to prize allocation and information revela-

tion, which may depend on their different statuses in a two-stage contest.

For a robustness check, Table 1.7 reports results of four OLS specifications to

investigate the determinants of the individual outputs, with standard errors clus-

tered at the session level. The dependent variable is the individual outputs in either

stage, while the independent variables are same as those in Table 1.6. The pairewise

comparison results presented in Table 1.7 indicate that the treatment effects on the

individual outputs are consistent with those at the aggregate level. Specifically, the

joint coefficient of the multiple-prize dummy and the interaction term is negative in

all four specifications, and signficiant at the 1% level in columns (2) and (4) once we

control for individual features. This implies a negative effect of awarding multiple

prizes on all individuals in both stages under information revelation. This treatment

effect of prize allocation on individual outputs lends support to the common pattern

in the prize effects that we find on the average output in each stage (Results 1 and 3),

the highest output in each stage (Result 4), the aggregate output across the two stages

(Result 6). In addition, the information revelation dummy is significantly positive at

the 5% level, implying a positive effect of revealing interim information regardless of

the stage under a single prize . Neither of the two other pairwise comparisons on the

treatment effects (treatments SP-NI vs. MP-NI, and treatments MP-NI vs. MP-WI)

shows any significant difference.

Besides the treatment effects, the significance on round indicates that learning

the effects matter in the outputs. As subjects gain experience with the slider task,

their skills improve and this lead to better performance. The significance on ability

indicates that in addition to the learning process, subjects’ outputs are also affected

by their initial positions in undertaking the slider task, which is actually their inherent
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abilities. This result supports our approach of identifying subjects’ relative abilities

in the contest using their outputs under piece-rate pay schemes. The last interesting

finding in the regression results is the change in the significance of the demographic

variables. In particular, the significance of the risk aversion declines remarkably from

being significant on the 1% level to being insignificant, while the opposite pattern is

observed for the female dummy. This agrees with the intuition that the first-stage

competition, being at an earlier stage of the contest, involves more uncertainty and

hence is more relevant to subjects’ risk attitudes. And the second-stage competition,

being at a later stage of the contest, requires more persistence and thus relies more

on subjects’ demographic characteristics. A large experimental literature on gender

differences in contests suggests that women are less competitive than men. Specifically

Gneezy et al. (2003) compare the gender gap in competitive environments with that

in noncompetitive environments. They find that men performed significantly better

than women as the competitiveness of the environment increases. But it is only

observed when the competition is mixed-gender. Niederle and Vesterlund (2007) find

that, although no gender differences in performance are observed in their experiment,

women are less likely to self select into tournaments than men. Our finding that

women completes significantly less sliders than men in both stages makes us consistent

with the general conclusions of the literature. In addition, when moving from stage

1 to stage 2, we find the gender difference to increase in terms of both the magnitude

and the significance. This is in line with the results in Gneezy et al. (2003) if we

consider the second-stage competition as a more competitive environment than the

first stage, given the stronger participants and larger prizes in stage 2.

One potential explanation to the second discrepancy on the positive effect of

information revelation in the second stage is how information revelation interacts

with the relative status of a second-stage contestant in the pair in regard to their

first-stage outputs. On one hand, second-stage contestants who did well in the first

40



Table 1.7: OLS: Determinants of Individual Output

Individual Output
Stage 1 Stage 2

(1) (2) (3) (4)
Multiple Prizes (β1) -0.894 -0.079 -0.889 -0.095

(0.760) (0.470) (0.958) (0.493)
Info. Rev. (β2) -0.033 0.882** 0.200 0.822**

(0.636) (0.354) (0.683) (0.317)
Multiple Prize × Info. Rev. (β3) -0.650 -1.463** -0.733 -1.409**

(0.919) (0.593) (1.234) (0.643)
Ability 0.599*** 0.527***

(0.062) (0.070)
Risk Aversion 0.361*** 0.100

(0.078) (0.083)
Female -1.041* -1.129***

(0.518) (0.372)
Round 0.498*** 0.491***

(0.083) (0.140)
Constant 19.156*** 5.973*** 22.056*** 10.645***

(0.612) (1.287) (0.399) (0.414)
Observations 720 720 360 360
Pseudo R2 0.020 0.400 0.030 0.399
Effect of Splitting a Prize: (baseline treatment comes first)
SP-NI vs MP-NI: (β1) -0.894 -0.789 -0.889 -0.095
SP-WI vs MP-WI: (β1 + β3) -1.544** -1.542*** -1.622* -1.504***
Effect of Revealing Info.: (baseline treatment comes first)
SP-NI vs SP-WI: (β2) -0.033 0.882** 0.200 0.822**
MP-NI vs MP-WI: (β2 + β3) -0.683 -0.581 -0.533 -0.586

Notes:
1. The dependent variable is agent’s effort, i.e., the number of sliders completed.
2. Standard errors in parentheses are clustered on the session level.
3. * p < 10%; ** p < 5%; *** p < 1%.
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stage may feel encouraged when they learn how much they were ahead of their second-

stage opponents in the first stage. On the other hand, those who did not do as well but

still managed to win in the first stage may feel pressured to work hard when they learn

how much they were lagged behind. Moreover, these interactions may depend on the

size of the gap in the first-stage outputs within the pair. To explore this possibility, we

divide second-stage contestants into three categories based on their relative statuses:

“advantageous stage 2 players” who outperformed their second-stage opponents in the

first stage, “disadvantageous stage 2 players” who underperformed their second-stage

opponents in the first stage, and those who tie with their second-stage opponents in

terms of first-stage performance. Table 1.7 investigates whether and how the presence

and content of the information being revealed may influence the behaviors of second-

stage contestants, with standard errors clustered at the session level. The dependent

variable is the individual output in the second stage. The independent variables of

interest are the size of first-stage gap between the contestant and her second-stage

opponent, the information revelation dummy and the interaction term. The top

panel displays the results of the OLS regressions while the bottom panel displays the

results on how the first-stage gap size influences contestants in the second stage in

regard to their relative statuses for no-information and with-information treatments,

respectively.

Column (2) of Table 1.8 focuses on the case with only advantageous stage 2 players.

The coefficient of the first-stage gap size is insignificant, implying that advantageous

stage 2 players in no-information treatments show negligible reactions to the gap in

the first-stage outputs. The joint coefficient of the gap size and the interaction term

is significantly positive at the 1% level, indicating that their counterparts in the with-

information treatments are motivated by learning how much they are ahead of their

second-stage opponents in their first-stage performance. Similar patterns are shown

in column (1) once we aggregate all stage 2 contestants.
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However, the regression results for disadvantageous stage 2 players, as presented

in column (3), are different. First, the significantly negative coefficient of the first-

stage gap size indicates that, when no interim information is revealed, the second-

stage output by disadvantageous stage 2 players decreases with their first-stage gap.

In addition, we lose the significance in the joint coefficient of the gap size and the

interaction term, indicating that the first-stage gap has no effect on disadvantageous

stage 2 players when interim information is revealed.

These different results in columns (2) and (3) jointly provides us a complete picture

on how information on performance in earlier stages of a multiple-stage contest affects

later-stage performance by contestants with different statuses. When interim infor-

mation is revealed, contestants at relatively advantageous statuses are encouraged

by learning how much they are ahead, and contestants at relatively disadvantageous

statuses stop responding negatively to the gap in performance in earlier stages. These

two impacts jointly result in the positive ex post effect of information revelation that

we find in the data.

1.6 Conclusion

For contest designers, an important decision is to choose the rules of prize alloca-

tion and information revelation in order to achieve desirable outcomes. Despite the

large volume of the theoretical and empirical research in this area, the interactive

effect of these two instruments has been surprisingly understudied. This study in-

vestigates the interplay of prize allocation and information revelation in a two-stage

contest using a real-effort laboratory experiment. The results show that awarding

a single prize to the final winner significantly elevates contestants’ average effort in

both stages only when interim information is revealed. In addition, revealing infor-

mation positively affects contestants’ average effort in both stages only under a single

prize. This dependency of the optimal prize allocation on the information structure
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is also observed if the contest designer cares about contestants’ highest effort in each

stage or each contestant’s aggregate effort across stages. Based on these findings, this

study suggests that a contest design who wants to optimize either the prize or the

information structure should consider the two simultaneously. Within the framework

of the two-stage elimination contests studied in this paper, the optimal choice is to

awarding only the final winner while revealing interim information at the same time.

In addition to the result on the optimal combination of prize and information

structures, we explain the unpredicted effect of information revelation in the second

stage. To investigate this discrepancy between predictions and the data, we catego-

rize the contestants in the second stage into two types depending on their relative

statuses compared with their opponents, and consider the important role that the

content of the information being revealed may play on these two types. We find that

when information is revealed, the difference between the finalists’ first-stage outputs

positively affects greatly motivates contestants with relatively high achievements in

the first stage. For contestants with relatively low achievements in the first stage, in-

formation revelation also diminishes their negative response to the first-stage output

gap. These results suggests that the role of information revelation on performance in

earlier stages should be emphasized in multiple-stage contests.

While this study focuses on the interplay between prize allocation and informa-

tion revelation in two-stage elimination contests, our model and experimental protocol

could be extended into further research on the optimal prize and information struc-

tures in elimination contests with more than two stages and non-elimination dynamic

contests. More research could also be conducted on the unpredicted ex ante effect of

information revelation on contestants’ behaviors in the first stage.
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CHAPTER II

Group Identity and Partnership

2.1 Introduction

The central topic of contract theory in economics is how to design incentive

schemes to motivate agents to align their interest with that of the principals (Bolton

and Dewatripont, 2005). Although a large volume of literature shows that economic

agents respond to monetary incentives, it also provides compelling evidence on the

drawbacks of incentive schemes (see the reviews by Gibbons (1998) and by Prender-

gast (1999)). In another stream of research, an increasing number of studies inves-

tigate non-pecuniary factors that may be useful supplements to monetary incentives

in increasing organizational efficiency (e.g., workers’ fairness concerns in Akerlof and

Yellen (1990), morale in Bewley (1999), team spirit in Kandel and Lazear (1992),

intrinsic motivation in Besley and Ghatak (2005) and Prendergast (2007)).1 Among

these studies one important contribution is Akerlof and Kranton (2005) that first in-

troduces social identity as a missing source of motivation, albeit essential to psychol-

ogy and sociology of the employee-organization relationship, into an economic model

of incentives. They incorporate social identity as behavioral norms into principal-

agent models, and show the important interactions between identity and incentives.

1Research also shows that extrinsic (i.e., monetary) incentives may crowd out intrinsic motivations
for economic agents (see a review by Gneezy et al. (2011)).
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Social identity theory in psychology was developed by Tajfel and Turner (1979).

The important impact of group identity – perceived membership in a social group –

on individual behavior has been documented in a large volume of psychology litera-

ture (see the reviews by Brewer (1991) and by Abdelal et al. (2009)). The concept

of social identity is introduced into economics in the seminal work by Akerlof and

Kranton (2000) to analyze gender discrimination, poverty, social exclusion, and the

household division of labor. Since then economic research on identity has flourished,

and new insights have been gained into economic phenomena that traditional eco-

nomic analysis cannot explain. Specifically, social identity has been incorporated into

an expanding volume of theoretical research (Akerlof and Kranton, 2005; Fang and

Loury, 2005; Basu, 2010; Bénabou and Tirole, 2011). In addition, a growing number

of experimental economics studies show that identity has important impact on indi-

vidual social preferences (McLeish and Oxoby, 2007; Chen and Li, 2009), cooperation

in prisoner’s dilemma games (Goette et al., 2006) and in public goods provision (Solow

and Kirkwood, 2002; Eckel and Grossman, 2005; Croson and Marks, 2008; Benjamin

et al., 2013; Charness et al., 2014), punishment of norm violation (Bernhard et al.,

2006), coordination in the battle of the sexes game (Charness et al., 2007; Charness

and Rustichini, 2011) and in the minimum-effort game (Chen and Chen, 2011; Chen

and Li, 2015), trust (Pan and Houser, 2013), discrimination and inequality (Hoff and

Pandey, 2006, 2014; Afridi et al., 2015), risk and time preferences (Benjamin et al.,

2010). Much of this literature is summarized and discussed in (Akerlof and Kranton,

2010).

In this fast burgeoning literature, however, there has been surprisingly little re-

search that explores empirically how identity influences work incentives in a principal-

agent environment since Akerlof and Kranton (2005). One exception to our best

knowledge is Masella et al. (2014). They study how group membership induced in

the lab influences the effectiveness of the use of incentives and control mechanism in
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a principal-agent environment. They find that the control mechanism imposed by the

principal on the agent’s choice can have detrimental effects due to different reasons

specific to group membership. The detrimental effect occurs within groups because

the agent does not expect to be controlled by an ingroup principal and hence reacts

negatively when being controlled. It occurs between groups since the agent perceives

the control by an outgroup principal more hostile.

Different from Masella et al. (2014) that focus on the control mechanism, we ask

how group identity influences the principals’ decisions on the offer of monetary in-

centive, and the impact of this incentive on the agents’ choices of real effort. We

investigate these questions by designing a principal-agent experiment in the labo-

ratory in which principals and agents, with their group identities being randomly

assigned and further enhanced via a collective puzzle solving task, interact in a real

effort game with hidden action. The principals and agents are paired within groups

or across groups. Their decisions are then compared and contrasted to the situations

when group categorization is absent. We find that the principals show ingroup fa-

voritism by making more generous revenue-sharing offers to ingroup agents. Ingroup

agents, however, respond to low offers with significantly lower effort, relative to the

control and the outgroup treatments. Nevertheless, their effort increases more sub-

stantially as the offers improve, compared to the other two treatments. In contrast,

outgroup agents are more tolerant of low offers, although their response in effort to

better offers is significantly weaker than do ingroup agents. Interestingly, the impact

of group identity on agents’ effort and its interaction effect with monetary incentives

is dependent upon perceptions on fairness of incentives.

This study contributes to the literature by showing the essence of incorporating

identity-based motivation into the agency theory. Our results show that even with a

simple incentive scheme such as revenue sharing, group identity has differential impact

on the choices of principals and agents who interact within or between groups. These
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results highlight the crucial roles that identity-based “motivational capital” (Akerlof

and Kranton 2005, p. 29) may play in the contract design for the principal-agent

problems.

The remainder of the paper is organized as follows. In Section 2.2 we introduce the

conceptual framework of the principal-agent problem with hidden action. Section 2.3

describes the experimental design, and discusses the hypotheses. Section 2.4 presents

the analysis and results. Section 2.5 concludes.

2.2 Principal-Agent Problem with Hidden Action

The principal-agent problem with hidden action that we consider is depicted in

Figure 2.1. While the principal and agent are referred to as roles A and B in the

experimental instructions, they are referred to as P (for principal) and A (for agent)

in Figure 2.1 and the rest of the paper for the ease of explanation. The principal (he)

could choose to form a business partnership with the agent (her) who will then work

on a task on his behalf. However, the agent’s intention and action is not perfectly

observable to the principal. As shown in Figure 2.1, the principal first chooses between

an outside option ‘Out’ which yields a payoff of 200 for each player and an option

‘In’ which leads to forming a partnership with the agent. If the principal chooses

‘In’, he will need to make the agent an offer f (an integer from 0 to 100) per slider.2

Upon observing the offer, the agent will work on a real effort task, and her effort is

measured by n – an integer from 0 to 48 (details on the task will be described in

Section 2.3). Then nature moves to determine the final payoffs. With a 1
6

chance, the

agent’s work will be destroyed, and both players will receive zero payoffs. With a 5
6

chance, payoffs will be made based on the offer and the amount of work completed.

Specifically, the principal receives a payoff of (100 − f)n, and the agent fn. The

2This design of outside option allows us to study if the principal’s decision to engage in a part-
nership with the agent is influenced by their group membership.
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agent’s cost of effort, c(n), enters as a negative term in her net payoffs in Figure 1

(assume c′(·) > 0 and c′′(·) > 0.) To sum up, in this hidden action principal-agent

game, the principal first decides how to split the revenue with the agent who then

chooses her effort that ultimately determines the size of the revenue.

Figure 2.1: Hidden Action Game

This game is designed based on the hidden action trust game introduced by Char-

ness and Dufwenberg (2006).3 While the principal and the agent face binary choices

throughout the game in Charness and Dufwenberg (2006), we extend their design by

allowing both parties to choose from a wider range of incentive and effort, respec-

tively. This framework is used to simulate the real-life scenarios in which the principal

has less information than the agent on the production process (e.g., her intention and

action), and hence tries to align the agent’s interest through revenue sharing.

3Pan and Houser (2013) create cultural groups in the lab using a production process similar to
Eckel and Grossman (2005), and then investigate participants’ choices in the trust game with hidden
game designed by Charness and Dufwenberg (2006). They find that cultural groups formed during
a more cooperative production process display less parochialism than groups formed during a more
independent production process.
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We use a simple payment scheme – revenue sharing – in our study mainly for

two reasons. First, revenue sharing is a popular incentive scheme and broadly ap-

plies to many forms of economics and financial transactions. For example, business

owners may engage in partnerships and split profits among them. They may also

pay partners or associates a percentage-based reward for referring new customers.

Companies sometimes offer their employees bonuses based on the companies’ profits.

Some major professional sports leagues use revenue sharing with ticket proceeds and

merchandising. Revenues generated through clicks on online advertisement links are

sometimes shared among the companies that offer the services and the websites where

the advertisements appear. In these examples, the parties involved may come from

the same or different social groups. How their group identities affect the distribution

of wealth and how it influences the effort of the parties involved are thus interesting

research questions to study. Second, as one of the early empirical investigations on

identity and incentives, our research aims to focus on the interaction between group

identity and the average level of incentives. The use of the revenue sharing scheme

helps us achieve this goal by isolating the research question of our interest from other

dimensions of the incentive design problem (e.g., the variation of work incentives).4

In the experiment we will introduce group identity into the framework illustrated

in Figure 2.1, and then study how group identity influences the principal-agent in-

teractions. In the next section we will discuss our group manipulation approach and

the testing hypotheses.

4One important implication of the identity-enhanced principal-agent models in Akerlof and Kran-
ton (2005) is that agents who identify with the company as insiders are willing to put in high effort
even with little wage variation. This is an interesting question to investigate empirically, but outside
the scope of this paper.
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2.3 Experimental Design and Hypotheses

A between-subject design is used in this experiment and summarized in Table

2.1. In the group treatments group identity is induced based on the enhanced-group

approach designed by Chen and Li (2009) and Chen and Chen (2011), while the

control treatment involves no group categorization. The experiment contains mainly

two stages, group manipulation and enhancement in Stage 1, and a real-effort hidden

action game in Stage 2. There are four independent sessions in each treatment, with

twelve subjects in each session.

2.3.1 Group Manipulation

In the group treatments, subjects receive a white envelop that contains either a red

or a green card, and are randomly assigned to two groups of six with the corresponding

color. Each subject then receives a binder that contains 16 randomly ordered pictures

that are taken from children’s wordless picture books Zoom and Re-Zoom by Istvan

Banyai.5 Subjects are told that 14 of the pictures (from Zoom) can be used to form

a sensible sequence while 2 pictures (from Re-Zoom) are irrelevant. Their task is to

find the 14 pictures, identify the pattern (zoom-in or zoom-out), and enter the picture

numbers – correctly ordered – on the computer screen within 10 minutes.

During the 10 minutes, they may chat virtually with their ingroup members about

how to solve the puzzle. Chat messages are only shared within each group.6 Subjects

are also instructed (and all obeyed these rules) not to reveal any information that

may identify themselves, and to refrain from using any obscene or offensive languages.

Each participant is free to submit his or her own answer, and the correct answer

5The two wordless picture books present two different series of pictures in the effect of a camera
lens zooming out. Subjects were neither told about the titles of the books nor given any hints on
what the correct sequence might look like. Please refer to Banyai (1998b) and Banyai (1998a) for
the two books, respectively.

6The problem solving task is similar to the one used in Chen and Li (2009), Chen and Chen
(2011). The only difference is that this study uses the puzzle on the picture sequence whereas Chen
and Li (2009) as well as Chen and Chen (2011) use paintings by Kandinsky and Klee.
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is awarded with 200 tokens. Groups remain fixed throughout the experiment. To

minimize potential endowment effect, the payoff information in this stage is withheld

from subjects until the end of the experiment.

The control treatment parallels the group treatments. Subjects are asked to solve

the picture puzzle individually with no communication with others. They submit

their individual answers, and correct answers are awarded with 200 tokens, the same

rate as in the group treatments.

2.3.2 Real-Effort Hidden Action Game

Stage 2 contains three paying rounds in which subjects are paired and play the

real-effort hidden action game. In the group treatments, subjects are randomly as-

signed to be P (principal) or A (agent). Note we use neutral language in the experi-

mental instructions and refer them as ‘role A’ and ‘role B’, respectively. It is public

information that there are 3 P s and 3 As in each group, and everyone’s role is fixed

for the remainder of the experiment. Then each subject is randomly paired with a

different participant of the opposite role in each of the three rounds.

In each round, P (he) chooses between entering a contractual relationship with

A (she) and an outside option. If P chooses the outside option, both P and A will

each get 200 tokens. If P chooses to enter, he needs to make A a piece-rate offer

f before A can perform the slider task for the pair. Since each correctly positioned

slider brings to the pair 100 tokens, the piece-rate offer can be any integer from 0 to

100 tokens per slider.

After observing P ’s offer, A has 2 minutes to work on the sliders with the maximum

possible of 48 sliders.7 Principal P does not work on the sliders. While working, agent

7The slider task is adopted from Gill and Prowse (2012). This task suits the purpose of this
study since it involves little learning and no guessing, is simple but tedious (to make the work
costly for subjects), has no intrinsic value to experimenters (to minimize subjects’ reciprocation to
experimenters), needs minimal level of quality control (hence is logistically simple), and offers good
degree of variation on the effort measure.
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A could observe the number of sliders completed on the screen. After 2 minutes are

up in a round, the computer randomly rolls a 6-side die, independently for each pair,

to decide the outcome. If the roll comes up 1 through 5, agent A gets fn tokens where

n is the number of sliders she has completed, and principal P gets (100− f)n tokens.

If the roll comes up 6, they each get zero tokens. Because of the die roll, principal

cannot perfectly observe agent’s actual effort. This design is used to simulate some

real life principal-agent problems in which an agent usually has more information

about her action and does not necessarily act in the best interest of the principal.8

At the end of each round, feedback information is given on each subject’s own

round payoff and the co-player’s round payoff, as well as own cumulative payoff. The

agent, but not the principal, is also informed of the die roll. Subjects are paid with

the cumulative earnings through the three paying rounds.

We employ a between-subject design. Specifically, the co-players for each subject

always come from ingroup in the Ingroup treatment, from outgroup in the Outgroup

treatment, and from the rest of the subjects in the Control treatment. In addition, we

adopt a rotation matching scheme from Cooper et al. (1996) to insure the matching

between P and A in each round is truly one-shot matching so that any potential

contagion effects could be minimized across different interactions. This matching

scheme is explained to subjects so that they understand their actions would have no

impact on whom they would be paired with in the future rounds.

2.3.3 Experimental Procedure

After Stage 1 in each session, the slider task was introduced. Then all subjects

were allowed to practice the sliders on their own paces in two 2-minute rounds with no

monetary award.9 After the practice rounds, they were randomly paired and played

8As discussed in the results section, some agents indeed choose to complete zero number of sliders,
most likely due to their dissatisfaction with the principals’ offers.

9The average numbers of sliders completed were 15 and 16 in the two practice rounds.
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the real-effort hidden action game for three rounds.

To assess individual heterogeneous capability in the slider task, a standalone piece-

rate slider task was conducted right after Stage 2 ends (see Part 3 of the Experimental

Instruction in Appendix D). In this task all subjects worked on sliders individually

for 2 minutes with 20 tokens paid for each slider correctly positioned at 50. Since the

task was incentivized using the piece-rate payment, the numbers of sliders completed

in this additional round could be used in the empirical analysis as a proxy for subjects’

capabilities in the slider task.

After the standalone piece-rate slider task, we elicited individual risk preferences

using the gambling measure in Eckel and Grossman (2005). The feedback on the

gambling outcome was provided immediately. Subjects were then asked to complete

a questionnaire that included questions on their demographics, strategies used during

the experiment, group attachment, and prior knowledge about the artwork used in

the experiment. Experimental instructions are provided in Appendix D, and the

post-experiment questionnaire in Appendix E.

The features of experimental sessions are summarized in Table 2.1. Overall, 12

independent computerized sessions were conducted at the University of Michigan

School of Information Behavioral Laboratory in spring 2012, yielding a total of 144

subjects. In this lab the computer screens were set beneath the transparent glass on

the desk surfaces. Subjects, mostly students from the University of Michigan, were

recruited from an online subject pool for economic experiments. The experiment

was programmed using zTree (Fischbacher, 2007). Each session lasted approximately

70 minutes. The exchange rate was 250 tokens for $1. Average earning was $17.31

including a $5 show-up fee.
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2.3.4 Hypotheses

In the control treatment where the concerns of group identity are absent, the

principal-agent problem can be solved using backward induction. In the equilibrium,

the agent chooses to complete n∗ sliders such that c′(n∗) = 5
6
f , yielding her equilib-

rium strategy as n∗ = l(f) ≡ c′−1(5
6
f). Given this equilibrium strategy of the agent,

the principal offers f ∗ such that (100− f ∗) · l′(f ∗) = l(f ∗).

Our hypotheses regard how the principal’s revenue-sharing offer f ∗ and the agent’s

effort n∗ are related to the group identity induced in the experiment. Our general null

hypothesis is that group identity does not affect the principal’s and agent’s choices,

compared to in the control treatment. The alternative hypotheses are discussed and

stated below.

One robust finding in the Social Identity Theory in psychology (reviewed in Brewer

(1991)) is that individuals, when categorized into groups, show favoritism towards

ingroup members and discriminate against outgroup members. Findings in an in-

creasing number of economics studies also suggest that individuals tend to treat their

ingroup members more favorably and less so towards the outgroup members (Goette

et al., 2006; Bernhard et al., 2006; Chen and Li, 2009). These findings lead to Hy-

pothesis 7.

Hypothesis 7 (Effect of Group Identity on the Principal’s Offer). Compared to in

the control treatment, a principal makes a higher offer to the ingroup agent, and a

lower offer to the outgroup agent.

Group identity may influence the agent’s effort directly, or indirectly through the

impact of monetary incentive. The economics literature of group identity has explored

various mechanisms through which identity works on people’s incentives. It would

be interesting to derive hypothesis from each of these mechanisms and compare our

results accordingly. In particular, we investigate four possible mechanisms for the
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effect group identity on agents’ incentives: positive reciprocity, negative reciprocity,

norm-based preference, and reference-based preference.

Positive reciprocity occurs when people are more forgiving towards ingroup mem-

bers than towards output members. For example, Chen and Li (2009) find in a series

of dictator games and response games that participants show more charity concerns

and less envy concerns when they are matched with an ingroup member, as opposed

to an outgroup member. In the contest of our hidden action game, if group iden-

tity works on agents’ incentives through positive reciprocity, they will care less of a

low offer from an ingroup principal and respond with higher effort in comparison to

output pairings.

In contrast, negative reciprocity occurs when people punish more when they are

not treated well by ingroup members, compared with the case with bad treatments

from output matches. McLeish and Oxoby (2007) find that, in bargaining games with

induced identity, responders engage in great punishment towards ingroup members

than towards output members. In our context, this implies that agents with a low

offer will feel more betrayed and thus respond with lower effort to an ingroup principal

than to an output principal.

The third potential channel through which group identity may impact agents’

incentives is the social norm. It assumes that players experience disutility caused by

actions that deviate from their internalized social norm. Akerlof and Kranton (2005)

propose a norm-based model of identity in the principal-agent relationship. In our

context, the social norm theory implies that both principals and agents think offers

should be higher within ingroup pairings than within outgroup pairings. As a result,

agents will respond more passively to a low offer from an ingroup principal than to a

low offer from an outgroup principal.

Finally, group identity could also affect an agent’ behavior through her reference

point of the outcome. According to Köszegi and Rabin (2006) who formalize a detailed
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model of reference-dependent preferences, a player has probabilistic beliefs about the

choice sets she will face and the decision she will make for each choice set. In our

context, being matched with an outgroup principal increases an agent’s expectation

of receiving a low offer and exerting low effort, and hence increases the loss she will

feel if she chooses high effort. Driven by loss aversion, this feeling of loss will decrease

the agent’s incentive to choose high effort under low wages. In comparion, being

matched with an ingroup principal increases the agent’s expectation of receiving a

high wage and working at high effort. Hence, choosing high effort does not feel like a

loss. This means the agent has more tolerance of low wages and will be more likely

to choose high effort when the wage is low. This effect is referred to as “attachment

effect” in Köszegi and Rabin (2006).

Since we are interested in comparing our results with predictions from these dif-

ferent mechanisms, we set up two competing hypotheses in Hypotheses 8a and 8b

on agent’ responses to low offers across treatments. Furthermore, all the four mech-

anisms above provide the same implication on how an agent’s effort is affected by

her group identity as the principal’s offer increases, which is formally summarized in

Hypothesis 8c.

Hypothesis 8 (Effect of Group Identity on the Agent’s Effort).

a. If group identity affects an agent’s working incentive through its impact on her

positive reciprocity behavior or her reference-based preference, she is more tol-

erant towards a low offer from an ingroup principal while less tolerant towards

that from an outgroup principal, compared to in the control treatment.

b. If group identity affects an agent’s working incentive through its impact on her

negative reciprocity behavior or her norm-based preference, she is less tolerant

towards a low offer from an ingroup principal while more tolerant towards that

from an outgroup principal, compared to in the control treatment.
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c. No matter through which of the four above mechanisms group identity impacts

an agent’s incentive, she responds more positively to an increase in the offer

from an ingroup principal and less positively to that from an output principal,

compared to in the control treatment.

Last but not least, how group identity affects the agent’s effort may be contingent

on her perception on fairness since previous studies suggest that economic agents

are not only motivated by incentives but also concerned about fairness (Akerlof and

Yellen, 1990; Fehr and Schmidt, 1999). We state Hypothesis 9 with no predictions on

the directions of the impact due to little theoretical or empirical evidence provided

on this question in the principal-agent environment in the previous literature.

Hypothesis 9 (Effect of Group Identity on the Agent’s Perception on Fairness). The

impact of group identity on the agents effort depends on her perception on fairness of

the offer.

2.4 Empirical Analysis and Results

In this section we analyze how group identity influences the principal’s offer and

the agent’s effort. Note in our data two individual principals – one in the ingroup

treatment and the other in the outgroup treatment – made the maximum possible

offer of 100 tokens to their paired agents, very likely due to confusion. Therefore, our

analysis excludes the six observations of these two principals and the corresponding

six observations of the agents whom they were paired with.10

Descriptive statistics are presented in Table 2.2. The p-values of two-sided com-

parisons across treatments are included in the lower panel. For the principal, we find

that the percentage of entering the hidden-action game varies between 95.7% and

97.2%, with no statistically significant differences across treatments. This suggests

10Results are robust if we include these observations.
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Table 2.2: Descriptive Statistics

Principal Agent
(1) (2) (3) (4)

Treatment Enter (%) Offer S.D. of Offer Number of Sliders
Control 97.2 38.8 15.5 16.7
Ingroup 95.7 42.9 9.4 17.9
Outgroup 97.1 34.8 12.7 19.0
P -values of 2-Sided Comparisons
Control vs. Ingroup 0.614 0.065 0.000 0.246
Control vs. Outgroup 0.966 0.101 0.112 0.041
Ingroup vs. Outgroup 0.649 0.000 0.016 0.320

Notes:
Test of proportions is used for column (1), test of equality of standard deviations
for column (3), and test of means for all other columns.

that group identity does not affect the principal’s decision to initiate a partnership

with the agent. Conditional on entering the game, the principal’s average offer is

38.8, 42.9 and 34.8 out of 100 in the control, ingroup, and outgroup treatments, re-

spectively. The average offer for ingroup is closest to 50-50 split, and greater than

that in the control (p = 0.065) and outgroup (p < 0.001) treatments. Interestingly,

the principal’s offer varies within a significantly smaller range in the ingroup treat-

ment than in the other two treatments, as indicated by the comparisons of standard

deviations (control v. ingroup p < 0.001; ingroup v. outgroup p = 0.016).

The agent’s effort is measured by the number of sliders completed (column (4) in

Table 2.2). Recall that the die roll at the end of each round would yield 1
6

probability

of zero number of slides regardless of the agent’s actual effort. The purpose of this

design is to minimize the agent’s potential guilty feeling if she wants to produce zero

sliders in response to a low offer. Thus, when a principal gets nothing in that round

it is unclear whether the agent or the nature is responsible. Our data show that some

agents indeed take advantage of this die-roll design, and choose to complete zero

number of sliders, mainly due to their dissatisfaction of the principals’ offers. Ten

percent of agents in the control treatment choose to supply zero sliders in response to
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an average offer of 15.3 tokens (out of maximum possible 100 tokens). In the ingroup

and outgroup treatments, 6.1 percent and 1.5 percent of agents choose to do so in

response to average offers of 18.8 and 20 tokens, respectively. In addition, the agent’s

average effort is significantly higher in the outgroup treatment than in the control

treatment (19.0 v. 16.7 sliders, p = 0.041). There is no significant difference in the

average effort between the ingroup and the control treatment, or between the ingroup

and the outgroup treatment.11 Since the agent’s effort depends on the offer received,

we defer detailed discussions on how monetary incentives and group identity influence

effort to the regression analysis.

We next use regression analysis to investigate the determinants of the principal’s

offer and the agent’s effort. Table 2.3 presents the results of Tobit regressions with the

principal’s offer as the dependent variable. Standard errors are clustered at the session

level. The independent variables of column (1) include only group treatment variables

with the control treatment in the omitted category. This allows us to analyze the

group effects on the principal’s offer, with the control as the benchmark. Column (2)

further controls for the principal’s risk preference, gender, and round effect. Marginal

effects are reported.

We find that on average the principal makes a significantly more generous offer to

an ingroup agent, relative to in the control treatment where group categorization is

absent (4.014, p = 0.046 in column (1); 4.453, p = 0.034 in column (2)). This finding

supports Hypothesis 7 for the comparison in the principal’s offer between the ingroup

and the control treatments. In contrast, the offer made to an outgroup agent is lower,

but statistically insignificant, than in the control treatment (-3.949, p = 0.140 in

column (1); -2.557, p = 0.294 in column (2)). It is also in line with Hypothesis 7

11Since the subjects are randomized across treatments, there is no reason to believe that subjects
from different treatments differ significantly in their capability of sliding. We analyze the number of
sliders completed in the standalone piece-rate slider task which can be used as a proxy for subjects’
capability of sliding. Two-sided Kolmogorov-Smirnov tests show that all the pairwise comparisons
in the distributions of sliders across treatments, conditional or unconditional on subjects’ roles as
the principal or agent, are statistically insignificant (p > 0.4 for all cases).
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Table 2.3: Principal’s Offer (Tobit)

(1) (2)
Ingroup 4.014** 4.453**

(2.015) (2.094)
Outgroup -3.949 -2.557

(2.678) (2.436)
Risk Aversion -0.970

(1.002)
Female -1.974

(3.828)
Round -0.142

(0.736)
Observations 203 203
Pseudo R2 0.01 0.01
F test (p-value)
Ingroup = Outgroup 0.001 0.001

Notes:
1. The dependent variable is principal’s offer (0∼100 tokens).
2. Standard errors in parentheses are clustered on the session level.
3. * p < 10%; ** p < 5%; *** p < 1%.

qualitatively on the comparison between the outgroup and the control treatments.

We also find that the offer made to an ingroup agent is significantly higher than to

an outgroup agent (p = 0.001 in columns (1) and (2)). Therefore, the principal shows

favoritism towards the ingroup agent by making a more generous offer to her. Column

(2) also shows that the offer does not differ significantly across round. In addition,

more risk averse or female principal makes lower offer, but these coefficients are not

statistically significant. These findings are summarized in Result 7.

Result 7 (Principal’s offer). The principal makes a more generous offer to the ingroup

agent, relative to in the control and outgroup treatments. No statistically significant

difference is found in the principal’s offer between the outgroup and the control treat-

ments.

Result 7 on the principal’s greater generosity in his offer to the ingroup agent

echoes ingroup favoritism documented in the psychology and economics literature dis-
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cussed in Sections 2.1 and 2.3. This greater degree of generosity may reflect greater

preferences towards ingroup (i.e., an ingroup agent enters the principal’s utility func-

tion with a higher weight), and the principal’s belief that an ingroup agent has higher

expectation concerning the principal’s offer, relative to the case with outgroup or

when group categorization is absent. Ockenfels and Werner (2014) design a dictator

game lab experiment to show that ingroup favoritism is partly belief-based. They

find substantially less ingroup favoritism when participants’ beliefs are accounted for.

We next investigate the determinants of the agent’s effort as measured by the

number of sliders completed. Tobit analysis is presented in Table 2.4. In column (1),

we focus on the main explanatory variables including the principal’s offer, group ef-

fects (with the control treatment being in the omitted category), and their interaction

terms. Column (2) further includes additional control variables, i.e., the agent’s per-

formance in the standalone piece-rate round, risk aversion, gender, and round effect.

We control for the agent’s performance in the standalone piece-rate round in order to

capture unobservable characteristics of the agent, e.g., motivation to work or innate

skill of sliding. Marginal effects are reported. The direct effects of the principal’s

offer on the agents effort in the ingroup or outgroup treatments are reported in the

lower panel of Table 2.4.

Results in column (1) show that the agent’s effort increases significantly with the

principal’s offer in the control (α1 = 0.214, p < 0.001) and the ingroup treatments

(α1 + α4 = 0.400, p < 0.001). This suggests that on average one token of increase in

the principal’s offer leads to an increase in the agent’s effort by 0.214 sliders in the

control treatment and 0.400 sliders in the ingroup treatment. Therefore, the impact

of the principals offer on the agent’s effort is significantly more positive in the ingroup

than in the control treatment (α4 = 0.186, p = 0.003). We also find that, compared to

their counterparts in the control treatment, the agents from ingroup are significantly

less tolerant towards a low offer by the principal (α2 = -7.633, p = 0.027). In sharp
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Table 2.4: Determinants of the Agent’s Effort (Tobit)

(1) (2)
Offer (α1) 0.214*** 0.208***

(0.045) (0.039)
Ingroup (α2) -7.633** -7.851***

(3.443) (2.358)
Outgroup (α3) 7.992** 4.823*

(3.802) (2.756)
Ingroup × Offer (α4) 0.186*** 0.172***

(0.063) (0.041)
Outgroup × Offer (α5) -0.137 -0.071

(0.094) (0.053)
Sliders in standalone piece rate round (α6) 0.652***

(0.097)
Risk Aversion (α7) 0.895**

(0.353)
Female (α8) -1.415

(0.944)
Round (α9) 0.980***

(0.369)
Observations 203 203
Pseudo R2 0.04 0.09
Direct effects of offer on effort:
Ingroup: (α1 + α4) 0.400*** 0.380***

(0.041) (0.024)
Outgroup: (α1 + α5) 0.077 0.137***

(0.081) (0.032)

Notes:
1. The dependent variable is agent’s effort, i.e., the number of sliders completed.
2. Standard errors in parentheses are clustered on the session level.
3. * p < 10%; ** p < 5%; *** p < 1%.
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contrast, the agent from outgroup are more tolerant towards a low offer (α3 = 7.992,

p = 0.036). Although the impact of offer on outgroup agent’s effort is positive, it is

not significantly different from zero (α1 + α5 = 0.077, p = 0.341).

Results in column (2) are consistent with those in column (1) except that after

controlling for additional covariates, the impact of the principal’s offer on outgroup

agent’s effort becomes statistically significant (α1 + α5 = 0.137, p < 0.001). In

addition, we find that the agent’s effort is positively correlated with her performance

in sliding in the standalone piece-rate round. Moreover, the more risk averse the

agent is, the more effort she exerts. This higher effort associated with risk aversion

may be explained as means of the agent to make up for possible loss of earnings in the

case of a bad outcome in the die roll. We also find that the agent’s effort exhibits no

gender difference. However, it tends to increase over time by a small amount (0.980,

p = 0.008), indicating improvement in sliding performance due to learning. These

findings are summarized in Result 8.

Result 8 (Agent’s effort). Relative to in the control treatment, the agent from ingroup

is less tolerant towards a low offer while the agent from outgroup is more tolerant

towards a low offer by the principal. In addition, the agent from ingroup exerts

even greater effort in response to an increase in the offer, compared to in the control

treatment.

Result 8 suggests that group identity and monetary incentives may serve as com-

plements with each other. This is shown by the significant and positive coefficient of

the interaction term between ingroup and offer (α4 = 0.186 in column (1) and 0.172

in column (2), p < 0.01 for both, in Table 2.4). It indicates that an ingroup agent

responds to an increase in monetary incentives more positively than in the control

treatment. An ingroup agentfs response to incentive is also greater than does an out-

group agent (α4 > α5, p < 0.01). Ingroup identity alone, however, does not guarantee

a higher effort than in the control treatment. On the contrary, group identity may
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lead to a lower effort, relative to the control treatment, if the monetary incentive of-

fered by the principal is not appealing enough (α2 = -7.633 in column (1) and -7.851

in column (2), p < 0.05, in Table 2.4). Comparing these findings with the two com-

peting hypotheses , we find the observations in line with Hypothesis 8b where group

identity impacts an agent’ working incentive through the agent’s concerns of negative

reciprocity or norm-based preference. Besides, Result 8 also supports Hypothesis 8c

for the effect of group identity on how agents respond to an increase in the offer.

The outgroup agent’s greater tolerance level towards a less generous offer, reported

in Result 8, is actually foreshadowed in Table 2.2. Recall in Table 2.2 the highest

average effort of the agent is found in the outgroup treatment (19.0 sliders) despite

the unappealing offer made by the principal, 34.8 tokens, the lowest among all the

three treatments. This observation, albeit interesting, should not be interpreted as

that an organization would always benefit from keeping their employees as ‘outsiders’.

Since in our experiment the outcome of the production solely depends on the quantity

of the product, our result on the higher productivity in the outgroup treatment may

not be generalizable to the production process in which both quantity and quality

matters.

The analysis in Table 2.4 is based on an implicit assumption that the agent’s

perception on a fair offer does not play any role in her response to incentives. As a

matter of fact, the agent may react differently to an offer that she considers as unfair,

relative to the situation in which the offer is considered as fair. For example, Masella

et al. (2014) find that an ingroup agent may find it unfair and unexpected to be

controlled by an ingroup principal, and hence reacts negatively. In Table 2.5 we in-

vestigate whether and how the agent’s perception of fairness of an offer may influence

her effort in response to the actual offer she receives. We are also interested in how

this influence manifests itself differently across treatments. In the post-experimental
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questionnaire, we solicit participants’ perception of fairness of an offer.12 Depending

on whether the actual offer they receive equals or exceeds their perceived fair offer, we

then regroup the observations of agents into two subsamples and repeat the analysis

conducted in Table 2.4.

Columns (1) and (2) of Table 2.5 present the results for the subsample of agents

who receive an actual offer equal to or higher than their perceived fair offers. Columns

(3) and (4) focus on the cases in which the actual offer is lower than the perceived

fair offer. Marginal effects are reported. We find that when the actual offer equals or

exceeds the perceived fair amount, the impact of ingroup identity and its interaction

with the principal’s offer is similar to what we find in Table 2.4 (β2 = -3.937, p =

0.047; β4 = 0.100, p = 0.042, column (1)).13 It again suggests that ingroup identity

itself does not necessarily lead to agent’s high effort, rather it works complementarily

to monetary incentives.

Several new observations emerge when the actual offer is lower than the perceived

fair offer (columns (3) and (4)). First, the agent’s response to a low offer shows no

significant difference in the ingroup treatment, relative to the control treatment (β2,

p > 0.10). Second, the ingroup agent’s response to an increase in the offer does not

significantly differ from the response of her counterpart in the control treatment (β4,

p > 0.10). These two observations are in sharp contrast to those in Table 2.4 with

the pooled sample and in column (1) of Table 2.5 in which the principal’s offer is

perceived fair. They indicate that the complementary relationship between group

identity and monetary incentives vanishes when the principal’s offer is regarded as

unfair by the agent.

12In the post-experimental survey we asked agents what they thought a fair offer should be (see
the exact wording in Question 27 in Appendix E). We find that the agents’ self-reported fair offers
are not correlated with their effort and the offers that they actually receive. Due to some technical
errors, we were unable to record this measure in one control session and one ingroup session. So the
analysis in Table 2.5 includes 3 control sessions, 3 ingroup sessions and 4 outgroup sessions.

13The effects of these two variables are not statistically significant in column (2) when other
covariates are added maybe because of the small number of observations.
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Results in columns (3) and (4) of Table 2.5 also confirm an early finding in Table

2.4 that an outgroup agent is more tolerant towards a low offer than in the control

treatment (β3 > 0, p < 0.01). However, when the actual offer is considered unfair,

an outgroup agent is significantly less responsive to an increase in the incentives,

compared with her counterparts in the other two treatments (β5 < 0, β5 < β4, p <

0.01 for both tests in columns (3) and (4)).14 Overall, new findings in Table 2.5 can

be summarized in Result 9 .

Result 9 (Agent’s perception on fair offer). When the offer is considered unfair, the

agent’s response in effort is similar in the ingroup and the control treatments. In

addition, an outgroup agent is more tolerant towards a low offer, but her response in

effort to incentives is significantly weaker, relative to the other two treatments.

Result 9 reveals an important insight that agents’ fairness concerns regarding

principals’ offers play a crucial role in how agents respond to incentives. When the

offers of incentives are perceived unfair, group identity loses its positive influence on

efforts by ingroup agents, and outgroup agents stop responding to the increase in

incentives. In fact, all the cases in which agents chose to supply zero sliders (even at

a cost to themselves) in our study took place when the principals’ offers were deemed

unfair.

2.5 Conclusion

In contract theory, incentive schemes are designed to motivate agents to work

in the best interest of principals. Despite the large volume of the theoretical and

empirical research in this area, the potential role of group identity has been surpris-

ingly understudied. In this study we consider the important roles that group identity

14The impact of other covariates in column (4) is similar to that in Table 2.4 except that the effort
by a female agent is marginally lower than that by her male counterpart (-2.272, p = 0.055). This
implies that female agents are (marginally) more likely to be discouraged by unfair offers.
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may play in the principal-agent environment with hidden action. We induce group

identity in the laboratory and investigate how group identity influences the interac-

tions between the principal and agent in a real effort game with hidden action. Our

results show that the principals exhibit favoritism towards ingroup agents by mak-

ing them more generous offers. In addition, group identity has differential impact on

agents’ tolerance level towards low offers as well as their response to increase in incen-

tives. While the group identity literature has discussed over a number of mechanisms

through which group identity may affect people’s incentives, our result reconciles two

competing hypotheses derived from four potential mechanisms and shows that the

impact is dependent on agents’ perceptions on fairness of the offers

As the workforce becomes increasingly diverse, building a common group identity

has often been used by organizations as a tool to motivate employees from diverse

background to work together effectively. How does the group identity building prac-

tice facilitate or interfere with the important roles that monetary incentives play on

the employees’ work performance? Should the organizations take into account their

employees’ organizational identity when designing optimal compensation schemes?

Our research serves as a useful step towards understanding these questions.

Our results shed important light on the interplay of monetary incentives and group

identity in tackling the principal-agent problems. Our findings show that even with

a revenue sharing payment scheme, group identity influences differently the incen-

tives offered by the principals and the effort exerted by the agents. These findings

substantiate the importance of incorporating social identity into the model of work

incentives discussed in the seminal work by Akerlof and Kranton (2005). While sepa-

rate strands of economics literature provide supportive evidence on the positive roles

that incentives or group identity plays in improving employees’ work performance,

our results suggest that incentives and identity of being an ingroup member with the

organization may serve as complements under a revenue sharing payment scheme.
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This complementary relationship only takes place if the principals offer incentives

that are considered as fair by the agents. As a result, it is insufficient for institutions

and companies to simply build group identities using training programs, orientations

or team-building tasks. In addition, they need to complement group identity with

reasonable wages that meet the expectations of workers in order to unlock the moti-

vating effect of identity on workers’ incentives. The subtleties of these results call for

more research on the optimal design of work incentives that encompasses monetary

incentives and “motivational capital” (Akerlof and Kranton (2005, p.29).

Although we use a revenue sharing compensation scheme in this study, our frame-

work could be extended in fruitful future research to investigate how group identity

influences the variation in the compensation scheme used to motivate the employees,

as discussed in Akerlof and Kranton (2005, p.15). Moreover, in most existing eco-

nomic research social identity has been treated as exogenous to monetary incentives,

and its impact on individual decision making has been studied in static settings. More

research effort could be dedicated to investigations on the interdependence of identity

(or broadly, social incentives) and monetary incentives in a dynamic environment.
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APPENDIX A

Proofs

(Contest)

A.1 Proof of Propositions 1 and 2

Stage 1: Proof of Proposition 1

We first simplify the equilibrium strategy in the first stage for a contestant with

ability parameter c by plugging equation (1.2) into (1.1). This yields

β1(c) =

∫ 1

c

[αV + (1−G(c))(1− 2α)V − c
∫ 1

c

(1− 2α)V
1

s
dG(s)]

1

s
dF (s)

= V [α + (1−G(c))(1− 2α)− c
∫ 1

c

(1− 2α)
1

s
dG(s)]

∫ 1

c

1

s
dF (s))

= V [α + (1− 2α)I1(c)]I2(c)

where

I1(c) = 1−G(c)− c
∫ 1

c

1

s
dG(s)

I2(c) =

∫ 1

c

1

s
dF (s)
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By definition, the expected average output of stage 1 is characterized as

A1(α) =

∫ 1

m

β1(c) dF (c)

=

∫ 1

m

V [α + (1− 2α)I1(c)]I2(c) dF (c)

with α ∈ [0, 1
2
] being the proportion of the entire prize awarded to each first-stage

winner.

Note that in our model, the single-prize case corresponds to α = 0 and the

multiple-prize case corresponds to α > 0. So it is sufficient to show that A′1(α) > 0.

Taking derivative with respect to α yields

A′1(α) =

∫ 1

m

V [1− 2I1(c)]I2(c) dF (c) (A.1)

In the right hand side of equation (A.1), I2(c) is positive for any c ∈ [m, 1]. Hence,

to obtain the sign of A′1(α), we investigate the sign of 1− 2I1(c) over the interval of

[m, 1]. From the definition of I1(c),

I ′1(c) = −G′(c)−
∫ 1

c

1

s
dG(s) + c

1

c
G′(c))

= −
∫ 1

c

1

s
dG(s)

< 0
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So we obtain for any c ∈ (m, 1] that

I1(c) < I1(m)

= 1−G(m)−m
∫ 1

m

1

s
dG(s)

= 1−mEG
1

s

< 1−m

≤ 1

2

The second inequality follows by noting that s ∈ [m, 1] implies 1
s
∈ [1, 1

m
] and hence

EG
1
s
∈ (1, 1

m
). The last inequality follows from the assumption that m ∈ [1

2
, 1]. Given

this result, 1− 2I1(c) > 0 over [m, 1], inducing the whole integrand of equation (A.1)

to be strictly positive. Therefore, A1(α) is strictly increasing in α, which leads to a

higher expected average output in the first stage under multiple prizes than under a

single prize. This completes the proof of Proposition 1.

Stage 2: Proof of Proposition 2

Note that in the second stage, contestants’ abilities are randomly drawn from the

distribution of G. So the expected average output in the second stage is given by

A2(α) =

∫ 1

m

β2(c) dG(c)

=

∫ 1

m

(V (1− 2α)

∫ 1

c

1

s
dG(s)) dG(c)

The last equality follows by plugging in equation (1.2).

Note

A′2(α) = −
∫ 1

m

(2V

∫ 1

c

1

s
dG(s)) dG(c) < 0

76



This indicates that A2(α) is strictly decreasing in α over [0, 1
2
], yielding a lower ex-

pected average output in the second stage under multiple prizes than under a single

prize. This completes the proof of Proposition 2.

A.2 Proof of Proposition 3

We follow the techniques proposed in Zhang and Wang (2009) who show sim-

ilar results in the canonical all-pay auction model, and apply them to the contest

environment.

We prove by negation. Assume a symmetric separating equilibrium does exist in

the first stage. In such an equilibrium, the output levels that contestants choose in the

first stage fully reveal their ability parameters and therefore make the second stage

competition a complete-information contest. To investigate the existence of such an

equilibrium, we need to exam whether there is any contestant that has incentive to

deviate from her equilibrium strategy in the first stage. Without loss of generality,

let’s name this person contestant A and denote her type as cA. When choosing her

strategy in stage 1, contestant A actually decides her pretended type ĉA, which may

or may not equal her actual type cA. Note that she only has incentive to pretend

to be another type if it allows her to enter the second stage as a first-stage winner.

Besides, all other contestants are assumed to follow their equilibrium strategies in

stage 1 and thus reveal their true types.

We implement backward induction and start from stage 2. Assuming the revealed

ability parameters for the two contestants in stage 2 as {ci}2i=1, we can divide the

relationship among them into two situations: (1) c1 < c2; (2) c1 = c2. However,

since {ci}2i=1 as types of second-stage contestants are continuously distributed, set

{(c1, c2)|c1 = c2, c1 ∈ [m, 1], c2 ∈ [m, 1]} has measure zero. So given that our objec-

tives are in terms of expected values, we only need to consider situation (1) in the

rest of the proof.
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To obtain the strategies of the two contestants in the second stage of the contest,

we need the equilibrium strategies in a single-stage contest with complete information

as a stepping stone. Lemma 1 depicts this equilibrium as a contest version result of

Hillman and Riley (1989) and Baye et al. (1996):

Lemma 1. In a single-stage all-pay contest with complete information, two contes-

tants compete for a single prize v. Each contestant i has ability parameter ci and bears

a cost of cix if he produces output x in the contest. Assume their ability parameters

satisfy c1 < c2. In the unique Nash equilibrium, contestant 1 randomizes on [0, v
c2

]

according to c.d.f. H1(x1) = c2
v
x1. Contestant 2 randomizes on (0, v

c2
] according to

c.d.f. H2(x2) = (1− c1
c2

) + c1
v
x2 and places an atom at zero.

Proof. We start our proof with the expected utilities of two contestants when they

produce x1 and x2, respectively. Assume the cumulative density functions of xi is Hi.

Then contestant 1’s expected utility is U1(x1) = H2(x1)v − c1x1 and contestant 2’s

expected utility is U2(x2) = H1(x2)v − c2x2.

We first show that contestant 1 as the stronger player has nonnegative utility at

equilibrium. Since contestant 2 can always produce zero and get nothing, if he enters

the contest, he will choose x2 such that U2(x2) ≥ 0. This implies

v − c2x2 ≥ U2(x2) ≡ H1(x2)v − c2x2 ≥ 0

x2 ≤
v

c2

Knowing this, contestant 1 can guarantee a strictly positive payoff by choosing x1 =

v
c2

+ ε. So it follows that U1(x1) > 0 at equilibrium.

The next step is to show that contestant 2 as the weaker player has zero utility

at equilibrium. We skip this step as it is similar to the proof in Hillman and Riley

(1989).

Given U2(x) = H1(x)v − c2x = 0, we obtain the distribution of contestant 1’s
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equilibrium strategy as H1(x) = c2
v
x. Plugging in x̄1 as the upper bound of H1(·)

yields:

H1(x̄1) =
c2
v
x̄1 = 1

x̄1 =
v

c2

Since contestants 1 and 2 randomize on the same interval, the upper bound for

H2(·) is x̄2 = x̄1 = v
c2

. Therefore,

U1(x) = H2(x)v − c1x

= U1(x̄2)

= H2(x̄2)v − c1x̄2

= v − c1
v

c2

H2(x) = (1− c1
c2

) +
c1
v
x

Now we are fully equipped to investigate the second stage of a two-stage elimi-

nation contest. Let us name the other second-stage player as contestant B, and his

type cB. According to the analysis and assumptions above, the revealed ability pa-

rameters of the two contestants in the second stage are (ĉA, cB). Lemma 2 describes

their strategies as well as A’s payoff in the second stage

Lemma 2. In the second stage of the contest as described above, contestant B chooses

his strategy β2
B according to the following distribution:

HB(β2
B) =


(1− ĉA

cB
) + ĉA

(1−2α)V β
2
B if ĉA < cB;

ĉA
(1−2α)V β

2
B if ĉA ≥ cB.
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Given B ’s strategy, contestant A chooses her strategy as:

β2
A(ĉA, cA, cB) =



0 if ĉA < cA and ĉA < cB;

0 if ĉA < cA and ĉA ≥ cB;

(1−2α)V
cB

if ĉA ≥ cA and ĉA < cB;

(1−2α)V
ĉA

if ĉA ≥ cA and ĉA ≥ cB.

Lastly, contestant A ’s payoff in the second stage is:

π2
A(ĉA, cA, cB) =



(1− ĉA
cB

)(1− 2α)V if ĉA < cA and ĉA < cB;

0 if ĉA < cA and ĉA ≥ cB;

(1− cA
cB

)(1− 2α)V if ĉA ≥ cA and ĉA < cB;

(1− cA
ĉA

)(1− 2α)V if ĉA ≥ cA and ĉA ≥ cB.

Proof. In the second stage, contestant B infers from contestant A’s output in the

first stage that her type is ĉA and optimizes as if he were in a complete-information

all-pay contest. Then HB(β2
B) follows from Lemma 1.

Given the optimal strategy by B , contestant A faces the following optimization

problem:

Case 1. ĉA < cB

In this case, contestant A’s pretended type is stronger than her opponent in stage

2. Contestant B, while taking himself as the weaker player, chooses his optimal

strategy according to HB(β2
B) = (1− ĉA

cB
) + ĉA

(1−2α)V β
2
B over [0, (1−2α)V

cB
]. Knowing this,
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contestant A solves:

max
β2
A

π2
A = HB(β2

A)(1− 2α)V − cAβ2
A

= (1− ĉA
cB

)(1− 2α)V + (ĉA − cA)β2
A

If ĉA < cA, contestant A pretends to be stronger in stage 1 than her actual type.

Under this constraint,
∂π2

A

∂β2
A

= ĉA− cA < 0. So it is optimal for contestant A to choose

β2 ∗
A = β2

A = 0 and earn an expected payoff of (1− ĉA
cB

)(1− 2α)V .

If ĉA > cA, contestant A pretends to be weaker in stage 1 than her actual type.

Then it is optimal for contestant A to choose β2 ∗
A = β2

A = (1−2α)V
cB

and earn an

expected payoff of (1− cA
cB

)(1− 2α)V , since the first order condition is positive.

Case 2. ĉA ≥ cB

In this case, contestant A’s pretended type is weaker than her opponent in stage

2. Contestant B, while taking himself as the stronger player, chooses his optimal

strategy from HB(β2
B) = ĉA

(1−2α)V β
2
B over [0, (1−2α)V

ĉA
]. Knowing this, contestant A

solves:

max
β2
A

π2
A = HB(β2

A)(1− 2α)V − cAβ2
A

= (ĉA − cA)β2
A

If ĉA < cA, contestant A pretends to be stronger in stage 1. Then
∂π2

A

∂β2
A

= ĉA−cA <

0, which implies that contestant A’s optimal strategy is β2 ∗
A = β2

A = 0 and get an

expected payoff of 0.

If ĉA > cA, contestant A pretends to be weaker in stage 1. Then the first order

condition is positive, suggesting contestant A’s optimal strategy to be β2 ∗
A = β2

A =

(1−2α)V
ĉA

with an expected payoff of (1− cA
ĉA

)(1− 2α)V .

So far, we have solved for A’s optimal strategy in stage 2 while assuming that

all other players follow their separating equilibrium strategies in stage 1. Now we
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go backward to study whether A has any incentive to deviate from her equilibrium

strategy in stage 1. Our discussion falls in the following two cases:

Case 1. If contestant A pretends to be a stronger type in stage 1, i.e., ĉA < cA

Her expected payoff in stage 1 is

π1
A(ĉA, cA) = −cost + P (entering stage 2 as group winner |ĉA < cA)

· [stage 1 prize + E(payoff of entering stage 2 |ĉA < cA)]

= −cAβ(ĉA) + [1− F (ĉA)] · [αV + E(π2
A|ĉA < cA)]

= −cAβ(ĉA) + [1− F (ĉA)] · [αV +

∫ 1

ĉA

(1− ĉA
cB

)(1− 2α)V dFCB
(cB)]

= −cAβ(ĉA) + [1− F (ĉA)] · [αV +

∫ 1

ĉA

(1− ĉA
cB

)(1− 2α)V dG(cB)]

= −cAβ(ĉA) + [1− F (ĉA)]αV + [1− F (ĉA)](1− 2α)V [1−G(ĉA)]

− (1− F (ĉA))ĉA(1− 2α)V

∫ 1

ĉA

1

cB
dG(cB)

The third equality follows by plugging the corresponding value of π2
A from Lemma

2. The fourth equality follows by noting that the ability parameter of B as a normal

contestant in the second stage is distributed according to G.

To ensure the existence of a separating equilibrium in stage 1 and thus truth-telling

for contestant A, we need

∂π1
A(ĉA, cA)

∂ĉA
|ĉA=cA ≥ 0

which implies

cAβ
′(cA) ≤ −f(cA) · {αV + (1− 2α)V [1−G(cA)]}

+ f(cA)cA(1− 2α)V

∫ 1

cA

1

cB
dG(c)

− [1− F (cA)](1− 2α)V

∫ 1

cA

1

cB
dG(cB) (A.2)
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Case 2. If contestant A pretends to be a weaker type in stage 1, i.e., ĉA > cA

Her expected payoff in stage 1 is

π1
A(ĉA, cA) = −cost + P (entering stage 2 as group winner |ĉA > cA)

· [stage 1 prize + E(payoff of entering stage 2 |ĉA > cA)]

= −cAβ(ĉA) + [1− F (ĉA)] · [αV + E(π2
A|ĉA > cA])

= −cAβ(ĉA) + [1− F (ĉA)] · [αV +

∫ 1

ĉA

(1− cA
cB

)(1− 2α)V dFCB
(cB)

+

∫ ĉA

m

(1− cA
ĉA

)(1− 2α)V dFCB
(cB)]

= −cAβ(ĉA) + [1− F (ĉA)]αV + [1− F (ĉA)](1− 2α)V [1−G(ĉA)]

− [1− F (ĉA)](1− 2α)V cA

∫ 1

ĉA

1

cB
dG(cB)

+ [1− F (ĉA)](1− cA
ĉA

)(1− 2α)V G(ĉA)

To ensure truth-telling in stage 1, we need

∂π1
A(ĉA, cA)

∂ĉA
|ĉA=cA ≤ 0

which implies

cAβ
′(cA) ≥ −f(cA) · {αV + (1− 2α)V [1−G(cA)]}

+ f(cA)cA(1− 2α)V

∫ 1

cA

1

cB
dG(cB)

− [1− F (cA)]
1− 2α

cA
vG(cA) (A.3)

Obviously, inequalities (A.2) and (A.3) can not hold simultaneously for all cA ∈

[m, 1]. Accordingly, no symmetric and separating equilibrium strategies exist in the

first stage that prevent contestants of all types from deviating, which contradicts with

our assumption at the very beginning. This completes the proof of Proposition 3.

83



A.3 Proof of Proposition 4

In this subsection of the appendix, we show that a grand contest yields the highest

expected average output when the contest achieves efficiency with the highest ability

contestant being the winner. While this conclusion seems close to the statements

depicted by Myerson (1981) in the optimal auction design problem, our purpose is to

rigorously replicate the Myerson results in the contest environment.

To fit into the theoretical framework outlined in Section 1.3, we confine the class of

grand contests we consider to those in which contestants’ costs depends proportionally

on their types and outputs. In other words, producing output xi yields contestant i

a cost of cixi.

Let us parameterize this optimal contest design problem by introducing the basic

definitions and assumptions. Suppose that a contest designer faces k contestants and

has an indivisible prize of value v to award. Each contestant i is uniquely identified

by her ability parameter ci, which is private information to herself and distributed

independently over [mi, ni] from a distribution with commonly known density fi.

We denote by C the space of all possible realizations of c = (c1, c2) and by fC the

joint density function. Then C = [m1, n1] × [m2, n2] and fC(c) = f1(c1)f2(c2). For

consistency with notations in other parts of the appendix, we present here only the

situation relevant to the competition within each group in our contest model. In

particular, we assume that k = 2, [mi, ni] = [m, 1] and fi = f for i ∈ {1, 2}. But all

conclusions and proofs can be extended to the general case.

To characterize the problems faced by the contestants and the designer, we only

need to consider the so-called direct revelation mechanisms.1 A direct revelation

mechanism means that contestants simultaneously report their types to the designer,

1The revelation principle indicates that “to any Bayesian Nash equilibrium of a game of incom-
plete information, there exists a payoff-equivalent revelation mechanism that has an equilibrium
where the players truthfully report their types” (Gibbons, 1992). So considering only direct revela-
tion mechanisms yields no loss of generality.
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who then determines the corresponding outcome for each contestant. In our con-

text, the designer chooses a pair of outcomes (p(c), x(c)) upon receiving a vector of

announced ability parameters c. Vector p(c) = (p1(c), p2(c)) represents the winning

probabilities for the two contestants, and vector x(c) = (x1(c), x2(c)) represents their

outputs in the contest.

Facing a contest mechanism (p, x), a contestant with type ci earns an expected

payoff of

Ui(p, x, ci) =

∫ 1

m

(vpi(c)− cixi(c))f(cj) dcj

Given our interest, we assume that the designer cares about the expected average

output of the contestants. So his expected payoff is

U0(p, x) =
1

2

2∑
i=1

∫
C

xi(c)fC(c) dc

The designer maximizes U0(p, x) by choosing the optimal (p, x) subject to three con-

straints: (1) p1(c) + p2(c) = 1 and pi(c) ≥ 0, ∀i ∈ {1, 2}, ∀c ∈ C; (2) Ui(p, x, ci) ≥ 0,

∀i ∈ {1, 2}, ∀ci ∈ [m, 1]; (3) Ui(p, x, ci) ≥
∫ 1

m
(vpi(si, cj) − sixi(si, cj))f(cj) dcj,

∀i ∈ {1, 2}, ∀ci, si ∈ [m, 1]. When (p, x) satisfies all these three constraints, we

call it a feasible contest mechanism.

Next, we want to show that in an optimal contest mechanism (p, x), p must satisfy

pi(c) =


1 if c1 6= c2 and ci = min(c1, c2);

0 if c1 6= c2 and ci 6= min(c1, c2);

any value ∈ [m, 1] if c1 = c2.

(A.4)
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To investigate the optimality in p, we introduce

Qi(p, ci) =

∫ 1

m

xi(c)f(cj) dcj

for each constant i with an arbitrary type ci. To understand it, note that ciQi(p, ci)

is the expected cost for contestant i with ability parameterci. Given this additional

concept, our next lemma provides the equivalent conditions for the feasibility of (p, x).

The proof is omitted as it is similar to the proof for Lemma 2 in Myerson (1981).

Lemma 1. A contest mechanism (p, x) is feasible if and only if the following condi-

tions holds:

(1) If si ≤ ci, then Qi(p, si) ≥ Qi(p, ci), ∀i ∈ {1, 2}, ∀si, ci ∈ [m, 1];

(2) Ui(p, x, ci) = Ui(p, x, 1) +
∫ 1

ci
Qi(p, si) dsi, ∀i ∈ {1, 2}, ∀ci ∈ [m, 1];

(3) Ui(p, x, 1) ≥ 0, ∀i ∈ {1, 2};

(4) p1(c) + p2(c) = 1 and pi(c) ≥ 0, ∀i ∈ {1, 2}, ∀c ∈ C.

Lemma 1 enables us to re-write the designer’s expected payoff as

U0(p, x) =
1

2

2∑
i=1

∫
C

xi(c)fC(c) dc

=
1

2

2∑
i=1

∫
C

(
vpi(c)

ci
− vpi(c)− cixi(c)

ci
)fC(c) dc

=
1

2
(

2∑
i=1

∫
C

vpi(c)

ci
fC(c) dc−

2∑
i=1

∫
C

vpi(c)− cixi(c)
ci

fC(c) dc)

=
1

2
(

2∑
i=1

∫
C

vpi(c)

ci
fC(c) dc−

2∑
i=1

∫ 1

m

Ui(p, x, ci)

ci
f(ci) dci) (A.5)

The last equality is implied by the definition of Ui(p, x, ci).
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Note that Lemma 1 implies

∫ 1

m

Ui(p, x, ci)

ci
f(ci) dci = Ui(p, x, 1)

∫ 1

m

1

ci
f(ci) dci +

∫ 1

m

1

ci
f(ci) dci

∫ 1

ci

Qi(p, si) dsi

= Ui(p, x, 1)

∫ 1

m

1

ci
f(ci) dci +

∫ 1

m

Qi(p, si) dsi

∫ si

m

1

ci
f(ci) dci

= Ui(p, x, 1)

∫ 1

m

1

ci
f(ci) dci +

∫
C

(

∫ ci

m

f(si)

si
dsi)xi(c)f(cj) dcj

Plugging this into equation (A.5) yields

U0(p, x) =
1

2
(

∫
C

(
2∑
i=1

pi(c)
v

ci
)fC(c) dc−

∫
C

(
2∑
i=1

xi(c)

∫ ci

m

f(si)

si
dsi)f(cj) dcj

−
2∑
i=1

Ui(p, x, 1)

∫ 1

m

f(ci)

ci
dci)

In the right hand side of the equation above, p only appears in the first term while

v
ci

is strictly decreasing in ci. Therefore, to maximize U0(p, x), it is obvious that pi(c)

should equal 1 when ci is the smaller among the two contestants and 0 otherwise.

When c1 = c2, it does not matter which contestant wins. Therefore, the optimal p for

the designer, as depicted in equation (A.4), is to select the contestant with the lower

ability parameter as the winner. This completes the proof of Proposition 4.
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APPENDIX B

Experimental Instructions

(Contest)

Experimental Instructions

(for Multiple-Prize-With-Information Treatment)

General Instruction

Welcome. This is an experiment in decision-making. During this experiment you

will participate in a series of tasks. The amount of money you make will depend

partly on your actions in these tasks and partly on other participants’ actions. Please

turn off mobile phones and any other electronic devices. They must remain turned

off for the duration of this experiment.

This experiment consists of two parts. Your total earnings will be the sum of your

earnings in each part plus a $5 participation fee. Your earnings are given in tokens.

At the end of the experiment, you will be paid in private and IN CASH based on the

following exchange rate:

$1 = 20 tokens
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You must not communicate with each other. If you have questions please raise your

hand and the experimenter will assist you.

Slider Task

This experiment consists of two parts. In both parts, you will undertake an

identical task multiple times. You will be paid differently in the two parts.

The task lasts 120 seconds and consists of a screen with 48 sliders. As shown

below, each slider is initially positioned at 0. The slider can be moved as far as 100.

The number to its right shows its current position. You can use the mouse in any

way you like to move the slider, and readjust the position of the slider as many times

as you wish. You may now practice by moving the slider below.

Figure B.1: Initial Position of Each Slider

To complete one piece of the slider task correctly, you will need to position the

slider at exactly 50, as shown in the example below. Note the number to its right

shows the correct position “50”. Each time that you undertake the task, the “number

of sliders completed” will be the number of sliders correctly positioned at exactly 50

at the end of the 120 seconds. Are there any questions?

Figure B.2: Positioned at 50

Before we start part 1, please look at a sample screenshot below. The screen

shot contains 48 sliders. The upper left corner shows it is the first of the two rounds

in Part 1. The upper right corner shows the remaining time is 104 seconds. Three
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Figure B.3: A Sample Screenshot of the Task Screen
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sliders are currently positioned at 50. So the box on the top of the screen shows that

“currently, number of sliders complete is 3”.

Part 1

Part 1 of the experiment is to help you get familiar with the slider task by letting

you undertake the task for two rounds.

In each round, you will have 120 seconds to complete as many sliders as you can.

You will be paid 1 token for each slider positioned at exactly 50. The task screen will

show the remaining time and the number of sliders currently completed.

After each round, you will see a summary showing the number of sliders you

completed, your payoff in that round, and your cumulative payoff in part 1.

When the two rounds are finished, you will have the chance to compare your

performance to the performance of participants who previously undertook the same

slider task. You will learn the distribution of the numbers of sliders completed by

those participants, and you can compare your own performance against theirs to learn

your relative skill in the slider task. Part 2 of the experiment will be explained after

the completion of Part 1.

We will now start the first round.

Evaluate Your Relative Skill in the Slider Task1

We previously ran sessions in which fifty participants undertook the same slider

task for two rounds and earned 1 token for each completed slider the same as what

you just did.

To help you evaluate your relative skill in the task compared with others, we

provide you with the histogram on the left. It shows the distribution of the numbers

1This part is shown on the screen after the completion of the two rounds in part 1.
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of sliders completed by those participants in round 2. The horizontal axis represents

the number of sliders completed. The height of each column shows the percentage of

participants who completed that particular number of sliders in round 2. The higher

a column is, the more people who completed that number of sliders. For instance,

16% participants completed 15 sliders.

In addition, we provide you with the percentiles of their performance on the right

to help you better understand the distribution:

Table B.1: Percentiles of the Number of Sliders by Previous Participants
Number of Sliders Completed

Min. 4
25th Percentile 13.5
50th Percentile 16
75th Percentile 19
90th Percentile 22

Max. 24

Specifically, the minimum number of sliders completed is 4.
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The 25th percentile is 13.5. This means a quarter of the participants completed

less than 13 or 14 sliders.

The 50th percentile is 16. This means half of the participants completed less than

16 sliders. This is the median number of sliders completed.

The 75th percentile is 19. This means 75% of the participants completed less than

19 sliders.

The 90th percentile is 22. This means 90% of the participants completed less than

22 sliders.

The maximum number of sliders completed is 24.

Part 2

Rounds:

Part 2 of the experiment consists of 5 rounds within groups of four people.

Matching:

At the beginning of each round, you will be randomly matched with three other

individuals to form a cohort of four people. You are equally likely to be matched with

anyone in the room. Each cohort will be further divided into 2 groups, each with 2

people.

The composition of your cohort will change in each round. No one will ever learn

with whom they were matched.

Stages and Rewards:

There are two stages in each round.

1. In stage 1, you and your match in the group undertake the slider task for 120

seconds. The one who completes more sliders receives a reward of 25 tokens

and enters stage 2.
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2. In stage 2, the two entering players – one from each group in stage 1 – undertake

the slider task for 120 seconds again. The one who completes more sliders

receives an additional reward of 50 tokens. People who do not enter stage 2 will

wait until stage 2 players finish the task.

3. Tie-Breaking Rule: In any stage, if you and your match complete the same

number of sliders, the computer will randomly choose one individual for the

reward in that stage and for entry into the next stage (if it is stage 1). Each

individual will have an equal chance of being chosen.

Slider Payoff:

In each round,

Your slider payoff = slider payoff in stage 1 + slider payoff in stage 2 (if entered)

To be specific, in each round:

1. If you complete fewer sliders in stage 1 than your stage 1 match, you do not

receive any reward and you do not enter stage 2:

Your slider payoff = 0

2. If you complete more sliders in stage 1 than your stage 1 match, you receive

25 tokens in stage 1 and enter stage 2. Then in stage 2, if you complete fewer

sliders than your stage 2 match, you do not get any additional reward:

Your slider payoff = Reward in stage 1 = 25

3. If you complete more sliders in stage 1 than your stage 1 match, you receive

25 tokens in stage 1 and enter stage 2. Then in stage 2, if you complete more

sliders than your stage 2 match, you receive an additional reward of 50 tokens:
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Your slider payoff = Reward in stage 1 + Reward in stage 2 = 25 + 50 = 75

Predicting the Outcome:

In both stage 1 and 2, before you undertake the slider task you will have a chance

to earn additional tokens by predicting the likelihood that you will complete more

sliders than your match.

To make a prediction, we will provide you with a form as follows:

Table B.2: Prediction Form in Stage 1 (&2)
Probability that you will complete more sliders in stage 1 (&2)

Probability that your stage 1 (&2) match will complete more sliders

For example, say you think there is a 90% chance that you will complete more

sliders, and hence a 10% chance that your match will complete more sliders. This

means that you believe that you are more likely than your match by a considerable

margin to complete more sliders. If so, enter 90 in the upper space and 10 in the

lower space. Note that the two numbers you enter should sum up to 100.

You are paid based on the accuracy of your prediction. If you believe that you will

complete more sliders with 100% chance and you actually complete more sliders, you

will get 10 tokens. On the other hand, if you believe that your match will complete

more sliders with 100% chance and your match actually completes more sliders, you

will also get 10 tokens.

Here is another example. Suppose you believe that you will complete more sliders

with 90% chance and your match will complete more sliders with 10% chance.

1. If you actually complete more sliders, your prediction payoff is:

10− 5 · (1− 0.90)2 − 5 · (0− 0.10)2 = 9.9

2. If your match actually complete more sliders, your prediction payoff is:
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10− 5 · (0− 0.90)2 − 5 · (1− 0.10)2 = 1.9

That is, the more accurate your belief is, the more you earn.

However, since your prediction is made before you know how many sliders you

and your match actually complete, the best thing you can do to maximize the expected

payoff of your prediction is to simply state your true beliefs about each outcome. Any

other prediction will decrease your expected payoff.

Cumulative Payoff:

Your payoff in each round = your slider payoff + your prediction payoff

Your cumulative payoff in Part 2 = sum of your payoffs in the 5 rounds

Feedback:

1. Feedback after Stage 1

At the end of stage 1, you will learn the numbers of sliders completed by you

and your match in the group, as well as whether you enter stage 2 or not.

You will also learn the numbers of sliders completed in stage 1 by the players

from the other group within your cohort. In other words, everyone’s perfor-

mance in the first stage is revealed to all people in the same cohort before the

second stage starts.

2. Feedback after Stage 2

At the end of stage 2, if you entered stage 2, you will learn the numbers of

sliders completed by you and your stage 2 match. If you did not enter stage 2,

you will learn the numbers of sliders completed by the stage 2 players in your

cohort.

In addition, you will see a summary showing your payoffs in that round and

your cumulative payoff in part 2.
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APPENDIX C

Postexperimental Questionnaire

(Contest)

Post-Experiment Questionnaire1

We are interested in whether there is a correlation between participants’ decision

behavior and some socio-psychological factors. The following information will be very

helpful for our research. This information will be strictly confidential.

Questions about You in This Experiment:

1. What is your age? (Mean 22.60, Std Dev 6.02, Median 21, Min 18,

Max 57 )

2. What is your gender?

(a) Female (52.08% )

(b) Male (47.92% )

3. Which of the following best describes your racial or ethnic background?

1Summary statistics in italics
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(a) Asian (28.47% )

(b) Black (9.03% )

(c) Caucasian (51.39% )

(d) Hispanic (2.08% )

(e) Indian Subcontinent (1.39% )

(f) Middle Eastern (2.08% )

(g) Native American (0.00% )

(h) Multiracial (3.47% )

(i) Other (2.08% ), please specify:

4. How many siblings do you have? (Mean 1.63, Std Dev 1.92, Median 1, Min 0,

Max 16 )

5. What is your grade?

(a) Freshman (1.39% )

(b) Sophomore (9.03% )

(c) Junior (31.25% )

(d) Senior (29.86% )

(e) > 4 years of college (7.64% )

(f) Graduate student (20.83% )

6. What is your academic program/major?

7. How would you describe the state of your own personal finances these days?

(a) Excellent (9.72% )

(b) Good (46.53% )
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(c) Not so good (34.03% )

(d) Poor (9.72% )

8. Relative to other students on campus, would you say your FAMILY income is:

(a) Much above average (6.94% )

(b) Somewhat above average (24.31% )

(c) About average (34.03% )

(d) Somewhat below average (24.31% )

(e) Much below average (10.42% )

9. From which countries did your family originate?

10. Would you describe yourself as: (Please choose one.)

(a) Optimistic (70.83% )

(b) Pessimistic (11.81% )

(c) Neither (17.36% )

11. Which of the following emotions did you experience during the experiment?

(Select all that apply.)

(a) Anger (18.06% )

(b) Anxiety (60.42% )

(c) Confusion (12.50% )

(d) Contentment (34.03% )

(e) Fatigue (42.36% )

(f) Happiness (39.58% )

(g) Irritation (41.67% )
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(h) Mood swings (9.72% )

(i) Withdrawal (11.11% )

12. In general, please rate on a scale from 1 to 7 how much you see yourself as

someone who is willing, or even eager, to take risks? (Mean 4.34, Std Dev 1.48,

Median 4, Min 1, Max 7 )

13. Concerning just personal finance decisions, please rate on a scale from 1 to 7

how much you see yourself as someone who is willing, or even eager, to take

risks? (Mean 3.30, Std Dev 1.61, Median 3, Min 1, Max 7 )

14. In general, please rate on a scale from 1 to 7 how much you see yourself as some-

one who, when faced with an uncertain situation, worries a lot about possible

losses? (Mean 4.57, Std Dev 1.56, Median 5, Min 1, Max 7 )

15. Concerning just personal finance decisions, please rate on a scale from 1 to 7 how

much you see yourself as someone who, when faced with an uncertain situation,

worries a lot about possible losses? (Mean 4.75, Std Dev 1.55, Median 5, Min

1, Max 7 )

16. In general, please rate on a scale from 1 to 7 how much you think you are

competitive? (Mean 5.30, Std Dev 1.53, Median 6, Min 1, Max 7 )

17. Concerning just sports and leisure activities, please rate on a scale from 1 to 7

how much you think you are competitive? (Mean 4.97, Std Dev 1.84, Median

6, Min 1, Max 7 )

18. When you use computer in daily life, which of the statements is true?

(a) I use mouse and touchpad equally often. (11.81% )

(b) I use mouse more often than touch pad. (22.22% )

(c) I use touchpad more often than mouse. (65.97% )
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Questions about Your Experience in This Experiment:

19. After part 1, you learned your own performance and the performance of previous

participants in the slider task. During part 2 of the experiment, how do you feel

that information affected your PREDICTIONS on the chance that you would

complete more sliders than your match?

20. After part 1, you learned your own performance and the performance of pre-

vious participants in the slider task. During part 2 of the experiment, how

do you feel that information affected your STRATEGIES in the slider tasks?

21. Before you participated in stage 2, you were told how many sliders your stage 2

match just completed in the first stage. So did he/she know how many sliders

you completed in stage 1. How do you feel that information affected your

strategies in either stage? (If you did not get to enter stage 2, please take your

best guess of the case if you had entered.)2

22. If there was a round in which you completed MORE sliders in stage 2 than in

stage 1, please explain why. (If you did not get to enter stage 2, please take

your best guess of the case if you had entered.)

23. If there was a round in which you completed FEWER sliders in stage 2 than

in stage 1, please explain why. (If you did not get to enter stage 2, please take

your best guess of the case if you had entered.)

24. During part 2, how did you feel the outcomes in earlier rounds affected your

strategies in later rounds?

2Only for Treatments SP-WI and MP-WI.
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APPENDIX D

Experimental Instructions

(Contract)

Experimental Instructions

This is the experimental instructions for the control treatment. Additional in-

structions for the ingroup treatment are inserted in the square brackets. Instructions

for the outgroup treatment are similar to those in the ingroup treatment except that

subjects are paired between groups.

Welcome. This is an experiment in decision-making. During this experiment you

will participate in a series of tasks. The amount of money you make will depend partly

on your actions in these tasks, partly on other participants’ actions, and partly on

chance. Please turn off mobile phones and any other electronic devices. They must

remain turned off for the duration of this experiment.

This experiment consists of three parts, and will take about 1 hour. Your total

earnings will be the sum of your earnings in each part plus a $5 participation fee.

Your earnings are given in tokens. At the end of the experiment, you will be paid in

private and IN CASH based on the following exchange rate: $1=250 tokens.
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You must not communicate with each other. If you have questions please raise

your hand.

There are 12 participants in this session. As you came in, you selected an index

card [and a white envelope that contained a white card]. The number on the card is

your ID number for this experiment. The ID number is used to insure the anonymity

of your decisions. Note that the seating for each ID number has been randomized in

this room.

[(For the group treatments only):

Now please open the white envelope. The envelope contains either a Green or a

Red card. You have been assigned to the Green group if you received a Green card

and to the Red group if you received a Red card. There are 12 participants in this

session with 6 in each group. Your group assignment will remain the same throughout

the experiment. If you drew a Green card, you will be in the Green group for the rest

of the experiment. If you drew a Red card, you will be in the Red group for the rest

of the experiment.]

Please now return your ID card to the envelope. Do not show it to others. Keep

it safe as it will be required for payment at the end.

Part 1

In Part 1 everyone will receive a binder that contains 16 pictures. Among these

16 pictures, 14 pictures can be used to form a sequence while 2 other pictures are

irrelevant. Your task is to find these 14 pictures and order them in their correct

sequence within 10 minutes. When you have the correct sequence you will use the

numbers on the pictures to write down their order at the bottom of this page.

[Meanwhile, you can use a group chat program to get help from or offer

help to other members in your own group. Messages will be shared only
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among all the members from your own group. You will not be able to see the

messages exchanged among the other group. People in the other group will not see

the messages from your own group either.]

You are free to submit your answer when you’re ready. A correct answer is worth

200 tokens. Raise your hand if you have any questions. You may remove the pictures

from the binder. [Instructions for the group chat program are attached to the front

of the binder you will receive.]

[If interested, other topics may be discussed using chat. There are, however, two

restrictions:

1. Please do not identify yourself or send any information that could be used to

identify you (e.g. age, race, professional background, etc.).

2. Please refrain from using obscene or offensive language.]

Part 2

Part 2 of the experiment consists of 2 practice rounds (for which you will not

be paid) followed by 3 paying rounds. During the paying rounds, your earnings will

depend on your actions, others’ actions, and chance.

In each round you will have a chance to undertake an identical task that lasts

120 seconds. The task will consist of a screen with 48 sliders. As shown below, each

slider is initially positioned at 0 The slider can be moved as far as 100. The number

to its right shows its current position. You can use the mouse in any way you like to

move the slider, and readjust the position of the slider as many times as you wish.

You may now practice by moving the slider below.

To complete one piece of the slider task correctly, you will need to position the

slider at exactly 50, as shown in the example below. Note the number to its right
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shows the correct position “50”. For each round, the “number of sliders completed”

will be the number of sliders correctly positioned at exactly 50 at the end of the 120

seconds. Are there any questions?

Before we start the first practice round, please look at a sample screenshot below

. The screen shot contains 48 sliders. Three sliders are currently positioned at 50.

So the number of sliders completed is 3. [The information on your group and your

pairing’s group as well as the] Remaining time is shown at the top of the screen.

We will now start the first practice round.

Paying Rounds: General Instructions

The practice rounds are finished. We will now move on to the 3 paying rounds.

Your payoffs in each round will be included in your earnings for this experiment.
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You will be randomly assigned to either role A or role B. There will be 6 role

As and 6 role Bs. [Group treatments alternative: There will be 3 role As and 3 role

Bs in each group.] Your role will be fixed throughout the 3 rounds. [In every round,

each role A will be paired with a role B from the same group. That is, a role A

from the Green group will be paired with a role B from the Green group; a role A

from the Red group will be paired with a role B from the Red group.]

In each round, a role A will be paired with a role B. Role A will first choose

whether to engage role B in a task. If role A chooses NOT to engage role B in the

task, they will each receive 200 tokens and the round is over.

If role A chooses to engage role B, he/she will decide a rate (i.e., a certain number

of tokens per slider) offered to role B to complete the slider task. Note each slider

completed correctly by role B will bring 100 tokens to the pair of A and B, therefore

the rate offered by A can be any integer from 0 to 100 tokens per slider. After

seeing A’s offer, B works on the sliders when A waits. Role A doesn’t undertake the

tasks. The task screen for role B will show the round number, [his/her group, his/her

pairing’s group,] the time remaining, the rate offered by his/her paired role A, and

the number of sliders currently completed.

After B completes the tasks, a 6-sided die will be rolled independently for each

pair by the computer to determine the payoffs. If the die comes up 1-5, role B’s

payoff is the rate times the number of sliders he/she completed, and A’s payoff is

(100 - rate) times the number of sliders completed by B. If the die comes up 6, both

A and B receive 0 tokens. Roles A and B’s payoffs are summarized below.

If A chooses NOT to engage B in the task,

A’s payoff: 200 tokens

B’s payoff: 200 tokens
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If A chooses to engage B in the task,

A’s payoff: (100− rate)× number of sliders if die = 1, 2, 3, 4, or 5

0 tokens if die = 6

B’s payoff: rate× number of sliders if die = 1, 2, 3, 4, or 5

0 tokens if die = 6

Note in the case of the zero roll, the number of sliders used to compute payoffs

would be zero, instead of the actual number of sliders completed by B. In this case,

role A would not be able to see the actual number of sliders completed by B.

At the end of each round, both A and B will see a summary showing whether A

chooses to engage B in the task, each other’s earnings in that round, as well as their

own cumulative earnings. For the rounds in which A engages B in the task, both of

them will also see the rate offered by A and the number of sliders for payoffs.

Are there any questions?

Is Everything Clear?

Please answer the following questions to test your understanding of the instruc-

tions. You will not be allowed to proceed until you have answered each question

correctly. Please raise your hand if you need help.

(1) In each paying round, [a role A is paired with a role B from the same group and]

role A first decides whether to engage role B in the slider task. If A chooses not

to engage B, they will each receive 200 tokens for that round. (True/False)

(2) If A chooses to engage B in the task, she decides on a rate (from 0 to 100

tokens) offered to the paired B to complete the slider task. (True/False)
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(3) After seeing A’s offer, B will undertake the slider task while A does not under-

take the task. (True/False)

(4) Suppose A engages B in the task and offers 40 tokens per slider. After seeing

the offer, B completes 10 sliders. Please answer the following two questions.

a). If the 6-sided die comes up 1, A’s payoff is 600 tokens and B’s payoff is

400 tokens. (True/False)

b). If the die comes up 6, both A and B receive 0 tokens. (True/False)

(5) If role A chooses to engage B in the slider task, role A will always know the

actual number of sliders completed by the paired role B. (True/False)

Who’s Paired with Whom?

We will now go over the pairing rules.

For the 3 paying rounds, each participant will be paired with 3 different individ-

uals of the opposite role, one in each round. [Group treatments alternative: For the

3 paying rounds, each participant will be paired with 3 different individuals from

his/her group, one in each round.] The pairings will be changed after each

round, and no one will be paired with the same person twice. [Note you will

always be paired with someone from the same group. A Green role A will always be

paired with a Green role B; a Red role A will always be paired with a Red role B.]

The pairings are done in such a way to guarantee the following:

1. who you will be paired with does not depend on your previous actions;

2. the actions you take in one round cannot affect, either directly or indirectly,

the actions of the people you will be paired with in later rounds;

3. the actions of the person you are paired with in any given round cannot be

affected by your actions in earlier rounds.
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(If you are interested, this is because you will not be paired with a person who was

paired with someone who had been paired with you, and you will not be paired with

a person who was paired with someone who had been paired with someone who had

been paired with you, and so on.)

Quiz: For the 3 paying rounds, everyone will be randomly paired with 3 different

individuals [from one’s own group]. No one’s previous decisions will have any impact

on whom he/she will be paired with in later rounds. (True/False)

Part 3

We will now start Part 3.

In this part, everyone will undertake the slider task independently for one paying

round. You will have 120 seconds to complete as many sliders as you want. You will

be paid 20 tokens for each slider positioned at exactly 50. The task screen will show

the remaining time and the number of sliders currently completed.

Press the button when you are ready to start.

Gamble Task

You may earn additional tokens in this task.

Each gamble (oval) has a 50-50 chance of a HIGH outcome and a LOW outcome.

Choose a gamble to play, and the computer will draw a HIGH ‘chip’ or a LOW ‘chip’

(with 50-50 chance) independently for each participant. If HIGH comes up, you

will get the HIGH amount on the left of the oval you choose. If LOW comes up you

will get the LOW amount on the right of the oval you choose. Gamble 1 guarantees

200 tokens regardless.

Please choose the ONE gamble you prefer most.
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APPENDIX E

Postexperimental Questionnaire

(Contract)

Post-Experiment Questionnaire1

Please answer the following survey questions. Your answers will be used for this

study only. Individual data will not be released.

Section 1: Questions about You in This Experiment

1. What is your age? (Mean 20.72, Std Dev 2.29, Median 21, Min 18,

Max 33 )

2. What is your gender?

(a) Female (52.08% )

(b) Male (47.92% )

3. Which of the following best describes your racial or ethnic background?

(a) Asian (22.22% )

1Summary statistics in italics
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(b) Black (4.17% )

(c) Caucasian (58.33% )

(d) Hispanic (2.78% )

(e) Indian Subcontinent (5.56% )

(f) Middle Eastern (1.39% )

(g) Native American (0.00% )

(h) Multiracial (5.56% )

(i) Other (0.00% )

4. What is your education level?

(a) Some college (72.92% )

(b) College degree (20.83% )

(c) Post graduate degree (6.25% )

5. What is your academic program/major?

6. What is your marital status?

(a) Never married (97.92% )

(b) Currently married (2.08% )

(c) Previously married (0.00% )

7. How would you best describe your employment status?

(a) Employed, full time (5.56% )

(b) Employed, part time (36.11% )

(c) Not employed (58.33% )
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8. How many siblings do you have? (Mean 1.51, Std Dev 1.12, Median

1, Min 0, Max 7 )

9. Who in your household is primarily responsible for expenses and budget deci-

sions? Please select all that apply.

(a) Self (26.39% )

(b) Spouse (0.00% )

(c) Shared responsibility with spouse (2.08% )

(d) Parent(s) (69.44% )

(e) Other (2.08% )

10. How would you describe the state of your own personal finances these days?

(a) Excellent (9.72% )

(b) Good (47.22% )

(c) Not so good (38.89% )

(d) Poor (4.17% )

11. Relative to other students on campus, would you say your FAMILY income is:

(a) Much above average (4.86% )

(b) Somewhat above average (40.28% )

(c) About average (20.83% )

(d) Somewhat below average (25.00% )

(e) Much below average (9.03% )

12. In politics today, do you consider yourself a Republican, a Democrat, an Inde-

pendent, or something else?
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(a) Democrat (44.44% )

(b) Republican (21.53% )

(c) Independent (23.61% )

(d) Other (10.42% ), please specify:

13. Have you ever voted in a state or federal government election (in any country)?

(a) Yes (52.78% )

(b) No (47.22% )

14. What is your primary religious affiliation?

(a) Agnostic (13.19% )

(b) Atheist (11.81% )

(c) Hindu (6.25% )

(d) Jewish (4.86% )

(e) Muslim (1.39% )

(f) Protestant, denominational (7.64% )

(g) Protestant, non-denominational (5.56% )

(h) Roman Catholic (19.44% )

(i) I don’t have one. (20.83% )

(j) I prefer not to answer. (3.47% )

(k) Other (5.56% ), please specify:

15. How often do you attend religious services?

(a) At least once a month (9.72% )

(b) At least once a week (11.81% )
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(c) Less than once a week (32.64% )

(d) Never (45.83% )

16. In the past twelve months, have you donated money to or done volunteer work

for charities or other nonprofit organizations?

(a) Yes (81.25% )

(b) No (18.75% )

17. What is your residency status in the U.S.?

(a) U.S. citizen (90.28% )

(b) Permanent resident (U.S. green card holder) (2.78% )

(c) Nonimmigrant alien (6.94% )

18. In what country or region were you primarily raised as a child?

(a) Africa (1.39% )

(b) Asia (6.25% )

(c) Australia/New Zealand (0.00% )

(d) Europe (1.39% )

(e) Latin America (0.00% )

(f) Middle East (1.39% )

(g) US/Canada (89.58% )

19. What language do you speak at home?

(a) English (85.42% )

(b) Spanish (0.69% )

(c) Other (13.89% ), please specify:
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People have different views about themselves and how they relate to the world.

On a scale from 1 to 10, please rate to what extent you agree with each of the

following statements about you see yourself? (1 means“not much at all)

20. I see myself as an American. (Mean 8.28, Std Dev 2.47, Median 9.5, Min 1,

Max 10 )

21. I see myself as a citizen of my birth country which is outside the U.S. (Mean

2.64, Std Dev 3.16, Median 1, Min 1, Max 10 )

22. I see myself as a member of my ethnic group. (Mean 6.41, Std Dev 2.84, Median

7, Min 1, Max 10 )

23. When you use computer in daily life, which of the statements is true?

(a) I use mouse and touchpad equally often. (12.50% )

(b) I use mouse more often than touch pad. (18.06% )

(c) I use touchpad more often than mouse. (69.44% )

Section 2: Questions about Your Experience in This Experiment

24. On a scale from 1 to 10, please rate, prior to this study, how familiar you were

with those artworks used in this experiment, with 1 meaning “not familiar at

all and 10 “very familiar”). (Mean 2.04, Std Dev 2.30, Median 1, Min 1, Max

10 )

25. On a scale from 1 to 10, please rate how much you think chat with your group

members helped solve the painting puzzle (1 meaning “not helpful at all and 10

“very helpful). (Mean 5.57, Std Dev 3.26, Median 6, Min 1, Max 10 )

26. On a scale from 1 to 10, please rate how closely attached you felt to your own

group throughout the experiment (1 meaning “not at all and 10 “very closely

attached). (Mean 4.32, Std Dev 2.75, Median 3, Min 1, Max 10 )
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Answer the next four questions if you were role A. Skip to Q31∼ Q33

if you were role B.

27. Please tell us how role Bs group membership affected your decision on whether

to engage him/her in the slider task. If I had been matched with a role B from

the other group [my own group],

(a) I would be more likely to engage him/her in the slider task. (4.17% )

(b) I would be less likely to engage him/her in the slider task. (8.33% )

(c) I would be equally likely to engage him/her in the slider task. (87.50% )

28. In the slider tasks, without knowing the number of sliders completed by B,

what did you think a fair offer should be? (out of 100 tokens) (Mean

43.48, Std Dev 10.95, Median 50, Min 10, Max 70 )

29. In the slider tasks when you decided on how much to offer to role B, how would

you describe the strategies you used most of the times? Select all that apply.

(a) I made offers that gave equal payoffs to myself and role B in order to be

fair. (33.33% )

(b) I made offers that gave more payoffs to role B than to myself in order to

make him/her work hard. (15.28% )

(c) I made offers that gave less payoffs to role B than to myself since I expected

B would work hard anyway to earn money for himself/herself. (66.67% )

(d) Other (5.56% ), please specify:

30. Please tell us how role Bs group membership affected your decisions on offers.

If I had been matched with a role B from the other group [my own group],

(a) I would have made higher offers. (4.17% )
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(b) I would have made lower offers. (20.83% )

(c) I would not have changed the offers I made. (75.00% )

(d) Other (0.00% ), please specify:

Answer the next three questions if you were role B.

31. In the slider tasks, what did you think a fair offer should be when role A didn’t

know how many sliders you may complete? (out of 100 tokens)

(Mean 47.97, Std Dev 8.79, Median 50, Min 20, Max 75 )

32. In the slider tasks when you decided on how many sliders to complete, how

would you describe the strategies you used most of the times? Select all that

apply.

(a) I tried to complete as many sliders I could to earn as much money as

possible for myself regardless of role As offer. (76.39% )

(b) I tried to complete more sliders if As offer was high, and fewer sliders if

As offer was low. (20.83% )

(c) I tried to complete fewer sliders if As offer was high, and more sliders if

As offer was low. (0.00% )

(d) Other (8.33% ) , please specify below:

33. Please tell us how your matched role As group membership affected your deci-

sions on how many sliders to complete. If I had been matched with a role A

from the other group [my own group],

(a) I would have tried to complete more sliders. (0.00% )

(b) I would have tried to complete fewer sliders. (0.00% )

(c) I would not have changed my behavior. (100.00% )

(d) Other (0.00% ), please specify:
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