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ABSTRACT

Computational and Experimental Development of Novel Combustion Strategies for
Advanced Internal Combustion Engines

by

Dimitris Assanis

Chair: Margaret S. Wooldridge

Fuel lean combustion strategies are attractive methods to increase the thermal ef-

ficiency of gasoline, spark ignition, internal combustion engines, but engine design

remains challenging due to the lean flammability limits of the fuel/air mixture. Turbu-

lent jet ignition originating from a pre-chamber can help address mixture flammability

limits by ejecting high enthalpy and highly reactive jets into the main combustion

chamber, enabling overall lean combustion. However, appropriate mixture conditions

must be achieved in the main combustion chamber as well as in the pre-chamber for

this strategy to be successful.

This dissertation study considered a series of experimental and computational

efforts to support the development of lean burn reciprocating engines. First, fun-

damental combustion experiments to quantify flame speeds, flammability limits, and

the interaction between flames and auto-ignition events of lean fuel/air mixtures were

performed. The approach used a rapid compression facility to study iso-octane and air

mixtures at a range of equivalence ratios and dilution levels. High speed cinematog-

raphy and pressure time histories were used to measure the fundamental combustion

properties of the mixtures at fixed state conditions. The experiments were performed

at premixed, moderate temperature (925 – 1000 K) and pressure (> 7.5 atm) con-

ditions. The results provided the first measurements of lean flammability limits at

conditions relevant to spark ignition engines.

The next phase of the research used computational fluid dynamics (CFD) of an

actual prototype spark ignition engine to evaluate different methods to create ignitable

mixtures in a pre-chamber while simultaneously creating fuel lean charges in the
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main combustion chamber. The concept of an indirectly fueled dual pre-chamber

engine was created and evaluated using the three-dimensional CFD simulations. Flow

metrics were defined to evaluate the quality of the engine configurations. Six design

iterations were evaluated with the goal of achieving near stoichiometric fuel-to-air

equivalence ratios (φ = 1.0) in two pre-chambers, while simultaneously achieving fuel

lean equivalence ratios (φ < 1.0) in the main combustion chamber. The simulation

results showed the final iteration achieved the design goals with good flexibility in

the fuel injection strategies (e.g. injection timing and fuel mass). The results also

demonstrated the utility of the flow-alignment and chamber filling criteria to select

nozzle design for pre-chambers.

In the next stage of the project, engine hardware was produced based on the CFD

results. The prototype engine was designed and built with optical accessibility to

allow evaluation of the fuel and air flow motion. High speed cinematography and

pressure diagnostics were used with a fully-transparent cylinder liner to illuminate

and image the fuel spray and air charge motion using Mie scattering. Fuel penetra-

tion distance, injection speed, plume cone angle, and plume to plume spray angle

were measured as a function of different operating conditions. Air charge motion

was qualitatively characterized. The fuel flow motion was in agreement with CFD

predictions and the air charge imaging confirmed vortices were developed near the

surface of the piston. The features of the fuel and air flow were considered vital based

on the CFD results to passively fuel the pre-chambers. The fuel spray data are the

first in situ measurements of the unique fueling strategy and unique hardware.

The combination of fundamental experiments, computational studies and applied

experimental validations have demonstrated a new process and new outcomes for

combustion science and technology that can operate significantly more fuel lean than

traditional spark ignition engines.

xvi



CHAPTER I

Introduction

1.1 Background

The earth's atmosphere is a magical phenomenon that acts as a thermally-insulating

blanket, absorbing and retaining solar radiation, in order to create an average surface

temperature of around 15° C, thus capable of supporting life as we know it today.

Water vapor is the most abundant greenhouse gas that helps the earth's atmosphere

create this thermally-insulating blanker effect. In a nutshell, as the earth's surface

temperature increases, air and trapped water vapor rises to higher and colder alti-

tudes, causing the water vapor to condense and form clouds. When a certain air

mass becomes oversaturated with water, the water vapor precipitates out of the sky

in the form of rain, dropping the water vapor to a lower altitude. This self-regulating

feedback mechanism creates an important transport mechanism for heat and energy

to be exchanged between the earth's surface and the atmosphere.

Carbon dioxide is the second most abundant greenhouse gas species in the earth's

atmosphere and a certain amount of it in our atmosphere is absolutely necessary

for the existence of human beings. Plants rely on photosynthesis to convert car-

bon dioxide and water vapor into glucose and subsequently release oxygen, required

for human life, back into the atmosphere. Unlike water-vapor, carbon dioxide does

not have a self-regulating feedback mechanism to disperse heat and energy between

atmosphere and the earths surface. Carbon dioxide sits in the atmosphere, until

photosynthesized, and absorbs energy in its molecular bonds very efficiently. This

absorbed energy would normally have been reflected back out to outer space from

the earth's surface, but instead becomes trapped in the atmosphere, like sunlight

in a greenhouse, and warms the atmosphere and correspondingly the earth's surface

temperature.
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Figure 1.1: Greenhouse gasses that are responsible for creating the required liv-
able surface temperatures on the earth can cause global warming if found in over-
abundance. [2].

Carbon dioxide is naturally emitted by the earth and its inhabitant, such as in the

form of volcanic eruptions or from humans and other animals through our respiration,

a process that combines oxygen and water to form glucose and releases carbon dioxide

back into the atmosphere. For billions of years, the amount of production of naturally-

occurring carbon dioxide was in balance with the naturally occurring sequestration

processes of our planet. Since the industrial revolution, the amount of carbon dioxide

has increased by a third, primarily through the burning of fossil fuels, thus upsetting

the balance found in the earth's atmosphere. Coincidentally, the earth's surface

temperature has been experiencing an unprecedented level of global warming during

the same time period. It is widely undisputed today that the excess, human-produced,

carbon dioxide is the leading cause of global warming due to the greenhouse effect

described earlier.

Due to the significant role carbon dioxide plays as a greenhouse gas in global

warming, the United States Energy Information Administration tracks and projects

the carbon dioxide emissions by industry sector, see Figure 1.2, to better understand

where human-produced carbon dioxide is generated. It is without a doubt that the
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transportation sector has been and will continue to be the largest producer of human-

produced carbon dioxide, beating out the residential, commercial, and industrial sec-

tors. Carbon dioxide is generated when an engine in a vehicle burns carbon-based

fuels, such as gasoline or diesel, in the presence of oxygen, found in air, to generate

propulsion power. Given a fixed set of monetary, temporal, and human capital re-

sources, in can be inferred the largest reduction in human-produced carbon dioxide

can be achieved in the highest production sector: transportation.

Figure 1.2: Carbon dioxide product by industry section in the United States. Data
is sourced from the U.S. Energy Information Administration [3].

The United States of America's governmental agencies have decided to tackle ve-

hicle transportation carbon dioxide production by setting a corporate average fuel

economy (CAFE) target, thus ensuring that new vehicles are more fuel efficient, thus

burning less fuel, and in turn emitting less carbon dioxide into the atmosphere. The

2025 CAFE mandate states that the fuel economy of a light duty passenger vehicle

should be 54.5 miles per gallon (mpg) by year 2025. The average new light-duty

passenger-vehicle fuel economy was 36 mpg in 2014. Thus, the government is asking

for light-duty passenger vehicle manufacturers to improve the vehicle fuel economy

by more than 50% by the year 2025. At the current rate of iterative fuel economy

improvement, which has seen an impressive uptick historically speaking, vehicle man-

ufacturers are projected to miss the mandate by about 10 years using traditional evo-

lutionary vehicle technology. Thus, it is abundantly clear that revolutionary vehicle
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technologies need to identified and implemented to meet the 2025 CAFE mandate of

54.5 mpg for new light-duty passenger vehicles. The work presented in this document

will focus on identifying revolutionary propulsion technologies, in the form of novel

combustion strategies, that can be implemented in an advanced internal combustion

engine necessary to meet the 2025 CAFE mandate.

Figure 1.3: New light duty passenger vehicle fuel economy compared to fleet aver-
age with 2025 CAFE mandate highlighted. Data is sourced from the United States
Department of Transportation [4].

French Neo-Platonist philosopher Bernard of Chartres's 12th century metaphori-

cal concept of dwarfs standing on the shoulders of giants (nanos gigantum humeris

insidentes) is best expressed in English by Sir Isaac Newton, “If I have seen further,

it is by standing on the shoulders of Giants”. In the truest of fashion, the insights

and teaching provided by the experts of the combustion field have the paved the way

to provide context for my work. The computational study of Lavoie et al. in 2012 [5]

examined a series of six combustion modes and their effect on vehicle fuel economy

gain. The outcomes of this study are of extreme importance here as they are the

first of their kind to lay out the vehicle fuel efficiency benefit, from a thermodynamic

perspective, of different combustion modes, as seen in Figure 1.4. The six combus-

tion modes can be sub-divided into two categories, mode one and two encompass a

naturally aspirated air charge induction system, and modes three through six encom-

pass a forced induction air charge induction system coupled with downsized engine
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displacement. Decreasing the engine displacement and boosting allows an engine to

operate with fewer thermodynamic losses and closer to its optimum brake specific fuel

consumption point for a larger portion of the simulated drive cycle. Most gasoline

vehicles operating on the road today are running stoichiometric spark ignition com-

bustion mode due to exhaust after treatment requirements of the three-way catalyst.

Advanced combustion modes, operating in equivalence ratio space of 0.2 ≤ φ ≤ 1.0,

could include combustion modes such as gasoline compression ignition or reactivity

controlled compression ignition (RCCI). Homogeneous charge compression ignition

(HCCI) is another combustion mode that could offer attractive vehicle fuel economy

improvements, but has demonstrated significant control challenges in the past due to

the chemical reactivity of the charge mixture [7, 8]. The same chemical kinetics that

enable the HCCI combustion mode are also sensitive to temperature stratification,

thus yielding the combustion control difficulties previously mentioned. Ultimately,

achieving a greater than 50% fuel economy improvement will require at least a lean

spark ignition or advanced combustion mode to run lean and dilute, coupled with

downsizing of engine displacement and forced induction. In summary the teachings

of Lavoie et al. shed insights, from a thermodynamic perspective, on what type of

combustion is necessary to achieve the required 50% vehicle fuel economy improve-

ment, but leave the door wide open in terms determining a combustion strategy that

will be controllable and operate in the proposed equivalence ratio space.

Advanced modes of internal combustion (IC) engine operation have potential to

dramatically improve IC engine efficiencies while simultaneously lowering engine emis-

sions [5, 9–12]. Advanced engine operating strategies include low temperature and

fuel lean conditions, which enable higher compression ratios and may reduce the need

for exhaust gas after-treatment [9–12]. Specifically, fuel lean combustion strategies

are attractive methods to increase the thermal efficiency of gasoline, spark ignition,

internal combustion engines, but engine design remains challenging because of the

charge mixture lean flammability limits associated with traditional spark ignition

systems. Turbulent jet ignition originating from a pre-chamber can help address mix-

ture flammability limits by ejecting high enthalpy and highly reactive jets into the

main combustion chamber, enabling overall lean combustion. Pre-chamber engine

concepts are not a new technology to the automotive industry. H.R. Ricardo's inter-

nal combustion engine, documented in 1918, is the earliest pre-chamber concept found

in the literature [13]. The pollution regulations of the 1970's brought renewed focus

on the pre-chamber engine concept from research institutions and industry [14–22].

Most of the pre-chamber engine concepts suffered from atypical induction designs
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that required complicated valvetrain arrangements [16]; however, recent advances in

numerical simulations and computational resources allowed gasoline pre-chamber en-

gine concepts to be systematically considered in new configurations. Naturally, one

is led to ask can advanced pre-chamber engine concepts enable lean burn combustion

with superior controllability than previous generations? In search of a response, a

new engine concept is proposed in which the pre-chambers are indirectly fueled to

improve pre-chamber mixture quality, thus eliminating wall wetting associated with

previous designs and in turn improving tailpipe emissions by reducing particulate

matter and unburned hydrocarbons. However, appropriate mixture conditions must

be achieved in the pre-chamber and main chamber for this strategy to be successful.
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Figure 1.4: Results from the Lavoie et al. [5] computational study compare the effects
of different combustion modes on vehicle fuel efficiency improvement. Figure adapted
from Lavoie et al. [5].
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1.2 Research Methodology

The objective of this thesis is to demonstrate the feasibility and flammability limits

of dilute lean burn combustion and to harvest this knowledge to design a pre-chamber

engine with potential to significantly improve thermal efficiencies of spark-ignited

engines. This will be achieved by performing experimental and computational studies

of dilute lean burn combustion and fuel / air preparation strategies in fundamental

devices and practical engine implementations.

Figure 1.5: Overview flow schematic of the research studies performed in this docu-
ment.

This thesis work starts with fundamental experimental studies of fuel ignition char-

acteristic in a rapid compression facility (RCF). The question being answered here is

what are the flammability limits of dilute, lean combustion of iso-octane (gasoline)

/air mixtures. These fundamental experiments are necessary to be performed in an

RCF as there is a need to isolate specific chemical mechanisms of ignition with simpli-

fied fluid mechanics, thus removing fuel mixing and turbulence effects commonly con-

voluted in engine experiments, at state and mixture compositions relevant to piston

engine conditions. The goals of theses fundamental experiments are to demonstrate

a flame can be initiated and propagated at fuel lean and dilution conditions and to

quantify sensitivity of lean limits to state and composition conditions.

Next, computational studies of in-cylinder flow development using a passively

fueled pre-chamber are performed using three-dimensional computational fluid dy-

namics (CFD) software. This portion of the work is trying to understand if there is a

feasible range of lean mixture conditions that can be achieved using practical engine

hardware and what range of mixture and stratification control can be anticipated.

In this phase, there is a need to identify key design aspects to create dilute lean

burn combustion in a piston spark ignition engine. The objectives of the computa-

tional studies are to demonstrate the superposition of fuel/air equivalent ratio can

be achieved in the pre-chambers using a dual injection strategy and to quantify the

sensitivity to breathing and fueling strategies.

Finally, the single cylinder optical studies are performed to determine if the CFD

predicted fuel spray and flow-field are achievable and if indeed they can yield the
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targeted mixture preparation in a real engine with a passively fueled pre-chamber.

There is a key need to identify fuel/air mixture preparation robustness to determine

a feasible engine operating envelope. To achieve this, the physical preparation of

fuel/air mixtures needs to be demonstrated, as well as an appropriate mechanism to

control the fuel/air mixture preparation must be demonstrated.

1.3 Executive Summary

Advanced modes of internal combustion (IC) engine operation have potential to

dramatically improve IC engine efficiencies while simultaneously lowering engine emis-

sions [5,9–12]. Advanced engine operating strategies include low temperature and fuel

lean conditions, which enable higher compression ratios and may reduce the need for

exhaust gas after-treatment [9–12]. Specifically, fuel lean combustion strategies are at-

tractive methods to increase the thermal efficiency of gasoline, spark ignition, internal

combustion engines, but engine design remains challenging due to two major factors

associated with the lean flammability limits of the fuel/air mixture. There is a sig-

nificant lack of fundamental combustion data, such as flame speeds and flammability

limits at the state and reactant mixture conditions important to advanced combus-

tion in IC engines. Consequently, the objective of this thesis starts by experimentally

characterizing flame speeds, flammability limits, and the interaction between flames

and autoignition events of lean iso-octane (an important gasoline reference fuel) and

air mixtures at premixed, moderate temperature (925 – 1000 K) and pressure (>

7.5 atm) conditions relevant to advanced engine combustion strategies. Chapter 2

describes the results of this experimental study of lean flammability limits. Chapters

3 – 6 describes the results of the application of the fundamental understanding of lean

combustion to modern engine design. Specifically, in recent years, pre-chambers have

been shown to enable advanced combustion modes in reciprocating engines. As part

of this dissertation, a dual pre-chamber (DPC) engine was designed and built which

leveraged our understanding of extending lean combustion limits. The project was

a collaboration between the University of Michigan (UM) and Hyundai-Kia America

Technical Center, Inc (HATCI). After a thorough review of the literature to assess

the potential of pre-chamber systems, the first phase of the project used computa-

tional fluid dynamics (CFD) simulations to develop a new engine design (described

in Chapter 3). The goal of the simulations was to demonstrate a novel concept of

passive fueling of the pre-chambers while simultaneously fueling the main combus-

tion chamber. The outcomes of the simulation research included recommendations
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for the dimensional geometry of a prototype DPC engine and fuel injection strategies

to achieve the fueling goals. The next phase of the project is described in Chapters 4

and 5 and presents the results of building and evaluating a physical prototype of the

DPC engine. The objective of the engine build was to demonstrate the flow dynamics

predicted by the CFD model. The prototype single-cylinder DPC engine was built

and installed at the UM. In addition to the engine head, piston, fuel injector, and

other hardware required, a metal cylinder liner was machined and used to statically

and dynamically test the engine. Details on the engine hardware and testing are

found in Chapters 4 and 5. A fully transparent fused silica cylinder liner was also

fabricated for imaging studies of the fuel and air flow. High-speed imaging captured

fuel injection events at different injection timings and the air charge motion (via water

vapor condensation). Results of the imaging study are presented in Chapter 5. The

features of the fuel and air flow were considered vital based on the CFD results to pas-

sively fuel the pre-chambers. The fuel spray data are the first in situ measurements

of the unique fueling strategy and unique hardware. Conclusions of the dissertation

and recommendation for future work are presented in Chapter 6.
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CHAPTER II

Experimental Investigation of Flame Autoignition

Interactions

This chapter was published as Assanis, D., Wagnon, S.W., Wooldridge, M.S.,

(2015) An Experimental Study of Flame and Autoignition Interactions of Iso-Octane

and Air Mixtures, Combustion and Flame 162, 1214-1224,

doi:10.1016/j.combustflame.2014.10.012. [1]

2.1 Abstract

Recent modifications to the University of Michigan rapid compression facility (UM

RCF) were made to allow direct imaging of flame/autoignition interactions using com-

pression to initiate autoignition chemistry and a spark plug to initiate simultaneous

flame development. The experimental data in this study quantify the effects of spark-

initiated flame propagation on autoignition of iso-octane / O2 / inert gas mixtures

at well-defined initial conditions. The work leveraged the controlled environment of

the UM RCF, in which temperature, pressure, and composition are nominally uni-

form and well-known at the end of compression. Flame initiation by the spark plasma,

flame propagation, and autoignition were monitored using high-speed optical imaging

of chemiluminescence and in situ pressure time histories. End-of-compression tem-

peratures from TEOC = 942 - 1018 K were considered, while the end-of-compression

pressures were nominally constant within the range of PEOC = 7.8 – 9.5 atm. The

fuel-to-O2 molar equivalence ratio was varied from φ = 0.20 - 0.99 and dilution, de-

fined as the molar ratio of inert gases to O2 in the reactant mixture, was varied from

inert:O2 = 3.76 - 7.47 to determine the effects on flame/autoignition interactions as

well as to identify the lean flammability limit of the mixtures as a function of dilu-

tion. Flame propagation is generally expected to decrease autoignition delay times
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by compression heating the unburned portion of the mixture. The effect of flame

propagation was maximized in these experiments by igniting the mixtures early dur-

ing the autoignition process. Later spark timings had small to negligible effect on

the autoignition delay time. Dilution had significant effect on the lean flammability

limits, increasing from a lean limit of φ = 0.35 at air levels of dilution to φ = 0.65

at inert:O2 dilution of 7.5. The flammability limit was well correlated with the the-

oretical adiabatic flame temperature of each experiment. The propagation rates of

flames successfully initiated by the spark plasma were determined from the imaging

data and were ∼ 1 – 12 m/s. The magnitude of the propagation rates and the effect

on the time integrated temperature scaled with the energy content of the mixtures

as indicated by the theoretical adiabatic flame temperature.

2.2 Introduction

Advanced modes of internal combustion (IC) engine operation have potential to

dramatically improve IC engine efficiencies while simultaneously lowering engine emis-

sions [5, 9–12]. Advanced engine operating strategies include low temperature and

fuel lean conditions, which enable higher compression ratios and may reduce the need

for exhaust gas after-treatment [9–12]. Homogeneous charge compression ignition

(HCCI) is a low temperature combustion strategy that has been the focus of numer-

ous experimental and computational studies in the past decade. Several excellent

articles review research progress on HCCI and other advanced engine strategies in-

cluding discussions of important limitations of current scientific understanding [9,12],

demonstration of operating modes [9,11,12], and advances (existing and required) in

related engine technology [9, 11,12].

Methods of advanced combustion in IC engines often encompass mixed modes

of combustion, in which flames and autoignition processes are simultaneously con-

tributing to combustion and heat release rates. For example, during spark-assisted

compression ignition (SACI), a spark plug is used to initiate a flame into the nom-

inally homogeneous or partially stratified fuel/air charge in an internal combustion

engine. SACI has been demonstrated to expand high and low load operation be-

yond HCCI boundaries [23–25]. However, methods to optimize SACI and other

mixed modes of combustion are limited by the lack of fundamental understanding

of flame propagation and autoignition interactions at conditions relevant to advanced

engine strategies. Moreover, advanced combustion strategies like HCCI, SACI and

gasoline direct injection (GDI) often consider highly dilute operation as a means to
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achieve high efficiency goals and meet emerging and more strict emissions require-

ments. These strategies typically target either (globally) fuel lean or stoichiometric

conditions. The combination of high levels of dilution and fuel lean reactant mix-

tures is particularly challenging, as flame propagation and heat release rates decrease

dramatically compared to undiluted stoichiometric conditions.

There is also a significant lack of fundamental combustion data, such as flame

speeds and flammability limits at the state and reactant mixture conditions impor-

tant to advanced combustion in IC engines. This gap complicates optimizing engine

operation, especially the development and validation of theory and models which ac-

curately describe mixed modes of combustion like SACI. Consequently, the objective

of the current study is to experimentally characterize flame and autoignition inter-

actions of iso-octane (an important reference fuel) and air mixtures at premixed,

moderate temperature (925 – 1000 K) and pressure (>7.5 atm) conditions relevant to

advanced engine strategies. The technical approach of this study leverages the well-

defined mixture and state conditions that can be created using a rapid compression

facility (RCF). Previous studies have demonstrated the value of RCFs as experimen-

tal platforms for providing important insights into the effects of mixture stratification

on spark ignited flames during direct injection of the fuel [26–30]. Much has been

learned from these previous RCF studies, including the effects of spark and fuel tim-

ing on mixture stratification and the resulting flame propagation [26–30]. The focus

in the current work differs fundamentally from these previous studies as the focus is

on flame/autoignition interactions at conditions with nominally homogeneous initial

conditions, where thermal and mixture stratification have been minimized prior to

spark igniting the mixture. Specifically, the effects of flame propagation on the au-

toignition delay time are determined in this study and the flammability limit for lean,

dilute, premixed iso-octane air mixtures is determined. Measurements of flame prop-

agation rates were also made for mixtures in which flames were successfully initiated

and sustained in the test gas mixture.

2.3 Experimental Approach

All experiments were conducted using the University of Michigan rapid compres-

sion facility (UM RCF) which has been used for numerous autoignition studies, in-

cluding extensive characterization of iso-octane autoignition [6,31–33]. The UM RCF

is essentially a chemical reactor that creates nominally uniform temperature and pres-

sure conditions using a free piston to compress a test gas mixture. The test section of
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the UM RCF provides excellent optical and physical access to interrogate the gases

during autoignition. The technical approach used in this study compared autoigni-

tion data with and without using a spark plug to initiate flames during the ignition

delay time. The autoignition characteristics of the mixtures were determined using

the pressure time history, and the characteristics of flame propagation were deter-

mined using high-speed imaging. The spark/autoignition experiments were also used

to identify flammability limits as a function of dilution for fuel lean iso-octane air

mixtures.

2.3.1 Rapid Compression Facility Details

Details of the dimensions, operating procedure, and results of RCF characteriza-

tion studies have been described previously and can be found in Donovan et al. [34]

and He et al. [31]. The key features are highlighted here: The UM RCF consists of a

driver section, driven section, test section, a sabot or free piston, a globe valve, and

a mixing manifold. The driver section is separated from the driven section by a fast

acting hydraulic globe valve assembly. Due to the high pressure differential across

the globe valve assembly, a thin (0.05 mm thick) and scored plastic (Mylar) sheet

is placed between the vacuum side of the valve assembly and the driven section to

prevent air leaking into the evacuated driven section. The RCF achieves desired ther-

modynamic conditions through compression heating of the test-gas mixture by the

sabot. The sabot consists of a solid plastic (Delrin) body with a brass counterweight

located in the posterior and a detachable disposable nosecone made of deformable

ultra-high molecular weight polyethylene. The sabot design includes two u-ring seals

to minimize blow-by of the driver gases into the driven section during compression of

the test-gas mixture.

As shown in Figure 2.1, downstream of the driven section is the test manifold,

which consists of the converging, extension, and test sections. The converging section

traps the cold boundary layer gases outside the test section to maximize test times

at high temperatures and pressures, by minimizing fluid mixing and heat losses. The

critical dimensions of the extension section are the internal diameter of 5.08 cm and

the axial length of 8.05 cm.

A new test section was fabricated from 316L stainless steel for this study to allow

a spark plug to be mounted in the test section. The critical dimensions of the test

section are the internal diameter of 5.08 cm and the axial length of 5.88 cm. For

each experiment, the sealed test volume consists of the test section volume and part

of the extension section volume. The nosecone seals the test section by an annular
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interference fit in the extension section, resulting in a nominal test volume of 186.1

cm3. The test section is sealed using a polycarbonate endwall, 12.7 mm thick, and a

load distribution plate that allows optical access for end-view imaging. Polycarbonate

is more durable than quartz and polycarbonate provides comparable transmission

efficiency to quartz in the visible spectrum, where the transmission efficiency of quartz

is ∼ 90% and of polycarbonate is 85 – 90% in the wavelength range 390 - 700 nm.

Figure 2.1: Side-view cross-section schematic of the UM RCF showing the driven
section, the test manifold, and the high-speed camera. The sabot location corresponds
to the end of compression in the test section.

The pressure time histories for each experiment were measured using an amplified

high-speed transient piezoelectric pressure transducer (Kistler 6045A transducer and

Kistler 5010B charge amplifier). As shown in Figure 2.1 and Figure 2.2, the pressure

transducer was mounted on the bottom of the test section (i.e. at the piston or

end view 6 o'clock position), and the spark plug was mounted at the 11 o'clock

position. The orientation of the transducer and spark plug are not expected to effect

the results of this study. The information is provided to orient the imaging data. All

data except the camera imaging results were recorded using a 32 bit data acquisition

system (National Instruments cDAQ-9172) operating at 100 kHz and collected using

a custom data acquisition program (LabView, 2011).

2.3.2 Spark Ignition System Details

The spark ignition system used in this study is similar to traditional electronic

ignition systems used in automotive applications. The spark plug is a production
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Figure 2.2: End-view schematic of the UM RCF showing the driven section and the
test manifold. The sabot location corresponds to the end of compression in the test
section.

flat seat iridium tip model (NGK IX BKR6EIX-11) set with a 1.1 mm gap between

the central and ground electrodes. The central electrode sits 5 mm proud relative

to the wall of the test section. An ignition module (Wells DR178) was used to

signal an ignition coil (Accel 140024) with a maximum discharge voltage of 48,000 V.

The ignition coil was powered by a regulated power supply capable of 12 A output

(Pyramid PS-14KX 13.8 V) and connected to the spark plug using a spiral wound,

silicone-sleeved, low resistance conducting spark plug wire. The amount of spark

discharge energy was not changed throughout the experimental study. Thus, within

the tolerance expected for a typical production automotive ignition system, the spark

discharge energy remained constant for every experiment. The minimum ignition

energy for each mixture composition will vary to some degree. The results may

therefore be sensitive, to some extent, to the amount of ignition energy introduced to

the test-chamber.

The ignition module was triggered by the falling edge of a 2.5 V, 2 ms square wave

produced by a digital delay/pulse generator (Stanford Research, Inc. DG535). The

combined resistance of the secondary coil, insulated connecting wire, and the spark

plug was measured to be 14.25 kΩ. The timing of the spark discharge was targeted to
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occur at the end of the first quartile of the predicted ignition delay time as determined

by evaluating the Walton et al. [6] iso-octane correlation at the targeted experimental

conditions. This methodology ensured the spark discharge occurred after the end of

compression by the sabot and early during the autoignition delay time, to allow the

maximum time for a potential flame to propagate.

2.3.3 High-Speed Imaging System Details

A high-speed color digital video camera (Vision Research Phantom v711) was lo-

cated downstream of the transparent end wall along the axis of the test section to

record end-view imaging during the experiments. The high-speed camera featured a

1280 x 800 pixel CMOS sensor (Vision Research) with a 7 gigapixel/second through-

put capable of recording from 7,530 frames per second (fps) at a maximum resolution

of 1280 x 800 pixels to 680,000 fps at a maximum resolution of 128 x 8 pixels. The

CMOS sensor used a combination of four filters to achieve particular spectral response

resulting in red, green, and blue output signals. The blue signal was acquired using a

bandpass filter with peak transmittance at 455 nm and half-power transmittance at

wavelengths of 406 nm and 508 nm. The green signal was acquired using a bandpass

filter with a peak transmittance at 540 nm and half-power transmittance at wave-

lengths of 478 nm and 596 nm. The red signal was acquired using a bandpass filter

with peak transmittance at 636 nm and half-power transmittance at wavelengths of

579 nm and 660 nm. A low-pass filter with a cutoff frequency of approximately 715

nm was used to attenuate infrared emission. The camera lens assembly included a 50

mm high-speed lens (Navitar DO-5095 f/0.95), a 62 mm magnification lens (Hoya +4)

to decrease the depth of field, and a 62 mm lens (Hoya Pro1 Digital Filter) to reduce

internal light scattering and reflections in the lens assembly. The front lens element

(Navitar DO5095) is made of single anti-reflective coating glass that can reflect up to

4 – 5% of incoming light. The digital filter (Hoya Pro1) is a multi-coated filter that

features three layers of anti-reflective coating, thus reducing the reflected light to just

1 – 2% of incoming light. Internal light scatter, caused by stray reflected light, should

be reduced because stray light can hit the CMOS sensor and create non-physical ef-

fects such as flares or ghosting. The camera was triggered using a digital delay/pulse

generator (Stanford Research, Inc. DG535). The recording time was centered on the

end of compression (i.e. the nosecone seating event) by applying a delay of 6.5 ms

from when the digital delay/pulse generator was initially triggered by the sabot.

Camera software (Vision Research Phantom Software PCC 2.0.717.0) was used

to set-up, calibrate, and capture all relevant videos. The camera was focused on the
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plane of the spark plug electrode prior to every experiment using a high exposure

setting and corresponding low frame rate setting. A digital white-balance was per-

formed as necessary using a white calibrating sheet of paper to ensure the red, green,

and blue signals were balanced in magnitude. The exposure was decreased until the

sensor did not detect any pixel saturation; at this point, the digital white balance was

performed through the software. The camera settings were then adjusted to the ap-

propriate resolution (512 x 512 pixels), frame rate (10,000 fps), and exposure (99.64

µs) settings for the experiments. For the settings applied in this study, one pixel

is equal to approximately 0.1 x 0.1 mm. The zero signal level for the CMOS array

was calibrated with the lens cap on the camera using the current session reference

function of the camera control software.

The high-speed videos were analyzed frame-by-frame using a combination of the

camera specific software (Phantom SDK 12.0.705.0) and algorithms developed for

this work and implemented in Matlab (R2012a). The image analysis was used to

determine the location of the flame front in each image, for experiments where a

flame was successfully initiated. For each experiment, a threshold was applied to

convert the color images to binary scale, and an origin was defined as the centroid

of the spark discharge. Vectors originating from the centroid were used to determine

the location of the flame front in each frame. As will be shown later, the flames were

often irregular in shape, and apparent flame propagation rates were determined along

the measurement vectors from the time histories of the flame front location

2.3.4 Experimental Procedure

The test gas mixtures were made in a stirred mixing tank external to the RCF.

A manifold was used to prepare the test gas mixtures using ultra high-purity compo-

nents. The purity and source of the reactants are provided in Appendix A. The partial

pressures of the gases (0 – 100 torr and 0 – 1000 torr) were measured using two ca-

pacitance diaphragm pressure gauges, respectively (Varian CeramiCel VCMT12TFA

and VCMT13TFA). The partial pressures were varied in different mixtures to achieve

the targeted fuel-oxygen equivalence molar ratio, φ, and inert gas to oxygen, I : O2,

molar ratio. Each test gas mixture was stirred at 500 revolutions per minute (rpm)

for a minimum of 20 minutes to ensure mixture homogeneity.

After the test gas mixture was prepared, each ignition experiment used the fol-

lowing process. The sabot was placed at the upstream end of the driven section.

The driven section was evacuated and then filled with the test gas mixture to an

initial pressure of P0 = 63.6 – 67.3 ± 0.3 torr. The hydraulic globe valve was actu-
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ated, launching the sabot down the length of the driven section until the nosecone

of the sabot seated via an interference fit in the extension section. The RCF was

disassembled, cleaned, and re-assembled between each experiment.

A laser diode (50 mW, 532 nm) paired with a photodetector (Hamamatsu S1787-

12) were located slightly upstream of the test section (aligned orthogonal to the axis of

the RCF) and used to determine the time the sabot passed the laser diode/photodetector

location. When the sabot passed the measurement port (and blocked the laser beam),

a signal was sent from the photodetector to trigger two digital delay/pulse generators

(Stanford Research, Inc. DG535) that in turn triggered the spark and data acquisi-

tion systems. The effect of changing the spark timing on the lean flammability was

investigated for some experiments. The time of the spark discharge was varied from

the end of the first, second, and third quartiles of the predicted autoignition delay

time. No effect of spark timing was observed on the lean flammability limit. For

the majority of the experiments, the spark timing was set for the end of the first

quartile of the predicted ignition delay time, in order to maximize the time for flame

propagation and therefore maximize the effects of flame propagation on autoignition.

2.4 Results

2.4.1 Flame Effects on Test Gas Conditions

Experiments were conducted over a range of mixture compositions, targeted tem-

peratures and pressures, and with and without the use of the spark plug to initiate

flames. Figure 2.3, on the next page, shows typical pressure time history and imaging

results for an experiment in which the spark system was applied. The results are

for a mixture with an inert gas to oxygen ratio of I : O2 = 4.99 (mole basis) and a

fuel to oxygen equivalence ratio of φ = 0.99 (mole basis). The pressure and pressure

derivative time histories are shown in the upper panel. Select frames from the imaging

sequence are shown in the lower panel. The images in the figure are color enhanced

for clarity, and not all frames in the video file are presented. The end of compression

(EOC) pressure for the experiment is PEOC = 8.4 atm and the EOC temperature is

TEOC = 976 K, as determined by numerical integration of the isentropic compression

relation Eqn. 2.1

TEOC∫
T0

γ

γ − 1
d ln(T ) = ln(

PEOC
P0

) (2.1)
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where P0 is the initial charge pressure, T0 is the initial charge temperature (typi-

cally 298 K), and γ is the temperature dependent ratio of the specific heats of the unre-

acted mixture, which is determined using the NASA Thermodynamic Data Base [35].

Figure 2.3: The top panel presents the pressure and pressure derivative time histories
for a typical iso-octane autoignition/flame interaction experiment (I : O2 = 4.99, φ =
0.99, TEOC = 976 K, and PEOC = 8.4 atm). The lower panel presents selected frames
from the video sequence. The spark triggering signal (arbitrary units) is included for
reference as the dotted line.

In Figure 2.3, EOC is set as time t = 0, and volumetric autoignition of the mixture

is indicated by the maximum rate of pressure rise after the EOC, dP
dt
max. Volumetric

autoignition also corresponds with the high intensity chemiluminescence that fills the

imaging window in the last frame of the sequence presented in the lower panel of

Figure 2.3. The autoignition delay time, τign, is determined from the pressure and
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pressure derivative time histories as the elapsed time between the PEOC and maximum

rate of pressure rise, dP
dt
max, as shown in Figure 2.3.

The effects of the spark are evident in the pressure time history and the imaging

sequence. The compression process prior to the EOC is smooth. Immediately fol-

lowing EOC, there is a slight observable decrease in the test section pressure caused

by cooling of the test gases due to the colder test section walls. The decaying os-

cillatory behavior in the pressure signal, observed temporarily after the EOC, is an

artifact of the fast Fourier transform filter used to reduce the noise recorded by the

pressure transducer which originates from the impact of the nosecone seating. The

spark trigger signal is included for reference in the upper panel of Figure 2.3 as the

dotted line (arbitrary units). The falling edge of the spark trigger signal occurs at t

= 3.63 ms, and the spark plasma appears within approximately 110 µs of the trigger

signal in this experiment. A flame kernel is initiated by the spark discharge, and a

flame propagates outward from the spark electrode. Within approximately 1 ms of

the falling edge of the spark signal, the pressure in the test section starts to increase.

The rate of pressure rise steadily increases prior to volumetric ignition, and as seen

in the imaging data, the pressure rise correlates with the progress of the flame prop-

agation through the test gas mixture. The increase in pressure prior to volumetric

autoignition is primarily associated with compression heating of the remaining un-

burned mixture by the spark initiated flame. Pressure rise can also occur due to

exothermic reactions during the autoignition delay time. As will be shown below,

the chemical contribution can be small relative to the effects of compression heating;

however, the relative contributions will be a function of the volume of the test section

and the energy content of the mixture.

EOC conditions are appropriate initial conditions for each experiment and a sum-

mary of the EOC conditions is provided in Table 2.1. Additionally, in previous UM

RCF autoignition studies [6,36], time-integrated values for pressure and temperature

were found to represent the test conditions quite well, in terms of correlating τign data

with the average state conditions experienced by the unburned mixture throughout

the autoignition delay time period. In this study, the time integrated conditions are

outcomes of the flame and autoignition interactions for a specific set of mixture com-

position, spark timing, and EOC conditions. As seen in Figure 2.3, using the EOC

conditions to define the state conditions of the experiment would improperly estimate

the pressure (and consequently the temperature) of the gases in the test section at

the time of volumetric autoignition. For these experiments, the time-integrated val-

ues capture the effects of heat losses as well as the (potentially offsetting) effects of
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compression heating due to flame propagation. Thus, the effective state conditions

reported in the current work are results of each flame/autoignition interaction exper-

iment, and the effective conditions reflect the extent to which the EOC conditions

have been affected by flame propagation and heat losses and flame propagation.

As in previous UM RCF studies [6,36], the effective pressure, Peff , for each exper-

iment is defined as the time-integrated average pressure from the maximum pressure

due to compression (PEOC) to the time of maximum rate of pressure rise, dP
dt
max, or

Peff =
1

t dP
dt
,max−tPEOC

t dP
dt

,max∫
tPEOC

P dt (2.2)

The corresponding effective temperature, Teff , for each experiment is determined

using the same form as Eqn. 2.1, in which the end of compression parameters are

replaced with the effective pressure and temperature:

T0∫
Teff

γ

γ − 1
d ln(T ) = ln(

Peff
P0

) (2.3)

For reference, the effective conditions for the results presented in Figure 2.3 were

Peff = 8.8 atm, and Teff = 985 K, and the EOC conditions were PEOC = 8.4 atm,

and TEOC = 976 K.
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Table 2.1: Summary of experimental conditions and results for autoignition/flame interaction experiments. The mixture
composition is provided on a mole basis. The equivalence ratio is based on iso-octane to O2 molar ratios. Experiments in which
flames were successfully initiated by the spark discharge include the average propagation rate of the flames, Uavg. Experiments
in which flames are not successfully initiated by the spark are denoted as below the flammability limit, BFL. Experiments in
which flames are successfully initiated but apparent flame speed measurements were not performed are denoted as above the
flammability limit, AFL.

Test Gas Compositiona density
φ inert χi−C8H18 χO2 χN2 χAr TEOC PEOC Teff Peff τign τspark

b Uavg Tad
c ratiod Cve

I : O2 [%] [%] [%] [%] [K] [atm] [K] [atm] [ms] [ms] [m/s] [K] [ρB
ρU

] [ J
mol−K ]

0.20 3.76 0.33 20.94 75.14 0.01 988 8.9 966 8.1 30.5 11.9 BFL 1600 0.61 26.93
0.30 4.98 0.40 16.66 80.72 2.23 998 8.3 983 7.8 23.8 7.3 BFL 1743 0.56 26.15
0.30 3.76 0.50 20.90 77.90 0.00 977 8.4 959 7.8 26.1 9.0 BFL 1879 0.51 26.95
0.30 3.76 0.50 20.90 77.90 0.01 988 8.8 968 8.1 20.9 8.8 BFL 1888 0.51 27.02
0.40 3.76 0.66 20.87 74.71 3.76 978 8.6 965 8.1 20.5 7.0 1.4 2152 0.44 27.03
0.40 4.99 0.53 16.60 82.51 0.00 985 8.7 964 8.0 26.0 9.9 BFL 1934 0.50 26.95
0.49 4.98 0.66 16.61 79.31 3.43 976 8.4 965 8.0 22.9 9.4 1.5 2144 0.44 26.97
0.49 7.46 0.47 11.77 83.88 3.88 1000 8.4 986 7.9 26.3 9.2 BFL 1870 0.53 26.15
0.50 3.76 0.83 20.84 68.83 9.51 978 8.4 980 8.5 13.8 4.9 3.1 2415 0.39 27.06
0.50 3.76 0.83 20.84 68.83 9.50 986 8.8 978 8.4 14.9 4.6 2.7 2420 0.40 27.11
0.50 4.98 0.66 16.60 79.31 3.43 976 8.5 959 7.9 27.1 10.1 0.9 2146 0.44 26.96
0.50 4.99 0.66 16.58 81.31 0.00 953 8.5 933 7.8 38.2 14.1 1.3 2098 0.44 27.51
0.50 4.99 0.66 16.58 81.31 0.01 954 8.6 936 7.9 35.7 13.6 1.5 2098 0.44 27.52
0.50 4.99 0.66 16.58 78.60 4.16 957 7.8 954 7.7 27.4 5.1 1.5 2135 0.44 26.75
0.50 4.99 0.66 16.58 72.50 10.26 996 8.2 985 7.8 18.1 6.2 2.2 2198 0.44 26.28
0.50 7.47 0.47 11.76 86.64 0.00 978 8.4 960 7.7 38.2 12.3 BFL 1828 0.53 26.72
0.59 7.47 0.56 11.74 87.22 0.01 979 8.4 956 7.7 37.2 9.9 BFL 1977 0.49 26.96
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Test Gas Compositiona density
φ inert χi−C8H18 χO2 χN2 χAr TEOC PEOC Teff Peff τign τspark

b Uavg Tad
c ratiod Cve

I : O2 [%] [%] [%] [%] [K] [atm] [K] [atm] [ms] [ms] [m/s] [K] [ρB
ρU

] [ J
mol−K ]

0.60 4.99 0.79 16.56 75.81 6.84 990 8.9 972 8.3 18.9 6.3 2.1 2360 0.41 27.19
0.69 4.99 0.92 16.54 71.14 11.40 983 8.8 979 8.6 14.6 5.0 3.1 2541 0.37 27.15
0.69 7.45 0.65 11.76 84.65 2.94 974 8.3 954 7.7 37.8 11.3 1.6 2132 0.45 26.86
0.69 7.47 0.65 11.74 85.01 0.01 950 8.5 930 7.8 52.2 14.8 0.9 2077 0.45 27.59
0.70 4.99 0.92 16.54 76.87 5.68 942 8.1 945 8.2 26.9 11.1 2.7 2480 0.37 27.53
0.73 7.41 0.69 11.80 83.12 4.38 986 9.0 974 8.6 24.3 6.4 AFL 2212 0.43 26.93
0.73 7.42 0.69 11.79 83.13 4.38 977 8.7 974 8.5 23.2 6.0 AFL 2206 0.43 26.87
0.73 7.42 0.69 11.80 78.34 9.17 1012 9.2 1005 9.0 14.7 4.1 AFL 2259 0.44 26.52
0.74 7.43 0.69 11.78 83.13 4.39 985 8.9 969 8.3 27.1 17.7 AFL 2214 0.43 26.92
0.74 7.43 0.69 11.79 83.13 4.39 998 9.5 980 8.8 22.0 6.2 AFL 2225 0.44 27.01
0.74 7.43 0.69 11.78 78.34 9.19 1012 9.2 1005 8.9 15.0 8.0 AFL 2262 0.44 26.52
0.74 7.44 0.69 11.77 83.14 4.39 984 8.9 968 8.3 29.4 12.1 AFL 2213 0.43 26.92
0.79 7.46 0.74 11.73 82.84 4.68 978 8.4 966 8.1 27.5 7.3 1.7 2280 0.42 27.05
0.99 3.76 1.64 20.66 44.18 33.52 972 8.3 1002 9.5 5.0 1.3 11.7 3119 0.28 27.56
0.99 4.99 1.31 16.47 59.11 23.11 976 8.4 985 8.8 10.0 3.6 6.1 2892 0.32 27.35
0.99 7.46 0.93 11.71 77.10 10.26 974 8.3 974 8.4 21.5 4.9 2.1 2509 0.37 27.16

a Balance CO2.
b Time from the end of compression to the falling edge of the spark trigger signal. See text for details on how spark timing was
selected.
c Adiabatic flame temperatures were calculated assuming a constant volume using the initial reactant composition and the end
of compression temperature and pressure for each experiment.
d The density ratio was calculated based on the initial reactant mixture and effective conditions of the unburned gasses (ρU)
and the theoretical mixture composition and effective conditions of the burned gases (ρB).
e The mixture heat capacity was calculated based on the initial reactant mixture and the end of compression temperature
(TEOC).
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Figure 2.4: Comparison of the effects of spark ignition on the pressure and pressure
derivative time histories for iso-octane/O2 mixtures with the same mixture composi-
tion and virtually identical end of compression conditions (spark experiment: TEOC
= 942 K, and PEOC = 8.1 atm, no-spark experiment: TEOC = 945 K, PEOC = 8.2
atm).

The effects of flame propagation on pressure time history and resulting autoigni-

tion delay time are directly compared in Figure 2.4 and Figure 2.5. Pressure and

corresponding imaging data for a spark-initiated flame/autoignition experiment and

a non-sparking autoignition experiment are presented in Figure 2.4 and Figure 2.5,

respectively. The end of compression conditions for the two experiments are virtually

identical (spark-initiated experiment: PEOC = 8.1 atm, TEOC = 942 K; autoignition

experiment: PEOC = 8.2 atm, TEOC = 945 K). As seen in Figure 2.4, the two pres-

sure time-histories remain within < 1.5% until approximately 5 ms after the spark

has been discharged or about 16 ms after the end of compression. The effects of

compression heating by flame propagation lead to higher effective conditions for the

spark-initiated experiment of Peff = 8.2 atm, and Teff = 945 K, compared to the

autoignition experiment conditions of Peff = 7.5 atm, and Teff = 926 K. Note that

the non-sparking experiment shows effects of chemical exothermicity during the igni-

tion delay time. However, comparison of the two pressure time histories immediately
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Figure 2.5: High-speed imaging data (selected frames) corresponding to the two ig-
nition experiments presented in Figure 2.4. The upper panel presents frames from
the non-sparking experiment and the lower panel presents frames from the spark-
ing experiment. Time τ = 0 corresponds to the end of compression for both image
sequences.

prior to autoignition shows the contribution from compression heating to the increase

in pressure is significantly higher than the contribution from chemical reaction for

these particular experiments. The autoignition of the spark-initiated experiment is

accelerated by 31% compared to the baseline autoignition delay time (spark-initiated

experiment: τign = 26.9 ms; autoignition experiment: τign = 39.0 ms). The imaging

data of Figure 2.5 show the uniform and rapid chemiluminescence associated with

autoignition of the non-sparking autoignition experiments; note the compressed time

scale of the images of the upper panel compared to the lower panel. For the upper

panel, the peak illumination intensity corresponding to the autoignition event oc-

curred between the fourth and fifth frames. The imaging data of the spark-initiated

experiment show a complex and irregular flame surface is formed by the spark plasma,

and the flame propagates outward from the spark plug electrode. Autoignition for

the sparking experiments occurs in the volume of the unburned gases after the flame

has propagated nearly halfway across the diameter of the test section

Non-sparking experiments were conducted to ensure the new test section repro-

duced previous UM RCF measurements of autoignition delay times for iso-octane. A

summary of these baseline autoignition experiments is provided in the supplementary

material in Table A.1 which includes the mixture composition, end of compression

pressure and temperature, effective pressure and temperature, and autoignition de-
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lay time data. The results of the current work for baseline autoignition delay times

agree well with previous UM RCF iso-octane autoignition data from Walton et al. [6]

as seen in Figure A.1 of the supplementary material. The cumulative experimental

uncertainty of the autoignition delay time for the experiments in this study was ±
15%.

The experiments in this work considered a broad range of compositions with equiv-

alence ratios of φ = 0.20 to 0.99 and inert to oxygen dilution ratios of I : O2 = 3.76

to 7.47 (mole basis); however, the pressures and temperatures intentionally spanned

a narrow range to facilitate the determination of lean flammability limits and to min-

imize the effects of state conditions on flame propagation. Consequently, the end

of compression pressures spanned PEOC = 8 to 8.5 atm, and the end of compression

temperatures spanned the range TEOC = 942 – 1000 K. Table 2.1 provides a summary

of the results of the experiments in which the spark discharge system was applied.

The results include the mixture composition, state conditions, autoignition delay time

data and information on whether a flame was successfully initiated for each experi-

ment. The experiments in which flames were not successfully initiated are identified

as below the flammability limit (BFL) in Table 2.1 and were used to identify the lean

flammability limits for the mixtures.

In the current work, and with RCM studies in general, buffer gas composition was

varied to control the end-of-compression temperature and pressure of the experiments.

While the composition of the buffer gases can affect autoignition delay times in the

negative-temperature-coefficient region via chemical interactions and through the heat

capacity of the mixture [37], the chemical effects are expected to be negligible (< 5%)

at the conditions studied here, which are outside the NTC region. Additionally, the

heat capacity of each reactant mixture was calculated using the mixture composition

and the end of compression temperature. The average mixture heat capacity for

all mixtures was 26.93 J/mol-K with a standard deviation of 1.37%. Consequently,

thermal effects due to compression heating (and endothermic and exothermic chemical

reactions) are expected to be comparable for all experiments.

For some experiments, the effects of spark timing were considered and compared

with baseline experiments with identical end of compression conditions and mixture

compositions, but where the spark system was not used. All these experiments were

conducted at conditions above the flammability limit, and flames were successfully

initiated and sustained in each of these sparking experiments. The pressure time

histories for these data are provided in Figure A.2 of the supplementary material.

Experiments where the spark was triggered in the second (Q2) and third (Q3) quartile
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showed negligible impact on the autoignition delay time (within the experimental

uncertainty). Significant effect on the autoignition delay time was only observed when

the flame was initiated early (during the first quartile), e.g. the results presented

in Figure 2.4; however, not all Q1 sparking experiments affected the autoignition

delay time. Figure 2.6 presents the change in the measured autoignition delay time

relative to each corresponding baseline non-sparking measurement for the four end-

of-compression temperatures considered in these experiments. When a decrease in

autoignition delay time was observed, the pressure time history also showed a pressure

rise above the baseline prior to the rapid pressure rise of autoignition, as seen in Figure

2.4. As discussed earlier, this pressure rise is attributed to compression heating of the

unburned mixture by the flame, and results in an increase in the effective or time-

averaged temperature of the experiment. Therefore the change in Teff relative to the

baseline non-sparking experiment is also a metric of the impact of flame propagation

on autoignition and is provided in Figure 2.6. The data show ∼ 2 – 31% decrease

in the ignition delay time due to flame propagation with corresponding changes in

average temperatures of ∼ 1 – 19 K. The magnitude of compression heating is a

function of the test gas mixture composition, spark timing, state conditions, and

volume of the test chamber. While the data in Figure 2.6 are presented as a function

of TEOC , the energy content of the mixture may be a more appropriate parameter, as

is discussed further below.

2.4.2 Lean Flammability Limits

The lean flammability limits defined by the fuel-to-oxygen equivalence ratio were

determined at three levels of dilution for nominal end of compression conditions of

PEOC = 8.6 ± 0.9 atm and TEOC = 977 ± 35 K. For each dilution level, spark initiated

experiments were conducted over a range of equivalence ratios from $phi = 0.20 –

0.99. For each experiment, the spark was triggered and the imaging data were used

to determine if a flame was successfully initiated and sustained. The effects of flame

propagation were also observable in the pressure time history as a pressure rise prior

to autoignition, as seen in Figure 2.3 and Figure 2.4. For experiments in which flames

were not successfully initiated by the spark discharge, no additional pressure rise was

observed in the pressure time histories prior to autoignition.

The results of the flammability limit study are presented in Figure 2.7 as a func-

tion of mixture dilution. Conditions in which flames were successfully initiated and

sustained in the chamber are presented as circles, while conditions in which a flame

was not successfully initiated or the flame quenched before autoignition are presented
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Figure 2.6: The effects of flame propagation on the measured ignition delay time and
effective temperature relative to identical baseline autoignition experiments. The
error bars represent the uncertainty in measurements of τign.

as squares. The flammability limit is defined as the midpoint between the condi-

tions in which flames were observed and conditions in which they were not. Multiple

experiments were performed near the lean limit to ensure repeatability and using

higher exposure settings of the camera, to maximize detection of the chemilumines-

cence from the flames. Furthermore, the image analysis code was applied to verify

the classification of the experiments performed near the flammability limit, as the

chemiluminescence could be relatively weak at those conditions. The results show

the lean flammability limit for φ increased significantly, by 86%, from air levels of

dilution (I : O2 = 3.76) to the most dilute condition of I : O2 = 7.47.

2.4.3 Imaging Results of Flame Propagation Rates

For experiments in which flames were successfully initiated by spark discharge and

sustained, the imaging data were used to determine the propagation rate of the flames.

Not all the imaging data could be analyzed to determine propagation rates, as some

images had high uncertainty in the flame position due to overlapping flame fronts or
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Figure 2.7: Summary of the experimental results for lean flammability limits as a
function of dilution.

weak chemiluminescence. However, for imaging data where the flame front was well

defined, the location of the flame front along selected trajectories was determined as a

function of time relative to an origin that was set as the centroid of the spark discharge.

The position of the flame front was determined along trajectories at 0.0° (horizontal),

26.6°, 45.0° (diagonal), 63.4°, and 90.0° (vertical) orientations as shown in the inset in

Figure 2.8. For reference, the experimental results presented in Figure 2.8 are from

the experimental results presented in Figure 2.3 (φ = 0.99, inert to O2 ratio = 4.99,

PEOC = 8.4 atm, Peff = 8.8 atm, TEOC = 976 K, and Teff = 985 K). Results for

the position of the flame along the measurement trajectories are presented in Figure

2.8, where time t = 0 is now defined as the first time the spark plasma was observed.

The time histories of the flame positions were smoothed using a two-point moving

average filter. At early times, the position of the flame front was convolved with the

spark plasma. After the flame was successfully initiated, the position data show the

flame grew at similar rates of expansion along the different measurement trajectories

for these experimental conditions, i.e. the flame development was generally uniform.

The rapid increase in the position of the reaction front at t ≈ 5.5 ms was the result
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of volumetric autoignition.

Figure 2.8: Time histories of the flame position as determined from the high-speed
imaging data of the experimental results of Figure 2.3 (φ = 0.99, inert to O2 ratio
= 4.99, TEOC = 976 K, and PEOC = 8.4 atm). The pressure time history and spark
plug trigger signals are provided for reference. Time t = 0 ms corresponds to the first
observation of the spark plasma. Measurements were made along five vectors with a
common origin (set as the center of the spark plasma) as shown in the inset.

The propagation rates of the flame front(s) along the trajectories were determined

by differentiating the smoothed flame position data with respect to time. The results

based on the data of Figure 2.8 are presented in Figure 2.9. The average rate of prop-

agation of the five trajectories is provided in Table 2.1 for each experiment where

flame location was well identified. The propagation rate data were not corrected for

stretch, density changes, or the effects of the proximity of and ignition energy of the

spark discharge, and the results are not flame speed measurements. The propaga-

tion rate data describe the apparent or observed expansion rate of the flame surface.

Laminar flame speed measurements cannot be accurately determined from these ex-

periments for a variety of reasons. Flame stretch correction theory typically assumes

spherical flames [38] and the flame surfaces observed in this study were irregular in

many cases (see Figure 2.5). In addition, there was significant pressure rise during
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Figure 2.9: Results for apparent flame speed calculated using the derivative of the
corresponding radial position data presented in Figure 2.8. Time t = 0.0 ms corre-
sponds to the first observation of the spark plasma. The measurements are for the
five trajectories presented in Figure 2.8.

the time of flame propagation in the current experiments, which was beyond even the

most generous corrections for stretch in a confined vessel with weak pressure rise [39].

Down-selecting the data within each experiment to meet the weak pressure rise cri-

terion does not allow for enough usable time history to determine meaningful flame

speed data. As seen in Figure 2.9, the deceleration of the flame front as pressure in

the test section increased was significant, with speeds decreasing by over 30% from

the maximum rates of ∼ 6 m/s to less than 4 m/s immediately prior to autoignition

for this experiment. The variability in the flame speed data at early times is due

to convolution of the flame initiation with the spark plasma. A minimum flame ra-

dius of 6 mm is recommended for flame speed measurements in order to ignore the

effects of the ignition source [40], which would lead to even greater down-selection of

the data from these experiments. Further complicating the assignment of a laminar

flame speed determination is that the flames were propagating into a mixture which

was reacting, and consequently the unburned mixture composition was changing as a
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function of time. For reference, calculated density ratios of the burned to unburned

gases are provided in Table 2.1, but the propagation rates reported in the figures were

not corrected for density.

Figure 2.10: Time history of the flame position as determined from the high-speed
imaging data of the experimental results of Figure 2.4 (φ = 0.7, inert to O2 ratio =
4.99, TEOC = 942 K, and PEOC = 8.1 atm). The corresponding pressure time history
and spark trigger signal are shown for reference.

Figure 2.10 presents another set of flame position data corresponding to the spark-

initiated experiment results presented in Figure 2.4 and Figure 2.5. For reference, the

experimental conditions for the results presented in Figure 2.10 were φ = 0.70, inert

to O2 ratio = 4.99, PEOC = 8.1 atm, Peff = 8.2 atm, TEOC = 942 K, and Teff =

945 K. As in Figure 2.8, t = 0.0 ms corresponds to the first observation of the spark

plasma, and the origin for the measurements was the center of the spark plasma.

Measurements were made along the five trajectories shown in Figure 2.8. Unlike

in the data of Figure 2.8, the expansion of the flame fronts along the measurement

trajectories in this experiment was not uniform spatially or temporally. As seen in

the flame imaging (Figure 2.5), the flame surface created by the spark plasma in

this experiment was more irregular in shape with multiple overlapping surfaces. As
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Figure 2.11: Results for apparent flame speed calculated using the derivative of the
corresponding radial position data presented in Figure 2.10.

the flame surfaces interact and merge over time, abrupt changes in the flame surface

along the measurement trajectories are recorded, as seen in Figure 2.10, and for this

experiment, the flame development was not spatially or temporally uniform. The

propagation rates derived from the flame position data of Figure 2.10 are presented in

Figure 2.11. The apparent flame speeds were significantly slower (∼ 2 – 3 m/s) when

compared to the equivalent dilution condition of Figure 2.9, in which propagation

rates of ∼ 4 – 6 m/s are observed. Deceleration of the flame surface as pressure

increased in the test section is evident in the data, although not to the same extent

as observed for the higher equivalence ratio example presented in Figure 2.9. The

two experiments had similar effective pressures (Peff = 8.8 and 8.2 atm) with slightly

higher effective temperature for the data of Figure 2.9 (Teff = 985 K) compared to

Figure 2.11 (Teff = 945 K). The lower propagation rates of Figure 2.11 are attributed

to the slightly lower temperature and the lower equivalence ratio of φ = 0.7 compared

to φ = 0.99.

Average propagation rates were determined for each of the experiments in which

the spark plasma successfully initiated a flame. The results were evaluated to de-
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termine if a correlation could be identified between the flame propagation rates and

the ignition experimental conditions, including the reactant composition. The prop-

agation rates were expected to be a function of the end of compression temperature

and pressure, equivalence ratio, and dilution based on laminar flame theory. The

cumulative effects of these parameters were determined by calculating the theoretical

adiabatic flame temperature for each experimental condition using the thermochem-

istry for iso-octane and other reactants from the iso-octane mechanism (version 3) of

Mehl et al. [41]. The initial reactant composition, temperature, and pressure were

specified from each experimental condition. The computed results included the ef-

fects of dissociation on the adiabatic flame temperature. The results for the average

flame propagation rates and the individual rates along each measurement vector are

presented in Figure 2.12 as a function of the theoretical adiabatic flame tempera-

ture. Also included in the data are the conditions in which the spark plasma did not

successfully initiate a flame.

Figure 2.12: Experimental measurements of the average flame propagation rates as
a function of the theoretical adiabatic flame temperature. The open symbols are the
average propagation rates along each of the measurement vectors shown in the inset
of Figure 2.8. The solid symbols are the overall averages for each experiment.
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The data show a strong correlation between the observed propagation rates and

the energy content of the mixture as represented by the adiabatic flame tempera-

ture. Conditions with low energy content could not sustain flames and increasing

the mixture strength, increased the propagation rate of the flames. Based on these

results, the effects of flame propagation on autoignition can be anticipated to be more

significant for mixtures with higher energy content, and the data of Figure 2.12 sup-

port that there may be an energy threshold, e.g. Tad > 2000 K, for the conditions

studied here. It would be valuable to develop a quantitative and predictive measure

of the impact of flame propagation on autoignition delay time. The data presented

in the current work provide a valuable basis for developing such metrics; however, a

larger range of pressures and temperatures must be considered for a more complete

understanding of the range of effects that can be observed during flame/autoignition

interactions.

2.5 Conclusions

The current work presents new data on the initiation and propagation of flames

into premixed fuel/air mixtures at well-defined initial state conditions. The results of

the study showed the effects of flame propagation were maximized when the flame was

initiated early during the autoignition delay period (e.g. during the first quartile).

Later ignition timing (e.g. during the second or third quartile of the autoignition delay

period) reduced the impact of flame propagation even when flames were successfully

initiated and sustained. When the effects of flame propagation were apparent on au-

toignition delay time, the impact was to accelerate ignition by approximately 2 – 31%.

Image analysis allowed apparent propagation rates of the flames to be determined.

The high-speed imaging data also allowed flammability limits to be identified at con-

ditions directly relevant to advanced engine strategies. Dilution had significant effect

on the lean flammability limits, increasing from a lean limit of φ = 0.35 at air levels of

dilution to φ = 0.65 at inert:O2 dilution of 7.5. The flammability limit was also well

correlated with the theoretical adiabatic flame temperature. These results provide

unique, vital, and quantitative new information for development and validation of

theory and models of flame/autoignition interaction, as well as providing fundamen-

tal understanding of the physical and chemical interactions important to multi-mode

combustion strategies like spark-assisted compression ignition. While the data en-

compass a relatively narrow range of pressures and temperatures, the results provide

several quantitative benchmarks of the impact of flame propagation on auto-ignition
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at well-controlled mixture and initial state conditions. Consequently, the data can

be the basis for model validation as well as the development of broader fundamental

combustion criteria to quantify the conditions where spark initiated flame propaga-

tion can impact auto-ignition both adversely (e.g. as in the case of end knock) and

productively (e.g. SACI).
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CHAPTER III

Computational Development of a Dual

Pre-Chamber Internal Combustion Engine

Concept

This chapter was published as Assanis, D., Engineer, N., Neuman, P., and Wooldridge,

M., ”Computational Development of a Dual Pre-Chamber Engine Concept for Lean

Burn Combustion,” SAE Technical Paper 2016-01-2242, 2016, doi:10.4271/2016-01-

2242. [42]

3.1 Abstract

Pre-chambers are a means to enable lean burn combustion strategies which can

increase the thermal efficiency of gasoline spark ignition internal combustion engines.

A new engine concept is evaluated in this work using computational simulations of

non-reacting flow. The objective of the computational study was to evaluate the feasi-

bility of several engine design configurations combined with fuel injection strategies to

create local fuel/air mixtures in the pre-chambers above the ignition and flammability

limits, while maintaining lean conditions in the main combustion chamber. The cur-

rent work used computational fluid dynamics to develop a novel combustion chamber

geometry where the flow was evaluated through a series of six design iterations to cre-

ate ignitable mixtures (based on fuel-to-air equivalence ratio, φ) using fuel injection

profiles and flow control via the piston, cylinder head, and pre-chamber geometry. The

desirable and undesirable features that guided the design progression are presented.

Major combustion chamber design iterations involved changes to the pre-chambers

position relative to the cylinder head deck plane, azimuthal orientation of the pre-

chambers, and piston crown geometry. Further criteria were developed to assess the
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flow interaction with the nozzle connections to the pre-chambers. The modeling re-

sults indicated appropriate fueling strategies achieved near stoichiometric fuel-to-air

equivalence ratios in the pre-chambers with lean fuel-to-air equivalence ratios in the

main chamber. The results also demonstrated the utility of the flow-alignment and

chamber filling criteria to select the nozzle design for the pre-chambers.

The dramatic advances in digital computing has radically changed the process of

engine research and development; significantly reducing the time from concept to real-

ity. In this thesis, fundamental experiments, computational studies and experimental

validation techniques have successfully guided the development of new engine hard-

ware targeted to enable fuel lean, high-efficiency reciprocating engines. The following

are the key conclusions and outcomes of this thesis.

3.2 Introduction

Lean burn combustion strategies are an attractive option to increase the thermal

efficiency of gasoline spark ignition internal combustion engines, but engine design

remains challenging due to the lean flammability limits of the fuel/air mixture. Lean

after-treatment strategies can be a concern; however, recent advances show consid-

erable promise for effective emissions control for lean burn gasoline direct injection

engines [43]. Turbulent jet ignition originating from a combustion pre-chamber can

help address mixture flammability limits by ejecting high enthalpy and highly reactive

jets into the main chamber, enabling lean combustion in the main chamber. However,

appropriate mixture conditions must be achieved in the pre-chamber for this strategy

to be successful.

Pre-chambers have been studied extensively in the past, in particular for applica-

tion in compression ignition engines, and pre-chambers have been successfully demon-

strated as technology which can improve in-cylinder combustion robustness [44–46].

Past learnings of pre-chamber technologies, including studies of the effects of heat

transfer and mixture stratification, have guided the size, shape, orientation, and num-

ber of pre-chambers [47, 48]. The engine concept proposed in this work is based on

a new pre-chamber engine design where the spark electrodes are located in the pre-

chamber and a direct injection (DI) fuel injector is located in the main chamber.

Supplemental fueling (e.g. DI or port fuel injection (PFI)) is used to create the initial

fuel/air charge in the main combustion chamber. To the best of our knowledge, this

approach differs from any pre-chamber engine designs previously considered. The de-

sign was enabled by advances in numerical simulations, computational resources, fuel
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injection hardware, and manufacturing techniques. Specifically, the objective of the

design process documented here was to develop a combustion system where lean fuel-

to-air equivalence ratios are created in the main chamber while near stoichiometric

equivalence ratios are created in the pre-chambers using the DI fuel injector.

3.3 Background

With the passing of the Clean Air Act of 1970 and the subsequent establishment

of the Environmental Protection Agency, engine technologies offering significantly

reduced tailpipe emissions started gaining major attention. Notably, gasoline pre-

chamber engine concepts offered a promising solution to decreasing mobile sources of

air pollution by increasing fuel efficiency and by decreasing engine-out emissions [49].

Pre-chamber engine concepts are not a new technology to the automotive industry.

H.R. Ricardo's internal combustion engine, documented in 1918, is the earliest pre-

chamber concept found in the literature [13]. The pollution regulations of the 1970's

brought renewed focus on the pre-chamber engine concept from research institutions

and industry [16–22]. Most of the pre-chamber engine concepts suffered from atypical

induction designs that required complicated valvetrain arrangements [16]; however, re-

cent advances in numerical simulations and computational resources allowed gasoline

pre-chamber engine concepts to be systematically considered in new configurations.

The comprehensive review by Toulson et al. [48] outlined the progress of pre-chamber

initiated combustion systems throughout history and provided sound engineering and

scientific foundations for new engine designs which leveraged the best features of pre-

chambers. Attard et al. [50] demonstrated an auxiliary-fueled turbulent jet ignition

pre-chamber concept in a GM Ecotec engine platform capable of achieving 42% peak

net indicated thermal efficiency without the need for a complicated valvetrain induc-

tion system. In comparison, the standard GM Ecotec engine platform achieved a

peak net indicated thermal efficiency of 37.9% in stoichiometric spark ignition mode

of operation.

The work presented in this paper focused on designing a prototype pre-chamber

engine that reduces system complexity by eliminating the need for an auxiliary fuel

injector located in the pre-chamber. Instead, the pre-chambers were designed to be

fueled using an injection event from a fuel injector centrally mounted in the main

combustion chamber (i.e. a gasoline DI system). This design concept leverages the

advanced capabilities of modern fuel injectors and targets overall fuel lean operation.

The technical approach used CFD to evaluate non-reacting in-cylinder flows of fuel
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and air achieved through different engine geometries. The designs were evaluated

using metrics defined in the study to assess the efficacy of the flow at achieving the

desired equivalence ratios in the pre-chambers and the main chamber.

3.4 Computational Methodology

The commercial software CONVERGE�(versions 2.1.0 – 2.2.0) was used for the

CFD study. The software platform was selected based on the adaptive mesh refine-

ment capabilities. Matlab R2014a-R2014b was used to post-process the output files

and derive flow metrics. Ensight 10.1 was used to visualize the output data. Relevant

boundary conditions and initial conditions were derived from a validated GT-Power

(v7.4) engine model for all cases.

The flow field in the three-dimensional, moving boundary domain was modelled

as compressible, viscous and non-reactive and used a k-ε turbulence model and tem-

perature law-of-the-wall boundary conditions. The pressure solver first used a point-

wise successive over-relaxation algorithm before using an efficient geometric multigrid

procedure. A finite volume numerical discretization scheme was used to solve mo-

mentum, energy and species equations. Pressure-velocity coupling was accomplished

using the pressure-implicit-with-splitting-of-operators method in conjunction with the

Rhie-Chow interpolation scheme.

Iso-octane, i-C8H18, was used as the fuel and air was 23% oxygen (mass basis)

and 77% nitrogen for all simulations. Dilution of the fuel/air charge with exhaust

gas residual species was not considered in these studies. The spray rate profile was

modeled as a square step function with a targeted peak injection pressure of 149 ± 1

bar. The duration of the fuel injection event was varied to achieve the total mass of

fuel desired. The fuel injector was represented as two identical nozzles 180° opposed

in the azimuthal direction, each with a nozzle diameter of 150 µm, circular injection

radius of 75 µm, and nozzle radial position of 1.5 mm.

The liquid fuel spray, injected at 335 K, was modeled using 50,000 parcels per

injector based on a sensitivity study and best practices recommendations from the

software manufacturer. The parcels were modeled as a bulk injection with the fuel

droplet size distribution based on the nozzle size, and the parcels were distributed

evenly throughout the spray cone [51]. Kelvin-Helmholtz (KH) and Rayleigh-Taylor

(RT) models were used to represent the primary spray breakup. The secondary spray

breakup was modeled using child parcels and by examining the competing effects of

the KH and RT breakup models [52]. The specific model parameters used for the
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simulations are provided in the supplementary material found in Appendix B and

were based on the recommendations by CONVERGE for engine simulations of the

type considered here. Further detail on the modeling parameters and theory can be

found to in Senecal et al. [53] and Richards et al. [52].

The initial engine geometry for the new engine concept was based on a conven-

tional inline four cylinder 2.0 L forced-induction gasoline production engine. The

geometry of a single cylinder of the base engine is presented in Figure 3.1.

Figure 3.1: Production base geometry (bottom dead center position) used as the
starting point for the engine design process.

The production engine featured a four-valve design, centrally-mounted spark plug,

side-mounted direct injector, and a piston crown designed to enhance mixing. The

geometric specifications of the base engine and the final engine design (designated

the Zeta prototype) are presented in Table 3.1.

A total of seven regions (defined by virtual boundaries in the simulation) were

defined to develop flow metrics to evaluate the performance of the different engine

designs. The boundaries, regions, associated initial conditions, and event timings are

all provided in the supplementary material in Table B.1, Table B.2, and Table B.3. All

calculations used initialization values for turbulent kinetic energy (TKE) of 1.0 m2/s2

and for TKE dissipation rate of 10 m2/s3. The computational mesh was a modified

cut-cell Cartesian grid [52]. The base cell size for the entire engine geometry mesh
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Table 3.1: Summary of the specifications of the initial and final engine designs. Spec-
ification Base Engine Zeta Prototype

Specification Base Engine Zeta Prototype
Bore 86.0 mm 86.0 mm
Stoke 86.0 mm 86.0 mm
Connecting Rod Length 149.25 mm 146.25 mm
Wrist Pin Offset 0.8 mm 0.8 mm
Compression Ratio 9.5 10.25
Intake Valve Diameter 32.7 mm 35.0 mm
Intake Valve Openinga 316 CAD
Intake Valve Closinga 582 CAD
Exhaust Valve Diameter 26.0 mm 29.0 mm
Exhaust Valve Openinga 164 CAD
Exhaust Valve Closinga 403 CAD

a Valve events are specified at 1 mm lift.

was set as a 4 mm cubic cell. Both fixed embedding and adaptive mesh refinement

were utilized to locally refine the base mesh and create efficient and accurate grids at

each time step. Portions of the main combustion chamber and the pre-chambers were

further refined between 1 and 0.5 mm cubic cells. The volume defined by the projected

bore area extended 17 mm past the cylinder head deck plane into the cylinder head

and was populated with 1 mm cubic cells to ensure a smooth continuation of the

flow from the port to the main combustion chamber. The remaining volume defined

by the projected bore area into the cylinder head was populated with 2 mm cubic

cells to help transition the flow from the base 4 mm cubic mesh found in the ports.

Two layers of 0.5 mm cubic cells were embedded off the intake and exhaust valve

angle boundaries to ensure the flow past the valves was accurately captured during

the valve opening and closing events. The volume surrounding and including the fuel

spray was refined to 0.5 mm cubic cells to ensure the spray region was sufficiently

resolved. Figure 3.2 features a representative mesh of the final Zeta prototype just

before an injection event is about to occur at 60° bTDC.

Velocity-based adaptive mesh refinement was used for the cylinder and intake

system regions. A maximum allowable cell count of 1,000,000 cells could be achieved

due to the adaptive mesh refinement. When the sub-grid velocity field exceeded 1.0

m/s, the affected cells and immediate neighbors were refined by reducing the cell size

to 0.5 mm during the next time step. The total maximum cell count for the simulation

results presented here was less than 990,000 cells, and the maximum cell count during

the injection event was less than 725,000 cells. The cell counts were sufficient to
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Figure 3.2: Example mesh highlighting the fixed cell embedding at the piston cen-
terline for the final Zeta prototype just before the booster injection occurs at 60°
bTDC.

obtain the desired sub-grid velocity field criterion of less than 1.0 m/s. The grid and

refinement techniques are based on best practices recommendations [52,53] to ensure

a sufficiently resolved grid for gasoline, direct-injection, non-reacting simulations.

3.5 Prototype Development

The objective of the computational study was to identify an engine design which

could create local fuel/air mixtures in the pre-chambers above the ignition and flamma-

bility limits (i.e. with fuel-to-air equivalence ratios at near stoichiometric values, φ

∼ 1.0), while maintaining lean conditions in the main combustion chamber. Rapid

compression facility studies by Assanis et al. serve as a guidance for the flammability

limits of lean and dilute iso-octane air mixtures in a combustion chamber [1]. While

spark plugs will be used to ignite the mixtures in the pre-chambers, spark plugs were

not included in the simulations and all flow was non-reacting.

A series of six prototype iterations, visual representations provided in Figure 3.3,

were considered to meet the project targets for fueling. The designs varied the in-

cylinder flow, the placement of the pre-chambers, and the fueling strategy to meet
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the target equivalence ratios for the pre-chamber and the main combustion chamber.

The naming convention was based on the generation of the design, e.g. Alpha, Beta,

etc. ending with Zeta. A summary of the major design features for each iteration is

presented in Table 3.2 and Table 3.3.
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Figure 3.3: Visual representations of the Alpha through Zeta prototype iterations (bottom dead center position) in each upper
panel with top-view of the associated piston crown in each lower panel. The arrows indicate the locations of the pre-chambers.
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Table 3.2: Overview of key design features of the Alpha through Gamma prototype iterations and conclusions of initial compu-
tational simulations based on a 1 mg booster fuel injection event.

Prototype Key Design / Revision Features Conclusions
Alpha •Orifices located in liner parallel to cylinder head

deck.
• Low pre-chamber equivalence ratio (φ ∼ 0.15)

• Fuel spray was wall guided by the piston. • Poor pre-chamber fuel vapor fraction (∼ 45% of the fuel
mass in each pre-chamber)
• Substantial main chamber wall film (70% of the total fuel
mass)
• Slight pre-chamber wall film (<5% of the total fuel mass)

Beta • Central orifices widened and angled upwards to
align with injector spray cone centerline.

• Higher pre-chamber equivalence ratio (φ ∼ 0.6)

• Cut-out reliefs introduced in cylinder head
dome to reduce wall wetting due to spray im-
pingement.

• Poor pre-chamber vapor fraction (∼ 45% of the fuel mass
in each pre-chamber)

• Minimal main chamber wall film (<0.5% of the total fuel
mass)
• Increased pre-chamber wall film (∼ 23% of the fuel mass
in each pre-chamber)

Gamma • Pre-chambers relocated to the cylinder head
under ports.

• Low pre-chamber equivalence ratio (φ ∼ 0.1 – 0.2)

• Combustion chamber dome re-designed. • Excellent pre-chamber vapor fraction (100% of the fuel
mass in each pre-chamber)

• Intake port re-designed for enhanced tumble. • Slight main chamber wall film (<2% of the total fuel mass)
• Fuel spray now air guided by charge motion. • Pre-chamber wall film eliminated

48



Table 3.3: Overview of key design features of the Delta through Zeta prototype iterations and conclusions of initial computational
simulations based on a 1 mg booster fuel injection event.

Prototype Key Design / Revision Features Conclusions
Delta • Pre-chambers rotated 90° azimuthally about

central Z-axis.
• Moderate pre-chamber equivalence ratio (φ ∼ 0.3)

• Excellent pre-chamber vapor fraction (100% of the fuel
mass in each pre-chamber)
• High main chamber wall film (<10% of the total fuel mass)
• Pre-chamber wall film eliminated

Epsilon • Piston rotated 90° azimuthally about central
Z-axis.

• Moderate pre-chamber equivalence ratio (φ ∼ 0.3)

• Excellent pre-chamber vapor fraction (100% of the fuel
mass in each pre-chamber)
• High main chamber wall film (<8% of the total fuel mass)
• Pre-chamber wall film eliminated

Zeta • New piston geometry with valve cut-outs for
improved range of valvetrain phasing

• Moderate pre-chamber equivalence ratio (φ ∼ 0.3)

• Excellent pre-chamber vapor fraction (100% of the fuel
mass in each pre-chamber)
• Main chamber wall film eliminated
• Pre-chamber wall film eliminated
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The pre-chambers were designed to be indirectly fueled by a single injector located

in the main combustion chamber. One end of each pre-chamber included the orifices

to connect the pre-chamber to the main chamber. The number, size and orientation of

the connecting orifices affect the pre-chamber filling process and were considered vari-

able design parameters in this study. In an effort to simplify the pre-chamber design,

no poppet valve assembly or auxiliary fuel injectors (features previously demonstrated

in the literature, see [17] and references therein) were located in the pre-chamber

volume. Although spark plugs were not included in the simulation, packaging con-

straints of the pre-chambers were imposed to allow the pre-chamber spark plugs to

be accessible for installation and maintenance. The pre-chambers were also located

so they would not interfere with neighboring cylinders. Ease of manufacturing was

also considered with the pre-chamber design.

The geometries of the piston crown, combustion chamber dome, and the intake

port were designed to create favorable charge motion so a combustible mixture could

be inducted into the pre-chambers by the time the piston reached the top dead center

(TDC) position. The surface area to volume ratio of the pre-chamber geometry was

selected to decrease heat transfer losses. The production base engine geometry fea-

tured a centrally mounted spark-plug and a side-mounted injector. As noted earlier,

the dual pre-chamber engine concept features a centrally mounted fuel injector in the

main chamber with two opposed spray plumes targeted towards the pre-chambers.

The central location of the fuel injector allowed for greater flexibility in creating a

symmetric fuel spray pattern target flow to each of the pre-chambers.

The fueling amount used in the simulations was based on a typical engine operating

condition of 2,000 RPM and 4 bar brake mean effective pressure (BMEP). This engine

operating point required approximately 16 mg of fuel for typical SI operation. Since

the dual pre-chamber engine concept targeted lean burn operation, the simulations

considered 2 mg of fuel injected directly into the main combustion chamber by the

direct injector. This fueling event is referred to as the booster injection, and is meant

to create ignitable mixtures in the dual pre-chambers.

In addition to the booster fuel injection event targeted for fueling the pre-chambers,

a global injection event would be required in the engine to create the overall fuel lean

charge in the main combustion chamber. This global injection event could be pro-

vided by the DI or a PFI injector. The global injection event would occur before

the booster DI event, providing a background or baseline level of fuel in the main

chamber. The booster injection would occur after the global injection event, late in

the intake stroke, and would introduce a small amount of fuel targeted to create the
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near stoichiometric conditions in the pre-chambers. For this study, the global injec-

tion event was not included in the simulations, as it was assumed the global injection

event would create a consistent background level of fuel in the main chamber and

pre-chambers. This represents the most challenging situation for the booster injec-

tion, when there is no pre-existing background level of fuel in the main chamber or

pre-chambers.

3.6 Results and Discussions

3.6.1 Prototype Performance

The major conclusions from the computational studies of the design prototypes

are presented along with the major design features in Table 3.2 and Table 3.3. A

key metric of prototype performance was the state of the fuel in the main chamber

and pre-chambers. A summary of the fuel state from a booster injection event of 1

mg of fuel is presented by prototype iteration in Figure 3.4. The physical changes

outlined in Table 3.2 and Table 3.3 were made to achieve fully vaporized fuel in the

pre-chambers; a design feature which was met by the Zeta prototype.

Brief summaries of the design features of the prototypes are provided here. The

Alpha prototype modified the production base geometry while attempting to integrate

the pre-chambers as per the criteria described earlier. The intake port, exhaust port,

and combustion chamber dome were unchanged. The two, diametrically opposed,

pre-chambers were placed in the liner below the intake and exhaust ports. The

pre-chambers were placed sufficiently below the cylinder head deck so the limiting

dimension of the spark plug could clear the cylinder head gasket. Each conically

shaped pre-chamber was sized as 1% of the total combustion chamber volume and

included three horizontal connecting orifices, each with a nominal diameter of 1.25

mm. The pre-chamber volume sizing and orifice diameters were in alignment with

recommendations set forth by Gussak et al. [15]. The Alpha prototype piston featured

two scallops pointing towards each pre-chamber. When the piston was in the TDC

position, the pre-chamber connecting orifices remained unobstructed. The Alpha

prototype aimed to induct the charge mixture into the pre-chamber by transferring

the charge mixture from the squish region through the connecting orifices to the

pre-chamber.

For the Alpha prototype fueling strategy, two pencil sprays (i.e., with narrow

spray cones), limited by the combustion chamber dome clearance, were aimed at a

125.5° included spray angle facing the narrow end of each scallop. One mg of fuel was
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Figure 3.4: Summary of the fuel state (wall film, liquid, or vaporized) in the main
chamber and pre-chambers by prototype iteration.

injected at 149.5 bar rail pressure for a duration of 3.54 CAD. Spray patterns with

included cone angles of 2.6° and 5° were simulated at the start of the injection (SOI)

timings of 35° bTDC, 20° bTDC, and 5° bTDC. The most successful spray pattern,

5° cone angle and 20° bTDC SOI, resulted in only 6.6% of the total fuel vaporized

in the two pre-chambers at TDC. In summary, the Alpha prototype with a 1 mg

fuel injection was able to achieve φ = 0.15 and φ = 0.13 in pre-chamber A and B,

respectively. The vaporized fuel fraction was 41% and 46% in pre-chambers A and

B, respectively, with the remainder of the fuel fraction in the liquid phase in each

pre-chamber.

Using the most successful Alpha prototype spray profile, the mass of fuel injected

was increased to 10 mg while keeping all other variables constant. The amount of

vaporized fuel in the pre-chambers at TDC was approximately the same as for the
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1 mg fuel injection at 6.2%. When the speed of the engine was doubled to 4000

RPM while setting the fueling amount at 1 mg, the amount of vaporized fuel in the

pre-chambers at TDC decreased slightly to 6.0%.

The Beta prototype improved on the Alpha prototype by angling the central con-

necting orifice upwards to better match the fuel spray angle. The included spray angle

for the two fuel jets was increased to 142.5° to directly target the central connecting

orifice. The fueling amount was increased to 2 mg at the same rail pressure. Spray

patterns with included cone angles of 2.6° and 5° were simulated at SOI timings of

60° bTDC, 40° bTDC, and 20° bTDC. The most successful spray pattern using 2 mg

of fuel, a 5° cone angle and a 40° bTDC SOI, yielded ∼50% of the total fuel as vapor

in the two pre-chambers at TDC.

The Beta prototype with a 2 mg injection was able to achieve φ = 1.18 (with a

vaporized fuel fraction of 50%) and φ = 1.24 (with a vaporized fuel fraction of 51%)

in pre-chamber A and B, respectively. While the pre-chambers inducted enough fuel

to achieve the design target of nearly stoichiometric mixtures, there was significant

concern about the amount of liquid fuel present at TDC in each pre-chamber. 36.3%

of the total fuel was predicted to result in wall films in the pre-chambers, occurring

mostly in the connecting central orifice. The Beta design also raised concerns that

the central orifice could clog during engine operation from fuel film effects such as

coking or varnishing. The high levels of wall films could also be a source of unburned

hydrocarbon and particulate emissions. The Gamma prototype aimed to improve

the amount of vaporized fuel in the pre-chambers while simultaneously reducing the

amount of liquid fuel in the pre-chambers. The Gamma prototype avoided the use

of the direct pencil type spray profile. Instead, the fuel spray was air-guided by

rebounding the fuel off of a re-designed piston surface and into the pre-chambers

which were re-located in the cylinder head. The approach allowed significantly longer

mixing time, which increased vaporization of the fuel. To further enhance mixing

and direct the fuel, the charge motion tumble was improved over the base production

geometry by changing the intake valve angle and corresponding port design.

The new spray profile had the added benefit of eliminating the limitation of wetting

the combustion chamber dome. So the included spray cone angle was increased to 20°

to further assist fuel mixing. Sprays with included spray angles of 70°, 90°, and 140°

were investigated at SOI of 40° bTDC. At 60° bTDC SOI, sprays with included spray

angles of 40°, 80°, and 140° were evaluated. The velocity vector field was examined

by creating various cut-planes along the cylinder. Comparing the velocity vectors

of the cells along the two centerline cut-planes yielded interesting findings. The
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pre-chamber connecting orifices in the Gamma prototype were located in a region

of significant recirculation. The charge mixture was circulated back towards the

center of the combustion chamber instead of being inducted into the pre-chamber.

Co-incidentally, 90° rotated in the azimuthal direction, the flow field was extremely

favorable for re-locating the pre-chambers.

The Delta prototype featured the piston orientation of the Gamma prototype, but

the pre-chambers were relocated 90° in the azimuthal direction in the cylinder head.

The same parametric study of SOI and spray angle used to evaluate the Gamma pro-

totype was applied to evaluate the Delta prototype. The highest amount of vaporized

fuel in the two pre-chambers at TDC for the Delta prototype was associated with the

140° included spray angle and 60° bTDC SOI, and a 1 mg injection yielded φ = 0.29

and φ = 0.30 in pre-chambers A and B, respectively. The vaporized fuel fraction was

100% for both pre-chambers, a significant improvement over the Beta prototype.

The Epsilon prototype was identical to the Delta prototype, but the piston was

rotated 90° in the azimuthal direction so the injection event could benefit from the

proper orientation of the piston scallops. The intake and exhaust valve timings for

the Epsilon prototype were identified using GT-Power to achieve the largest trapped

air mass given the range of authority of the factory variable valve timing. The new

piston orientation required the exhaust valve to be advanced by 10 CAD to prevent

piston and valve interaction. The intake valve timing remained unchanged. The

same parametric study of spray cone angle and SOI used for the Gamma and Delta

designs was applied to the Epsilon prototype. The Epsilon prototype was able to

induct a larger amount of charge mixture into the pre-chambers using the 20° and 40°

included spray angles in comparison with the Delta prototype. These spray angles

relied more significantly on the piston crown geometry to guide the charge mixture

into the pre-chambers. The best fueling strategy for the Epsilon prototype occurred

with the same SOI and same spray angle as the Delta prototype, and resulted in an

approximately equal amount of charge mixture inducted in each pre-chamber. The

tumble, caused by the valve angle and port geometry, was sufficiently intense that

the tumble flow was the primary transport mechanism for the induction of the charge

mixture into the pre-chambers at the included spray angle of 70°.

The Zeta prototype featured the same combustion chamber geometry as the Ep-

silon prototype, but the piston crown geometry was modified to avoid piston and

valve interaction. A similar parametric study of spray cone angle, included spray

angle, and SOI was conducted for the Zeta prototype. The spray pattern with the

best results for the Zeta prototype was achieved with a 20° included spray cone angle
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Table 3.4: Comparison of the model predictions for fuel mass and vapor fraction by
region in the various prototypes at TDC for a 1 mg booster injection. The best results
for pre-chamber equivalence ratio for the different spray cone angles and included
spray angles considered are presented for each design.

Start of Main Chamber Pre-Chamber A Pre-Chamber B
Injectiona Vapor Vapor Vapor

Model [°bTDC] φ Fraction φ Fraction φ Fraction
Alpha 20° 0 6% 0.15 41% 0.13 46%
Beta 40° 0.01 81% 0.61 45% 0.63 46%
Gamma 60° 0.04 96% 0.09 100% 0.19 100%
Delta 60° 0.04 87% 0.29 100% 0.3 100%
Epsilon 60° 0.04 88% 0.29 100% 0.28 100%

a bTDC

and a 140° included spray angle. The results for the equivalence ratio at TDC in the

pre-chambers and the main chamber for each of the prototype designs are compared

in Table 3.4. The model predictions show the target goals of controlling the relative

fuel quantities in the pre-chambers and the main chamber were met in the Delta, Ep-

silon and Zeta designs, and the Zeta design further achieved complete vaporization

of the fuel in the pre-chamber with 98% vaporization in the main chamber.

The success of the Zeta prototype was due to the bulk charge motion developing

a split reverse tumble motion. The intake port, combustion chamber dome, and

piston geometry were designed to enable this motion. The fuel injected into the

main chamber during the booster injection was successfully vaporized and transported

towards and inducted into the pre-chambers. Figure 3.5 shows the velocity vector field

of the Zeta prototype 1 mg fuel injection simulation on the centerline cut plane at

60° bTDC.

Based on the positive results for the Zeta model predictions for fuel distribution

and phase, a larger parametric space for fuel mass was explored for the Zeta prototype

using a 20° spray cone angle and a 140° included spray angle, with fueling amounts

from 1 mg to 7 mg and SOIs of 50°, 60° and 70°. Table 3.5 summarizes the results

for fuel mass by region. The SOI of 60° bTDC yielded the best results in terms

of equivalence ratios of vaporized fuel in the pre-chambers and the main chamber.

Figure 3.6 presents the equivalence ratio in the pre-chambers and the main chamber

for SOI of 60° bTDC as a function of the booster fuel mass injected. The pre-chambers

achieved near stoichiometric mixtures of fully vaporized fuel with the 7 mg booster

injection. The results also show the main chamber was fuel lean throughout the range
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Figure 3.5: Velocity vector field at the centerline cut plane of the Zeta prototype at
70° bTDC highlighting the split reverse tumble motion of the bulk flow field for 1 mg
of fuel injected at SOI = 60° bTDC.

of fuel mass considered.

Figure 3.6 and Table 3.5 show the amount of fuel injected in the booster event can

be lower than 7 mg and achieve φ > 0.8 conditions in the pre-chambers. The results

indicate when the booster fueling event is superimposed on the conditions created by

a global fuel injection event, near stoichiometric conditions can be achieved in the

pre-chambers.

The results of the computational simulations were also interrogated to understand

the transient behavior of the flow into and out of the pre-chambers. Using the flow

field near the pre-chamber orifices, a flow field alignment metric was developed with

the form:

V elratio =
V̂zone • n̂orifice
|V̂zone|

(3.1)

where V̂zone is the average velocity vector in a spherical region outside the pre-

chamber orifices and in the main chamber, and n̂orifice is the vector normal to the

planar area of the opening of each orifice, with the positive direction chosen as towards
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Table 3.5: Summary of model predictions for fuel mass and vapor fraction by region
in the Zeta prototype at TDC for an included spray cone angle of 20° and an included
spray angle of 140°.

Start of Main Chamber Pre-Chamber A Pre-Chamber B
Fueling Injectiona Vapor Vapor Vapor
Amount [°bTDC] φ Fraction φ Fraction φ Fraction
1 mg 60° 0.06 98% 0.28 100% 0.27 100%
2 mg 60° 0.11 98% 0.48 100% 0.47 100%
3 mg 50° 0.17 95% 0.52 100% 0.52 100%
3 mg 60° 0.17 97% 0.62 100% 0.62 100%
3 mg 70° 0.17 98% 0.61 100% 0.59 100%
4 mg 50° 0.22 94% 0.61 100% 0.60 100%
4 mg 60° 0.22 95% 0.74 100% 0.74 100%
4 mg 70° 0.23 98% 0.72 100% 0.71 100%
5 mg 60° 0.28 93% 0.78 100% 0.83 100%
6 mg 60° 0.33 91% 0.90 100% 0.91 100%
7 mg 60° 0.38 90% 0.97 100% 0.97 100%

a bTDC

the pre-chamber. The dot product of V̂zone and n̂orifice gives an absolute measure of

how well the flow field is aligned with the orifice orientation.

Normalizing V elratio by the magnitude of V̂zone enables direct comparison between

different flow conditions and engine designs. In this form, V elratio quantifies the

contribution of the local flow to filling and emptying the pre-chamber, where V elratio

can have a value between -1 and 1. A V elratio value of 0 indicates the local flow is

bypassing the connecting orifice. A V elratio value of +1 indicates the local flow is

perfectly aligned and filling the pre-chamber. A V elratio value of -1 indicates the flow

is perfectly aligned and emptying the pre-chamber.

Figure 3.7 and Figure 3.8 present the results for V elratio for the Beta and Zeta

prototypes, respectively. The Beta and Zeta simulations were selected to highlight

key features of the transient flow behavior. In the figures, the time histories for

V elratio for each of the six orifices are presented. The three orifices for each of the two

pre-chambers are designated by their location relative to the exhaust valves, intake

valves, and the central position.

Both prototype engine designs showed the full range of potential values for V elratio

from -1 to +1. When the piston changed directions, either at BDC (540 CAD) or

TDC (720 CAD), the V elratio captured the expected change in flow direction. Both

engine designs showed the pre-chambers should be well-purged during the expansion
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Figure 3.6: Equivalence ratio by region as a function of the fuel mass in the booster
injection event for 20° included spray cone angle, 140° included spray angle, and SOI
of 60° bTDC.

stroke. The Beta prototype had an intake valve closing event, IVC, at 623 CAD,

while the Zeta prototype had an intake valve closing event at 582 CAD. Both engine

designs showed flow sensitivity immediately following IVC; however, the Zeta flow was

more sensitive, with larger oscillations in V elratio over a longer portion of the cycle.

The lower sensitivity of the Beta design was due to the local flow being saturated in

the alignment with the orifices, with V elratio '1, for a majority of the time between

IVC and TDC. Recall the Beta design targeted direct filling of the pre-chambers

by the booster fuel spray, and the direct alignment of the liquid fuel spray led to

unacceptably high liquid films in the pre-chamber.

When comparing the values for V elratio for the different orifices for the Zeta pre-

dictions in Figure 3.7, there is a period of time before the intake valve closes (∼ 560

CAD to 580 CAD) where the orifices on the exhaust side of the chamber had flow

exiting the pre-chambers while flow through the other orifices were filling the pre-

chambers. This may lead to short-circuiting of the flow, and this type of behavior

58



Figure 3.7: V elratio for the pre-chamber orifices of the Beta prototype for a non-
spraying simulation.

can be a constraint on the timing of the booster fuel injection event. However, this

type of behavior can also be desirable for purging the residuals from the pre-chambers

depending on the timing. Similar simultaneous inflow and outflow behavior, although

more erratic, was observed for the Beta model predictions before IVC. Note the de-

caying oscillations observed after IVC in the Zeta prototype results are likely due to

the rapid numerical separation of the intake port and the combustion chamber and

are likely an artifact of the solver. All convergence criteria are satisfied through this

portion of the cycle. Soon after IVC, all orifices exhibited filling behavior for the

Zeta model predictions (and the Beta model predictions). This portion of the cycle

is when the booster fuel injection event occurred. A significant window of time when

the flow is well-aligned with filling the pre-chambers is critical during this portion of

the cycle to enable flexibility in the timing of the booster fuel injection event.

The intake and exhaust orifices for each pre-chamber were at significantly different

angles for the Zeta prototype, yet Figure 3.8 shows the V elratio values were comparable

to the values for the central orifice. In other words, the flow alignment metric results

for the Zeta prototype indicate little sensitivity of the flow to the angle of the pre-

chamber orifices. This allows flexibility in strategically targeting the exhaust orifices
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Figure 3.8: V elratio for the pre-chamber orifices of the Zeta prototype for a non-
spraying simulation.

of each pre-chamber to enable the shortest and most complete main chamber burn

possible.

3.7 Summary and Conclusions

This work documented the development and evaluation of a new engine concept

using computational simulations of non-reacting flow. The objective of the compu-

tational study was to evaluate the feasibility of several engine design configurations

combined with fuel injection strategies to create local fuel/air mixtures in the pre-

chambers above the ignition and flammability limits, while maintaining lean condi-

tions in the main combustion chamber.

Through a series of six design iterations, the Zeta prototype was able to achieve

the desired ignitable mixture in the pre-chamber at TDC by using an appropriate

fuel injection profile and flow control via the piston, cylinder head, and pre-chamber

geometry. The ignitable mixture was achieved using an injection strategy of 7 mg of

fuel at 60° bTDC SOI with a spray pattern featuring a 20° included spray cone angle

and a 140° included spray angle. Each pre-chamber was able to achieve φ = 0.97,

which was near the nominal design target, while maintain a sufficiently lean global
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equivalence ratio of φ = 0.38 in the main chamber. The fuel was fully vaporized in

the pre-chambers and was 90% vaporized in the main chamber. This was achieved by

the two, diametrically opposed, pre-chambers being indirectly fueled from a centrally

mounted fuel injector in the main chamber and using the bulk charge motion to

improve fuel spray mixing. The results of this design study show difficulties associated

with pre-chamber charge preparation of indirectly fueled pre-chamber engine designs

can be overcome.

Additionally, a flow field alignment metric was developed based on the flow field

near the pre-chamber orifices. The metric quantified the contribution of the local

flow to the filling and emptying of the pre-chamber and aided in understanding of

the transient nature of the pre-chamber filling dynamics. Regardless of combustion

chamber geometry, number of orifices, or pre-chamber location, the optimal injection

strategy will be one that introduces the appropriate amount of vaporized fuel near

the pre-chamber orifices at a span of time where the near orifice flow field is at the

highest alignment with the normal vector of the orifice opening.

Current work focuses on building, characterizing and testing of the Zeta proto-

type via an optically accessible single cylinder engine. Experimental studies are in

progress to validate the CFD model predictions and to further develop this lean burn

combustion engine concept.
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Abbreviations Definition
Letters
BDC Bottom Dead Center
bTDC before Top Dead Center
CFD Computational Fluid Dynamics
DI Direct Injection
KH Kevin Helmholtz
PFI Port Fuel Injection
RPM Revolutions Per Minute
RT Rayleigh Taylor
TDC Top Dead Center

Greek Symbols
γ Ratio of Specific Heats
ε Turbulent Dissipation
κ Turbulent Kinetic Energy
φ Equivalence Ratio

Symbols
° Degrees
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CHAPTER IV

The Dual Pre-Chamber Engine

4.1 Introduction

Phase 1 of the dual pre-chamber (DPC) engine research and development project

ended with the design of an engine geometry which computational fluid dynamics

(CFD) modeling results (using the software code Converge, a product of Convergent

Science) predicted would achieve targeted flow features for the fuel-to-air equivalence

ratio, φ. The objective of Phase 2A of the DPC Engine project was to build metal

and optically accessible versions of the Zeta prototype in a single-cylinder configu-

ration intended to demonstrate if the hardware achieved the desired flow dynamics

predicted by the CFD model. The following sections describe in detail the hardware

development and the engine installation.

4.2 Engine Specifications

The physical version of the Zeta DPC prototype engine was built with some mod-

ifications compared with the CFD design. The specifications of the computational

and physical engines are provided in Table 4.1. Some key differences between the

computational and physical Zeta prototypes include the stroke and the compression

ratio. The changes in the physical dimensions of the engine were made to balance be-

tween using the existing single-cylinder infrastructure at the University of Michigan

(UM) and using the geometry of the CFD simulations which leveraged a Hyundai

design for a four cylinder 2.0 L forced-induction gasoline production engine.

Figure 4.1 presents an image of the DPC prototype installed in room 1096 of

the W.E. Lay Automotive Laboratory at the UM. The engine was supported by a

dynamometer, temperature-controlled coolant system, piston-based fueling system,

intake air system with boosted pressure capability, intake and exhaust plenums, and
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Table 4.1: Summary of the CFD and physical engine specifications for the DPC Zeta
Prototype.

Specification CFD Zeta Prototype Physical Zeta Prototype
Bore 86.0 mm 86.0 mm
Stoke 86.0 mm 76.5 mm
Connecting Rod Length 146.25 mm ∼ 141 mm
Wrist Pin Offset 0.8 mm 0.0 mm
Compression Ratio 12.56:1 ∼ 10.66:1
RPM 2000 600
Intake Valve Diameter 35.0 mm 35.0 mm
Intake Valve Openinga 316 CAD 280 CAD
Intake Valve Closinga 582 CAD 634 CAD
Exhaust Valve Diameter 29.0 mm 29.0 mm
Exhaust Valve Openinga 164 CAD 100 CAD
Exhaust Valve Closinga 403 CAD 448 CAD

a Valve events are specified at 1 mm lift.

a temperature and pressure controlled oil system. The in-house designed and custom

built intake and exhaust plenums, required to damp pressure oscillations, are visible in

Figure 4.1. A custom data acquisition and signal processing system (shown in Figure

4.2) was designed and built for the DPC system to interact with the engine, the

dynamometer and the custom designed and built fuel injectors provided by Delphi.

Two configurations of the physical engine hardware were created for testing. One

configuration used a full-metal cylinder liner, and was used to test clearances, seals,

valve timing and establish motoring baseline performance. The second configuration

used a transparent cylinder liner made from Corning HPFS 7980UV-OC3 fused silica

to allow optical access to visualize the fuel and air flow fields. Figure 4.3 presents

an image of the fully-transparent cylinder liner installed in the DPC Zeta prototype

engine.
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Figure 4.1: DPC prototype engine located in the UM 1096 W.E. Lay Automotive
Laboratory test cell.
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Figure 4.2: The data acquisition and signal generation systems created for the DPC
prototype engine.
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Figure 4.3: The fully transparent cylinder liner installed in the Zeta prototype engine
and illuminated using the LED lighting system.
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4.3 Custom DPC Cylinder Head

The following section highlights important aspects of the custom designed and

built Dual Pre-Chamber Engine, specifically focusing on the complicated cylinder

head assembly.

Figure 4.4: Left to Right: Custom cylinder head, Lower cam carrier, upper cam
carrier.
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Figure 4.5: Set-up for adjusting proper valve lash prior using lower camshaft carrier
and conventional camshaft journal caps, prior to installing and sealing the upper
camshaft carrier.
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Figure 4.6: Spark plugs, pre-chamber retention nuts, and pre-chamber insert.
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Figure 4.7: Close-up of the pre-chamber insert featuring the pre-chamber orifice ge-
ometry.
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Figure 4.8: Combustion chamber dome featuring the pre-chamber location at the 3
o'clock and 9 o'clock positions. The 6 o'clock shadow is the pressure transducer port.
A brass plug is installed in the center, where the direct injector is installed.
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Figure 4.9: Assembly used to determine the health of Torlon piston rings by quanti-
fying leakage rate.
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Figure 4.10: Profile close-up view of the Zeta prototype piston geometry installed in
the optical liner with the Torlon compression rings.
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Figure 4.11: Top view of the Zeta prototype piston geometry with modeling clay used
for checking injector, valve, and combustion chamber dome clearancing.
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4.4 Custom Fuel Injector

The CFD studies were used to determine an optimized fuel spray patterns that

can indirectly fuel the two pre-chambers using a centrally mounted gasoline direct

injector. The desired spray patterns, seen in Figure 4.12, would feature two plumes

that are 180 degrees opposed with cone angles of 20° and a center-center spray angle

of 140°. This injector would be operated at 200 bar injection pressures and 0 – 10 mg

fuel delivery.

Figure 4.12: Desired spray profile from CFD.

Several manufacturers were approached to build a fuel injector system which would

create the fuel sprays identified in the CFD study. Some challenges to this aspect of

the project were the timeline to build and deliver the system to the UM, compatibility

with the Zeta head architecture, and the ability to create a fuel injector with a large

spread angle between the two fuel spray plumes. A decision matrix, outlined in

Table 4.2 and Table 4.3, was developed to aid in the selection of the best suited

manufacturer.
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Table 4.2: Custom fuel injector manufacturer decision matrix using gasoline direct injection technology.
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Table 4.3: Custom fuel injector manufacturer decision matrix using diesel common rail injection technology.
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Based on this decision matrix, the gasoline direct injector route was selected and

the optimal partner, was determined to be Delphi. Mark Sellnau of Delphi proposed

his group could meet the design criteria for the system and agreed to design and

build several prototype fuel injectors for the project at no cost to Hyundai or the

UM. This was a significant cost-share in-kind for the project. This custom injector,

shown in Figure 4.13, proved to be very challenging to manufacture due to packaging

requirements. Figure 4.14 shows the injector nozzle (bottom) view of the custom DPC

fuel injector prototype mounted in the DPC cylinder. It was determined a clocking

feature, detailed in Figure 4.16 was needed to properly align the two plumes to target

the three pre-chamber orifice openings.

Figure 4.13: Custom DPC fuel injector prototype.

Figure 4.14: Injector nozzle orifice orientation relative to the pre-chambers.

Figure 4.15 shows the side view of the custom DPC fuel injector prototype in-

stalled in the DPC engine model. Packaging the alignment feature, wire harness,

and spring retention clip proved to be a challenge given the lack of necessary space.

Of concern was also the ability to easily remove the injector for servicing purposes

and interchangeability for testing various injector configurations. The spring retainer

clip, seen in yellow, provides the downwards force to ensure the injector is securely
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Figure 4.15: Different views of the fuel injector prototype installed in DPC cylinder
head.

seated. The T-bar manifold, which sits on top of the injector, is intended to supply

the injector with liquid fuel. The seal to the injector is achieved through an annu-

lar o-ring seal. The same T-bar can be clamped down on the cylinder head using

two bolts to preload the spring retainer clip, thus becoming a retaining T-bar. In

a conventional engine, the spring retainer clip easily slides out the side and a stan-

dard injector removal tool can be used. Due to the majority of the spring retainer

being located with the cylinder head, sideway removal was no longer an option. The

overall injector height could not be increased any further. To solve this problem, an

integrated ring, seen in green, that sits below the spring retainer clip, seen in yel-

low, was developed. The integrated ring features multiple attachment points for a

custom injector removal tool. This integrated ring also acts as a fine tune alignment

feature, allowing multiple rings to be made to change the relative alignment between

the injector alignment feature and the cylinder head alignment feature. Additionally,

the hard plastic connector was necessary to be removed and a pigtail connector was

packaged.

Through several iterations, the fuel injector design and packaging was completed.
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Figure 4.16: Highlights of the injector rotational indexing system for the prototype
DPC fuel injector. The injector angular orientation relative to the cylinder head will
be accomplished via the green bushing that locks to the cylinder head by inserting a
lock pin.

Figure 4.17 shows the body of one of the fabricated prototype fuel injectors, and

Figure 4.18 shows one of the fuel injectors installed in the DPC Zeta prototype head.

The fuel injector was based on a modified version of the production Delphi Multec

14 (M14) solenoid injector. Each injector featured a custom 2-hole nozzle, a keyed

angular reference feature to clock orientation, and an extension pigtail. The fuel

injector system consisted of a spherical rail, custom retaining T-bar, and custom fuel

injector. A batch of six identical fuel injectors were designed and built by Delphi for

the project.

Delphi conducted tests of the fuel injector spray properties using n-heptane as the

fuel. Figure 4.19 and Figure 4.20 present results of the Delphi DPC injector testing at

two rail pressures. The data of Figure 4.19 corresponded to approximately 6.9 mg of

fuel injected and showed an average angle between the fuel sprays of 134°. The data

of Figure 4.20 corresponded to approximately 9.5 mg of fuel injected and showed an

average angle between the fuel sprays of 140° for the same injectors as Figure 4.19.

The results indicated the axis of the center of the spray plumes may vary as a function

of fuel rail pressure.
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Figure 4.17: One physical example of the custom Delphi fuel injectors created for the
DPC Zeta prototype engine.

Figure 4.18: One of the Delphi fuel injection systems installed in the DPC Zeta
prototype cylinder head.
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Figure 4.19: Delphi results for fuel injector performance of injector builds B267-001,
B267-002, and B267-003 at a fuel rail pressure of 100 bar, an injection duration of 1.5
ms, and using n-heptane fuel in a confined spray chamber. Included in the figure are
the penetration distances, and spray and bend angles for front and side-view imaging.
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Figure 4.20: Delphi results for fuel injector performance of injector builds B267-001,
B267-002, and B267-003 at a fuel rail pressure of 200 bar, an injection duration of
1.5 ms, and using n-heptane fuel in a confined spray chamber. Included in the figure
are Delphi determined penetration distances, spray and bend angles for frontal and
side-view imaging.
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CHAPTER V

Experimental Validation of a Dual Pre-Chamber

Internal Combustion Engine Concept

5.1 Introduction

Phase 1 of the dual pre-chamber (DPC) engine research and development project

ended with the design of an engine geometry which computational fluid dynamics

(CFD) modeling results (using the software code Converge, a product of Convergent

Science) predicted would achieve targeted flow features for the fuel-to-air equivalence

ratio, φ. Specifically, the primary goal of the CFD study was to achieve a flow

design which would create near stoichiometric fuel-to-air equivalence ratios (φ = 1.0)

in two pre-chambers with lean equivalence ratios (φ < 1.0) in the main combustion

chamber. After several iterations on the geometry, a “Zeta” prototype was designed

which met the project objectives with good flexibility in fuel injection strategies (e.g.

injection timing and fuel mass). In Phase 2A of the DPC Engine project consisted

of building metal and optically accessible versions of the Zeta prototype in a single-

cylinder configuration. and to demonstrate if the hardware achieved the desired flow

dynamics predicted by the CFD model. The objectives of Phase 2B, experimental

validation studies, of the DPC Engine project were to demonstrate if the hardware

achieved the desired flow dynamics predicted by the CFD model. High-speed imaging

of fuel injection and the air charge flow was applied to compare with the simulation

results. The following sections describe the diagnostic systems used, the results of

the engine testing, and conclusions.

The lower stroke and compression ratio of the physical engine were not expected

to change the major flow features which were the focus of the current engine design

and testing. Lower engine speed than CFD studies was used in the physical experi-

mental validation studies for component protection, particularly to protect the fused
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silica liner. Lower engine speed reduces in-cylinder turbulence and therefore fuel/air

mixing. Thus, the results of these validation studies were expected to indicate lower

mixing outcomes.

5.2 Experimental Approach

5.2.1 Diagnostic Specifications

The two most important diagnostics for the DPC Zeta prototype were the in-

cylinder pressure transducer and the imaging system. The transient in-cylinder pres-

sure (which was referenced to the absolute intake manifold pressure) was measured

using a Kistler 6125C21 in-cylinder pressure transducer and Kistler 5010B charge am-

plifier. The intake and exhaust absolute manifold pressures were measured using two

Omega DPG409-030A gauges. The analog pressure transducer signal was recorded

using a LabView 2012 custom data acquisition program with a 32 bit National In-

struments cDAQ-9174 chassis utilizing a National Instruments 9206 card operating at

100 kHz speed. The imaging system consisted of a high speed color digital 1280 x 800

pixel CMOS camera (Vision Research Phantom V711) capable of a 7 gigapixel/second

throughput, a high speed macro lens (Nikon 105 mm f/2.8 AAF Micro) for front-view

imaging, a high speed macro zoom lens (Nikon 80 – 200 mm f/2.8 AF-D ED Macro) for

side-view imaging, and a high-speed LED lighting system consisting of a VideoStrobe-

Flood Controller (Visual Instrumentation Corporation 201300AW) operating two 1

x 3 LED arrays (Visual Instrumentation Corporation 900420W) in “flooding” mode.

Additional details regarding the camera performance, spectral response of the CMOS

sensor, white-balancing and zero signal leveling frequency and procedures can found

in Assanis et al. [1]. Approximately a dozen lenses were trialed to identify to the

best combination for the front- and side-view imaging studies. The imaging system

was focused on the combustion chamber centerline, with the primary focus on the

fuel injector nozzles. For the front-view imaging, a resolution of 768 x 256 pixels, a

frame rate of 36,000 fps, and exposure setting of 27 µs were used. For the side-view

imaging, a resolution of 512 x 512 pixels, a frame rate of 10,000 fps, and exposure

setting of 99 µs were used.
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Figure 5.1: High-speed camera system in the configuration for front-view or intake
orientation of fuel injection and air flow imaging.
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Figure 5.2: High-speed camera system in the configuration for side-view or timing
belt orientation of fuel injection and air flow imaging.
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The pressure data were used to determine the baseline motoring conditions of the

engine, and to establish the integrity or health of the engine in terms of the piston

seals and other potential sources of leaks in the air flow. The imaging data were

used to determine the quantitative physical characteristics of the fuel sprays and the

qualitative characteristics of the air flow (via moisture condensation). Figure 5.1 and

Figure 5.2 show the orientation of the camera when imaging from the front and side

of the engine, respectively.

5.2.2 Operating Conditions

The fixed engine operating conditions used for the Phase 2 imaging study are

provided in Table 5.1. Low speeds were used to protect the metal and optical en-

gine components. A slight pressure rise across the engine was used for the initial

engine break-in and imaging studies. A moderate coolant temperature was used as a

compromise between condensation on the optical liner and concerns of the effects of

thermal expansion that could occur with higher coolant temperatures. A reference

grade certification gasoline was used to provide traceable gasoline properties. The fuel

rail pressure was slightly lower than the CFD simulations, which used a fuel injection

pressure of 150 bar, due to hardware limitations.

Table 5.1: Summary of operating conditions used in the DPC Zeta prototype fuel
and air imaging studies.

Parameter Testing Range
Engine speed 600 ± 5 RPM
Intake Manifold Pressure 95.0 ± 2.0 kPa
Exhaust Manifold Pressure 101.5 ± 2.0 kPa
Coolant Temperature 45° ± 3° C
Injector Build B267-001 and B267-005
Fuel Type HF-0072
Fuel Rail Pressure 100 ± 5 bar
Start of injection (SOI) timing 180°, 120°, 90°, 75°, and 60° bTDC
Injection Duration 0.25, 1.0, and 2.50 ms
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5.3 Results

5.3.1 In-cylinder Pressure Diagnostics

Results for the in-cylinder pressure of the Zeta prototype engine during motoring

conditions using the metal and fused silica cylinder liners are presented in Figure 5.3.

The average maximum in-cylinder pressure was 1580 kPa using the metal liner, and

the coefficient of variation (COV) of the maximum pressure for 48 cycles was 0.24%.

The data demonstrate the engine successfully retained air pressure throughout the

cycle with negligible cycle-to-cycle variability. The performance for the optical liner

was also excellent, with a slightly lower average maximum in-cylinder pressure of 1520

kPa and a corresponding COV for peak pressure for 48 cycles of 0.24%. The slightly

lower peak pressure is expected with the optical liner as the piston rings will not seal

as well with the fused silica liner in comparison with the metal liner.

Figure 5.3: In-cylinder pressure time histories for the motoring conditions listed in
Table 5.1 using the metal and optical cylinder liners.

5.3.2 Fuel spray imaging

Typical imaging data of the fuel spray development from the frontview are pre-

sented in Figure 5.4 for a start of injection (SOI) timing of 90° bTDC an injection

duration of 0.25 ms, and fuel injection pressure Pinj = 100 bar. The injection event

represented approximately 1.25 grams of fuel injected. The images in Figure 5.4 were
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false colored to highlight the spray features. A sharpening filter was applied and

other image settings were adjusted for presentation clarity. The images show excel-

lent separation between the spray plumes. The sprays developed with little spread

to the spray cone angle as a function of time, until impingement of the spray on the

cylinder liner is observed later in the imaging sequence (∼ 86.5° bTDC).
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Figure 5.4: Imaging sequence of fuel injection for SOI of 90° bTDC and an injection
duration of 0.25 ms.
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The imaging data were analyzed to determine the penetration distance of the tip of

the two fuel spray plumes (d1 of the left plume and d2 of the right plume), injection

speed, plume cone angle, and plume to plume spray angle as a function of time.

The results for penetration distance are presented in Figure 5.5 and qualitatively

indicate the fuel spray develop symmetrically. The measured penetration length was

estimated as biased by approximately ± 4% due to the 16° off-axis camera position.

For the image analysis the origin was set at the nozzle exit for each spray. The piston

obstructed the camera view of the full spray plumes at 631.3 CAD. The injection

spray tip velocities were determined to be 75 ± 5 m/sec for both spray plumes. From

the imaging data, the spray angle between the central axes of the two spray plumes

was 126° ± 4°, and the spray cone angles were d1 = 7.5° ± 2.0° and d2 = 9.5° ± 2.0°.

The separation angle from the imaging is within 10% of the Delphi characterization

using the spray chamber and n-heptane fuel.

Figure 5.5: Penetration distances of the two fuel sprays presented in the imaging
sequence of Figure 5.4 for SOI of 90° bTDC and an injection duration of 0.25 ms.

Figure 5.7 presents spray imaging results for SOI = 75° bTDC, injection duration

of 1 ms, and Pinj = 100 bar. This injection event represented approximately 4.41

milligrams of fuel injected. The images have not been corrected for off-axis viewing,

but they have been enhanced for clarity. At the more retarded injection timing, the

fuel sprays again show excellent separation, and little change in the spray cone angles
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Figure 5.6: Detailed imagine processing alogrithm is used to determine the plume
cone angles and plume to plume spray angles for spray pattern presented in Figure
5.4.

as the spray developed. Due to the later injection timing and the longer fuel injection

duration, the piston occludes the spray interaction with the cylinder walls. However,

the piston obstructed the camera view of the full spray plumes at 646.2 CAD.

The spray penetration distance corresponding to the imaging data of Figure 5.7

are presented in Figure 5.8 and qualitatively indicate the fuel sprays develop sym-

metrically. As with the earlier injection timing, the results show excellent symmetry

between the two plumes. The measured penetration length was estimated as biased

by approximately ± 4% due to the same 16° off-axis camera position. The imaging

data were also analyzed to determine the penetration distance of the tip of the two

fuel spray plumes (d1 of the left plume and d2 of the right plume), injection speed,

plume cone angle, and plume to plume spray angle as a function of time. For the im-

age analysis portion, the origin was set at the nozzle exit for each spray. The injection

spray tip velocities were determined to be d1 = 67 ± 5 m/sec and d2 = 70 ± 5 m/sec

for the respective spray plumes. From the imaging data, the spray angle between the

central axes of the two spray plumes was 128° ± 4°, and the spray cone angles were

d1 = 7.1° ± 2.0° and d2 = 6.8° ± 2.0°. The separation angle from the imaging is

once again within 10% of the Delphi characterization using the spray chamber and

n-heptane fuel.

The experimental results for the fuel spray imaging are in good qualitative agree-

ment with the CFD results for the spray development. For example, Figure 5.10

presents the simulation predictions for equivalence ratio (where high φ indicates high

concentrations of fuel) for a higher engine speed condition of 2000 RPM with a higher

fuel injection pressure Pinj = 150 bar compared with the experimental engine con-

ditions. However, the fuel mass used in the CFD simulation (4 mg) was similar to
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the experimental conditions of Figure 5.7. The SOI for the CFD simulation was

60° bTDC; more retarded by 15° compared with the experimental data of Figure 5.7

which used SOI = 75° bTDC. The CFD results showed two distinct sprays which

developed and impinged on the cylinder liner walls where the piston motion induced

flow along the line wall and into the pre-chambers, as observed in the imaging ex-

periments. Figure 5.11 presents CFD simulation results for the same conditions as

Figure 5.10, however, with a higher injected fuel mass of 7 mg. As expected, the

higher fuel mass extends the duration of the fuel spray event in the simulation re-

sults. The penetration distances for the two CFD simulations are presented in Figure

5.12 and Figure 5.13. As observed experimentally, the two sprays in the CFD simu-

lations develop symmetrically. Comparison of the absolute values of the penetration

distances showed the same order of magnitude for the spray development, but with

faster penetration rates observed in the physical experiments at early times. Both

the physical and computational experiments showed a change in the rate of pene-

tration; however, the experiments exhibited slower penetration rate at later times,

which was the opposite trend predicted by the CFD simulations. The decrease in

the penetration rate is consistent with expectations based on other fuel spray studies

documented in the literature. The differences in the penetration rates of the CFD and

physical experiments may be due to differences in the operating conditions, engine

geometry or assumptions used in the spray model; however, the bulk behavior is in

good agreement.
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Figure 5.7: Imaging sequence of fuel injection for SOI of 75° bTDC and an injection
duration of 1 ms

Figure 5.8: Penetration distances of the two fuel sprays presented in the imaging
sequence of Figure 5.7 for SOI of 75° bTDC and an injection duration of 1 ms.
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Figure 5.9: Detailed imagine processing algorithm is used to determine the plume
cone angles and plume to plume spray angles for spray pattern presented in Figure
5.7.
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Figure 5.10: CFD results for equivalence ratio for conditions of 2000 RPM, 4 mg of
fuel, Pinj = 150 bar, SOI = 60° bTDC (660 CAD).
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Figure 5.11: CFD results for equivalence ratio for conditions of 2000 RPM, 7 mg of
fuel, Pinj = 150 bar, SOI = 60° bTDC (660 CAD).
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Figure 5.12: Penetration distance measurements for CFD results for conditions of
2000 RPM, 4 mg of fuel, Pinj = 150 bar, SOI = 60° bTDC. These measurements
correspond to Figure 5.10.

Figure 5.13: Penetration distance measurements for CFD results for conditions of
2000 RPM, 7 mg of fuel, Pinj = 150 bar, SOI = 60° bTDC. These measurements
correspond to Figure 5.11.
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5.3.3 Air flow imaging

The air used in the engine studies was not dried prior to use, and consequently

the water moisture naturally present in the air provided the basis to image the flow

field as water condensed in the bulk charge of the fuel/air mixture. Figure 5.14

presents results of imaging the water condensation and subsequent flow motion of the

water droplets. Unfortunately, this type of in situ particle seeding for flow imaging

was only available for a portion of the cycle as the water droplets evaporated during

compression heating. The contrast in the images is low, making the flow direction

difficult to see, but the images indicate vortices developing off the surface of the piston.

In comparison, Figure 5.15 shows the CFD predictions for the tangential projection

of the velocity vector field at the piston centerline at 2000 RPM. The vector field

shows the split reverse tumble motion developed in the flow, as well as the strong

pre-chamber inflow and outflow flow field patterns.
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Figure 5.14: Imaging results of water condensation during expansion cooling of the
air charge and subsequent water droplet motion. The imaging sequence is from the
expansion stroke of the fuel injection cycle with SOI of 45° bTDC and an injection
duration of 1 ms.
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Figure 5.15: Converge simulation results for air charge motion of the Zeta Prototype
for conditions of 2000 RPM.
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5.4 Summary and Conclusions

The tests using the metal hardware of the DPC Zeta prototype showed good

integrity for valve events, piston motion, and oil, coolant, fuel, and air flows. A fully

transparent fused silica cylinder liner was fabricated for imaging studies of the fuel

and air flow. High-speed imaging captured fuel injection events at different injection

timings and the air charge motion (via droplet condensation).

The fuel injection imaging showed two narrow opposed fuel sprays were developed

which targeted the walls of the combustion chamber. The performance of the fuel

injector was in excellent qualitative agreement with the CFD predictions and with the

quantitative calibration testing results provided by Delphi. Fuel penetration distance,

injection speed, plume cone angle, and plume to plume spray angle were measured as

a function of different operating conditions. The fuel spray data are the first in situ

measurements of the unique fueling strategy and unique hardware.

The air charge imaging also confirmed vortices were developed near the surface of

the piston, consistent with the CFD simulations. These vortices are critical in forming

the split reverse tumble motion that guides the bulk charge motion in the main

chamber. Additionally, the air charge imaging verified there was a significant outflow

of charge mass from the pre-chambers into the main combustion chamber during

the expansion stroke. The observation of air charge mass outflow of the pre-chambers

eliminates the possibility of a recirculation zone existing near the pre-chamber orifices

that would prevent air charge from being inducted into the pre-chambers during the

compression stroke. The features of the fuel and air flow were considered vital based

on the CFD results to passively fuel the pre-chambers. Given the good agreement

with the CFD predictions, the air charge flow combined with the fuel flow of the

physical engine is indeed expected to create the targeted stoichiometric charges in

the pre-chambers.
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CHAPTER VI

Conclusions and Recommendations for Future

Work

6.1 Conclusions

The dramatic advances in digital computing has radically changed the process of

engine research and development; significantly reducing the time from concept to real-

ity. In this thesis, fundamental experiments, computational studies and experimental

validation techniques have successfully guided the development of new engine hard-

ware targeted to enable fuel lean, high-efficiency reciprocating engines. The following

are the key conclusions and outcomes of this thesis.

� The effects of flame propagation accelerated the autoignition ignition delay time

of premixed iso-octane and air by 2 – 31% at PEOC = 7.8 – 9.5 atm and TEOC

= 942 – 1018 K. Propagation rates of flames successfully initiated by the spark

plasma ranged from ∼ 1 – 12 m/sec at these state conditions. Dilution had a

significant effect on the lean flammability limits, increasing the lean limit of φ

= 0.35 at air levels of dilution to φ = 0.65 at inert:O2 dilution of 7.5. These

data were the first of their kind to quantify the effects of flame propagation on

autoignition at conditions relevant to end-of-compression conditions found in SI

engines.

� A combustion system was successfully designed which CFD simulations pre-

dicted would simultaneously achieve near stoichiometric (φ ∼ 1.0) fuel-to-air

equivalence ratios in two pre-chambers with lean equivalence ratios (0.4 < φ <

1.0) in the main combustion chamber. Model predictions showed good flexibil-

ity in fuel injection strategies (e.g. injection timing and fuel mass) in terms of

achieving passive fueling of the pre-chambers. This part of the thesis research
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demonstrated the first combustion chamber design of such a superposition of

fuel strategies using pre-chambers.

� A flow alignment metric was developed based on the flow field near the pre-

chamber orifices to quantify the contribution of the local flow to filling and

emptying the pre-chamber. The metric was applied to understand the transient

nature of the pre-chamber filling dynamics. Regardless of combustion chamber

geometry, number of orifices, or pre-chamber location, optimal pre-chamber

injection strategies will introduce the appropriate amount of vaporized fuel near

the pre-chamber orifices at a time when the flow field near the orifice is well

aligned with the normal vector of the orifice opening.

� A single-cylinder optically-accessible engine prototype was designed and manu-

factured to validate the CFD model predictions. The prototype engine showed

good integrity for valve events, piston motion, and oil, coolant, fuel, and air

flows. Fuel injection was in excellent qualitative agreement with the CFD pre-

dictions and with the quantitative calibration testing results provided by the

manufacturer of the fuel injector. Fuel penetration distance, injection speed,

plume cone angle, and plume-to-plume spray angle were measured as a func-

tion of different operating conditions. The fuel spray data were the first in situ

measurements of the unique fueling strategy proposed for passive fueling of the

pre-chamber.

� The air charge imaging confirmed vortices, critical in forming the split reverse

tumble motion that guides the bulk charge motion in the main chamber, were

developed near the surface of the piston, consistent with the CFD simulations.

Additionally, the air charge imaging verified there was a significant outflow of

charge mass from the pre-chambers into the main combustion chamber during

the expansion stroke. The imaging results eliminated concerns of a recirculation

zone forming near the pre-chamber orifices that could prevent the air charge

from being inducted into the pre-chambers during the compression stroke.

� The features of the fuel and air flows were considered vital based on the CFD

results to passively fuel the pre-chambers. Given the good agreement with the

CFD predictions, the combustion chamber and fueling strategy are expected to

create the targeted stoichiometric charges in the pre-chambers, while allowing

the main chamber charge to be fuel lean.
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6.2 Recommendations for Future Work

As stated by Albert Einstein, “The more I learn, the more I realize how much

I don't know.” The culmination of this thesis has demonstrated the feasibility of a

novel SI engine strategy featuring a pair of passively fueled pre-chambers that can

be used to ignite a leaner and more dilute main chamber charge. The clear and

obvious immediate next step is to perform firing experiments to demonstrate the

lean and dilute operating limits of this pre-chamber engine concept. With any new

engine concept, the first critical milestones are to demonstrate a thermal efficiency

benefit and reduced engine-out emissions. Often, these targets are set based on

the understanding that exhaust after-treatment may be necessary to meet emissions

regulations. Durability testing is also required. Throughout these steps, optimization

studies would consider geometrical aspects such as the pre-chamber volume and pre-

chamber connecting orifices as well as engine control aspects.

In addition to the immediate next steps for the engine concept stated above, there

are a number of exciting opportunities that should be further explored both in the

experimental and computational domains. Figure 6.1 briefly outlines the future areas

to be explored for each of the three type of studies performed in this work. Starting

from the fundamental studies, the same experimental approach can now be extended

to further study lean flammability limits in the context of other fuels such as ethanol,

new ignition energy sources, end-gas knock, and even higher pressure conditions that

are increasingly more relevant given the trend of downsizing engine displacement and

boosting. An additional area of future work is to investigate the mechanism(s) by

which jet ignition affects the main-chamber combustion. Pre-chamber ejected prod-

ucts are described as high enthalpy flows and/or jets of highly reactive intermediate

combustion species. Further work can focus on understanding whether the fundamen-

tal mechanism of jet ignition is due to thermal or chemical effects or a combination

of both.

In regards to the computational studies, future work should focus on improving

the ability to handle increased computational loads. This can happen through two

means: advances in the physical computer hardware as well as developing faster al-

gorithm using numerical methods to create more efficient solvers. With the extra

computational capacity, one can now run larger computational domains, longer sim-

ulations, and/or include more detailed physical models. For example, the chemical

kinetics that are used for in-cylinder combustion are presently highly reduced due

to computational load limitations. By increasing the computational load handling
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ability, detailed chemical kinetic mechanisms can be incorporated to better predict

the in-cylinder combustion process.

Figure 6.1: Set-up for adjusting proper valve lash prior using lower camshaft carrier
and conventional camshaft journal caps, prior to installing and sealing the upper
camshaft carrier.

As a final thought, a lot of this work has been motivated by the looming 2025

corporate average fuel economy (CAFE mandate) and the need to explore viable

new powertrains to meet this mandate. Improving the fuel efficiency of a vehicle’s

powertrain is undeniable a worthy task, but sometimes it is important to take a

step back and look at the bigger picture. The CAFE standard was introduced as a

way to curb the carbon dioxide emissions for the largest producing industry sector

in the United States of America in response to an increasing global warming trend.

Furthermore, it is important to note that the CAFE standard applies to new vehicles

only. However, what does the fleet average fuel economy of all the vehicles on the

United States roads look like? By examining Figure 6.2, the answer is ∼ 21 mpg

compared to new vehicle average fuel economy of ∼ 36 mpg. If one is serious about

curbing carbon dioxide production, it is not enough to set aggressive targets for new

vehicles only. Over time the fleet average of ∼ 21 mpg will certainly increase through

these mandates, but that will take many years given that approximately 15 – 20

million new cars per year are introduced into a fleet of approximately 250 million

aging cars. Thus, it is imperative to address the entire fleet average to curb carbon

dioxide production. In addition to designing new revolutionary powertrains, we must

also look at all possible options to increase the fleet average whether it be through

consumer awareness, ride-sharing, or buy-back programs.
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Figure 6.2: New light duty passenger vehicle fuel economy compared to fleet aver-
age with 2025 CAFE mandate highlighted. Data is sourced from the United States
Department of Transportation [4].
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APPENDIX A

Supplemental Material for the Experimental

Investigation of Flame Autoignition Interactions

Purity and source of the reactants used in the experiments are provided below:

� iso-octane, C8H18, (Sigma-Aldrich, 2,2,4-Trimethylpentane, anhydrous, ≥ 99.75%

purity, ≤ 0.003% water), (Fisher Chemical, 2,2,4-Trimethylpentane, Optima�grade,

99.9% min by GC purity)

� Oxygen, O2, (Cryogenic Gases, PurityPlus 4.3, 99.993% purity, ≤ 40 ppm argon,

≤ 3 ppm moisture, ≤ 10 ppm nitrogen, ≤ 0.5 ppm total hydrocarbons)

� Nitrogen, N2 (Cryogenic Gases, PurityPlus 5.0, 99.999% purity, ≤ 2 ppm oxy-

gen, ≤ 3 ppm moisture, ≤ 0.5 ppm total hydrocarbons)

� Argon, Ar (Cryogenic Gases, PurityPlus 5.0, 99.999% purity, ≤ 2 ppm oxygen,

≤ 2 ppm moisture, ≤ 2 ppm total hydrocarbons)

� Carbon dioxide, CO2 (Cryogenic Gases, PurityPlus Laser 4.5, 99.995% purity,

≤ 5ppm moisture, ≤ 5 ppm oxygen, ≤ 5 ppm total hydrocarbons)
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Table A.1: Summary of experimental conditions and results for baseline autoignition experiments in which the spark discharge
was not used. The mixture composition is provided on a mole basis. The equivalence ratio is based on iso-octane to O2 molar
ratios.

Test Gas Compositiona

φ inert χi−C8H18 χO2 χN2 χAr TEOC PEOC Teff Peff τign Tad
b

I : O2 [%] [%] [%] [%] [K] [atm] [K] [atm] [ms] [K]
0.30 3.76 0.50 20.90 78.45 0.15 968 8.1 949 7.5 35.0 1875
0.30 4.98 0.40 16.66 80.72 2.23 993 8.2 986 7.9 26.6 1738
0.50 4.99 0.66 16.58 78.00 4.76 958 7.8 945 7.4 34.9 2138
0.50 4.99 0.66 16.59 78.89 3.86 963 7.9 945 7.3 35.8 2138
0.50 7.47 0.47 11.75 86.65 0.00 980 8.5 961 7.7 38.1 1830
0.69 4.99 0.92 16.54 76.87 5.67 945 8.2 926 7.5 39.0 2481
0.70 4.99 0.92 16.54 71.12 11.42 974 8.4 962 8.0 19.8 2536
0.73 7.40 0.69 11.82 83.09 4.39 984 8.9 965 8.2 27.7 2213
0.74 7.43 0.69 11.79 83.13 4.39 999 9.5 981 8.8 21.2 2225
0.74 7.43 0.69 11.78 78.34 9.18 1010 9.1 1001 8.8 14.5 2261

a Balance CO2.
b Adiabatic flame temperatures were calculated assuming a constant volume using the initial reactant composition and the end
of compression temperature and pressure for each experiment.
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Figure A.1: Comparison of autoignition delay times determined in the current work
(Baseline Autoignition) with data from the previous iso-octane autoignition study by
Walton et al. [6]. The spark ignition system was not used with the baseline autoigni-
tion experiments. The error bars represent the uncertainty for the experiments in
this study and was determined to be ± 15%. Data from the previous iso-octane RCF
study by Walton et al. [6] were in the range of Peff = 9.0 – 12.0 atm and inert to O2

ratio 3.65 – 5.89. All data have been scaled to Peff = 8.5, φ = 1.0, and χO2 = 21.0%
using the functional dependence derived by Walton et al. [6] in which Peff

−1.25, τign
∝ φ−0.79, and χO2

−1.14.
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Figure A.2: Comparison of the pressure time histories for different spark timings for
different end-of-compression state and mixture conditions.
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APPENDIX B

Supplemental Material for the Computational

Development of a Dual Pre-Chamber Internal

Combustion Engine Concept

Table B.1: Summary of initial conditions for the regions in the dual pre-chamber
computational model.

ID Name Temperature Pressure
[K] [kPa]

0 Cylinder 894 107.5
1 Intake System 320 61.8
2 Exhaust System 894 107.5
3 Pre-Chamber A 600 107.5
4 Pre-Chamber B 600 107.5
5 Orifices A 600 107.5
6 Orifices B 600 107.5
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Table B.2: Summary of the boundaries in the dual pre-chamber computational model.

ID Name Region Name Boundary Type Temperature [K] Pressure [Pa]
1 Piston Cylinder Translating Wall 530 -
2 Liner Cylinder Stationary Wall 420 -
3 Head Cylinder Stationary Wall 435 -
4 Pre-Chamber A Pre-Chamber A Stationary Wall 400 -
5 Orifices A Orifices A Stationary Wall 500
6 Pre-Chamber B Pre-Chamber B Stationary Wall 400
7 Orifices B Orifices B Stationary Wall 500
8 Intake Port Intake System Stationary Wall 400 -
9 Intake Valve Top Intake System Translating Wall 500 -
10 Intake Valve Angle Intake System Translating Wall 625 -
11 Intake Valve Bottom Cylinder Translating Wall 625 -
12 Exhaust Port Exhaust System Stationary Wall 450 -
13 Exhaust Valve Top Exhaust System Translating Wall 550 -
14 Exhaust Valve Angle Exhaust System Translating Wall 675 -
15 Exhaust Valve Bottom Cylinder Translating Wall 675 -
16 Inflow Intake System Inflow Specified Profile Specified Profile
17 Outflow Exhaust System Outflow Specified Profile Specified Profile
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Table B.3: Summary of region event schedule for the dual pre-chamber computational
model.

Event Type Event Start [CAD] Region 1 Region 2 Event
Cyclic 358 Cylinder Intake System Open
Cyclic 623 Cylinder Intake System Close
Cyclic 165 Cylinder Exhaust System Open
Cyclic 404 Cylinder Exhaust System Close

Permanent - Cylinder Pre-Chamber A Open
Permanent - Cylinder Pre-Chamber B Open
Permanent - Orifices A Pre-Chamber A Open
Permanent - Orifices B Pre-Chamber B Open
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