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ABSTRACT	

Computer-based	simulations	have	been	widely	used	to	predict	building	

performances.	Building	energy	simulation	tools	are	generally	used	to	perform	

parametric	studies.	However,	the	building	is	a	complex	system	with	a	great	number	

of	variables.	This	leads	to	a	very	high	computational	cost.	Therefore,	using	a	building	

optimization	algorithm	coupled	with	an	energy	simulation	tool	is	a	more	promising	

solution.	In	this	study,	EnergyPlus	is	connected	to	a	genetic	algorithm	that	uses	a	

probabilistic	search	technique	based	on	evolutionary	principles.		

Various	sources	of	uncertainty	exist	in	simulation-based	building	

optimization	problems.	This	study	aims	to	investigate	the	influence	of	occupant	

behavior-related	input	variables	on	the	optimization	process.	To	integrate	the	

uncertainty	into	the	optimization	process,	a	stochastic	approach	using	the	Latin	

hypercube	sampling	(LHS)	method	is	employed.	The	varying	input	variables	are	

defined	by	the	LHS	method,	and	each	sampling	run	generates	14	samples.	Five	

optimization	parameters	are	used,	and	the	recommendations	for	parameter	settings	

of	each	parameter	are	generated	as	the	optimization	result.		

It	is	important	to	provide	a	decision	maker	with	a	decision-making	

framework	to	support	robust	decision-making	from	the	generated	

recommendations.	A	clear	or	relatively	clear	tendency	of	recommendations	toward	
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a	particular	parameter	setting	is	observed	for	three	parameters.	For	these	three	

parameters,	the	frequency	of	recommendation	is	identified	to	be	a	good	indicator	

for	the	robustness	of	the	most	recommended	setting.	The	test	of	proportion	is	

performed	to	investigate	the	statistical	significance	between	parameter	settings.	For	

the	other	two	parameters,	recommendations	are	comparatively	evenly	distributed	

among	parameter	settings,	and	the	statistical	significance	is	not	shown.	In	this	case,	

the	Hurwicz	decision	rule	is	utilized	to	select	an	optimal	solution.	

This	dissertation	contributes	to	the	field	of	building	optimization	as	it	

proposes	a	method	to	integrate	uncertainty	in	input	variables	and	shows	the	

method	generates	reliable	results.	Computational	time	is	reduced	by	using	the	LHS	

method	compared	to	the	case	of	using	a	random	sampling	method.	While	this	study	

does	not	include	all	potential	input	variables	with	uncertainties,	it	provides	

significant	insight	into	the	role	of	input	variables	with	uncertainty	in	the	building	

optimization	process.		
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CHAPTER	1	

INTRODUCTION	

The	building	sector	has	been	a	major	contributor	to	energy	consumption	and	

greenhouse	gas	(GHG)	emissions.	Thus,	the	building	sector	becomes	the	focal	point	

of	mitigating	GHG	emissions,	especially	in	developing	and	developed	countries.	

Computational	building	energy	analysis	tools	integrated	into	the	building	design	

process	can	help	decision-making	for	energy-efficient	building	planning.	However,	

the	existence	of	uncertainties	is	a	common	problem	of	computer	simulation	tools.	

The	uncertainty	needs	to	be	addressed	and	investigated	in	order	to	ensure	

reliability	and	robustness	of	the	result.	

1.1 Global	Climate	Change	

Climate	change	due	to	GHG	emissions	is	one	of	the	most	urgent	global	issues	

that	humankind	is	confronting.	It	is	projected	that	global	surface	temperature	over	

the	21st	century	will	continuously	increase	(Figure	1.1).	Further	global	warming	

will	be	likely	to	continue	even	under	the	scenario	of	a	substantial	decrease	in	GHG	

emission.	Continuous	global	warming	will	not	only	increase	the	surface	temperature	

but	also	modify	the	entire	climate	system;	sea	levels	are	anticipated	to	rise,	the	
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ocean	is	projected	to	be	warmer	and	acidified,	the	global	glacier	volume	will	keep	

decreasing,	more	frequent	and	intense	extreme	precipitation	events	are	expected,	

and	more	frequent	and	longer	heat	waves	with	more	frequent	hot	extremes	will	be	

very	likely.	The	changes	in	global	climate	consequently	involve	negative	impacts	and	

risks	for	natural	and	human	systems	[1].	Thus,	it	is	critical	to	immediately	reduce	

energy	consumption	from	fossil	fuels	and	strive	for	sustainable	development	in	

order	to	decrease	the	speed	of	global	warming	due	to	GHG	emissions.		

	

	
Figure	1.1	Global	surface	temperature	projection	over	the	21st	century1	(Source:	

NASA’s	Scientific	Visualization	Studio) 

																																																								
1	This	is	a	projection	under	the	scenario	RCP	4.5	by	IPCC	(Intergovernmental	Panel	on	

Climate	Change).	RCP	4.5	is	one	of	the	two	intermediate	scenarios	of	future	GHG	emissions,	
which	assumes	approximately	650	ppm	CO2-equivalent	in	2100	[1,160].		
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1.2 Building	Energy	Use	

The	building	sector	has	great	potential	to	mitigate	climate	change,	because	it	

currently	makes	a	huge	contribution	to	the	worldwide	energy	consumption	and	

GHG	emissions.	The	building	sector	consists	of	residential	(e.g.	single-	and	multi-

family	residences)	and	commercial	buildings	(e.g.	offices,	stores,	restaurants,	

warehouses,	government	buildings)	[2],	and	it	is	responsible	for	40%	of	the	total	

global	energy	consumption	and	30%	of	annual	GHG	emissions.	Also,	the	building	

sector	is	projected	to	have	a	continuous	growth	of	energy	demand	and	resultant	

GHG	emissions.	This	is	because	of	the	combinational	effect	of	lower	energy	

efficiency	in	existing	building	stock	and	new	construction	[3,4].	The	total	building	

stock	is	anticipated	to	keep	growing	in	number	because	the	rate	of	constructing	new	

buildings	is	faster	than	demolishing	existing	buildings	[5].	Therefore,	the	energy	

consumption	and	GHG	emissions	of	the	building	sector	should	be	constrained,	and	it	

will	greatly	contribute	to	the	mitigation	of	global	climate	change.		

The	large	amount	of	energy	consumption	and	GHG	emissions	in	the	building	

sector	is	more	prevalent	in	developed	and	developing	countries.	In	the	United	States	

(U.S.),	the	building	sector	is	responsible	for	41.1%	(22.5%	in	the	residential	sector	

and	18.6%	in	the	commercial	sector)	of	the	total	U.S.	primary	energy	consumption	

(Figure	1.2)	[2,3].	The	building	sector	is	the	biggest	energy	consumer	among	all	

sectors	in	the	U.S.	as	it	consumes	44%	more	than	the	transportation	sector	and	36%	

more	than	the	industrial	sector.	It	is	notable	that	the	U.S.	building	sector	alone	used	

7%	of	the	total	global	primary	energy	in	the	year	of	2010.		
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Figure	1.2	U.S.	primary	energy	consumption	by	sector	

	

The	U.S.	building	sector	mainly	depends	on	fossil	fuels	that	generate	GHG	

emissions.	75%	of	energy	consumption	in	the	building	sector	comes	from	fossil	fuel	

resources	including	coal	(36%),	natural	gas	(34%),	and	petroleum	(5%).	

Furthermore,	the	U.S.	building	sector	accounts	for	73.6%	of	the	U.S.	total	electricity	

consumption,	while	the	U.S.	electricity	generation	largely	depends	on	coal-based	

power	plants.	48.3%	of	the	total	U.S.	electricity	generation	is	fueled	by	coal,	and	coal	

has	higher	carbon	intensity	among	fossil	fuels	[2].	This	indicates	that	the	building	

sector	has	been	a	great	contributor	to	GHG	emissions	in	the	U.S.,	and	as	a	

consequence,	the	U.S.	building	sector	is	responsible	for	44.6%	of	the	total	U.S.	

carbon	dioxide	(CO2)	emissions	(Figure	1.3)	[6].	
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Figure	1.3	U.S.	CO2	emissions	by	sector	

	

In	short,	the	building	sector	has	been	responsible	for	a	substantial	share	of	

energy	consumption	and	global	warming.	It	uses	more	energy	than	any	other	single	

sector	in	the	U.S.	However,	this	implies	a	lot	of	potential	for	mitigation	of	GHG	

emissions	in	the	building	sector.	A	significant	reduction	in	the	building	sector	is	

therefore	expected	to	be	the	key	to	decreasing	energy	consumption	and	GHG	

emissions	at	the	national	level.	Buildings	should	be	designed,	built,	and	operated	at	

the	very	least	in	more	energy	efficient	ways	and	eventually	should	become	carbon-

neutral	[6].		

Achieving	carbon-neutral	in	the	building	sector	should	start	with	decreasing	

energy	demand	by	improving	energy	efficiency	in	both	new	and	existing	building	

stock.	Then,	on-site	energy	generation	needs	to	be	considered.	Thanks	to	

technological	developments,	more	and	more	products	of	higher	energy	efficiency,	

such	as	building	materials,	mechanical	systems,	and	electrical	appliances,	are	
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available	on	the	market.	The	efficiency	of	renewable	energy	systems	such	as	solar	

collectors,	solar	cells,	and	wind	turbines	has	also	been	improving.	However,	these	

technologies	are	generally	more	expensive	than	conventional	products,	which	holds	

back	building	owners	from	selecting	such	high	energy	efficient	products	for	their	

projects.		

1.3 Computational	Analysis	Tools	

Computational	analysis	tools	for	building	energy	performance	such	as	

thermal	simulation	tools	and	computer-based	building	optimization	can	be	useful	to	

overcome	the	gap	between	the	higher	energy	efficiency	and	the	increased	

investment	cost.	Computational	analysis	provides	an	objective	assessment	of	

whether	the	increased	cost	of	an	investment	balances	the	benefits	of	energy	savings	

[7,8].	For	example,	building	simulation	or	optimization	results	may	show	that	a	

more	expensive	energy-efficient	window	system	will	lead	to	cost-savings	due	to	

reduced	heating	and	cooling	energy	demands.	Wind	turbines	and	building-

integrated	photovoltaics	(BIPV)	that	require	high	initial	investment	costs	may	result	

in	making	profits	from	selling	the	excess	electricity	back	to	the	grid.		

A	common	problem	of	computer-based	simulation/optimization	tools	is	the	

existence	of	uncertainties.	For	computational	analysis	tools,	uncertainties	exist	in	

almost	every	part	including	the	calculation	process,	simulation	model	design,	

material	properties,	cost	data,	weather	data,	and	boundary	conditions	[8–11].		
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This	study	is	motivated	by	the	uncertainties	in	computer-based	building	

optimization.	A	method	to	integrate	uncertainty	in	input	variables	into	the	

optimization	process	is	developed,	and	the	robustness	of	the	consequent	results	is	

evaluated.	Finally,	a	strategy	to	select	a	solution	from	the	generated	optimization	

results	is	introduced.	

1.4 Organization	of	This	Dissertation	

This	dissertation	is	organized	as	follows:	

Chapter	1	provides	the	general	background	of	this	research	by	presenting	the	

global	issues	and	the	challenges	for	the	building	sector.	

Chapter	2	summarizes	the	academic	background	of	this	study	by	introducing	

building	energy	simulation	and	optimization.	

Chapter	3	provides	the	background	knowledge	of	various	decision	theories.	

Chapter	4	presents	research	questions,	objectives,	and	the	scope	of	this	study.		

Chapter	5	describes	the	research	method,	and	displays	the	step-by-step	

procedure	of	this	study.	

Chapter	6	demonstrates	the	optimization	results	and	introduces	a	robust	

selection	technique	from	available	alternatives	in	the	results.	

Chapter	7	concludes	the	key	findings,	discusses	the	contributions	of	this	study,	

and	suggests	directions	for	future	research.	
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CHAPTER	2	

BUILDING	ENERGY	SIMULATION	AND	OPTIMIZATION	

Buildings	have	a	relatively	long	lifespan	compared	to	manufactured	goods,	

and	thus	how	they	are	designed	and	built	have	a	long-term	impact	on	the	building’s	

energy	consumption	as	well	as	occupant	comfort.	Also,	it	is	difficult	and	costly	to	

alter	the	building	once	it	is	constructed.	Therefore,	design	decisions	that	affect	the	

entire	life	cycle	of	a	building	should	be	made	very	carefully	on	the	basis	of	accurate	

evaluation	from	the	early	design	stage.	Computational	analysis	such	as	building	

simulation	and	optimization	can	be	a	useful	tool	to	evaluate	and	compare	different	

alternatives	for	a	building	project.	This	chapter	explains	building	optimization	

coupled	with	a	simulation	program.	

2.1 Building	Energy	Performance	Simulation	

Building	energy	performance	simulation	tools	have	been	widely	used	to	

analyze	energy	performance	and	thermal	comfort	of	buildings.	A	variety	of	building	

energy	simulation	tools	is	available	on	the	market.	The	“Building	Energy	Software	

Tools	Directory	(BEST-D)”	has	a	list	of	122	tools	and	provides	information	about	

each	tool’s	capabilities	[12].	Building	energy	simulation	programs	are	developed	
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based	on	similar	modeling	principles.	They	typically	consist	of	an	internal	engine	

that	performs	thermal	simulations	using	mathematical	and	thermodynamic	

algorithms,	and	a	graphical	user	interface	that	helps	users	to	manage	input	and	

output	as	well	as	to	understand	the	functionality	of	the	engine.	For	example,	DOE-2	

and	EnergyPlus	are	the	two	most	popular	simulation	engines	distributed	by	

Lawrence	Berkeley	National	Laboratory	(LBNL),	and	eQUEST	and	DesignBuilder	are	

the	graphical	user	interfaces	for	the	engines	of	DOE-2	and	EnergyPlus,	respectively.	

However,	thermodynamic	models,	graphical	user	interfaces,	purpose	of	use,	life-

cycle	applicability,	and	data	exchange	ability	with	other	software	applications	are	

different	between	programs.	Figures	2.1	and	2.2	demonstrate	the	types	of	input,	

data	flow,	and	typical	structure	of	simulation	tools	[13].		

	

	

Figure	2.1	General	data	flow	of	simulation	engines	
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Figure	2.2	General	structure	of	simulation	tools	

	

A	brief	history	of	computer-based	simulation	programs	for	building	energy	

performance	is	introduced	by	Hong	et	al.	[14].	Research	on	building	simulations	

emerged	in	the	1960s,	and	early	studies	in	the	1960s	and	1970s	are	mostly	about	

fundamental	theory	and	algorithms	of	load	calculation.	From	the	start	of	the	use	of	

building	simulation,	it	was	already	considered	important	for	energy-efficient	

building	design.	In	the	late	1970s	and	early	1980s,	due	to	rapidly	diffused	desk-top	

personal	computing,	building	simulation	received	attention.	This	is	the	time	when	

popular	building	energy	simulation	programs	such	as	DOE-2,	ESP,	and	TRNSYS	were	

developed.	However,	these	tools	were	mainly	used	in	research	projects	and	hardly	

utilized	in	practice	due	to	their	difficulty	and	cost.	As	more	and	more	emphasis	was	

put	on	global	issues	such	as	climate	change	and	environmental	protection	since	the	

1990s,	creating	a	healthy	and	comfortable	built	environment	while	reducing	energy	
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consumption	and	environmental	impact	gained	more	importance.	Hence,	building	

energy	simulation	tools	have	become	a	necessary	application,	and	resultantly	

started	to	be	used	more	widely	in	building	design	practice.	

Maile	et	al.	divide	software	tools	used	in	the	building	industry	into	two	types:	

design	tools	and	simulation	tools.	The	former	is	mainly	used	for	sizing	HVAC	systems	

based	on	static	calculations.	Normally,	summer	and	winter	design	days,	which	

represent	the	worst	case	scenario	of	weather	conditions,	are	used	for	sizing	HVAC	

systems	to	prevent	them	from	failing	to	meet	the	required	level	of	thermal	comfort.	

Simulation	tools	estimate	annual	energy	demand	of	the	building	based	on	dynamic	

calculations	using	thermodynamic	equations.	They	are	also	used	to	compare	

different	design	alternatives	as	they	can	calculate	resulting	energy	demand	

according	to	each	design	option.	Dynamic	simulation	programs	use	a	set	of	climate	

data	and	produce	time-correlated	predictions.	Because	of	the	different	

characteristics,	design	tools	are	mainly	used	in	the	design	stage	while	simulation	

tools	can	be	used	in	all	phases	of	the	building’s	life-cycle.	Simulation	tools	usually	

generate	annual	energy	performance	data,	which	are	also	useful	for	commissioning	

and	operation	[13].	The	following	is	a	list	of	the	most	common	topics	to	which	

building	simulation	tools	-	including	design	tools	and	simulation	tools	-		are	

applicable	[14]:	

• Building	heating	and	cooling	load	calculation	
• Energy	performance	analysis	for	design	and	retrofit	
• Building	energy	management	and	control	system	design	
• Compliance	with	building	regulations,	codes,	and	standards	
• Cost	analysis	
• Passive	energy	saving	options	
• Computational	Fluid	Dynamics	(CFD)	
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Building	energy	simulation	tools	are	generally	used	to	perform	parametric	

studies.	The	building	is	a	complex	system	with	a	great	number	of	variables.	This	can	

generate	an	enormous	number	of	possible	combinations	of	parameter	settings,	

which	are	usually	impractical	to	deal	with	due	to	the	high	computational	cost	[15].	

On	the	other	hand,	parametric	studies	that	deal	with	parameters	one	at	a	time,	by	

changing	one	parameter	while	leaving	others	constant,	potentially	ignore	significant	

interactive	effects	between	parameters.	Therefore,	using	a	building	optimization	

algorithm	coupled	with	an	energy	simulation	tool	is	a	more	promising	solution	

[7,15].	In	this	study,	EnergyPlus	is	connected	to	an	optimization	algorithm	as	a	

building	energy	simulation	engine	to	evaluate	thermal	performance	of	parameter	

combinations	that	are	generated	by	the	optimization	algorithm.	

2.2 Building	Energy	Optimization	

A	building	is	a	complicated	system	that	is	comprised	of	a	great	number	of	

structural,	electrical,	mechanical,	and	design	elements,	and	all	of	these	elements	

need	to	be	chosen	from	a	pool	of	options.	How	those	elements	are	chosen	and	

combined	defines	the	characteristics	and	performance	of	the	building.	Because	of	

the	great	number	of	building	elements	and	even	greater	number	of	their	possible	

combinations,	parametric	studies	using	a	building	energy	simulation	program	is	

usually	inapplicable	to	find	the	optimal	solution.	Instead,	building	energy	

optimization	would	be	a	successful	alternative	by	generating	an	optimal	solution	

using	various	input	variables.		
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2.2.1 Introduction	of	building	energy	optimization	

The	term	“building	optimization”	refers	to	a	method	that	uses	an	

optimization	algorithm	to	find	the	optimal	combination	of	parameter	settings	for	

building	design	and	renovation.	Attia	et	al.	explain	automated	building	performance	

optimization	as	“a	process	that	aims	at	the	selection	of	the	optimal	solutions	from	a	

set	of	available	alternatives	for	a	given	design	or	control	problem,	according	to	a	set	

of	performance	criteria”	(p.111)	[16].	According	to	Tian	et	al.,	“building	energy	

optimization	is	a	process	of	identifying	the	optimal	design	from	a	vast	number	of	

possible	designs	that	conform	to	energy	performance	requirements”	(p.2573)	[17].	

Nguyen	et	al.	distinguish	simulation-based	optimization	from	other	methods	that	

some	researchers	use	for	building	optimization,	such	as	an	iterative	improvement	

process	using	computer	simulation,	sensitivity	analysis	to	optimize	building	

performance	without	carrying	out	a	mathematical	optimization,	brute-force	search,	

and	expert-based	optimization.	Simulation-based	optimization	is	described	as	“an	

automated	process	which	is	entirely	based	on	numerical	simulation	and	

mathematical	optimization”	(p.1044).	The	authors	also	mention	that	“the	term	

‘optimization’	(in	building	performance	simulation)	does	not	necessarily	mean	

finding	the	globally	optimal	solution(s)	to	a	problem	since	it	may	be	unfeasible	due	

to	the	nature	of	the	problem	or	the	simulation	program	itself”	(p.1044)	[18].	This	is	

how	‘building	optimization’	is	different	from	optimizations	in	other	sciences	that	

essentially	require	finding	the	global	optimum.		

Building	energy	optimization	in	the	architectural,	engineering,	and	

construction	(AEC)	industry	began	to	be	applied	in	the	late	1980s	for	building	
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design	and	operation	optimization.	By	the	late	1990s,	experienced	users	who	made	

good	use	of	building	energy	simulation	began	to	connect	their	simulation	models	to	

optimization.	Since	2000,	building	energy	optimization	has	gained	more	importance	

and	has	been	used	for	multi-objective	optimization	with	the	development	of	

mathematical	and	algorithmic	techniques	as	well	as	the	advanced	building	

simulation	tools.	Overall,	the	use	of	building	optimization	in	the	AEC	industry	was	

first	begun	by	mechanical	and	structural	engineers	and	then	spread	to	architects	

and	other	engineers	[16,18].	As	shown	in	Figure	2.3,	the	number	of	published	

research	on	optimization	in	the	building	science	field	has	been	continuously	

increasing	since	the	early	1990s,	but	a	sharp	increase	started	in	2005.	This	implies	

building	optimization	has	been	receiving	great	attention	from	building	science	

researchers	over	the	last	decade	[18].			

	

	
Figure	2.3	The	number	of	publications	of	building	optimization	research	[18]	

	

Building	energy	optimization	can	be	effectively	used	throughout	the	entire	

design	process	to	support	energy-efficient	building	design.	The	most	popular	use	of	

building	optimization	is	in	the	early	design	stage	to	compare	different	design	
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alternatives	and	select	an	optimal	solution.	This	is	especially	valuable	because	early	

design	decisions	are	normally	more	influential	in	defining	the	final	building	

performance	than	those	made	in	later	stages	[17].	Building	optimization	can	also	be	

helpful	in	the	late	design	stage	and	even	during	building	operation	after	

construction.	An	operation	strategy	of	HVAC	systems	can	be	selected	and	fine-tuned	

by	performing	optimization	in	the	late	design	stage.	During	the	building	operation	

stage,	the	most	effective	building	control	can	also	be	determined	by	optimization	

[16].	

There	are	two	major	components	of	building	energy	optimization:	building	

energy	simulation	engine	and	optimization	engine.	The	energy	simulation	and	

optimization	are	combined	and	have	a	cyclic	relationship.	The	optimization	engine	

provides	input	data	for	the	simulation	engine,	and	then	the	simulation	engine	

generates	the	output	data	(e.g.	energy	consumption,	cost).	The	optimization	engine	

repeats	this	process	until	the	optimal	solution	is	obtained.	Building	energy	

optimization	generates	optimal	solutions	according	to	a	defined	target	(i.e.	objective	

function).	The	targets	can	be	construction	cost,	energy	performance,	life-cycle	cost,	

greenhouse	gas	emissions,	and	thermal	comfort.		

Despite	the	potential	powerful	use	of	building	optimization	for	finding	

optimal	solutions,	optimization	is	not	in	wide	use	in	building	design	practice;	this	is	

partly	because	optimization	is	not	yet	widely	integrated	in	building	simulation	tools.	

Moreover,	the	use	of	optimization	involves	a	high	cost.	The	cost	of	computational	

tools	not	only	include	the	purchase	cost;	they	also	involve	the	use	cost	including	the	

labor	and	computer	resources.	The	more	complex	the	optimization	and	simulation	
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tools,	the	more	money,	time,	and	effort	are	required.	In	practice,	a	major	goal	of	

building	energy	optimization	is	therefore	to	define	an	optimization	process	that	can	

find	the	optimal	solution	in	a	less	computationally	intensive	way	[19].	

	

	

Figure	2.4	The	coupling	loop	of	simulation-based	optimization 

	

2.2.2 Topics	of	building	optimization	

The	most	commonly	studied	topics	in	building	optimization	are	listed	as	

follows	[16]:	

• Building	layout	and	form	[20–23]	
• Geometry,	position	and	density	of	fenestration	[24]	
• Building	envelope	and	fabric	constructions	[7,25–31]	
• Daylighting	performance	[32,33]	and	automated	control	of	solar	

shadings	[34,35]	
• Natural	ventilation	strategies	[36,37]	
• Shape	and	functional	structure	of	buildings	as	well	as	heat	source	

utilization	[38]	
• Heating,	ventilating,	and	air-conditioning	(HVAC)	systems	sizing	

[39,40]	
• HVAC	system	control	parameters	and/or	strategy	[41–46]	
• Thermal	comfort	[47,48]	
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• HVAC	system	configuration	synthesis	[49]	
• Managing	of	energy	storage	[50]	and	automated	model	calibration	

[51]	
• Simultaneous	optimization	of	building	envelope	and	HVAC	elements	

[52–55]	
• Simultaneous	optimization	of	building	construction,	HVAC	system	size,	

and	system	supervisory	control	[47]	
• Simultaneous	optimization	of	building	construction,	HVAC	elements	

and	energy	supply	system	[56,57].	
	

In	most	cases,	the	objectives	are	related	to	energy	and/or	cost	[16].	In	other	

words,	input	design	variables	are	optimized	to	be	either	energy	effective	or	cost	

effective,	or	both;	this	depends	on	the	selection	of	objective	functions.	According	to	

the	constraints	and/or	the	number	of	functions	to	be	optimized,	building	

optimization	can	mainly	be	categorized	into	two	groups:	single-objective	and	multi-

objective.	The	level	of	building	insulation,	for	example,	can	be	optimized	to	minimize	

either	heating	and	cooling	energy	demand	or	investment	cost,	in	the	case	of	using	a	

single-objective	function.	If	a	multi-objective	function	is	used,	the	insulation	can	also	

be	optimized	to	reduce	energy	demand	while	considering	cost	effectiveness	at	the	

same	time.	

Previous	studies	on	building	optimization	are	mainly	about	efficiency	of	

optimization	algorithms	and	search	techniques	[7,19,54,58,59]	as	well	as	to	prove	

optimization	is	a	useful	method	for	the	research	topics	listed	above	[15].	The	major	

deficiency	is	that	research	on	uncertainties	in	building	optimization	is	limited	

though	uncertainties	are	a	common	problem	for	computer-based	simulation	and	

optimization.	Uncertainty	studies	have	been	conducted	largely	in	regard	to	

uncertainty	analysis	and	sensitivity	analysis,	but	little	research	has	dealt	with	the	
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uncertainty	topic	in	the	simulation-based	building	optimization	research	

community.	The	uncertainty	issue	is	important	for	the	reliable	use	of	building	

optimization	because	it	is	related	to	the	robustness	of	the	optimal	solutions	[18].	

Some	researchers	carry	out	studies	on	the	reliability	and	robustness	of	the	

optimization	method	to	see	if	it	can	produce	optimal	solutions	[7,53,58].	It	is	shown	

that	building	optimization	is	generally	reliable	and	generates	optimal	solutions	that	

are	approximate	to	the	global	optimum.	For	example,	Wright	and	Alajmi	find	that	

their	optimization	results	using	the	genetic	algorithm	have	2.5%	of	difference	on	

average	from	the	best	solution,	which	can	be	considered	robust	in	general	in	

building	energy	optimization	problems	[60].	

It	is	also	useful	to	see	if	simulation-based	building	optimization	is	truly	

effective	in	improving	building	performance.	With	some	references	to	previous	

studies	[53,61–65],	it	is	concluded	that	building	optimization	can	achieve	a	20-30%	

decrease	in	building	energy	consumption	in	cold	and	temperate	climates	compared	

to	the	reference	building	that	is	not	optimized.	However,	building	optimization	is	

not	as	effective	in	reducing	energy	consumption	in	warmer	climates.	Cost	reduction	

by	using	optimization	is	also	marginal	and	largely	influenced	by	many	factors	such	

as	the	objective	function,	climate,	building	model,	and	optimization	algorithm	[18]. 

2.2.3 Optimization	algorithms	

A	great	number	of	optimization	algorithms	have	been	developed	and	applied	

to	the	field	of	automated	building	energy	optimization.	Especially	since	the	2000s,	

along	with	advances	in	algorithmic	techniques	as	well	as	building	energy	simulation	
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tools,	building	optimization	has	been	actively	used	to	handle	multi-objective	

optimization	problems	in	building	design.	Population-based	search	algorithms	(e.g.	

evolutionary	algorithms,	particle	swarms)	are	currently	evident	in	building	

optimization	algorithms,	because	they	are	effective	to	solve	single-	and	multi-

objective	optimization	problems	for	a	large	design	problem	such	as	architecture	

[16,18].	The	selection	of	an	optimization	algorithm	is	specific	to	individual	research,	

and	thus	cannot	be	generalized.	Some	examples	of	considerations	for	selecting	

algorithms	are:	natures	of	design	variables	(continuous,	discrete,	or	both);	

constraints	on	the	objective	function;	natures	of	objective	functions	(e.g.	linear	or	

nonlinear);	the	availability	of	analytic	first	and	second	order	derivatives	of	the	

objective	functions;	characteristics	of	the	problem	(e.g.	static	or	dynamic);	and	

performance	of	other	similar	algorithms	[18]. 

2.2.3.1 Categorization	of	building	energy	optimization	algorithms	

The	most	commonly	used	optimization	algorithms	can	be	categorized	into	

three	groups:	(1)	enumerative	algorithms,	(2)	deterministic	algorithms,	and	(3)	

stochastic	algorithms.	The	enumerative	algorithms	find	the	best	solution	by	

calculating	all	available	options,	and	therefore	are	computationally	costly.		

Deterministic	optimization	requires	that	the	evaluation	function	and	

derivatives	should	be	perfectly	known,	which	is	not	the	case	in	many	practical	

problems.	Also,	the	evaluation	function	for	the	deterministic	methods	should	be	

continuous,	so	deterministic	optimization	does	not	best	suit	building	design	and	

HVAC	system	problems	due	to	their	nature	of	discontinuity.	Moreover,	building	
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optimization	is	a	complex	problem	that	involves	many	parameters	to	consider	and	

can	be	affected	by	various	uncertain	sources.	In	order	to	cope	with	this,	traditional	

deterministic	studies	usually	use	average	values	for	stochastic	parameters,	which	

may	lead	to	a	false	result	having	a	discrepancy	between	calculation	and	the	real	

building.	Therefore,	stochastic	models	are	more	appropriate	for	building	

optimization	to	deal	with	the	uncertainties	[66].		

Stochastic	optimization	is	also	less	computationally	intensive	than	the	

enumerative	methods	as	they	use	the	probabilistic	concept	using	random	variables	

and	sampling	the	search	space	instead	of	exploring	the	entire	space.	However,	this	

results	in	the	major	drawback	of	stochastic	optimization,	that	is	to	say,	the	

stochastic	algorithms	do	not	guarantee	finding	the	absolute	global	optimum	(See	

Figure	2.5).	They	instead	produce	an	acceptable	probabilistic	estimate	of	the	global	

optimal	solution	[16,67,68].	Stochastic	methods	are	generally	relatively	simple	to	be	

employed	for	complex	problems,	but	are	supported	by	little	theoretical	foundation	

for	the	quality	of	solutions	they	generate.	This	is	because	they	are	developed	largely	

depending	on	customized	use	in	each	field	through	trial	and	error	[67].	Ant	colony	

optimization,	particle	swarm	optimization,	sequential	search	algorithm,	and	genetic	

algorithms	are	examples	of	stochastic	optimization	algorithms	that	have	been	

widely	used	in	the	building	optimization	field.		
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Figure	2.5	Global	vs.	local	optima	

	

Another	way	to	categorize	building	energy	optimization	algorithms	is	to	

classify	them	according	to	the	characteristics	of	parameters:	(1)	discrete	parameter	

methods	and	(2)	continuous	parameter	methods.	Discrete	parameter	methods	are	

generally	used	for	building	problems	because	only	a	finite	number	of	options	are	

available	for	typical	building	energy	optimization	(e.g.	wall	insulation,	glazing	

insulation,	window	type,	roof	type,	etc.).	Some	parameters	for	which	a	non-fixed	

number	of	options	are	available,	such	as	window-to-wall	ratio,	building	orientation,	

and	air-tightness,	can	sometimes	be	optimized	using	continuous	parameter	

methods.	The	simplex	method,	the	pattern	search	algorithm,	the	harmony	search	

algorithm,	and	the	multi-directional	search	algorithm	are	examples	of	optimization	

methods	using	continuous	parameters.	Discrete	parameter	methods	include	the	GA,	

particle	swarm,	and	sequential	search	methods	[69,70]. 
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2.2.3.2 Particle	swarm	optimization	(PSO)	

Particle	swarm	optimization	(PSO)	is	a	stochastic	optimization	using	discrete	

parameters.	The	particle	swarm	based	optimizations	use	probabilistic	methods.	PSO	

was	initially	developed	to	simulate	social	behavior	representing	the	movement	of	

individuals	of	a	population	(e.g.	a	bird	flock	or	fish	school)	toward	an	optimal	

position.	For	example,	a	swarm	of	bees	has	a	shared	goal	to	find	the	best	flower	in	a	

field.	In	the	PSO	algorithm,	a	swarm	represents	a	population,	and	each	particle	

stands	for	possible	optimization	solution	[69–71].		

Particles	in	a	swarm	share	information	to	find	the	best	possible	solution.	

Each	particle	(i.e.	a	potential	solution)	knows	the	position	of	both	the	best	global	

solution	hitherto	found	by	the	swarm	and	the	best	local	solution	found	by	the	

particle	in	current	population.	Going	directly	to	the	global	best	or	local	best	solution	

does	not	mean	anything	because	they	are	already	known.	Instead,	PSO	alters	

particles’	speed	and	make	them	go	towards	both	the	best	global	and	local	solutions.	

The	velocity	and	position	of	each	particle	that	are	updated	every	iteration	are	

defined	by	the	following	equations	[69,72]:	

	

!"#$ = !&'( + *+,+ -
'&./'0#12 − -&'( + *4,4(-

6'&0/'0#12 − -&'()	

-"#$ = -&'( + !"#$ 	

	

where	

!	 	 =	particle	velocity	

-	 	 =	particle	position	
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,+, ,4	 	 =	independent	uniform	random	values	between	0	and	1	

*+	 	 =	cognitive	acceleration	constant	

*4	 	 =	social	acceleration	constant	

-'&./'0#12	 =	best	local	solution	

-6'&0/'0#12	 =	best	global	solution	

	

The	numbers	for	the	two	acceleration	constants	are	generally	given	between	

0	and	4	[69].	It	is	said	that	the	best	result	is	obtained	when	roughly	the	same	

numbers	are	given.	When	a	relatively	high	number	is	given	to	*+	compared	to	*4,	

each	particle	wanders	too	much	in	the	problem	space,	whereas	premature	

convergence	towards	a	local	optimum	happens	in	the	contrary	situation	[72].				

One	of	the	advantages	of	using	PSO	is	that	it	is	the	simplest	technique	among	

discrete	parameter	methods.	PSO	can	also	solve	optimization	problems	that	are	

partially	irregular,	noisy,	and/or	changing	over	time,	which	cannot	be	solved	by	

classic	optimization	methods.	The	main	disadvantage	of	the	PSO	technique	is	that	it	

does	not	guarantee	the	global	optimal	solution	will	be	found.	Additionally,	PSO	

requires	a	relatively	high	computational	cost	compared	to	GAs,	especially	when	a	

large	number	of	parameters	are	considered	for	optimization.	Tuhus-Dubrow	and	

Krarti	point	out	that	the	GA	could	yield	the	optimal	solution	within	the	0.5%	of	

difference	from	the	results	by	PSO	when	more	than	10	parameters	are	considered	

[7,69].	There	are	some	extensions	of	the	PSO	algorithm,	including	inertia	function,	

acceleration	constants,	natural	selection	considerations,	dynamic	adjustment	of	

swarm	parameters,	and	velocity	vector	constraints.	These	extensions	bring	about	
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increased	computational	intensity,	and	thus	need	to	be	avoided	in	regard	to	

computational	efficiency	[71].			

2.2.3.3 Sequential	search	

The	common	ideas	among	PSO,	sequential	search,	and	GAs	are	that	they	use	

probabilistic	methods	and	repeat	a	number	of	iterations	to	find	the	global	optimum.	

However,	the	sequential	search	technique	finds	the	best	solution	in	each	simulation	

and	use	it	for	the	next	iteration,	unlike	the	GA	and	PSO	methods	that	use	randomly	

generated	parameter	settings	for	each	simulation	[70].	For	example,	the	Building	

Energy	Optimization	(BEopt)	tool	uses	the	sequential	search	technique	to	find	the	

minimum	cost	function;	starting	from	the	user-defined	reference	building	

simulation,	the	tool	simulates	each	option,	and	then	the	option	evaluated	to	be	the	

most	effective	is	selected	to	be	included	in	the	building	description	for	the	next	

iteration.	By	repeating	this	process,	BEopt	outlines	a	path	from	the	reference	

building	to	its	optimization	target	[69].	

The	following	is	a	generalized	summary	of	the	steps	of	the	sequential	search	

techniques	[67]:	

Step	0.	Initialize	algorithm	parameters	and	initial	point	9: ∈ <	and	set	

iteration	index	= = 0.	

Step	1.	Generate	a	candidate	point	?@A+ ∈ <	according	to	a	specific	generator.	

Step	2.	Update	the	current	point	9@A+	based	on	the	candidate	point	and	

previous	points.	



	 25	

Step	3.	If	a	stopping	criterion	is	met,	stop.	Otherwise	update	algorithm	

parameters,	increment	=	and	return	to	Step	1.	

	

Like	PSO,	the	sequential	search	technique	does	not	assure	finding	the	global	

optimum,	so	it	is	suitable	for	problems	in	which	finding	a	reasonable	local	optimum	

with	limited	resources	(e.g.	time,	money,	computational	cost)	is	acceptable	[68].	

There	are	mainly	three	kinds	of	limitations	that	inhibit	finding	the	correct	solution	

in	sequential	search	techniques	due	to	the	interactive	effects	between	different	

options:	invest/divest,	large	steps,	and	positive	interactions.	The	invest/divest	and	

large	steps	cases	result	from	negative	interaction	among	options.	In	the	

invest/divest	case,	the	sequential	search	algorithm	eliminates	potential	optimal	

options.	For	example,	a	high-efficiency	HVAC	system	may	have	been	chosen	as	the	

most	cost-effective	(in	regard	to	increased	investment	costs	and	decreased	utility	

costs)	option	early	in	the	optimization	process.	It	can,	however,	be	evaluated	as	less	

cost-effective	as	a	result	of	improved	building	envelope	performances,	hence	the	

optimization	algorithm	may	take	this	option	out	from	the	building	design.	The	large	

steps	case	describes	a	situation	that	a	previously	passed,	that	is	not	available	at	the	

current	point,	can	be	more	optimal	after	some	iterations.	One	way	to	take	care	of	the	

large	steps	case	is	to	keep	monitoring	previous	iterations,	and	if	a	more	cost-optimal	

point	is	found,	the	current	point	is	replaced	by	it.	A	final	case	is	due	to	a	positive	

interaction	between	two	options	that	create	synergy	when	considered	together.	For	

instance,	large	south-facing	windows	are	more	effective	for	passive	solar	heating	

when	combined	with	thermal	mass,	but	the	sequential	search	technique	is	not	
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always	able	to	find	the	positive	interaction	between	two	options.	It	can	only	be	

found	when	one	option	is	already	chosen	[69]. 

2.2.3.4 Genetic	algorithm	

Genetic	algorithms	(GAs)	are	a	population-based	algorithm	and	a	type	of	

stochastic	algorithm,	that	uses	a	probabilistic	search	technique.	GAs	are	

mathematical	optimization	approaches	developed	based	on	the	biological	

evolutionary	concept	of	natural	selection.	It	uses	the	concept	of	probability	

distributions	and	repeats	iterations	to	find	the	best	solution.	The	iteration	is	

repeated	until	the	stopping	criterion	is	met,	for	example,	the	number	of	predefined	

generations	is	produced	or	the	optimal	solution	is	found	[7,70].	Tuhus-Dubrow	and	

Krarti	assume	that	the	optimal	solution	is	found	if	the	same	solution	is	generated	in	

twenty	consecutive	generations	[7].	The	performance	of	the	GA	is	related	to	the	size	

of	the	search	space.	If	the	population	is	too	small,	the	algorithm	is	unlikely	find	the	

global	optimum.	On	the	contrary,	if	the	population	is	too	large,	it	requires	an	

extended	time,	therefore	becomes	inefficient	[19,67].			

In	each	generation,	a	set	of	possible	solutions,	called	“population,”	is	

generated,	and	the	current	population	is	used	to	produce	a	new	population	for	the	

next	generation	by	using	crossover,	mutation,	and	reproduction.	“Parents”	are	

selected	in	the	current	population	to	produce	“children.”	Then,	“children”	are	

evaluated	according	to	the	objective	function	and	used	to	form	the	new	generation.	

Through	selection	based	on	a	fitness	function,	the	populations	will	evolve	or	

converge	on	fitter	solutions.	[67,72,73].	One	way	to	do	this	is	“rank	weighting”;	each	
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solution	in	the	population	is	tested	and	ranked	in	an	order	of	their	fitness	value,	

then	a	virtual	roulette	wheel	is	spun	to	select	members	to	be	reproduced	for	the	

new	population	[69].	The	concept	behind	this	is	that	the	fitter	the	solution	to	the	

objective	function,	the	more	chance	it	has	to	be	selected	by	the	roulette	wheel.	In	

other	words,	it	does	not	guarantee	the	fittest	member	goes	through	to	the	next	

generation,	however	it	provides	a	very	good	chance	of	doing	so.	In	this	light,	the	way	

that	the	GA	generates	new	populations	can	be	viewed	as	a	probability	distribution.							

Once	the	population	for	reproduction	is	formed,	solutions	are	paired	for	

crossover.	Crossover	creates	new	solutions	(children)	by	breaking	and	reassembling	

paired	parents.	A	pair	of	parents	are	broken	at	a	randomly	selected	crosspoint	and	

then	reassembled	by	swapping	the	genes	after	the	point,	or	vice	versa.	Figure	2.6	

illustrates	the	concept	of	crossover.				

	

	
Figure	2.6	Example	of	crossover	

	

Mutation	randomly	modifies	a	gene	of	an	individual	solution	as	illustrated	in	

Figure	2.7.	Mutation	helps	avoiding	a	premature	convergence	and	maintaining	a	

global	search.	The	mutation	rate	is	determined	by	a	user	at	the	beginning	of	the	

algorithm.	After	the	mutation,	the	solutions	form	a	new	generation	for	the	next	
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iteration,	and	the	whole	process	is	repeated	until	the	stopping	criteria	is	met	[69].	

The	process	of	the	GA	is	shown	in	Figure	2.8.	

	

	
Figure	2.7	Example	of	mutation	

	

	
Figure	2.8	Simple	genetic	algorithm	process	
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Currently,	GAs	are	the	most	dominantly	used	optimization	algorithm	in	the	

building	optimization	research	field.	GAs	have	many	practical	uses,	including	the	

optimization	of	building	shape	[7,22,74],	building	envelop	features	[27,47,75,76],	

and	HVAC	systems	design	and	control	[40,41,43,46,77,78].	The	selection	of	

algorithms	depends	on	each	study’s	characteristics,	and	there	is	no	single	best	

algorithm	for	all	problems.	The	success	of	the	chosen	algorithm	in	cost	and/or	

energy	reduction	relies	not	only	on	the	nature	of	the	algorithm	but	also	on	

parameter	settings	[59].	Nevertheless,	some	studies	claim	that	the	GA	has	a	higher	

performance	than	other	optimization	algorithms.		

The	main	reasons	for	the	popular	use	of	the	GA	in	building	optimization	

research	are:	the	GA	(1)	can	deal	with	both	continuous	and	discrete	variables,	(2)	

can	simultaneously	evaluate	multiple	individuals	in	a	population	that	enables	

parallel	simulations	on	multi-processor	computers,	(3)	is	suitable	for	multi-

objective	optimization	problems,	and	(4)	has	a	reduced	chance	of	getting	stuck	at	a	

local	minimum	[18].	Because	building	optimization	problems	have	both	continuous	

(e.g.	design	parameters)	and	discrete	variables	(e.g.	building	components),	the	

ability	to	handle	both	variables	is	a	very	important	feature	of	an	algorithm	to	be	

used	in	building	optimization	research.	The	second	reason	is	related	to	the	

efficiency	of	the	algorithm.	Existing	studies	show	that	the	GA	is	able	to	produce	an	

optimal	solution	within	an	0.4%	of	accuracy	with	fewer	simulations,	i.e.	40%	of	the	

PSO	and	60%	of	the	sequential	search	technique	[69].	This	is	particularly	evident	

when	a	large	number	of	parameters	are	involved,	which	is	a	typical	case	of	building	

problems.	The	capability	of	solving	multi-objective	problems	is	also	essential	as,	in	
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many	cases,	building	optimization	problems	need	to	deal	with	multiple	conflict	

objectives,	let’s	say	energy	savings	and	cost	reduction	[18].	The	GA	receives	

widespread	support	in	the	light	of	avoiding	being	stuck	at	a	local	optimum.	Unlike	

other	stochastic	optimization	methods	such	as	sequential	search	and	PSO,	the	GA	

prevents	ending	up	converged	at	a	local	optimum.	As	the	GA	considers	multiple	

points	in	the	search	space	using	population,	instead	of	focusing	on	one	potential	

solution,	it	reduces	the	chance	of	converging	to	a	local	optimum	[16,58,68,69].	

Because	of	the	applicability	and	appropriateness	of	the	GA	to	building	optimization	

research,	this	study	intends	to	use	the	GA	as	an	optimization	algorithm	to	optimize	

building	envelop	features	for	the	minimum	life	cycle	cost.	

2.2.4 Building	energy	optimization	tools	

Building	energy	optimization	tools	can	be	classified	into	three	categories	in	

terms	of	the	relationship	between	simulation	and	optimization:	(1)	stand-alone	

optimization	tools,	(2)	optimization	engine	oriented	tools,	and	(3)	simulation-based	

optimization	tools.	Stand-alone	optimization	engines	are	embedded	with	

optimization	algorithms,	but	do	not	have	a	built-in	energy	simulation	program.	

GenOpt,	MATLAB	Optimization	Toolbox,	modeFRONTIER,	and	Topgui	are	examples	

of	stand-alone	optimization	tools.	Optimization	engine	oriented	tools	are	developed	

based	on	optimization	engines	and	have	an	imported	energy	simulation	program.	

GENE_ARCH,	MOBO,	jEPlus+EA,	MultiOpt	2	are	included	in	this	group.	These	tools	

are	more	user	friendly	compared	to	stand-alone	optimization	tools.	Simulation-

based	optimization	tools	are	developed	based	on	energy	simulation	programs,	and	
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the	energy	simulation	is	tightly	coupled	with	an	optimization	engine.	Examples	are	

DesignBuilder	optimization	module,	BEopt,	and	Opt-E_Plus.	Tools	in	this	group	have	

the	highest	learnability	among	the	three	categories	stated	above	[16,17].	 

Tian	et	al.	compare	seven	optimization	tools	(four	optimization	engine	

oriented	and	three	simulation-based)	using	four	assessment	criteria	including	“data	

completeness,”	“interoperability,”	“optimization	parameters,”	and	“post-processing	

capability.”	In	general,	simulation-based	optimization	tools	are	assessed	to	be	

superior	in	data	completeness,	interoperability,	and	post-processing	capability.	

Optimization	engine	oriented	tools	are	evaluated	to	be	more	powerful	in	terms	of	

optimization	capability	but	are	not	as	easy	to	learn	and	use	as	simulation-based	

tools	[17].	

Based	on	literatures,	GenOpt	and	MATLAB	Optimization	Toolbox	are	

currently	the	most	widely	used	optimization	tools	among	building	optimization	

researchers	[18].	Hani	and	Koiv	use	GenOpt	to	optimize	building	envelop	features	of	

an	office	building	in	warm	summer	continental	climate	[15],	and	Djuric	et	al.	also	

use	GenOpt	to	optimize	the	building	envelop	insulation	in	addition	to	design	and	

control	of	the	hydronic	heating	system	in	a	school	building	[52].	The	MATLAB	

environment	was	used	by	Bornatico	et	al.	for	optimization	of	solar	thermal	system	

sizing	for	a	mid-sized	single-family	house	in	Zurich,	Switzerland	[71].	Tuhus-

Dubrow	and	Krarti	use	MATLAB	as	well	for	building	shape	optimization	for	

residential	buildings	[7].	

Some	studies	use	tailor-made	programming	using	C++,	Cygwin,	Java,	R,	and	

Visual	Studio	for	optimization	instead	of	using	ready-made	optimization	package	
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[16].	This	research	uses	a	tailor-made	optimization	program	developed	by	using	

C++	and	a	genetic	algorithm	(GA),	and	the	program	exchanges	data	with	

EnergyPlus2.	The	reason	for	using	a	tailor-made	optimization	program	is	due	to	the	

limitations	of	available	ready-made	optimization	tools.	First,	algorithm	selection	is	

limited.	This	study	intends	to	use	a	GA	as	an	optimization	algorithm,	however,	

optimization	tools	usually	use	optimization	algorithms	other	than	GAs,	such	as	

Hooke-Jeeves	algorithm,	generalized	pattern	search	methods,	particle	swarm	

optimization	algorithm,	and	simplex	algorithm.	Second,	selectable	objective	

functions	are	limited.	Some	tools	provide	multi-objective	functions,	but	others	only	

allow	single-objective	functions.	Additional	limitations	include	building	type	and	

location.	For	example,	BEopt	is	a	residential	building	optimization	tool	while	Opt-E-

Plus	is	developed	for	commercial	building	optimization.	Also,	BEopt	is	limited	to	be	

used	only	for	North	American	context	[16].	

																																																								
2	EnergyPlus	is	the	most	widely	used	simulation	program	in	building	optimization	

research,	because	of	its	strong	capability	of	energy	simulation	and	the	text-based	format	of	
input/out	files	that	are	applicable	to	be	coupled	with	optimization	algorithms	[18].	
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CHAPTER	3	

DECISION	THEORY	

This	chapter	explores	decision	theory	and	discusses	various	decision-making	

criteria	to	find	the	most	appropriate	one	to	be	used	to	make	a	robust	decision	from	

results	of	the	simulation-based	optimization	that	is	conducted	in	this	research.	After	

conducting	building	optimization	analyses,	the	next	step	is	to	make	a	decision	to	

select	a	set	of	building	elements	(e.g.	insulation,	glazing,	energy	supply	systems,	

appliances,	lighting	devices)	for	an	energy-efficient	building.	However,	due	to	

uncertainties	in	parameters	as	well	as	in	the	simulation-based	optimization	process	

itself,	risks	exist	in	choosing	options.	The	uncertainty	issue	in	simulation-based	

optimization	and	its	sources	will	be	discussed	in	Chapter	4.	Employing	decision	

theory	would	be	a	good	solution	to	cope	with	the	risks	and	to	make	decisions	that	

are	robust	to	the	uncertainties.	

In	fact,	risks	exist	in	all	capital	investment	decision-making,	including	

building	problems,	to	a	greater	or	lesser	degree.	This	can	be	minimized	by	choosing	

the	best	decision	model	[79].	The	goal	of	decision	theory	is	to	help	choose	the	best	

model	among	all	possible	alternatives	under	the	circumstance	that	consequences	

cannot	be	completely	predicted,	mainly	because	they	are	dependent	on	future	of	

unknown	states	of	world	[80].		
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Decision	theory	is	a	classical	field	of	research	that	has	been	actively	studied	

in	many	academic	fields,	such	as	philosophy,	economics,	mathematics,	psychology,	

sociology,	and	political	science	[81],	but	is	relatively	newly	introduced	in	building	

research.	Attia	et	al.	develop	a	simulation-based	decision	tool	to	support	zero-

energy	building	design	in	early	design	stages	[30].	Hopfe	et	al.	use	building	

performance	simulation	and	sensitivity	analysis	to	find	more	influential	input	

parameters.	In	their	research,	analytical	hierarchy	process	(AHP)	was	used	to	make	

a	rational	decision	[82].	The	AHP	method	is	also	used	in	other	studies	to	develop	a	

comprehensive	indicator	of	indoor	environment	assessment	[83],	to	select	

intelligent	building	systems	[84],	and	to	develop	a	housing	performance	evaluation	

model	for	multi-family	residential	buildings	[85].	AHP	is	one	of	the	most	widely	

used	decision-making	techniques,	but	uncertainties	are	not	taken	into	consideration	

in	the	AHP	method.	Another	widely	known	approach	is	Bayesian	decision	theory;	

Kim	and	Augenbroe	apply	a	multi-criterion	assessment	under	uncertainty	using	

Bayesian	decision	theory	to	support	decision-making	of	choosing	a	ventilation	

operation	strategy	in	hospital	isolation	rooms	[86].	Booth	and	Choudhary	utilize	

Bayesian	multi-attributable	utility	theory	to	select	cost-effective	retrofit	measures	

for	existing	UK	housing	stocks	under	the	uncertainties	in	the	prediction	of	energy	

savings	from	the	retrofit	measures	[87].	Kim	et	al.	present	a	multi-criteria	decision-

making	framework	by	using	a	multi-attribute	utility	theory	with	Bayesian	inference	

for	choosing	an	HVAC	system	for	a	library	building	[88].	The	Bayesian	approach	is	a	

complex	analysis	and	requires	a	high	computational	cost.	It	also	needs	a	lot	of	

information.	Huang	et	al.	introduce	the	simple	multi-attribute	rating	technique	
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(SMART)	to	determine	the	optimal	HVAC	system	design	under	multiple	criteria,	

such	as	economic	performance,	energy	performance,	thermal	performance,	and	

environmental	performance	[89].	Rysanek	and	Choudhary	apply	non-probabilistic	

decision	rules	to	a	building	energy	retrofit	project.	Uncertainties	in	this	research	are	

divided	into	the	optimistic	or	pessimistic	conditions.	For	some	variables	such	as	

physical	properties,	information	about	their	probabilistic	distributions	is	available,	

while	others	(e.g.	energy	price	projections)	do	not	have	available	probabilistic	

distributions;	energy	price	projections	are	categorized	into	low,	central,	and	high	

scenarios	without	providing	information	about	how	likely	it	is	that	each	scenario	

will	happen	[8].		

Most	of	these	studies	did	not	take	into	account	the	uncertainties	and	the	risk	

attitude	of	decision	makers	in	decision-making	[82].	Hopfe	et	al.	integrated	

uncertainty	in	input	parameters	of	building	design,	but	they	made	a	choice	between	

only	two	options	(pre-chosen	HVAC	system	designs)	[82].	Their	approach	is	

comparatively	simple	compared	to	this	study	in	which	five	building	design	

parameters	are	optimized	while	integrating	uncertainties	in	user	behavior-related	

input	variables.	There	currently	is	little	information	on	building	optimization	

research	under	uncertainty	that	employs	decision	theory	to	support	robust	

decision-making.	 
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3.1 Introduction	of	Decision	Theory	

3.1.1 What	is	decision	theory?	

Decision	theory	refers	to	a	collection	of	methodologies	and	principles	that	

are	used	to	make	a	decision	among	a	group	of	alternative	choices.	Mathematical	and	

statistical	methodologies	are	applied	to	provide	information	supporting	decision-

making	[79].	Thus,	decision	theory	is	defined	as	“a	procedure	that	takes	account	of	

all	available	information	to	give	us	the	best	possible	logical	decision”	(pp.200-201)	

[90].		

Researchers	in	different	disciplines	have	endeavored	to	create	models	to	

explain	‘how	decisions	should	be	made’	and	‘how	decisions	are	actually	made.’	The	

former	can	be	expressed	as	‘rational’	or	‘ideal’	decision-making	from	the	theoretical	

point	of	view	of	philosophers,	economists,	and	mathematicians;	the	latter	can	be	

seen	as	‘everyday’	decision-making	from	the	empirical	point	of	view	of	

psychologists,	sociologists,	and	political	scientists.	This	is	one	way	to	group	decision	

models	into	normative	and	descriptive	approaches	[81].	Another	way	to	group	

decision	models	is	according	to	the	environments	of	certainty,	risk,	and	uncertainty.	

Decision-making	models	under	different	decision	environments	will	be	discussed	

more	in	depth	later	in	this	chapter.		

3.1.2 Elements	of	decision	theory	

Decision	theory	has	three	primary	elements:	alternatives,	states	of	nature,	

and	payoffs	[79].		
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(1) Alternatives	are	often	called	choices	or	strategies.	These	are	the	

independent	decision	options	that	a	decision	maker	can	choose	in	a	

decision	theory	model.	For	example,	alternatives	can	be	“to	bring	an	

umbrella”	and	“not	to	bring	an	umbrella.”	

(2) States	of	nature	are	independent	future	situations	that	are	expected	to	

occur.	One	popular	example	is	“rain”	or	“no	rain”	in	the	to-bring-or-not-

to-bring-an-umbrella	problem	(See	Table	3.1).	

(3) Payoffs	are	dependent	parameters	that	are	a	result	of	the	combination	of	

a	chosen	alternative	and	an	individual	state	of	nature.	In	other	words,	

payoffs	can	be	said	to	be	a	reward	that	a	decision	maker	will	receive	as	a	

result	of	the	decision	that	he	or	she	made	and	a	state	of	nature	that	

actually	occurs.	In	the	example	shown	in	Table	3.1,	if	a	decision	maker	

decides	to	bring	an	umbrella	and	it	turns	out	to	be	raining,	the	person’s	

bag	will	be	heavy,	but	the	person	will	stay	dry.			

	

Table	3.1	Example	of	a	payoff	table	with	the	three	decision	theory	elements	

	
States	of	Nature	

Rain	 No	rain	

Alternatives	
Umbrella	 Heavy	/	Dry	 Heavy	/	Dry	

No	umbrella	 Light	/	Wet	 Light	/	Dry	
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3.1.3 Decision	environments	

Decision-making	occurs	in	the	three	types	of	environments	that	are	certainty,	

risk,	and	uncertainty	[79].	

(1) Certainty	is	the	environment	in	which	a	decision	maker	clearly	knows	

available	alternatives	and	their	consequent	payoffs.	

(2) Risk	is	the	environment	in	which	partially	known	information	is	available	

in	a	probabilistic	manner.	In	some	cases,	though	we	do	not	certainly	know	

the	outcomes	of	available	alternatives,	it	may	be	known	how	likely	the	

outcomes	would	be;	that	is	to	say,	a	probability	of	each	state	of	nature	is	

known.	For	example,	there	is	a	20%	chance	of	rain	or	80%	chance	of	

sunshine	for	the	weather	tomorrow.	

(3) Uncertainty	is	the	environment	in	which	no	known	information	is	available	

about	the	likelihood	of	occurrence	of	each	state	of	nature.	In	other	words,	

the	probability	of	an	event	is	completely	unknown.	For	instance,	in	their	

research,	Rysanek	and	Choudhary	use	the	energy	price	projections	from	

the	UK	Department	of	Energy	and	Climate	Change,	and	the	projections	are	

categorized	into	low,	central,	and	high	scenarios	without	providing	how	

likely	it	is	that	each	scenario	will	happen	[8].				
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Figure	3.1	Decision	environments	

	

There	are	various	decision-making	methodologies	that	have	different	decision	

environments,	thus	it	is	important	to	choose	a	method	appropriate	to	the	goal	and	

elements	of	a	decision-making	problem.	

3.2 Decision-Making	Under	Certainty	

Decision-making	approaches	under	certainty	require	perfectly	known	

information	about	all	related	parameters	and	outcomes,	or	at	least	assume	they	are	

completely	known.	It	is	fairly	unrealistic,	since	such	certain	environment	is	rare	in	

reality.	Therefore,	decisions	made	by	using	these	decision-making	rules	are	

vulnerable	to	uncertainties.	This	research	aims	to	include	uncertainty	in	simulation-

based	optimization	into	decision-making,	and	thus	decision-making	under	certainty	

is	beyond	the	scope	of	this	study.	The	maximax	criterion	and	maximin	criterion	are	

included	in	this	category,	and	they	will	be	discussed	later	in	‘3.4	Decision-Making	

Under	Uncertainty.’	
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3.3 Decision-Making	Under	Risk	

The	term	risk	is	used	to	“describe	situations	for	which	probabilities	are	

available	to	describe	the	likelihood	of	various	events	or	outcomes”	(p.256)	[91].	

Under	the	risky	environment,	there	is	therefore	some	available	information	about	

states	of	nature	occurring,	and	it	is	sufficient	to	assign	probabilities	to	each	state	of	

nature.	Probabilities	are	an	essential	element	of	decision-making	under	risk	

problems,	and	the	sum	of	the	probabilities	assigned	to	each	state	of	nature	must	add	

up	to	one.	The	most	popular	example	is	flipping	a	coin3;	a	head	or	a	tail	are	two	

possible	outcomes,	and	the	probability	of	each	is	0.5,	which	makes	the	sum	of	all	

probabilities	is	1.0	[79].	

There	are	two	sources	of	probabilities:	objective	or	subjective.	Objective	

probabilities	are	acquired	from	experimental	observation	of	historical	behavior	or	

by	using	a	statistical	method	and	should	be	measurable;	therefore,	it	is	assumed	that	

the	same	pattern	of	the	probability	of	past	events	or	experiments	will	be	repeated	in	

the	future,	and	that	the	observed	probabilities	are	stable.	Also,	the	sample	size	

should	be	adequately	large	enough	to	represent	the	past	behavior.	Subjective	

probabilities,	on	the	other	hand,	are	obtained	from	human	judgment	(e.g.	experts’	

best	guess)	about	the	future	states	of	nature;	hence,	it	is	assumed	that	the	experts	

have	sufficient	knowledge	to	make	reasonably	accurate	judgment	[79,91].	 

																																																								
3	A	fair	coin	is	assumed,	that	is	to	say	the	probability	of	a	head	or	a	tail	is	equally	

likely.		
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3.3.1 Expected	value	criterion	

The	expected	value	criterion	is	widely	known	as	expected	utility	theory	

(more	precisely,	probability-weighted	utility	theory),	and	it	has	been	acting	as	a	

reference	standard	for	decision-making	[92,93].	The	basic	concept	of	the	expected	

value	criterion	is	to	choose	an	alternative	that	maximizes	the	expected	value	of	the	

resulting	utility,	by	multiplying	the	assigned	probabilities	of	each	state	of	nature	and	

quantitative	utilities	of	each	payoff	[80,94].	The	best	payoff	can	either	be	the	largest	

or	the	smallest	one	according	to	the	nature	of	payoffs;	if	the	decision-making	

problem	is	about	making	profit,	the	best	payoff	would	be	the	largest	one,	whereas,	if	

the	decision	problem	is	about	cost,	the	best	would	be	the	smallest	[79].		

An	example	of	investment	decision-making	is	summarized	in	Table	3.2.	The	

states	of	nature	have	four	different	cases	of	economic	states	during	the	year	and	

probabilities	of	each	economic	state	are	given.	The	actions	are	the	alternatives	

among	which	a	decision	maker	can	select.	Payoffs	shown	in	percentage	indicate	the	

rates	of	return	of	each	action	under	each	state	of	nature	[95].	The	expected	values	of	

each	alternative	are	calculated	as:	

Bonds:	12%(0.15)	+	8%(0.2)	+	7%(0.45)	+	3%(0.2)	=	7.15%	

Stocks:	15%(0.15)	+	9%(0.2)	+	5%(0.45)	+	(-2%)(0.2)	=	5.9%	

Deposit:	7%(0.15)	+	7%(0.2)	+	7%(0.45)	+	7%(0.2)	=	7.0%	

Since	the	expected	value	criterion	chooses	an	alternative	that	maximizes	the	

expected	utility,	a	decision	maker	will	select	bonds	at	a	7.15%	of	expected	return.			
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Table	3.2	Investment	decision-making	table	[95]		

	

States	of	Nature	and	Probabilities	

Growth	
(0.15)	

Medium	
Growth	
(0.2)	

No	Change	
(0.45)	

Recession	
(0.2)	

Actions	
Bonds	 12%	 8%	 7%	 3%	
Stocks	 15%	 9%	 5%	 -2%	
Deposit	 7%	 7%	 7%	 7%	

	

The	theory	of	utility	uses	concepts	of	lotteries	and	prizes	for	the	utility	

function,	and	the	“expected	value”	property	helps	understand	and	evaluate	complex	

lotteries.	There	are	four	utility	axioms	based	on	the	four	assumptions	on	which	the	

theory	is	founded	[90]:	

(1) The	possible	outcomes	(prizes)	can	be	compared	according	to	a	decision-

maker’s	preferences,	and	the	preferences	should	be	transitive,	i.e.,		

B > D, D > E	implies	B > E	

B	~	D, D	~	E	implies	B	~	E.	

when,		

> 	means	"is	preferred	to, "		

~		means	"is	indifferent	to. "		

(2) Preferences	for	prizes	and	preferences	for	lotteries	that	involve	the	prizes	

should	be	assigned	equivalently,	i.e.,	if	B > D,	then	 W, B; 1 − W, D >

(WZ, B; 1 − WZ, D)	if	and	only	if,	W > W′.	

when,	

W	is	the	probability	to	receive	prize	B,	and	0 < W < 1.	
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(3) It	is	assumed	that	the	lottery	itself	does	not	have	any	intrinsic	reward;	

there	is	“no	fun	in	gambling,”	and	it	is	indifference	whether	you	gamble	

on	lotteries	once	or	twice.	Only	the	reward	of	the	lottery	matters.	This	can	

be	expressed	as,		

W, B; 1 − W, (WZ, D; 1 − WZ, E) 	~	(W, B; WZ − WWZ, D; 1 − W − WZ + WWZ, E)	

	

	

Figure	3.2	"No	fun	in	gambling"	[90]	

	

(4) There	is	a	continuity	assumption;	a	certain	probability	W	exists,	which	

makes	receiving	prize	E	indifferent	to	the	lottery	between	B	and	D,	when	

B > E > D,	i.e.,	E	~	 W, B; 1 − W, D .	

	

Based	on	the	assumptions	above,	the	utility	function	](∙)	of	the	expected	

value	property	can	be	articulated	as	[90]:	
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] B > 	] D 	if	and	only	if	B > D 

if	E	~	(W, B; 1 − W, D),	

then	] E = W ∙ ] B + (1 − W) ∙ ](D)	

	

The	expected	utility	has	been	the	most	popular	tool	for	decision	analyses	

under	risk.	However,	expected	utility	theory	is	often	criticized	for	not	explaining	

how	rational	individuals	really	make	choices	under	uncertainty.	Rather,	it	explains	

how	rational	individuals	should	make	choices	under	uncertainty	[93].	

3.3.2 Expected	opportunity	loss	criterion	

People	do	not	always	make	decisions	to	maximize	the	expected	utility.	Utility	

theory	assumes	a	rational	decision	maker	who	aims	to	make	the	maximum	utility	at	

all	times,	but	it	leaves	little	room	for	emotions.	However,	in	everyday-lives	in	the	

real	world,	choices	often	involve	emotions	such	as	regret,	rejoice,	and	rewards,	that	

are	typically	considered	irrational	from	the	perspective	of	utility	theory	[96].	In	

other	words,	our	choices	in	real-life	can	be	very	different	from	what	rational	

decision	theory	suggests,	in	some	circumstances.	This	psychological	part	can	be	

explained	by	the	expected	opportunity	loss	criterion,	for	instance,	regret	theory.	

“Regret”	refers	to	the	painful	sensation	of	recognizing	that	a	decision	maker	could	

have	chosen	a	better	alternative	than	the	one	he	or	she	already	chose.	“Rejoice”	is	

the	opposite	experience	of	recognizing	that	one	has	chosen	a	more	favorable	

alternative	[92].	The	amount	of	regret	is	determined	as	“the	difference	in	value	

between	the	assets	actually	received	and	the	highest	level	of	assets	produced	by	
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other	alternatives”	(p.963)	[97].	According	to	regret	theory,	people	make	decisions	

based	on	the	utility	outcome	as	well	as	quantity	of	regret	[98].	Therefore,	the	utility	

]a(b)	depending	on	emotion	c	in	the	regret	model	can	be	expressed	as	[99]:	

]a b = ]d b + ,a 	

where	

]d(∙)	 =	monotonically	increasing	value	function	

b	 =	the	outcome	from	the	chosen	alternative	

,a 	 =	an	offset	depending	on	regret	or	rejoice	(negative	for	regret	and	positive	

for	rejoice)		

	

In	so	doing,	regret	theory	is	able	to	explain	people's	paradoxical	behavior	

such	as	one	person	gambles	(risk-prone	behavior)	and	buys	an	insurance	(risk-

averse	behavior)	at	the	same	time.	If	one	thinks	about	betting	on	a	horse,	but	does	

not	actually	bet,	it	would	be	regretful	to	see	the	horse	win	at	the	next	race,	so	one	

gambles	on	the	horse	in	order	to	avoid	regret.	Likewise,	one	buys	insurance	because	

he	or	she	does	not	want	to	feel	regret	from	seeing	his	or	her	house	burn	down	after	

choosing	not	to	have	insurance	[92].	

Therefore,	the	expected	opportunity	loss	criterion	takes	the	emotion	of	

regret	into	account	in	decision-making.	The	expected	opportunity	loss	refers	to	

what	a	decision	maker	will	lose	if	the	chosen	alternative	is	not	the	best	payoff	under	

a	state	of	nature.	Thus,	the	opportunity	loss	values	are	calculated	as	the	difference	

between	the	best	possible	payoff	under	each	state	of	nature	and	all	other	payoffs	

under	that	state	of	nature.	The	determined	opportunity	loss	values	are	multiplied	by	
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their	attached	probabilities	and	then	added	to	make	expected	opportunity	loss	

values	for	each	alternative.	At	last,	the	alternative	with	the	minimum	expected	

opportunity	loss	is	selected	[79].	For	example,	from	the	same	investment	decision-

making	problem	explored	in	the	expected	value	criterion	(Table	3.2),	opportunity	

loss	values	for	each	alternative	under	each	state	of	nature	are	computed	as	shown	in	

Table	3.3.	First,	determine	the	best	payoff	under	each	state	of	nature,	which	is	15%	

under	growth,	9%	under	medium	growth,	7%	under	no	change,	and	7%	under	

recession.	Second,	subtract	other	payoffs	under	the	same	state	of	nature	from	these	

best	payoffs;	this	makes	an	opportunity	loss	table	(Table	3.3).	Then,	by	using	the	

computed	opportunity	loss	values	and	the	probabilities,	expected	opportunity	loss	

values	are	computed	(Table	3.4).	Finally,	an	individual	who	makes	an	investment	

decision	under	the	expected	opportunity	loss	criterion	will	invest	in	bonds	that	have	

the	smallest	expected	opportunity	loss	value	at	1.45%.	

	

Table	3.3	Opportunity	loss	table	

	

States	of	Nature	and	Probabilities	

Growth	
(0.15)	

Medium	
Growth	
(0.2)	

No	Change	
(0.45)	

Recession	
(0.2)	

Actions	
Bonds	 15-12=3%	 9-8=1%	 7-7=0%	 7-3=4%	
Stocks	 15-15=0%	 9-9=0%	 7-5=2%	 7-(-2)=9%	
Deposit	 15-7=8%	 9-7=2%	 7-7=0%	 7-7=0%	
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Table	3.4	Expected	opportunity	loss	solution	to	the	investment	decision-making	
problem	

	

States	of	Nature	and	Probabilities	 Expected	
Opportunity	

Loss	
Growth	
(0.15)	

Medium	
Growth	
(0.2)	

No	Change	
(0.45)	

Recession	
(0.2)	

Actions	
Bonds	 3(0.15)	 1(0.2)	 0(0.45)	 4(0.2)	 1.45%	
Stocks	 0(0.15)	 0(0.2)	 2(0.45)	 9(0.2)	 2.7%	
Deposit	 8(0.15)	 2(0.2)	 0(0.45)	 0(0.2)	 1.6%	

 

3.3.3 Limitations	

Some	assumptions	of	the	expected	value	criterion	are	against	human	instinct.	

According	to	the	expected	value	criterion,	which	is	the	most	widely	used	decision	

theory,	people	make	decisions	based	on	the	expected	value.	This	decision	rule	does	

not	account	for	emotions,	such	as	regret	and	rejoice,	that	are	considered	irrational	

from	the	viewpoint	of	the	expected	value	criterion.	However,	in	reality,	people	do	

not	make	decisions	depending	solely	on	the	utility.	There	is	a	saying	that	“people	are	

not	logical.	They	are	psychological”	(p.2)	[100].	This	is	why	the	expected	value	

criterion	cannot	explain	several	popular	paradoxes,	for	example,	Allais'	criticism	

[96,97].	

Allais’	paradox	is	a	widely	known	criticism	against	the	expected	utility	

paradigm.	It	shows	people’s	actual	choice	between	a	small	certain	gain	and	a	larger	

uncertain	gain	is	contradictory	to	the	claim	of	the	expected	utility	theory	to	

maximize	the	expected	value.	There	are	two	situations	each	of	which	has	two	lottery	

options	(Figure	3.3).		
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Figure	3.3	Allais'	paradox	[80]	

	

A	decision	maker	can	choose	between	lotteries	e	and	e′,	and	then	between	

lotteries	f	and	f′.	Lottery	e	has	a	certain	reward	of	$500,000,	while	lottery	e′	has	a	

10%	chance	of	winning	$2,500,000,	an	89%	chance	of	winning	$500,000,	but	an	1%	

chance	of	gaining	nothing.	Between	these	two	options,	most	people	prefer	e	to	e′,	

because	it	does	not	make	sense	for	them	to	have	risk	of	getting	nothing	for	a	very	

large	fortune	instead	of	an	assured	large	fortune.	However,	most	of	the	same	people	

prefer	f′	to	f,	when	lottery	b	has	an	11%	chance	of	winning	$500,000	and	an	89%	

chance	of	gaining	nothing	while	lottery	b’	has	a	10%	chance	of	winning	$2,500,000	

and	a	90%	chance	gaining	nothing;	because	there	is	nearly	no	difference	between	

the	chances	of	getting	a	large	fortune	and	a	very	large	fortune,	they	do	not	sacrifice	

the	amount	of	reward	owing	to	little	difference.	This	is	not	compatible	with	the	

utility	concept	because	a	utility	function	must	satisfy	both	of	the	following	equations	

at	the	same	time,	and	there	cannot	be	such	utility	function	[80,81,93]:	
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] $500,000 > 0.1] $2,500,000 + 0.89] $500,000 + 0.01] $0  

0.11] %500,000 + 0.89] $0 < 0.1] $2,500,000 + 0.9] $0 . 

	

Another	criticism	to	the	expected	utility	concept	is	about	the	transitivity	

assumption.	A	decision	maker	wants	to	paint	his	room	green.	He	has	three	shades	of	

green,	m+,	m4,	and	mn.	The	shade	m+	is	slightly	darker	than	m4,	and	m4	is	slightly	

darker	than	mn.	When	he	first	sees	m+	and	m4,	he	does	not	recognize	the	difference	in	

shade,	so	for	him,	the	two	shades	are	indifferent,	that	is,	m+~m4.	He	also	cannot	tell	

the	difference	between	m4	and	mn,	so	they	are	again	indifferent	to	him,	that	is,	m4~mn.	

Finally,	when	he	sees	m+	and	mn	together,	he	can	distinguish	between	the	two	shades	

and	prefers	m+	to	mn,	that	is,	m+ > mn.	This	apparently	violates	the	assumption	of	

transitivity,	because	m+~m4,	m4~mn	implies	m+~mn	[93].	

Some	of	the	criticisms	are	resolved	by	subsequent	behavioral	decision	

theories	including	regret	theory.	Regret	theory	is	an	important	decision	theory	

under	risk,	and	it	explains	quite	well	real-world	decision-making	problems	that	are	

inconsistent	with	the	expected	utility.	However,	regret	theory	intrinsically	assumes	

the	risk-averse	attitude	of	decision	makers	[96,98].			

The	most	obvious	disadvantage	of	the	expected	value	criterion	and	the	

expected	opportunity	loss	criterion	is	that	both	of	them	are	probabilistic	decision	

theories,	and	these	criteria	require	a	lot	of	information	to	determine	the	decision	

solution.	Probabilities	of	states	of	nature	are	the	essential	element	to	utilize	these	

decision	rules	under	risk,	but	probabilities	are	not	always	known	or	are	limitedly	

available.	This	causes	a	limited	use	of	probabilistic	decision	rules.		
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3.4 Decision-Making	Under	Uncertainty	

Unlike	risky	situations,	if	the	probabilities	“cannot	be	quantified,	or	if	the	

events	themselves	are	unpredictable”	(p.256)	[91],	this	decision	environment	is	

called	uncertainty.	Under	this	environment,	there	is	little	information	about	states	of	

nature;	it	is	not	sufficient	to	assign	probabilities	of	occurring	to	each	state	of	nature.	

Nevertheless,	types	of	existing	states	of	nature,	available	alternatives,	and	payoffs	of	

each	alternative	under	each	state	of	nature	are	known.	A	decision	maker	just	does	

not	know	how	likely	it	is	that	each	state	of	nature	will	take	place	[79].			

3.4.1 Maximax	criterion	

The	maximax	criterion	is	a	very	optimistic	decision-making	rule	that	aims	to	

choose	the	best	(maximum)	one	among	the	payoffs	of	all	available	alternatives	in	all	

given	states	of	nature.	Hence,	the	steps	of	decision-making	under	the	maximax	

criterion	is,	first,	to	find	the	best	payoff	for	each	alternative,	and	then,	find	the	

maximum	payoff	among	them	[79].		

To	demonstrate	this	criterion,	let’s	revisit	the	investment	decision-making	

problem	shown	in	Table	3.2.	The	solution	to	this	problem	under	the	maximax	

criterion	is	presented	in	Table	3.5.	First,	select	the	maximum	payoff	for	each	

alternative,	that	is	to	say,	12%	for	bonds,	15%	for	stocks,	and	7%	for	deposit.	Then,	

select	the	best	number	among	the	maximums,	which	is	12%.	Therefore,	according	to	

the	maximax	criterion,	the	decision	maker	would	decide	to	invest	in	stocks	

expecting	a	15%	of	return.	
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Table	3.5	Maximax	solution	to	the	investment	decision-making	problem	

	
States	of	Nature	 Maximum	

Payoff	

Maximum	
of	

Maximums	Growth	 Medium	
Growth	

No	
Change	 Recession	

Actions	
Bonds	 12%	 8%	 7%	 3%	 12%	

15%	Stocks	 15%	 9%	 5%	 -2%	 15%	
Deposit	 7%	 7%	 7%	 7%	 7%	

 

3.4.2 Maximin	criterion	

The	maximin	criterion	is	a	semi-pessimistic	decision-making	rule	and	also	

known	as	Wald’s	criterion.	It	assumes	that	a	globally	pessimistic	condition	is	going	

to	occur	and	selects	the	maximum	value	out	of	it.	Thus,	it	selects	the	best	one	among	

the	group	of	the	minimum	payoff	of	each	alternative	[8,79,92].		

Using	the	same	investment	decision-making	problem	presented	in	Table	3.2,	

the	solution	under	the	maximin	criterion	is	given	in	Table	3.6.	First,	choose	the	

minimum	payoff	for	each	alternative,	i.e.,	3%	for	bonds,	-2%	for	stocks,	and	7%	for	

deposit.	Then,	choose	the	best	one	among	these	minimums,	which	is	7%.	Therefore,	

according	to	the	maximin	criterion,	the	decision	maker	would	decide	to	choose	

deposit	as	his	or	her	investment	strategy.	

	

Table	3.6	Maximin	solution	to	the	investment	decision-making	problem	

	
States	of	Nature	 Minimum	

Payoff	

Maximum	
of	

Minimums	Growth	 Medium	
Growth	

No	
Change	 Recession	

Actions	
Bonds	 12%	 8%	 7%	 3%	 3%	

7%	Stocks	 15%	 9%	 5%	 -2%	 -2%	
Deposit	 7%	 7%	 7%	 7%	 7%	
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3.4.3 Laplace	criterion	

The	Laplace	criterion	assumes	an	equally	likely	chance	of	occurring	for	all	

possible	states	of	nature.	Thus,	an	equal	probability	can	be	assigned	to	each	state	of	

nature.	For	the	given	investment	decision-making	problem,	for	example,	each	state	

of	nature	(i.e.	growth,	medium	growth,	no	change,	and	low)	has	an	equal	probability	

to	occur,	that	is	25%.	The	next	step	is	to	calculate	an	expected	value	of	each	

alternative	using	the	assigned	probabilities,	and	select	the	best	expected	value	[79].	

The	Laplace	solution	to	the	investment	decision	is	presented	in	Table	3.7.	

First,	an	equal	probability	of	25%	is	given	to	all	states	of	nature.	An	expected	value	

for	each	alternative	is	computed	using	payoffs	and	the	probability;	the	computed	

expected	values	are	7.5%	for	bonds,	6.75%	for	stocks,	and	7%	for	deposit.	Thus,	a	

decision	maker	who	uses	the	Laplace	selection	will	decide	to	invest	in	bonds.		

	

Table	3.7	Laplace	solution	to	the	investment	decision-making	problem	

	

States	of	Nature	and	Probabilities	
Expected	
Value	Growth	

(0.25)	

Medium	
Growth	
(0.25)	

No	Change	
(0.25)	

Recession	
(0.25)	

Actions	
Bonds	 12%	 8%	 7%	 3%	 7.5%	
Stocks	 15%	 9%	 5%	 -2%	 6.75%	
Deposit	 7%	 7%	 7%	 7%	 7.0%	

	

3.4.4 Hurwicz	criterion	

The	Hurwicz	criterion	is	also	called	‘criterion	of	realism’	and	‘optimism-

pessimism	index’	because	it	is	in	the	middle	of	maximax	optimism	and	maximin	
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pessimism	[92].	The	Hurwicz	criterion	allows	the	decision	maker’s	personal	view	of	

the	degree	of	optimism	or	pessimism	on	states	of	nature.	This	personal	view	is	

presented	as	the	‘coefficient	of	optimism’	(or	Hurwicz	index)	on	a	scale	from	0	to	1	

and	represented	by	the	Greek	letter	a	(or	H).	The	larger	the	coefficient	of	optimism,	

the	more	optimistic	the	decision	maker’s	view	about	the	future.	Thus,	the	Hurwicz	

selection	starts	with	choosing	the	value	of	H	according	to	the	decision	maker’s	

subjective	degree	of	optimism.	Then,	determine	the	maximum	and	minimum	payoffs	

for	each	alternative,	and	weight	the	maximum	and	minimum	payoffs	by	multiplying	

the	coefficient	of	optimism	(H)	and	the	coefficient	of	pessimism	(1	-	H),	respectively	

by	the	maximum	and	the	minimum.	The	two	weighted	maximum	and	minimum	are	

added	to	earn	the	expected	value	for	each	alternative.	Finally,	select	the	best	

expected	value	[8,79].		

From	the	same	example	of	the	investment	decision-making	problem,	if	a	

decision	maker	is	comparatively	optimistic	and	lets	H	=	0.7,	the	expected	values	for	

the	three	given	alternatives	are	calculated	as:	

Bonds:	12%(0.7)	+	3%(1	–	0.7)	=	9.3%	

Stocks:	15%(0.7)	+	(-2%)(1	–	0.7)	=	9.9%	

Deposit:	7%(0.7)	+	7%(1	–	0.7)	=	7.0%	

Thus,	according	to	the	Hurwicz	criterion,	a	decision	maker	would	choose	the	best	

expected	payoff	which	is	stocks	at	9.9%	of	return	as	one’s	investment	decision.	In	

contrast,	if	a	decision	maker	has	a	fairly	pessimistic	point	of	view	and	lets	H	=	0.3,	

the	expected	values	for	the	alternatives	are	computed	as:	

Bonds:	12%(0.3)	+	3%(1	–	0.3)	=	5.7%	
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Stocks:	15%(0.3)	+	(-2%)(1	–	0.3)	=	3.1%	

Deposit:	7%(0.3)	+	7%(1	–	0.3)	=	7.0%	

The	decision	maker	would	select	deposit	since	it	has	the	best	expected	payoff	at	

7.0%.	It	is	notable	that	the	overall	expected	values	calculated	with	a	smaller	H	

(pessimism)	are	fairly	smaller	than	those	calculated	with	a	larger	H	(optimism),	

except	the	case	of	deposit	that	has	the	same	payoff	under	all	states	of	nature. 

	

Table	3.8	Hurwicz	solution	to	the	investment	decision-making	problem	(H	=	0.7)	

	
States	of	Nature	 Expected	

Value	Growth	 Medium	
Growth	 No	Change	 Recession	

Actions	
Bonds	 12%	 8%	 7%	 3%	 9.3%	
Stocks	 15%	 9%	 5%	 -2%	 9.9%	
Deposit	 7%	 7%	 7%	 7%	 7.0%	

	

Table	3.9	Hurwicz	solution	to	the	investment	decision-making	problem	(H	=	0.3)	

	
States	of	Nature	 Expected	

Value	Growth	 Medium	
Growth	 No	Change	 Recession	

Actions	
Bonds	 12%	 8%	 7%	 3%	 5.7%	
Stocks	 15%	 9%	 5%	 -2%	 3.1%	
Deposit	 7%	 7%	 7%	 7%	 7.0%	

	

A	decision	maker’s	optimistic	or	pessimistic	view	on	states	of	nature	is	often	

linked	to	one’s	risk-taking	attitude.	A	risk	seeker	is	willing	to	take	extra	risks	

desiring	a	chance	of	winning	a	higher	return,	while	a	risk-averse	decision	maker	

always	tries	to	avoid	taking	risks	and	aims	at	looking	for	the	least	risky	outcome.	

Thus,	a	risk	seeker	is	regarded	to	have	a	larger	coefficient	of	optimism	whereas	a	
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risk-averse	agent	is	considered	to	have	a	smaller	coefficient	of	optimism.	A	risk-

neutral	person	does	not	take	risks	into	account	when	making	a	decision.	The	

coefficient	of	optimism	is	assumed	to	be	0.5	for	the	risk-neutral	case.	As	we	can	see	

in	Tables	3.8	through	3.10,	a	decision	made	under	the	Hurwicz	criterion	can	vary	in	

accordance	with	the	decision	maker’s	view	of	optimism.	 

	

Table	3.10	Hurwicz	solution	to	the	investment	decision-making	problem	(H	=	0.5)	

	
States	of	Nature	 Expected	

Value	Growth	 Medium	
Growth	 No	Change	 Recession	

Actions	
Bonds	 12%	 8%	 7%	 3%	 7.5%	
Stocks	 15%	 9%	 5%	 -2%	 6.5%	
Deposit	 7%	 7%	 7%	 7%	 7.0%	

	

The	major	advantage	of	the	Hurwicz	criterion	is	that	a	decision	maker’s	

subjective	view	of	optimism	or	pessimism	on	states	of	nature	in	the	future	can	be	

adjusted	by	changing	the	value	of	the	coefficient	of	optimism	(H)	0	through	1.		 

3.4.5 Minimax	criterion	

The	minimax	criterion	is	also	known	as	Savage’s	regret	criterion.	It	is	also	

called	“minimax	regret,”	“minimax	risk,”	and	“minimax	loss”	[92].	It	has	something	

in	common	with	the	expected	opportunity	loss	criterion	as	it	attempts	to	minimize	

regret	that	is	caused	from	making	a	non-optimal	decision.	The	difference	is	that	the	

minimax	criterion	does	not	require	probabilities	of	states	of	nature.	Regret	is	

determined	as	the	expected	opportunity	loss	between	the	best	possible	outcome	

and	the	actual	outcome,	and	computed	by	subtracting	each	payoff	from	the	best	



	 56	

payoff	under	each	state	of	nature,	respectively.	Thus,	the	best	possible	expected	

opportunity	loss	is	0,	and	larger	values	indicate	greater	regret.	For	example,	from	

the	same	investment	decision	making	problem,	the	best	payoff	under	economic	

growth	is	15%	when	choosing	stocks,	and	the	expected	opportunity	loss	for	each	

alternative	under	economic	growth	can	be	computed	as:	

Bonds:	15	–	12	=	3%	

Stocks:	15	–	15	=	0%	

Deposit:	15	–	7	=	8%	

When	all	the	expected	opportunity	losses	for	each	alternative	and	state	of	

nature	are	calculated,	determine	the	maximum	opportunity	loss	for	each	alternative,	

then	select	the	minimum	value	[79,95,101].	Table	3.11	shows	the	minimax	solution,	

and	the	investment	decision	made	under	the	minimax	criterion	to	minimize	regret	

would	be	bonds.		

Parmigiani	and	Inoue	explain	the	minimax	criterion	providing	an	analogy	

with	game	theory4.	They	assume	that	decision-making	is	a	zero-sum	two-person	

game	between	a	statistician	and	nature.	Because	nature	chooses	first,	it	is	best	for	

the	statistician	to	assume	the	worst	scenario	and	try	to	minimize	the	maximum	loss	

[80].	In	this	light,	decision-makers	pursue	the	minimization	of	the	risk	(or	regret)	

between	the	best	and	the	worst	outcomes.	As	a	result,	the	chosen	option	is	the	least	

sensitive	to	changing	scenarios	[8].	Hence,	under	the	minimax	criterion,	one	might	

																																																								
4	Decision	theory	and	game	theory	are	both	about	making	decisions,	but	the	principal	

difference	is	that	decision	theory	involves	an	individual	agent	while	game	theory	involves	
multiple	players	and	their	choices	have	impact	on	each	other’s	decision-making. 
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choose	an	option	with	a	smaller	predicted	return	and	a	smaller	uncertainty	rather	

than	an	option	with	a	larger	predicted	return	and	a	larger	uncertainty	risk.	

	

Table	3.11	Minimax	solution	to	the	investment	decision-making	problem	

	
States	of	Nature	 Maximum	

Opportunity	
Loss	

Minimum	
of	

Maximums	Growth	 Medium	
Growth	

No	
Change	 Recession	

Actions	
Bonds	 3%	 1%	 0%	 4%	 4%	

4%	Stocks	 0%	 0%	 2%	 9%	 9%	
Deposit	 8%	 2%	 0%	 0%	 8%	

	

Figure	3.4	illustrates	the	decision-making	solutions	under	different	decision-

making	criteria	under	uncertainty	(non-probabilistic	decision	theories)	discussed	

above.	It	is	noteworthy	that	the	best	decision	made	under	different	criterion	varies.	

Since	non-probabilistic	decision	rules	assume	that	there	is	little	or	no	information	

available	for	the	probability	of	which	state	of	nature	is	going	to	occur,	it	is	the	best	

strategy	(and	also	natural)	to	rely	on	decision	maker’s	view	on	whether	the	state	of	

nature	is	going	to	be	optimistic	of	pessimistic.		

	



	 58	

	

Figure	3.4	Investment	decision-making	solutions	under	maximax,	maximin,	Laplace,	
and	Hurwicz	criteria	

	

3.4.6 Information-gap	decision	theory	

The	information-gap	decision	theory	(IGDT)	developed	by	Ben-Haim	[102]	is	

relatively	recently	introduced	into	decision	and	risk	management	science.	The	IGDT	

is	intended	to	support	decision	making	under	severe	uncertainty	and	does	not	

require	much	information.	Only	nominal	estimates	are	required	[103],	which	are	

available	in	the	form	of	mean,	minimal,	and	maximal	values	for	parameter	settings	

used	in	building	optimization.	Hence,	the	IGDT	can	be	a	good	candidate	to	be	applied	

to	research	fields	in	which	very	limited	information	and	knowledge	is	available	for	

the	definition	of	probability	factors	[104].	The	IGDT	evaluates	the	robustness	of	a	
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design	or	a	solution	when	there	is	a	lack	of	available	information.	It	identifies	the	

designs	that	have	performance	invulnerable	to	the	effects	of	uncertainty	[103].		

The	IGDT	is	based	on	the	analysis	of	the	discrepancy	between	the	known	

data	input	and	the	data	that	could	be	known	[105].	Thus,	the	uncertainty	of	a	design	

or	a	solution	refers	to	the	discrepancy,	and	is	expressed	as	the	“information-gap.”	

Solutions	with	different	information-gap	are	compared	and	ranked	by	the	IGDT.	The	

most	preferred	solution	is	the	design	with	the	maximum	resistance	to	the	

information-gap.		

The	IGDT	claims	that	it	is	a	totally	new	theory	that	can	substitute	other	

classical	decision-making	rules	under	uncertainty	because	of	its	non-probabilistic	

nature.	However,	the	biggest	criticism	against	IGDT	is	that	the	theory	is	neither	new	

nor	radically	different	from	classical	decision-making	criteria	under	uncertainty.	It	

is	criticized	as	a	type	of	worst-case	analysis	and	a	simple	instance	of	the	maximin	

criterion	[106].	 

3.4.7 Limitations	

The	major	limitation	of	decision-making	rules	under	uncertainty	is	that	a	

decision	maker	does	not	know	how	likely	it	is	for	a	state	of	nature	to	happen,	but	he	

or	she	still	should	make	a	decision	from	a	set	of	alternatives.	The	decision	maker	

does	not	have	objective	grounds	for	his	or	her	optimistic	or	pessimistic	point	of	

view.	Thus,	decision	making	rules	under	uncertainty	are	more	suitable	for	private	

decision	problems.	When	making	a	public	decision,	a	decision	maker	needs	to	have	
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some	knowledge	about	states	of	nature	to	predict	how	likely	it	is	they	will	occur.	If	

not,	the	decision	would	not	be	reasonable	and	defensible	[95].	
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CHAPTER	4	

RESEARCH	SCOPE	

This	chapter	defines	the	scope	of	this	research.	The	deterministic	and	

stochastic	approaches	are	explained	to	find	which	one	of	these	is	the	most	

appropriate	for	simulation-based	building	optimization.	Various	sources	of	

uncertainty	in	simulation-based	building	optimization	are	also	introduced	and	

limited	to	a	certain	range	in	accordance	with	the	goal	of	this	research.	Finally,	

specific	research	questions	and	objectives	are	presented.	

4.1 Deterministic	vs.	Stochastic	Approaches	

Deterministic	processes	are	defined	by	a	single,	precise	quantity.	When	the	

same	input	data	are	repeatedly	used	for	the	same	simulation	over	and	over	again,	it	

will	produce	the	exactly	same	result.	The	deterministic	approach	is	only	applicable	

to	an	ideal	system	that	is	very	well	known	and	there	are	no	uncertain	processes	in	it.	

In	reality,	nature	itself	is	not	deterministic,	and	there	are	numerous	unknown	or	

uncertain	properties.	A	system	can	also	be	affected	by	accumulated	environmental	

loading	for	a	long	period	of	time	and	aging	[107].	Similarly,	the	building	is	a	system	

that	has	various	uncertain	and	unknown	properties	and	can	be	affected	by	many	
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external	factors	[108].	Therefore,	buildings	can	only	be	realistically	analyzed	when	a	

stochastic	approach	is	implemented.	Deterministic	modeling	has	been	widely	used	

for	building	simulations	because	of	the	difficulty	and	complexity	of	the	stochastic	

approach.	However,	deterministic	models	cannot	be	accurately	used	for	building	

optimization	since	they	do	not	provide	statistical	information	[109].	

4.2 Uncertainty	Sources	

Uncertainty	is	an	intrinsic	problem	in	all	building	simulation-based	

optimization	problems.	Sources	of	uncertainty	have	been	investigated	by	many	

previous	studies,	but	there	is	no	firmly	established	categorization	of	uncertainty	

sources	in	computer-based	simulation	and	modeling.	Researchers	use	different	

categories	with	varying	sources	of	uncertainty.	This	study	borrows	the	

categorization	by	Loucks	and	van	Beek:	(1)	natural	variability,	(2)	knowledge	

uncertainty,	and	(3)	decision	uncertainty	[91].	Though	the	original	reference	is	

about	the	water	resources	system,	the	categorization	is	comprehensive	and	

encompasses	overall	uncertainty	sources	in	the	simulation-based	building	energy	

optimization	problem.	

4.2.1 Natural	variability	

In	building	research,	the	main	source	of	uncertainty	in	natural	variability	is	

weather	data	[18,110,111].	The	most	widely	used	weather	data	in	building	

simulation	is	Typical	Meteorological	Year	(TMY).	Since	TMY	is	based	on	historical	

weather	data,	that	is	monthly	average	data	for	nearly	30	years,	it	is	normally	
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assumed	that	a	building	operates	under	the	typical	weather	condition	[112].	

However,	this	leads	to	the	discrepancy	between	the	modeled	and	the	actual	weather	

under	which	the	building	operates.	In	reality,	a	building	may	experience	a	much	

warmer	or	cooler	summer	and/or	winter	compared	with	the	typical	year,	and	this	

can	bring	about	a	critically	different	heating	and	cooling	energy	usage	in	the	actual	

building	from	the	model	prediction.	Also,	TMY	does	not	take	into	account	the	effect	

of	global	warming.	In	addition,	if	a	building	is	equipped	with	renewable	energy	

generation	measures	such	as	wind	turbines	and	photovoltaic	panels,	wind	direction	

and	velocity	as	well	as	solar	radiation	are	also	important	factors	in	predicting	

energy	generation.	

4.2.2 Knowledge	uncertainty	

Knowledge	uncertainty	refers	to	known	and	unknown	errors	in	input	data	

and	is	again	divided	into	parameter	value	uncertainty	and	model	structural	and	

computational	errors.	Parameter	value	uncertainty	mainly	results	from	uncertain	

estimates	of	parameters	[91].	Uncertainty	may	come	from	the	physical	parameters	

such	as	the	building	geometry	(e.g.	height,	length,	breadth,	area	and	orientation	of	

glazing)	and	thermophysical	properties	of	materials	(e.g.	thickness,	thermal	

conductivity,	density,	heat	capacity,	emissivity,	absorptivity	of	wall,	roof,	and	

windows).	Building	materials	are	often	assumed	to	have	a	fixed,	deterministic	value	

for	their	properties;	however,	even	building	material	properties	such	as	density,	

heat	conductivity,	and	vapor	permeability	vary	within	a	range	and	have	probability	

distributions	for	their	value	[107].	Not	only	can	measuring	error	always	exist	in	
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these	properties,	but	also	other	factors	including	moisture	content,	temperature,	

humidity,	and	age	can	affect	the	physical	properties	[88,89,111–113].	Other	

uncertainty	regarding	parameter	values	originate	from	the	pre-set	working	

conditions	that	are	determined	by	designers.	For	example,	the	ventilation	rate	that	

is	given	by	a	designer	during	the	planning	process	cannot	be	measured	precisely.	

Heat	dissipation	rate	of	occupants	cannot	be	determined	accurately	during	the	

design	stage	because	it	depends	on	the	type	of	work,	gender,	age,	and	metabolic	rate	

of	the	individual	occupant	[89].	Uncertainty	also	arises	from	the	parameters	that	are	

associated	with	the	real-time	operation	of	the	building.	These	parameters	are	not	

controllable	and	impossible	to	estimate	accurately	during	the	design	process.	

Examples	are	infiltration,	internal	heat	gains	from	occupants,	electric	equipment	

and	light,	internal	and	external	shading	coefficient,	HVAC	systems	operation	(e.g.	

thermostat	setpoint),	and	window	use	[18,88,89,110,111,113,114].	In	addition,	

there	is	a	gap	between	the	actual	performance	and	the	nameplate	efficiency	of	

building	facilities.	It	is	also	possible	that	performance	of	a	system	decreases	with	

advancing	years.	There	can	be	the	risk	of	technical	breakdowns	or	an	inherent	

weakness	of	a	system	that	obstructs	the	system’s	best	performance	[8].		

Uncertainty	in	model	output	is	also	derived	from	model	structural	and	

computational	errors.	This	is	intrinsic	in	the	model	system,	and	“no	matter	how	

good	our	parameter	value	estimates,	our	models	are	not	perfect	and	there	is	a	

residual	model	error”	(p.260)	[91].	It	is	spontaneous	that	the	more	complex	the	

model,	the	more	potential	for	errors.	Hence,	it	is	important	to	decide	the	level	of	

complexity	of	a	model	in	order	to	properly	represent	the	real	system	but	not	to	be	
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too	complex.	Since	a	model	cannot	be	identical	to	the	real	system,	approximations,	

assumptions,	and	simplifications	are	made	by	numerical	methods	in	modeling	tools.	

This	leads	to	model	biases.	Building	energy	simulation	program	capabilities	are	

related	to	the	choice	of	algorithms	to	calculate	various	heat	and	mass	transfer	

processes	in	the	building	structure,	such	as	the	convection	algorithm	and	the	heat	

balance	algorithm	[18,88,91,115,116].	The	processes	are	generally	formulated	with	

empirical	assumptions	using	roughness	coefficients	to	simplify	the	calculations.	For	

example,	the	SimpleCombined	method	is	one	of	the	five	methods	that	EnergyPlus	

provides	to	compute	Outside	Surface	Heat	Balance	module.	The	equation	for	this	

algorithm	is:	

ℎ = p + c?q + r?q
4	

where	

ℎ	 	 =	heat	transfer	coefficient	

?q	 =	local	wind	speed	calculated	at	the	height	above	ground	of	the	

surface	centroid	

p, c, r		 =	material	roughness	coefficients	

	

As	seen	in	the	equation	above,	the	roughness	coefficients	(p, c, r)	that	are	taken	

from	ASHRAE	Handbook	of	Fundamentals	[117]	are	used	in	the	algorithm,	and	these	

can	be	a	source	of	uncertainty	because	the	values	are	not	accurate	[112].	Estimated	

values	of	the	material	roughness	coefficients	(D,	E,	F)	are	given	according	to	the	

degree	of	surface	roughness	from	1	(very	rough)	to	6	(very	smooth).	Table	4.1	

shows	the	values	of	each	roughness	coefficient	for	each	roughness	index	[118].	
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Table	4.1	Roughness	Coefficients	D,	E,	and	F	

Roughness	index	 D	 E	 F	 Example	material	
1	(very	rough)	 11.58	 5.894	 0.0	 Stucco	
2	(rough)	 12.49	 4.065	 0.028	 Brick	
3	(medium	rough)	 10.79	 4.192	 0.0	 Concrete	
4	(medium	smooth)	 8.23	 4.0	 -0.057	 Clear	pine	
5	(smooth)	 10.22	 3.1	 0.0	 Smooth	plaster	
6	(very	smooth)	 8.23	 3.33	 -0.036	 Glass	

	

4.2.3 Decision	uncertainty	

The	sources	of	decision	uncertainty	are	related	to	unexpected	changes	in	

what	is	being	modelled.	Changes	in	nature,	human	goals,	interests,	activities,	

demands,	and	impacts	are	examples	of	uncertainty	sources	under	this	category	[91].	

As	global	warming	accelerates,	it	is	projected	that	the	global	surface	temperature	

will	continuously	increase.	Due	to	fossil	fuel	depletion,	prices	for	energy	depending	

on	fossil	fuels	are	anticipated	to	rise.	These	changes	in	nature	have	an	impact	on	

human	goals	for	or	interests	in	the	building	sector.	Building	codes	have	been	

evolving	towards	reducing	energy	consumption	in	buildings	and	making	buildings	

more	sustainable,	for	instance,	net	zero	energy	buildings.	Correspondingly,	what	

humans	want	or	need	in	the	future	may	vary	from	what	they	do	now.	People	have	

wanted	to	have	a	more	comfortable	indoor	environment	while	consuming	a	lot	of	

energy	for	heating,	cooling,	and	lighting;	however,	we	may	want	free	running	

buildings	in	the	near	future	even	though	we	need	to	sacrifice	our	comfort	for	energy	

savings	because	of	the	changing	global	situations.		



	 67	

4.3 Scope	of	the	Thesis	

Simulation-based	optimization	aims	to	find	the	optimal	combination	of	

parameters	while	achieving	a	single	objective	or	multiple	objectives.	The	success	of	

simulation-based	optimization	is	dependent	on	the	accuracy	of	model	prediction,	

which	is	dependent	on	the	accuracy	of	input	variables.	However,	there	are	various	

sources	of	error	and	uncertainty	in	input	variables	that	can	lead	to	overestimation	

or	underestimation	of	building	energy	performance,	which	may	result	in	making	an	

inaccurate	decision	[110].	The	complex	nature	of	building	optimization	and	

uncertainty	in	input	variables	make	simulation-based	building	optimization	

unsuitable	for	the	deterministic	approach	that	has	been	widely	used	in	building	

energy	problems	due	to	its	simplicity	compared	to	the	stochastic	approach	[109].	

This	research	employs	a	stochastic	approach	in	order	to	incorporate	uncertainties	

in	input	variables	in	the	process	of	simulation-based	building	optimization.	

As	discussed	in	‘4.1.	Deterministic	vs.	Stochastic	Approaches,’	a	stochastic	

approach	should	be	taken	into	account	for	building	optimization	research	because	

of	the	buildings’	stochastic	nature,	but	it	has	not	been	commonly	used	due	to	its	

complexity	and	the	difficulty	in	its	implementation	in	building	research	problems.	A	

Monte	Carlo	method	is	a	widely	used	statistical	method	to	deal	with	a	stochastic	

problem	with	uncertain	parameters,	while	making	the	problem	simpler	and	more	

convenient.	It	is	a	sampling-based	technique	that	repeats	multiple	model	runs	and	

uses	statistical	distribution	of	input	data	that	were	produced	by	random	sampling	to	

obtain	output	distributions	[109,111,119,120].	Due	to	its	stochastic	nature,	the	
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Monte	Carlo	simulation	has	been	broadly	used	for	the	uncertainty	and	sensitivity	

analysis	in	building	research	[88,115,119,121–131].	A	few	building	optimization	

studies	employ	a	Monte	Carlo	technique	as	a	part	of	the	research,	but	these	are	also	

in	regard	to	uncertainty	and	sensitivity	analysis	of	parameters	[108,111,132].	In	this	

thesis,	a	sampling	method	(Latin	hypercube	sampling)	of	the	Monte	Carlo	technique	

is	applied	as	a	random	generator	for	uncertain	input	variables	within	their	

probability	distributions.		

Various	uncertainty	sources	are	introduced	in	‘4.2	Uncertainty	Sources.’	

There	exist	numerous	sources	of	uncertainty	when	conducting	simulation-based	

building	energy	optimization	[133].	Uncertain	factors	such	as	climate,	occupant	

behavior,	and	building	operation	are	hard	to	measure	or	predict,	hence	causing	

difficulties	in	using	computational	analyses	in	building	design	to	support	optimal	

decision-making	[124].	Therefore,	it	is	essential	to	find	a	way	to	cope	with	the	

uncertainty	in	simulation	and	optimization.	Including	uncertainty	in	building	

optimization	is	a	good	way	to	enhance	the	robustness	of	the	optimization	result	and	

to	decrease	risk	in	it	[66].	

However,	it	is	impossible	to	deal	with	all	uncertainty	sources	in	the	current	

study.	Among	the	various	uncertainty	sources	introduced	and	discussed,	this	

research	limits	its	scope	to	the	user	behavior-related	input	variables,	such	as	

occupancy/lighting/electrical	appliances	schedules	and	thermostat	setpoint	

temperatures	for	heating	and	cooling.	This	is	because	these	factors	have	a	great	

influence	on	the	uncertainties	in	building	simulations	[134,135].	Occupants’	energy	

related	behaviors	play	an	important	role	in	building	energy	use	as	occupants	control	
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their	indoor	climate	in	order	to	satisfy	their	needs	for	indoor	environmental	quality	

including	thermal	comfort.	However,	the	impact	of	occupant	behavior	is	currently	

under-recognized	and	over-simplified	[136].	It	is	highly	complex	and	difficult	to	

predict	occupants’	behavior	in	buildings,	and	it	inherently	has	uncertainty	due	to	its	

stochastic	nature.	As	the	size	of	houses	is	getting	bigger	[2]	and	as	the	size	and	

number	of	household	appliances	also	increase,	the	percentage	of	residential	energy	

use	that	is	relevant	to	miscellaneous	electricity	loads	and	major	appliances	is	

continuously	and	rapidly	increasing	[137].			

The	actual	energy	performance	of	a	building	is	dependent	on	occupants’	

energy	use	behaviors	in	the	building	[114,122,138,139].	Firth	et	al.	indicate	an	

important	role	of	behavioral	factors	for	energy	use	as	they	found	a	substantial	

difference	in	domestic	heat	and	electrical	energy	consumption	between	similar	

households	[138].	Gill	et	al.	point	out	that	there	are	51%,	37%,	and	11%	differences	

in	heat,	electricity,	and	water	consumption,	respectively,	in	low-energy	dwellings,	

resulting	from	energy-efficiency	behaviors	of	occupants	[139].	User	behaviors	are	

subjective	and	diverse,	and	difficult	to	measure	and	quantify. Moreover,	user	

behavior-related	parameters	are	typically	unpredictable	and	uncontrollable	during	

the	design	stage	when	most	simulation	and	optimization	works	are	done,	so	they	

have	a	greater	degree	of	uncertainty.		

The	building	type	used	in	this	research	is	the	residential	building,	and	a	

typical	U.S.	single-family	home	is	modeled	for	simulation	and	optimization.	The	

residential	building	is	more	appropriate	for	this	study	because	user	behavior-

related	input	variables	have	a	greater	impact	on	household	energy	consumption	
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compared	to	commercial	buildings;	residents	of	homes	usually	have	more	control	

over	their	indoor	environment,	such	as	adjusting	thermostats	and	window	use.	They	

are	also	economically	responsible	for	their	energy	use	unlike	occupants	of	

commercial	buildings	who	are	generally	passively	exposed	to	their	indoor	

environment	and	typically	do	not	pay	for	the	energy	that	they	use	[140]. 

4.4 Research	Questions	and	Objectives	

The	principal	goal	of	this	study	is	to	integrate	uncertainties	in	input	variables	

into	building	optimization	and	suggest	a	robust	decision-making	method.	

Consequently,	this	research	consists	of	two	major	parts,	that	is,	uncertainty	

integration	in	the	building	optimization	process	and	robust	decision-making.	The	

objectives	of	this	research	are	to	(1)	propose	a	method	to	cope	with	the	

uncertainties	in	occupant	behavior-related	variables	of	a	building	optimization	

process	and	to	(2)	introduce	a	decision-making	technique	that	supports	robust	

decision-making	to	reduce	the	risk	of	choosing	an	unlikely	option	from	output	

distributions	of	the	optimization	result.	This	thesis,	accordingly,	aims	to	answer	the	

following	research	questions:	

• How	can	the	uncertainties	in	occupant	behavior-related	input	
variables	be	integrated	into	the	simulation-based	building	
optimization	process?	

• What	is	the	influence	of	integrating	uncertainties	in	input	variables	on	
the	robustness	of	the	optimization	results?	

• What	is	a	good	strategy	for	robust	decision-making	from	the	
optimization	results?	

• Which	decision-making	criterion	is	appropriate	for	the	scope	and	
elements	of	this	study?	
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To	answer	these	questions,	a	method	to	include	uncertainties	in	input	variables	is	

proposed	and	evaluated.	The	specific	research	method	and	steps	are	described	in	

the	following	chapter.	
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CHAPTER	5	

RESEARCH	METHOD	

5.1 Overview	

The	research	procedure	of	this	study	has	three	major	steps:	(1)	probability	

distributions	of	input	variables,	(2)	iterative	process	of	computer	simulation-based	

optimization,	and	(3)	decision-making	for	optimal	result.	Figure	5.1	illustrates	the	

work	flow	diagram	of	this	research.		

In	the	first	step,	the	probability	values	of	the	input	variables	that	are	

associated	with	the	occupant	behavior	in	U.S.	residential	buildings	are	defined.	

Input	variables	are	investigated	and	prepared	in	the	form	of	probability	distribution	

to	be	sampled	for	the	Monte	Carlo	technique.	This	study	limits	its	scope	to	occupant	

behavior-related	input	variables,	and	the	selected	input	variables	with	uncertainty	

are	classified	into	three	types:	(1)	the	internal	load	intensities	for	individual	rooms,	

(2)	the	room	specific	schedules,	and	(3)	thermostat	setpoint	temperatures	for	

heating	and	cooling.	The	internal	load	intensities	and	schedules	for	each	room	have	

three	components:	occupancy	density,	lighting,	and	power	consumption	of	

household	appliances.	
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In	the	second	step,	a	set	of	input	variables	is	sampled	by	using	the	Latin	

hypercube	sampling	(LHS)	method.	Then,	the	sample	set	is	used	for	building	energy	

simulation	using	EnergyPlus.	The	genetic	algorithm	optimization	is	linked	to	the	

simulation	and	makes	it	repeat	until	an	optimal	solution	is	obtained	according	to	the	

objective	function	(i.e.	minimum	life	cycle	cost).	Since	one	LHS	run	generates	14	

sample	sets,	this	leads	to	14	optimization	runs	that	produce	14	discrete	results.	In	

this	study,	the	results	of	two	sampling	runs	(28	results	in	total)	are	combined	and	

regarded	as	one	output	distribution	to	make	a	larger	sample	size.	The	iterative	

simulation-optimization	process	is	carried	out	for	three	locations	in	the	U.S.	

(Chicago,	IL;	Madison,	WI;	and	Washington,	D.C.)	using	a	typical	residential	building.	

Relatively	similar	climates	are	chosen	in	order	to	verify	the	optimization	results.	Six	

LHS	runs	are	performed,	which	give	3	output	distributions,	for	each	location.	

The	last	step	is	to	make	a	robust	decision	from	the	output	distribution.	Since	

the	output	distribution	is	made	of	28	optimization	results,	a	valid	evaluation	

strategy	is	needed	to	support	robust	decision-making	for	selecting	an	optimal	

solution.	Two	types	of	techniques	are	used	for	the	robust	decision-making:	(1)	

statistical	technique	and	(2)	decision-making	criterion	under	uncertainty.	The	

former	is	based	on	the	frequency	of	recommendations	from	the	optimization	results;	

the	more	a	parameter	setting	is	recommended,	the	more	it	is	considered	to	be	an	

optimal	solution.	However,	when	there	is	little	difference	between	the	most	

recommended	parameter	setting	and	the	second	most	recommended	parameter	

setting,	it	may	be	insufficient	to	tell	there	is	a	significant	difference	between	the	two	

settings.	In	this	case,	a	statistical	technique	which	is	called	the	‘test	of	proportion’	is	



	 74	

used	to	see	if	there	is	a	statistically	significant	difference	between	the	two	options.	If	

there	is	a	statistically	significant	difference,	the	most	recommended	parameter	

setting	is	selected;	if	not,	the	Hurwicz	criterion	as	a	decision-making	rule	under	

uncertainty	is	used	to	choose	an	optimal	solution	between	the	two.	
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Figure	5.1	Work	flow	diagram	of	the	simulation-based	building	optimization	process
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5.2 Probability	Distribution	of	Input	Variables	

Internal	heat	gains,	or	internal	loads,	in	a	space	have	three	major	sources:	

people,	lighting,	and	electric	equipment.	The	amount	of	internal	heat	gains	depends	

greatly	on	the	actual	use	of	the	space	and	occupants’	behavior	[13].	Especially	in	the	

residential	building,	residents’	behavior	patterns	are	uncertain	and	very	difficult	to	

predict	because	they	are	affected	by	many	factors	such	as	lifestyle,	socio-

demographic	characteristics,	and	environmental	awareness.	Every	household	has	its	

own	lifestyle	and	energy	use	behaviors	as	well	as	different	type,	size,	and	age	of	

appliances.	It	is	also	difficult	to	find	a	clear	pattern	in	schedules	of	occupancy	and	

lighting	in	homes.	The	power	consumption	pattern	of	household	appliances	is	also	

more	difficult	to	estimate	compared	to	that	of	office	appliances	that	have	relatively	

clearer	pattern	of	usage	in	accordance	with	the	work	schedule.	Therefore,	if	

deterministic	values	are	used	for	these	parameters	in	building	energy	simulation,	it	

may	result	in	a	significant	difference	from	the	reality	[82].	This	research	instead	

takes	a	stochastic	approach	by	using	probability	distributions	as	input	variables.	

Probability	distributions	are	generated	for	each	input	variable.	A	relatively	large	

number	of	14	samples	has	been	chosen	from	each	distribution	to	test	the	influence	

of	the	occupant	behavior	on	the	optimization	process.	Internal	load	intensity	of	each	

space	is	combined	with	a	room	specific	schedule	of	occupancy,	lighting,	and	

appliance	use	to	define	internal	heat	gains	that	are	used	in	building	energy	

simulation.	Some	additional	factors	including	the	occupant	behavior	of	thermostat	

setting	for	heating	and	cooling	are	considered.	
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5.2.1 Internal	load	intensities	

Internal	load	intensities	refer	to	the	heat	gains	in	a	space	from	people,	

electric	light,	and	appliances.	Occupancy	density,	lighting	power	density,	and	power	

consumption	of	appliances	are	used	for	internal	load	intensities	in	this	study.		

5.2.1.1 Occupancy	density	

This	research	assumes	four-person	occupancy.	Instead	of	having	a	fixed	

number	of	four	occupants,	a	distribution	of	occupancy	density	(that	is	made	of	14	

samples)	for	each	space	is	created	to	employ	the	stochastic	approach	and	to	include	

uncertainty	in	occupancy	density.	In	other	words,	it	is	understandable	that	even	if	a	

family	of	four	lives	in	a	house,	the	house	does	not	have	four-person	occupancy	all	

the	time.	Table	5.1	shows	the	occupancy	density	distribution	for	each	space.	

	

Table	5.1	Distribution	of	occupancy	density	for	each	room	

	 Unit:	persons	

Room	 Samples	
#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	

Living	room	 2.8	 3.1	 3.4	 3.5	 3.6	 3.8	 3.9	 4.0	 4.0	 4.1	 4.2	 4.6	 4.8	 5.1	
Kitchen	 0.7	 0.8	 0.8	 0.9	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.1	 1.1	 1.2	 1.3	
Dining	room	 2.8	 3.1	 3.4	 3.5	 3.6	 3.8	 3.9	 4.0	 4.0	 4.1	 4.2	 4.6	 4.8	 5.1	
Circulation	 0.7	 0.8	 0.8	 0.9	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.1	 1.1	 1.2	 1.3	
Bedroom	1	 0.7	 0.8	 0.8	 0.9	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.1	 1.1	 1.2	 1.3	
Bedroom	2	 0.7	 0.8	 0.8	 0.9	 1.0	 1.0	 1.0	 1.0	 1.0	 1.0	 1.1	 1.1	 1.2	 1.3	
Bathroom	 1.4	 1.6	 1.7	 1.9	 2.0	 2.0	 2.0	 2.0	 2.1	 2.1	 2.2	 2.3	 2.4	 2.6	
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5.2.1.2 Lighting	power	density	

The	internal	heat	gains	from	artificial	lighting	include	three	types	of	lamps:	

incandescent,	fluorescent	and	LED	lamps.	The	average	number	of	lamps	in	a	house	

is	51	lamps,	including	32	incandescent,	2	halogen,	12	compact	fluorescent,	5	linear	

fluorescent,	and	0	LED	lamps.	The	information	is	obtained	from	the	Buildings	

Energy	Data	Book	[2].	The	average	number	of	LED	lamps	in	a	residential	building	is	

0	in	the	reference,	but	it	is	expected	that	the	current	situation	may	largely	differ,	

since	the	reference	cites	data	from	2011	and	the	use	of	LED	lamps	since	then	has	

been	spreading	quickly	in	residential	buildings.	Hence,	in	this	research,	LED	lamps	

are	considered	instead	of	halogen	lamps	that	are	not	widely	used	in	residential	

buildings	today.	Table	5.2	has	information	of	the	average	number	of	lamps	and	lamp	

wattage	of	each	type	of	lamp	in	the	residential	building.	Table	5.3	shows	the	lighting	

power	density	distribution	for	rooms.	

	

Table	5.2	Lamp	type,	wattage,	and	number	of	lamps	in	the	residential	building	

Lamp	type	 Number	of	lamps	 Lamp	wattage	(W)	
Incandescent	 32	 56	
Halogen	 2	 65	
Compact	fluorescent	 12	 16	
Linear	fluorescent	 5	 24	
LED	 0	 11	
	

Table	5.3	Distribution	of	lighting	power	density	for	artificial	lighting	

	 Unit:	W/m2	

	 Samples	
#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	

All	
rooms	 2.0	 6.0	 10.0	 14.0	 14.3	 14.6	 14.9	 15.2	 15.5	 15.8	 16.1	 16.4	 16.7	 18.5	
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5.2.1.3 Household	appliances	

Five	major	household	electric	appliances	are	considered	in	this	study:	

television,	personal	computer,	monitor,	stove,	and	refrigerator.	Types	of	each	

appliance	that	are	used	in	the	residential	building	are	investigated	for	their	power	

consumption	and	installation	rates.	Then,	distributions	of	heat	gains	from	

appliances	in	each	space	are	created	with	14	samples.		

Television	(TV)	

According	to	the	U.S.	Energy	Information	Administration	[3],	the	most	

common	number	of	TVs	in	U.S.	households	is	two.	Table	5.4	shows	the	number	of	

TVs	in	the	total	U.S.	homes	and	in	detached	single-family	homes,	respectively.	33%	

of	the	total	U.S.	homes	have	two	TVs	as	do	almost	30%	of	detached	single-family	

homes.	Approximately	44%	of	the	total	U.S.	homes	have	three	or	more	TVs	while	

more	than	half	(54.1%)	of	detached	single-family	homes	have	three	or	more	TVs.	

The	2011	Buildings	Energy	Data	Book	points	out	that	a	typical	single-family	home	

most	likely	has	three	color	TVs	[2].		

	

Table	5.4	The	number	of	televisions	in	U.S.	homes	[3]	

Number	of	TVs	 Total	U.S.	 Detached	Single-Family	
Millions	 %	 Millions	 %	

0	 1.5	 1.3	 0.5	 0.7	
1	 24.2	 21.3	 11.0	 15.3	
2	 37.5	 33.0	 21.4	 29.8	
3	 26.6	 23.4	 18.4	 25.6	
4	 14.2	 12.5	 11.6	 16.2	
5	or	more	 9.7	 8.5	 8.8	 12.3	
Total	 113.6	 100.0	 71.8	 100.0	
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Traditional	standard	tube	televisions	are	still	the	most	popular	type	of	TV	in	

U.S.	homes;	44.2%	of	the	total	U.S.	homes	have	one	or	more	TVs	of	this	type.	LCD	

TVs	follow	close	behind,	as	40.5%	of	the	total	U.S.	homes	have	at	least	one	LCD	TV.	

On	the	other	hand,	the	most	popular	display	type	of	TV	in	U.S.	detached	single-

family	houses	is	LCD,	and	the	standard	tube	is	the	second	most	popular	display	type.	

Table	5.5	summarizes	sizes	and	types	of	TVs	in	U.S.	homes.	More	frequently	used	

TVs	tend	to	be	bigger	and	have	newer	technology	of	display.	The	amount	of	energy	

consumption	of	a	television	is	defined	by	which	display	technology	it	has,	how	big	

its	screen	is,	and	how	long	it	is	used	during	the	day.	It	is	easily	predictable	that	a	TV	

with	a	larger	screen	draws	more	power	than	smaller	ones	in	the	same	display	

technology	group.	It	is	also	evident	that	a	TV	consumes	more	electricity	if	it	is	used	

longer	in	an	active	mode.	As	a	result,	a	larger	TV	in	a	household	generally	uses	more	

energy	[141].		

There	are	a	lot	of	data	sources	that	have	different	categorizations	and	

information	about	power	consumption	of	TVs.	For	example,	Roth	and	McKenney	

group	TVs	into	analog	and	digital	televisions	(DTVs).	Analog	TVs	are	then	

categorized	into	six	groups	according	to	their	usage	frequency:	primary,	second,	

third,	fourth,	fifth,	and	sixth.	DTVs	are	classified	into	four	subcategories	by	display	

type:	digital	direct	view	CRT,	direct	view	LCD,	plasma,	and	digital	projection.	DTVs	

in	each	display	type	are	again	subcategorized	by	the	screen	size.	Finally,	the	

weighted	average	power	draw	for	each	display	type	is	calculated	based	on	the	

power	density	models	developed	by	the	researchers,	the	estimated	installed	base,	

and	the	usage	[141].		
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Table	5.5	Type	and	size	of	televisions	in	U.S.	homes	[3] 

	

	 Total	U.S.	 Detached	Single-Family	
Millions	 %	 Millions	 %	

Total	homes	 113.6	 100	 71.8	 100	
Most-Used	Television	

Display	
Size	

Less	than	21”	 12.5	 11.0	 6.4	 8.9	
21”	to	36”	 53.6	 47.2	 32.0	 44.6	
37”	or	More	 46.0	 40.5	 32.9	 45.8	
No	TVs	 1.5	 1.3	 0.5	 0.7	

Display	
Type	

Standard	Tube	 50.2	 44.2	 28.9	 40.3	
LCD	 46.0	 40.5	 31.0	 43.2	
Plasma	 9.7	 8.5	 6.7	 9.3	
Projection	 5.0	 4.4	 3.9	 5.4	
LED	 1.2	 1.1	 0.9	 1.3	
No	TVs	 1.5	 1.3	 0.5	 0.7	

Second	Most-Used	Television		

Display	
Size	

Less	than	21”	 32.5	 28.6	 20.5	 28.6	
21”	to	36”	 43.8	 38.6	 30.8	 43.0	
37”	or	More	 11.6	 10.2	 8.9	 12.4	
No	TVs	 25.7	 22.6	 11.5	 16.0	

Display	
Type	

Standard	Tube	 56.9	 50.1	 37.2	 51.8	
LCD	 25.4	 22.4	 18.9	 26.3	
Plasma	 3.8	 3.3	 2.7	 3.8	
Projection	 1.4	 1.2	 1.2	 1.7	
LED	 0.4	 0.4	 0.3	 0.4	
No	TVs	 25.7	 22.6	 11.5	 16.0	

Third	Most-Used	Television	

Display	
Size	

Less	than	21”	 25.0	 22.0	 18.8	 26.2	
21”	to	36”	 20.5	 18.0	 15.9	 22.1	
37”	or	More	 4.9	 4.3	 4.1	 5.7	
Less	than	3	TVs	 63.2	 55.6	 33.0	 46.0	

Display	
Type	

Standard	Tube	 35.8	 31.5	 26.9	 37.5	
LCD	 11.9	 10.5	 9.6	 13.4	
Plasma	 1.5	 1.3	 1.2	 1.7	
Projection	 1.0	 0.9	 0.9	 1.3	
LED	 0.3	 0.3	 0.2	 0.3	
Less	than	3	TVs	 63.2	 55.6	 33.0	 46.0	
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In	their	report,	Roth	and	McKenney	introduce	another	study	on	the	power	

consumption	of	TVs,	which	measures	power	draw	of	370	analog	TVs	that	were	

manufactured	prior	to	1999	[142].	Although	it	is	presumed	in	their	research	that	the	

power	draw	of	analog	standard	tube	TVs	has	not	changed	noticeably	since	the	mid	

1990s,	it	is	reasonable	to	consider	that	the	power	draw	might	have	been	reduced	

since	then,	due	to	more	advanced	technology	and	stricter	energy	efficiency	codes	for	

electric	appliances.	For	that	reason,	the	current	study	uses	the	weighted	average	

power	draw	of	DTVs	calculated	by	Roth	and	McKenney	[141]	instead	of	the	older	

measured	data	[142].		

In	addition	to	Roth	and	McKenney’s	four	subcategories	of	DTVs	(i.e.	digital	

direct	view	CRT,	direct	view	LCD,	plasma,	digital	projection)	[141],	EIA	has	one	

more	display	type	of	household	TVs;	that	is	LED	[3],	which	is	a	relatively	new	

technology.	Among	various	sources	of	TV	power	consumption	data,	Roth	and	

McKenney’s	power	draw5	[141]	and	EIA’s	installation	rate	data	of	display	types	[3]	

are	chosen	to	be	used	in	this	research.	The	two	studies	have	a	strong	basis	for	their	

data	as	well	as	they	are	comparatively	recent	and	therefore	considered	to	

demonstrate	more	up-to-date	technology	and	market	situations.	

The	television	is	a	quickly	advancing	technology,	and	newer	TV	technologies	

have	been	rapidly	penetrating into	our	homes.	As	a	result,	there	could	be	a	big	

change	in	the	household	TV	market	even	within	just	a	couple	of	years.	There	is	only	

																																																								
5	LED	TVs	are	estimated	to	be	25%	more	power	efficient	than	LCD	TVs	on	average.	
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a	three-year	difference	between	the	two	chosen	data	sets.6	Nevertheless,	EIA	

incorporates	the	LED	technology	in	the	display	type	[3]	while	Roth	and	McKenney	

do	not	have	it	in	their	subcategories	[141].	The	LED	TV	is	a	type	of	LCD	TV	that	uses	

light-emitting	diodes	as	a	light	source;	in	other	words,	an	LED	TV	is	actually	an	LED-

backlit	LCD	TV	that	still	uses	an	LCD	panel,	and	this	is	why	it	is	often	called	LED	LCD.	

The	categorization	of	display	technologies	is	important	because	a	TV’s	power	

consumption	per	inch	of	its	screen	largely	depends	on	which	technology	it	uses	to	

produce	an	image.	LEDs	are	generally	known	to	be	20-30%	more	energy	efficient	

than	LCDs.	Future	categorizations	would	likely	include	the	OLED	(organic	light-

emitting	diode)	display	that	can	produce	bright	and	vivid	images	with	less	power.	

The	screen	size	of	a	TV	also	has	a	great	impact	on	its	power	consumption.	

Roth	and	McKenney	maintain	that	only	9%	of	DTVs	are	LCD,	and	only	a	small	

portion	of	LCD	TVs	have	large	screens	[141].	This	claim,	however,	seems	quite	

different	from	the	current	situation.	According	to	EIA,	40.5%	of	the	total	U.S.	

detached	single-family	homes	have	at	least	one	LCD	TV	[3].	Though	EIA’s	survey	

data	do	not	provide	the	household	installation	rate	of	screen	sizes	for	LCD	TVs,	

larger	screens	(37	inches	or	more)	have	deeply	penetrated	overall	U.S	homes	

(46	%).	It	could	be	said	that	larger	screens	currently	make	a	large	portion	of	the	LCD	

TV	market.		

On	the	other	hand,	analog	TVs	have	entered	a	different	situation.	Although	

both	the	number	of	U.S.	households	and	the	number	of	televisions	per	household	

																																																								
6	Residential	Energy	Consumption	Survey	(RECS)	by	EIA	was	conducted	in	2009	[3],	

and	the	study	on	consumer	electronics	energy	consumption	by	Roth	and	McKenney	was	
conducted	in	2006	[141].	
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continue	to	grow,	the	number	of	analog	TVs	has	likely	already	reached	its	peak	as	

digital	TVs	(DTVs)	have	become	increasingly	popular.	Moreover,	broadcasting	

switched	their	signals	from	analog	to	digital	in	2009,	and	all	TVs	sold	in	and	after	

March	2007	must	have	a	DTV	tuner.	

Personal	computer	(PC)	

A	typical	single-family	home	has	two	computers	[2].	However,	another	

survey	reports	that	U.S.	homes	most	commonly	have	one	computer	[3];	41.3%	of	the	

total	U.S.	homes	have	one	computer,	21.4%	have	two	computers,	and	13.3%	have	

three	or	more	computers.	Among	detached	single-family	homes,	40.4%	have	one,	

24.2%	have	two,	and	17.0%	have	three	or	more	computers.	Table	5.6	summarizes	

the	number	of	computers	in	U.S	homes	[3].	

	

Table	5.6	The	number	of	computers	in	U.S.	homes	[3] 

	

The	most-used	computer	in	homes	is	a	desktop	PC	while	the	second	most-

used	computer	is	a	laptop	PC	[3].	Table	5.7	shows	power	consumption	of	desktop	

and	laptop	computers	at	their	different	modes	[2].	The	operating	modes	of	PCs	can	

Number	of	computers	 Total	U.S.	 Detached	Single-Family	
Millions	 %	 Millions	 %	

0	 27.4	 24.1	 13.3	 18.5	
1	 46.9	 41.2	 29.0	 40.4	
2	 24.3	 21.4	 17.4	 24.2	
3	 9.5	 8.4	 7.5	 10.4	
4	 3.6	 3.2	 3.0	 4.2	
5	or	more	 2.0	 1.8	 1.7	 2.4	
Total	 113.6	 100.0	 71.8	 100.0	
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be	categorized	into	three	groups:	active,	idle,	and	off.	The	active	mode	refers	to	

when	a	computer	is	either	being	actively	used	or	not	being	actively	used	but	still	

remains	on	before	entering	into	the	sleep,	or	power	saving,	mode.	When	a	computer	

is	turned	off,	but	if	it’s	still	plugged	in,	it	is	the	off	mode	[141].	

	

Table	5.7	Power	draw	and	usage	of	computers	[2]	

	 Power	Draw	(W)	 Annual	Usage	(hours/year)	
Active	 Idle	 Off	 Active	 Idle	 Off	

Desktop	 75	 4	 2	 2,990	(34%)	 330	(4%)	 5,440	(62%)	
Notebook	 25	 2	 2	 2,368	(27%)	 935	(11%)	 5,457	(62%)	
	

Monitor	

The	monitor	in	this	study	refers	to	the	stand-alone	computer	monitor	that	is	

used	with	desktop	PCs.	There	are	90	million	desktop	PCs	in	U.S	households,	which	

stands	for	90	million	monitors	in	U.S.	households,	assuming	that	one	desktop	PC	

yields	one	stand-alone	monitor.	Though	either	a	PC	could	have	multiple	monitors	or	

a	laptop	could	be	connected	to	one	or	more	monitors,	this	was	regarded	not	to	have	

much	influence	on	the	estimated	installed	base	[141].		

The	data	shown	in	Figure	5.2	demonstrates	power	consumption	of	monitors	

in	different	types	and	sizes	in	the	active	mode.	Monitors	use	most	power	while	they	

are	in	active	among	the	three	operating	modes	(i.e.	active,	idle,	and	off).	It	is	

noteworthy	that	there	is	no	noticeable	difference	in	power	consumed	during	the	

idle	and	off	modes	between	sizes	and	types	of	monitors.		
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Monitors	are	grouped	into	4	categories	according	to	their	type	and	size:	15”	

LCD	monitors,	17”	LCD	monitors,	19”	LCD	monitors,	and	17”	CRT	monitors.	The	

average	power	consumed	by	a	15”	LCD	monitor	was	20W,	and	15%	of	U.S.	

households	have	this	type	and	size	of	monitors.	A	17”	LCD	monitor	draws	31W	of	

power	on	average,	and	it	is	installed	in	35%	of	homes	in	the	U.S.	The	average	power	

for	19”	LCD	monitors	was	35W,	and	their	installation	rate	was	10%.	Lastly,	17”	CRT	

monitors	averagely	use	61W,	and	their	installation	rate	was	40%	among	U.S.	homes	

[141].	Overall,	LCD	monitors	use	less	power	than	CRT	monitors	regardless	of	the	

size.	

	

	

Figure	5.2	Types	and	sizes	of	monitors	and	power	consumption	
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Stove	

The	most	popular	cooking	appliance	in	U.S.	homes	is	the	stove	that	consists	

of	an	oven	and	a	cooktop.	Other	options	include	separate	cooktops,	separate	wall	

ovens,	and	built-in/stove-top	grills.	86.8%	of	U.S.	detached	single-family	households	

have	at	least	one	stove.	Among	the	homes	that	have	one	or	more	stoves,	60%	use	

electricity	as	the	stove	fuel,	34.6%	natural	gas,	and	only	5.4%	use	propane/LPG	[3].	

In	the	same	manner,	the	2011	Buildings	Energy	Data	Book	[2]	indicates	that	a	

typical	single-family	home	has	an	electric	range/oven.	In	this	study,	the	electric	

stove	is	therefore	used	as	a	representative	cooking	appliance	in	the	kitchen	of	the	

single-family	house. 

The	stove	top	power	varies	depending	on	the	size	of	burners	and	

temperature	setting	(i.e.	high,	medium,	or	low),	ranging	generally	between	1,000W	

and	3,000W.	A	stove	top	does	not	always	use	its	maximum	rated	power	once	it	

reaches	a	target	temperature.	Thus,	it	is	imprecise	to	use	a	fixed	value	for	the	power	

consumption	of	a	stove.	Instead,	it	is	estimated	that	a	stove	uses	1,500W	per	hour	

on	medium	to	high	heat	[143].	Since	there	is	no	available	information	about	types	of	

stoves	and	their	installation	rate	in	homes,	the	frequency	of	stove	usage	(i.e.	three	

times	a	day,	twice	a	day,	once	a	day,	once	to	a	few	times	a	week,	and	less	than	once	a	

week)	is	used	to	create	the	probability	distribution.			

It	is	assumed	that		a	stove	is	used	for	30	minutes	per	each	meal	preparation.	

This	assumption	is	made	based	on	a	published	study	that	investigates	dinner	

preparation	in	32	families	by	using	direct	observation.	The	average	total	dinner	
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preparation	time	is	52	minutes7	[144].	Not	only	because	this	total	preparation	time	

would	not	fully	integrate	stove	usage,	but	also	because	dinner	preparation	time	in	

general	tends	to	be	longer	than	other	meals,	30	minutes	of	average	meal	

preparation	time	is	assumed	in	the	current	study.	This	average	meal	preparation	

time	is	combined	with	the	frequency	of	hot	meal	cooking	[3]	to	generate	probability	

distributions	of	stove	energy	consumption	in	detached	single-family	homes	in	the	

U.S.	(Table	5.8).	Energy	consumption	per	day	by	stove	is	calculated	as:	

1500	%×	0.5	ℎ	× )*+,	-.*-+.+/012	3.*45*267	-*.	8+7

= *2*.:7	612;5)-/012	13	/ℎ*	;/1<*	*+6ℎ	8+7		

	

Table	5.8	Stove	power	use	and	household	installation	ratio 

Frequency	of	hot	meals	cooked8	 Energy	per	day	(Wh)	 	Probability	(%)	
3	or	more	times	a	day	 2,250	 7.1	
2	times	a	day	 1,500	 24.2	
Once	a	day	 750	 39.1	
Once	to	a	few	times	a	week	 296	 25.3	
Less	than	once	a	week	 0	 4.3	
	

Refrigerator	

Refrigerators	have	a	distinctive	electricity	consumption	pattern	from	other	

household	appliances.	Unlike	other	household	appliances	that	are	turned	on	and	

																																																								
7	The	average	hands-on	time	was	34	minutes.	

8	The	hot	meal	cooking	frequency	is	regrouped	into	the	five	categories	shown	in		

Table	5.8.	The	original	categorization	in	RECS	(Residential	Energy	Consumption	
Survey)	has	seven	categories:	(1)	3	or	more	times	a	day,	(2)	2	times	a	day,	(3)	once	a	day,	
(4)	a	few	times	each	week,	(5)	about	once	a	week,	(6)	less	than	once	a	week,	and	(7)	no	hot	
meals	cooked	[3].		
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actively	draw	electric	power	only	when	they	are	being	used,	refrigerators	are	

always	turned	on	and	constantly	use	electricity.	However,	they	may	not	always	use	

their	peak	power.	Because	of	this	unique	pattern	of	power	usage,	it	is	neither	

appropriate	to	directly	use	their	power	consumption	information	nor	the	

information	is	available.	In	this	current	study,	refrigerators	are	grouped	into	five	

categories	by	their	size:	(1)	less	than	7	cubic	feet,	(2)	7-14	cubic	feet,	(3)	15-18	cubic	

feet,	(4)	19-22	cubic	feet,	and	(5)	23	cubic	feet	and	larger	[3].	Then,	the	average	

annual	energy	use	(kWh/year)	is	calculated	for	each	group	[145]9.	Average	power	

(W)	for	each	group	of	refrigerators	is	calculated	based	on	their	annual	energy	use.	

Older	refrigerators	tend	to	consume	more	energy	[137].	In	the	database	of	

refrigerator	energy	efficiency	that	is	used	in	the	current	study	[145],	the	oldest	

refrigerators	have	very	low	energy	efficiency	that	acts	as	outliers	in	the	dataset.	In	

order	to	mitigate	biased	influence	of	outliers	(i.e.	unduly	low	energy	efficiency	from	

very	old	refrigerators),	data	prior	to	1994	are	removed	from	the	database.	In	fact,	

only	4.2%	of	detached	single-family	households	use	a	20-year	or	older	refrigerator	

as	their	most-used	refrigerator	[3].	

	

	

	

	

	

																																																								
9	The	California	Energy	Commission	website	(www.energy.ca.gov)	has	historical	

appliances	data	files.	‘Non-commercial	refrigerators’	and	‘non-commercial	refrigerator-
freezers’	data	under	the	‘refrigeration’	directory	are	used	in	this	study.	
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Table	5.9	Refrigerator	power	use	and	household	installation	ratio	[3,145]	

Total	Volume	(Cu.	Ft.)	 <	7	 7-14	 15-18	 19-22	 >	23	

Annual	
Energy	
Use	
(kWh/yr)	

Refrigerators	 335.5	 373.5	 417.0	 482.7	 543.4	

Refrigerator-
Freezers	

Bottom	
Freezer	w/	
Ice	Thru	
Door	

N/A	 N/A	 N/A	 570.1	 553.5	

Bottom	
Freezer	
w/o	Ice	
Thru	Door	

499.4	 581.5	 1,439.2	 755.1	 522.7	

Internal	
Freezer	 395.3	 588.4	 1,150.3	 1,480.5	 1,862.0	

Side-by-
Side	w/	
Ice	Thru	
Door	

N/A	 N/A	 1,342.6	 941.5	 1,027.9	

Side-by-
Side	w/o	
Ice	Thru	
Door	

531.9	 845.4	 1,527.1	 1,288.7	 1,233.2	

Top	
Freezer	w/	
Ice	Thru	
Door	

N/A	 N/A	 955.5	 978.2	 1,085.3	

Top	
Freezer	
w/o	Ice	
Thru	Door	

438.8	 812.2	 869.7	 969.5	 878.3	

Kitchen	
Units	 472.8	 504.2	 N/A	 N/A	 N/A	

Average	Annual	Energy	Use	(kWh/yr)	 445.6	 617.5	 1,100.2	 933.3	 963.3	
Average	Power	Draw	(W)	 50.9	 70.5	 125.6	 106.5	 110.0	
Installed	Base	in	
Detached	Single-Family	
Homes	

Million	 0.2	 1.7	 26.5	 35.6	 7.7	

%	 0.3	 2.4	 37.0	 49.7	 10.7	
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Table	5.10	Age	of	most-used	refrigerator	in	U.S.	homes	

Age	 Total	U.S.	 Detached	Single-Family	
Millions	 %	 Millions	 %	

Less	than	2	years	 14.0	 12.3	 9.2	 12.8	
2	to	4	years	 26.1	 23.0	 15.9	 22.2	
5	to	9	years	 39.9	 35.1	 25.0	 34.9	
10	to	14	years	 21.1	 18.6	 13.7	 19.1	
15	to	19	years	 7.1	 6.2	 4.8	 6.7	
20	years	or	more	 5.3	 4.7	 3.0	 4.2	
Do	not	use	a	refrigerator	 0.2	 0.2	 0.1	 0.1	

	

Table	5.11	summarizes	the	power	consumption	data	of	household	electric	

appliances	and	their	installation	or	usage	rates	for	the	subcategories.	This	is	used	to	

create	the	probability	distributions	of	household	appliances	as	input	variables	for	

the	simulation-optimization	process.	

	

Table	5.11	Input	variable	settings	of	household	appliances	with	probability	
distribution	of	power	

TV	 Display	type	 LCD	 Standard	tube	 Plasma	 Projection	 LED	
	 Probability	(%)	 43.3	 40.5	 9.4	 5.5	 1.3	
	 Power	(W)	 72	 92	 340	 200	 54	
PC	 Operating	mode	 Active	 Idle	 Off	
	 Probability	(%)	 34	 3	 62	
	 Power	(W)	 75	 4	 2	
Monitor	 Type	&	size	 LCD	15”	 LCD	17”	 LCD	19”	 CRT	17”	
	 Probability	(%)	 15	 35	 10	 40	
	 Power	(W)	 20	 31	 35	 61	
Stove	 Usage	 3	times	

a	day	
Twice	
a	day	

Once	
a	day	

Once	to	a	few	
times	a	week	

Less	than	
once	a	
week	

	 Probability	(%)	 7.1	 24.2	 39.1	 25.3	 4.3	
	 Daily	energy	(Wh)	 2250	 1500	 750	 296	 0	
Refrigerator	 Size	(cu.	ft.)	 <7	 7	to	14	 15	to	18	 19	to	22	 >23	
	 Probability	(%)	 0.3	 2.4	 37.0	 49.7	 10.7	
	 Power	(W)	 51	 70	 126	 107	 110	
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The	distribution	of	the	total	internal	heat	gains	from	people,	lighting,	and	

appliances	in	each	space	are	listed	in	Table	5.12.	The	samples	in	the	distribution	are	

combined	with	room	specific	schedules	to	define	hourly	internal	heat	gains	in	each	

space.	

	

Table	5.12	Maximal	internal	heat	gains	from	appliances	(W/m2)	

	 Living	room	 Kitchen	 Dining	room	Circulation	 Bedroom	1	 Bedroom	2	 Bathroom	
Sample	1	 75.4	 353.6	 0	 0	 20	 20	 0	
Sample	2	 82	 486.2	 0	 0	 20	 20	 0	
Sample	3	 88.6	 581.4	 0	 0	 25	 25	 0	
Sample	4	 95.2	 656.2	 0	 0	 27	 27	 0	
Sample	5	 101.8	 725.9	 0	 0	 29	 29	 0	
Sample	6	 108	 789	 0	 0	 31	 31	 0	
Sample	7	 115	 850	 0	 0	 33	 33	 0	
Sample	8	 115.8	 850	 0	 0	 35	 35	 0	
Sample	9	 116.6	 911.2	 0	 0	 58	 58	 0	
Sample	10	 117.4	 974.1	 0	 0	 59	 59	 0	
Sample	11	 118.2	 1043.8	 0	 0	 60	 60	 0	
Sample	12	 119	 1118.6	 0	 0	 61	 61	 0	
Sample	13	 120.6	 1213.8	 0	 0	 62	 62	 0	
Sample	14	 193	 1346.4	 0	 0	 63	 63	 0	

	

5.2.2 Room	specific	schedules	

The	residential	building	energy	use	is	largely	dependent	on	residents’	

behaviors,	but	it	is	impossible	to	predict	the	behavior	pattern	accurately	in	advance.	

It	is	even	not	plausible	to	know	the	precise	schedule	of	internal	loads	because	our	

everyday	life	is	affected	by	too	many	factors	and	changes	frequently	and	

unexpectedly.	It	is	therefore	reasonable	and	necessary	to	include	uncertainty	into	

occupancy,	lighting,	and	appliance	usage	schedules.	The	average	schedules	for	the	

internal	loads	are	illustrated	in	Figures	A.1	and	A.2	in	Appendix	A.	The	hourly	
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internal	load	schedules	are	listed	in	Tables	B.1	through	B.21	in	Appendix	B.	These	

give	an	overview	to	the	schedules	as	input	variables	with	uncertainty	used	for	the	

Latin	hypercube	sampling	in	the	iterative	simulation-optimization	process.	The	

internal	load	schedules	are	assumed	to	have	a	normal	distribution;	the	minimal	and	

maximal	values	are	20%	higher	or	lower	than	the	mean,	respectively.		

5.2.3 Additional	variables	

A	few	additional	variables	are	considered	to	include	uncertainty	from	other	

possible	sources.	Uncertainty	in	thermostat	setpoint	temperatures	for	heating	and	

cooling	is	taken	into	consideration	since	they	have	a	great	impact	on	heating	and	

cooling	energy	use	[146].	Uncertainty	in	the	calculation	process	of	a	simulation	tool	

is	also	considered	by	giving	variations	to	heating	and	cooling	energy	demands.	Life	

cycle	cost	is	selected	as	the	objective	function	of	the	optimization	problem	in	this	

study,	and	thus	uncertainties	in	the	initial	and	operation	costs	are	also	taken	into	

account.	A	normal	distribution	of	20%	difference	from	the	mean	is	given	to	these	

three	variables.	Since	all	needed	information	is	not	always	available	for	the	

probability	distribution	of	input	variables,	it	is	typically	assumed	that	most	

variables	have	a	Gaussian	or	uniform	distributions	[88,124,131].	Tables	5.13	

through	5.15	show	the	distributions	for	thermostat	setpoint	temperature,	heating	

and	cooling	energy	demands,	and	costs.		
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Table	5.13	Thermostat	setpoint	temperatures	for	heating	and	cooling	(°C)	

	 Samples	
#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	

Heating	 15	 17	 17	 19	 19	 19	 19	 19	 20	 20	 20	 22	 22	 24	
Cooling	 20	 20	 21	 21	 22	 22	 23	 23	 23	 24	 24	 24	 25	 26	
	

Table	5.14	Simulation	energy	demands	for	heating	and	cooling	(%)	

	 Samples	
#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	

Heating	 0.78	 0.83	 0.88	 0.91	 0.94	 0.97	 1.00	 1.00	 1.03	 1.05	 1.08	 1.12	 1.16	 1.22	
Cooling	 0.78	 0.83	 0.88	 0.91	 0.94	 0.97	 1.00	 1.00	 1.03	 1.05	 1.08	 1.12	 1.16	 1.22	
	

Table	5.15	Initial	and	operation	costs	(%)	

	 Samples	
#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	

Initial	 0.78	 0.83	 0.88	 0.91	 0.94	 0.97	 1.00	 1.00	 1.03	 1.05	 1.08	 1.12	 1.16	 1.22	
Operation	 0.78	 0.83	 0.88	 0.91	 0.94	 0.97	 1.00	 1.00	 1.03	 1.05	 1.08	 1.12	 1.16	 1.22	

	

5.3 Iterative	Simulation-Optimization	Process	

In	this	iterative	simulation-optimization	process,	the	genetic	algorithm	(GA)	

that	is	combined	with	the	Latin	hypercube	sampling	method	and	the	thermal	

simulation	program	is	run	repeatedly	to	investigate	the	results	of	a	building	

optimization	problem	with	varying	input	variables	of	internal	heat	gains.	 

5.3.1 Latin	hypercube	sampling		

As	discussed	in	‘4.3	Scope	of	the	Thesis,’	it	is	more	realistic	to	use	a	stochastic	

approach	for	a	building	optimization	problem,	and	the	Monte	Carlo	method	is	the	
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most	commonly	used	non-structured	method	for	uncertainty	analysis.	Monte	Carlo	

allows	for	the	combination	of	different	potential	settings	of	input	variables	based	on	

random	sampling.	However,	a	random	sampling	method	has	the	major	disadvantage	

of	requiring	a	large	number	of	simulation	runs	to	provide	reliable	results.	A	more	

effective	way	is	to	use	the	Monte	Carlo	technique	in	combination	with	a	sampling	

algorithm	to	reduce	the	needed	number	of	optimization	runs. 

This	study	implements	the	Latin	hypercube	sampling	(LHS)	method	to	define	

the	input	variables	of	interest	while	integrating	probability	distributions	of	input	

variables.	This	is	how	the	current	study	takes	into	account	uncertainties	by	allowing	

variation	in	input	variables	and	explores	the	effect	of	integrating	uncertainties	on	a	

building	optimization	problem.	The	LHS	method	is	a	type	of	stratified	sampling;	the	

domain	of	each	input	variable	is	divided	into	the	same	number	of	disjoint	intervals	

with	equal	probability	to	ensure	that	each	section	has	the	same	chance	of	being	

chosen.	By	doing	so,	variable	settings	with	a	small	probability	(extreme	cases)	are	

guaranteed	to	be	taken	into	account	for	their	influence	on	the	optimization	result.	A	

sample	from	each	interval	of	each	variable	is	chosen	once	per	sampling	to	make	sure	

variations	in	output	distributions	of	optimization	results.	Thus,	the	number	of	

samples	(i.e.	14	samples)	generated	by	each	sampling	run	is	defined	by	the	number	

of	intervals	(i.e.	14	intervals).	 

The	main	advantage	of	the	LHS	method	is	that	it	requires	a	reduced	number	

of	calculations	to	obtain	output	distributions	while	covering	the	entire	distribution	

area	of	a	variable.	That	is	to	say,	the	LHS	improves	sampling	efficiency	and	

convergence,	and	therefore	is	superior	to	other	sampling	methods	that	generate	
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randomly	distributed	sequences.	[88,122,125–127,147].	The	LHS	method	has	been	

successfully	applied	to	solve	complex,	nonlinear	problems	and	has	proven	its	

suitability	in	building	simulation	[148].	The	major	use	of	the	LHS	method	is	for	

uncertainty	propagation	in	sensitivity	analysis	[125,149,150].	It	is	also	used	for	the	

clarification	of	uncertainties	in	simulation	results	[119,130,134,151].	However,	

none	of	these	studies	employ	uncertainty	analysis	into	simulation-based	building	

optimization.	This	study	uses	the	LHS	method	to	investigate	the	influence	of	user	

behavior-related	input	variables	on	the	building	optimization	results.		

5.3.2 Simulation-optimization	

The	input	variables	generated	by	the	LHS	method	are	used	for	building	

energy	simulation	using	EnergyPlus	that	is	combined	with	the	genetic	algorithm	

(GA)	optimization.	The	LHS	system	and	the	GA	are	developed	and	programmed	in	

C++.	

5.3.2.1 Model	and	locations	

The	input	variable	uncertainties	associated	with	the	user	behavior	are	

considered	in	this	study	for	a	typical	residential	building	in	the	U.S.	Three	major	

cities	(Chicago,	IL;	Madison,	WI;	and	Washington,	D.C.)	are	used	to	test	the	proposed	

method	of	the	LHS	combined	simulation-based	optimization.	

Typical	U.S.	single-family	home	

It	is	necessary	to	define	a	model	home	that	is	used	in	this	research.	The	2011	

Buildings	Energy	Data	Book	[2]	provides	an	accurate	and	up-to-date	statistical	
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compendium	for	building-related	data	in	the	overall	building	sector,	the	residential	

sector,	the	commercial	sector,	the	federal	sector,	building	envelope/	equipment,	

energy	supply,	energy	codes/standards/laws,	water	data,	and	market	

transformation.	The	second	chapter	of	the	2011	Buildings	Energy	Data	Book	focuses	

on	the	residential	sector	including	its	energy-related	data,	characteristics	of	average	

households,	construction,	and	housing	market.	In	this	chapter,	characteristics	of	a	

typical	single-family	home	are	specified,	which	are	used	in	the	model	home	in	this	

research.	Figure	5.3	shows	an	isometric	sketch	of	the	test	building,	and	Table	5.16	

describes	the	characteristics	of	the	typical	U.S.	single-family	home.	

	

	

Figure	5.3	Isometric	sketch	of	the	test	single-family	house	
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Table	5.16	Structural	characteristics	of	a	typical	single-family	home	[2]	

Year	Built	 mid	1970s	

Floorspace	
Heated	Floorspace		 1,934	ft2	(180	m2)	
Cooled	Floorspace		 1,495	ft2	(139	m2)	
Garage	 2-Car	

Stories	 1	
Foundation	 Concrete	Slab	

Rooms	 Bedrooms	 3	
Other	Rooms	 3	

Bathrooms	 Full	Bathroom	 2	
Half	Bathroom	 0	

Windows	
Area	 222	ft2	(20.6	m2)	
Number	 15	
Type	 Double-Pane	

Insulation	 Well	or	Adequate	
	

Based	on	the	structural	characteristics	of	an	average	single-family	home	

described	in	Table	5.16,	a	test	house	for	building	energy	simulations	that	represents	

a	typical	U.S.	home	is	modeled	using	the	DesignBuilder	software.	The	modeled	

residential	building	has	1,934	ft2	(180	m2)	of	heated	area.	The	test	building	is	a	one-

story	three-bedroom	single-family	house	and	has	a	master	suite	(master	bedroom	

and	a	master	bathroom)	with	two	additional	bedrooms.	It	is	assumed	to	be	occupied	

by	four	people.	It	also	has	one	separate	full	bathroom,	a	kitchen	with	an	adjacent	

dining	room,	a	living	room,	and	an	entry	(i.e.	circulation	area).	The	average	window	

area	is	222	ft2	(20.6	m2)	consisting	of	15	double-pane	windows.		

5.3.2.2 Genetic	algorithm	optimization	

In	this	research,	the	genetic	algorithm	(GA)	optimization	that	is	coupled	with	

the	building	simulation	is	used	to	find	the	optimal	solution.	An	optimization	

algorithm	is	run	for	each	combination	of	input	variable	samples	that	is	generated	by	
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the	LHS	methods.	As	14	sample	sets	are	generated	by	each	sampling	run,	14	

optimization	runs	are	carried	out,	and	14	discrete	optimization	results	are	produced	

for	each	location.	For	a	higher	accuracy	for	the	statistical	analysis,	two	sampling	

runs	generating	28	sample	sets	in	total	are	conducted	for	three	locations	(Chicago,	

IL;	Madison,	WI;	and	Washington,	D.C.).	Each	generation	of	the	GA	involves	a	

population	of	40.	An	elitism	criterion	is	used	for	a	fast	emerging	process.	The	results	

of	the	optimization	provide	(1)	the	combination	of	the	optimal	parameter	settings	

for	the	input	variables	used	for	the	optimization	run	and	(2)	the	normalized	life	

cycle	cost	as	the	objective	function	of	the	optimization	process.	It	is	assumed	the	

optimal	solution	is	reached	if	the	same	result	(within	0.5%	of	difference)	is	found	

for	three	consecutive	iterations,	after	at	least	ten	generations.	

Because	of	the	design	of	the	LHS	method,	there	is	the	risk	that	the	sample	

sets	of	input	variables	may	not	cover	all	plausible	cases	of	occupant	behaviors.	In	

other	words,	because	the	LHS	method	guarantees	that	the	entire	probability	

distribution	of	each	input	variable	is	covered,	the	generated	sample	sets	may	not	

include	some	extreme	cases.	For	example,	the	occupant	behavior	of	a	family	whose	

members	are	highly	concerned	about	their	energy	use	and	have	high	environmental	

awareness	may	largely	differ	from	the	average	occupant	behavior.	On	the	other	

hand,	a	household	of	a	big	family	may	also	have	a	very	different	energy	use	pattern	

from	typical	occupants.	In	order	to	take	into	account	these	unusual	but	plausible	

cases	of	occupant	behavior,	biased	optimization	runs	are	conducted	using	biased	

input	variables	reflecting	a	household	of	a	very	high	energy	demand	and	a	

household	of	a	very	low	energy	demand.	Only	one	location	(Chicago,	IL)	is	used	for	
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the	biased	optimizations	as	additional	information.	High	internal	heat	gain	values	

(i.e.	high	appliances	power	consumption,	high	occupancy	density,	and	long	

occupation	periods)	represent	the	high	bias	optimization.	Low	internal	heat	gain	

values	(i.e.	low	appliances	power	consumption,	low	occupancy	density,	and	short	

occupation	periods)	represent	the	low	bias	optimization.	 

5.3.2.3 Optimization	parameters	

The	optimization	problem	has	five	parameters:	(1)	glazing	type,	(2)	wall	

insulation,	(3)	roof	insulation,	(4)	floor	insulation,	and	(5)	the	air	change	rate	of	the	

infiltration	(air	tightness).	Table	5.17	shows	the	physical	properties	and	estimated	

investment	costs	of	each	parameter	setting	of	the	five	optimization	parameters.		The	

estimated	physical	properties	and	investment	cost	are	taken	from	the	U.S.	

Department	of	Energy’s	Building	America	program	[152]	and	the	commercially	

available	R.S.	Means	software	program	[153].	
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Table	5.17	Parameter	settings	of	the	optimization	problem	

Parameter	 Parameter	
setting	

Investment	
cost	($/m2)	

U-value	
(W/m2K)	 SHGC10	 Light	

transmittance	 ACH11	

Glazing	 1	 365	 2.20	 0.20	 0.25	 -	
	 2	 344	 1.57	 0.31	 0.62	 -	
	 3	 436	 1.20	 0.31	 0.62	 -	
	 4	 360	 1.66	 0.62	 0.68	 -	
	 5	 365	 1.20	 0.52	 0.58	 -	
	 6	 570	 0.70	 0.51	 0.58	 -	
Wall,	roof,	
floor	
insulation	

1	 8.13	 0.7	 -	 -	 -	
2	 11.5	 0.46	 -	 -	 -	
3	 14.8	 0.37	 -	 -	 -	
4	 18.1	 0.32	 -	 -	 -	
5	 25.7	 0.26	 -	 -	 -	
6	 29.0	 0.19	 -	 -	 -	
7	 32.3	 0.12	 -	 -	 -	

Air	
tightness	

1	 4.5	 -	 -	 -	 0.25	
2	 12.9	 -	 -	 -	 0.18	
3	 24.8	 -	 -	 -	 0.15	
4	 31.2	 -	 -	 -	 0.12	

 

5.3.2.4 Objective	function	

This	study	uses	a	single-objective	genetic	algorithm	to	find	the	optimal	

combination	of	parameter	settings	for	a	typical	U.S.	single-family	house.	The	net	

present	value	of	the	life	cycle	cost	(LCC)	is	used	as	the	objective	function	and	is	

calculated	by	the	following	equation:	

=>> = ?@A@B@CD + /×(GH@BI×J×1/(1 + J)
B)	

where	

?@A@B@CD 	 	 =	initial	investment	cost	

GH@BI 	 	 =	site	energy	demand	

																																																								
10	Solar	heat	gain	coefficient	
11	Air	changes	per	hour,	or	air	change	rate	
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J	 	 =	present	energy	cost	

/	 	 =	calculated	life-time	period	for	the	LCC	

	

The	LCC	analysis	properly	considers	money	spent	today	and	money	spent	in	the	

future.	The	total	cost,	that	is	the	sum	of	all	relevant	costs	converted	into	common,	

current	dollars,	is	expressed	in	present	dollars	to	compare	each	alternative	[154].	In	

this	study,	the	year	2010	is	used	for	the	present	energy	cost.	Maintenance	cost	and	

residual	cost	are	not	included	in	this	study.		

The	average	increase	of	present	energy	cost	for	natural	gas	is	taken	from	the	

energy	price	indices	of	the	National	Institute	of	Standards	and	Technology	[155].	In	

the	U.S.,	this	cost	is	projected	to	increase	by	1.15%	per	year	for	natural	gas	from	

2010	to	2040.	The	life-time	period	for	this	study	that	is	used	for	the	LCC	analysis	is	

30	years.		

5.4 Decision-Making	for	Optimal	Result	

Booth	and	Choudhary	mention	that	“identifying	the	various	sources	of	

uncertainty	and	quantifying	the	resultant	uncertainty	in	outputs	of	interest	is	only	

part	of	the	problem.	In	addition,	there	needs	to	be	a	framework	that	allows	DMs12	to	

utilize	this	additional	information”	(p.298)	[87].	This	statement	emphasizes	the	

need	and	importance	of	a	decision-making	framework	that	can	help	in	making	a	

robust	decision	among	available	alternatives.	This	research	uses	the	frequency	of	

																																																								
12	Decision	makers	
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recommendations,	the	test	of	proportion,	and	the	Hurwicz	criterion	as	evaluation	

criteria	for	the	robust	decision-making.	

5.4.1 Frequency	of	recommendations	

The	frequency	of	recommendations	for	a	parameter	setting	is	used	as	an	

indicator	of	the	influence	of	the	uncertainty	in	input	variables	on	the	optimization	

results.	If	one	parameter	setting	is	recommended	far	more	than	other	parameter	

settings,	this	means	that	the	most	recommended	parameter	setting	is	the	optimum,	

regardless	of	varying	user	behavior-related	input	variables.	In	other	words,	it	

implies	a	small	influence	of	the	occupant	behavior	on	the	optimization	parameter.	

This	research	uses	the	frequency	of	recommendations	for	parameter	settings	as	the	

first	indicator	for	the	robust	decision-making	from	the	optimization	results.	The	

most	recommended	parameter	setting	for	an	optimization	parameter	is	regarded	as	

the	best	solution.	

5.4.2 Test	of	proportion	

The	test	of	proportion	is	used	to	evaluate	whether	the	frequencies	of	

recommendations	of	two	parameter	settings	have	the	statistically	significant	

difference.	In	this	study,	it	is	tested	whether	or	not	the	proportion	(J)	of	the	number	

of	recommendations	of	one	parameter	setting	to	the	sum	of	the	number	of	

recommendations	of	that	setting	and	one	other	setting	is	over	0.5.	For	example,	

when	a	parameter	setting	gets	23	recommendations	while	another	setting	gets	30	

recommendations,	the	significance	level	of	the	proportion	of	30	to	53	(i.e.	23+30)	
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from	0.5	is	calculated.	Therefore,	the	null	and	alternative	hypotheses	are	expressed	

as:	

MN: J ≤ 0.5	

MC: J > 0.5	

	

The	test	of	proportion	calculates	the	significance	level,	or	p-value,	using	a	general	z-

test	for	the	observed	sample	proportion.		

R =
J − JN

;*(J)
	

where	

J	 	 =	observed	proportion	

JN	 	 =	the	Null	hypothesis	(or	expected)	proportion	

;*(J)	 	 =	the	standard	error	of	the	expected	proportion	

	

;* J =
JN(1 − JN)

2
	

where	

2	 	 =	sample	size	

	

The	next	step	is	to	determine	the	p-value	using	the	calculated	z-value.	Once	p-value	

is	determined,	it	is	time	to	decide	between	the	null	(MN)	and	alternative	(MC)	

hypotheses.	If	p-value	≤ +,	reject	the	null	hypothesis.	If	p-value	> +,	fail	to	reject	the	

null	hypothesis.	When	the	null	hypothesis	is	rejected	by	examining	the	p-value,	the	
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test	result	is	said	to	be	statistically	significant.	The	value	for	+	is	defined	by	

researchers,	but	+ = .05	is	the	most	commonly	used	value.		

If	there	is	a	statistically	significant	difference	between	the	most	

recommended	and	the	second	most	recommended	parameter	setting,	the	most	

frequently	recommended	one	is	selected	as	the	optimum	solution.	However,	if	the	

test	result	says	there	is	no	statistically	significant	difference	between	the	two	

settings,	the	test	of	proportion	is	carried	out	for	the	most	recommended	and	the	

third	most	recommended	parameter	settings.	This	is	repeated	until	a	significant	

difference	is	found	between	the	most	recommended	parameter	setting	and	the	nth	

recommended	parameter	setting.	This	process	is	illustrated	in	Figure	5.4.	Once	the	

statistical	significance	of	recommended	parameter	settings	is	identified,	the	next	

step	is	to	apply	the	Hurwicz	decision	rule	to	choose	a	better	solution	among	settings	

that	do	not	have	statistically	significant	difference	between	them.	
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Figure	5.4	Flow	of	the	test	of	proportion	
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5.4.3 Decision-making	under	the	Hurwicz	criterion	

In	this	research,	the	Hurwicz	decision	rule	is	used	as	an	evaluation	criterion	

for	robust	decision-making	of	the	parameter	settings	that	are	assessed	to	have	no	

statistically	significant	difference	between	them	according	to	the	result	of	the	test	of	

proportion.	Because	the	probabilities	of	states	of	nature,	which	are	a	necessary	

element	for	decision	rules	under	risk,	are	not	available,	decision–making	under	risk	

criteria	cannot	be	used	for	this	study.	This	is	one	of	the	major	disadvantages	of	

probabilistic	decision	rules.	Non-probabilistic	decision	rules	(decision-making	

criteria	under	uncertainty)	are	actually	widely	used	in	the	field	of	energy	and	

environmental	modeling	[156].	The	Hurwicz	criterion	is	one	of	the	non-probabilistic	

decision-making	rules,	and	it	allows	adjustment	of	a	decision	maker’s	personal	view	

between	optimistic	and	pessimistic	conditions	by	modifying	the	value	of	the	

coefficient	of	optimism,	or	Hurwicz	index,	H.	If	a	decision	maker	is	risk-averse,	

H=0.3	is	used.	If	a	decision	maker	is	a	risk-seeker,	H=0.7	is	used.	For	a	decision	

maker	who	has	a	risk-neutral	attitude,	H=0.5	is	used.	The	flow	of	application	of	the	

Hurwicz	criterion	is	illustrated	in	Figure	5.5.	The	Hurwicz	criterion	is	expressed	as	

[8]:	

TU 4, M = 1 − M T 4, ;N + MT(4, ;W)	

where	

T	 	 =	objective	value	of	available	options	

4	 	 =	available	options	

;N	 	 =	globally	pessimistic	scenario	

;W	 	 =	globally	optimistic	scenario	
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Figure	5.5	Flow	of	application	of	the	Hurwicz	criterion	
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CHAPTER	6	

RESULTS	AND	ANALYSIS	

This	chapter	describes	the	results	of	the	simulation-based	building	

optimization	process	and	robust	decision-making	from	the	optimization	results.	

First,	the	results	of	the	life	cycle	cost	of	the	Latin	hypercube	sampling	runs	are	

shown	for	each	location.	Second,	the	results	of	the	recommended	parameter	settings	

are	discussed.	Third,	the	results	of	the	biased	optimization	runs	are	introduced.	

Finally,	the	results	of	the	introduced	decision-making	framework	are	presented.		

6.1 Life	Cycle	Cost	(LCC)	

The	results	of	the	LCC	give	a	general	overview	of	the	range	and	distribution	

of	the	LCC	calculations	as	the	objective	function.	Figure	6.1	shows	the	variation	of	

the	results	of	the	LCC	calculations	for	all	sampling	runs	for	all	three	locations.	One	

output	distribution	contains	the	results	from	two	LHS	runs,	so	each	distribution	

shows	28	optimization	results.	Hence,	each	location	has	results	that	are	generated	

from	84	optimization	runs.		
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	 Chicago,	IL	 Madison,	WI	 Washington,	D.C.	

Distribution	1	

	 	 	

Distribution	2	

	 	 	

Distribution	3	

	 	 	

Figure	6.1	Distributions	of	the	life	cycle	cost	by	using	the	LHS	method
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The	different	values	of	the	calculated	LCC	result	from	varying	input	variables	

defined	by	the	LHS.	For	Chicago,	IL,	the	mean	LCC	values	are	$155.7/m2,	$160.4/m2,	

and	$167.5/m2,	respectively	for	Distributions	1,	2,	and	3.	The	total	mean	value	of	

LCC	is	$161.2/m2.	The	most	popular	range	for	the	LCC	value	of	each	optimization	

run	is	between	$160/m2	and	$180/m2,	and	the	range	between	$140/m2	and	

$160/m2	follows	in	a	narrow	margin.	58.3%	of	the	total	LCC	calculations	fall	within	

the	range	of	$140/m2	to	$180/m2.	The	entire	range	of	the	LCC	data	is	from	

$119.2/m2	to	$213.4/m2.	

For	Madison,	WI,	the	mean	LCC	value	of	each	distribution	is	$164.3/m2,	

$161.3/m2,	and	$163.6/m2,	respectively.	The	total	mean	value	of	LCC	is	$163.0/m2.	

The	most	popular	range	for	the	LCC	value	of	each	optimization	run	is	between	

$140/m2	and	$160/m2,	and	the	range	between	$160/m2	and	$180/m2	follows	with	

a	slight	difference.	56.0%	of	the	total	LCC	calculations	fall	within	the	range	of	

$140/m2	to	$180/m2.	The	entire	range	of	the	LCC	data	is	from	$117.2/m2	to	

$249.8/m2.	The	overall	LCC	results	of	Chicago	and	Madison	are	shown	to	be	similar	

to	each	other,	except	the	two	cases	of	LCC	over	$220/m2	in	Madison.	This	seems	to	

be	derived	from	the	similar	climate	of	the	two	cities,	while	Madison	has	a	little	

colder	winter	[157].		

For	Washington,	D.C.,	the	mean	LCC	of	the	three	distributions	are,	

respectively,	$162.9/m2,	$169.3/m2,	and	$173.3/m2.	The	total	mean	is	$168.5/m2.	

The	most	popular	range	of	LCC	is	$160/m2	and	$180/m2,	and	31%	of	the	total	LCC	

data	are	included	in	this	range.	The	entire	LCC	data	range	between	$118.9/m2	and	

$218.6/m2.	The	LCC	results	for	Washington,	D.C.	are	generally	similar	to	those	of	the	
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other	two	cities.	Considering	the	relatively	warmer	winter	of	Washington,	D.C.,	the	

similar	results	seem	to	be	derived	from	its	warmer	summer	weather.	Summers	are	

hot	and	humid	in	Washington,	D.C.,	and	the	resultant	larger	cooling	energy	

consumption	compared	to	other	two	locations	might	offset	the	effect	of	the	smaller	

heating	energy	consumption.	Table	6.1	summarizes	the	average	climate	of	the	three	

locations	[157].	

	

Table	6.1	Average	climate	of	Chicago	IL,	Madison	WI,	and	Washington	D.C.	[157]	

Unit:	°C		
	 Chicago,	IL	 Madison,	WI	 Washington,	D.C.	

Annual	high	temp.	 13.8	 13.2	 18.2	
Annual	low	temp.	 5.8	 2.7	 8.1	
Average	temp.	 9.8	 7.9	 13.2	

	

In	most	cases	shown	in	Figure	6.1,	the	distributions	of	the	LCC	results	of	the	

LHS	runs	follow	the	principle	of	the	normal	distribution.	This	is	in	line	with	the	

results	of	other	researcher’s	published	studies	[134,148,158].	According	to	the	law	

of	large	numbers,	the	tendency	towards	the	normal	distribution	is	more	evident	with	

a	larger	number	of	samples.	The	following	Figure	6.2	demonstrates	the	sum	of	the	

LCC	results	of	the	three	distributions	for	each	location	shown	in	Figure	6.1,	and	

therefore,	each	graph	has	the	total	of	84	optimization	results.	The	trend	towards	the	

normal	distribution	is	noticeable	in	all	three	locations.	
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Chicago,	IL	

	
Madison,	WI	

	
Washington,	D.C.	

Figure	6.2	The	sum	of	three	distributions	of	the	LCC	
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6.5	shows	the	frequency	of	recommendations	as	the	optimization	result	for	each	

parameter	and	parameter	setting	for	each	location.	The	main	purpose	of	the	

0

5

10

15

20

25

30

100-120 120-140 140-160 160-180 180-200 200-220 >220

0

5

10

15

20

25

30

100-120 120-140 140-160 160-180 180-200 200-220 >220



	 114	

sampling	and	optimization	runs	for	Madison,	WI	and	Washington,	D.C.	is	to	verify	

the	results	for	Chicago,	IL.	 

	

	 Distribution	1	 Distribution	2	 Distribution	3	

P1	

	 	 	

P2	

	 	 	

P3	

	 	 	

P4	

	 	 	

P5	

	 	 	

Figure	6.3	Distributions	of	recommended	parameter	settings	for	Chicago,	IL	
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Figure	6.4	Distributions	of	recommended	parameter	settings	for	Madison,	WI	
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Figure	6.5	Distributions	of	recommended	parameter	settings	for	Washington,	D.C.	
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frequently	for	all	three	locations.	The	second	most	recommended	parameter	setting	

is	no.	1	(U-value	of	2.20	W/m2K,	SHGC	of	0.20,	light	transmittance	of	0.25,	and	

$365/m2	of	investment	cost)	for	Chicago,	IL	and	Washington,	D.C.	For	Madison,	WI,	

setting	no.	3	(U-value	of	1.20	W/m2K,	SHGC	of	0.31,	light	transmittance	of	0.62,	and	

$436/m2)	is	either	recommended	second	most	frequently	or	ties	with	setting	no.	1.	

This	seems	to	result	from	the	colder	climate	of	Madison	compared	with	the	two	

other	locations;	that	is	to	say,	the	better	thermal	performance	of	setting	no.	3	offsets	

the	increased	investment	cost	in	Madison’s	cold	climate	considering	the	30-year	LCC	

analysis.	Setting	no.	5	is	recommended	in	a	small	number	of	optimization	runs,	and	

settings	no.	4	and	no.	6	are	almost	never	recommended	for	all	three	locations.	

Overall,	a	clear	tendency	is	found	towards	setting	no.	2.		

This	results	implies	a	possibility	that	a	false	conclusion,	such	as	setting	no.	5	

is	recommended,	could	have	been	generated	if	a	single	optimization	run	is	

conducted	without	the	integration	of	the	LHS	method.	As	shown	in	Figures	6.3	

through	6.5,	this	study	generates	output	distributions	instead	of	a	single	

optimization	result	by	integrating	the	LHS	method,	and	therefore,	a	selected	

parameter	setting	can	be	said	to	be	a	robust	result	if	there	exists	a	clear	tendency	

towards	the	particular	setting.	If	the	recommendations	are	relatively	evenly	

distributed	among	parameter	settings,	it	is	more	difficult	to	choose	one	particular	

setting,	and	the	selection	of	a	robust	optimization	result	can	be	said	to	be	riskier.		
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6.2.2 Parameter	2	(wall	insulation)	

For	the	second	parameter,	wall	insulation,	setting	no.	2	(U-value	of	0.46	

W/m2K)	is	the	most	often	recommended	parameter	setting	in	all	distributions	for	all	

three	locations.	The	second	most	frequent	recommendation	is	setting	no.	3	(U-value	

of	0.37	W/m2K)	in	most	distributions.	This	seems	to	be	because	of	the	higher	

investment	cost	of	setting	no.	3	($14.8/m2)	than	that	of	setting	no.	2	($11.5/m2),	

though	setting	no.	3	has	a	higher	insulation	level.	Settings	no.	6	and	no.	7	have	never	

been	recommended	from	any	optimization	run.	The	recommendations	in	general	

are	concentrated	on	the	range	of	settings	no.	1	through	no.	4.		

	In	Distributions	2	and	3	for	Chicago,	in	Distribution	2	for	Madison,	and	in	

Distribution	3	for	Washington,	D.C.,	there	is	a	relatively	clear	tendency	towards	

setting	no.	2;	in	other	words,	the	difference	in	the	number	of	recommendations	

between	setting	no.	2	and	the	other	settings	is	relatively	large.	However,	in	the	rest	

of	the	distributions,	the	differences	are	not	as	big,	and	thus	it	is	more	difficult	to	find	

the	optimal	result	based	on	the	frequency	of	recommendations.	Overall,	a	less	clear	

tendency	towards	a	particular	parameter	setting	appears	for	Parameter	2	in	

comparison	to	Parameter	1.	 

6.2.3 Parameter	3	(roof	insulation)	

Parameter	3	shows	the	least	clear	tendency	towards	one	parameter	setting	

among	all	five	parameters	used	in	this	study.	The	recommendations	for	Parameter	3	

are	most	dispersed.	Every	parameter	setting	receives	at	least	one	recommendation,	

while	the	majority	of	recommendations	are	concentrated	within	the	range	of	
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settings	no.	1	to	no.	5.	For	example,	in	distribution	3	for	Washington,	D.C.	(Figure	

6.5),	six	parameter	settings	out	of	seven	have	been	recommended	at	least	once,	and	

no	parameter	setting	has	a	highly	larger	number	of	given	recommendations	than	the	

rest	of	the	settings.		

Among	the	total	of	nine	distributions	for	the	three	cities,	setting	no.	3	(U-

value	of	0.37	W/m2K	and	$14.8/m2	of	investment	cost)	is	the	most	often	

recommended	setting	in	five	distributions,	but	setting	no.	2	(U-value	of	0.46	W/m2K	

and	$11.5/m2	of	investment	cost)	is	more	frequently	recommended	than	no.	3	in	

three	other	distributions.	There	also	is	not	a	big	difference	in	the	frequency	of	

recommendations	between	setting	no.	3	and	no.	2.		The	relatively	evenly	distributed	

recommendations	throughout	the	settings	indicate	that	selecting	the	most	

recommended	setting	from	the	distribution	may	involve	a	higher	risk	of	not	making	

a	robust	decision.	This	also	implies	that	the	varying	input	variables,	in	which	the	

uncertainty	in	user	behaviors	is	included,	have	a	greater	impact	on	Parameter	3	

compared	to	other	parameters. 

6.2.4 Parameter	4	(floor	insulation)	

The	recommendations	for	Parameter	4,	which	is	floor	insulation,	are	

primarily	focused	on	parameter	setting	no.	1	(U-value	of	0.7	W/m2K	and	$8.13/m2	

of	investment	cost)	for	Chicago,	Madison,	and	Washington,	D.C.	The	second	most	

recommended	setting	is	no.	2	(U-value	of	0.46	W/m2K	and	$11.5/m2	of	investment	

cost),	but	there	is	a	large	difference	in	the	number	of	recommendations	between	

settings	no.	1	and	no.	2.	Some	other	settings	also	receive	a	few	recommendations,	
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but	the	frequencies	of	recommendations	for	those	settings	are	negligible	compared	

with	the	very	highly	recommended	setting	no.	1.	Unlike	Parameter	3,	this	result	for	

Parameter	4	indicates	that	it	is	robust	to	choose	setting	no.	1	for	the	floor	insulation,	

and	the	uncertainty	included	in	the	varying	input	variables	has	a	marginal	influence	

on	this	parameter.		

6.2.5 Parameter	5	(air	tightness)	

Parameter	5	(air	tightness)	has	the	least	dispersed	recommendations	among	

all	five	optimization	parameters.	Similar	to	Parameter	4,	setting	no.	1	is	clearly	most	

recommended	in	all	distributions	for	all	three	locations.	Setting	no.	2	is	

recommended	just	a	few	times,	and	settings	no.	3	and	no.	4	have	never	been	

recommended	from	any	optimization	runs.	The	difference	between	the	most	

recommended	setting	and	the	second	most	recommended	setting	is	hence	the	

biggest	among	all	five	parameters.	As	a	result,	the	risk	in	choosing	setting	no.	1	(0.25	

of	ACH)	is	very	low.	Just	like	Parameter	4,	the	optimization	result	indicates	that	the	

recommendation	is	very	robust.	Considering	varying	input	variables,	this	implies	

that	setting	no.	1	is	the	optimal	parameter	setting	for	air	tightness	of	the	building	

regardless	of	user	behaviors.	This	might	be	derived	from	the	comparatively	low	

investment	cost	of	setting	no.	1	($4.5/m2)	despite	the	setting’s	relatively	high	air	

change	rate	compared	to	other	settings.	
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6.3 Biased	Optimization	Results	

Supplementary	optimization	runs	to	see	the	effect	of	user	behaviors	of	very	

high	energy	demand	and	very	low	energy	demand	are	performed	by	using	biased	

input	variables.	The	biased	optimization	is	conducted	for	one	location,	Chicago,	IL.	

The	samples	of	input	variables	are	arbitrarily	biased	to	reflect	high	internal	heat	

gain	values	or	low	internal	heat	gain	values.	The	results	of	two	sampling	runs	are	

combined	to	develop	one	distribution	of	the	biased	optimizations.	Therefore,	each	

distribution	has	results	from	28	optimization	runs.		

In	general,	the	mean	value	of	the	LCC	from	the	biased	runs	with	input	

variables	of	high	energy	demand	is	significantly	higher	than	the	mean	value	of	the	

LCC	of	the	LHS	runs	without	biased	variables.	This	can	be	easily	predicted	that	a	

household	of	high	energy	demand	uses	a	lot	of	energy	and	thus	ends	up	with	a	high	

LCC.	On	the	other	hand,	the	mean	value	of	the	LCC	from	the	biased	runs	with	input	

variables	of	low	energy	demand	is	smaller	than	the	mean	value	of	the	LCC	of	the	LHS	

runs	without	biased	variables.	The	tendency	towards	the	lower	LCC	for	a	household	

of	low	energy	demand	can	be	explained	by	the	fact	that	the	thermostat	settings	for	

heating	and	cooling	might	have	been	shifted	to	a	larger	accepted	comfort	range.		

The	results	for	the	recommended	parameter	settings,	however,	are	less	

obvious	than	expectation	in	terms	of	the	difference	between	the	biased	optimization	

and	the	LHS	runs.	Figure	6.6	shows	the	frequency	of	recommendation	for	the	

parameter	settings	from	the	biased	optimizations	for	Chicago.		
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P5	

	 	

Figure	6.6	Distributions	of	recommended	parameter	settings	from	biased	
optimization	runs	for	Chicago,	IL	
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For	Parameter	1	(glazing	type),	the	biased	optimization	runs	recommend	the	

same	parameter	setting	as	the	LHS	runs.	Parameter	setting	no.	2	receives	the	

highest	frequency	of	recommendations	for	both	high	and	low	bias	optimization	runs.	

Especially,	the	high	bias	case	shows	the	exactly	same	pattern	as	the	results	from	the	

LHS	runs;	setting	no.	2	is	most	recommended,	setting	no.	1	is	second	most	

recommended,	setting	no.	3	and	no.	5	are	recommended	just	a	few	times,	and	

settings	no.	4	and	no.	6	are	never	recommended.	Setting	no.	2	is	most	recommended	

for	the	low	bias	optimizations	as	well,	but	it	is	notable	that	setting	no.	5	is	also	

recommended	a	lot,	and	setting	no.	1	is	never	recommended	in	this	case.	Setting	no.	

3	is	also	recommended	more	often	than	other	two	cases.	Once	again,	this	seems	to	

be	derived	from	occupants’	low	energy	demand.	The	combined	effect	of	higher	

thermal	performance	of	glazing	and	occupants’	energy-efficient	behaviors,	such	as	

lowering	the	thermostat	setpoint	temperature	for	heating	and	raising	the	setpoint	

temperature	for	cooling,	may	offset	the	increased	investment	cost	for	the	high	

performance	glazing	types.	Overall,	the	tendency	towards	parameter	setting	no.	2	is	

less	evident	from	biased	optimization	runs	than	the	LHS	runs.		

For	Parameter	2	(wall	insulation),	setting	no.	2	is	most	recommended	for	

biased	optimization	runs	just	like	the	LHS	runs.	However,	setting	no.	1	is	just	as	

frequently	recommended	as	no.	2	for	the	low	bias	optimization	whereas	never	

recommended	for	the	high	bias	optimization.	The	recommendations	for	Parameter	

3	(roof	insulation)	are	most	dispersed	among	its	parameter	settings	for	the	LHS	

runs,	and	also	for	the	biased	optimization	runs.	The	frequency	of	recommendation	

for	Parameter	4	(floor	insulation)	and	5	(air	tightness)	are	very	similar	to	those	



	 124	

results	in	the	LHS	runs.	Parameter	setting	no.	1	is	most	often	recommended	in	all	

sampling	runs.	However,	for	the	low	bias	optimization	runs,	the	difference	in	the	

number	of	recommendations	between	setting	no.	1	and	the	second	most	

recommended	setting	is	relatively	smaller	than	that	of	other	optimization	runs.	 

To	sum	up,	the	mean	value	of	the	absolute	energy	demand	and	LCC	of	the	two	

types	of	sampling	runs	(the	biased	optimization	and	the	LHS	runs)	are	significantly	

different.	However,	the	tendencies	towards	particular	parameter	settings	for	each	

parameter	in	the	distributions	of	the	optimization	results	are	similar,	especially	for	

the	high	bias	optimization.	For	the	low	bias	optimization,	still	somewhat	similar	

tendencies	are	shown,	but	there	are	also	some	notable	differences	from	the	high	

bias	optimization	and	the	LHS	runs.		

6.4 Robust	Selection	of	Optimization	Results	

Various	sources	of	uncertainty	and	the	influence	of	varying	user	behavior-

related	input	variables	on	the	simulation-based	optimization	results	using	the	LHS	

method	are	investigated	in	the	precious	sections.	This	is	only	part	of	this	research.	A	

decision-making	framework	is	needed	for	decision	makers	to	utilize	this	useful	

additional	information	[87].	The	recommendations	for	parameter	settings	as	

optimization	results	need	to	be	compared	on	the	basis	of	a	scientific	and	valid	

decision-making	framework	to	support	robust	decision-making. 
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6.4.1 Based	on	the	frequency	and	the	test	of	proportion	

This	study	generates	output	distributions	and	uses	them	for	the	result	

analysis	instead	of	a	single	optimization	result.	This	is	done	by	using	varying	input	

distributions	and	integrating	the	LHS	method.	A	particular	parameter	setting	that	is	

recommended	by	the	optimization	process	can	be	said	to	be	robust	when	a	clear	

tendency	towards	the	setting	is	found.	This	means	that	the	recommendation	for	a	

parameter	setting	is	regarded	as	robust	when	the	difference	of	the	frequency	

between	the	most	frequently	recommended	setting	and	the	other	settings	is	

relatively	large.	The	recommendation	can	be	described	as	riskier	when	this	

difference	is	relatively	small.	Thus,	a	reasonable	evaluation	standard	is	necessary	to	

decide	whether	the	difference	is	large	or	small.		

In	this	study,	the	test	of	proportion	is	used	as	the	standard	to	examine	if	the	

difference	can	be	regarded	large	enough	to	tell	that	choosing	the	most	often	

recommended	parameter	setting	is	a	robust	decision.	If	the	difference	is	evaluated	

to	have	a	statistical	significance,	the	most	frequently	recommended	parameter	

setting	is	selected	as	an	optimal	solution	for	the	parameter.	The	concept,	calculation,	

and	flow	of	the	test	of	proportion	are	explained	in	‘5.4.2	Test	of	proportion.’	The	test	

is	conducted	by	using	an	online	statistical	software	tool	[159].	If,	p-value	is	equal	to	

or	smaller	than	!,	the	difference	can	be	described	to	be	statistically	significant,	and	

thus	the	most	often	recommended	parameter	setting	is	selected.	If	p-value	is	larger	

than	!,	no	statistically	significant	difference	exists	between	the	two	settings.	Then,	

the	settings	need	to	be	evaluated	by	using	the	next	step,	the	Hurwicz	criterion.	The	

value	of	!	is	defined	as	.05.		



	 126	

Figure	6.7	shows	the	recommendations	for	parameter	settings	of	each	

parameter	for	Chicago,	Madison,	and	Washington,	D.C.	The	recommendations	of	the	

three	distributions	shown	in	Figures	6.3	through	6.5	are	combined,	so	each	graph	in	

Figure	6.7	has	84	recommendations	as	the	optimization	results.	The	test	of	

proportion	is	performed	for	each	recommendation,	and	the	recommendations	that	

do	not	have	a	statistically	significant	difference	between	them	are	marked	with	an	

arrow	above	them	in	the	graphs.		

For	Parameters	1,	4,	and	5,	there	exists	an	obvious	tendency	toward	the	most	

often	recommended	parameter	setting:	setting	no.	2	for	Parameter	1,	setting	no.	1	

for	Parameters	4	and	5.	In	other	words,	a	statistically	significant	difference	is	found	

between	the	most	recommended	setting	and	the	rest	of	the	settings	as	a	result	of	the	

test	of	proportion.	In	these	cases,	the	most	frequently	recommended	parameter	

setting	of	each	parameter	can	be	selected	as	a	robust	optimal	result.	As	discussed	in	

‘6.2	Optimization	Results	for	Parameters,’	Parameter	2	and	3	have	the	least	clear	

tendency	towards	a	particular	parameter	setting,	and	the	recommendations	are	the	

most	dispersed	among	the	five	optimization	parameters.	For	Parameter	2,	two	

parameter	settings	(setting	no.	2	and	no.	3)	are	identified	not	to	have	a	statistically	

significant	difference	between	them	for	Madison,	WI	and	Washington,	D.C.	For	

Parameter	3,	no	statistical	significance	is	found	between	two	parameter	settings	

(setting	no.	2	and	no.	3)	for	Chicago,	IL	and	Washington,	D.C.	and	between	three	

parameter	settings	(setting	no.	2,	no.	3,	and	no.	4)	for	Madison,	WI.	Therefore,	these	

parameter	settings	cannot	be	chosen	as	an	optimal	result	based	on	the	frequency	of	

recommendations	and	need	further	examination	using	a	decision	theory.	
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Figure	6.7	Results	of	the	test	of	proportion	showing	the	statistical	significance	
between	parameter	settings	
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6.4.2 Application	of	the	Hurwicz	criterion	

Probabilistic	decision	theories,	including	utility	theory	and	regret	theory,	

cannot	be	used	in	this	study	because	the	result	of	this	study	does	not	have	all	the	

necessary	components	of	probabilistic	decision	theories.	In	fact,	it	is	one	of	the	

major	disadvantages	that	a	lot	of	information	is	required	to	utilize	a	probabilistic	

decision	theory.	Instead,	a	non-probabilistic	decision	criterion	is	applied	to	the	

result	of	this	study.	Among	various	non-probabilistic	decision	rules	(decision-

making	under	uncertainty)	introduced	in	Chapter	3,	the	Hurwicz	criterion	is	used	to	

choose	one	optimal	parameter	setting	between	two	or	three	settings	of	Parameters	

2	and	3	that	need	to	be	compared.	The	major	advantage	of	the	Hurwicz	criterion	is	

that	it	allows	a	decision	maker	to	have	his	or	her	own	personal	point	of	view	

towards	an	optimistic	or	pessimistic	condition.	In	this	study,	for	the	value	of	the	

coefficient	of	optimism,	H=0.3	is	used	for	a	pessimistic	decision	maker,	and	H=0.7	is	

used	for	an	optimistic	decision	maker.	Finally,	H=0.5	is	used	for	a	risk-neutral	

decision	maker.	

For	Chicago,	IL,	only	one	parameter	(Parameter	3)	needs	an	application	of	

the	Hurwicz	decision	rule	to	compare	parameter	settings	no.	2	and	no.	3.	Figure	6.8	

shows	the	distributions	of	the	LCC	when	settings	no.	2	and	no.	3	are	recommended	

for	Parameter	3.	The	LCC	values	are	considered	as	the	payoffs	for	each	alternative	

(settings	no.	2	and	no.	3).	The	maximum	and	minimum	payoffs	for	setting	no.	2	are	

$119.20/m2	and	$209.90/m2,	respectively.	Note	that	the	maximum	payoff	has	the	

smaller	value	(optimistic)	and	the	minimum	payoff	has	the	larger	value	(pessimistic)	

since	these	values	are	about	the	cost.	For	setting	no.	3,	the	maximum	and	minimum	
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payoffs	are	$130.89/m2	and	$195.38/m2,	respectively.	For	an	optimistic	decision	

maker,	the	expected	values	for	parameter	settings	no.	2	and	no.	3	are	calculated	as:	

Setting	no.	2:	 0.3×$209.90/m+ + 0.7×$119.20/m+ = $146.41/m+	

Setting	no.	3:	 0.3×$195.38/m+ + 0.7×$130.89/m+ = $150.24/m+	

Therefore,	an	optimistic	decision	maker	will	choose	setting	no.	2,	which	generates	a	

smaller	expected	LCC	based	on	the	Hurwicz	criterion,	for	Parameter	3	for	Chicago,	

IL.		

	

	

Figure	6.8	LCC	distributions	for	setting	no.	2	and	no.	3	of	Parameter	3	for	Chicago,	IL 

	

On	the	other	hand,	a	pessimistic	decision	maker	calculates	the	expected	values	as:	

Setting	no.	2:	 0.7×$209.90/m+ + 0.3×$119.20/m+ = $182.69/m+	

Setting	no.	3:	 0.7×$195.38/m+ + 0.3×$130.89/m+ = $176.03/m+	

Hence,	setting	no.	3	is	a	more	optimal	option	for	the	pessimistic	decision	maker.		
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Lastly,	in	the	case	of	a	risk-neutral	decision	maker,	the	expected	values	are	

calculated	as:	

Setting	no.	2:	 0.5×$209.90/m+ + 0.5×$119.20/m+ = $164.55/m+	

Setting	no.	3:	 0.5×$195.38/m+ + 0.5×$130.89/m+ = $163.14/m+	

For	the	risk-neutral	case,	setting	no.	3	has	a	smaller	expected	LCC	value,	but	the	

difference	of	the	expected	LCC	values	between	settings	no.	2	and	no.	3	is	relatively	

small	compared	to	two	other	cases.	This	is	because	H=0.5	is	used	for	the	risk-neutral	

case,	which	eventually	produces	the	mean	of	the	maximum	and	minimum	LCC	

values.		

Likewise,	the	Hurwicz	criterion	is	applied	to	two	parameters	(Parameters	2	

and	3)	for	Madison,	WI.	Two	parameter	settings	(no.	2	and	no.	3)	are	compared	for	

Parameter	2,	and	three	settings	(no.	2,	no.	3,	and	no.	4)	are	evaluated	for	Parameter	

3.	Tables	6.2	and	6.3	summarize	the	calculation	results	of	the	expected	values	for	

optimistic	(H=0.7),	pessimistic	(H=0.3),	and	risk-neutral	(H=0.5)	decision	makers,	

respectively.	Regardless	of	the	H	value,	which	stands	for	a	decision	maker’s	personal	

view,	setting	no.	2	always	has	a	better	expected	value.	Thus,	setting	no.	2,	which	has	

the	highest	recommendations,	is	identified	to	be	selected	as	an	optimal	parameter	

setting	for	Parameter	2.	Similarly,	for	Parameter	3,	setting	no.	2	always	has	the	

smallest	expected	LCC	value	among	the	three	parameter	settings,	and	therefore,	it	is	

appropriate	to	select	parameter	setting	no.	2	as	an	optimal	result.		 
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Table	6.2	Results	of	expected	LCC	for	Parameter	2	for	Madison,	WI	

	 	 Unit:	$/m2	

	 Payoffs	
Setting	no.	2	 Setting	no.	3	

Maximum	 117.17	 128.11	
Minimum	 198.51	 249.84	
	 Expected	values	

Hurwicz	index,	H	
0.7	 141.57	 164.63	
0.3	 174.11	 213.32	
0.5	 157.84	 188.98	

	

Table	6.3	Results	of	expected	LCC	for	Parameter	3	for	Madison,	WI	

	 	 Unit:	$/m2	

	 Payoffs	
Setting	no.	2	 Setting	no.	3	 Setting	no.	4	

Maximum	 117.17	 129.09	 134.39	
Minimum	 194.38	 209.40	 249.84	
	 Expected	values	

Hurwicz	
index,	H	

0.7	 140.33	 153.18	 169.02	
0.3	 171.21	 185.31	 215.21	
0.5	 155.77	 169.25	 192.12	

	

For	Washington,	D.C.,	settings	no.	2	and	no.	3	are	examined	for	Parameters	2	

and	3.	Tables	6.4	and	6.5	summarize	the	calculation	results	of	the	expected	values	

for	each	decision	maker.	For	Parameter	2,	setting	no.	3	would	be	selected	as	an	

optimal	parameter	setting	by	all	decision	makers	of	three	different	risk-taking	

attitudes.	For	Parameter	3,	setting	no.	2	has	a	better	LCC	value	for	a	pessimistic	

decision	maker,	while	setting	no.	3	is	a	more	optimal	option	for	an	optimistic	

decision	maker	and	a	risk-neutral	decision	maker.	However,	the	differences	of	the	

expected	values	between	the	two	settings	are	very	marginal	for	Parameter	3	for	

Washington,	D.C.		
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Table	6.4	Results	of	expected	LCC	for	Parameter	2	for	Washington,	D.C.	

	 	 Unit:	$/m2	

	 Payoffs	
Setting	no.	2	 Setting	no.	3	

Maximum	 118.88	 121.98	
Minimum	 217.87	 204.30	
	 Expected	values	

Hurwicz	index,	H	
0.7	 148.57	 146.68	
0.3	 188.17	 179.61	
0.5	 168.37	 163.14	

	

Table	6.5	Results	of	expected	LCC	for	Parameter	3	for	Washington,	D.C.	

	 	 Unit:	$/m2	

	 Payoffs	
Setting	no.	2	 Setting	no.	3	

Maximum	 121.98	 118.88	
Minimum	 207.50	 209.21	
	 Expected	values	

Hurwicz	index,	H	
0.7	 147.64	 145.98	
0.3	 181.85	 182.11	
0.5	 164.74	 164.04	
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CHAPTER	7	

CONCLUSIONS	

This	study	investigates	the	effect	of	uncertainty	in	user	behaviors	on	the	

simulation-based	optimization	process	using	a	genetic	algorithm	(GA)	and	the	Latin	

hypercube	sampling	(LHS)	method.	A	decision-making	framework	to	support	robust	

decision-making	from	the	output	distributions	of	optimization	results	is	also	

introduced.	The	major	findings	are	based	on	the	optimization	results	and	the	

application	of	the	decision-making	framework.	

7.1 Findings	

This	study	identifies	the	influence	of	the	user	behavior-related	input	

variables	on	the	robustness	of	the	optimization	process.	The	results	show	that	the	

robustness	of	the	recommendations	generated	by	the	building	optimization	

algorithm	is	relatively	high	when	the	optimization	algorithm	is	run	repeatedly	with	

a	range	of	possible	input	variables.	The	proposed	decision-making	framework	using	

the	frequency	of	recommendation,	the	test	of	proportion,	and	the	Hurwicz	decision	

criterion	is	applicable	to	the	generated	optimization	results.	
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Three	locations	

The	optimization	and	sampling	runs	for	Madison,	WI	and	Washington,	D.C.	

are	mainly	carried	out	in	order	to	verify	the	conclusions	for	Chicago,	IL.	A	

comparison	of	the	frequency	and	dispersion	of	recommendation	for	the	five	

parameters	between	the	three	locations	that	is	discussed	in	‘Chapter	6	Results	and	

Analysis’	shows	that	the	conclusions	drawn	for	Chicago,	IL	are	also	valid	for	the	

other	two	cities.	In	most	cases,	the	recommendations	produced	by	the	combined	

optimization	algorithm	for	three	locations	show	similar	results	except	for	a	few	

minor	cases.	This	points	out	that	the	research	method	proposed	in	this	study,	that	is	

the	combined	optimization	algorithm	and	the	LHS	method,	is	rational	to	be	used	for	

building	optimization	while	implementing	the	stochastic	approach	by	integrating	

the	uncertainty	in	user	behavior-related	input	variables.	

	

Parameters	and	parameter	settings	

Overall,	optimization	results	demonstrate	a	clear	tendency	towards	an	

optimal	parameter	setting	or	a	range	of	settings	in	spite	of	varying	input	variables.	

The	most	obvious	tendency	towards	a	particular	parameter	setting	(setting	no.	1)	is	

found	for	Parameters	4	(floor	insulation)	and	5	(air	tightness)	for	all	three	locations.	

A	relatively	clear	tendency	towards	setting	no.	2	is	observed	for	Parameter	1	

(glazing	type).	The	tendency	is	less	clear	for	Parameter	2	(wall	insulation),	and	most	

of	the	recommendations	are	concentrated	into	parameter	settings	no.	2	and	no.	3.	

Parameter	3	(roof	insulation)	has	the	most	dispersed	recommendations	throughout	
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the	seven	parameter	settings,	but	there	is	still	a	tendency	toward	a	range	of	

parameter	settings	(no.	2,	no.	3,	and	no.	4).	

A	clear	tendency	towards	a	particular	parameter	setting	implies	that	the	

influence	of	varying	user	behavior-related	input	variables	on	the	parameter	is	small.	

On	the	other	hand,	the	more	the	recommendations	are	dispersed,	the	greater	impact	

of	varying	input	variables	on	that	parameter	is	implied.		

	

Biased	optimizations	

Biased	optimizations	are	run	to	see	the	influence	of	biased	input	variables,	

that	reflect	occupant	behaviors	of	an	exceptionally	high	or	significantly	low	energy	

demand.	In	general,	low	bias	optimization	runs	demonstrate	less	obvious	tendency	

towards	the	most	recommended	parameter	setting.	This	implies	that	energy-

efficient	user	behaviors	have	a	greater	impact	on	the	recommendations	of	building	

materials	to	achieve	optimal	results.	It	seems	that	occupant	behaviors	of	a	higher	

energy	demand	have	less	impact	on	selection	of	optimal	parameter	settings	and	

contribute	more	to	the	increased	energy	consumption	and	LCC.		

The	comparison	of	the	results	from	the	optimization	runs	using	biased	input	

variables	and	from	the	optimization	runs	using	input	variables	generated	by	the	LHS	

method	demonstrates	that	the	proposed	optimization	process	(genetic	algorithm	

combined	with	LHS)	can	provide	reliable	results.		
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Decision-Making	Framework	

The	frequency	of	recommendation	is	a	good	indicator	for	its	robustness	to	be	

selected	as	the	final	optimal	choice	when	a	large	difference	exists	between	the	most	

frequently	recommended	parameter	setting	and	other	settings.	The	test	of	

proportion	is	appropriately	utilized	as	a	tool	to	identify	whether	the	difference	is	

statistically	significant.		

The	Hurwicz	criterion	provides	an	objective	basis	to	evaluate	the	robustness	

of	selecting	an	optimal	solution	when	the	frequency	of	recommendation	cannot	be	

used	because	of	lack	of	the	statistical	significance.	A	decision	maker’s	risk-taking	

attitude	can	be	reflected	in	the	evaluation	by	adjusting	the	value	of	the	coefficient	of	

optimism.		

7.2 Contributions	

This	dissertation	contributes	to	the	field	of	building	optimization	as	it	

proposes	a	method	to	integrate	uncertainty	in	input	variables	and	shows	the	

method	generates	reliable	results.	A	new	technique	to	integrate	uncertainty	in	input	

variables	into	simulation-based	optimization	is	introduced.	Probability	distributions	

are	used	instead	of	a	single	deterministic	value	as	inputs,	and	LHS	is	performed	to	

define	varying	sample	sets	of	input	variables.	A	genetic	algorithm	with	input	

variables	reflecting	varying	occupant	behaviors	is	repeatedly	run.	The	proposed	

approach	is	applied	to	a	typical	U.S.	single-family	house	for	three	locations	(Chicago,	

IL;	Madison,	WI;	and	Washington,	D.C.)	in	the	United	States.	The	reliability	of	the	
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optimization	results	is	found	by	comparing	the	results	from	three	different	locations	

as	well	as	comparing	the	results	from	LHS	runs	and	biased	optimization	runs.		

A	decision-making	framework	that	is	applicable	to	the	results	of	the	

presented	method,	which	generates	output	distributions	instead	of	a	single	optimal	

result,	is	also	proposed	and	proves	its	applicability.	The	proposed	decision-making	

framework	provides	a	decision	maker	with	a	scientific	and	valid	foundation	for	

robust	decision-making	as	it	helps	in	selecting	an	optimal	solution.	It	verifies	the	

robustness	of	produced	recommendations.	The	framework	is	expected	to	support	

building	design	and	renovation	projects	that	use	an	optimization	process	for	making	

decisions.	As	a	result,	more	reliable	and	practical	use	of	optimization	processes	in	

the	building	industry	would	be	promoted.		

Computation	time	has	been	considerably	reduced	by	using	the	LHS	method	

to	less	than	it	would	be	needed	if	a	random	sampling	Monte	Carlo	method	is	used.	

The	high	computational	cost	has	been	one	of	the	major	disadvantages	of	building	

optimization.	This	research	contributes	to	reducing	computation	time	using	the	LHS	

method	while	improving	sampling	efficiency	and	convergence.		

While	this	study	does	not	include	all	potential	input	variables	with	

uncertainty	in	a	building	optimization	process,	it	provides	significant	insight	into	

the	role	of	input	variables	with	uncertainty	in	the	building	optimization	process.			
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7.3 Directions	for	Future	Research	

This	research	deals	with	the	uncertainty	in	user	behavior-related	input	

variables.	There	are	various	sources	of	uncertainty	in	the	simulation-based	building	

optimization	process,	and	future	research	may	expand	its	scope	to	include	a	wider	

variety	of	uncertainty	sources.	However,	because	having	more	number	of	input	

variables	makes	an	optimization	problem	more	complex	and	brings	about	increased	

computation	time,	it	is	important	to	limit	the	scope	to	a	proper	range	that	a	study	

can	handle.	

For	statistical	analyses,	a	higher	accuracy	is	generally	achieved	with	a	larger	

number	of	samples.	The	relation	between	the	sample	size	and	optimization	results	

can	be	investigated.	It	would	be	intriguing	to	see	how	the	results	would	change	if	

more	simulation	runs	are	conducted.		

According	to	the	results	of	this	study,	Parameters	2	(wall	insulation)	and	3	

(roof	insulation)	turn	out	to	be	most	vulnerable	to	the	uncertainty	in	input	

variables.	While	Parameters	1	(glazing	type),	4	(floor	insulation),	and	5	(air	

tightness)	are	not	considerably	influenced	by	varying	user	behaviors	and	have	a	

clear	tendency	towards	an	optimal	parameter	setting,	the	recommendations	for	

Parameters	2	and	3	are	dispersed	throughout	available	parameter	settings	being	

affected	by	varying	input	variables.	Future	research	may	investigate	the	reason	why	

these	parameters	are	more	influenced	by	user	behaviors	than	others.			

Finally,	an	investigation	into	the	effect	of	energy	efficient	occupant	behaviors	

on	building	optimization	results	can	be	another	research	topic.	The	results	of	the	
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biased	optimization	runs	with	biased	input	variable	of	a	low	energy	demand	show	

that	energy	efficient	user	behaviors	have	a	greater	impact	on	the	optimization	

results	than	user	behaviors	of	a	high	energy	demand.	The	current	trend	of	building	

codes	is	in	the	direction	towards	more	energy	efficient	and	sustainable	architecture.	

Considering	that	newly	constructed	or	renovated	buildings	will	be	built	with	

materials	of	higher	thermal	performance,	it	is	worth	investigating	how	occupants’	

energy	efficient	behaviors	influence	the	optimal	building	material	selection.	
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APPENDICES	

APPENDIX	A.	Average	schedules	for	internal	loads	

	

Figure	A.1:	Average	schedules	for	occupancy	
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Figure	A.2:	Average	schedules	for	artificial	lighting	
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APPENDIX	B.	Hourly	internal	load	schedules	

Table	B.1	Occupancy	schedule	in	living	room	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	 0.4	
17	 0	 0	 0	 0	 0.1	 0.3	 0.5	 0.5	 0.5	 0.5	 0.5	 0.6	 0.7	 0.7	
18	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	 0.8	 0.9	 1	 1	
19	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
20	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
23	 0	 0.2	 0.4	 0.6	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.2	Occupancy	schedule	in	kitchen	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.6	 0.7	 0.8	
9	 0	 0	 0.2	 0.3	 0.3	 0.4	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0.1	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
23	 0	 0.1	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.3	Occupancy	schedule	in	dining	room	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
8	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
9	 0.5	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
10	 0	 0	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.4	 0.6	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.3	 0.3	 0.5	
19	 0	 0	 0	 0.1	 0.3	 0.4	 0.5	 0.5	 0.7	 0.9	 0.9	 1	 1	 1	
20	 0.7	 0.9	 0.9	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.4	Occupancy	schedule	in	circulation	area	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0.1	 0.1	 0.2	 0.2	 0.3	 0.3	 0.4	 0.4	 0.5	 0.5	 0.6	 0.6	 0.7	 0.7	
9	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
22	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
23	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.5	Occupancy	schedule	in	bedroom	1	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
2	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
3	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
4	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
5	 0.5	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
6	 0.5	 0.5	 0.7	 0.7	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	
7	 0.2	 0.2	 0.2	 0.2	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	 1	 1	 1	 1	
8	 0	 0	 0	 0	 0.2	 0.2	 0.2	 0.2	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	 0.2	 0.2	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	 0.2	
23	 0	 0	 0	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.7	 1	
24	 0	 0.3	 0.3	 0.5	 0.5	 0.5	 0.8	 0.8	 0.8	 0.8	 0.8	 0.8	 1	 1	
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Table	B.6	Occupancy	schedule	in	bedroom	2	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
2	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
3	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
4	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
5	 0.5	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
6	 0.5	 0.5	 0.7	 0.7	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	
7	 0.2	 0.2	 0.2	 0.2	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	 1	 1	 1	 1	
8	 0	 0	 0	 0	 0.2	 0.2	 0.2	 0.2	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	 0.2	 0.2	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	 0.2	
23	 0	 0	 0	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.7	 1	
24	 0	 0.3	 0.3	 0.5	 0.5	 0.5	 0.8	 0.8	 0.8	 0.8	 0.8	 0.8	 1	 1	
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Table	B.7	Occupancy	schedule	in	bathroom	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
9	 0	 0.1	 0.2	 0.2	 0.3	 0.4	 0.4	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.2	 0.2	 0.3	 0.3	 0.4	 0.5	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.2	
19	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
20	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
21	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.8	Lighting	schedule	in	living	room	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	 0.4	
17	 0	 0	 0	 0	 0.1	 0.3	 0.5	 0.5	 0.5	 0.5	 0.5	 0.6	 0.7	 0.7	
18	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	 0.8	 0.9	 1	 1	
19	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
20	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
23	 0	 0.2	 0.4	 0.6	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.9	Lighting	schedule	in	kitchen	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.6	 0.7	 0.8	
9	 0	 0	 0.2	 0.3	 0.3	 0.4	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0.1	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
23	 0	 0.1	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.10	Lighting	schedule	in	dining	room	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
8	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
9	 0.5	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
10	 0	 0	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.4	 0.6	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.3	 0.3	 0.5	
19	 0	 0	 0	 0.1	 0.3	 0.4	 0.5	 0.5	 0.7	 0.9	 0.9	 1	 1	 1	
20	 0.7	 0.9	 0.9	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.11	Lighting	schedule	in	circulation	area	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0.1	 0.1	 0.2	 0.2	 0.3	 0.3	 0.4	 0.4	 0.5	 0.5	 0.6	 0.6	 0.7	 0.7	
9	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
22	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
23	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.12	Lighting	schedule	in	bedroom	1	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
9	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	
22	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.5	 0.5	
23	 0.2	 0.4	 0.5	 0.6	 0.7	 0.8	 0.8	 0.8	 0.8	 0.9	 1	 1	 1	 1	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.13	Lighting	schedule	in	bedroom	2	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
9	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	
22	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.5	 0.5	
23	 0.2	 0.4	 0.5	 0.6	 0.7	 0.8	 0.8	 0.8	 0.8	 0.9	 1	 1	 1	 1	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	

	

	 	



	 155	

Table	B.14	Lighting	schedule	in	bathroom	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
9	 0	 0.1	 0.2	 0.2	 0.3	 0.4	 0.4	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.2	 0.2	 0.3	 0.3	 0.4	 0.5	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.2	
19	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
20	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
21	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.15	Appliance	power	consumption	schedule	in	living	room	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	 0.4	
17	 0	 0	 0	 0	 0.1	 0.3	 0.5	 0.5	 0.5	 0.5	 0.5	 0.6	 0.7	 0.7	
18	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.7	 0.8	 0.9	 1	 1	
19	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
20	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
23	 0	 0.2	 0.4	 0.6	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	 0.7	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.16	Appliance	power	consumption	schedule	in	kitchen	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
3	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
4	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
5	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
6	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
7	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
8	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
9	 0.2	 0.6	 0.8	 0.9	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
10	 0.2	 0.2	 0.4	 0.5	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	
11	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.3	 0.4	 0.6	 0.8	
12	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
13	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
14	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
15	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
16	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
17	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
18	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
19	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
20	 0.2	 0.2	 0.2	 0.2	 0.4	 0.4	 0.4	 0.4	 0.4	 0.7	 0.7	 0.8	 0.8	 1	
21	 0.4 0.6	 0.8	 0.9	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.5	 0.5	 0.5	 0.5	
23	 0.3	 0.3	 0.3	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	 0.4	
24	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
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Table	B.17	Appliance	power	consumption	schedule	in	dining	room	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
8	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
9	 0.5	 0.7	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
10	 0	 0	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.4	 0.6	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.2	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.2	 0.3	 0.3	 0.5	
19	 0	 0	 0	 0.1	 0.3	 0.4	 0.5	 0.5	 0.7	 0.9	 0.9	 1	 1	 1	
20	 0.7	 0.9	 0.9	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
21	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	
22	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	 0.3	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.18	Appliance	power	consumption	schedule	in	circulation	area	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.3	 0.3	 0.4	 0.4	 0.5	 0.5	 0.6	 0.6	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.19	Appliance	power	consumption	schedule	in	bedroom	1	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.2	 0.2	
22	 0	 0	 0	 0.1	 0.3	 0.4	 0.4	 0.4	 0.4	 0.5	 0.5	 0.5	 0.7	 1	
23	 0	 0.1	 0.3	 0.5	 0.5	 0.5	 0.6	 0.6	 0.7	 0.7	 0.8	 0.9	 1	 1	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.20	Appliance	power	consumption	schedule	in	bedroom	2	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
8	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
9	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
10	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
19	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
20	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
21	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.2	 0.2	
22	 0	 0	 0	 0.1	 0.3	 0.4	 0.4	 0.4	 0.4	 0.5	 0.5	 0.5	 0.7	 1	
23	 0	 0.1	 0.3	 0.5	 0.5	 0.5	 0.6	 0.6	 0.7	 0.7	 0.8	 0.9	 1	 1	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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Table	B.21	Appliance	power	consumption	schedule	in	bathroom	(%)	

Time	
Samples	

#1	 #2	 #3	 #4	 #5	 #6	 #7	 #8	 #9	 #10	 #11	 #12	 #13	 #14	
1	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
3	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
4	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
5	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
6	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
7	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
8	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
9	 0	 0.1	 0.2	 0.2	 0.3	 0.4	 0.4	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	 0.5	
10	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.2	 0.2	 0.3	 0.3	 0.4	 0.5	
11	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
12	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
13	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
14	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
15	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
16	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
17	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
18	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0.1	 0.1	 0.2	 0.2	 0.2	
19	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
20	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
21	 0.1	 0.1	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	 0.2	
22	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
23	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
24	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	
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