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CHAPTER 1

Land-Use Adaptation to Climate Change in the
United States, 1982-2012

1.1 Introduction

The economics of climate change has matured into a multifaceted frontier of research to
understand damages, mitigation, and distributional consequences across a range of nations,
sectors, policies, and geographies (Burke et al., 2016). On the damage side, the social
cost of carbon aggregates damages into a comprehensive measure for use in public policy
analysis (Greenstone et al., 2013). In this context, adaptation by economic agents is impor-
tant for estimating individual damage functions, as it will typically lower damages. This
is the main idea of early research by Mendelsohn et al. (1994) on the agricultural impacts
of projected climate change, which finds relatively small impacts to U.S. agriculture when
allowing for adaptation. In contrast, previous research typically assumes no adaptation by
holding farmer behavior constant, producing damage estimates that are biased upward.1

Although more than twenty years have passed since this groundbreaking study, adapta-
tion remains relatively unexplored in the economics of climate change (Burke et al., 2016).
At the same time, two methodological advances have created research opportunities rela-
tive to the Mendelsohn et al. (1994) cross-sectional approach. The first applies panel-data
methods while using variation in annual temperature and precipitation to estimate economic

This chapter is co-authored with Michael R. Moore. I would like to thank Stephen Salant, Ryan Kellogg,
Shaun McRae, Robyn Meeks, Andrew Plantinga, and participants at the 2016 AERE Summer Conference
in Breckenridge, CO for helpful comments. This work was supported by the National Science Foundation
under grant 1313897.

1Mendelsohn et al. (1994) refers to this bias as the “dumb-farmer scenario” as it ignores many adaptations
that are routinely made by agricultural producers.

1



impacts (Deschênes and Greenstone, 2007). The second approach, “long differences”, ex-
ploits medium- to long-run variation in average weather variables over time, where changes
over multiple decades serve as an approximation to climate change (Dell et al., 2012). Dell
et al. (2014) state that long-difference “estimates are perhaps the closest empirical analogue
to the structural equation of interest for climate change... particularly if we are interested
in climate change impacts in the medium term (e.g., by 2050).” Aggregate economic out-
put (Dell et al., 2012) and agricultural crop yields (Burke and Emerick, 2016) have been
studied using the long-differences approach.

The mechanisms of adaptation to climate change - even less well studied than adapta-
tion per se - are now being investigated. For example, Albouy et al. (2016) study location
choices by U.S. households to identify their preferences over local climates. They find, in
their baseline specification, that adaptation via human migration is moderately extensive:
the average absolute value of the population change across public-use microdata areas is
10.3%. Despite this population change, the estimated aggregate welfare loss changes little
(from 2.28% to 2.01%) when migration is included. Davis and Gertler (2015) examine the
use of air conditioning for home cooling as an adaptation to higher temperatures. In their
main results, adaptation is projected to generate additional carbon dioxide emissions as air
conditioning (and electricity use) increase to keep pace with higher temperatures, such that
a comprehensive analysis of damages with adaptation should incorporate both direct and
indirect effects. In an agricultural context, changes in cropland use are suggested as an
important mode of adaptation (Mendelsohn et al., 1994; Burke and Emerick, 2016). As
the climate warms, for example, a farmer might grow winter wheat instead of corn due to
wheat’s early harvest, prior to the higher summer temperatures of July and August.2 Yet
crop choice and related cropland use have not been extensively studied as a mechanism of
agricultural adaptation.

This paper examines land-use change in the United States from 1982-2012 using the
long-differences approach. Substantial adjustments in U.S. land use occurred over this
period. Using data from the National Resources Inventory (U.S. Department of Agriculture,
2015), total cropland decreased from 421 to 363 million acres, a change of -14% (U.S.
Department of Agriculture, 2015). Meanwhile, developed land increased from 72 to 114
million acres (+59%), pastureland decreased from 131 to 121 million acres (-8%), and
forestland increased from 410 to 413 million acres (+1%). If we consider change at the
parcel level, turnover is even more striking. 19% of cropland in 2012 was new since 1982,
while 30% of cropland in 1982 had since switched to another use. While these changes

2One can envision the Winter Wheat Belt in the United States migrating northward into the Corn Belt,
and the Corn Belt migrating into Canada, as macro-phenomena of climate change.
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were shaped by many factors, our primary research question asks whether climate had any
influence. How does climate change affect land-use change in the United States?

Burke and Emerick (2016) investigate crop yields in the United States using the long-
differences methodology. Their research suggests that some adaptation has occurred to
maintain crop yields, although the evidence is limited. Using aggregated data by county,
they do not find significant responses in total corn area or total farm area to observed cli-
mate change, but they do find a negative response to extreme heat exposure for the corn
share of total farm area. However, as mentioned above, the county-level aggregation masks
significant parcel-level changes. By studying land-use change at the parcel level, we di-
rectly examine the extensive margin of land use as a primary mechanism of adaptation.

Changes in climate induce changes in land use by altering the lands’ potential net-
returns (i.e., profit). In agriculture, for example, net-returns can be modeled as a function
of price, yield, and cost, all of which can be affected by changes in climate. In Ricardian
models of agricultural adaptation to climate change (Mendelsohn et al., 1994; Schlenker
and Roberts, 2006), the dependent variable, farmland value, is motivated as the discounted
stream of future net-returns. Given that the research finds significant effects when farm-
land value is regressed on climate variables, a natural question is to ask whether land use
responds to climate change.

To answer this question, we use parcel-level data from the National Resources Inventory
(U.S. Department of Agriculture, 2015). The NRI is a statistical survey of U.S. land-use
conditions, conducted by USDA’s Natural Resources Conservation Service, that covers
individual land points from 1982-2012. We can observe a specific point in 1982 and track
its land use and land quality through 2012. Due to confidentiality restrictions, we do not
observe the actual location of the point, only the county in which it is located. We combine
the NRI data with fine-scale weather data from Annan and Schlenker (2015), which consists
of daily temperature and precipitation data on a 2.5-by-2.5 mile grid across the continental
U.S. between 1950-2014. We use the weather data to construct climate measures at the
county level.

Previous research used NRI point data in national models of land use (Lubowski, 2002;
Lubowski et al., 2006; Lewis and Plantinga, 2007; Lubowski et al., 2008; Haim et al.,
2011; Radeloff et al., 2012; Claassen et al., 2013; Hamilton et al., 2013; Lawler et al.,
2014). In these studies, NRI point data are combined with estimates of net-returns for each
broad category of land use (cropland, pasture, CRP, forest, range, and urban) to estimate
probabilities of land-use change between each category. The focus is typically on using
market returns to simulate the effects of different policies on land use. For example, topics
address the land use implications of: carbon sequestration (Lubowski, 2002; Lubowski
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et al., 2006), forest defragmentation (Lewis and Plantinga, 2007), markets and farm-policy
(Lubowski et al., 2008; Radeloff et al., 2012), protected lands (Hamilton et al., 2013), and
ecosystem services (Lawler et al., 2014). However, only Haim et al. (2011) considers the
effect of climate. Haim et al. (2011) uses previously estimated climate-induced changes in
yields, prices, and urbanization from integrated assessment models to predict future climate
effects. Still, the effect of climate on land use is not explicitly estimated in the model.

Our approach, in contrast, uses climate information directly. We begin by exploring
the long-differences framework in the context of land-use decisions. With this method,
changes in land-use-related outcomes are regressed on observed changes in climate be-
tween two periods covering, in this case, thirty years. As with panel data methods that
use annual weather variation, we are able to avoid time-invariant omitted variables bias.
Long-difference estimates have the additional benefits of being identified from variation
in actual climate change and implicitly accounting for medium-run (or longer) landowner
adaptations (Burke and Emerick, 2016; Dell et al., 2014).

Many of the outcomes of interest can be analyzed using long-difference-transformed
variables in OLS. The decision to irrigate, for example, is formulated as a binary dependent
variable, for which we estimate a linear probability model. We estimate similar models
describing broad land-use transitions, e.g., the decision to switch into or out of cultivated
cropland. With these models, the consistency of our estimates depends on the exogeneity
of observed changes in climate, a point which is rigorously defended in Burke and Emerick
(2016). We investigate whether those results hold in our context.

Our preliminary results suggest that changes in land use correspond closely to estimates
of both climate-change effects and weather effects on crop yields. Burke and Emerick
(2016) and Schlenker and Roberts (2009) both estimate that additional time spent in tem-
peratures above 29◦C is harmful for corn yields, while temperatures below are beneficial.
Similarly, we find that additional time above 30◦C increases the probability of switching
away from cropland, while additional time below 30◦C increases the probability of switch-
ing into (or not switching away from) cropland.

Making accurate projections about future land use is difficult using models that have
been reduced to binary decisions as there are more than two land uses of interest. For this
problem, we are exploring models of multinomial choice for which probability estimates
are guaranteed to remain between zero and one.3

The paper continues as follows. Section 1.2 describes empirical models and issues
related to land-use adaptation to climate change. Section 1.3 describes the data. Section 1.4

3We are currently extending this research to estimate nested logit models in the spirit of Lubowski et al.
(2006) and related papers. Results are not yet available.
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presents preliminary analysis, the main results, and several robustness checks. Section 1.5
offers concluding remarks.

1.2 Estimating Land-Use Adaptation to Climate Change

1.2.1 The Long-Differences Model

Our model is designed to evaluate, in a probabilistic sense, the extent to which landowners
have adapted land use in response to observed changes in climate. That is, we want to
estimate the impact of changes in different climatic variables on the probability of land-use
change. We focus on modeling binary discrete choice outcomes.

To begin, we define variable yik such that yik = 1 if landowner i chooses land use
k, and yik = 0 otherwise. Examples of binary outcome variables are choosing to grow
crops, converting cropland to pasture, installing irrigation, or developing the land. As in
Dell et al. (2014), we want to approximate the following unknown relationship for each
outcome variable:

yik = f(C,X) (1.1)

where C is a vector of climatic variables and X is a vector of other characteristics that are
held constant.

As discussed in both Dell et al. (2014) and Burke and Emerick (2016), one option
is to use cross-sectional variation in observed climate to explain land-use outcomes at a
fixed point in time. For example, Mendelsohn et al. (1994) introduced the “Ricardian”
method that regressed farmland values on average temperature and precipitation using only
cross-sectional variation across counties.4 Applying the Ricardian framework to land-use
outcomes, we specify the following linear approximation of Equation (1.1) for a given
cross-section:

yik = αk + βkCi + γkXi + εik (1.2)

There is wide variation in climate across U.S. states and counties, which likely has
an effect on local land-use decisions. The cross-sectional model represents a long-run
equilibrium that explicitly makes use of this variation. However, these models present
several challenges to isolating climate impacts. As discussed in Dell et al. (2014), the
cross-sectional model may capture other long-run historical processes related to land and

4See also Schlenker et al. (2006).
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agricultural development, or even colonialism, that were influenced in part by variation in
climate. If our estimates implicitly embody these long-run processes, then they will be less
useful for understanding the effects of climate change in the near future.

Additional concerns relate to unobserved factors that are correlated with climate, influ-
ence land-use decisions, and are important for projecting future climate impacts. Examples
may be unobserved soil quality (Deschênes and Greenstone, 2007), water supply and irri-
gation potential (Schlenker et al., 2005, 2006), or agglomeration effects associated with the
development of local upstream or downstream industry (McWilliams and Moore, 2016a).
To remove confounding effects of irrigation, studies often restrict analysis to U.S. counties
east of the 100th meridian, which approximates the boundary between irrigated and rain-
fed crops (Schlenker et al., 2005, 2006; Schlenker and Roberts, 2009; Burke and Emerick,
2016).

More generally, some researchers have turned to panel methods in order to avoid omit-
ted variables bias and isolate climate impacts in the absence of other correlated factors
(Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009). For example, with panel
data covering a range of years, the standard “within” estimator removes all time-invariant
confounders during the sample period. The cost of this method is that climatic variables
measuring long-run averages are, generally, not identified. Instead, researchers use short-
run weather variation, often arguing that weather-based impacts represent an upper bound
for climate impacts in the long-run when agents have more ability to adapt (Deschênes and
Greenstone, 2007). The panel model version of Equation (1.2) is:

yitk = αk + βkWit + γkZit + µi + θrt + εitk (1.3)

where Wit is a vector of weather outcomes for landowner i at time t. The vector Zit

contains time-varying observable controls, while all time-invariant controls are absorbed
by the unit fixed effects, µi. It is common to also include time-varying regional fixed
effects, θrt, where i is spatially located in r, in order to capture short-run confounding
factors not absorbed by µi (Deschênes and Greenstone, 2007; Dell et al., 2014). However,
since weather outcomes are spatially correlated, the use of highly localized time-varying
regional fixed effects can significantly reduce the identifying weather variation. As shown
in Fisher et al. (2012), this can lead to significant attenuation bias if local variation in the
weather variables is partly due to measurement error.

Dell et al. (2014) and Burke and Emerick (2016) caution that although panel meth-
ods solve some problems associated with the cross-sectional method, short-run weather
impacts may neither be representative of long-run climate impacts nor even provide a re-
liable bound. Although the ability to adapt in the long run will tend to mitigate impacts,
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intensification effects such as persistent drought, may push in the opposite direction.
As an alternative, Dell et al. (2012) develop the long-differences approach, which

Burke and Emerick (2016) apply by regressing changes in agricultural outcomes on actual
changes in observed climate over twenty years.5 In their study, for example, they calculate
county-level changes in average corn yield between 1978-1982 and 1998-2002 and regress
on measures of change in average growing degree days and precipitation over the same
period. Following Burke and Emerick (2016), our long-differences model is constructed
by first taking n-year averages of the right-hand-side variables in Equation (1.3) at two
time periods, t0 and t1. This equation for each time period is equivalent to Equation (1.2)
where Ci = W̄i except for the addition of µ̄i = µi and θ̄rt.6 The two equations are then
differenced, producing

∆yik = βk∆W̄i + γk∆Z̄i + ∆θ̄r + ∆ε̄ik (1.4)

where the constant, αk, and the panel-level fixed effects, µi, cancel out. In the differenced
model, the time-varying regional fixed effects, θrt, become regional fixed effects. This
model is our starting point for the empirical analysis, and in our robustness checks, we
consider a range of combinations of t0, t1, and n such that t1 − t0 ≥ n.7 In practice, we do
not use any time-varying controls, Zi, except for the climate variables.

1.2.2 Connection to Ricardian Climate Change Models

Equation (1.4) is a reduced form representation of the effect of climate change on land-use
outcomes. We do not specify or restrict the pathways in which climate can affect land use.
With an assumption about the exogeneity of observed climate change, which is defended

5The long-differences approach has been used in other climate-related research as well. Hornbeck (2012)
applies a variation for estimating the long-run impacts of the Dust Bowl on land values, revenues, and land-
use outcomes in counties that experienced varying degrees of soil erosion. However, in that study, treatment
occurs in the base period and all explanatory variables represent values at t=0 (i.e., pre-Dust Bowl).

6Another way of thinking about the long-difference transformation is simply differencing the cross-
sectional relationship in Equation (1.2), which has first been specified for two distant time periods, while
also acknowledging that the error term contains the panel-level and time-varying regional fixed effects, i.e.,
εitk = µi + θrt + uitk.

7Note that since yitk is binary, ∆yik can take three possible values: -1, 0, or 1. In practice, we estimate
versions of Equation (1.4) where the estimation sample is restricted to land with a common land use in the
base period, t0. For example, we might define yitCrops = 1 for land that is cropland and yitCrops = 0
otherwise. If we restrict the sample to land that was cropland at t0, then ∆yiCrops takes values of -1 or 0.
The differenced variable can then be rescaled as a traditional 0-1 binary variable without loss of generality,
such that ∆yiCrops = 0 for land that switched out of crops and ∆yiCrops = 1 for land that remained in crops.
This model would estimate the probability of land staying as cropland. Alternatively, using the same original
outcome variable, yitCrops, we could restrict the sample to land that is not cropland at t0 and estimate the
probability of switching into cropland.
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below, we can use OLS to estimate the causal effects of this reduced form relationship.
However, it is worth pointing out that Equation (1.4) also has connections with more theory-
driven models that underly the Ricardian analysis going back to Mendelsohn et al. (1994).

The central assumption in the Ricardian framework is that landowners choose the land
use that maximizes profit. Let πik be the profit per acre for landowner i associated with
land use k, net of any conversion costs and excluding land rents. Land use k is chosen by i
if:

πik ≥ πil for all l 6= k (1.5)

With competitive land markets, the land rents for i will equal the maximum profit, πik.
Thus, by regressing land rents on measures of climate, it is possible to estimate the eco-
nomic value of climate for landowners, which will implicitly account for any substitutions
or adaptations that landowners undertake. Lacking precise data on land rents, Mendelsohn
et al. (1994) and Schlenker et al. (2006) use data on farm value from the U.S. Census of
Agriculture, noting that farmland value is equivalent to the present value of future land
rents.

In this work, if we maintain the Ricardian assumption that landowners choose the profit-
maximizing land use, then the dependent variable in Equation (1.2), yik, can be thought of
as an indicator for k being the profit-maximizing land use for i. In other words, yik = 1

when Equation (1.5) holds. This means that the cross-sectional representation in Equa-
tion (1.2) can be thought of as a latent-variable model, where farm-level per-acre profit is
the unobserved latent variable. Estimation of the model identifies the effect of climate on
the probability of choosing land use k, which is itself equal to the probability that land use
k is the profit-maximizing land use.

Now consider the long-differences specification of Equation (1.4) using the subsample
of parcels with common land use, k, in the base period, t0, as described in footnote 7.
With the same latent-variable interpretation, ∆yik represents an indicator for whether land
use k continues to be profit-maximizing at time t1. Notice that the value of ∆yik does not
provide information on whether profits have increased or decreased relative to time t0. The
Ricardian assumption only allows us to make statements about profits within a single year,
e.g. “cultivated cropland is no longer the profit-maximizing land use for owner i at time
t1.”

1.2.3 Identification in the Long-Differences Model

Burke and Emerick (2016) and Dell et al. (2014) describe several advantages to the long-
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differences model. First, to the extent that W̄i is a better representation of C than Wit,
the long-differences model is a closer approximation of the true structural model behind
Equation (1.1) since the estimated impacts are identified from actual variation in climate
rather than short-term weather. The long-differences model is also more likely to implicitly
account for both adaptation and intensification effects while, like the panel model, not
suffering from time-invariant omitted variables bias. Finally, observed changes in climate
over the past 30 years are similar in magnitude to mid-century projections. All together, this
suggests that long-differences estimates may be more appropriate for predicting impacts
under projected climate change.

The identification assumption in the long-differences model of Equation (1.4) is simi-
lar to the common trends assumption in difference-in-differences models. The assumption
is that conditional on ∆Z̄i (if included), changes in land use at parcels within a region,
r, would have been equal, on average, if not for changes in climate. In other words, the
common trends assumption applies to units within r and is conditional on ∆Z̄i. The identi-
fication assumption will fail to hold if changes in unobserved local factors, captured by the
error term ∆ε̄ik, are correlated with observed changes in climate.

In general, we do not want to control for local measures of profit associated with the
different land uses. Although changes in profit will certainly affect land-use decisions
(as demonstrated in Lubowski et al. (2006) and related studies), profit may also directly
respond to changes in climate. Indeed, this is demonstrated in the previously mentioned
Ricardian analysis. Thus, in the terminology of Angrist and Pischke (2009), profit is a “bad
control.”8 Since this issue can be counterintuitive, we discuss it further in Appendix A.

Burke and Emerick (2016) discuss several threats to exogeneity when the dependent
variable is agricultural yield. One main concern is local land use change, which could af-
fect measured county yield (their dependent variable) and also be correlated with observed
climate change. In contrast, our paper focuses directly on the question of whether changes
in land use and climate change are correlated. Any effect of climate on underlying yield is
subsumed into the reduced form land-use equation, as discussed above.

More important for our work, many studies have shown that land-use choices can have
feedback effects on local and regional climate (Brown et al., 2014). Thus, it is fair to ask
whether the observed changes in climate are causing adaptations in land use, or whether
land use is changing for other reasons and leading to observed differences in climate. There
are several reasons why we are not concerned about reverse causality.

First, there is some degree of uncertainty in climatology research about the magnitude
of feedback effects as well as the exact pathways. For instance, Mueller et al. (2016)

8Dell et al. (2014) also discuss this issue and refer to the problem as “over-controlling” (p. 743).
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suggest that intensification of cropland management practices, rather than conversion of
land use per se, might better explain deviations in local climate. In terms of magnitude,
estimates of the effect of land use conversion on local climate trends are, in general, small
relative to observed changes in our data. Fall et al. (2010) estimate the effect of land use
conversion on decadel deviations in trends between surface temperatures and reanalysis
data. Conversions of agriculture to other uses result in deviations of 0 to 0.1◦C/10yr,
with varying levels of significance, while conversions of other uses to agriculture show a
cooling effect between 0 and −0.1◦C/10yr. These changes are quite small relative to the
distribution of changes in average temperature, as shown in Figure 1.3a and discussed more
formally in Section 1.3.1, where many counties experience changes well above +0.75◦C.

Second, the land “points” used in the analysis represent relatively small land areas.
As discussed in Section 1.3, our land-use data consist of a representative sample of land
points that are anonymous at the county level. That is, we know which county each point
belongs to, but we do not know where the point is located within the county. Therefore,
we use county-level measures of observed climate as the explanatory variables of interest
in our regressions. Of course, each “point” is surrounded by a parcel of land with similar
characteristics. Yet the parcels containing each point are likely too small relative to the
county as a whole for the land-use choice to directly affect the average climate measure for
any county. While, we do not observe the size of parcels, the data contain sample weights
that estimate the total county acres represented by the parcel, i.e., the total similar acreage
that could potentially provide a climate feedback effect. On average, each point represents
a meager 0.2% of total county acreage; points are unlikely to produce measurable feedback
effects on their own.9

Still, if changes in land use are spatially correlated, then it is possible for collective
feedback effects to impact the measures of climate change. However, the bottom half of
Table 1.2 shows that the average county level change as a fraction of total county area is
5% or lower, in absolute value, for all land uses. This combined with the relatively low
estimated feedback effects mentioned above lead us to conclude that reverse causality is
not a primary concern for our analysis.

Another potential threat to exogeneity is time-varying agglomeration effects associated
with the development of local upstream or downstream industry, i.e., local shocks to de-
mand for products associated with a particular land use. Land use often involves some form
of production, such as agriculture or forestry. Goods produced must be transported to mar-
ket, or in the case of pasture or range, livestock might be transported to the parcel. In some

9The average number of points/parcels per county is 414 with 1st and 99th percentiles of 148 and 1,041,
respectively. For county acreage shares, the same percentiles are 0.008% and 1.2%.
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sense, developed land is no different since people will need to travel to and from homes and
businesses. These types of input-output linkages can drive related industries to co-locate
spatially in order to minimize transportation costs, a phenomenon called “coagglomera-
tion” (Ellison et al., 2010). With land use, coagglomeration is unmistakable. Sawmills are
located in or near forests, dairy farms are surrounded by alfalfa and other feed crops, and
corn ethanol refineries are located in the Corn Belt (McWilliams and Moore, 2016a).

In our long-differences framework, coagglomeration could be a problem if there are
shifts in input-output linkages involving land use that are also correlated with changes in
climate. For example, if new sawmills locate in areas that also experience favorable climate
shocks for forestry, then the impacts associated with unobserved changes in local demand
will confound estimates of climate impacts. The use of state fixed effects should help
mitigate these problems.

However, one caveat is in order. If changes in I-O links are also driven by climate
(or by the changes in land use that are driven by climate), then we do not need to worry
about omitted variables bias.10 Our goal is to estimate casual, yet reduced form, impacts
of climate change. We want the direct effect of climate on land use to be captured, but we
are also interested in any other indirect effects that also result from the change in climate.
If changes in climate also cause downstream industries to migrate, then we ideally want
that effect to be captured as well. If, on the other hand, the changes in the I-O links are
correlated with climate, but not caused by climate, then omitted variables bias would be a
concern. This is particularly true if the changes are unlikely to be repeated as we extrapolate
using mid-century climate projections. Intuitively, if climate impacts are not isolated from
other correlated factors, then our projections will implicitly include a repeat of those same
factors.

One example that we consider is the growth of the corn ethanol industry between 2002
and 2012. The Renewable Fuel Standard, born with the Energy Policy Act of 2005 and
expanded with the Energy Independence and Security Act of 2007, mandates that a cer-
tain volume of ethanol be produced and blended with transportation fuel each year. Using
data from McWilliams and Moore (2016a), there were 45 operating corn ethanol refineries
in Midwest states in 2002 and only 2 refineries operating outside the region.11 These re-
fineries had a total production capacity of approximately 2.3 billion gallons per year (bgy).
Between 2002 and 2012, 128 new ethanol refineries were constructed in the Midwest, and
combined with upgrades at existing plants, total production capacity increased by 10.3 bgy

10This is closely related to our previous discussion of “bad control” with respect to including measures of
profit as explanatory variables. See the Appendix for further discussion.

11Midwest states considered: IL, IN, IA, KS, MI, MN, MO, NE, ND, OH, SD, and WI.
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(441%). At a conversion rate of 2.8 ethanol gallons per bushel of corn and an average yield
of 170 bushels per acre, the new facilities and upgrades would demand an additional 3.7
billion bushels (22 million acres) at full production capacity. Compare this to total US corn
production of 8.7 billion bushels in 2002, which rose to 12.7 billion by 2007 according to
U.S. Census of Agriculture data.12

McWilliams and Moore (2016a) find that crop choice responds locally to new ethanol
production capacity, with the amount of land transitioning to corn decreasing as a function
of distance from the refinery. If the location of new ethanol production capacity is cor-
related with changes in climate, then the effects of the biofuel boom will be confounded
with our climate impacts estimates. Section 1.4.3 examines this question and concludes
that observed changes in climate are not correlated with new ethanol production. In other
words, there is reasonable variation in observed climate change within areas that also ex-
perienced increased ethanol production. Nonetheless, we include additional robustness
checks in section 1.4.3 that estimate land-use changes over the period 1982-2002, ending
before the major expansion of U.S. ethanol production. Results are broadly consistent with
the estimates over the full period.

The ethanol expansion is one example of a time-varying agglomeration effect, and oth-
ers may be worth considering. A variant on this theme is the intensification or shift of entire
industries to specific regions for political or regulatory reasons such as the leniency of envi-
ronmental regulation or tax incentives (e.g., the shift of the timber industry from the Pacific
Northwest to the Southeast, or recent North-to-South migration trends). If these changes
are correlated with changes in climate, then the estimated climate impacts will be biased.
While there is no test to assure that the analysis is safe from this problem, we assume that
our state fixed effects capture these sorts of regional trends. Furthermore, the point-level
fixed effects account for all time-invariant properties of each point that make it better suited
to particular land uses. Examples are field topology, altitude, soil texture and quality, and
proximity to highways and navigable rivers. In general, we maintain the assumption, as in
Burke and Emerick (2016), that observed climate change is “plausibly exogenous”, which
is also consistent with the wide range of work cited in Dell et al. (2014).

1.3 Land Use and Observed Climate Data

We obtain data on parcel level land-use transitions from the National Resources Inventory
(NRI), a statistical survey of U.S. land-use conditions that is conducted by USDA’s Natural

12Accessed 4/23/2016 using USDA NASS Quick Stats at https://quickstats.nass.usda.gov/.
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Resources Conservation Service.13 The modern NRI program was born following the Soil
and Water Resources Conservation Act of 1977 and other related legislation that mandated
recurrent appraisals of the inventory. Its purpose is to provide “updated information on
the status, condition, and trends of land, soil, water, and related resources on the Nation’s
non-Federal lands” (U.S. Department of Agriculture, 2015).

The NRI survey process has evolved over the years with, for instance, recent surveys
making use of modern remote sensing and geospatial data processing technologies. How-
ever, the underlying population of sample points has remained largely unchanged. The
original 1982 survey points were selected using a two-stage stratified area sampling pro-
cedure, as described in Nusser and Goebel (1997).14 These points have been tracked over
time to form the longitudinal NRI dataset. In total, there are 1,362,936 points covering
1982-2012. This drops to 849,851 when we restrict to points East of the 100th meridian
that have never been federally owned.

The usefulness of the NRI data for this paper derives from its longitudinal nature. We
are able to follow land-use choices and characteristics for the specific geospatial points at
five year intervals between 1982-1997 and then annually from 2000-2012.15 This allows
us to examine land-use transitions that might otherwise be hidden in more aggregated data.
Six broad land-use categories are analyzed: cultivated cropland, noncultivated cropland,
pasture, range, forest, and developed. Transitions into and out of irrigated agriculture (all
cropland and pasture that is irrigated) also are analyzed.

As discussed earlier, the data are subject to confidentiality restrictions; the exact loca-
tions of each sample point in our data are unknown below the county-level. For this reason,
we are forced to aggregate our climate data to the county level as well. However, this may
be desirable if it also alleviates concerns about feedback effects.16

Our climate variables are created using the weather data from Annan and Schlenker

13Although NRI data collection formally began in 1977, its roots can be traced to the 1934 National Erosion
Reconnaissance Survey, the passage of the Soil Conservation Act of 1935, and the subsequent formation
of the Soil Conservation Service (SCS) (U.S. Department of Agriculture, 2015). In its history, the SCS
periodically tallied inventories of U.S. natural resources, such as with the Soil and Water Conservation Needs
Inventories of 1945, 1958, and 1967. In 1994, the Soil Conservation Service became the Natural Resources
Conservation Service.

14First, land was divided into strata, from which primary sampling units are selected. Next, the actual
sample points were selected from within the chosen primary sampling units. For example, in areas with
borders defined by the Public Land Survey System, there are typically 16 square townships per county, where
each township is composed of 36 square-mile sections. Here, the NRI typically divided each township into
three strata containing 12 sections each. From each stratum, two quarter-sections were selected as primary
sampling units, from which three sample points were selected (Nusser and Goebel, 1997).

15Despite annual data covering 2000-2012, major data releases still conform to a 5-year cycle. Thus, 2002,
2007, and 2012 represent major releases of NRI data. We stick to these years in our analysis.

16See Section 1.2.3.
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(2015), which is an updated edition of the data in Schlenker and Roberts (2009) and consists
of high resolution (2.5 x 2.5 mile grid) daily temperature and precipitation data from 1950-
2014. The new version extends the data from the original endpoint of 2005 and uses a
reduced set of weather stations that are constant over the entire period. This guards against
a potential problem where variation in measured weather could be due to changes in the set
of operating weather stations over time rather than actual weather.

Consistent with Burke and Emerick (2016) and Dell et al. (2012), we construct our
climate variables by averaging weather outcomes over a specified number of years.17 The
assumption is that these averages are able to capture longer-run changes in climate that
are perceived by landowners. This is an approximation as the term “climate” is typically
used to represent the full distribution of potential weather outcomes, and thus is not fully
described by sample means. Still, average weather has been shown to be a powerful rep-
resentation of climate in many studies, including Burke and Emerick (2016), which is why
it remains as our focus.18 A question that arises is: how many years of averaged weather
data sufficiently represents climate? Burke and Emerick (2016) focus on a five-year av-
erage, which is sensible when the dependent variable is yield, but may be too short when
considering broad land-use change. Our preferred specification uses ten-year averages, but
we also present robustness checks with other lengths.

Following Snyder (1985), we derive our climate variables by first using a sine curve to
interpolate the daily time spent in 1◦C-wide temperature bins between the given minimum
and maximum temperatures for each grid cell. We then use these to construct county aver-
ages of the total amount of time spent in each bin, either annually or for a defined growing
season. We also construct measures of total average precipitation by county, which sim-
ply requires summing the total annual (or growing season) precipitation for each cell and
taking the county average.

Using the 1◦C-wide temperature bins, we construct two types of climate variables for
our analysis. First, we aggregate to a set of 5◦C-wide bins, which we use as a set of
nonparametric treatment variables, allowing each 5◦C-wide bin to have a different effect
on land-use decisions. Second, following Burke and Emerick (2016) and Schlenker and
Roberts (2009), we estimate land-use outcomes as piecewise linear functions of degree
days. For instance, we set a lower bound equal to t0 and a kink point equal to t1. This
allows degree days between t0 and t1 to have a different effect from degree days above t1.

Formally, we construct degree days for the lower piece, DDt0,t1 , and the higher piece,

17Burke and Emerick (2016) use the original data from Schlenker and Roberts (2009) through 2005 to
construct their climate variables.

18See Dell et al. (2014) for many other examples.
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DDt1,∞, using the set of 1◦C-wide temperature bins as follows where fi is the fraction of
any given day spent in bin i with lower bound b and upper bound b+ 1,

DDt0,t1 =


0 b < t0

(b+ 0.5− t0) fi t0 ≤ b < t1

t1 − t0 b ≥ t1

DDt1,∞ =

{
0 b < t1

(b+ 0.5− t1) fi b ≥ t1

(1.6)

The end result is a series of annual county-level averages for every year between 1950
and 2014 for all of the constructed measures (degree days, 5◦C-wide bins, and total pre-
cipitation). Our main specifications take 10-year averages for 1973-1982 and 2001-2012,
which we difference according to Equation (1.4).

1.3.1 Observed Land Use and Climate Changes between 1982-2012

Table 1.1 shows transitions between the broad land-use categories in the NRI between 1982
and 2012 for all non-federally owned land in the continental United States. During this
period, total land in cultivated crops decreased by 64 million acres (-17%), noncultivated
cropland increased by 8 million acres (+18%), pasture decreased by 9 million acres (-7%),
range decreased by 10 million acres (-2%), forest increased by 6 million acres (+2%), and
developed land increased by 42 million acres (+58%).19 While these aggregate changes
are significant, they mask even greater turnover at the parcel level. Other than CRP, which
was not in existence in 1982, land uses with the highest percentage of new acreage since
1982 are noncultivated cropland (66%), pasture (38%), and developed land (38%). For

19Cultivated cropland: land that is in row crops or other close-grown crops and may include hayland or
pastureland that is in rotation with cultivated crops. Noncultivated cropland: permanent hayland and horti-
cultural cropland. Pasture: vegetative cover of grasses, legumes, and/or forbs, or other forage plants that is
managed principally for livestock grazing. Range: includes grasslands, savannas, tundra, and some wetlands
and deserts; plant cover is primarily native grasses, grasslike plants, shrubs or forbs, or introduced forage
species that are managed like traditional rangeland; practices such as deferred grazing, burning, chaining,
and rotational grazing may be used, but fertilizer and chemicals are generally not applied. Forest: U.S. De-
partment of Agriculture (2015) defines forest as land that is “at least 10 percent stocked by single-stemmed
woody species of any size that will be at least 4 meters (13 feet) tall at maturity. Also included is land bear-
ing evidence of natural regeneration of tree cover (cut over forest or abandoned farmland) and not currently
developed for non-forest use. Ten percent stocked, when viewed from a vertical direction, equates to an
areal canopy cover of leaves and branches of 25 percent or greater. The minimum area for classification as
forestland is 1 acre, and the area must be at least 100 feet wide.” Developed: also from U.S. Department of
Agriculture (2015), the “developed land category includes (a) large tracts of urban and built-up land; (b) small
tracts of built-up land of less than 10 acres; and (c) land outside of these built-up areas that is in a rural trans-
portation corridor (roads, railroads, and associated rights-of-way).” CRP: land enrolled in the Conservation
Reserve Program.
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cultivated cropland, 11% of 2012 acreage was new since 1982. The uses with the highest
percentage of land that switched to another use between 1982 and 2012 are noncultivated
cropland (60%), pasture (43%), and cultivated cropland (26%).

Figures 1.1 and 1.2 map acreage changes that have been aggregated to the county level
for the seven major land uses as well as for irrigated land, which is discussed in sec-
tion 1.4.4. In all cases, there is spatial correlation in both the direction and magnitude
of change. This suggests that local factors, such as changes in climate or demand, may
be driving the changes. A possible exception is developed land, which has seen small in-
creases in most counties with larger changes occurring around existing urban areas. As
shown in Table 1.2, the average change as a percentage of total county area is small for all
land uses (≤ 5% in absolute value), although there are also some outliers.

Figures 1.3 and 1.4 show the distribution of county-level observed climate change over
the period 1982-2012, where climate is represented by 10-year averages calculated over
the full calendar year (Jan-Dec). The temperature variables are all skewed to the right.
Some counties have experienced slight cooling, while others have warmed by over 1◦C

(Panel 1.3a). Panels 1.4a-1.4d show that exposure to temperatures over 25◦C has generally
increased. To put these changes in perspective, Burke and Emerick (2016) estimate that
each additional degree day above 29◦C reduces corn yield by 0.44%. Panel 1.3d shows that
some counties experienced changes of over +40 degree days above 30◦C; the average is
just over +6 degree days. Changes in precipitation also appear to be slightly skewed to the
right, although many counties have experienced decreases in average precipitation.

These changes are depicted spatially in Figures 1.5 and 1.6. There is spatial correlation
in observed changes for all of the climate measures. However, there also appears to be
variation in these changes within many states. Since state fixed effects are used in the
regressions to capture regional trends, it is important that there be adequate variation in
climate change within states that is not simply measurement error (Fisher et al., 2012).
Table 1.3 examines how much variation remains in our climate measures after controlling
for state fixed effects. Using Fisher et al. (2012) as a guide, we estimate regressions of
each climate measure on: (1) a constant only, and (2) a constant plus the set of state fixed
effects. The standard deviation of the residuals from any regression is a measure of the
remaining variation in the climate variable. For comparison, the exercise is performed
for both the observed climate measures from 1982 (climate levels) and the actual climate
change variables that are used in the analysis. The table shows that state fixed effects absorb
almost 70% of the variation in many of the 1982 level measures, while the long-differenced
versions lose between 30 and 40%, on average. With state fixed effects, substantial climate
variation is preserved with the long-differenced climate change variables.
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1.4 The Effect of Climate Change on Land-Use Adapta-
tion

We begin this section with preliminary analysis that motivates our restriction to non-irrigated
NRI points east of the 100th meridian. We then describe the main results on land-use adap-
tation to climate change over 1982 to 2012. We next demonstrate the robustness of our
estimates by using climate variables constructed from varying lengths of average weather
as well as alternate end years for the long-difference calculations.

In all cases, we estimate linear probability models (LPMs) since our dependent vari-
ables represent binary decisions by landowners.20 We include a constant and state fixed
effects in all specifications, which allow states to have different intercepts.21 In addition,
we allow positive changes in precipitation to have a different effect from negative changes
in precipitation. Although not shown, our results are robust to other specifications of the
precipitation effect.22 We estimate every regression twice using two different specifications
of the temperature variables: once with the 5◦C-wide time exposure bins, and once with the
piecewise linear degree day variables. For the piecewise linear degree days, we set the kink
point at 30◦C for all regressions. To choose this point, we focused on the LPM regression
estimating the probability that cultivated cropland points in 1982 remained in cultivated
cropland in 2012. Similar to Burke and Emerick (2016), we looped over regressions with
the kink point set at every integer between 11 and 39. The regression with a kink point of
30◦C resulted in the lowest estimated residual sum of squares. This matches the results of
Burke and Emerick (2016) closely, as they found an optimal kink point of 29◦C for corn
yield.

1.4.1 Preliminary Analysis: East vs West

The preliminary analysis focuses on the question of whether models should be estimated
using NRI points from all counties in the continental United States or only counties in the

20We have also performed robustness checks using simple logit and probit models, which are consistent
with our main findings. We focus on the linear probability model because it has several advantages over
nonlinear models. In particular, causal analysis remains valid with exogenous treatment variables while also
not requiring functional form assumptions about the error term. See Angrist and Pischke (2009).

21State specific intercepts result from the differencing of state specific trends in the original panel specifi-
cation.

22We have tested models with a single linear precipitation term, interactions of changes in average pre-
cipitation with changes in average temperature (in bins or piecewise linear degree days), and with squared
precipitation terms. We prefer the specification with separate effects for positive and negative changes be-
cause (1) results are similar across all specifications, (2) the terms provide flexibility in landowner response
to drought versus precipitation increases, and (3) the specification is sufficiently parsimonious for nested logit
models to converge (this research is still in progress).
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East. Schlenker et al. (2005) discuss the fundamental differences within the U.S. between
the largely irrigated West and the non-irrigated East. They point out that in irrigated areas,
precipitation does not adequately represent the true water supply as it does in rainfed areas.
As they put it, “irrigation breaks the link between the growth of a plant and the climate
at the farm where the plant is grown” (p.396). For this reason, many subsequent studies
have focused exclusively on climate impacts in counties east of the 100th meridian, which
is typically seen as the boundary beyond which (to the west) farming increasingly requires
irrigation (Schlenker et al., 2006).23

In our model, the implicit assumption is that a given change in precipitation or time
spent in a temperature interval will have the same effect across all states in the estima-
tion sample. Table 1.4 examines whether this is a sensible assumption when estimating
the probability of cultivated cropland not switching land uses between 1982 and 2012.
Columns (1) and (2) use the entire NRI sample in the continental U.S.; columns (3) and
(4) restrict to points that were not irrigated in 1982; columns (5) and (6) consider non-
irrigated points east of the 100th meridian, while (7) and (8) restrict to non-irrigated points
in the West. A first observation is that coefficient signs, magnitudes, and significance are
very similar between all of the entire-U.S. and East-only estimates. However, there are
important differences when we compare the East- and West-only results. In particular, the
effect of extreme heat days above 35◦C (or the upper degree day (DD) piece) has opposite
signs in the two regions. In addition, the effect of precipitation varies as well. Negative
changes in precipitation reduce the probability of staying with cropland in the West, but
have a much smaller (and insignificant) effect in the East. On the other hand, positive pre-
cipitation changes make cropland in the East more likely not to switch and, paradoxically,
make cropland more likely to switch in the West. These results suggest that the East and
West are not good controls for each other. Even restricting to non-irrigated points, farms
in the arid West respond differently to temperature and precipitation changes than farms in
the East. Therefore, in our remaining analysis (except for the analysis of irrigation in agri-
culture), we follow the recent literature and focus exclusively on non-irrigated NRI points
in counties east of the 100th meridian.24

1.4.2 Main Results

Our main results cover a series of LPMs that begin with NRI points in a given land use
in 1982 and estimate the probability of those points transitioning to one of the following

23See, e.g., Schlenker et al. (2006), Schlenker and Roberts (2006), Schlenker and Roberts (2009), Annan
and Schlenker (2015), and Burke and Emerick (2016).

24Specifically, we use counties whose centroids are east of the 100th meridian.
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land uses in 2012: cultivated cropland, noncultivated cropland, pasture, range, forest, or
developed land. We cycle through each of these land uses as the starting use in 1982, except
for developed land since it rarely switches to another use. Tables 1.5-1.9 present estimates
of these regressions using the time exposure bins, while Tables 1.10-1.14 use the piecewise
linear degree days. Tables 1.15 and 1.16 present a different analysis where we estimate the
probability of switching into a given land use in 2012 (given by the column) from all other
land uses combined. Taken together, these tables allow us to compare the effect of climate
change on a range of potential land-use outcomes.25 In general, we focus discussion on the
results using the time exposure bins as it allows more subtlety in capturing effects across
the different land uses. We note that the results with the piecewise linear degree days are
broadly consistent, and also note that the piecewise linear form is useful when estimating
models of multinomial choice, such as nested logit, where it can be difficult to achieve
convergence with models containing many variables.

We begin with results related to cultivated cropland, in part due to the perspective pro-
vided by Schlenker and Roberts (2009) and Burke and Emerick (2016) on the response of
crop yields to temperature and climate change. Those studies demonstrate that exposure
to temperatures of approximately 29◦C and lower is beneficial for plant growth, while ex-
posure to temperatures above 29◦C is increasingly harmful. Since farm profit is directly
linked to yield, one might expect these same thresholds to be important for land-use deci-
sions. Indeed, our results suggest that they are. Temperature changes in the [25, 30) bin
lead to a higher probability of land staying in cultivated cropland (column 1 of Table 1.5);
an additional day between 25 and 30◦C increases the probability of not switching by 2.64
percent. In addition, these same temperature changes increase the probabilities of transi-
tioning to cultivated cropland from pasture and forestland (column 1 in Tables 1.7 and 1.9,
both of which are major land-use categories).26 Table 1.15 shows a similar result when we
group all the other land uses together and assess the probability of switching into cultivated
cropland; the estimated coefficient is positive and significant for changes in the [25, 30)
bin. Farmers thus are responding to favorable changes in temperature by either keeping
land in cultivated cropland or reallocating land to cultivated cropland.

25Note that Tables 1.5-1.14 each use a distinct subsample from the population of non-irrigated NRI points
east of the of the 100th meridian, and that sample is constant for all columns in a given table. If the land use
choices given by the columns were exhaustive, then one would expect the sum of the estimated coefficients
in any given row to be zero as the marginal effect of an additional day between 30 and 35◦C, for example,
would be distributed across the possible choices. With separate OLS regressions, this is not a guaranteed
outcome, which is one reason that we continue to work on extensions to models of multinomial choice, such
as the nested logit.

26These results on switching into cultivated cropland are important since the other base land uses apply
different subsamples of the NRI dataset. The different subsamples make the results a form of robustness
check on the results for cultivated cropland as the base use.
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Farmers similarly are responding to harmfully high temperature changes by either re-
moving land from (i.e., not staying in) cultivated cropland or not reallocating land to culti-
vated cropland. An additional day between 30 and 35◦C decreases the probability of stay-
ing in cultivated cropland by 0.84 percent, while an additional day of extreme heat above
35◦C decreases the same probability by a substantial 4.22 percent (column 1 of Table 1.5).
Temperature changes in the [30, 35) bin also decrease the probability of switching into
cultivated cropland from the base land uses of pasture and forest (column 1 in Tables 1.7
and 1.9). One exception to this pattern occurs with rangeland (Table 1.8), in which an ad-
ditional day in the [30,35) bin increases the probability of switching to cultivated cropland,
although an extra day of extreme heat above 35◦C reduces the same probability. Table 1.15
generally reflects this broad pattern when we group all the other land uses together and
assess the probability of switching into cultivated cropland; the estimated coefficients are
negative and highly significant for changes in the [30, 35) bin and in the above 35◦C bin.

A third set of results relates to the relatively cool temperature bins of [15, 20) and [20,
25). Temperature changes in these bins show negative effects on cultivated cropland. They
moderately decrease the probability of staying in cultivated cropland, and they decrease
the probability of switching to cultivated cropland from pasture, forest, and (to a degree)
noncultivated cropland. Incongruously, they increase the probability of switching from
rangeland. Schlenker and Roberts (2009) find that corn, soybeans, and cotton yields show
a U-shaped response between 15 and 25◦C, i.e., our results are broadly consistent with the
temperature effects on crop yields.

Turning from temperature to precipitation, we find that increases in total precipitation
make cultivated cropland relatively more likely than the other choices: an additional cm
increases the probability of continuing with cropland by 0.28 percent. The positive effect
makes sense given the context of rainfed farming. Decreases in precipitation also have the
expected sign, i.e., a negative change times a positive coefficient results in a decrease in the
probability of staying in cultivated cropland, but the effect is relatively small and not sta-
tistically significant. The precipitation variables show little effect in explaining transitions
from the other land uses to cultivated cropland.

For the other five land-use categories, we focus on Tables 1.6- 1.9 and Table 1.15.
The temperature changes show little effect on NRI points in noncultivated cropland in

1982 (column (2) of 1.6). The only significant effect occurs in the [10 15) bin, in which an
additional day in the range increases the probability of staying in noncultivated cropland
by 2.16 percent. In contrast, several of the temperature-change bins show a negative effect
on converting from another land use to noncultivated cropland (column (2) of Table 1.15).
This category includes both permanent hayland and specialty crops such as fruit and nut
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trees and vegetables. Set-up costs are substantial with specialty crops, thus it appears that
the temperature changes were not sufficiently favorable for their production to cause a
switch. A positive shock to precipitation decreased the probability of either staying in or
converting to noncultivated cropland.

Pasture shows response to some of the temperature shocks. Temperature increases in
the [25, 30) bin substantially decrease the probability of staying in pasture (column (3) of
1.7). Some of this can be explained by conversion from pasture to cultivated cropland.
Increases in the [30, 35) bin similarly decreased the probability of staying in pasture. In
addition, temperature increases in the [25, 30) bin and the [20, 25) bin decreased the prob-
ability of converting from another land use to pasture (column (3) of Table 1.15). Negative
shocks to precipitation showed consistency in increasing the probability of staying in pas-
ture and, as well, converting to pasture.

Rangeland is an interesting land-use category that covers a broad array of ecosystems,
including grasslands, savannas, wetlands, deserts, and tundra (U.S. Department of Agri-
culture, 2015). There has been much recent research and commentary on the conversion
of grasslands to agriculture, particularly due to the increased demand for biofuels.27 Col-
umn (4) of Table 1.8 shows that four of the temperature shocks decrease the probability of
staying in rangeland. Similarly, three of the temperature shocks decrease the probability of
converting from another land use to rangeland (column (4) of Table 1.15), while only one
shock increases the probability of converting. These temperature changes as a source of
climate change thus appear to have reduced the relative profitability of rangeland.

Forestland shows response to the temperature shocks in the relatively high range of
temperatures. Temperature increases in the [30, 35) bin substantially decrease the prob-
ability of staying in forest (column (5) of 1.9), while temperature increases above 35◦C

substantially increase the probability. These two effects also hold when considering the
probability of switching from other land uses into forestland (column (5) of Table 1.8).
Land conversion to developed land may explain the results for the [30, 35) bin. Above
35◦C, this could be cultivated cropland being abandoned. As described in U.S. Department
of Agriculture (2015) and footnote 19, land may be classified as forest if there are indica-
tions of “natural regeneration of tree cover (cut over forest or abandoned farmland) and not
currently developed for non-forest use.” Areas that experience changes in climate that are
less favorable for agriculture or other uses may be left for “natural regeneration.”

Developed land, like forestland, shows response to the temperature shocks in the rela-
tively high range of temperatures. Temperature increases in the [30, 35) bin substantially
increase the probability of switching to developed land from each of the other five cate-

27See, for example, Wright and Wimberly (2013).
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gories. In contrast, temperature increases above 35◦C substantially decrease the probabil-
ity of switching to developed from pasture and forestland. These results are observed in
column (6) in Tables 1.5-1.9. As mentioned above, we do not estimate regressions with de-
veloped land as a base use as developed land is largely irreversible, i.e., we do not observe
conversions out of this category.

Although we have focused our discussion mostly on temperature effects, there are inter-
esting precipitation effects as well. For instance, the regressions for noncultivated cropland
in columns (1) and (2) of Table 1.6 show that increases in precipitation increase the proba-
bility of noncultivated cropland switching to cultivated cropland. These results are mirrored
in column (2) of Table 1.5, which shows that cultivated cropland is more likely to switch to
noncultivated cropland when precipitation decreases (i.e. drought) and less likely to make
the conversion when precipitation increases. The same result holds for conversions from
cultivated cropland to pasture (column (3) of Table 1.5), though the effect of precipitation
on conversions from pasture to cropland is not meaningful or significant.

Table 1.15 shows that when we estimate the probability of switching from all other uses
combined, increases in precipitation have a positive and significant effect on both cultivated
cropland and developed land, while decreases in precipitation increase the probability of
switching to range. However, except for developed land, these effects are not large, es-
pecially when we consider that the distribution of precipitation changes from 1982-2012
was mostly between -15 and 15 cm, as shown in Figure 1.3b. For instance, column (1)
of Table 1.15 suggests that an increase in precipitation of 10 cm leads to an increase in
the probability of conversion to cultivated cropland from all other categories of 0.4 per-
cent. The effects of precipitation change in the “not-switching” regressions, in contrast,
tends to be higher by an order of magnitude. Still, these precipitation effects are generally
dominated by the temperature effects.

1.4.3 Robustness Checks

We perform several checks to determine whether the effects that we identified are robust.
Rather than reproduce the many tables that we discussed in the previous section, we focus
on the LPM for cultivated cropland in column (1) of Table 1.5 as this model is closely tied
to recent research and provides intuitive results. However, the robustness of our results also
carries over broadly to the results for the other land categories.

First, we check to see whether the results have something to do with 2012 being the
end year for the analysis. Table 1.17 compares the estimates from long-differences models
with 2002, 2007, and 2012 as end years. The estimates are very similar over the 20-25, 25-
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30, and 30-to-35◦C intervals. For the above-35◦C range, 2007 and 2012 are very similar
while the effect for 2002 is closer to zero and not significant. However, this is likely due
to the lower frequency of exposure in the above-35◦C range in 2002 compared to 2012.
There is some variation in the precipitation effects between the years. First, the estimated
effect of positive precipitation changes in 2002 has an unexpected negative sign, although
it is not significant in the time exposure regression. The effect of negative changes has the
expected sign for every year, but the effect diminishes from 2002 to 2012. In general, by
2012, exposure to extreme heat appears to be more important for switching out of cropland
than drought. However, in all years, exposure in the 25-30◦C range has a strong positive
effect.

Next, we examine how the results change when the climate measures are constructed
using average weather calculated from varying lengths of time (Table 1.18). In general,
there is broad agreement between estimates using 10-, 15-, and 20-year averages, although
there is again some variation in the precipitation effects. The 5-year estimates, on the other
hand, seem out of place with unexpected signs on the precipitation variables as well as the
25-30 and 30-35◦C ranges, although those effects are not significant. In some sense, the
results for the 5-year estimates are not surprising as we expect land-use change to respond
to changes in climate defined over longer periods of time. Still, we are encouraged by the
similarity of the results for 10-, 15-, and 20-year averages.

As a final robustness check, we examine the potentially confounding ethanol boom of
the last decade. If changes in local corn demand by ethanol refineries are correlated with
changes in climate, then we may generate biased estimates of climate impacts. To examine
this question, we use spatially detailed data on ethanol production capacity between 2002
and 2012 to see whether changes in capacity at the county level are correlated with our
measures of climate change. We estimate regressions using three different subsamples of
U.S. counties. First, we consider the same eastern counties as our LPM land-use regres-
sions. However, this sample includes many counties outside of the corn belt that would be
unexpected to build ethanol refineries. For this reason we also consider a sample that is
further restricted to eastern counties in the Upper Midwest, as well as a sample that only
considers eastern counties in the Upper Midwest that already had ethanol production ca-
pacity in 2002, a total of 42 counties.28 Columns (1)-(3) of Table 1.19 present these results.
The only significant results are for the 20-25◦C range, which are positive, indicating that
increases in county-level ethanol production capacity are correlated with increased expo-
sure in that range. However, this is a range that is associated with negative changes in
the probability of remaining in cultivated cropland, so these results appear not to gener-

28Upper Midwest states included: IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, SD, and WI.
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ate evidence of problematic bias. Columns (4) and (5) of the same table examine whether
changes in climate are correlated with counties where at least one new refinery was built
between 2002 and 2012. Here we see a positive significant result for positive changes in
precipitation such that counties with increases in precipitation were also more likely to get
a new plant. Since we also estimated that positive changes in precipitation increase the
probability that cultivated cropland does not switch, it is possible that new plants could be
driving these results. However, we believe this is unlikely for several reasons. First, as
shown in Table 1.17, the precipitation effect diminished from 2007 to 2012. Second, we
believe that ethanol capacity is more likely to be the factor driving local demand, and those
specifications do not find significant results. Finally, since the heat exposure variables, as
opposed to precipitation, appear to be the main drivers for cultivated cropland, we conclude
that the ethanol boom is unlikely to be a confounder.

1.4.4 Irrigation

As a final analysis, we examine whether observed climate change has impacted the adop-
tion or abandonment of irrigation in the United States. Using the NRI data, total irrigated
land was relatively unchanged between 1982 and 2012 at just over 66 million acres. How-
ever, this again masks significant turnover at the parcel level, as we saw previously with
the other aspects of land use. In the West, there were 43 million acres of irrigated land in
1982, which fell to 38 million by 2012. Behind these numbers, there were 6 million new
acres of irrigated land and 11 million acres that switched away from irrigation. In the East,
irrigation grew from 23 to 28 million acres, with 12 million acres of new irrigated land and
7 million acres that had left by 2012. Figure 1.2d maps these changes.

We estimate a series of linear probability models that estimate the effect of climate
change on the probability of switching to irrigation (Table 1.20), as well as the probability
of abandoning irrigation (Table 1.21), with separate regressions for NRI points east and
west of the 100th meridian. These regressions use the same set of explanatory variables as
our previous land-use regressions, including state fixed effects. Standard errors are again
clustered at the county level.

Looking at the probability of new irrigation, we see that the impact of heat in the East
is very similar to the LPM estimates previously discussed for the probability of cultivated
cropland not switching. Points are more likely to adopt irrigation with temperature changes
that are also favorable to growing crops. However, the precipitation effects are the opposite
sign of the previous results, which makes sense. Increases in precipitation should decrease
the probability of new irrigation, while decreases in precipitation should increase the prob-
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ability. These effects are statistically significant.
In the West, the precipitation effects have the expected sign, but are not significant.

Instead, we see a significant positive effect for increases in exposure within the 30-35◦C

range. We again see a strong negative effect of extreme heat above 35◦C, which suggests
that irrigation is not enough to counter damages from high heat. Turning to column (5)
of Table 1.21, we see that the same high heat interval also increases the probability of
irrigation abandonment in the West. Perhaps landowners that experience such increases
find it worthwhile to switch out of agriculture entirely. A similar effect is observed for
negative changes in precipitation, which appear to also lead western farms to abandon
irrigation. Combined with falling water levels, drought and high heat may be driving this
transition. On the other hand, points that experience positive precipitation changes are also
more likely to abandon irrigation, presumably due to an increased natural water supply.

In the East, precipitation changes do not appear to be driving the decision to stop irri-
gating. The coefficients have the same sign as in the West, but are much smaller and not
significant. There is some evidence that increased exposure to heat above 30◦C increases
the probability of leaving irrigation, although the effects are not strongly significant. In-
stead, we see a more defined effect on exposure to cooler temperatures in the 15-to-25◦C

range. This could be explained by cooler temperatures causing less heat stress, reducing
the benefit of irrigation. It could also be explained by cooler temperatures making agricul-
ture, in general, less profitable, leading farms to exit entirely. More research is required to
examine these effects.

1.5 Conclusion

This paper analyzes land-use change as a mechanism of adaptation to climate change. We
apply high-quality land-use data from the National Resources Inventory to understand how
temperature and precipitation shocks from 1982 to 2012 affect the probability of land-
use change over six broad categories: cultivated cropland, noncultivated cropland, pasture,
range, forest, and developed land. The main results show that landowners adjust land use
in reasonable ways in response to the temperature and precipitation shocks. In particular,
the results on cultivated cropland are strongly consistent with previous research by Burke
and Emerick (2016) and Schlenker and Roberts (2009) on the impact of climate change
and weather on U.S. crop yields. Producers are more likely to remain in, or switch into,
cultivated cropland with temperature shocks in the 25-30◦C range. They are more likely to
switch out of, or not switch into, cultivated cropland with increased exposure to extreme
heat, i.e., temperature shocks in the 30-35◦C range and shocks in excess of 35◦C. Pro-
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ducers are also more likely to switch out of, or not switch into, cultivated cropland with
temperature shocks in the 15-20◦C range and the 20-25◦C range, although more work is
required to determine whether these changes have been identified from cooling during the
growing season, or warming in the non-growing season. Collectively, the results are ro-
bust to alternate methods of measuring climate change and shorter definitions of the study
period. Lastly, the results are robust to a threat on exogeneity from the rapid expansion in
corn ethanol production.

Developed land is an interesting case given that we do not observe conversions out
of this category, i.e., its use is largely irreversible. A key finding here is that tempera-
ture increases in the 30-35◦C range substantially increase the probability of switching to
developed land from each of the other five categories. Newly developed land, in many
cases, is driven by migration within, or immigration to, the United States. We intend to in-
vestigate migration using the long-differences methodology as a complement to this work
on developed land. A certain consonance in findings seems likely when examining the
climate-change effects on both migration and developed land.

This paper also analyzes whether climate change has impacted irrigation decisions in
agriculture, in this case using data for both the East and West. Our results suggest that
different factors have been important in the two regions. This is, perhaps, not surprising
since they experienced opposite trends over the sample period; in the East, irrigated land
increased by roughly 5 million acres, while irrigated land in the West decreased by about
the same amount. In the East, irrigation is more likely to be adopted in areas where the
temperature distribution has changed favorably for agriculture, but also where precipitation
has fallen. However, the probability of irrigation abandonment does not respond strongly to
precipitation changes in the East and appears to be driven primarily by increased exposure
in the [15,20) and [20,25) temperature ranges. In contrast, abandonment responds strongly
to precipitation changes in the West, but adoption is driven more by changes in heat.

Taken all together, these results suggest that landowners will respond in similar ways
to projected climate change over the next several decades. We are currently working to
extend the long-differences idea to models of multinomial choice, which can be combined
with climate projections to produce probabilities of expected land-use change that are guar-
anteed to remain in the [0,1] interval. The nested logit is one such model that has been used
extensively with NRI data (see, e.g., Lubowski et al. (2006)). Our initial experiments with
this model have been promising.
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Figure 1.1: NRI Cropland, Pasture, and Range Changes, 1982-2012 (Thousands of Acres)
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Figure 1.2: NRI Forest, CRP, Developed Land, and Irrigation Changes, 1982-2012 (Thousands of Acres)
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(b) Conservation Reserve Program
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Figure 1.3: Changes in Average Temperature, Precipitation, and Degree Days, 1982-2012 (Differences in 10-year, Jan-Dec Averages)
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Figure 1.4: Changes in Temperature Exposure, 1982-2012 (Differences in 10-year, Jan-Dec Averages)

(a) Change in Avg Days Between 20◦C and 25◦C
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Figure 1.5: Maps of Changes in Average Temperature, Precipitation, and Degree Days, 1982-2012 (All Months)
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Figure 1.6: Maps of Changes in Temperature Exposure, 1982-2012 (All Months)
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Table 1.1: Broad Land Use Transitions for all Non-Federal Land using the National Resources Inventory, 1982-2012,
Thousands of Acres

2012 Land Use
Cultivated Noncultivated Total Switched
Cropland Cropland Pasture Range Forest Developed CRP Other in 1982 since 1982

1982 Land Use
Cultivated Cropland 276,014 22,817 27,223 5,059 8,523 9,233 21,306 3,295 373,470 97,457
Noncultivated Cropland 11,735 17,607 7,685 1,096 1,642 2,453 780 893 43,892 26,285
Pasture 12,272 8,508 74,265 4,569 19,579 6,767 1,025 2,361 129,346 55,081
Range 6,358 1,804 3,818 387,106 3,405 5,746 902 2,716 411,854 24,748
Forest 1,657 756 5,739 2,502 372,393 17,612 116 2,676 403,450 31,057
Developed 273 59 183 183 477 70,246 2 43 71,465 1,220
Other 1,340 362 1,381 1,121 3,681 1,172 83 32,642 41,782 9,140

Total in 2012 309,649 51,914 120,295 401,636 409,699 113,227 24,213 44,625 1,475,259
New since 1982 33,635 34,306 46,030 14,531 37,307 42,982 24,213 11,984

This table excludes any land that was federally owned at any point between 1982 and 2012. The developed category represents the combination of the “Urban and
built-up” and “Rural transportation” categories, as in U.S. Department of Agriculture (2015). The “Other” category includes rural land in farmsteads, barren land,
marshland, other land in farms, and permanent snow-ice. “CRP” represents land in the Conservation Reserve Program, which was not yet in existence in 1982.
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Table 1.2: Summary Statistics of Broad Land Use Change by County, 1982-2012

N Mean Std. Dev. Min Max

Change in Total County Acres (1,000s)
Cultivated Cropland 3072 -20.78 34.47 -501.90 109.10
Noncultivated Cropland 3072 2.61 14.97 -87.30 365.60
Pasture 3072 -2.95 20.68 -155.00 123.70
Range 3072 -3.33 17.53 -252.80 120.30
Forest 3072 2.03 18.75 -131.00 206.00
Developed 3072 13.59 21.81 -9.30 455.90

Change as a Fraction of Total County Acres
Cultivated Cropland 3072 -0.05 0.06 -0.41 0.14
Noncultivated Cropland 3072 0.01 0.03 -0.18 0.16
Pasture 3072 -0.01 0.05 -0.25 0.22
Range 3072 0.00 0.02 -0.28 0.18
Forest 3072 0.00 0.05 -0.45 0.27
Developed 3072 0.04 0.05 -0.04 0.50

This table uses the National Resources Inventory to report summary statistics of broad land use change
by county for all non-federal land in the continental United States. Land is defined as in Table 1.1.
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Table 1.3: How Much Variation in the Climate Variables Remains after Controlling for Fixed Effects?

Climate in 1982 Climate Change, 1982-2012
Constant Constant

Constant + State % Constant + State %
Only Fixed Effects Absorbed Only Fixed Effects Absorbed

D̄ ∈ [10, 15) 4.41 2.46 44% 1.18 0.86 27%
D̄ ∈ [15, 20) 6.70 2.57 62% 2.05 1.00 51%
D̄ ∈ [20, 25) 17.58 5.80 67% 1.89 1.34 29%
D̄ ∈ [25, 30) 15.22 5.92 61% 1.58 1.13 28%
D̄ ∈ [30, 35) 12.16 4.28 65% 1.88 1.15 39%
D̄ ∈ [35,∞) 2.83 1.35 52% 0.99 0.60 39%
D̄D ∈ (0, 30] 776.21 245.77 68% 62.18 38.90 37%
D̄D ∈ (30,∞] 42.12 15.52 63% 10.12 6.03 40%
P̄ 28.63 11.60 59% 8.92 4.57 49%
∆P̄ ≥ 0 4.92 2.82 43%
∆P̄ < 0 5.26 3.06 42%

This table reports the standard deviation of residuals from regressions that use the climate variables, given by
the row, as dependent variables. There are two sets of regressions: the first set, columns (1)-(3), uses the level
climate measures from 1982, while the second set, columns (4)-(6), uses the observed changes between 1982
and 2012. These measures are regressed either on a constant only, columns (1) & (4), or a constant with state
fixed effects, columns (2) & (5). The standard deviation is a measure of the climate variation that remains after
controlling for fixed effects, as in Fisher et al. (2012).
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Table 1.4: Preliminary Analysis of Variation in Long Differences Estimates Between the East and the West: LPM for Cultivated Cropland

All Counties All Counties East of 100th West of 100th

All Points Non-Irrigated Non-Irrigated Non-Irrigated
(1) (2) (3) (4) (5) (6) (7) (8)

∆D̄ ∈ [10, 15) -0.0108** -0.0100** -0.0083 -0.0039
(0.0044) (0.0049) (0.0058) (0.0100)

∆D̄ ∈ [15, 20) -0.0121*** -0.0107** -0.0147*** -0.0052
(0.0036) (0.0042) (0.0051) (0.0075)

∆D̄ ∈ [20, 25) -0.0051 -0.0085** -0.0133*** -0.0126
(0.0033) (0.0036) (0.0041) (0.0105)

∆D̄ ∈ [25, 30) 0.0090** 0.0200*** 0.0264*** 0.0001
(0.0044) (0.0048) (0.0054) (0.0109)

∆D̄ ∈ [30, 35) -0.0069* -0.0117*** -0.0084* -0.0541***
(0.0042) (0.0044) (0.0047) (0.0134)

∆D̄ ∈ [35,∞) -0.0344*** -0.0289*** -0.0422*** 0.0244*
(0.0073) (0.0085) (0.0099) (0.0141)

∆D̄D ∈ (0, 30] 0.0002 0.0003** 0.0005*** -0.0010***
(0.0001) (0.0002) (0.0002) (0.0003)

∆D̄D ∈ (30,∞] -0.0030*** -0.0037*** -0.0047*** 0.0019
(0.0008) (0.0009) (0.0011) (0.0017)

∆P̄ ≥ 0 0.0029** 0.0019 0.0030** 0.0022 0.0028* 0.0018 -0.0139*** -0.0112**
(0.0013) (0.0013) (0.0014) (0.0014) (0.0015) (0.0015) (0.0054) (0.0055)

∆P̄ < 0 0.0050*** 0.0043** 0.0032 0.0019 0.0010 0.0002 0.0256*** 0.0232***
(0.0018) (0.0018) (0.0020) (0.0021) (0.0021) (0.0022) (0.0069) (0.0065)

N 240,588 240,588 209,339 209,339 181,354 181,354 27,985 27,985
R2 0.1233 0.1214 0.1290 0.1264 0.1385 0.1341 0.0958 0.0918

Regressions in this table use NRI points that are in cultivated cropland in 1982. The dependent variable equals 1 for points that continue
to be used for cultivated cropland in 2012. All temperature and precipitation variables represent changes in 10-year averages between
1982 and 2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄ variables are changes in the number of
days spent in 5◦C bins; ∆D̄D are changes in degree days; ∆P̄ are changes in precipitation. All regressions include state fixed effects
and a constant. Standard errors are clustered at the county level. Asterisks designate statistical significance at the 10% (*), 5% (**), and
1% (***) levels.
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Table 1.5: Long-Difference Linear Probability Models for Cultivated Cropland as the Base
Land Use in 1982 using Average Time in Temperature Intervals

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) -0.0083 0.0003 -0.0011 -0.0012** -0.0004 0.0053
(0.0058) (0.0017) (0.0017) (0.0006) (0.0011) (0.0047)

∆D̄ ∈ [15, 20) -0.0147*** 0.0084*** 0.0024 0.0010*** 0.0032*** 0.0008
(0.0051) (0.0015) (0.0015) (0.0003) (0.0010) (0.0041)

∆D̄ ∈ [20, 25) -0.0133*** -0.0017 0.0040*** -0.0002 -0.0027*** 0.0132***
(0.0041) (0.0011) (0.0014) (0.0004) (0.0010) (0.0035)

∆D̄ ∈ [25, 30) 0.0264*** -0.0084*** -0.0110*** 0.0004 0.0006 -0.0045
(0.0054) (0.0014) (0.0018) (0.0007) (0.0012) (0.0036)

∆D̄ ∈ [30, 35) -0.0084* 0.0017 -0.0015 -0.0005 -0.0047*** 0.0134***
(0.0047) (0.0013) (0.0016) (0.0007) (0.0013) (0.0034)

∆D̄ ∈ [35,∞) -0.0422*** 0.0020 0.0196*** 0.0048* 0.0103*** 0.0000
(0.0099) (0.0020) (0.0047) (0.0027) (0.0017) (0.0093)

∆P̄ ≥ 0 0.0028* -0.0015*** -0.0003 -0.0001* -0.0009*** 0.0005
(0.0015) (0.0005) (0.0004) (0.0001) (0.0002) (0.0012)

∆P̄ < 0 0.0010 -0.0011*** -0.0022*** 0.0001 0.0018*** 0.0001
(0.0021) (0.0004) (0.0008) (0.0002) (0.0005) (0.0016)

N 181,354 181,354 181,354 181,354 181,354 181,354
R2 0.1385 0.0364 0.0397 0.0393 0.0894 0.0831

Regressions in this table use NRI points in counties east of the 100th meridian that are in cultivated crop-
land in 1982 and are not irrigated. The dependent variable equals 1 for points that in 2012 are associated
with the land use given by the column. All temperature and precipitation variables represent changes in
10-year averages between 1982 and 2012. Temperature variable names are expressed in ◦C; precipitation
is in cm. ∆D̄ variables are changes in the number of days spent in 5◦C bins; ∆P̄ are changes in precipita-
tion. All regressions include state fixed effects and a constant. Standard errors are clustered at the county
level. Asterisks designate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.6: Long-Difference Linear Probability Models for Noncultivated Cropland as the
Base Land Use in 1982 using Average Time in Temperature Intervals

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) -0.0208*** 0.0216*** 0.0044 -0.0002 0.0042** -0.0115
(0.0061) (0.0067) (0.0049) (0.0010) (0.0021) (0.0083)

∆D̄ ∈ [15, 20) -0.0107** 0.0058 -0.0021 0.0003 0.0023 0.0068
(0.0051) (0.0053) (0.0034) (0.0008) (0.0018) (0.0064)

∆D̄ ∈ [20, 25) 0.0056 -0.0036 -0.0020 -0.0010 -0.0027 0.0058
(0.0036) (0.0048) (0.0036) (0.0006) (0.0018) (0.0065)

∆D̄ ∈ [25, 30) -0.0033 -0.0059 -0.0046 -0.0013 0.0074*** 0.0060
(0.0054) (0.0059) (0.0049) (0.0009) (0.0023) (0.0068)

∆D̄ ∈ [30, 35) -0.0089 0.0053 -0.0088* 0.0005 -0.0023 0.0138**
(0.0057) (0.0057) (0.0046) (0.0016) (0.0022) (0.0068)

∆D̄ ∈ [35,∞) -0.0212 -0.0136 0.0286** 0.0015 0.0066 0.0062
(0.0138) (0.0127) (0.0140) (0.0069) (0.0045) (0.0197)

∆P̄ ≥ 0 0.0027* -0.0059*** 0.0012 -0.0003 -0.0010* 0.0028
(0.0014) (0.0016) (0.0012) (0.0003) (0.0005) (0.0018)

∆P̄ < 0 0.0016 -0.0018 -0.0047*** 0.0006 0.0002 0.0051*
(0.0017) (0.0020) (0.0016) (0.0004) (0.0008) (0.0029)

N 22,119 22,119 22,119 22,119 22,119 22,119
R2 0.1534 0.0320 0.0381 0.0441 0.0241 0.0867

Regressions in this table use NRI points in counties east of the 100th meridian that are in noncultivated
cropland in 1982 and are not irrigated. The dependent variable equals 1 for points that in 2012 are as-
sociated with the land use given by the column. All temperature and precipitation variables represent
changes in 10-year averages between 1982 and 2012. Temperature variable names are expressed in ◦C;
precipitation is in cm. ∆D̄ variables are changes in the number of days spent in 5◦C bins; ∆P̄ are
changes in precipitation. All regressions include state fixed effects and a constant. Standard errors are
clustered at the county level. Asterisks designate statistical significance at the 10% (*), 5% (**), and
1% (***) levels.
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Table 1.7: Long-Difference Linear Probability Models for Pasture as the Base Land Use in
1982 using Average Time in Temperature Intervals

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) -0.0019 0.0011 0.0035 -0.0060*** 0.0156*** -0.0157**
(0.0021) (0.0013) (0.0053) (0.0012) (0.0023) (0.0062)

∆D̄ ∈ [15, 20) -0.0084*** 0.0011 0.0047 0.0005 0.0050** -0.0036
(0.0017) (0.0011) (0.0038) (0.0007) (0.0022) (0.0047)

∆D̄ ∈ [20, 25) -0.0054*** -0.0006 0.0058* -0.0012** -0.0027 0.0041
(0.0012) (0.0008) (0.0034) (0.0006) (0.0016) (0.0039)

∆D̄ ∈ [25, 30) 0.0074*** -0.0009 -0.0297*** -0.0041*** 0.0157*** 0.0115***
(0.0019) (0.0009) (0.0035) (0.0012) (0.0022) (0.0042)

∆D̄ ∈ [30, 35) -0.0090*** -0.0013 -0.0087** -0.0003 -0.0119*** 0.0333***
(0.0017) (0.0010) (0.0041) (0.0011) (0.0022) (0.0044)

∆D̄ ∈ [35,∞) 0.0008 -0.0011 -0.0017 0.0000 0.0152*** -0.0208**
(0.0027) (0.0012) (0.0078) (0.0043) (0.0039) (0.0086)

∆P̄ ≥ 0 0.0000 -0.0012*** -0.0005 -0.0004* -0.0009 0.0030*
(0.0007) (0.0004) (0.0014) (0.0003) (0.0007) (0.0016)

∆P̄ < 0 0.0004 -0.0003 -0.0059*** 0.0005 -0.0018** 0.0068***
(0.0005) (0.0003) (0.0014) (0.0004) (0.0008) (0.0015)

N 87,730 87,730 87,730 87,730 87,730 87,730
R2 0.0612 0.0165 0.0430 0.0541 0.0385 0.0597

Regressions in this table use NRI points in counties east of the 100th meridian that are in pasture in 1982
and are not irrigated. The dependent variable equals 1 for points that in 2012 are associated with the land
use given by the column. All temperature and precipitation variables represent changes in 10-year aver-
ages between 1982 and 2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄
variables are changes in the number of days spent in 5◦C bins; ∆P̄ are changes in precipitation. All regres-
sions include state fixed effects and a constant. Standard errors are clustered at the county level. Asterisks
designate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.8: Long-Difference Linear Probability Models for Range as the Base Land Use in
1982 using Average Time in Temperature Intervals

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) -0.0062*** 0.0008* 0.0134*** -0.0733*** 0.0094*** 0.0451***
(0.0015) (0.0005) (0.0029) (0.0133) (0.0022) (0.0121)

∆D̄ ∈ [15, 20) 0.0032* -0.0009 -0.0013 -0.0358*** -0.0006 0.0315***
(0.0019) (0.0006) (0.0021) (0.0087) (0.0016) (0.0082)

∆D̄ ∈ [20, 25) 0.0029** -0.0007 -0.0032** 0.0096 -0.0022** -0.0081
(0.0013) (0.0004) (0.0015) (0.0063) (0.0010) (0.0058)

∆D̄ ∈ [25, 30) 0.0002 0.0003 -0.0010 -0.0327*** 0.0017** 0.0282***
(0.0009) (0.0004) (0.0014) (0.0080) (0.0007) (0.0075)

∆D̄ ∈ [30, 35) 0.0034** -0.0007 0.0001 -0.0401*** -0.0017 0.0348***
(0.0014) (0.0005) (0.0019) (0.0088) (0.0013) (0.0084)

∆D̄ ∈ [35,∞) -0.0023*** 0.0001 0.0002 -0.0041 0.0027*** 0.0027
(0.0008) (0.0002) (0.0014) (0.0072) (0.0008) (0.0065)

∆P̄ ≥ 0 0.0012 0.0002 0.0014* -0.0052* -0.0002 0.0021
(0.0008) (0.0002) (0.0007) (0.0027) (0.0005) (0.0026)

∆P̄ < 0 0.0002 -0.0002 -0.0031*** 0.0018 -0.0001 0.0022
(0.0003) (0.0001) (0.0007) (0.0031) (0.0004) (0.0029)

N 46,989 46,989 46,989 46,989 46,989 46,989
R2 0.0232 0.0055 0.0220 0.1128 0.0304 0.1100

Regressions in this table use NRI points in counties east of the 100th meridian that are in range in 1982.
The dependent variable equals 1 for points that in 2012 are associated with the land use given by the col-
umn. All temperature and precipitation variables represent changes in 10-year averages between 1982 and
2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄ variables are changes
in the number of days spent in 5◦C bins; ∆P̄ are changes in precipitation. All regressions include state
fixed effects and a constant. Standard errors are clustered at the county level. Asterisks designate statistical
significance at the 10% (*), 5% (**), and 1% (***) levels.

40



Table 1.9: Long-Difference Linear Probability Models for Forest as the Base Land Use in
1982 using Average Time in Temperature Intervals

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) 0.0008*** -0.0000 0.0010*** -0.0004*** 0.0193*** -0.0217***
(0.0002) (0.0001) (0.0004) (0.0001) (0.0048) (0.0049)

∆D̄ ∈ [15, 20) -0.0009*** -0.0000 0.0001 0.0001* 0.0025 -0.0021
(0.0002) (0.0001) (0.0003) (0.0001) (0.0038) (0.0038)

∆D̄ ∈ [20, 25) -0.0007*** -0.0001 0.0009*** 0.0000 0.0004 -0.0009
(0.0001) (0.0001) (0.0003) (0.0000) (0.0033) (0.0033)

∆D̄ ∈ [25, 30) 0.0012*** -0.0001 -0.0015*** -0.0001* -0.0070 0.0080*
(0.0002) (0.0001) (0.0003) (0.0001) (0.0045) (0.0046)

∆D̄ ∈ [30, 35) -0.0004* 0.0001 0.0007** 0.0001 -0.0317*** 0.0316***
(0.0002) (0.0001) (0.0004) (0.0001) (0.0046) (0.0046)

∆D̄ ∈ [35,∞) 0.0002 -0.0001 -0.0013 -0.0006* 0.0479*** -0.0494***
(0.0005) (0.0002) (0.0010) (0.0003) (0.0102) (0.0103)

∆P̄ ≥ 0 0.0001 -0.0000 -0.0002 0.0000 -0.0074*** 0.0077***
(0.0001) (0.0000) (0.0001) (0.0000) (0.0014) (0.0014)

∆P̄ < 0 0.0000 0.0000 -0.0000 0.0001*** -0.0007 0.0004
(0.0001) (0.0000) (0.0001) (0.0000) (0.0012) (0.0012)

N 258,158 258,158 258,158 258,158 258,158 258,158
R2 0.0040 0.0007 0.0058 0.0087 0.0421 0.0494

Regressions in this table use NRI points in counties east of the 100th meridian that are in forest in 1982.
The dependent variable equals 1 for points that in 2012 are associated with the land use given by the col-
umn. All temperature and precipitation variables represent changes in 10-year averages between 1982 and
2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄ variables are changes in
the number of days spent in 5◦C bins; ∆P̄ are changes in precipitation. All regressions include state fixed
effects and a constant. Standard errors are clustered at the county level. Asterisks designate statistical sig-
nificance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.10: Long-Difference Linear Probability Models for Cultivated Cropland as the
Base Land Use in 1982 using Piecewise Linear Degree Days with Threshold at 30◦C

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄D ∈ (0, 30] 0.0005*** -0.0002*** -0.0003*** -0.0000 -0.0001*** 0.0003**
(0.0002) (0.0000) (0.0001) (0.0000) (0.0000) (0.0001)

∆D̄D ∈ (30,∞] -0.0047*** 0.0009*** 0.0021*** 0.0003 0.0008*** -0.0003
(0.0011) (0.0002) (0.0004) (0.0003) (0.0002) (0.0009)

∆P̄ ≥ 0 0.0018 -0.0013*** 0.0001 -0.0001 -0.0006*** 0.0005
(0.0015) (0.0005) (0.0004) (0.0001) (0.0002) (0.0012)

∆P̄ < 0 0.0002 -0.0008* -0.0021** -0.0000 0.0017*** 0.0006
(0.0022) (0.0005) (0.0008) (0.0002) (0.0005) (0.0016)

N 181,354 181,354 181,354 181,354 181,354 181,354
R2 0.1341 0.0341 0.0376 0.0386 0.0882 0.0819

Regressions in this table use NRI points in counties east of the 100th meridian that are in cultivated crop-
land in 1982 and are not irrigated. The dependent variable equals 1 for points that in 2012 are associated
with the land use given by the column. All temperature and precipitation variables represent changes in
10-year averages between 1982 and 2012. Temperature variable names are expressed in ◦C; precipitation
is in cm. ∆D̄D are changes in degree days; ∆P̄ are changes in precipitation. All regressions include state
fixed effects and a constant. Standard errors are clustered at the county level. Asterisks designate statistical
significance at the 10% (*), 5% (**), and 1% (***) levels.

42



Table 1.11: Long-Difference Linear Probability Models for Noncultivated Cropland as the
Base Land Use in 1982 using Piecewise Linear Degree Days with Threshold at 30◦C

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄D ∈ (0, 30] 0.0001 -0.0003 -0.0004** -0.0001 0.0001 0.0006***
(0.0002) (0.0002) (0.0001) (0.0000) (0.0001) (0.0002)

∆D̄D ∈ (30,∞] -0.0022* -0.0003 0.0022* 0.0005 -0.0001 -0.0001
(0.0013) (0.0014) (0.0012) (0.0005) (0.0005) (0.0019)

∆P̄ ≥ 0 0.0028* -0.0061*** 0.0013 -0.0003 -0.0009 0.0029*
(0.0015) (0.0016) (0.0011) (0.0003) (0.0005) (0.0017)

∆P̄ < 0 0.0006 -0.0007 -0.0050*** 0.0006 0.0003 0.0049*
(0.0016) (0.0020) (0.0016) (0.0004) (0.0009) (0.0029)

N 22,119 22,119 22,119 22,119 22,119 22,119
R2 0.1505 0.0298 0.0375 0.0441 0.0230 0.0860

Regressions in this table use NRI points in counties east of the 100th meridian that are in noncultivated
cropland in 1982 and are not irrigated. The dependent variable equals 1 for points that in 2012 are as-
sociated with the land use given by the column. All temperature and precipitation variables represent
changes in 10-year averages between 1982 and 2012. Temperature variable names are expressed in
◦C; precipitation is in cm. ∆D̄D are changes in degree days; ∆P̄ are changes in precipitation. All
regressions include state fixed effects and a constant. Standard errors are clustered at the county level.
Asterisks designate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.12: Long-Difference Linear Probability Models for Pasture as the Base Land Use
in 1982 using Piecewise Linear Degree Days with Threshold at 30◦C

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄D ∈ (0, 30] -0.0000 -0.0001** -0.0008*** -0.0001*** 0.0001 0.0010***
(0.0000) (0.0000) (0.0001) (0.0000) (0.0001) (0.0002)

∆D̄D ∈ (30,∞] -0.0004 -0.0000 0.0015 0.0004 -0.0006 -0.0014
(0.0003) (0.0001) (0.0010) (0.0004) (0.0005) (0.0010)

∆P̄ ≥ 0 -0.0002 -0.0011*** -0.0001 -0.0004* -0.0008 0.0026
(0.0007) (0.0004) (0.0014) (0.0003) (0.0007) (0.0016)

∆P̄ < 0 -0.0000 -0.0002 -0.0050*** 0.0004 -0.0016** 0.0063***
(0.0004) (0.0003) (0.0014) (0.0004) (0.0008) (0.0015)

N 87,730 87,730 87,730 87,730 87,730 87,730
R2 0.0587 0.0165 0.0404 0.0519 0.0341 0.0548

Regressions in this table use NRI points in counties east of the 100th meridian that are in pasture in 1982
and are not irrigated. The dependent variable equals 1 for points that in 2012 are associated with the land
use given by the column. All temperature and precipitation variables represent changes in 10-year averages
between 1982 and 2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄D
are changes in degree days; ∆P̄ are changes in precipitation. All regressions include state fixed effects and
a constant. Standard errors are clustered at the county level. Asterisks designate statistical significance at
the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.13: Long-Difference Linear Probability Models for Range as the Base Land Use in
1982 using Piecewise Linear Degree Days with Threshold at 30◦C

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄D ∈ (0, 30] 0.0001*** -0.0000 -0.0001** -0.0014*** -0.0000 0.0012***
(0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0003)

∆D̄D ∈ (30,∞] -0.0004*** 0.0000 -0.0001 0.0041*** 0.0001 -0.0031***
(0.0001) (0.0000) (0.0002) (0.0011) (0.0001) (0.0010)

∆P̄ ≥ 0 0.0011 0.0002 0.0012* -0.0057** -0.0000 0.0026
(0.0008) (0.0002) (0.0007) (0.0025) (0.0005) (0.0025)

∆P̄ < 0 0.0002 -0.0002 -0.0030*** 0.0020 0.0000 0.0016
(0.0003) (0.0001) (0.0007) (0.0032) (0.0003) (0.0029)

N 46,989 46,989 46,989 46,989 46,989 46,989
R2 0.0217 0.0052 0.0182 0.0925 0.0265 0.0891

Regressions in this table use NRI points in counties east of the 100th meridian that are in range in 1982.
The dependent variable equals 1 for points that in 2012 are associated with the land use given by the col-
umn. All temperature and precipitation variables represent changes in 10-year averages between 1982 and
2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄D are changes in degree
days; ∆P̄ are changes in precipitation. All regressions include state fixed effects and a constant. Standard
errors are clustered at the county level. Asterisks designate statistical significance at the 10% (*), 5% (**),
and 1% (***) levels.
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Table 1.14: Long-Difference Linear Probability Models for Forest as the Base Land Use in
1982 using Piecewise Linear Degree Days with Threshold at 30◦C

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄D ∈ (0, 30] 0.0000 -0.0000 -0.0000 0.0000 -0.0007*** 0.0007***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0001) (0.0001)

∆D̄D ∈ (30,∞] 0.0000 0.0000** 0.0000 -0.0000 0.0010 -0.0012
(0.0000) (0.0000) (0.0001) (0.0000) (0.0010) (0.0010)

∆P̄ ≥ 0 0.0001* -0.0000 -0.0002* 0.0000 -0.0079*** 0.0081***
(0.0001) (0.0000) (0.0001) (0.0000) (0.0014) (0.0014)

∆P̄ < 0 0.0001 0.0000 -0.0000 0.0001*** -0.0002 -0.0001
(0.0001) (0.0000) (0.0001) (0.0000) (0.0012) (0.0012)

N 258,158 258,158 258,158 258,158 258,158 258,158
R2 0.0032 0.0007 0.0055 0.0084 0.0366 0.0430

Regressions in these tables use NRI points in counties east of the 100th meridian that are in forest in
1982. The dependent variable equals 1 for points that in 2012 are associated with the land use given by
the column. All temperature and precipitation variables represent changes in 10-year averages between
1982 and 2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄D are
changes in degree days; ∆P̄ are changes in precipitation. All regressions include state fixed effects and
a constant. Standard errors are clustered at the county level. Asterisks designate statistical significance
at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.15: Long-Difference Linear Probability Models for Switching to New Land Uses
(columns) From All Other Land Uses Combined using Average Time in Temperature In-
tervals

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) -0.0021*** -0.0009** 0.0001 -0.0011*** 0.0051*** -0.0083**
(0.0006) (0.0004) (0.0006) (0.0002) (0.0008) (0.0038)

∆D̄ ∈ [15, 20) -0.0032*** 0.0002 -0.0005 0.0003** 0.0033*** 0.0007
(0.0006) (0.0003) (0.0004) (0.0001) (0.0007) (0.0030)

∆D̄ ∈ [20, 25) -0.0020*** -0.0013*** -0.0009** -0.0002** -0.0005 0.0046*
(0.0003) (0.0002) (0.0004) (0.0001) (0.0006) (0.0026)

∆D̄ ∈ [25, 30) 0.0014*** -0.0019*** -0.0031*** -0.0009*** 0.0015* 0.0051
(0.0005) (0.0003) (0.0005) (0.0003) (0.0008) (0.0033)

∆D̄ ∈ [30, 35) -0.0028*** -0.0002 -0.0006 -0.0003 -0.0029*** 0.0221***
(0.0005) (0.0003) (0.0005) (0.0002) (0.0008) (0.0030)

∆D̄ ∈ [35,∞) -0.0019*** -0.0007** 0.0006 0.0010 0.0055*** -0.0149***
(0.0006) (0.0004) (0.0011) (0.0012) (0.0011) (0.0057)

∆P̄ ≥ 0 0.0004* -0.0003** -0.0001 -0.0001 -0.0008*** 0.0040***
(0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.0009)

∆P̄ < 0 0.0001 -0.0001 -0.0006*** 0.0002** -0.0003 0.0010
(0.0001) (0.0001) (0.0002) (0.0001) (0.0003) (0.0011)

N 653469 812704 747093 787834 576665 666348
R2 0.0303 0.0065 0.0073 0.0226 0.0279 0.0627

Regressions in this table use NRI points in counties east of the 100th meridian that are not irrigated in 1982.
Each column further restricts the sample to points that were not associated with the land use given by the col-
umn in 1982. The dependent variable equals 1 for points that have transitioned by 2012 to the column land
use. All temperature and precipitation variables represent changes in 10-year averages between 1982 and
2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄ variables are changes in
the number of days spent in 5◦C bins; ∆P̄ are changes in precipitation. All regressions include state fixed
effects and a constant. Standard errors are clustered at the county level. Asterisks designate statistical sig-
nificance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.16: Long-Difference Linear Probability Models for Switching to New Land Uses
(columns) From All Other Land Uses Combined using Piecewise Linear Degree Days with
Threshold at 30◦C

2012 Land Use
Cultivated Noncultivated
Cropland Cropland Pasture Range Forest Developed

(1) (2) (3) (4) (5) (6)

∆D̄D ∈ (0, 30] -0.0000** -0.0001*** -0.0001*** -0.0000*** -0.0001*** 0.0006***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

∆D̄D ∈ (30,∞] -0.0001 0.0002*** 0.0004*** 0.0001 0.0002 -0.0012*
(0.0001) (0.0000) (0.0001) (0.0001) (0.0001) (0.0007)

∆P̄ ≥ 0 0.0004* -0.0003** -0.0001 -0.0000 -0.0007*** 0.0037***
(0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.0009)

∆P̄ < 0 -0.0000 -0.0001 -0.0006*** 0.0001* -0.0001 0.0007
(0.0001) (0.0001) (0.0002) (0.0001) (0.0003) (0.0011)

N 653469 812704 747093 787834 576665 666348
R2 0.0296 0.0064 0.0073 0.0222 0.0267 0.0604

Regressions in this table use NRI points in counties east of the 100th meridian that are not irrigated in 1982.
Each column further restricts the sample to points that were not associated with the land use given by the col-
umn in 1982. The dependent variable equals 1 for points that have transitioned by 2012 to the column land
use. All temperature and precipitation variables represent changes in 10-year averages between 1982 and
2012. Temperature variable names are expressed in ◦C; precipitation is in cm. ∆D̄D are changes in degree
days; ∆P̄ are changes in precipitation. All regressions include state fixed effects and a constant. Standard
errors are clustered at the county level. Asterisks designate statistical significance at the 10% (*), 5% (**),
and 1% (***) levels.
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Table 1.17: Robustness: End Year for Long Differences: LPM for Cultivated Cropland

2002 2007 2012
(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) 0.0192*** 0.0027 -0.0083
(0.0054) (0.0062) (0.0058)

∆D̄ ∈ [15, 20) -0.0058 -0.0156*** -0.0147***
(0.0043) (0.0050) (0.0051)

∆D̄ ∈ [20, 25) -0.0138*** -0.0187*** -0.0133***
(0.0043) (0.0042) (0.0041)

∆D̄ ∈ [25, 30) 0.0228*** 0.0316*** 0.0264***
(0.0057) (0.0050) (0.0054)

∆D̄ ∈ [30, 35) -0.0030 -0.0061 -0.0084*
(0.0047) (0.0048) (0.0047)

∆D̄ ∈ [35,∞) -0.0091 -0.0330*** -0.0422***
(0.0073) (0.0097) (0.0099)

∆D̄D ∈ (0, 30] 0.0001 0.0004*** 0.0005***
(0.0002) (0.0002) (0.0002)

∆D̄D ∈ (30,∞] -0.0017* -0.0036*** -0.0047***
(0.0009) (0.0011) (0.0011)

∆P̄ ≥ 0 -0.0023 -0.0034** 0.0076*** 0.0070*** 0.0028* 0.0018
(0.0017) (0.0016) (0.0016) (0.0016) (0.0015) (0.0015)

∆P̄ < 0 0.0104*** 0.0112*** 0.0048*** 0.0055*** 0.0010 0.0002
(0.0020) (0.0021) (0.0016) (0.0018) (0.0021) (0.0022)

N 181,354 181,354 181,354 181,354 181,354 181,354
R2 0.1172 0.1128 0.1331 0.1268 0.1385 0.1341

Regressions in this table use NRI points in counties east of the 100th meridian that are in cultivated crop-
land in 1982 and are not irrigated. The dependent variable equals 1 for points that continue to be used
for cultivated cropland in the end year. All temperature and precipitation variables represent changes in
10-year averages between 1982 and the specified end year. Temperature variable names are expressed in
◦C; precipitation is in cm. ∆D̄ variables are changes in the number of days spent in 5◦C bins; ∆D̄D are
changes in degree days; ∆P̄ are changes in precipitation. All regressions include state fixed effects and a
constant. Standard errors are clustered at the county level. Asterisks designate statistical significance at the
10% (*), 5% (**), and 1% (***) levels.
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Table 1.18: Robustness: Length of Average Weather Series in Long Differences – LPM for Cultivated Cropland

5-Years 10-Years 15-Years 20-Years
(1) (2) (3) (4) (5) (6) (7) (8)

∆D̄ ∈ [10, 15) -0.0101*** -0.0083 0.0095 0.0043
(0.0038) (0.0058) (0.0072) (0.0073)

∆D̄ ∈ [15, 20) -0.0163*** -0.0147*** -0.0208*** -0.0181***
(0.0039) (0.0051) (0.0060) (0.0059)

∆D̄ ∈ [20, 25) 0.0151*** -0.0133*** -0.0146*** -0.0214***
(0.0036) (0.0041) (0.0045) (0.0052)

∆D̄ ∈ [25, 30) -0.0028 0.0264*** 0.0306*** 0.0393***
(0.0043) (0.0054) (0.0057) (0.0063)

∆D̄ ∈ [30, 35) 0.0025 -0.0084* -0.0111** -0.0191***
(0.0041) (0.0047) (0.0052) (0.0058)

∆D̄ ∈ [35,∞) -0.0140* -0.0422*** -0.0206** -0.0271**
(0.0084) (0.0099) (0.0095) (0.0109)

∆D̄D ∈ (0, 30] 0.0003** 0.0005*** 0.0003** 0.0003*
(0.0001) (0.0002) (0.0002) (0.0002)

∆D̄D ∈ (30,∞] -0.0008 -0.0047*** -0.0025** -0.0035***
(0.0009) (0.0011) (0.0011) (0.0013)

∆P̄ ≥ 0 -0.0024** -0.0030*** 0.0028* 0.0018 0.0017 0.0013 -0.0013 -0.0019
(0.0010) (0.0009) (0.0015) (0.0015) (0.0016) (0.0016) (0.0015) (0.0015)

∆P̄ < 0 -0.0036** -0.0037** 0.0010 0.0002 0.0015 0.0018 0.0044 0.0045
(0.0017) (0.0017) (0.0021) (0.0022) (0.0027) (0.0031) (0.0039) (0.0045)

N 181,354 181,354 181,354 181,354 181,354 181,354 181,354 181,354
R2 0.1381 0.1344 0.1385 0.1341 0.1382 0.1329 0.1393 0.1331

Regressions in this table use NRI points in counties east of the 100th meridian that are in cultivated cropland in 1982 and are not irri-
gated. The dependent variable equals 1 for points that continue to be used for cultivated cropland in 2012. All temperature and precipi-
tation variables represent changes in n-year averages, as specified by the column, between 1982 and 2012. Temperature variable names
are expressed in ◦C; precipitation is in cm. ∆D̄ variables are changes in the number of days spent in 5◦C bins; ∆D̄D are changes in
degree days; ∆P̄ are changes in precipitation. All regressions include state fixed effects and a constant. Standard errors are clustered at
the county level. Asterisks designate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.19: The Effect of Observed Climate Change (1982-2012) on New Ethanol Produc-
tion (2002-2012) at the County Level

Change in Ethanol Production (mgy) Probability of a New Plant
East 100,

East 100, Upper Midwest, East 100,
East 100 Upper Midwest Production2002 > 0 East 100 Upper Midwest

(1) (2) (3) (4) (5)

∆D̄ ∈ [10, 15) -0.4232 -0.8798 4.1987 -0.0062 -0.0200
(0.4481) (1.4528) (27.6381) (0.0046) (0.0147)

∆D̄ ∈ [15, 20) 0.1435 0.2738 4.6509 0.0023 0.0074
(0.2989) (1.0245) (14.5133) (0.0034) (0.0113)

∆D̄ ∈ [20, 25) 0.5401*** 2.7996** -11.7322 0.0029 0.0140
(0.2056) (1.1122) (21.5105) (0.0021) (0.0119)

∆D̄ ∈ [25, 30) 0.2730 -0.1532 15.3944 0.0009 -0.0077
(0.3050) (1.4440) (21.6068) (0.0028) (0.0144)

∆D̄ ∈ [30, 35) -0.3818 -0.1720 -21.5017 -0.0030 0.0046
(0.2782) (1.0293) (18.9928) (0.0032) (0.0125)

∆D̄ ∈ [35,∞) 0.1486 -1.4894 39.5137 -0.0010 -0.0376
(0.3362) (2.8851) (52.2150) (0.0033) (0.0287)

∆P̄ ≥ 0 0.2584 0.4813 4.4633 0.0037** 0.0083**
(0.1616) (0.3096) (5.8753) (0.0017) (0.0033)

∆P̄ < 0 0.0323 0.3297 6.0162 -0.0004 -0.0015
(0.0621) (0.5058) (8.1079) (0.0007) (0.0072)

N 2,506 956 42 2,506 956
R2 0.1286 0.0930 0.2521 0.1254 0.0779

Regressions in this table use Ethanol production data between 2002 and 2012 from McWilliams and
Moore (2016a). The dependent variable in columns (1)-(3) is the total change in operating capacity for
all refineries in a county between 2002 and 2012. The dependent variable in columns (4)-(5) is a dummy
variable equal to 1 if a new ethanol refinery was constructed in the county. Columns (1) and (4) restrict
the sample to counties east of the 100th meridian. Columns (2) and (5) further restrict to the following
Upper Midwest states: IA, IL, IN, KS, MI, MN, MO, ND, NE, OH, SD, and WI. Column (3) further re-
stricts to counties with positive ethanol production in 2002. All temperature and precipitation variables
represent changes in 10-year averages between 1982 and 2012. ∆D̄ variables are changes in the num-
ber of days spent in 5◦C bins; ∆P̄ are changes in precipitation (cm). All regressions include state fixed
effects and a constant. Eicker-Huber-White standard errors are reported in parentheses. Asterisks desig-
nate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.20: The Effects of Observed Climate Change on the Probability of Irrigation Adop-
tion, 1982-2012

All NRI Points NRI Points East NRI Poinst West
in Lower-48 of 100th Meridian of 100th Meridian

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) 0.0071*** 0.0061*** 0.0122***
(0.0014) (0.0015) (0.0037)

∆D̄ ∈ [15, 20) -0.0036*** -0.0014 -0.0092***
(0.0011) (0.0011) (0.0031)

∆D̄ ∈ [20, 25) -0.0015 -0.0064*** 0.0084**
(0.0011) (0.0011) (0.0035)

∆D̄ ∈ [25, 30) 0.0109*** 0.0153*** 0.0014
(0.0021) (0.0024) (0.0055)

∆D̄ ∈ [30, 35) 0.0031** 0.0021 0.0104**
(0.0014) (0.0015) (0.0047)

∆D̄ ∈ [35,∞) -0.0154*** -0.0126*** -0.0365***
(0.0030) (0.0033) (0.0070)

∆D̄D ∈ (0, 30] 0.0003*** 0.0003*** 0.0005***
(0.0001) (0.0001) (0.0001)

∆D̄D ∈ (30,∞] -0.0023*** -0.0018*** -0.0054***
(0.0003) (0.0004) (0.0008)

∆P̄ ≥ 0 -0.0012*** -0.0015*** -0.0011*** -0.0014*** -0.0006 -0.0010
(0.0003) (0.0004) (0.0004) (0.0004) (0.0021) (0.0018)

∆P̄ < 0 -0.0006 -0.0008 -0.0016* -0.0017* -0.0022 -0.0045
(0.0008) (0.0008) (0.0008) (0.0009) (0.0035) (0.0033)

N 326,929 326,929 291,203 291,203 35,726 35,726
R2 0.0642 0.0585 0.0735 0.0616 0.0524 0.0483

Regressions in this table use NRI points in the lower-48, continental U.S. that are in agricultural land uses
(cultivated cropland, noncultivated cropland, or pasture) and are not irrigated in 1982. The dependent vari-
able equals 1 for points that are irrigated in 2012. All temperature and precipitation variables represent
changes in 10-year averages between 1982 and the specified end year. Temperature variable names are ex-
pressed in ◦C; precipitation is in cm. ∆D̄ variables are changes in the number of days spent in 5◦C bins;
∆D̄D are changes in degree days; ∆P̄ are changes in precipitation. All regressions include state fixed ef-
fects and a constant. Standard errors are clustered at the county level. Asterisks designate statistical signifi-
cance at the 10% (*), 5% (**), and 1% (***) levels.
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Table 1.21: The Effects of Observed Climate Change on Irrigation Abandonment, 1982-
2012

All NRI Points NRI Points East NRI Poinst West
in Lower-48 of 100th Meridian of 100th Meridian

(1) (2) (3) (4) (5) (6)

∆D̄ ∈ [10, 15) -0.0119* 0.0032 -0.0171**
(0.0069) (0.0147) (0.0077)

∆D̄ ∈ [15, 20) 0.0099* 0.0451*** 0.0085
(0.0056) (0.0141) (0.0065)

∆D̄ ∈ [20, 25) 0.0088* 0.0255** 0.0138*
(0.0051) (0.0100) (0.0082)

∆D̄ ∈ [25, 30) 0.0163*** 0.0056 0.0147
(0.0062) (0.0079) (0.0113)

∆D̄ ∈ [30, 35) -0.0115 0.0174* -0.0236*
(0.0077) (0.0100) (0.0131)

∆D̄ ∈ [35,∞) 0.0220** 0.0121 0.0275*
(0.0107) (0.0120) (0.0150)

∆D̄D ∈ (0, 30] 0.0004* 0.0003 0.0004
(0.0002) (0.0003) (0.0003)

∆D̄D ∈ (30,∞] 0.0004 -0.0014 0.0010
(0.0011) (0.0012) (0.0014)

∆P̄ ≥ 0 0.0120*** 0.0122*** 0.0008 0.0014 0.0350*** 0.0366***
(0.0042) (0.0042) (0.0044) (0.0047) (0.0070) (0.0072)

∆P̄ < 0 -0.0116*** -0.0121*** -0.0037 -0.0035 -0.0258*** -0.0267***
(0.0031) (0.0027) (0.0026) (0.0024) (0.0058) (0.0057)

N 46,166 46,166 15,028 15,028 31,138 31,138
R2 0.1006 0.0987 0.2299 0.2248 0.0457 0.0426

Regressions in this table use NRI points in the lower-48, continental U.S. that are in agricultural land
uses (cultivated cropland, noncultivated cropland, or pasture) and are irrigated in 1982. The dependent
variable equals 1 for points that are no longer irrigated in 2012. All temperature and precipitation vari-
ables represent changes in 10-year averages between 1982 and the specified end year. Temperature vari-
able names are expressed in ◦C; precipitation is in cm. ∆D̄ variables are changes in the number of days
spent in 5◦C bins; ∆D̄D are changes in degree days; ∆P̄ are changes in precipitation. All regressions
include state fixed effects and a constant. Standard errors are clustered at the county level. Asterisks
designate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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CHAPTER 2

Agglomeration in Agriculture: The Biofuel
Quasi-Experiment in the Corn Belt

2.1 Introduction

The spatial concentration of economic activity (agglomeration) is most evident in urban
areas, such that agglomeration economies are now used to explain the existence and com-
position of cities (Glaeser and Gottlieb, 2009). Is agglomeration also important in an agri-
cultural context? In Krugman’s seminal research on new economic geography, the “agricul-
tural periphery” is featureless and thus uninteresting: immobile land worked by immobile
peasants with costless transportation of agricultural products (Krugman, 1991). Yet this
simply reflects the workings of an elegant model designed to elucidate agglomeration in
the urban core. In fact, we observe substantial spatial concentration of agricultural activity
in the United States. The Midwest, for example, houses seven of the top ten agricultural
states, including a “Corn Belt” and a “Wheat Belt.”1 In addition, we observe agricultural-
urban connections, rather than Krugman’s bifurcation, in the major Midwestern cities of
Chicago, Kansas City, Indianapolis, Minneapolis, and St. Louis, where backward linkages
to agriculture seeded urban development and growth. Agriculture, undoubtedly, is the clas-
sic case for the importance of natural features — climate, soil, rainfall, and irrigation water

This chapter is co-authored with Michael R. Moore. I would like to thank Stephen Salant, Ryan Kellogg,
Shaun McRae, Robyn Meeks, and participants at the 2013 Heartland Environmental and Resource Economics
Workshop at the University of Illinois at Urbana-Champaign for helpful comments. This work was supported
by the National Science Foundation under grant 1313897.

1Illinois (#2), Iowa (#3), Nebraska (#4), Minnesota (#5), Indiana (#6), North Dakota (#8), and South
Dakota (#10) are contiguous states in the American Midwest. The ranking is in terms of cash receipts for
sales of agricultural crops.
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— in explaining the location of economic activity (Holmes and Lee, 2012).2 Nonetheless,
the other agglomeration economies — knowledge spillovers, labor market pooling, and
input-output linkages — are considered important to the spatial concentration of different
crops and their related forward linkages to the agricultural processing sector (Holmes and
Stevens, 2004). Agriculture and the rural sector, however, are understudied through the
lens of agglomeration.

Our research illuminates the spatial economy of input-output linkages in the agricultural
sector. We study, in particular, how the location of downstream industry explains spatial
cropland use. Fujita et al. (1999) caution that relying on linkages as the basis for agglom-
eration often reduces to circular causation. An agricultural example is the co-location of
growing and processing of sugar beets (Holmes and Stevens, 2004). The analyst observes
the co-location but cannot identify which came first: field production of beets or the beet
processing plant. Greenstone et al. (2010) solve the causation problem by using 47 distinct
“million dollar plant” openings to study agglomeration externalities. We develop a similar
quasi-experimental approach by using 130 recent openings of corn ethanol refineries in the
Midwest to study spatial cropland use. Does the new demand for corn by refineries (of
varying capacity at different locations in different years) affect spatial land allocations to
corn, soybeans, wheat, and grassland?

A second topic of the paper concerns the role of refinery openings in generating spa-
tial concentration in rural development. Widespread concern exists about the depopula-
tion of rural counties throughout the United States, and particularly in parts of the Mid-
west (Hansen, 2003). Between 1980 and 2010, population decreased in rural counties in
large portions of five states within the study area, including Iowa, Kansas, Nebraska, North
Dakota, and South Dakota (Federal Deposit Insurance Corporation, 2014). Thome and Lin
Lawell (2015) hypothesize that an intra-industry agglomeration effect might exist within
the corn ethanol refinery sector, i.e., if several refineries have located in the same region,
then a new plant might experience positive spillovers in the form of an educated workforce
or an established marketing infrastructure. Yet they find that the agglomeration effect does
not have a net strategic effect on the payoff from investing in an ethanol plant. Neverthe-
less, whether new ethanol plants spawn rural development is an open question. We address
this by assessing land-use change with our quasi-experimental approach: does the opening
of an ethanol plant result in an increase in developed land in the vicinity of the plant?

To answer the first question, we utilize the refinery opening quasi-experiment to identify

2Holmes and Lee (2012) find that approximately two-thirds of observed field-level crop concentrations in
North Dakota can be explained by natural advantages, with the remaining one-third due to field-level density
economies.
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the effect of downstream industry on cropland use (crop choice). We first develop a model
in which farmers choose crops based in part on the net price they receive, i.e., price minus
transportation cost, leading crop choice to be correlated with proximity to downstream
buyers. According to the model, a refinery opening induces a transportation cost shock
that improves corn’s profitability relative to alternative crops. The corn transportation cost
reduction decreases as the road-distance from the refinery increases, and we generate a
prediction of a positive distance-decay effect in corn land use and a negative distance decay-
effect for soybeans and other substitute crops.

To test these predictions, we apply a 2002-2012 panel data set on land use relative
to refinery location for the 130 refineries that opened in the Midwest during this period.
Fourteen states are included in the study area: Illinois, Indiana, Iowa, Kansas, Kentucky,
Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, Tennessee,
and Wisconsin. The land use data are from USDA’s Cropland Data Layer, a high-resolution
GIS layer of crop area and other land uses through time. We combine this with geocoded
refinery locations and information on each plant’s capacity and year of opening. A set of
5-kilometer buffers are developed around each plant out to 75 km. Following Scott (2013),
we sample land points from a grid of the region and keep all points that are located in
one (or more) of the buffers. We combine the linear probability model with a difference-
in-differences approach that includes point and county-year fixed effects. We use this to
identify the causal effect of new ethanol capacity on the probability of a particular land use,
by buffer distance. The five land uses are corn, soybeans, wheat, grassland, and developed
land.

One main finding is that the probability of growing corn increases in the predicted
distance-decay pattern when treated with a 1 million gallon-per-year (mgy) increase in
ethanol capacity. The estimated coefficient in the first buffer, in fact, is insignificant albeit
positive.3 Thereafter, the estimated coefficients are highly significant through the 45 km
buffer, at which point the effect goes to zero and remains there through the 75 km buffer.
The distance-decay pattern is vivid, with the point estimates showing a relatively steady
decline as distance from the plant increases. The effects are relatively small, with the
probability of corn increasing by 1.6% in the 5-10 km buffer for a 100 mgy increase in
capacity, a common capacity of new plants.

What land uses decrease, apparently in response to the increase in corn acreage? Here,
we distinguish cultivated cropland (soybeans and wheat) versus uncultivated grassland.

3As described below, the probability of developed land increases in the first buffer following the treatment,
suggesting that developed land may be competing successfully with corn in the immediate vicinity of the
refinery.
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The estimated coefficients on the respective probabilities of growing soybeans and wheat
both decrease in response to the treatment. The distance-decay pattern is again clear —
the negative coefficients grow smaller in absolute value as distance increases out through
the 45 km buffer. Their magnitudes, in absolute value, are slightly smaller than the corn
estimates, and this is reasonable. However, these coefficients are imprecisely estimated.

Grassland represents the extensive margin of cropped agriculture; it includes pasture
and grass-related land cover types, all of which are uncultivated. The probability of grass-
land decreases in response to the treatment. With two exceptions, the estimated coefficients
are statistically significant through the 50 km buffer, and the distance-decay pattern is ev-
ident in this range. Their magnitudes, in absolute value, are similar to the corn estimates.
Because we study land use and not land use transition (such as a transition at a point from
grassland to corn land), we cannot conclude that grassland area necessarily is being con-
verted to corn production, yet this is the implication given that cropland in soybeans and
wheat is not increasing.4

The second overarching research question is whether refinery openings spawn rural
development. Here, the probability of developed land increases in response to treatment
in the buffer adjacent to the refinery, i.e., within 5 km of the plant. The probability of
developed land also increases in three rings in the 35-50 km range. This may reflect optimal
spacing of ethanol refineries, although this needs further study.

This research relates to three strands of literature. First, it extends research on spatial
concentration of the economy to study agglomeration in the agricultural sector. To date,
agglomeration has largely been studied within the urban economy (Glaeser and Gottlieb,
2009). Yet the agricultural sector shows substantial geographic concentration and special-
ization within the United States, more so than most other sectors (Holmes and Stevens,
2004). Here, we show that corn ethanol refineries causally affect the intensive margin of
cropland use (e.g., whether to grow corn or soybeans) and the extensive margin of convert-
ing from uncultivated to cropland. Moreover, the increase in developed land in the vicinity
of refineries suggests that new plant openings might induce rural development. Whether
this result corresponds to similar causal effects on rural population, employment, or enter-
prises merits further attention.

Second, in methodological terms, we develop a quasi-experimental approach using
high resolution spatial data. Others have advocated this approach for answering spatial
questions (Gibbons and Overman, 2012; Holmes, 2010). Plant openings is an especially

4In the first buffer, the estimated coefficient on the probability of grassland is relatively large in absolute
value. As we will see in the next paragraph, grassland might also be converted to developed land in this
buffer.
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useful application area (Greenstone et al., 2010; Davis, 2011). In addition, as demonstrated
and described previously (Duranton and Overman, 2005; Overman, 2010), high resolution
spatial data create the opportunity to study distance explicitly instead of, more typically,
relying on geopolitical units such as counties. Transportation costs are central to spatial
economies, and our results show clearly how road-distance to the refinery affects both
landowner decision-making and rural development.

Third, our research contributes to analysis of the impacts of the U.S. biofuel mandate.
Under the Renewable Fuel Standard (RFS), a minimum annual volume of corn ethanol
must be produced domestically for use as a transportation fuel. Recent research investi-
gates the cropland-area response to supplying the 3.33% increase in calories from major
crops (corn, rice, soybeans, and wheat) that is implied by the RFS. Roberts and Schlenker
(2013) estimate that the response occurs at the extensive margin of crop area, not at the
intensive margin of producing higher yields of these crops from existing area. They es-
timate that the mandate-induced price increase results in a 2.3% increase in cultivated
land area, while Scott (2013) estimates a 2.9% increase in cultivated land area using a
dynamic model. Ethanol refineries were similarly induced by the RFS mandate (Thome
and Lin Lawell, 2015). Our results for the Corn Belt complement the aggregate results;
the estimated distance-decay functions show how major land uses responded directly to the
refineries’ demand for corn feedstock to meet the RFS.

The paper continues as follows. Section 2.2 develops a model of the relationship be-
tween land use choice and transportation cost; Section 2.3 presents the data; Section 2.4
discusses the empirical model and identification strategy; Section 2.5 presents the results;
Section 2.6 concludes.

2.2 A Simple Spatial Model of Land Use

Suppose that landowners choose how to allocate land between two alternatives: corn, c,
and another option specified generally as b. At any time, t, landowner i must decide how
to divide her total available land, Li, such that lict + libt = Li. She makes this choice to
maximize profit, which we specify as:

Πit = (Pct − τcdict) fc (lict, xict, wit, si) + Pbtfb (libt, xibt, wit, si) (2.1)

where Pct and Pbt are prices received for corn and good b at time t, respectively; τc is the
transportation cost per unit of distance (dict) for moving corn to market; fc (·) and fb (·)
are production functions defined over allocated land, l, time-varying inputs specific to the
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land use, x, weather, w, and time-invariant features of the land (e.g., soil) or region (e.g.,
transportation network), s.5 We assume that the production functions are strictly concave
with respect to land such that ∂f

∂l
> 0 and ∂2f

∂l2
< 0 for both c and b. Without loss of

generality, we abstract from input costs to focus on the role of transportation cost.
At an internal solution, the landowner will allocate land such that the marginal profit of

the two choices are equal:

(Pct − τcdict)
∂fc
∂lc

= Pbt
∂fb
∂lb

(2.2)

In this model, we are interested in how land use responds to changes in both transporta-
tion distance and corn prices. Applying the Implicit Function Theorem, we obtain:

dlict =

 1

(Pct − τcdict) ∂2fc
∂l2c

+ Pbt
∂2fb
∂l2b

 tc∂fc
∂lc

ddict −
∂fc
∂lc

dPct (2.3)

where dlict is the change in corn acreage, ddict is the change in distance to market, and
dPct is the change in corn price. The expression in brackets is negative, assuming that the
net-prices are both positive, which must be the case for an internal solution.

Ignoring changes in the corn price to start, the model predicts that landowners will
increase the amount of land devoted to corn when transportation distance decreases, as
would occur if a new ethanol refinery were constructed nearby. Larger changes in distance
produce larger changes in net-price, and therefore, larger changes in acreage devoted to
corn.

On average, one would expect changes in transportation distance to be greater for
parcels closer to new ethanol refineries. If so, the predicted change in corn acreage would
be greater than or equal to zero for all parcels, but decreasing in distance from the refinery.
Eventually, for points sufficiently far away, the new refinery would have no effect as other
local sources of demand would be closer.

Ethanol refineries, however, can also set their own prices and will want to minimize
the cost of their corn input. It is conceivable that a new refinery could strategically offset
changes in transportation distance with a lower offered price of corn. Even so, evidence
generally suggests that the increase in local demand from new refineries leads to increases
in local prices.6 Not surprisingly, the result in Equation (2.3) shows that price increases

5We leave the specification of good b general such that it could represent another crop such as soybeans,
or even developed land.

6See, for example: Miller, E. “How Does Changing Ethanol Capacity Affect Local Basis?” (March 24,
2015) Department of Consumer and Agricultural Economics, University of Illinois Policy Matters Blog.
http://policymatters.illinois.edu/author/elzbth-miller/
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lead to additional increases in corn acreage.
Finally, note that the change in acreage for option b is exactly opposite the change for

corn due to the land constraint. For example, if b is another crop, such as soybeans, the
implication is that acreage should decrease in response to nearby refinery construction.

2.3 Data

2.3.1 Ethanol Locations

Our information on the location and production levels of U.S. ethanol plants is assembled
from several sources. Between 2002 and 2012, the Renewable Fuels Association (RFA)
published an annual Ethanol Industry Outlook every February that included a listing of
all ethanol plants that were either operating or under construction.7 The data includes
the company name, the town and state in which the plant is located, the current capacity,
and any planned expansions. The reports from 2009-2012 also include production levels,
which may differ from total capacity. In some cases, a parent company with multiple plants
(e.g. Archer Daniels Midland) lists total capacity for all of its plants, but not for individual
plants. We use data obtained from personal correspondence with staff at Ethanol Producer
Magazine to fill these holes.8 We also used Internet news sources to check whether plants
were truly operating in all years as the annual outlook may list a positive nameplate capacity
for idle plants.

The RFA data does not provide street addresses for the refineries. Yet we need precise
locations in order to exploit the high resolution of the Cropland Data Layer and to estimate
local effects of proximity to ethanol plants. Our solution is to match the RFA list of facili-
ties with EPA’s Toxics Release Inventory (TRI) and Facility Registry System (FRS), which
gives precise locations of each facility. For some plants, there is no record in the publicly
available EPA data. In these cases, addresses were obtained from news releases, yellow
pages, company websites, or media sources. In all cases, we are careful to map refinery
locations and not administrative offices, so when possible we confirm the address using
aerial imagery from Google Maps and company websites. The process is tedious since
some plants went through several ownership and name changes, while others closed per-
manently. Our aggregated data set tracks these changes across time with a unique identifier
for each plant regardless of ownership. Figure 2.1 maps all corn-based refineries across the

7Although the report continues to be published, beginning in 2013, the report no longer provides a listing
of active plants. See the RFA website at http://www.ethanolrfa.org

8EPM gathers capacity information from publicly available regulatory filings (e.g. for air permits) as well
as news releases and annual reports. EPM is online at http://www.ethanolproducer.com/

60



U.S. that operated with positive production capacity at some point between 2002 and 2012,
a total of 199 plants.

2.3.2 Cropland Data Layer

The land use data comes from the Cropland Data Layer (CDL), which is produced by the
National Agricultural Statistics Service (NASS) at USDA. The CDL is distributed publicly
as a high-resolution raster-formatted GIS dataset. It is created from a combination of satel-
lite imagery, ground truth data collected by USDA, and other ancillary data sources. The
CDL covers all 48 contiguous states for the period 2008-2015, but there is state-by-state
variation in availability prior to 2008.9 Since the ethanol data begins in 2002 and ends
in 2012, we use all available CDL data between those years, which means we have an
unbalanced panel where the first observable year varies by state.

The spatial resolution also varies by year; it is 30 meters for 2010-2015 and all years
prior to 2006, but it is 56 meters for the period 2007-2009. To give a sense of magnitude,
the 2012 CDL (30m) contains 8.7 billion pixels and is shown in Figure 2.1. Collectively,
these pixels classify 131 different land cover categories consisting of 107 major and minor
crops (e.g. corn, soybeans, cherries, Christmas trees) as well as 24 non-agricultural land
cover categories such as shrubland, woody wetlands, deciduous forest, developed/low, de-
veloped/medium, and developed/high intensity. NASS statistically assesses the accuracy
of the agricultural land cover estimates for each CDL state and vintage. For example, the
accuracy of the 2009 CDL for major crops is estimated to range between 85% and 95%
(Boryan et al., 2011).

2.3.3 Sample Points for Analysis

Since the CDL is organized in raster form, a question arises as to what constitutes a sample
observation for regression analysis. Previous research either uses the CDL pixels directly
as observations (Scott, 2013; Wright and Wimberly, 2013) or aggregates the pixels to de-
fined areas, such as sections from the Public Land Survey System (PLSS) (Holmes and
Lee, 2012). We follow Scott (2013) and construct an 840m sub-grid of points across the
contiguous U.S., extracting CDL values over time from those points. There are several
reasons for selecting this grid size. First, 840 is the least common multiple of 30 and 56,
the two resolutions of the CDL, meaning that an 840m grid can fit either resolution with-
out raster cells overlapping the boundaries. Second, we “strike a balance between having
a comprehensive sample of fields and artificially increasing the sample size by sampling

9For example, North Dakota CDL’s are available back to 1997, while Michigan’s first CDL is for 2007.
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many points from individual fields” (Scott, 2013). For example, for land organized ac-
cording to the PLSS, the quarter section is 0.5 miles or 805m per side.10 Quarter sections
are further divided into 4 fields referred to as quarter-quarter sections, each 402m per side.
Thus, the grid, on average, selects one raster cell from each quarter section, or rather, from
1 out of every 4 “fields” under the PLSS.

In total, the grid produces 11,061,279 points in the contiguous U.S., of which 3,114,801
are in the Midwest states considered in this analysis.11 For each point, we extract soil in-
formation using the publicly available gridded SSURGO database (gSSURGO) developed
by the USDA Natural Resources Conservation Service.12

In order to identify the effect of proximity to ethanol production, we require a mea-
sure of distance between each point and the set of ethanol refineries. In practice, we do
this by constructing a series of 5 km-wide rings around each refinery based on the U.S.
road network. Instead of using a set of concentric circles, the rings measure actual trans-
portation distance. As a result, they are irregularly shaped and depend on the geography
of local roads. Figure 2.2a shows the difference between using a simple circle and road-
based buffers for a refinery located in Albion, MI. We intersect the road rings with the grid
points and thereby identify the set of ethanol plants within 75 km of each point at 5 km
intervals. An example for a single 5 km-wide ring is shown in Figure 2.2b. A total of
1,411,284 points, roughly 45% of Midwest points, are within 75 km of an ethanol refinery
that operated between 2002 and 2012.

Finally, we use the Protected Areas Database of the United States, produced by USGS,
to identify and remove points in protected lands.13 In the descriptive statistics and analysis
that follows, we also remove points that are ever identified in the CDL as open water,
perennial ice, or clouds.

2.4 Empirical Model

Since the data are structured as a set of points on a grid, we do not observe acreage, but
rather a single land use or crop choice associated with the CDL value beneath each grid
point. These values are used to model the decision to adopt corn as well as other crop/land-
use choices as a series of binary discrete choice outcomes, much like McWilliams and

10The Homestead Act of 1862 allocated quarter sections for free to people. Even today, ownership patterns
often vary by quarter section (Holmes and Lee, 2012).

11We consider IA, IL, IN, KS, KY, MI, MN, MO, ND, NE, OH, SD, TN, and WI.
12Information on gSSURGO is available at

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2 053628
13Data is publicly available at http://gapanalysis.usgs.gov/padus/data/.
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Moore (2016b). As such, we specify the dependent variable Yitk = 1 if point i is associated
with crop/land use k at time t, and Yitk = 0 otherwise. With a binary dependent variable,
the empirical specification aims to identify the causal effect of proximity to an ethanol
refinery on the probability of land use k.

Yikt =αk +
∑
r

βrkCirt + µik + θckt + εikt (2.4)

where Cirt =
∑
p

cpt1 [r − 5 < dip ≤ r]

Equation (2.4) is estimated using the traditional within estimator, where µik are time-
invariant point fixed effects, θckt are county-year fixed effects, and the β terms represent the
crop-level treatment effects indexed by ring r.14 The Cirt represent the total capacity (or
production when available) of all plants that are operating at time t and are between r − 5

and r km of point i, where dip represents the distance between point i and plant p and cpt is
the capacity of plant p at time t.

Our primary research question pertains to the agglomeration of corn around ethanol
refineries, which we focus on for our discussion of identification. In this case, k = “corn”
and, therefore, Yikt = 1 when point i grows corn.

As we are using the within estimator, the treatment effects are identified only if the
error in each year is uncorrelated with treatment in all years. That is,

E (Cirsεitk) = 0 for all s, t = 1, ..., T (2.5)

This rules out situations where investors respond to positive shocks at land point, i, by
building a nearby refinery in the future. Although it is unlikely that a shock at a single point
leads to this kind of investment, investors might respond to positive shocks at a collection
of points when they are spatially correlated. That is, if many farms in a given region all
experience positive shocks and plant more corn, this could catch the attention of investors
and pave the way for new ethanol plants in the future. However, shocks such as these
should be captured by the county-year fixed effects, thereby allowing the point-level errors
to be strictly exogenous with respect to the treatment variables.

Another way of thinking about the required identification assumption is that the treat-
ment variables (production capacities by ring) must be randomly assigned to points, effec-
tively, after controlling for the point and county-year fixed effects. In other words, we have
a difference-in-differences type common trends assumption that points within the same

14r ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75} is defined in terms of km.
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county would have similar expected probabilities of growing corn if not for distance and
production capacity of newly constructed refineries conditional on the time invariant point
characteristics.

Identification of causal effects fails if the common trends assumption is violated, i.e.
if points closer to new refineries are systematically different even after controlling for the
fixed effects. For instance, ethanol refineries are generally owned by profit-maximizing
firms. The locational choice problem for new plants involves a strategic component (Thome
and Lin Lawell, 2015). If new refineries knowingly locate in areas, for example, where
parcels within 10 km are better poised to plant new corn than parcels 30 km away, and
importantly, these differences are not captured by the fixed effects, then our estimates will
overstate the effect of proximity to the plant.

We argue that our fixed effects account for these concerns. First, it is likely that coun-
ties within a state are different in important ways that lead to nonparallel trends in land
use. Some of this may be due to changes in population, development, or other features
of local business between 2002-2012, which vary by county. Counties 40 km to the west
of an ethanol plant may be very different from counties 40 km to the east. For instance,
Figure 2.2b shows that the 45-50 km ring around the Andersons Albion Ethanol LLC refin-
ery in Albion, MI intersects 8 counties. Our county-year fixed effects allow time-varying
differences between these counties to exist.

Second, the point fixed effects should capture all of the factors that make land point
i more suitable to growing corn than point j in the same county. Examples include soil
quality, climate, field topology, altitude, distance to the closest river, distance to the center
of town, the local transportation network, and even the pre-2002 land use histories and
the managerial aspects of the owner. These are essential characteristics that constitute the
natural advantages of different points.

Furthermore, the fixed effects will also account for the main drivers in locational de-
cisions of ethanol plants. In a 2010 survey of ethanol producers, Schmidgall et al. (2010)
ask what the most important factors are for site selection. Over 85% of respondents iden-
tified access to rail, highways, water, and corn as the most important. In addition, many
respondents also gave importance to state and local taxes, ease of obtaining permits, as
well as community support. Other research by Haddad et al. (2009) and Lambert et al.
(2008) support these findings, with Haddad et al. (2009) finding natural gas availability, as
measured by pipeline miles, also to be important. All of these items are controlled for with
a combination of the point and county-year fixed effects. The implication is that we can
consider plant location within the sample to be essentially random conditional on the fixed
effects.
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Our conclusion is that estimation of Equation (2.4) results in causal estimates of the
effect of distance and production capacity. In the context of the four forces of agglomera-
tion discussed earlier, factors of natural advantage are captured by the point fixed effects,
while the county-year fixed effects control for changes in local labor-market pooling and
knowledge spillovers. We thus identify the effects of changes in input-output linkages.

In practice, we restrict estimation of Equation (2.4) to points for which at least one year
of CDL data is observable before any ethanol refinery within 75 km is operational, which
emphasizes the difference-in-differences interpretation. Still, the treatment effect in any
ring is identified off any changes in production capacity across the sample. Most existing
refineries in 2002 that continued to operate in 2012 invested in upgraded capacity over the
period. It is encouraging that results are similar when we do not remove points around
existing refineries.15

2.5 Results

2.5.1 Descriptive Statistics

We begin this section by describing ethanol production over the sample period followed by
land use trends. Across the U.S., there were 47 operating ethanol refineries in 2002. 152
new plants were constructed between 2003 and 2012 bringing the total to 199 refineries that
operated for at least one year between 2002 and 2012. The locations of these refineries are
depicted in Figure 2.1, which shows a clear agglomeration of refineries in the Corn Belt.
Indeed, 176 of the 199 total plants (and 46 of the original 47) are in the Midwest states
considered here. In total, 130 new refineries were constructed in the Midwest.

Despite this swift expansion, in some cases, plants shut down either temporarily or
permanently. In fact, 9 of the 130 new refineries ceased operations during the sample
period, although 8 eventually returned to production; 11 of the original 2002 plants exited
during the period, 7 of which were permanent.

Figure 2.3a plots the total number of operating plants and the total production capacity
for plants in the Midwest between 2002 and 2012. Although both the number of plants
and total production capacity increases across all years, the most rapid increase was be-
tween 2007 and 2010, which saw the construction of 66 new plants along with a more than
doubling of total capacity to over 11.3 billion gallons-per-year.

There is large variation in the production capacity of new plants, as shown in Fig-
ure 2.3b. Here, the distribution of capacity for first-year plants is plotted for each year. For

15Results are available by request.
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example, the capacity of plants that produced for the first time in 2008 ranges between 20
and 130 mgy with an average of 68.5. As shown, the size of new plants has been increasing
over time from an average of 40 in 2003 to 86 in 2012. Figure 2.3b also plots the distribu-
tion of production for existing plants in 2002. Here, several behemoth refineries drag the
average up to 52 mgy. In fact, only 10 plants have capacities above 50 mgy in 2002. The
median capacity is only 21 mgy. In general, plants have been getting bigger.

As ethanol production has increased, so too has corn acreage. Figure 2.4 plots ag-
gregate land use trends between 2002 and 2012 across the Midwest. Acreages for corn,
soybeans, and wheat are from official USDA survey estimates.16 Data for grassland and
developed land are from USDA’s National Resources Inventory (NRI) (U.S. Department of
Agriculture, 2015).

Between 2002 and 2012, corn increased by 25% from 67 to 84 million acres, driven by
the RFS biofuel boom. Gains in corn appear to be partially offset by losses to soybeans
until 2008, after which soybean acreage is relatively flat. Wheat made small gains until
2008, but then declined from 32 to 26 million acres in 2012. The NRI data includes a
classification of “range”, which contains most grassland. There is no meaningful change in
aggregate range land between 2002 and 2012. Developed land, also from the NRI, shows a
small increase from 33 to 35 million acres.

While the acreage estimates in Figure 2.4 help to understand aggregate trends, our
primary research question concerns the spatial degree of change, and in particular, the
relationship between changes in land use and proximity to ethanol production. Table 2.1
uses the grid of land points discussed in Section 2.3.3, restricting to points that are within
75 km of a refinery, and analyzes changes in average land use by distance from the refinery
both before and after plant construction. This requires dropping points for which CDL is
not available prior to plant openings.

It is interesting that there is not much variation in the gross amount of land use change
by distance, despite differences in the shares themselves before and after refinery construc-
tion. For instance, points are classified as corn 28% of the time within 5 km of a future
refinery location and 25% of the time for points between 60 and 65 km from a future site.
However, both rings experience gains of +4 percentage points after refineries have been
constructed. While corn sees a robust gain of 3-4% across all rings, soybeans sees changes
of -1% for points within 25 km as well as points farther than 55 km. All other points see
no change. Similarly, wheat increases by 1% within 10 km, but does not change in other
rings.

In contrast to the aggregate NRI statistics, our measure of grassland using the CDL data

16Accessed 8/16/2016 using USDA NASS Quick Stats at https://quickstats.nass.usda.gov/.
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shows declines of 4-5 percentage points across all rings, which is consistent with other work
documenting grassland conversion in the Midwest.17

The results in Table 2.1 suggest very little difference in land use change based on prox-
imity to ethanol production. However, these results are very coarse as they aggregate across
varying years for each point. For example, point a in Michigan may not be within 75 km of
ethanol production until 2009, while point b in Iowa receives treatment in 2004. The “Be-
fore Refinery” statistics aggregate the years 2007-2008 for point a as the Michigan CDL
data begins in 2007, while the same statistic uses 2002-2003 for point b in Iowa. In the
panel analysis that follows, we control for year and allow counties to have different trends
over time with the county-year fixed effects.

Although the panel fixed effects will control for differences in soil quality in the regres-
sion analysis, Table 2.2 examines whether there are systematic differences across rings.
Points closer to ethanol refineries tend to be slightly flatter, although the difference is qual-
itatively very small; slope gradients between 1 and 8 all fall into the “Gentle sloping” class
(Soil Survey Division Staff, 1993). The bedrock depth is shallower for closer points, but
the water table depth is relatively equal across rings. Finally, land capability class (lcc)
measures the degree of soil limitations for field crops. Classes are specified by integers
between 1 and 8, with higher numbers representing more severe limitations. Although
points farther away from refineries have slightly higher lcc’s on average, the difference is
not large. Overall, we do not see striking differences in soil quality across rings. We now
turn to the regression analysis.

2.5.2 Regression Analysis

As in the descriptive statistics, the regression analysis only uses points within 75 km of an
ethanol refinery. The sample is further restricted to points for which CDL data are avail-
able prior to the construction of all refineries within 75 km, as discussed in Section 2.3.3.
Along with dropping points that are in protected lands or are ever classified as open wa-
ter, perennial ice, or clouds, the estimation sample is reduced from 1,411,284 to 648,799
points. Following Scott (2013), we also drop points that are ever classified as developed
land in the regressions for corn, soybeans, and wheat. That leaves a final estimation sam-
ple of 535,805 points for the field crops, which over the 11-year sample period results in
5,057,057 total observations due to the unbalanced nature of the data.

17In 2014, USDA reclassified historical grass-related categories in the CDL and collapsed the “Pas-
ture/Grass”, “Grassland Herbaceous”, and “Pasture/Hay” categories into a single “Grass/Pasture” classifi-
cation. Therefore, our measure of grassland will include some parcels devoted to pasture or hay farming.
While CDL accuracy for major crops tends to be more accurate than for grass-related categories, other re-
search has made use of CDL grass classifications. See, for example, Wright and Wimberly (2013).
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Estimates of Equation (2.4) using the standard within estimator are presented in Ta-
ble 2.3 and Figure 2.5. The treatment variables represent total ethanol production capacity
(mgy) across all plants that are within (r−5) and r km of a given point. Since we are using
binary dependent variables, which are indicators for specific crops or land uses, the coeffi-
cients are interpreted as the effect of a 1 mgy change in ethanol production capacity, (r−5)

to r km away, on the probability of the specified land use at the point level. Changes in
capacity can occur because a new plant was constructed, or an existing plant was upgraded
or closed.

Our preferred specification includes county-year fixed effects to control for time-varying
local factors.18 However, Figure 2.5a and columns (1) and (3) of Table 2.3 show that state-
year fixed effects produce nearly identical results for corn. This suggests that variation in
ethanol capacity by distance is driving the results, conditional on the point fixed effects, as
intended.

It is common in the climate impacts literature for researchers to isolate observational
units east of the 100th meridian, which is the approximate border between irrigated crops
in the West and rainfed crops in the East (Schlenker et al., 2005, 2006). While irrigation
can be a confounder for studies investigating the effects of climate change, it should not
be important in our context. There is no obvious reason why irrigated land should respond
differently than nonirrigated land to transportation cost shocks associated with new ethanol
production. Costs of conversion to cultivated corn may be higher in irrigated areas and may
depend on factors such as water availability, but these differences should be captured by
the fixed effects. Column (2) of Table 2.3 supports this reasoning by showing that results
do not change when we exclude points west of the 100th meridian.

Using our preferred specification with county-year fixed effects, the results for corn
in column (3) and Figure 2.5a show that 1 mgy of additional capacity has a statistically
significant positive effect on the probability of planting corn for points that are 5 to 45 km
away. Although the result is not significant for points within 5 km, the estimated effect is
positive. At 5 to 10 km, the effect is larger with a coefficient estimate of 0.00016. To put
this in perspective, it is not uncommon for plants to be constructed with 100 mgy capacity.
Our estimates imply that a new plant of this magnitude will increase the probability of
growing corn by 1.6%. This effect decays to zero as distance from the plant increases,
which is consistent with predictions based on the simple model in Section 2.2.

The model also predicts that a new plant will lead to decreases in competing land uses.
Figure 2.5b and column (4) of Table 2.3 report the results for soybeans, which show the

18The current version of this paper uses state-year fixed effects for the wheat and developed land regres-
sions. This is temporary as we await results from the computationally intensive county-year regressions.
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expected opposite effect compared to corn. Points closer to new ethanol production become
less likely to plant soybeans, and the estimates approach zero at distances between 45 and
50 km. Unlike corn, these estimates are smaller in magnitude, in absolute value, and are
generally not significant. However, not all points that convert to corn are coming from
soybeans, and those that do are likely making rotational substitutions, e.g. transitioning
from the common corn-soybeans rotation to a corn-corn-soybeans rotation. If so, we should
expect to see both smaller magnitudes, in absolute value, and larger standard errors than
for corn.

The estimates for wheat, in column (5), are qualitatively similar to soybeans, but the
effects are smaller in magnitude, and the standard errors are larger, at least for distances less
than 45 km. This is not surprising as wheat occupies a much smaller share of production
in the sample region, as shown in Table 2.1, and the sample is not restricted in any way
to points that grow wheat prior to refinery construction. Still, the estimates provide weak
evidence that the probability of wheat decreases within 40-45 km of a new ethanol refinery.

We now discuss our results involving the non-cultivated land uses: grassland and devel-
oped land. When non-cultivated land such as grassland or forest is converted into cropland,
carbon is released from the plants and soil. This fact has led researchers to ask whether
biofuel policy, and the resulting higher crop prices, have led to increased grassland con-
version (Wright and Wimberly, 2013) and what effect this has on global greenhouse gas
emissions (Searchinger et al., 2008). In a sense, these studies implicitly focus on the over-
all price incentive that results from RFS. Our work, in contrast, controls for local price
trends with county-year fixed effects, thereby isolating the local spatial effects of refinery
location. In other words, previous research focuses on indirect land use change, while our
work identifies direct land use change.

We use the same linear probability model and within estimator for grassland, but here
we restrict to points that are identified as grassland prior to the construction of all refineries
within 75 km.19 Thus, the model estimates the probability that grassland existing before
ethanol production is not converted to other uses. Results are presented in Figure 2.5d and
column (6) of Table 2.3.

As with soybeans and wheat, the results are consistent with the simple land use model
and suggest that grassland is more likely to be converted when it is closer to the refinery.
The point estimates are significant for 8 of the 10 distance bins from 0 to 50 km, all of
which are negative and larger, in absolute value, than any of the other regressions. The
estimates suggest that a new 100 mgy refinery would lead to an increase in the probability

19The same restriction does not make sense for field crops due to the fact that most crops are grown in a
rotation.

69



of grassland conversion of approximately 5% within 5 km and between 2 and 2.5% for
points 5 to 35 km away. Thereafter, the effect decays to zero at 50 km.

A question that arises is whether points classified as grassland are actually enrolled in
the Conservation Reserve Program (CRP). If so, a particular point would be restricted from
converting to other uses for the duration of the CRP contract, causing the estimates to be
biased downward. In this case, the estimates could be thought of as a lower bound.

The final land use that we consider is developed land, which involves a qualitatively
different research question. With a new ethanol refinery, we expect to see increases in corn
and decreases in other field crops and grassland. Developed land, on the other hand, rarely
converts to other uses (U.S. Department of Agriculture, 2015). The construction of an
ethanol refinery can be seen as an investment in the local economy. The question is whether
this investment leads to positive spillovers and agglomeration of further rural development.
To test this question, we restrict to land points that are not classified as developed land
before the first year of ethanol production.20 The coefficient estimates in column (6) of
Table 2.3 and Figure 2.5e, therefore, represent the estimated probability of non-developed
land being developed as a function of ethanol production capacity by distance.

In this case, new capacity within 5 km has a positive and statistically significant ef-
fect on the probability of land being developed. Using the same extrapolation, a new 100
mgy refinery would increase the probability of development by 1%. The estimation sam-
ple drops points that are identified as developed land prior to official refinery operation.
Therefore, we can rule out the plants themselves as the source of new development since
a plant should be counted as developed land by the CDL in the year before its first year of
operation.21 Beyond 5 km, estimated coefficients are small and generally not statistically
significant. An exception is the 35 to 45 range, which could represent other ethanol refiner-
ies, i.e. strategic locations or optimal spacing of ethanol refineries. We will continue to
research this question.

It is interesting that the regressions for grassland and all of the field crops display at
least weak evidence of a distance-decay relationship, while there is no such evidence from
the simple average changes calculated in Table 2.1. Why is that the case? One explanation
could be that large changes in commodity prices are driving broad land-use trends more
than shocks to transportation cost. Table 2.1 does not control for time or local trends. In
contrast, the regression fixed effects allow local prices to vary over time. When price is

20We denote a point as developed land if it has the CDL classification of “Developed” prior to 2007, or
“low-”, “medium-”, or “high-intensity development” beginning in 2005.

21Kaplow (2007) notes that construction of a corn ethanol plant typically takes 12 months, and that a pro-
duction bottleneck around 2007 extended this to 18-24 months. Future research will address this assumption
by omitting a smaller buffer around the actual plant site from the current 0 to 5 km buffer.
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then controlled for in the regressions, a distance-decay relationship is visible. The implied
magnitudes of change from the regressions are smaller, on average, than the changes in
Table 2.1, which also supports this hypothesis.

One common trait across all the regressions is that standard errors start large and get
smaller as one moves farther away from the plant, regardless of the dependent variable.
This is simply due to geometry and the fact that there are more observations (equally spaced
points) in each 5 km ring as distance increases.

2.6 Conclusion

This paper makes two contributions to the literature. We expand the purview of agglom-
eration economies into the agricultural and rural economy. Holmes and Stevens (2004)
report several descriptive measures of patterns of regional specialization, such as locational
quotient, locational Gini coefficient, and Ellison-Glaeser index. These measures show that
the agricultural production and processing sectors have a substantial amount of regional
specialization, and that rural areas now specialize in manufacturing in contrast to earlier
periods when it was an urban activity. We show several backward linkages from corn
ethanol refining to land use. Showing the importance of transportation costs in spatial
economies with immobile land, clear distance-decay patterns were estimated for corn, soy-
beans, wheat, and grassland in response to refinery openings. This relies on the notion of
input-output linkages as an underpinning of agglomeration. In addition, ethanol plants also
induced an increase in the probability of developed land in the buffer adjacent to the plant.
This component of the research warrants further investigation to understand whether these
plants spawned rural development in the form of population, employment, and enterprises
in addition to land use.

The second contribution is to estimate the direct land-use changes of the RFS bio-
fuel mandate. Beginning with Searchinger et al. (2008), substantial attention has focused
on the indirect land-use changes (operating through crop price increases) of large biofuel
mandates and their related environmental consequences. In the same vein, Roberts and
Schlenker (2013) and Scott (2013) estimate that the U.S. biofuel mandate will increase
acreage in major crops by 2.3% and 2.9%, respectively; this translates into 36 million
acres. Focusing on land-use change in the Midwest, Wright and Wimberly (2013) docu-
ment conversion from grassland to corn-soybean cropping in the western Corn Belt during
2006-2011. They attribute the change to the rapid increases in corn and soybean prices
during the period, although causal estimates are not developed.

Our results, in contrast, isolate direct land-use changes caused by corn ethanol refinery
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openings in fourteen states encompassing the greater Midwest. The plant openings link di-
rectly to the RFS (Thome and Lin Lawell, 2015), and our results identify the plant opening
effect while abstracting from national crop price effects. Hill et al. (2009) assume that the
corn feedstock for expanded U.S. ethanol production would come from converted perennial
grasslands. Our finding of statistically significant decreases in the probability of grasslands
lends support for this.
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Figure 2.1: Operating Corn Ethanol Refineries in the United States, 2002-2012

Corn Ethanol Refineries
Operating in 2002
New in 2003-2012

Notes: This
figure maps corn ethanol plants that operated at any point between 2002 and 2012 with positive production capacity. Green dots are
plants that already existed in 2002, while red dots are new plants that began production between 2003 and 2012. The background
is the 2012 Cropland Data Layer at 30m resolution. Corn pixels are represented as yellow.
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Figure 2.2: Proximity to Ethanol Refineries: Allocating Land Points to Buffers

(a) Comparison of a road-based buffer to a simple circle

(b) Grid points within a road-based buffer

Notes: Figure (a) compares a simple circle with radius 75 km with a series
of 5 km-wide road-based “rings” from 5 km to 75 km. Red dots represent
ethanol refineries, while the small gray lines are roads. The buffers have
been drawn around the Andersons Albion Ethanol LLC plant in Albion, MI.
Figure (b) shows the set of 840m spaced grid points that are between 45 and
50 km from the same refinery in Albion, MI.
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Figure 2.3: Ethanol Production in the Midwest

(a) Number of operating ethanol plants & total production capacity (mgy)
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(b) Distribution of new production capacity by year
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Notes: Panel (a) plots the number of operating ethanol plants and the cor-
responding production capacity between 2002 and 2012 for the states of IA,
IL, IN, KS, KY, MI, MN, MO, ND, NE, OH, SD, TN, and WI. Panel (b)
plots the distribution of production capacity across the same states for new
plants in their first year of operation for each year in the sample. This is
compared to the distribution of production capacity among the 46 original
refineries in 2002. For all years, the dot represents the average, and the lines
represent the range between minimum and maximum capacity.
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Figure 2.4: Total Midwest Acreage: Corn, Soybean, Wheat, Grass, & Developed Land
(Thousands of Acres)
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Notes: This figure plots the total acreage (1000’s) across each of the states consid-
ered in our analysis: IA, IL, IN, KS, KY, MI, MN, MO, ND, NE, OH, SD, TN, and
WI. Acreage for corn, soybeans, and wheat were obtained from USDA survey data (ac-
cessed 8/16/2016 using USDA NASS Quick Stats at https://quickstats.nass.usda.gov/).
Wheat represents the combination of winter wheat, spring wheat, and durum wheat.
Data for grassland and developed land acreage comes from USDA’s National Resources
Inventory (U.S. Department of Agriculture, 2015). In the NRI data, the range category
includes grasslands, savannas, tundra, some wetlands, and deserts.
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Figure 2.5: Estimated Probability of Different Land Uses by Distance from Refinery

(a) Corn Regressions
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(b) Soybeans with county-by-year FE’s
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(c) Wheat with state-by-year FE’s
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(d) Grassland with county-by-year FE’s
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(e) Developed Land with state-by-year FE’s
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Notes: This figure plots the estimated coefficients from Table 2.3 with 95% confidence intervals. Estimates
can be interpreted as the change in the probability of the given land use for a 1 mgy increase in ethanol
production at the specified distance.
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Table 2.1: Land Use Change by Ring of Distance from Ethanol Production

Before Refinery After Refinery Change
Distance Corn Soy Wheat Grass Dev Corn Soy Wheat Grass Dev Corn Soy Wheat Grass Dev

(0, 5] 0.28 0.23 0.03 0.22 0.07 0.32 0.22 0.04 0.18 0.06 0.04 -0.01 0.01 -0.04 -0.01
(5, 10] 0.30 0.24 0.04 0.22 0.04 0.33 0.23 0.04 0.18 0.04 0.03 -0.01 0.01 -0.04 -0.01
(10, 15] 0.30 0.24 0.04 0.23 0.03 0.33 0.24 0.04 0.18 0.03 0.04 -0.01 0.00 -0.04 0.00
(15, 20] 0.29 0.25 0.04 0.23 0.03 0.33 0.24 0.04 0.19 0.03 0.03 -0.01 0.00 -0.04 -0.01
(20, 25] 0.29 0.24 0.03 0.23 0.04 0.32 0.24 0.04 0.19 0.03 0.04 -0.01 0.00 -0.05 -0.01
(25, 30] 0.28 0.24 0.03 0.24 0.03 0.32 0.24 0.03 0.19 0.03 0.04 0.00 0.00 -0.05 -0.01
(30, 35] 0.28 0.24 0.03 0.25 0.03 0.32 0.24 0.03 0.20 0.03 0.04 0.00 0.00 -0.05 -0.01
(35, 40] 0.27 0.23 0.03 0.25 0.03 0.31 0.23 0.03 0.20 0.03 0.04 0.00 0.00 -0.06 0.00
(40, 45] 0.27 0.23 0.03 0.26 0.03 0.31 0.23 0.03 0.20 0.03 0.04 0.00 0.00 -0.05 0.00
(45, 50] 0.26 0.23 0.03 0.26 0.03 0.31 0.23 0.03 0.21 0.02 0.04 0.00 0.00 -0.05 0.00
(50, 55] 0.26 0.23 0.03 0.26 0.03 0.30 0.23 0.03 0.21 0.03 0.04 0.00 0.00 -0.05 -0.01
(55, 60] 0.26 0.23 0.03 0.26 0.04 0.29 0.22 0.03 0.22 0.03 0.04 -0.01 0.00 -0.04 -0.01
(60, 65] 0.25 0.22 0.03 0.27 0.04 0.29 0.22 0.03 0.22 0.03 0.04 -0.01 0.00 -0.05 -0.01
(65, 70] 0.25 0.22 0.03 0.27 0.04 0.28 0.21 0.03 0.23 0.03 0.03 -0.01 0.00 -0.04 0.00
(70, 75] 0.25 0.22 0.03 0.26 0.04 0.28 0.21 0.04 0.22 0.04 0.03 -0.01 0.00 -0.04 0.00

Notes: This table reports the average percentage of time (years) that land points are classified as corn, soybeans, wheat, grass, or developed land in the
CDL, both before and after ethanol production began and by ring of distance from ethanol production. Points are only used if they are observed both
before and after the opening of each refinery within 75 km. Distances are specified as (l, u], which includes all points within l and u km of ethanol produc-
tion. The wheat category represents the combination of winter, spring, and durum wheat varieties; Grass is defined by the CDL category “Grass/Pasture”;
Developed land is classified as either “Developed” prior to 2007 or low-, medium-, or high-intensity development beginning in 2005.
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Table 2.2: Average Soil Quality by Ring of Distance from Ethanol Production

Water Land
Slope Bedrock Table Capability

Distance Gradient Depth Depth Class

(0, 5] 3.52 2.15 29.56 2.69
(5, 10] 3.94 2.31 28.95 2.75
(10, 15] 4.07 2.53 29.28 2.75
(15, 20] 4.20 2.72 28.84 2.76
(20, 25] 4.31 2.81 29.09 2.77
(25, 30] 4.42 2.80 29.11 2.78
(30, 35] 4.45 2.91 28.91 2.79
(35, 40] 4.53 2.99 28.69 2.81
(40, 45] 4.55 3.02 29.09 2.82
(45, 50] 4.58 2.96 28.86 2.82
(50, 55] 4.65 3.08 28.90 2.83
(55, 60] 4.73 3.21 28.78 2.84
(60, 65] 4.81 3.44 29.19 2.85
(65, 70] 4.83 3.60 29.21 2.85
(70, 75] 4.78 3.66 29.32 2.83

Notes: This table reports average soil characteristics of land
points by ring of distance from the ethanol refineries. Dis-
tances are specified as (l, u], which includes all points within
l and u km of ethanol production. The soil data is ob-
tained from the publicly available gridded SSURGO database
(gSSURGO) developed by the USDA Natural Resources Con-
servation Service.
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Table 2.3: Linear Probability Model Estimates of Land Use, 2002-2012

Corn Corn E100 Corn Soybeans Wheat Grass Developed
(1) (2) (3) (4) (5) (6) (7)

(0, 5] 0.00012 0.00013 0.00010 -0.00007 -0.00002 -0.00047** 0.00010***
(0.00009) (0.00009) (0.00008) (0.00007) (0.00005) (0.00023) (0.00004)

(5, 10] 0.00017*** 0.00017*** 0.00016*** -0.00008* -0.00004 -0.00024* 0.00000
(0.00005) (0.00005) (0.00005) (0.00004) (0.00003) (0.00014) (0.00002)

(10, 15] 0.00012*** 0.00010** 0.00011** -0.00006 -0.00002 -0.00013 0.00002
(0.00004) (0.00004) (0.00005) (0.00004) (0.00003) (0.00012) (0.00001)

(15, 20] 0.00013*** 0.00013*** 0.00013*** -0.00005 -0.00002 -0.00018 0.00000
(0.00004) (0.00003) (0.00004) (0.00003) (0.00003) (0.00011) (0.00001)

(20, 25] 0.00010** 0.00009*** 0.00009*** -0.00004 -0.00002 -0.00019* 0.00001
(0.00004) (0.00003) (0.00003) (0.00003) (0.00003) (0.00010) (0.00001)

(25, 30] 0.00011*** 0.00011*** 0.00010*** -0.00002 -0.00002 -0.00024*** 0.00001
(0.00003) (0.00003) (0.00003) (0.00003) (0.00003) (0.00008) (0.00001)

(30, 35] 0.00010*** 0.00010*** 0.00009*** -0.00003 -0.00002 -0.00025*** 0.00000
(0.00003) (0.00002) (0.00003) (0.00002) (0.00003) (0.00008) (0.00001)

(35, 40] 0.00007*** 0.00007*** 0.00007*** -0.00003 -0.00002 -0.00014** 0.00002**
(0.00002) (0.00002) (0.00003) (0.00002) (0.00002) (0.00007) (0.00001)

(40, 45] 0.00006*** 0.00006*** 0.00006*** -0.00002 -0.00001 -0.00012* 0.00002**
(0.00002) (0.00002) (0.00002) (0.00002) (0.00001) (0.00007) (0.00001)

(45, 50] 0.00002 0.00002 0.00002 0.00001 -0.00001 -0.00018*** 0.00001*
(0.00002) (0.00002) (0.00002) (0.00002) (0.00001) (0.00006) (0.00001)

(50, 55] 0.00003* 0.00003* 0.00003 -0.00001 -0.00001 -0.00007 0.00000
(0.00002) (0.00002) (0.00002) (0.00002) (0.00001) (0.00006) (0.00001)

(55, 60] 0.00003 0.00003* 0.00002 -0.00002 0.00000 0.00002 0.00000
(0.00002) (0.00002) (0.00002) (0.00002) (0.00001) (0.00006) (0.00001)

(60, 65] 0.00000 0.00001 0.00000 0.00001 0.00000 -0.00001 0.00000
(0.00002) (0.00002) (0.00002) (0.00002) (0.00001) (0.00005) (0.00001)

(65, 70] 0.00000 0.00000 0.00000 0.00000 -0.00001 -0.00006 0.00001
(0.00002) (0.00002) (0.00002) (0.00002) (0.00001) (0.00005) (0.00001)

(70, 75] 0.00000 0.00000 0.00000 0.00001 0.00000 0.00002 0.00001**
(0.00002) (0.00001) (0.00001) (0.00001) (0.00001) (0.00004) (0.00001)

FE State-Yr State-Yr County-Yr County-Yr State-Yr County-Yr State-Yr
N 5,057,057 4,385,129 5,057,057 5,057,057 5,057,057 1,483,482 5,916,561
Points 535,805 470,372 535,805 535,805 535,805 154,910 625,315
R2 0.0065 0.007 0.012 0.008 0.003 0.23 0.017

Notes: This table reports regression results using the linear probability model and the within-
estimator. The dependent variable is given by the column. “Corn-E100” represents a sample
restricted to points east of the 100th meridian. The “Grass” regressions restrict to points that
were classified as grass in the first observable year of CDL data. The “Developed” regressions
drop all points that are classified as developed prior to the first year of ethanol production. The
regressions also restrict to points for which at least one year of CDL is observable before any
ethanol refinery within 75 km is operational. The treatment variables are total operational capac-
ity of all ethanol refineries within l and u km and are represented in the table as (l, u]. Estimates
can be interpreted as the change in the probability of the given land use for a 1 mgy increase in
ethanol production at the specified distance. Regressions all include a constant in addition to the
fixed-effects specified by the column. Standard errors are clustered by county. Asterisks desig-
nate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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CHAPTER 3

The Strategic Effects of Adapting to Climate
Change (and Letting Others Mitigate)

3.1 Introduction

While the public continues to debate climate policy and whether humans should be held
responsible for climate change, the general scientific consensus is that the earth is warming
regardless of the cause. The Fifth Assessment Report of the Intergovernmental Panel on
Climate Change (IPCC), released in 2013, predicts a “likely” global average temperature
increase in the range of 0.3 − 4.8 ◦C over the next century (IPCC, 2013). The consensus
maintains that at least some of this increase can be prevented by reducing emissions and
atmospheric concentrations of greenhouse gases. In this spirit, the majority of research and
policy attention has attempted to identify the most efficient of such mitigation strategies.

However, current emissions combined with the inertia of the global climate system lead
many to acknowledge that some degree of warming is unavoidable. As temperatures rise,
society will be forced to adapt to new conditions, causing shifts in agricultural practices,
coastal development, water management, and even the distribution of labor.

At a general level, there are two distinct types of strategies to defend against climate
change: mitigation and adaptation. Mitigation (or abatement) strategies will reduce the
scale and likelihood of adverse climate effects; adaptation strategies will lessen the impacts.
Each strategy has different implications for global welfare. While all countries can benefit
from reductions in emissions, adaptation only benefits the country making the investment.
Thus, the freeriding incentive is clear: adapt and let others reduce emissions.

This chapter is co-authored with Stephen W. Salant. I would like to thank Michael Moore, Ryan Kellogg,
Shaun McRae, Robyn Meeks, and participants at the 2009 Heartland Environmental and Resource Economics
Workshop at the University of Illinois at Urbana-Champaign for helpful comments.
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Research on adaptation to climate change has been increasing, although more work is
needed to understand the multitude of adaptive responses and how to incorporate them into
existing models (Burke et al., 2016). Most of the early work in this area is either qualitative
or highly empirical in nature, such as impact assessments.1 Recent advances also tend to be
empirical, focusing on observed behavior and how agents have adapted to climate change
that has already occurred.2 This paper, however, focuses on game theory.

The existence of multiple autonomous players with conflicting interests and heteroge-
nous payoffs makes climate change an interesting topic for game-theoretic modeling. The
application of game theory to climate change and transboundary pollution, in general, has
a well established literature. Traditional games, such as Hoel (1991), ignore adaptation as
a possible strategy and focus exclusively on mitigation.3 However, studies are beginning to
add adaptation to these games.

Our work is most related to Ebert and Welsch (2011), Ebert and Welsch (2012), and
Eisenack and Kähler (2016). Ebert and Welsch (2011) combines mitigation and adaptation
in a simple two-country game and shows how it is possible to get emissions best-response
curves (to foreign emissions) that are upward-sloping when adaptation is included, i.e.
emissions become strategic complements. Ebert and Welsch (2012) continues with the
same model and derives comparative statics in Nash Equilibrium describing how emissions,
adaptation, and to some degree, welfare responds to changes in parameters governing the
effectiveness of adaptation and the benefits and damages associated with pollution.

Eisenack and Kähler (2016) builds off the Ebert and Welsch models, but reframes it as a
Stackelberg game, examining whether adaptation provides any new incentives for unilateral
(first-mover) action in either adaptation or mitigation. They find that conditions continue to
hold where adaptation leads to strategic complements in emissions. Furthermore, equilibria
in the Stackelberg setting are Pareto-superior to the standard noncooperative solution in a
static game, suggesting that unilateral action can be profitable.

Other researchers have developed games combining adaptation and mitigation to study
a range of other topics. For example, Zehaie (2009), Buob and Stephan (2013), and Buob
and Stephan (2011) all focus to some extent on the temporal differences inherent to mitiga-
tion and adaptation strategies; the benefits from mitigation may not be realized for years,

1Empirical studies include Yohe et al. (1995), Yohe et al. (1996), Tol et al. (1998), Sohngen et al. (2001),
Nicholls (2004), Alberth and Hope (2007), Seo and Mendelsohn (2008), and Mansur et al. (2008). Nice
qualitative discussions can be found in Fankhauser et al. (1999), and Tol (2005).

2Examples include studies of the impact of climate on: household preferences and location choice (Al-
bouy et al., 2016), the use of air conditioning (Davis and Gertler, 2015), agricultural yield (Burke and Emer-
ick, 2016), and land use choice (McWilliams and Moore, 2016b).

3Examples of other mitigation-only climate games include Hoel (1992), Missfeldt (1999), Helm (2003),
Kemfert et al. (2004), Forgo et al. (2005), and Asheim et al. (2006).
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while benefits from adaptation can often be realized immediately. For example, Zehaie
(2009) focuses on the order of adaptation and mitigation choices and the question of when
investments in adaptation can be used strategically to elicit greater mitigation from rivals.

Buob and Stephan (2013) analyze when it is optimal for developed countries to fund
the adaptation of developing countries, where adaptation funding decisions are chosen be-
fore mitigation in a 2-stage game. On the other hand, Buob and Stephan (2011) forces
countries to chose mitigation in advance of adaptation and explores the optimal mitigation
and adaptation arrangement when countries have different levels of income and exposures
to climate change.

Mendelsohn (2000) offers a unique analysis of efficient adaptation in different domestic
contexts, in particular the implications of private versus joint adaptation, e.g. across indus-
tries and government arenas. However, since the paper focuses on adaptation responses
within a single country, there is no international component and thus, the strategic relation-
ship with mitigation is not modeled.

Another set of papers, Kane and Shogren (2000) and Settle et al. (2007), consider mit-
igation and adaptation within endogenous risk frameworks, examining the changes in mit-
igation and adaptation in response to increased climate variability and catastrophic risk.
Settle et al. (2007) also extends the model to a dynamic setting.

In the literature cited above, the emphasis typically falls on the arrangement of adap-
tation and/or mitigation in the economy, addressing important questions about how the
ability to adapt changes the incentive to mitigate and the implications for international ne-
gotiations. However, there are other important questions regarding the actual payoff effects
of the mitigation/adaptation trade-off that arise from increased abilities to adapt. That is, in
a game theoretic setting, how does the ability to adapt affect payoffs relative to situations
in which adaptation is restricted? To our knowledge, this question has not been addressed
until now.

The theory of global public goods generally implies that mitigation will be undersup-
plied in any Nash equilibrium, while adaptation, as a private substitute, will be oversup-
plied. Most proposed solutions aim directly at mitigation by seeking to internalize exter-
nalities, either by establishing property rights, using subsidies, or by attempting to facilitate
international cooperation on emissions reduction. Adaptation is usually a secondary con-
cern, perhaps because it does not seem to pose any strategic issues. A country which
invests in adaptation bears the full cost, but also receives the full benefit of its actions. This
is seemingly an internal affair, not the business of the international community.

In fact, however, mitigation and adaptation are substitutes. Hence, a country which
invests heavily in adaptation may scale back its mitigation efforts. In withdrawing the
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benefits of mitigation from other members of the international community, the country
which adapts inadvertently injures them. If other countries do nothing in response, they
sustain warmer temperatures than otherwise. If they mitigate more (or adapt more) they
incur additional costs.

This leads us to ask whether adaptation is always beneficial once we have accounted
for the strategic effects. Is it possible that adaptation constraints, taxes, or even negative
shocks to marginal benefits, might result in preferred outcomes as countries substitute with
mitigation? We analyze this question in the context of a simple two-country game.

When countries are symmetric, we find that a range of such payoff-increasing adjust-
ments will always exist, relative to the original Nash equilibrium. With heterogeneous
countries, on the other hand, payoff-increasing intervals exist whenever foreign mitigation
increases. We begin by presenting a simple numerical example of this result.

3.2 A Numerical Example

Consider two identical countries,H and F , that have the ability to invest in both mitigation,
m, and adaptation, a, in response to climate change. As a simple example, suppose that
payoffs for i = H,F are given by

Πi = 2 [230− (mi +m−i)] (mi +m−i) + (200− ai)ai − 2(mi +m−i)ai − (mi)2 − (ai)2 (3.1)

The Nash equilibrium is easily solved by hand, yieldingmi = 45, ai = 5, and Πi = 23, 225

for all i.
Now consider what happens if adaptation is constrained to be zero in both countries. In

this case, countries can only optimize with respect to mitigation. In the Nash equilibrium
of this constrained game, mi = 46, ai = 0, and Πi = 23, 276. Even though countries have
lost the ability to optimize with respect to one of their action variables, the end result is
increased payoffs. Both countries substitute mitigation for adaptation, and the benefit of
greater foreign mitigation outweighs the loss from not being able to adapt. Note that a per-
unit tax on adaptation with lump-sum refunds can produce identical results to the explicit
constraint.4

Drawing on Bulow et al. (1985), we can achieve a similar result by considering changes
in the marginal benefit of adaptation. In the simple unconstrained example, suppose that
the marginal benefit of adaptation decreases for both countries by 8 units at all points in the
(mi + m−i, ai) plane. We can accomplish this by adding the term −8ai to the expression

4For example, the simple result above can be replicated with a per-unit tax on adaptation of t = 16.
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for Πi in equation (3.1). If foreign mitigation is held constant, then home payoffs must fall
with the introduction of this term. However, countries behave strategically in this game. If
the foreign country also experiences the shock and substitutes for adaptation with greater
mitigation, then the burden on the home country is reduced. In fact, payoffs may rise if the
benefit from increased foreign mitigation is greater than the loss from the adaptation shock.
Indeed, in the Nash equilibrium of this modified game, mi = 45.5, ai = 2.5, and payoffs
rise to Πi = 23, 240.25 for all i.

In each example above, the key to the result is the substitute nature of adaptation and
mitigation—a country which faces a reduced return (or explicit constraint) on adaptation
will scale up its mitigative efforts. This benefits all other countries, allowing them to reduce
their own expenditures. In what follows, we analyze these simple results in greater detail,
deriving general conditions necessary for increased payoffs. To begin, however, we must
introduce and discuss the assumptions and mechanics of the general model.

3.3 The Basic Game with Adaptation

The traditional climate change game, as represented by Hoel (1991), consists of two coun-
tries, i = H,F , making decisions over how much to reduce emissions, mi ≥ 0, with
foreign mitigation given by m−i. Countries are assumed to have heterogenous benefit and
cost functions, Bi(mi +m−i) and Ci(mi), with payoffs defined as

Πi(mi,m−i) = Bi(mi +m−i)− Ci(mi), i = H,F (3.2)

where the uniform-mixing property of greenhouse gases implies that the benefits of a unit
of mitigation are independent of the source.

To incorporate adaptation as a strategic choice variable, we redefine the benefit function
of Hoel (1991) as a joint function of both global mitigation and private adaptation,Bi(mi+

m−i, ai), where ai is adaptation in country i. The costs of adaptation are assumed to be
additively separable from the costs of mitigation, and are denoted Ki(ai). Thus, the payoff
function with adaptation becomes

Πi(mi,m−i, ai) = Bi(mi +m−i, ai)− Ci(mi)−Ki(ai), i = H,F (3.3)

The objective of each country is to maximize Πi in equation (3.3) by optimally choosing
the level of adaptation, ai, and own emissions abatement, mi, taking foreign mitigation as
given. We make the following assumptions, in part to assure that sufficient conditions
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for a unique global maximum are met. Note that superscripts are used to index country,
i = H,F , while subscripts will indicate the argument of differentiation (when necessary)
for each function.

Assumption 1 Levels of adaptation and mitigation must be greater than or equal to zero.

mi ≥ 0

ai ≥ 0

Assumption 2 The benefit functions, Bi(mi + m−i, ai), are twice continuously differen-

tiable and strictly concave with respect to aggregate mitigation, mi + m−i, and home

country adaptation, ai, for all values of mi + m−i ≥ 0 and ai ≥ 0. The signs of the

first-order, second-order, and cross-partial derivatives obey

Bi
1 > 0, Bi

2 > 0

Bi
11 < 0, Bi

22 < 0, Bi
12 < 0 ∀mH +mF ≥ 0, ai ≥ 0

Strict concavity implies that the second-order derivatives in the Hessian satisfy

Bi
11B

i
22 >

(
Bi

12

)2 ∀mH +mF ≥ 0, ai ≥ 0

Assumption 3 The cost functions are twice continuously differentiable and strictly convex

for all mi, ai ≥ 0, with first-order and second-order derivatives

Ci
1(mi) > 0, Ci

11(mi) > 0 ∀mi > 0,

Ki
1(ai) > 0, Ki

11(ai) > 0 ∀ ai > 0,

Ci
1(0) = 0 Ki

1(0) = 0

Assumption 1 is simply that the level of mitigation and investment in adaptation cannot
be negative. When mi = 0, a country generates its baseline emissions, i.e. the quantity of
emissions that would occur in a world without any consideration of damages.

Assumption 2 governs the properties of the benefit function. We assume that benefits
increase at a decreasing rate with both adaptation and aggregate mitigation. We specify the
benefit function as joint in mi + m−i and ai, and not separable, since it is reasonable to
assume that a country’s level of adaptation will impact the benefit to mitigation, and vice
versa. In particular, we assume that the cross-partial is negative, which implies that adap-
tation reduces the marginal benefit to mitigation, or rather, adaptation reduces the marginal
damage of increased emissions.
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Notice that Assumption 2 defines strict concavity with respect to adaptation and total
mitigation, mi + m−i. However, since mi + m−i is a linear combination of mi and m−i,
we can derive a concavity result with respect to adaptation and individual mitigation. As-
sumption 2 implies that Bi is jointly concave (though not strictly) with respect to mi, m−i,
and ai for all i.5

Assumption 3 contains standard strict convexity assumptions for the cost functions.
We assume that marginal costs are zero for the first unit of mitigation and adaptation, but
increase thereafter.

3.3.1 Nash Equilibrium in the Noncooperative Game

We begin by analyzing the Nash equilibrium of the model without making further assump-
tions on country-specific parameters or policy restrictions. In this setting, countries maxi-
mize their individual payoff without consideration of the effect on the foreign country.

To start, notice that our assumptions guarantee that the nonnegativity constraints will
never bind.6 Therefore, the maximization problem of each country is solved by the follow-
ing first-order conditions.

∂Πi

∂mi
= Bi

1(mi +m−i, ai)− Ci
1(mi) = 0 (3.4)

∂Πi

∂ai
= Bi

2(mi +m−i, ai)−Ki
1(ai) = 0 (3.5)

Since emissions reduction is a global public good, the benefits of mitigation are shared
by all. However, in maximizing equation (3.3), countries only consider the marginal benefit
to themselves. Thus, equation (3.4) differs from any planning solution since it lacks account
of foreign marginal benefits. However, since adaptation provides a private benefit, the FOC
is the same in both the planning and game solutions.7

5Bi is not strictly concave with respect to mi, m−i, and ai because there are a continuum of (mi,m−i)
that produce any given mi +m−i. Thus, for a fixed ai, Bi will be constant over this continuum.

6The marginal benefit of mitigation and adaptation is assumed to be positive for any level of foreign
mitigation, while the marginal costs are assumed to be zero for the first units.

7We omit a general discussion of the social planner’s problem since it is not relevant to our main results.
Still, it is straightforward to show that aggregate mitigation is undersupplied and adaptation is oversupplied
in the Nash equilibrium relative to the social optimum. The first order conditions that characterize the social
optimum with a purely utilitarian objective function are

∂ΠSO

∂mi
= BH

1 (mi +m−i, aH) +BF
1 (mi +m−i, aF )− Ci

1(mi) = 0

∂ΠSO

∂ai
= Bi

2(mi +m−i, ai)−Ki
1(ai) = 0
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Notice that we cannot define explicit best-response functions with respect to foreign
adaptation, which plays no direct role in home country decisions. What matters is foreign
emissions. Foreign adaptation is still chosen strategically and jointly with foreign mitiga-
tion, but the home country responds directly to emissions via changes in marginal benefits.
In other words, foreign mitigation, m−i, completely determines the optimal mitigation and
adaptation decisions of country i.

In our analysis, we assume that equations (3.4) and (3.5) can be solved for values
(mi∗, ai∗) that maximize equation (3.3) for any m−i ≥ 0.8 Since we are maximizing a
strictly concave objective function over a convex constraint set, (mi∗, ai∗) will be a unique
global maximum with respect to m−i.

Proposition 1 The best-response functions mi∗(m−i) and ai∗(m−i) are continuous, down-

ward sloping, and greater than zero for all m−i ≥ 0.

Proof: The slopes of the best-response functions can be computed by taking the total
differential of the system of FOC’s in equations (3.4) and (3.5). Using the Implicit Function
Theorem, we can isolate the effects of a marginal change in m−i by computing[

∂mi∗

∂m−i

∂ai∗

∂m−i

]
= −

[
(Bi

11 − Ci
11) Bi

12

Bi
12 (Bi

22 −Ki
11)

]−1 [
Bi

11

Bi
12

]
(3.6)

with partial derivatives evaluated at (mi∗,m−i, ai
∗
). The inverse matrix is guaranteed to

exist by the second-order condition’s for strict concavity in assumption 2. The determinant
of the matrix being inverted is

D =
(
Bi

11 − Ci
11

) (
Bi

22 −Ki
11

)
−
(
Bi

12

)2
> 0 (3.7)

using assumption 2. Thus the matrix is nonsingular and invertible.
The slopes of the best-response curves are

∂mi∗

∂m−i
= − 1

D

[(
Bi

22 −Ki
11

)
Bi

11 −
(
Bi

12

)2
]
< 0 ∀m−i ≥ 0 (3.8)

∂ai∗

∂m−i
=
Bi

12C
i
11

D
< 0 ∀m−i ≥ 0 (3.9)

The signs follow from Assumptions 2 and 3, which also guarantee that all partial deriva-
tives in the above expressions are defined and continuous over all possible values of mi,

8Essentially, we assume that given any ai, Bi
1 < Ci

1 for a sufficiently large mi, and similarly, given any
(mi +m−i), Bi

2 < Ki
1 for a sufficiently large ai.
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m−i, and ai. Furthermore, since we always have D > 0, the slopes of the best-response
functions are defined for all m−i ≥ 0. Thus, the best-response functions are continuous
with respect to m−i. �

The freeriding incentive is clear from proposition 1. If the foreign country increases its
mitigative effort, other things equal, the home country reduces both mitigation and adap-
tation. In other words, let your opponent do the work and reduce your own expenditures.
Similarly, the home country will increase both mitigative and adaptive efforts when the
foreign country reduces its mitigation.9

To identify a Nash equilibrium, we need to find a point (mH
NE,m

F
NE) such that chosen

mitigation rates are a best-response to each other. There is no similar condition for adap-
tation. Obviously adaptation will influence the optimal response of mi to m−i, and in that
sense, adaptation has an effect on strategic interaction. Still, as discussed above, countries
do not respond directly to foreign levels of adaptation. Given our assumptions, the model
has a unique Nash equilibrium, as shown in Proposition 2.

Proposition 2 A Nash equilibrium of the noncooperative game exists and is unique.

Proof: Since the mitigation best-response curves, mi∗(m−i), are downward sloping, con-
tinuous, and positive for all m−i ≥ 0, they must intersect at least once. This intersection,
represents a Nash equilibrium in both mitigation and adaptation (since optimal adaptation
varies as m−i changes as well). We now show that this intersection is unique.

A sufficient condition for the mitigation best-response curves to intersect only once is
that for any fixed mF > 0,10

∂mF∗

∂mH

(
mH∗(mF ),mF∗, aF∗

)
>

1
∂mH∗

∂mF (mH∗,mF , aH∗)
(3.10)

Essentially, when drawn with mF on the vertical axis and mH on the horizontal axis, this
requires that the slope of the best-response curve for mF appear “flatter” for any value of
mH .

Equation (3.8) in the proof of Proposition 1 gives the slope of the mitigation best-
response curve. Substituting for the inverse value of the determinant, D, this can be shown

9The main result in Ebert and Welsch (2011) is that situations exist where mitigation best-response curves
can be upward sloping. This drives further results in Ebert and Welsch (2012) and Eisenack and Kähler
(2016). In our model, the assumption of strict concavity of the benefit function, and in particular, the Hessian
condition of Assumption 2 preclude this result.

10Note that mF is fixed, whereas mH∗ and mF∗ represent optimal responses, meaning that mF and mF∗

will generally represent two distinct levels of F ’s mitigation (except at the Nash equilibrium) in equation
(3.10).
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to be

∂mi∗

∂m−i
= − (Bi

22 −Ki
11)Bi

11 − (Bi
12)

2

(Bi
11 − Ci

11) (Bi
22 −Ki

11)− (Bi
12)

2 ∈ (−1, 0) ∀m−i ≥ 0 (3.11)

from Assumptions 2 and 3. But then for any mF , it must be that

∂mF∗

∂mH

(
mH∗(mF ),mF∗, aF∗

)
> −1 >

1
∂mH∗

∂mF (mH∗,mF , aH∗)
(3.12)

Thus, the best-response curves are guaranteed to intersect once and only once. �

Figure 3.1 presents an arbitrary depiction of the best-response curves and the Nash equi-
librium. It is important to note that in Figure 3.1a, the best-response mitigation levels, mi∗,
implicitly account for optimal adaptation given m−i. This is consistent with the results of
Propositions 1 and 2. In other words, adaptation varies along these curves. Similarly, opti-
mal mitigation for country i varies along i’s adaptation best-response curve, ai∗(mi∗,m−i).

3.4 The Strategic Effects of Adaptation

The simple example in Section 3.2 shows how countries can be made better off when
adaptation is constrained or when it becomes less beneficial at the margin. This leads us
to ask what conditions must be satisfied for this to hold more generally? We begin by
examining this question in the context of the best response curves derived in Section 3.3.1.
Although we are focusing on the constrained adaptation scenario, the graphical analysis is
qualitatively the same for considering decreases in the marginal benefit of adaptation.

In Figure 3.2, the dashed lines represent an arbitrary example of mitigation best-response
curves in the unconstrained world, where countries can adapt freely. From our assumptions
and the first-order conditions in Equations (3.4)-(3.5), we know that adaptation will be
positive given any level of foreign mitigation, m−i.

Now consider what happens when country F is restricted from adapting. We assume
that when adaptation is constrained to zero, countries effectively maximize the payoff func-
tion from the Hoel (1991) model in equation (3.2).11 As a result of this constraint, the
marginal damage (benefit) of emissions (mitigation) for country F rises over all levels of
mH . Thus, optimal mitigation in F also increases given any mH , implying an upward shift

11Many of our results in Section 3.3.1 carry over to the game with only mitigation. In particular, it can be
shown that the best-response curves are continuous and downward sloping with slope greater than −1, and
that the Nash equilibrium is unique. Proofs of these results are analogous to the those in Section 3.3.1 and
are omitted.
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of the best-response curve of country F . In addition, the slope of the new best-response
curve will be steeper. Intuitively, as mH decreases, country F must respond without the
use of adaptation, whereas before, it could respond with both increased mitigation and
adaptation. Thus, additional mitigation will substitute for the adaptation that would have
otherwise increased, creating a steeper best-response curve.12

The new Nash equilibrium is represented by point B in Figure 3.2. Anticipating in-
creased mitigation from country F , country H finds it optimal to decrease its own. This
results in a Nash equilibrium with higher mF and lower mH . Since country F is now op-
timizing with respect to one less argument and mH

NE is lower, F must be worse off. How-
ever, country H is better off since total external emissions have decreased, and it is still
able to adapt. Country F has provided additional benefits of mitigation and inadvertently
aided country H , which now finds it optimal to reduce its own mitigation (and adaptation),
thereby lowering costs as well.

When country H is also restricted from adapting, the Nash equilibrium shifts to point
C in Figure 3.2. Relative to point B, mitigation in country H must increase and mitigation
in country F must decrease. As drawn, both mH and mF are higher at point C than point
A. As we will show later, this need not be the case for both countries. A Nash equilibrium
where the constraint results in decreased mitigation for one country is possible, as can be
verified by imagining different rightward shifts of the dashed best-response curves. How-
ever, it must be the case that aggregate emissions are lower at points B and C than point
A. This follows from the observation that the slope of any mitigation best-response curve
must be greater than −1.

In terms of payoffs, when we move from point B to point C, country H is worse off
since it has lost the ability to optimize over adaptation, and it elicits lower mitigation from
country F . Country F , however, is better off since H now mitigates more. Country F can
relax its mitigation expenditures and allow H to contribute more of the work.

From this analysis, it’s clear that restricting only one country will increase the payoff
of its rival at its own expense. This holds whether the other country is already constrained
or not. However, the more interesting question is how payoffs change between points A
and C, i.e. when we move from a situation in which everyone can adapt to one where no
one adapts. Notice that there are two opposing effects in this transition. On one hand, the
inability to adapt leads to lower payoffs at home since countries must increase expenditures
on mitigation (for any level of m−i) and can no longer optimize over two arguments. This
is the move from point A to point B. However, the foreign country also loses the ability
to adapt, and this results in greater foreign mitigation given any level of home mitigation,

12We omit the mathematical proofs of these results.
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which increases payoffs at home. This is the move fromB to C. It’s not clear without more
information which effect is stronger.

When will the benefit from the reduction in global emissions offset the payoff loss from
not being able to fully adapt? At first glance, calculus seems of little use since we are com-
paring discrete jumps in the action space. However, we can transform the question. In the
context of a constraint on adaptation, we can consider marginal changes in the constraint,
beginning with a constraint set exactly at the unconstrained Nash equilibrium levels of
adaptation. For shocks to the marginal benefit of adaptation, we can also consider marginal
changes rather than discrete jumps.

3.4.1 Constrained Adaptation

Suppose that we are in a world with constraints on adaptation, and these constraints are
binding for both countries in the Nash equilibrium. Now consider marginally tightening
the constraints. If this results in positive marginal payoff gains over some interval, then we
can say that over that interval, countries are made better off by restricting adaptation. If
this property holds over the entire region of effective adaptation constraints, [0, aiNE], then
countries will be better off in a world without adaptation.

This thought experiment follows Gaudet and Salant (1991), who consider subsets of
firms in oligopoly models and the conditions under which payoffs to these subsets will
increase when their strategic variables are marginally reduced (e.g. output in a Cournot
model). A key difference is that our agents have multiple weapons, and we consider con-
straints on the private choice variable (adaptation), not the strategic substitute (mitigation).

The Lagrangian that represents country i’s maximization problem subject to a constraint
on adaptation is

Li = Bi(mi +m−i, ai)− Ci(mi)−Ki(ai) + λi(āi − ai) (3.13)

where āi is the level of the adaptation constraint for country i. The resulting Kuhn-Tucker
conditions are

Bi
1(mi +m−i, ai)− Ci

1(mi) = 0 (3.14)

Bi
2(mi +m−i, ai)−Ki

1(ai)− λi = 0 (3.15)

λi(āi − ai) = 0 (3.16)

for all i. It is straightforward to extend the results of Section 3.3.1 and show that Nash
equilibrium mitigation is positive and unique given any level of a binding constraint.
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When we analyze the effects of a tighter constraint, we will be most interested in how
Nash equilibrium mitigation,mi

NE , changes. It is conceivable that for appropriately config-
ured reductions in the constraints, one country could substitute a large amount of mitigation
for the lost adaptation, causing the opposing country to greatly reduce adaptation in the new
Nash equilibrium, so much so that its constraint no longer binds. We are focusing on situ-
ations where both constraints are marginally tightened in ways such that both continue to
bind. Consider the following explanation.

One way to view a binding constraint is that givenm−i, you want to adapt more than you
can. Asm−i increases, your marginal benefits decrease, and you want to adapt and mitigate
less. Thus, given any binding āi > 0, there exists some m̄−i > m−i such that you would no
longer be constrained. In other words, for m−i sufficiently high, optimal adaptation is less
than the level of the constraint. But this means that if m−i < m̄−i, a marginal reduction in
ā−i will only increase m−i by a small amount. For a small enough change, i will remain
constrained. This holds for any āi less than the unconstrained adaptation level.

On the other hand, if we are beginning with a constraint set exactly at the optimal level
of adaptation given m−i, the increased foreign mitigation that results from a tighter foreign
constraint will cause home adaptation to fall below its own constraint. However, if we
simultaneously command a tighter home constraint, we can simply specify the constraint
to be slightly less than the new optimal level of adaptation. In a similar manner as discussed
above, we can identify changes in both constraints that continue to bind.

The reason this property is useful is that it allows us to ignore equations (3.15) and
(3.16) since the changes in adaptation levels will be equal to the changes in the constraints.
However, we have two countries, and therefore, two equation (3.14)’s. In assessing how
country H’s mitigation changes, we must take account of how country F ’s mitigation
changes as well.

We can estimate the mitigation changes with a linear approximation and application of
the Implicit Function Theorem. Differentiation of the two FOC’s for mitigation leads to the
following system of linear approximations.[

dmH
NE

dmF
NE

]
=

[ (
BH

11 − CH
11

)
BH

11

BF
11

(
BF

11 − CF
11

) ]−1 [
−BH

12 0

0 −BF
12

][
dāH

dāF

]
(3.17)

=
1

F

[
−
(
BF

11 − CF
11

)
BH

12 BH
11B

F
12

BF
11B

H
12 −

(
BH

11 − CH
11

)
BF

12

][
dāH

dāF

]
(3.18)

=

[
∂mH

NE

∂āH
∂mH

NE

∂āF

∂mF
NE

∂āH
∂mF

NE

∂āF

][
dāH

dāF

]
(3.19)
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where F is the determinant of the matrix being inverted, such that

F = −BF
11C

H
11 −BH

11C
F
11 + CH

11C
F
11 > 0 (3.20)

by the concavity assumptions. Thus, the inverted matrix in equation (3.17) is nonsingular
and invertible. Also, note that the functions in equations (3.17)-(3.20) are evaluated at Nash
equilibrium mitigation levels and constrained adaptation levels, (mH

NE, ā
H) and (mF

NE, ā
F ),

as described by the Kuhn-Tucker conditions. We will continue suppressing the arguments
for the remainder of the paper to minimize notation.

The partial derivatives in equations (3.18) and (3.19) can be signed using the concav-
ity assumptions. We find that ∂mi

NE

∂āi
< 0 and ∂mi

NE

∂ā−i > 0. That is, a marginal relaxation
in a country’s own adaptation constraint lowers its mitigation, while relaxing the foreign
constraint increases home mitigation in the Nash equilibrium.13 This is not surprising
since adaptation and mitigation are substitutes domestically, and countries trade-off mit-
igation internationally. Our assumptions also guarantee that the slope of the equilibrium
response function ∂mi

NE

∂āj
is continuous in āj . Since Nash equilibrium mitigation is posi-

tive and unique given any level of the constraint, the equilibrium response function will be
continuous in āj as well.

When we consider the effects of simultaneous changes in both countries constraints,
we cannot sign the total effect without further assumptions. This is because the effects of
home and foreign adaptation on mitigation work in opposite directions. While it is possible
to have a reduction in both constraints lead to decreased mitigation in one country, it is not
possible for both countries to decrease mitigation, as discussed previously with respect to
Figure 3.2. We can see this mathematically as well. From equation (3.18), if the magnitudes
of negative change in both constraints are identical, a necessary condition for mitigation to
decrease in country F is that BF

11B
H
12 > BH

11B
F
12. However, this condition also implies that

mH
NE must increase from the top row of equation (3.18).

The effects on mitigation are interesting, but we also care about the payoff effects. At
Nash equilibrium levels of mi, differentiation of equation (3.3) with respect to changes in
the adaptation constraints gives

dΠi
NE =

[
∂Πi

∂mi

∂mi
NE

∂āi
+
∂Πi

∂m−i
∂m−iNE

∂āi
+
∂Πi

∂ai
∂aiNE

∂āi

]
dāi

+

[
∂Πi

∂mi

∂mi
NE

∂ā−i
+

∂Πi

∂m−i
∂m−iNE

∂ā−i
+
∂Πi

∂ai
∂aiNE

∂ā−i

]
dā−i (3.21)

13A relaxation in the constraint will only result in changes to mitigation levels when the constraints are set
below the unconstrained levels.
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where functions are again evaluated at Nash equilibrium mitigation and constrained levels
of adaptation as described by the Kuhn-Tucker conditions. However, countries are fully
maximizing with respect to mitigation, and thus, the envelope theorem tells us that ∂Πi

∂mi =

0. Furthermore, the change in a country’s adaptation level is equal to the change in the
constraint, as previously discussed.

⇒ dΠi
NE =

∂Πi

∂m−i

[
∂m−iNE

∂āi
dāi +

∂m−iNE

∂ā−i
dā−i

]
+
∂Πi

∂ai
dāi (3.22)

Notice that ∂Πi

∂ai
= λi > 0 from the Kuhn-Tucker conditions in equations (3.14)-(3.16),

and represents the payoff gain from a marginal relaxation of the constraint. We also know
that ∂mi

NE

∂āi
< 0 and ∂mi

NE

∂ā−i > 0 from our earlier discussion. Thus, for a marginally tighter
constraint (dāi < 0 for all i), the first element inside the brackets in equation (3.22) is
negative and the second element is positive.

The tradeoff is clear; further constraining adaptation in one of the countries directly re-
duces its payoff since it pushes the country further away from its desired mix of adaptation
and mitigation, while also leading to reduced foreign mitigation in the new Nash equi-
librium. On the other hand, a tighter foreign constraint elicits greater foreign mitigation,
which increases the payoff at home. If, however, the net effect on foreign mitigation is neg-
ative, then the entire expression in equation (3.22) is also negative, and payoffs decrease.
It is obvious that for payoffs to increase, there must be a net-increase in foreign mitigation
that outweighs the payoff loss from not being able to fully adapt. However, as Proposition 3
shows, as long as foreign mitigation increases, home payoffs are guaranteed to increase as
adaptation is restricted in the neighborhood of the unconstrained Nash equilibrium.

Proposition 3 Consider marginally constraining adaptation in both countries below the

unconstrained Nash equilibrium levels. If foreign mitigation increases, then home payoffs

will also increase.

Proof: Beginning in the unconstrained Nash equilibrium with constraints set exactly at the
Nash equilibrium levels of adaptation, countries are effectively unconstrained and ∂Πi

∂ai
= 0.

Thus, by the envelope theorem, the effect of marginally tightened constraints from the Nash
equilibrium levels is

dΠi =
∂Πi

∂m−i

[
∂m−iNE

∂āi
dāi +

∂m−iNE

∂ā−i
dā−i

]
= Bi

1

[
∂m−iNE

∂āi
dāi +

∂m−iNE

∂ā−i
dā−i

]
(3.23)

The change in payoff is completely determined by the change in foreign mitigation. If
foreign mitigation increases (decreases), then home country payoffs will rise (fall). �
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Proposition 3 further implies that if foreign mitigation increases, there will exist an
interval of adaptation constraints in the home country, [āiL, a

i
NE), with simultaneous re-

ductions in the foreign country, over which home payoffs rise. Of course, the exact lower
bound of this interval will depend on the rates at which the two adaptation constraints are
tightened in relation to each other. Since a country is unambiguously better off as foreign
adaptation is constrained, the foreign rate of change matters. And heterogenous countries
will have different unconstrained Nash equilibrium levels of adaptation.

However, in general terms, our result does not rely on how the constraints are changed
in relation to one another. We do not assume that changes are symmetric in nominal or per-
centage terms; they may be completely heterogenous. The result holds that if we consider
marginally tightened constraints in both countries and foreign mitigation increases, then
home payoffs will increase over some interval. Consequently, if there were a ceiling set
on adaptation for each country in its own interval, then raising the ceilings would induce
both countries to substitute adaptation for abatement, shifting the Nash equilibrium in the
direction of the unconstrained outcome and resulting in both countries being worse off.

Without further assumptions, we cannot say whether these intervals contain zero adap-
tation. To some extent, it is unimportant. The point is that there will be too much adaptation
in the unconstrained Nash equilibrium, in the sense that limiting countries from adapting
will make everyone better off. This result holds whenever both countries increase mitiga-
tion as adaptation is constrained.

In Section 3.2, we presented a simple example with symmetric countries and compared
the unconstrained Nash equilibrium (aNE = 5) to the Nash equilibrium without adaptation.
If we instead consider symmetric marginal changes in the constraint, we can easily show
that mNE(ā) = 46 − ā

5
, ΠNE(ā) = 23276 − 12

5
ā − 39

25
ā2, and ∂ΠNE

∂ā
(ā) = −12

5
− 78

25
ā,

which confirms that Nash equilibrium payoffs and mitigation both increase as the adap-
tation constraints are lowered over the entire interval [0, 5]. Figure 3.3 shows this result
graphically.

Suppose instead that the payoff function were given by

Πi = 2 [200− (mi +m−i)] (mi +m−i) + (100− ai)ai − (mi +m−i)ai − (mi)2 − (ai)2 (3.24)

This can also be easily solved by hand to show that countries are better off in the Nash
equilibrium without adaptation. However, in this case, the payoff increasing interval of
constraints does not include zero. As shown in Figure 3.4, maximum Nash equilibrium
payoffs are actually achieved when the adaptation constraint is tightened approximately
61% below the unconstrained level. If the constraint is lowered further, the loss from not
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being able to adapt begins to outweigh the gain from increased foreign mitigation.
While we have concentrated this section on the idea of constraints to adaptation, we

can derive analogous results with a tax on adaptation that is refunded lump-sum, provided
that countries do not consider the size of the refund in their optimization problem. In other
words, for any constraint, we can identify a refunded tax on adaptation that replicates Nash
equilibrium mitigation, adaptation, and payoffs under the constraint. It is also possible for
a non-refunded tax on adaptation to improve payoffs in Nash equilibrium. Such a tax is
analyzed in the same way as a shock to the marginal benefit of adaptation in Section 3.4.2,
where a negative shock can be interpreted as an increase in the non-refunded adaptation
tax.

3.4.2 Shocks to the Marginal Benefit of Adaptation

In a classic paper, Bulow et al. (1985) consider a producer who is a monopolist in one
market and a duopolist in another. They show that it’s possible to have situations where the
monopolist receives a positive shock to its marginal revenue in the monopoly market, and
the monopolist is worse off in the resulting Nash equilibrium due to strategic effects in the
duopoly market.

The analogy to our model is to think of adaptation in each country as the monopolist
good, and mitigation as the duopolist good. We find that we can generate a similar re-
sult when we consider a shock to the marginal benefit of the monopolist good, even when
that shock occurs for both countries. Such a shock might be thought of as a technologi-
cal advancement (e.g., a new climate-resistent seed), or conversely, a technology that did
not perform as well as expected (e.g., a climate-resistent seed that does not perform as
expected).

Following Bulow et al. (1985), we model this by adding the term Ziai to the payoff
function in equation (3.3), such that

Πi(mi, ai) = Bi(mH +mF , ai)− Ci(mi)−Ki(ai) + Ziai (3.25)

with modified first-order conditions

∂Πi

∂mi
= Bi

1(mi +m−i, ai)− Ci
1(mi) = 0 (3.26)

∂Πi

∂ai
= Bi

2(mi +m−i, ai) + Zi −Ki
1(ai) = 0 (3.27)

A change in Zi represents a shock to marginal benefits, where a +1-unit change shifts
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the marginal benefit curve upward by 1-unit, holding mitigation constant. To identify the
effects of changes in Zi on Nash equilibrium mitigation and adaptation, we totally differ-
entiate equations (3.26) and (3.27) and solve the following system of equations. BH

11−CH
11 BH

12 BH
11 0

BH
12 BH

22−KH
11 BH

12 0

BF
11 0 BF

11−CF
11 BF

12

BF
12 0 BF

12 BF
22−KF

11

 dmH
NE

daHNE

dmF
NE

daFNE

 =

[
0 0
−1 0
0 0
0 −1

] [
dZH

dZF

]
(3.28)

⇒

 dmH
NE

daHNE

dmF
NE

daFNE

 = 1
G
·

 BH
12

[
(BF

11−CF
11)(BF

22−KF
11)−(BF

12)2
]

BF
12

[
(BH

12)2−BH
11(BH

22−KH
11)
]

−(BF
12)2CH

11−(BF
22−KF

11)[CH
11C

F
11−BH

11C
F
11−BF

11C
H
11] BF

12B
H
12C

H
11

BH
12

[
(BF

12)2−BF
11(BF

22−KF
11)
]

BF
12

[
(BH

11−CH
11)(BH

22−KH
11)−(BH

12)2
]

BH
12B

F
12C

F
11 −(BH

12)2CF
11−(BH

22−KH
11)[CH

11C
F
11−BH

11C
F
11−BF

11C
H
11]


·
[
dZH

dZF

]
(3.29)

where G is defined as the determinant of the matrix that is inverted. Using Assumptions 1-
3, G can be shown to be positive, implying that the matrix is nonsingular.

G =CF
11(BF

22 −KF
11)
[
(BH

12)2 −BH
22B

H
11 +KH

11B
H
11

]
+ CH

11(BH
22 −KH

11)
[
(BF

12)2 −BF
22B

F
11 +KF

11B
F
11

]
+ (BH

22 −KH
11)(BF

22 −KF
11)CH

11C
F
11 > 0 (3.30)

The expressions in equation (3.29) can be signed using Assumptions 1-3 to show that
∂mi

NE

∂Zi < 0, ∂aiNE

∂Zi > 0, ∂mi
NE

∂Z−i > 0, and ∂aiNE

∂Z−i > 0. In the Nash equilibrium, a country de-
creases mitigation in response to a positive shock to its own marginal benefit of adaptation,
and similarly increases mitigation when its opponent experiences the shock. Meanwhile,
Nash equilibrium adaptation increases for both countries – a country that receives a posi-
tive shock finds adaptation more beneficial and thereby decreases mitigation, which causes
the opposing country to increase both mitigation and adaptation.

Thus, a country that receives a positive shock enjoys the direct benefit from the shock
as well as the indirect benefit of increased foreign mitigation. On the other hand, payoffs
for the foreign country decrease due to lower mitigation from the shock-receiving country.

In the context of Figure 3.2, point A could refer to a situation with Zi = 0 for all i.
If F experiences a negative shock to the marginal benefit of adaptation, say ZF = −5, it
becomes optimal to reduce adaptation for any mH , thereby raising the marginal benefit of
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mitigation, and causing the mitigation best-response curve to shift up. The Nash equilib-
rium moves to point B, where F is worse off, and H is better off. If H experiences the
negative shock as well, similar reasoning shifts the Nash equilibrium to point C. Relative
to point B, F is now better off and H is worse off. However, in order to use calculus to
analyze the payoff change from point A to point C, we will again modify the problem and
consider marginal changes in Z.

Total differentiation of equation (3.25) with respect to its own shock variable, Zi, as
well as the foreign shock variable, Z−i, gives

dΠi
NE =

[
∂Πi

∂mi

∂mi
NE

∂Zi
+
∂Πi

∂m−i
∂m−iNE

∂Zi
+
∂Πi

∂ai
∂aiNE

∂Zi
+ aiNE

]
dZi

+

[
∂Πi

∂mi

∂mi
NE

∂Z−i
+

∂Πi

∂m−i
∂m−iNE

∂Z−i
+
∂Πi

∂ai
∂aiNE

∂Z−i

]
dZ−i (3.31)

Since we are calculating the changes in payoffs relative to the initial Nash equilibrium,
regardless of the pre-existing level of Zi and Z−i, it must be that ∂Πi

∂mi = ∂Πi

∂ai
= 0 for small

changes. Therefore, equation (3.31) simplifies to

dΠi =
∂Πi

∂m−i

[
∂m−iNE

∂Zi
dZi +

∂m−iNE

∂Z−i
dZ−i

]
+ aiNEdZ

i (3.32)

There are two important terms in equation (3.32): a direct effect from the change in
marginal benefits and an indirect effect that depends on how foreign mitigation changes
in response to the shock. The first term on the right (the indirect effect) will be positive
if foreign mitigation increases, while the second term on the right (the direct effect) will
inherit the same sign as the change in Zi.

For a negative shock, it can be shown that Nash equilibrium mitigation must increase for
at least one country.14 However, in the symmetric country case, mitigation will increase for
both. Thus, if adaptation in the initial Nash equilibrium is sufficiently low, then a universal
negative shock can increase payoffs for all countries.

Alternatively, a positive shock in the symmetric case can reduce everyone’s payoffs if
the reduction in foreign mitigation outweighs the payoff gain from increased adaptation
benefits. However, ∂aiNE

∂Z
> 0, and if we were to imagine setting Z at higher and higher

levels (and considering small changes from those levels), adaptation would continually
increase and mitigation would decrease. This implies that ∂Πi

∂m−i = ∂Bi

∂m−i = ∂Bi

∂mi = ∂Ci

∂mi

must be decreasing as well since mitigation is set optimally. We should therefore see the
change in payoffs turn positive at some level of Z = Z̄, since the first term of equation

14Again, imagine different rightward shifts of the mitigation best-response curves in Figure 3.2.
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(3.32) gets closer to zero, while the second term gets more positive. For Z > Z̄, the payoff
change remains positive. So, while it is possible that positive shocks will reduce Nash
equilibrium payoffs when adaptation is low, large enough shocks will have a beneficial
effect.

Consider again the simple example presented in Section 3.2. The payoff function that
incorporates the Z variable to account for shocks to the marginal benefit of adaptation is
given by

Πi = 2 [230− (mi +m−i)] (mi +m−i) + (200− ai)ai − 2(mi +m−i)ai − (mi)2 − (ai)2 + Ziai (3.33)

In the symmetric country case with identical shocks for both countries, the Nash equilib-
rium is solved easily.

mi
NE = 45− Z

16
(3.34)

aiNE = 5 +
5

16
Z (3.35)

Figure 3.5 plots Nash equilibrium payoffs, mitigation, and adaptation for a range of
potential Z. For negative shocks, payoffs increase down to Z = −16, at which point
aiNE = 0. At lower values of Z, optimal adaptation remains at zero, and there are no
further payoff gains. For small positive shocks, payoffs decrease. However, using equations
(3.32), (3.34), and (3.35), it can be shown that the marginal payoff gain turns positive for
Z > 80

41
≈ 1.95, as shown in Figure 3.5a.

3.4.3 Heterogeneous Countries with Opposite Mitigation Effects

Whether we are considering a constraint or a negative productivity shock, payoff gains
require an increase in foreign mitigation. With symmetric countries, this condition will
always be satisfied, but it will not always hold with heterogeneous countries. Consider
a situation in which one country is very effective at adapting relative to another country.
Furthermore, suppose that the country with low adaptive capacity is also more sensitive to
climate change. That is, the marginal damage of emissions increases at a quicker rate for
this country than its opponent. The usual contrast is Bangladesh versus the USA. When
adaptation is constrained in such a situation, it is possible that mitigation will only increase
for the US, while Bangladesh actually decreases mitigation.

The intuition is that with adaptation, the US is able to offset a much larger fraction of
mitigation than Bangladesh. Thus, when adaptation is constrained, the US must heavily
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substitute with mitigation.15 Even as the constraint in Bangladesh continues to bind, the
relatively large increase in US mitigation could lead to lower Nash equilibrium mitigation
in Bangladesh.16 This can be visualized in Figure 3.2 by imagining that the mitigation
best-response curve for Bangladesh only shifts up slightly when it is constrained. We now
analyze this more formally for both the constraint and negative shock examples.

In the constraint scenario, equation (3.18) shows that for mi
NE to decrease, we must

have
− (B−i11 − C−i11 )Bi

12dā
i < −Bi

11B
−i
12 dā

−i (3.36)

Therefore, a necessary condition for equation (3.36) to hold for dāi, dā−i < 0 is that

B−i11B
i
12

dāi

dā−i
< Bi

11B
−i
12 (3.37)

which is satisfied if, for example,

Bi
11 < B−i11 (3.38)

B−i12 < Bi
12 (3.39)

and dāi ≤ dā−i (3.40)

Similarly, in the shock scenario, manipulation of the top row of equation (3.29) shows
that for mi

NE to decrease after a small negative shock in each country, it must be that

Bi
12

[
(B−i12 )2 − (B−i11 − C−i11 )(B−i22 −K−i11 )

]
dZi

dZ−i < B−i12 [(Bi
12)2 −Bi

11(Bi
22 −Ki

11)] (3.41)

Notice that when dZi = dZ−i < 0, this condition will hold if both

B−i12 < Bi
12 (3.42)

and (Bi
12)2 −Bi

11(Bi
22 −Ki

11) < (B−i12 )2 − (B−i11 − C−i11 )(B−i22 −K−i11 ) (3.43)

If equation (3.42) is satisfied, then equation (3.43) will also hold when Bi
11 and Bi

22 are
sufficiently more negative than their foreign counterparts.

In both scenarios, B−i12 < Bi
12 implies that adaptation in −i reduces the marginal ben-

15As an example, consider a situation in which the large agricultural sector in the U.S. were prevented from
using climate-resistant crops.

16Regarding the binding constraint, the reasoning is essentially the same as in Section 3.4.1. A binding
constraint indicates that given m−i, you want to adapt more than you can, implying that there exists some
m̄−i > m−i at which point you would no longer be constrained. However, if the difference between m̄−i

and m−i is sufficiently large, then given small reductions in āi and ā−i, a large increase in m−i could reduce
optimal mi while still maintaining a binding āi.
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efit of mitigation by more than in i. This is equivalent to saying that adaptation in −i
reduces the marginal damage of emissions by more than in i, or in other words, adaptation
is relatively more effective for country −i. On the other hand, Bi

11 < B−i11 implies that the
marginal benefit of mitigation is decreasing faster for i than −i, i.e. the marginal damage
of emissions is rising faster in i, or rather, i is more sensitive to climate change. Similarly,
if Bi

22 < B−i22 , then the marginal benefit of adaptation also decreases faster for i.
In summary, we may see Nash equilibrium mitigation decrease for country i if it is

more sensitive to climate change and less able to offset damage with adaptation. This is
exactly our thought experiment above with Bangladesh. From equation (3.23), in such a
situation we know that there exist intervals, [āilow, a

i
NE], over which adaptation constraints

benefit Bangladesh at the expense of the US. Using equation (3.32), the same result holds
for negative marginal benefit shocks when the initial adaptation level in Bangladesh is
sufficiently low.

Given such results, an important question involves the net change in payoffs. When
will the gains to country i exceed the losses to its opponent? Manipulation of equations
(3.22) and (3.32) shows that for dΠi

NE > −dΠ−iNE it must be that

Bi
1

[∂m−i
NE

∂āi
dāi +

∂m−i
NE

∂ā−i dā
−i]+ ∂Πi

∂ai
dāi > −B−i1

[∂mi
NE

∂āi
dāi +

∂mi
NE

∂ā−i dā
−i]− ∂Π−i

∂a−i dā
−i (3.44)

Bi
1

[∂m−i
NE

∂Zi dZ
i +

∂m−i
NE

∂Z−i dZ
−i]+ aiNEdZ

i > −B−i1

[∂mi
NE

∂Zi dZ
i +

∂mi
NE

∂Z−i dZ
−i]− a−iNEdZ

−i (3.45)

where equations (3.44) and (3.45) are the conditions for the constraint and shock scenarios,
respectively. A necessary condition for each to hold is that

Bi
1dm

−i
NE > −B

−i
1 dmi

NE (3.46)

That is, the first-order approximation of the benefit to country i of increased mitiga-
tion from −i must exceed the same approximated loss to country −i. Since the slope of
any country’s mitigation best-response curve must be ∈ (−1, 0), examination of Figure 3.2
reveals that we must have dm−iNE > −dmi

NE .17 Therefore equation (3.46) will hold when-
ever Bi

1 > B−i1 , evaluated at Nash equilibrium levels of mitigation and adaptation. In
other words, the marginal benefit of mitigation for i must be greater than that for −i when
dmi

NE < 0 and dm−iNE > 0. Since this is a necessary condition, there are other important
factors. Namely, Nash equilibrium adaptation should be sufficiently low in both countries
for the result to hold in the shock scenario, while the marginal benefits of adaptation must
be sufficiently low for the constraint scenario. If equation (3.46) does not hold, then we can

17See equation (3.11) in the proof of proposition 2.
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guarantee that the losses will exceed the gains.
As a simple example, suppose that the payoffs for H and F are defined as

ΠH = 2.5
[
110− (mH +mF )

]
(mH +mF ) + 2.5(25− aH)aH

− (mH +mF )aH − (mH)2 − (aH)2 + ZHaH (3.47)

ΠF = 2
[
110− (mH +mF )

]
(mH +mF ) + 1.75(124− aF )aF

− 3.5(mH +mF )aF − (mF )2 − (aF )2 + ZFaF (3.48)

where BH
11 = BH

22 = −5, BF
11 = −4, BF

22 = −49
16

, BH
12 = −1, and BF

12 = −3.5 for all
combinations of (mi + m−i, ai). Hence, country H is both less effective at adapting and
more sensitive to climate change. In the analogy above, country H is Bangladesh and
country F is the US.

In Figure 3.6, Nash equilibrium payoffs and mitigation are plotted over different levels
of the constraint, where Zi = 0 for all i. In this example, the constraints are set (and
reduced) at the same rate for each country as a percentage of unconstrained adaptation.
However, unconstrained adaptation is less in country H (3.17 versus 13.79 in country F ),
and therefore in nominal terms, dāF < dāH as you move right to left in both sub-figures.18

Figure 3.7, on the other hand, presents Nash equilibrium outcomes for different shocks
to the marginal benefit of adaptation, as represented by Zi in equations (3.47) and (3.48).
Here we assume that ZH = ZF and therefore, dZH = dZF < 0 as you move right to left.

In both scenarios, we see that mF
NE rises and mH

NE falls whether the constraint is tight-
ened or the shock to marginal benefits becomes more negative. In the constraint scenario,
this is sufficient to guarantee at least an interval over which payoffs for H increase at the
expense of country F . In fact, this interval contains aH = aF = 0; H is increasingly better
off in Nash equilibrium the more adaptation is constrained, while F is increasingly worse
off.

In the shock scenario, we must also consider the direct effect of the shock. However,
since aHNE is low to begin with, the gain from foreign mitigation outweighs the direct effect
for H . Again, payoffs rise for H and fall for F as the shocks gets more negative.

In both the constraint and shock examples, the gains to country H exceed the losses to
F . However, as discussed above, it is not hard to construct examples where losses exceed
gains.

18However, both countries reach the constraint dāF = dāH = 0 at the same moment.
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3.5 Conclusion

In this paper, we have extended the Hoel (1991) model of climate change to include adapta-
tion as a strategic choice variable for each country. We have shown how the ability to adapt
reduces the incentive to mitigate since adaptation and mitigation are substitutes domesti-
cally. And since countries trade-off mitigation internationally, adaptation in one country
effectively harms others through increased emissions and higher costs of intervention.

We have illustrated how the strategic effects can lead to situations in which one or
both countries are better off when adaptation is restricted. The two scenarios we use to
motivate these results are a negative shock to the marginal benefit of adaptation and a
direct constraint on adaptation, noting that a tax with lump-sum refunds can replicate the
results of the constraint.

We are not advocating that countries entirely resist the urge to adapt. Clearly, adaptation
will be extremely important for the preservation and survival of some regions. However, a
blind reliance on our ability to adapt also seems misplaced, especially when we consider
the strategic nature of mitigation as a global public good and the fact that resources used to
invest in adaptation might also have been used to mitigate.

While the strategic interactions imply that any single country is unlikely to unilaterally
limit its adaptation, a multilateral agreement might be possible if countries could be per-
suaded together. Our results have shown that in many cases, payoff-improving intervals of
adaptation constraints (or taxes) do exist.

Although interest in adaptation to climate change is rapidly growing, there is still a
tendency in academic and policy circles to focus discussion mostly, if not entirely, on miti-
gation. In some respects, this is not surprising. Since adaptation provides a private benefit,
the marginal conditions for optimization are the same whether we are interested in the Nash
equilibrium or a social optimum. Thus, most intellectual thought considers solutions to the
global public goods aspect of mitigation and how to manage the externality of emissions.
However, the substitute nature of mitigation and adaptation implies that adaptation should
have a role in any optimal tax arrangement, at least from a theoretical point of view. On a
more general level, if we do not account for the incentive to adapt, any attempt to identify
preferred outcomes will be misguided. We will, in other words, target a level of emissions
that is not socially optimal.
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Figure 3.1: Best-Response Curves & the Nash Equilibrium

(a) Mitigation (b) Adaptation in Country H

(c) Adaptation in Country F
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Figure 3.2: Comparison of Nash equilibrium outcomes in games with and without adapta-
tion
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Figure 3.3: Constrained Adaptation — Example 1
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Figure 3.4: Constrained Adaptation - Example 2
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Figure 3.5: Shocks to the Marginal Benefit of Adaptation

(a) NE payoffs
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Figure 3.6: Heterogeneous Countries with Constrained Adaptation

(a) NE payoffs
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Figure 3.7: Heterogeneous Countries with Benefit Shocks
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APPENDIX A

Should net-returns be included in the models of
land use change?

In the context of estimating treatment effects, bad control occurs when the researcher in-
cludes additional explanatory variables that are themselves potential outcome variables
with respect to treatment.1 In other words, the variables termed “bad controls” could also
be regarded as possible dependent variables.

Might the net-return variables used in existing land-use models be bad controls when
climate is also included? As a useful example, consider that Ricardian models of agricul-
tural adaptation to climate change (Mendelsohn et al., 1994; Schlenker et al., 2006) mo-
tivate their dependent variable, farmland value, as the present-discounted stream of future
net-returns, which is then regressed on climate. They are explicitly estimating the causal
effect of climate on net-returns.

In the multinomial models of land use derived from Lubowski (2002)2, net-return vari-
ables are generally constructed as

Net Returns = (price ∗ yield)− costs (A.1)

Changes in climate (i.e., average weather) are likely to have a direct effect on yield
for any given land use, as shown in Burke and Emerick (2016) for the case of corn. Fur-
thermore, changes in climate might have indirect effects on prices and input costs in local
markets through feedback effects from changes in yield. This suggests that all of the com-
ponents of the net-returns variable can be viewed as endogenous to changes in climate.
This problem is explored below using a simple model.

1See section 3.2.3 of Angrist and Pischke (2009) for a discussion of the “bad control” problem. Dell et al.
(2014) also discuss the bad-control problem in the context of climate-change economics.

2See e.g., Lubowski et al. (2006, 2008); Radeloff et al. (2012); Haim et al. (2011); Hamilton et al. (2013).
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A.1 A simple climate model to illustrate bad control

Suppose that landowners have two options: pasture and cropland.3 Assume also that local
prices for crops take one of two values: “low” or “high”. Let yi be a dummy variable
representing the choice of cropland, and let pi be a dummy variable for “high” prices.

Climate change is also a binary outcome in this model, where ci = 1 for locations
that experience a change in climate, and ci = 0 otherwise. Climate change can affect the
realization of both yi and pi. However, we assume that climate change itself is randomly
assigned. This implies that whether or not a location experiences climate change is inde-
pendent of its potential outcomes, and therefore, average treatment effects on both y and p
could be estimated by regressing only on c.

Let y1i and y0i represent potential land use outcomes in location i when ci = 1 and 0,
respectively. We adopt a similar definition for p1i and p0i. Suppose that we are concerned
about omitted variable bias, and we decide to include pi as a control since a high crop
price can impact the decision to convert to cropland, and prices are likely correlated with
changes in climate. Holding prices fixed at “high” levels, we estimate the difference in the
probability of switching to cropland between locations that experience climate change and
those that do not by computing

E [y1i|p1i = 1, ci = 1]− E [y0i|p0i = 1, ci = 0] (A.2)

Since changes in climate are assigned randomly, equation A.2 is equivalent to

E [y1i|p1i = 1]− E [y0i|p0i = 1] (A.3)

which, by adding and subtracting E [y0i|p1i = 1], we can rewrite as

E [y1i − y0i|p1i = 1] + {E [y0i|p1i = 1]− E [y0i|p0i = 1]} (A.4)

The first term represents the true desired causal effect of climate change for locations
that also experience high prices under climate change. The second term, {·}, is selection
bias, and is likely negative in this simple model. Considering E [y0i|p0i = 1], areas that
have high prices in the absence of climate change also probably have higher than aver-
age cropland shares. If we condition instead on high prices when climate change occurs,
E [y0i|p1i = 1], then for some i, it may be that p1i = 1 while p0i = 0. On average, we might
expect that E [y0i|p0i = 1] > E [y0i|p0i = 0], which would imply that the {·} term is neg-

3This closely follows the example from Angrist and Pischke (2009) on pp 64-66 and uses similar notation.
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ative, though the magnitude would depend on the fraction of locations for which p1i = 1

and p0i = 0 as well as the difference in expected y0i. In the full model with additional
land uses, we might not be able to sign the bias if developed areas have higher than average
prices, but low cropland shares.

The point of this exercise is to explicitly show how including net-returns to avoid omit-
ted variables bias might instead create a bad control problem. As discussed in the parallel
example in Angrist and Pischke (2009), even if there is no effect of climate change on land
use (y1i = y0i), we will generally not find this from the model that includes net-returns.
And if changes in climate are randomly assigned, as is likely the case, then there is no need
to control for net-returns anyway.
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