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1. CHAPTER 1. Introduction to Structural Bioinformatics 

Overview 

Proteins are a class of biomolecules composed of covalently bonded amino acids; these 

macromolecules carry out the majority of essential cellular function such as catalysis, cell 

signaling, immunity responses, cell structure, molecule transport, and signal transduction. Due to 

their importance determining protein function and how the function is performed is essential to 

understanding cellular physiology. In order to understand and characterize a proteins function, its 

three dimension structure is often a prerequisite as a protein is normally only functional when it is 

folded into its three dimensional structure. Protein structure is divided into four levels. The primary 

structure consists of the sequence of covalently linked amino acids forming the protein. The 

secondary structure are local structurally stable motifs in the protein that are created from a specific 

and periodically occurring hydrogen bond pattern amongst covalently bonded amino acids; the 

most common types are alpha helices and beta sheets. The tertiary structure consists of singular 

globular units in a protein chain that are formed from the hydrophobic collapse and the hydrogen 

bonding between amino acids. The quaternary structure consists of the interface generated by the 

permanent and transient interactions of the tertiary level folds. Most protein function occurs at the 

quaternary level, which makes determining the final level of protein structure of upmost 

importance.  

 

Since the early 1950’s it has been possible to experimentally determine the structure of a protein, 

yet the information regarding protein tertiary and quaternary structure has lagged behind the 

known protein sequences due to the time and cost associated with experimental determination of 

protein structures. Currently over 50 million protein sequences are deposited in the UniProt protein 

sequence database while slightly over 100 thousands structures have known three dimensional 

structure. The lack of structures has encouraged the development of algorithms that can predict the 

three dimensional structure of a protein given its sequence. For tertiary structure and function 

prediction the field of computational biology has seen promising results. Using information form 

previously resolved protein structures, protein modeling can generate prediction with similar 
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accuracies as experiments. But for the quaternary structure prediction, the field is still in its 

infancy. Predicting what proteins interact, the strength of the interactions and the orientation of the 

individual chains is an open problem. 

 

In this thesis work, I developed methods to predict and model protein quaternary structure, in 

particular protein-protein interactions. The first algorithm SPRING (Chapter 2, Published in 

Journal of Chemical Information and Modeling) searches the protein database of known protein 

interactions to identify possible structural homologs to the query sequences. This algorithm along 

with the PDB was designed to efficiently predict and model protein interactions for whole 

genomes. However the number of known interfaces structures in the PDB is incomplete and does 

not represent all protein interfaces contained in nature. To increase the types of interfaces that can 

be modelled, we incorporate the interface between domains into the prediction of protein 

interactions (Chapter 3, Manuscript Completed). Finally a structure prediction pipeline was 

developed to create full atom quaternary structures (Chapter 4, Manuscript Completed). Using 

information from known structures such as pair wise residue distance and physical energy 

potentials incorporated into a folding simulation, medium to high resolution protein structures can 

be predicted starting from coordinates of identified homologs to the pair of query sequences. 

 

1.1 The Protein Data Bank and Limited Protein Folds 

1.1.1 The PDB: Protein Data Bank 

The protein data bank was created in 1971 to house experimentally resolved protein structures [1, 

2]. At its creation it contained several structures resolved by X-ray crystallography [2], but starting 

in 1978 the PDB started to see exponential growth [3], and now contains over one hundred 

thousand structures [4]. There are currently three experimental methods to determine 

macromolecular structure: X-Rays Crystallography, NMR and Electron Microscopy. X-ray 

crystallography can handle small to large proteins and association of multiple protein chains with 

high resolution. NMR (Nuclear Magnetic Resonance) can handle small to medium size proteins. 

It additionally has the benefit of the structures being solved in solutions closer to physiological 

conditions [5]. It also generates knowledge regarding different conformations and motions of a 

protein chain [5]. Finally Electron Microscopy can provide images of large associations of 

macromolecular complexes. Unfortunately it often generates low to medium resolution images [5]. 
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There are currently 106,827 proteins contained in the PDB [4]. The majority of proteins are 

resolved by X-ray crystallography, followed by NMR and finally electron microscopy [4]. 

Regarding protein complexes, there are over 60,000 protein structures in the PDB. SCOPPI 

clustered the structures based on the interfaces identifying 15,058 unique interface structures [6, 

7]. 

 

1.1.3 The Classification of Protein Structure and the Fold Recognition Problem  

As the structures in the PDB grew the need to track the evolutionary and structural relationships 

between resolved proteins became apparent. The Structural Classification of Proteins database 

(SCOP) was developed for this purpose. SCOP is a manually curated hierarchical database that 

groups protein domains based on similarity; the SCOP database has four structure levels [8]: 

I. Classes: This is the top level of the database it consists of four categories based on the 

proteins overall secondary structure content.  

II. Fold: Structures are grouped together if the overall three dimensional topology of the 

proteins are similar. 

III. Superfamily: Groups distantly related proteins 

IV. Family: Proteins in this group have high similarity. 

 

As the number of structures increased, several things became apparent: there was a need for 

automated methods to partition structures into domains and classify them i.e. CATH Database [9], 

there may be limits to the number of domain folds in nature, and most importantly the limited 

topologies could be used to predict protein structure [9-11]. This recognition moved the protein 

structure prediction problem into a fold recognition challenge, which further initiated the structural 

genomics project [12]. The structural genomics initiative was started to experimentally determine 

the structure of all domain folds, and since 2009 despite several thousand structures being 

identified no new domain topologies have been identified, suggesting all the possible folds are 

currently stored in the PDB [4]. This allows in theory for any protein domain to be modelled using 

the fold recognition paradigm; the main challenge for single domains prediction is matching it to 

the correct fold [13, 14]. 
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It has been shown that unknown sequences can be mapped onto known domain folds to guide 

protein folding and structure prediction. Using known structures, protein models can be generated 

at very high resolution [10, 13, 15]. Regarding single domain proteins the major challenge is 

matching the sequence to the correct fold [13, 14]. Additionally it was then checked to see if fold 

recognition could be extended past single domain proteins. 

  

Determining the limits of homology modeling and its scalability to modeling protein quaternary 

structure has huge implications on the direction the field of structural biology and structure 

prediction will take. It has been show that oftentimes similar proteins interact in similar ways. 

Furthermore structural alignment studies have consistently shown newly deposited structures are 

similar to preexisting interfaces, and that there is some structural overlap between domain-domain 

and protein-protein interfaces [7, 16]. It is predicted that there are a finite number of interfaces in 

nature and that the library will be approaching completion in the next two decades [17, 18]. This 

shows promise in modeling proteins at the quaternary level, and that over time the coverage of 

interfaces will continue to increase and soon in theory homology/template based modeling will 

have a database with enough depth to accurately model all proteins in nature.  

 

1.2 Identifying Similarities amongst Proteins Sequences 

Similar sequences often share similar structure and function. Comparing an unknown protein 

sequence to a database of known sequences with known structure and function can allow inference 

on the properties of the unknown protein. To compare two sequences two systems are needed: a 

scoring system for quantifying similarity and an algorithm to maximize the alignment score. 

 

1.2.1 Sequence Similarity Matrix 

Many scoring systems have been created to assess the similarity of protein sequences. The field of 

sequence alignments more or less began with the creation of the Point Accepted Mutation Matrix 

by Matrix (PAM) in 1978 [19]. The idea was to check the frequency of accepted point mutations 

in nature among close homologs to create a scoring system for measuring sequence similarity. 

Regarding PAM, phylogenic trees were constructed from closely related protein sequences. 

Between nodes in the tree and each position between sequences the occurrence of residue X being 

matched with residue Y was counted. Next the mutability was evaluated, which is the propensity 
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of a residue being mutated into another. Mutability is the frequency of not observing a change in 

residue between nodes in the phylogenic tree. This information was combined and converted into 

a logs odds matrix forming the 20x20 PAM substitution matrix. This matrix gives a score for 

determining if it is favorable to match one residue to another in an alignment. 

 

Several attempts were made to improve upon the PAM score matrix, one of the most famous 

matrices the BLOSUM matrix was derived from similar principles as PAM [20]. The BLOSUM 

matrix is derived from a block of closely related sequences. The derivation of the scoring matrix 

considered pairwise point mutation from a larger more diverse set of sequences. For each block 

within each column all combinations of the residues were taken in pairs of two. This protocol 

tracked the propensity of one residue capabilities to mutate into another residue. These frequencies 

are then converted into a logs odd ratio for score sequence alignments. 

 

1.2.2 Needleman Wunsch, Smith-Waterman and BLAST 

The aim of global sequence alignment is to obtain the optimal alignment that maximizes the global 

similarity between two given sequences. Needleman and Wunsch developed a dynamic 

programing algorithm to identify such an alignment [21]. The algorithm creates an m x n matrix 

with m being the length of the first sequence and n being the length of the second chain. Each 

element is filled by considering the best possible choice at that position, such as an alignment or 

introducing a gap (insertion/deletion) in the first or second sequence. The maximum values is 

chosen to fill that position and the direction is recorded: diagonal for an alignment and up or left 

for the respective gap. Once the matrix has been completed the alignment is generated by the back 

track procedure where the maximum value of each element is used to generate the alignment [21]. 

Starting from the last element in the matrix, information is contained on whether an alignment or 

inserting a gap is the best option for that position. The choice determines which adjacent matrix 

position to go to next. This procedure is repeated until the algorithm reaches the first node.  

 

Generally local alignment contain important structural and functional information. The Smith-

Waterman alignment made a slight alteration to the Needleman-Wunsch alignment to create local 

matches. A floor was added to prevent values from going negative. This prevents local segments 

from being connected by long gaps or dissimilar alignment regions [22]. The NW algorithm was 
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initially designed for using a simple similarity score for deciding alignment values and a constant 

gap penalty value. However, insertions and deletions need to be properly accounted for when 

aligning two sequences. The affine gap penalty, developed by Gotoh, efficiently incorporated this 

procedure into the Needleman-Wunsch alignment algorithm [23]. These three papers form the 

searching foundations for most modern alignment algorithms.  

 

Although the NW alignment algorithm guaranteed the optimal alignment it was often too slow to 

compare whole genomes, which led to the creation of faster alignment algorithm based on 

heuristics, FASTA and BLAST [24, 25] . The BLAST algorithm is a heavily cited algorithm and 

the foundation for one of the most popular molecular biology tool, PSI-BLAST [26]. The BLAST 

algorithm splits the sequence into overlapping words i.e. sequential groups of letters from the 

sequence ranging from 3-5 letters. A residue similarity matrix is then used to create words that are 

similar to the words created from the initial sequence. The words are then scanned against 

sequences in the database. If they do not hit the sequence it is then skipped, additionally when a 

word is hit the words start as initial alignments which are then extended without gaps. If the 

alignment scores above a threshold, the alignment is considered a match. And if it falls below the 

threshold its rejected which prevents full alignments of sequence pairs that are very unlikely to 

result in a strong alignment [25]. 

 

1.2.3 Multiple Sequence Alignments and Sequence Profiles 

General sequence alignments with a simple 20 x 20 scoring matrix are often limited to finding 

confident alignments with high homology. Fortunately, iteratively running alignments by 

incorporating information from previous alignments into the search can significantly increase the 

depth of alignments by considering conservation of residue positions [27]. Starting from an initial 

search through the database similar sequences are identified and joined into a multiple sequence 

alignment, MSA, generally using the neighbor joining algorithm [28, 29]. The MSA is converted 

into an L x 20 log-odds scoring matrix referred to as a position specific scoring matrix (PSSM) 

[27]. L is the length of the query sequence; the PSSM contains conservation information of each 

residue for each position among evolutionary related sequences. A second alignment uses the 

PSSM for scoring and creates a new multiple sequence alignments; this procedure is repeated until 

convergence [26, 30]. Often times the contribution of sequences are weighted based on sequence 
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similarity. A large number of higher similar sequences are down weighted in order to reduce bias 

in conservation due to redundancy; likewise low similarity sequences have higher impact on the 

PSSM [31]. 

 

From the success of sequence profile alignments, attempts were soon made to align two profiles. 

The idea is creating a database where each element in the database contains a PSSM. The query 

sequence is searched through the database and a query profile is created. Alignments are generated 

by aligning two profiles [30]. The most popular method for sequence-profile alignment is PSI-

BLAST [26] which has been cited over 50,000 times. The algorithm starts with a normal iteration 

of BLAST, the first round generates a multiple sequence alignment which is used to create a PSSM. 

This PSSM is used to generate new words based on conservation within the PSSM. The blast 

algorithm is reran with the new set of information, and the scoring of alignments uses the PSSM 

information. This process is by default iterated three times [26], and can often identify homologs 

with at least 30% sequence identity to the query sequence. 

 

1.3 Structure Alignment and Structure Similarity Scores 

Structures with similar local and global topologies often share similar functions. Identifying 

structural features can help identify function of unknown proteins by comparison to known 

structures with similar topologies. Kabsch developed an algorithm for the optimal rotation given 

a pair of coordinates to align [32]. Most modern alignment algorithms uses this algorithm for the 

orientation, and focus on finding the correct pairs to provide to the Kabsch algorithm. The 

algorithm is optimized to minimize the root mean squared deviation between two sets of vectors. 

Although better scoring systems have been developed to compare structures, the RMSD and 

optimal rotation matrix are foundational tools for structural biology. 

   

1.3.1 The Kabsch Algorithm and RMSD 

Similar to protein sequences, protein structures need to be aligned in order to evaluate the 

similarity. Given a superposition, one way is to compare structures is to calculate the root mean 

squared error between a set of points. 
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𝑅𝑀𝑆𝐷 =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

However any rotation of the y coordinates will substantially alter the error without altering the 

structure of y. So first the y structure needs to be correctly superimposed onto x 

𝑅𝑀𝑆𝐷 =  √
1

𝑛
∑(𝑥𝑖 − 𝑈 ∗ 𝑦𝑖)2

𝑛

𝑖=1

 

Kabsch derived the solution for finding the optimal solution of y onto x as to minimize the RMSD. 

First the equation is squared and mean squared deviation is used for simplicity and the equation is 

expanded.  

𝑀𝑆𝐷 = ∑(

𝑛

𝑖=1

𝑥𝑖
2 + 𝑦𝑖

2) − 2 ∗ ∑(𝑥𝑖 ∗ 𝑈 ∗ 𝑦𝑖)

𝑛

𝑖=1

 

Notice that the first summation term is not dependent on U and can be removed from consideration. 

In order to minimize the RMSD we need to maximize. 

2 ∗ ∑(𝑥𝑖 ∗ 𝑈 ∗ 𝑦𝑖)

𝑛

𝑖=0

 

Converting the equation into vector notation leads to the equation below with the goal of 

maximizing L. 

𝐿 = 𝑇𝑟𝑎𝑐𝑒(𝑋 ∗ 𝑈 ∗ 𝑌𝑇) 

Now using the cyclic property of the transpose the equation can be written as follows where R can 

be calculated and U is unknown. 

𝐿 = 𝑇𝑟𝑎𝑐𝑒(𝑋 ∗ 𝑈 ∗ 𝑌𝑇) 

 = 𝑇𝑟𝑎𝑐𝑒(𝑈 ∗ 𝑌𝑇 ∗ 𝑋) 

 = 𝑇𝑟𝑎𝑐𝑒(𝑈 ∗ 𝑅) 

R is the correlation matrix and using singular value decomposition it can be rewritten as 𝑅 = 𝑉 ∗

𝑆 ∗ 𝑊𝑇 where V and W are orthogonal matricies and S is a diagonal matrix containing the singular 

values. Replacing R with the SVD and using the trace cyclic property 

𝑇𝑟𝑎𝑐𝑒(𝑈 ∗ 𝑅) = 𝑇𝑟𝑎𝑐𝑒(𝑈 ∗ 𝑉 ∗ 𝑆 ∗ 𝑊𝑇) = 𝑇𝑟𝑎𝑐𝑒(𝑆 ∗ 𝑊𝑇 ∗ 𝑈 ∗ 𝑉) 
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The matrices WT,U,V are replaced with the matrix T, which is the product of orthogonal matrices, 

which leads to 

𝑇𝑟𝑎𝑐𝑒(𝑆 ∗ 𝑇) =  𝑆11 ∗ 𝑇11 + 𝑆22 ∗ 𝑇22 + 𝑆33 ∗ 𝑇33 

Since T is orthogonal and Tii <= 1, the trace is maximized when T equals the Identity Matrix.  

𝑇 = 𝑊𝑇 ∗ 𝑈 ∗ 𝑉 = 𝐼 

The Kabsch algorithm optimal rotation matrices can either be in the right handed coordinate 

system or left handed system (determinant of U equals -1). In order to convert a left handed system 

to right handed the last column of U needs to be multiplied by negative one [33]. 

 

Despite being the most widely used metric to evaluate structure similarity, the RMSD measure has 

three major caveats. First, RMSD is protein length dependent: a pair of long proteins tend to have 

a larger RMSD than a pair of short proteins. Second, RMSD puts equal weights on all pairwise 

alignments which makes the score sensitive to local structure variation. Lastly, it is difficult to 

identify the cutoff for a “good” RMSD score.[34]. 

 

1.3.2 Structure Alignment and Similarity Scores 

Structural scoring systems that can properly identify global structure similarity are important. 

Given a pair of aligned protein structure coordinates three scoring systems are still in consistent 

use. RMSD, the GDT-score [35], and the TM-score [34]. For comparing equivalency between a 

model and native structure the RMSD is the score of choice, with a value less than 2 Angstroms 

being considered accurate enough for drug discovery. However when local variation exists in the 

model or comparing distantly related structures the GDT and TM-score are often the scores of 

choice. 

 

The TM-score was designed to consider the alignment coverage and pairwise distance proximities 

in order to calculate a similarity score. Additionally, scores like RMSD, MaxSub [36] and the 

GDT-score have dependencies based on the length of the alignment which the TM-score tries to 

circumvent. Here the TM-score, based on MaxSub score, is normalized to the length of the protein 

and the score is bounded between 0 and 1, which allows simple and easy comparison between 

large sets of alignments. A similarity threshold of 0.5 was determined confident based on an 

extreme value distribution model [34]. The di are pair wise distance within a cutoff between two 
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aligned residues and the d0 is a factor which normalizes the score based on protein length [37]. Lali 

is the number of aligned residue pairs and LT is the protein length. 

𝑇𝑀𝑠𝑐𝑜𝑟𝑒 =  
1

𝐿𝑇
∑

1

1 + (
𝑑𝑖

𝑑0
)2

𝐿𝐴𝑙𝑖

𝑖=1

 

It is often necessary to compare proteins that have distant homology. Due to low sequence identity, 

algorithms such as Needelman Wunsch paired with the BLOSUM matrix produce poor alignments 

which in turn produce poor structure superposition. TM-align was developed shortly after the TM-

score, with the goal of properly aligning structures with similar folds but highly divergent 

sequences [38]. The algorithm uses structural features, such as secondary structure, from the two 

proteins to generate seed alignments for initial structure alignments. The initial pairwise 

alignments are used to generate the first superposition. All pairwise residue distances after 

superposition are checked in order to generate the next set of pairwise alignments for 

superposition. Multiple iterations are performed in order to maximize the TM-score. 

  

1.3.3 Interface Evaluation Scores and Quaternary Structure Alignment 

Similar proteins form similar interactions. But often there are many alternative binding modes 

between a pair of protein folds that have been gained and lost through time [39]. It is not enough 

to identify and match towards the tertiary level components of the complex; the orientation of the 

two chains needs to be considered. Similar approaches towards aligning tertiary structure were 

used in order to best align two quaternary level structures and assess if the interfaces are similar. 

Similar to tertiary structure, scoring systems have been developed to recognize orientation 

similarities between two quaternary structures or between a model and native structure. In the 

Critical Assessment of Prediction of Interaction (CAPRI) experiments three scores have been 

developed: FNAT, I-RMSD and Ligand RMSD [40]. FNAT refers to the percentage of shared 

interface residues between two proteins, I-RMSD is the RMSD of interface residues of the target 

structure compared to the same residues in the query structure, and finally Ligand RMSD is the 

measure of the RMSD of the second chain after optimal superposition. FNAT is a measure of local 

interface structure, IRMSD compares the overall interface structures, and Ligand RMSD evaluates 

the similarity of the two proteins orientations. 
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Regarding structural alignment three prominent algorithms have been developed based on the 

methodologies of TM-align and TM-score to evaluate quaternary structures. MM-align is a direct 

extension of TM-align with the goal of generating an optimal alignment based on the general 

tertiary structures and their relative orientations while preventing cross alignments [41]. The 

algorithms I-align and PCalign focus on the optimal alignment of the interface region. I-align 

generates a TM-score like score that weights alignments to the interface while PCalign 

incorporates chemical features into the TM-score [42, 43]. Additionally PCalign allows for non-

sequential alignment that comes at an increase in computation time. For comparing a model 

structure to native, the TM-score or RMSD superposition is used followed by further evaluation 

by FNAT, I-RMSD and Ligand RMSD. 

  

1.4 Energy Scores and Decoy Recognition 

Accurate simulation of protein folding is dependent on the energy/scoring system used to compare 

to different states. Energy potentials and scores are needed that can drive molecular dynamics or 

Monte Carlo simulations towards a correctly folded protein. Initially energies were developed 

completely based on physical properties, unfortunately with limited success in predicting protein 

structure mainly due to computational expense. Later it was determined that reduced atom 

simulations with statistical properties of the PDB and homology restraints could be used to fold 

proteins in a simulation. Often these properties are combined into an energy function as a linear 

combination where weights are trained on a decoy set, which are a set of structures with various 

levels of perturbation relative to the native structure. 

 

1.4.1 Physics based Energy Terms 

The initial attempts to determine protein structure and model its dynamics consisted of created 

physical potentials and incorporating them into a molecular dynamics simulation. The Amber and 

Charm force fields are among the most commonly used [44, 45]. 

𝑉 =  ∑ 𝑘𝑏(𝑏 − 𝑏𝑜)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃𝑜)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑘𝜑(1 + (𝑛𝜑 − 𝛿))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

 

 + ∑ 𝜀

𝑉𝑊

((
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

12

−  (
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

12

+ ∑
𝑞𝑖𝑞𝑗

𝑒𝑟𝑖𝑗
𝐸𝑙𝑒𝑐𝑡
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 + ∑ 𝑘𝑤(𝑤 − 𝑤0)2

𝑖𝑚𝑝𝑟𝑜𝑝

+  ∑ 𝑘𝑢(𝑢 − 𝑢0)2

𝑈𝐵

 

Amber uses the first five and charm adds the second two. The first two terms refer to proper bond 

lengths and angles. The dihedrals refer to the phi and psi angles in the protein backbone. The next 

terms are the Vander Waals and electrostatic potentials. The last terms refer to bond bending. 

Proteins fold in water and properly tracking all the atoms in the simulation prevents long time scale 

simulations required for protein folding. 

 

1.4.2 Statistical Energy Scores and Information Based Restraints 

Information from the PDB can improve the modeling and prediction of protein structure. These 

knowledge based simulations incorporate PDB structural information in the form of statistical 

potentials, folding biases, rotamer libraries and homology derived restraints. The statistical 

potentials derived from the PDB are based on the theoretical foundations of the Boltzmann 

distribution. The Boltzmann distribution is an equation that describes the population of different 

states and the respective energy of that state. With lower the energies corresponding to the more 

populated states. Features such as pairwise residue distances are extracted from the PDB and 

distances are binned and the population frequencies are converted into energy potentials [46, 47]. 

Other statistical features include residue environment and contact propensities [47]. These 

statistics represent favorable positions for residues that help guide protein folding. Often 

bioinformatics based predictions of secondary structure, residue position and solvent accessibility 

are predicted and incorporated into energy functions [48, 49]. 

 

Rotamer libraries and folding biases are often included into folding simulation to make more 

protein like models. Rotamer libraries refer to backbone and sidechain structural elements 

extracted from experimentally resolved structures. The rotamers can be used to create starting 

structures for simulations, initial sidechain placement and creating higher resolution structural 

models [50-52]. Folding bias refer to incorporating intuitive awards and benefits for local and 

global topologies that are protein like. Often proteins are globular, so radius of gyration is often 

used as a reward for creating compact structures. Additionally strong rewards are often given for 

forming and keeping secondary structure elements as well as encouraging hydrogen bond contacts 

[52, 53]. 
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Coevolution and homology restraints provide global topological information for the proteins 

shape. Mapping query sequences to homologous proteins provide starting coordinates and distance 

restraints for modeling proteins [54]. Oftentimes multiple structures are present and distance 

restraints can be generated by creating statistical energy functions based on the distribution of 

pairwise residue distances [54, 55]. Another approach involves creating contact restraints from 

observed coevolution events in multiple sequence alignments. The idea is through evolution if one 

residue mutates neighboring residues will also mutate to compensate for chemical and physical 

properties of the new change [56-60]. These contact matrices can be generated and used to guide 

protein folding simulations. 

 

1.4.3 Interface Energy Terms 

Generally the scores generated for folding single domain proteins should be able to recognize and 

model the correct interface between a pair of proteins. Pairwise residue statistical potentials are 

often incorporated for identifying interfaces [61-63]. More so two properties have been observed 

from the PDB that also helps guide selection of the correct interface. First is the geometric surface 

complementarity. This refers to the shape of the two binding sites fitting together compactly, i.e. 

two flat surface are often in contact or a bulge in one site is complemented by a grove in the 

opposite binding site [7, 64-66]. Similarly surface charge patches such as matching hydrophobic 

or oppositely charged patches are used to identify correct interfaces. Finally it has been observed 

that homodimers have interfaces that involve symmetry. When predicting homodimer interactions 

enforcing symmetry can reduce the search space which helps guide accurate prediction of protein 

complexes [67]. 

 

1.4.4 Decoy Sets and Weight Training 

It is often necessary to combine statistical or experimental information to guide the simulation, the 

information/scores are often combined as a linear combination. The simplest approach involves 

simulating folding using a large set of parameters on a diverse set of proteins and choosing the set 

that yields the best results. However, the computational expense of doing this properly can prohibit 

this approach. Another approach revolves around creating sets of deformed model structures from 
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the native and training scores that rank the native structure high and highly deformed structures 

low.  

 

Decoy sets are groups of models that have a large range of structural similarities to the correct 

topology. The goal of the training is developing scores and setting parameters that have high 

correlation to the structural quality of the models. Many sets have been generated by various 

structure prediction algorithms i.e. I-TASSER, MODELLER and Rosetta; often consisting of 

trajectories (coordinates of a structure at a particular time step) that are grouped into bins 

representing a uniform spread of model quality [68, 69] . Often times the sets are too simple and 

the native can be recognized by simple looking for irregular local structures and side chain 

interactions. Unfortunately this is often not enough to guide the simulation to the correct fold of 

the protein. This encouraged the development if 3DRobot which attempts to make structures with 

high structural similarity, but difficult to distinguish from the native structure without proper 

consideration of long distant contacts [69].  

 

Quaternary decoy sets are generated with the goal of determining the correct orientations from sets 

of false interfaces. Two decoy sets are currently available for evaluating interface scores. The first 

one is the ZDOCK benchmark set [70]. It contains a set of protein complexes that also have the 

individual units crystalized in the unbound state. The unbound structures are docked by ZDOCK 

in order to generate a few thousand decoy interfaces. Potentials can be trained on their ability to 

distinguish orientations that are close to the native structure. However, when docking, model errors 

in the tertiary units can disguise the correct orientation from the similarity scores. An additional 

set of decoys was generated where tertiary models where perturbed and then dock [71]. This 

allowed potentials to be trained on more complicated sets. 

 

1.5 Fold Recognition and Function Mapping 

Most of the success in structure prediction has been using homologous structures from the PDB to 

guide structure predictions. With evidence showing that the single domain structures are 

completely covered by the PDB, substantial effort has been used to identify correct folds starting 

from sequence. Additionally with the realization that quaternary space is limited extensions have 
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been made for interface recognition. Once folds have been recognized this information can be used 

to predict the function of the protein based on similarity to proteins with known function. 

 

1.5.1 Fold Recognition and Meta Threading Servers 

Fold recognition generally refers to matching a query sequence to an experimental structure with 

the correct topology regardless of homology. Increasing the depth of sequence alignments began 

with the creation of profile-profile alignments. This incorporated conservational information of 

the query and resolved protein structures which improve the recognition of distantly related protein 

[72, 73]. Another approach is to use multiple sequence alignments to train Hidden Markov Models 

[74, 75]. Instead of static scoring systems, alignment, insertion and deletion probabilities are 

trained from individual profiles. Analogous to profile-profile alignment creating a database of 

HHM profiles and aligning them to query HHM’s improved fold recognition. Both of these use 

sequence conservation for alignment [76]. Another idea was presented to create structure profiles 

and features to improve alignment accuracy [77]. In addition to sequence conservation, programs 

like MUSTER incorporate predictions of secondary structure, solvent accessibility, 

hydrophobicity, and residue depth in the alignment. Predictions are compared to known structures 

for fold recognition [78]. Due to the importance of fold recognition many algorithms have been 

developed to address this problem. However amongst the best algorithm none has emerged that 

consistently and substantially outperforms the other methods. Often times different fold 

recognition algorithms provide complementary bits of information regarding the query sequences 

fold. LOMETS, a meta-threading server, incorporates 15 state of the art threading programs for 

fold recognition. The threading scores are normalized; consensus and ranking are used to identify 

distantly related folds [14]. 

 

1.5.2 Quaternary Threading 

A number of significant efforts have been made in recent years to develop bioinformatics based 

approaches to predict protein interactions [79-81]. Currently there are three classes of 

bioinformatics based approaches for identifying and modeling protein-protein interactions by 

sequence alignment: dimer threading, monomeric threading and oligomer mapping, and modeling 

the constituent chains followed by template interface docking [82]. 
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Dimer threading directly aligns the query sequences to the target complex which allows for 

interface information to be considered during the alignment, example programs are: 

MULTIPROSPECTOR [83] by Skolnick’s group, HOMBACOP by Kundrotas et. Al [84], the 

strategy used by Aloy et. al [85]., and COTH [86]. Monomeric threading and oligomer mapping 

starts with generating query alignments to the monomer library. Complexes are identified using a 

pre-generated lookup table where every protein chain constituent in an interaction is represented 

by a homologous structure in the monomer library. The recently developed programs SPRING and 

PrePPI are example of this protocol [87, 88]. The last approach uses monomer threading to identify 

homologs for each query sequence. The monomer representatives are compared to an interface 

library using structural alignment. The best orientation is determined by structural alignment 

scores and interface energy scores [89-91]. These different protocols are highlighted in the Figure 

1.1 below extracted from a recent review on quaternary threading [82].  

 

Each method has subtle differences that often can provide complementary information. The 

template docking approach uses structural alignments to improve threading depth. Structural 

alignments are generally more sensitive to similarity than sequence comparisons. Given highly 

accurate monomer structures, structural alignments are more likely to identify distant homologs. 

Monomer mapping is similar to the structural alignment approach accept each monomer is mapped 

to corresponding complex structures. This can reduces the number of structural alignments that 

are performed by two orders of magnitude. This approach allows for genome wide scale structure 

prediction, but errors in monomer threading may prevent the correct quaternary template appearing 

in the set of structures to preform structural alignment comparisons against. Finally, dimer 

threading benefits include: incorporating interface contact information into the alignment and in 

conditions where one of the query to template chain alignments are below threading detection 

levels, the homology of the second alignment can improve the recognition signal. The major 

drawback to the first two methods is if there is any error in ranking the correct template for the 

monomers the quaternary structure recognition part is guaranteed to fail. In all three methods, the 

top ranked monomers are used in the final model. It’s incorporated by structural alignment to the 

complex framework. This can improve coverage and tertiary level similarity, but comes at the cost 

of generating clashes and nonnative pairwise interface contacts. 
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Figure 1.1 Overview of three general approaches for template based identification of protein dimers [82]. 
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1.5.3 Function and Genome Wide Interaction Predictions 

Similar protein sequences and structures often share similar functions. This paradigm allows for 

bioinformatics based approaches to function prediction. Databases have been created that map 

experimental information regarding biological function. Structures can be screened against a 

database to identify possible ligand binding sites as well as other biological processes [92, 93]. 

Similarly this approach can be expanded to the prediction of protein interaction networks. Large 

scale experimental methods to elucidate these networks are limited to yeast-two hybrid and affinity 

purification with estimated error rates of up to 90% [94]. Genome wide structure prediction using 

the current PDB can reduce the error rate of genome interaction predictions [87, 88]. Furthermore 

databases such as DIP [95], BIND [96] and INTACT [97] contain experimentally validated 

information regarding protein interactions which can be used to improve prediction accuracy [87, 

98]. An additional source of information for prediction is using protein fusion events to predict 

interactions [94, 99, 100]. With the overall assumption that previously separated genes that 

function at the quaternary level provide an evolutionary benefit to be permanently connected. This 

connection may also preserve the original orientation between the two proteins, regardless it has 

been show it can improve prediction of protein interactions [99]. 

 

1.6 Tertiary Structure Prediction 

The prediction of structure from sequence is a fundamental problem in structural biology. Initially 

physical based force fields were incorporated into molecular dynamics simulations to attempt to 

predict protein structure starting from random coil. There has been a few cases of success, but the 

most often cited issue is the long simulations times required to complete a folding simulation [101]. 

More recently a super computer named ATON was built that was specifically designed for protein 

simulations which significantly improved simulation time [101]. This procedure has shown great 

promise for folding small domain proteins and uncovering folding paths, but is restricted to small 

proteins that fold relatively fast. Another approach is folding simulations of a reduced atomic 

model where only backbone heavy atoms and side chain centers of mass are used to represent the 

structure. Algorithms such as QUARK and ROSETTA have shown promising results uncovering 

the overall topology of a protein domain. Often the results are too low resolution for further study 

however they can distinguish independent domains from sequence allowing for partitioning and 
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conversion to fold recognition problems [102, 103]. Regarding experimentally useful models, 

comparative modeling which uses highly homologous structures from the PDB to guide folding 

using programs such as MODELLER can provide high resolution structures that are useful for 

drug ligand screening, when the sequence similarity is above 50% [15]. More often though these 

structures are not present, but structures with the same fold are present that can guide the folding 

simulation. The starting coordinates usually need to have substantial changes to create a high 

resolution model [104, 105]. This is where composite techniques come into play where PDB 

structures along with ab initio potentials and simulations can generate high resolution models [104-

108]. Here we present the composite algorithm I-TASSER as it’s the foundation of the TACOS 

Protein Complex Modeling Pipeline. 

 

1.6.1 I-TASSER: Composite Based Structure Prediction 

I-TASSER is a composite algorithm that combines secondary prediction, homology detection and 

threading algorithms, along with physical and statistical scores to drive the initial template model 

structure closer to the native structure; the algorithm and pipeline were derived from [47, 109, 

110]. The protocol for I-TASSER, in Figure 1.2, consists of four steps: threading and secondary 

structure prediction, replica exchange conformational sampling algorithm starting from the 

threading templates, clustering and averaging low energy replicas from the simulation, and finally 

full atom refinement. At the end there is a function annotation search using the modeled structure 

to predict function [104-106]. 
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Figure 1.2 I-TASSER pipeline for protein structure prediction [104]. 

The pipeline starts with a query sequence and uses the meta threading (fold recognition) algorithm 

LOMETS [14] to identify structures in the PDB that are similar to the structure of the query 

sequence. Additionally multiple sequence alignments and profiles are created to predict the 

secondary structure of the query sequence with PSIPRED [111, 112], while also identifying 

contacts through coevolution as additional restraints for the folding algorithm [113-115]. The 

template, secondary structure and contact restraints are converted into statistical potentials to guide 

the replica exchange sampling simulation. 

 

The initial template alignments provide starting positions and restraints for modeling, but need to 

undergo structural rearrangements to improve its similarity to the native structure. In order to 

improve protein structure modeling, two things are needed: an accurate scoring system and an 

efficient conformational search algorithm. The potential is created from a linear combination of 

physical potentials inherited from Touchstone2 and TASSER [47, 109, 110] and conservation and 

homology restraints identified by threading. The simulation reduces the nearest neighbor problem 

by representing each residue by only its Cα position and sidechain center of mass. Different 

conformations are evaluated by allowing local movements in the structure. If movements are too 

small the simulation takes too long to generate significant conformational changes, and if the 

movements are two large the moves are often rejected due to causing clashes or creating 

unreasonable conformations. I-TASSER circumvents this issue by transforming the simulation 
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from continuous to discrete space. The residue Cα positions are placed on a discrete grid, and a 

discrete set of local moves are generated that create protein like local structures that can efficiently 

sample large conformational changes. The hyperbolic replica exchange simulation [116] samples 

many conformations and outputs the trajectories at different time steps during the simulation. The 

next step involves selecting the trajectory that best matches the topology of the native structure. 

 

Monte Carlo simulations sample an ensemble of conformations that follows the Boltzmann 

Distribution. The folding simulations should converge and pool into the overall correct topology. 

This convergence is identified by clustering. In the I-TASSER protocols clustering is performed 

with SPICKER [117]. The algorithm clusters up to 15,000 structures based on RMSD. The largest 

5 clusters are further evaluated, for all trajectories within a cluster the structures are superimposed 

and averaged together in order to generate the consensus structure from the cluster. This average 

structure removes small perturbations which results in an overall structure that better represents 

the average. This structure often has an overall better topology, but the local structure is perturbed 

and often non protein like. A quick simulation is done to remove the irregular local structures. 

Furthermore the structure is still reduced and the rest of the atoms need to be added. The structures 

undergo full atom refinement where the full atom protein is built and the structure is refined using 

full atom energy functions with programs such as REMO and FG-MD [52, 118]. These programs 

often improve the structural quality and the hydrogen bonding network. 

 

1.7 Quaternary Structure Prediction 

Quaternary structure prediction is often referred to as a docking problem. Given two proteins 

known to interact, quaternary structure prediction tries to model the relative orientation and 

induced conformational changes of the two proteins. Ideally one would run a simulation that 

considered all these at once, but this is often beyond the capabilities of most computers. The 

problem is often broken into smaller steps: first a 6 dimensional rigid body search using the Fast 

Fourier Transform (FFT) is used, secondly reduced atom backbone models are used with small 

rigid body rotation and translation for conformations, and finally full atom simulations and with 

their corresponding potentials are ran. More recently, with the growth of the PDB models can be 

directly docked based on the orientation of homologous proteins. 
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1.7.1 Rigid and Soft Body FFT Based Docking  

The FFT based approach developed by Katchalsi-Katzir is often the preferred choice as it 

efficiently searches the 6D (rotational and translational) space by the FFT’s property of 

transforming a convolution problem into multiplication. Shape complementary and geometric 

fitting are important and often the primary features used in the low resolution search for 

recognizing correct interface [64, 66, 119]. Initially only shape complementary was the primary 

score for FFT. This property quickly checks all possible protein-protein orientations and ranks 

them based on the geometrical fit between the two surfaces. Many docking programs have been 

developed since then incorporating more detailed scoring systems MolFit [120], Hex [121], 

GRAMMX [122], FTdock [123], pydock [124], and ZDOCK considers shape complementarity, 

electrostatics and a pairwise atomic statistical potential [125]. Docking programs such as ZDOCK, 

improved on this method by incorporating a second more detailed scoring system on the structures 

generated post Fourier transform [126, 127]. Docking programs are generally successful when 

there is not much conformational change, less than one angstrom, due to binding [128, 129]. This 

deficiency prevents high accurate docking using models due to nonnative perturbations in the 

model that prevent the correct interface from being found [127]. To circumvent this small clashes 

“soft docking” are allowed during the docking [125, 128]. Moreover state of the art docking 

programs often occur in three stages: low resolution docking, re-ranking and refinement 

. 

1.7.2 Flexible Docking and Refinement 

The second stage of docking often starts from highly ranked models from FFT docking methods. 

They allow quick refinement of sidechain positions and backbone conformations [130, 131]. Many 

of the faster refinements only allow small changes in order to make a physically reasonable model, 

but rarely improve on the global technology [130, 131]. In order to make substantial improvements 

on the interface and orientation, algorithms that include backbone and sidechain flexibility are 

needed [132-136]. Rossetta Dock incorporates rotations and translations in the chains to improve 

the general orientation [137]. Backbone and sidechain moves are also considered during the Monte 

Carlo simulation. During the course of the simulation thousands of trajectories are stored and the 

top 200 are output for further clustering. The cluster centers of the top 200 models are chosen as 

the final structures. 
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1.7.3 Structural Alignment to Complex Homolog Frameworks 

This set of methods use templates to dock structures. Individual protein models can be built using 

general modeling prediction algorithms. Next, complex threading algorithms such as COTH or 

Multiprospector [83, 86] are used to identify homologous protein complexes. Two approaches can 

be used to dock the monomer models into the complex framework. First, general docking 

algorithms can accept two models and generate all feasible protein-protein orientations and the 

homologous pairwise restraint can be used to identify the correct orientation. Secondly, the models 

can be superposed using TM-align to the constituent proteins in the complex or the interface. More 

importantly the homolog similarity can provide confidences regarding their potential interaction 

and the orientation. 

 

1.8 Limitations of Current Methods and Proposed Research  

Most quaternary threading algorithm designs are computationally prohibitive for predicting 

genome wide interactions. Here I developed a computationally practical framework of using the 

PDB to predict and model protein interactions on the genome scale using the PDB. Additionally, 

I combined two state of the art dimer threading programs in order to improve template 

identification. Unlike tertiary structure, the interface library is far from complete which limits the 

types of interactions that can be predicted or modelled. Next I incorporated multidomain interfaces 

to bolster the types of quaternary structures that can be modeled. Finally, I use threading templates 

and domain knowledge from the PDB to accurately predict and model physically reasonable full 

length protein structures. 
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2. CHAPTER 2: Mapping Monomeric Threading to Protein-Protein 

Structure Prediction 

2.1 Introduction 

 

The number of possible protein-protein complexes scales in principle as the square of the number 

of monomer protein chains in genomes, with estimates of the possible number of distinct protein 

complexes in the order of millions [137]. Although the currently available high-throughput 

experimental methods have been employed to identify putative interaction protein pairs on 

proteome scales, the estimated error rates range from 41% to 90% [94]. These high-throughput 

methods do not provide structural information, i.e., where and how the proteins interact. Structural 

determination methods, such as X-ray and NMR techniques, could provide such information but 

are too costly and labor intensive to be applied on the proteome scale. 

 

To address these issues, many computational approaches have been proposed for predicting the 

quaternary structures of proteins, which can be categorized as template-based and template-free 

approaches [138]. In the template-based approaches as applied to dimers [83, 86, 89, 90, 139-141], 

the quaternary model is constructed by matching a pair of monomer target sequences to a library 

of related template protein complexes which have the structure experimentally solved. In the 

template-free approaches [123, 125, 135, 142-146], also known as protein-protein docking, the 

target protein complex structure is predicted by scoring a large set of protein-protein orientations 

which are generated by assembling known monomer structure models. 

 

Both methods have advantages and disadvantages. The template-free approaches can in principle 

treat any protein targets whose monomer structures are known. However, there is no guarantee of 

a high-quality structural prediction, particularly when bound structures undergo conformational 

changes from the unbound structures [128]. These usually involve side-chain readjustments and 

sometimes backbone rearrangements. Furthermore, the docking methods require the information 
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that the two proteins interact; this restriction is largely due to the limitations of the force fields 

used for evaluating the interaction energy [147]. 

 

Template-based (or homologous modeling) approaches generally have a higher accuracy than 

docking when homologous templates are available, but the alignment accuracy decreases sharply 

when the evolutionary relationship between target and template proteins becomes ambiguous, 

which generally corresponds to the scope of a target-template sequence identity <30%. Recently 

it was recognized that the structural space of protein-protein interfaces is highly degenerate [17, 

18], which implies that the template-based approach can in principle be used to deal with any 

protein. In practice, the identification of the analogous protein complex pairs is highly challenging 

because the majority of the neighboring structure pairs have no obvious evolutionary relationship. 

Thus, development of new approaches to detect distantly homologous protein complex pairs is 

essential. 

 

Partly toward this goal, we recently developed a method called COTH [86] which first threads 

both target sequences to a representative complex structure library. The monomer template 

structures identified by single-chain threading are then shifted to the dimeric framework that was 

identified by multiple-chain threading. The combination of the tertiary and quaternary libraries 

demonstrates a significant increase of the alignment coverage from the original complex structure 

templates, compared with other multiple-chain threading methods. However, the COTH procedure 

can be laborious since two template libraries (one for monomer and one for dimer) need to be 

maintained and updated. It is quite often that we found some interactions have been missed in the 

dimeric library even though we increased the sequence identity cutoff up to 90%. More 

importantly, the structural superposition can shift the complex structure to a wrong orientation 

especially when the structural similarity between the monomer structures in the two threading 

steps is low. 

 

In this work, we address these issues by developing a new single-chain based threading and 

mapping methods for complex structure prediction, called SPRING (single-chain based prediction 

of interactions and geometries). Since in most cases one chain structure is taken directly from the 

original oligomer structure in the PDB, the alignment loss from the monomer-to-dimer 
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superimposition is kept minimal. Second, the close match of the interface areas from the same 

oligomers helps improve the coverage and accuracy of interface contact predictions which aims to 

solve a major issue in previous multiple-threading approaches [83, 84, 86]. Third, since a one-step 

single-chain threading is conducted, only the monomer structure library is needed in SPRING. It 

is therefore faster than COTH and other threading approaches, and the library is easier to maintain 

and update. Meanwhile, a precalculated lookup table is exploited to quickly exclude most of the 

complex frameworks that have no homologous association to the binding sequences. This is 

particularly important for speeding up the genome-scale modeling of protein-protein interactions, 

since only a small subset of interactions need to be pursued after this filtering step. Moreover, the 

complex template coverage is significantly maximized since there is no sequence cutoff for 

constructing the library. To examine the efficiency and generality, we will carefully test the method 

in control with other state-of the-art template-based methods in large-scale benchmarks. The 

SPRING algorithm is freely through the zhanglabs webserver at 

http://zhanglab.ccmb.med.umich.edu/spring/. 

 

2.2 Materials and Methods 

 

2.2.1 SPRING Algorithm  

 

SPRING constructs the structure of protein complexes starting from two input chain sequences A 

and B (Figure 2.1). At first, a list of putative monomer templates (TA) for sequence A is identified 

from the monomeric template library using a threading approach, e.g., MUSTER [78], HHsearch 

[76], or both. The threading provides a template alignment and a Z-score (ZA) for the input 

sequence A. Here, the Z-score is defined as the difference between the raw alignment scores and 

the mean in the unit of variations, which has been widely used to assess the significance of the 

threading alignments, i.e., a higher Z-score means a higher significance and usually corresponds 

to a better quality of the alignment. The top template of the highest Z-score (TA1) will be used to 

construct a monomer model for chain A. 

 

Meanwhile, we thread the sequence of chain B through the monomeric structure library to identify 

another set of putative templates (TB) with associated Z-scores (ZB) (right column of Figure 2.1). 

Analogous to chain A, we derive a top-ranked monomer model for chain B using the template with 

http://zhanglab.ccmb.med.umich.edu/spring/
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the highest Z-score (TB1). 

 

 

 
Figure 2.1 Flowchart of SPRING pipeline. Target sequences A and B are first threaded against the monomer template 

library, which yields two lists of template TA¬ (black) and TB (gray). For chain A, we retrieve all binding partners 

PA (light gray) from the origin. 

To construct structure models of the complex, we now gather a set of template/partner frameworks 

by using the (top and lower-ranking) monomer templates of chain A (TA). Therefore we retrieve 

the corresponding oligomer file of each monomer template TA from the PDB. Then, all binding 

partners of the templates TA are collected from the oligomers (labeled as PA). These also include 

binding partners and their respective orientations as deposited by remark “350” of the PDB file. 

Template/partner frameworks can only be derived from monomer templates TA with at least one 

binding partner. 

 

Using the identified template/partner frameworks, we start by structurally aligning the top-ranked 

monomer model of chain A to all templates (TA), where the alignment is built on the subset of 

interface residues. Additionally, we align the to-ranked monomer model of chain B to all binding 

partner structures of chain A that were retrieved from the PDB oligomers (PA); the alignment is 
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based on the subset of interface residues. These two monomer-to-oligomer superimpositions yield 

a dimeric model, consisting of the reoriented top monomer models for chains A and B based on 

each of the oligomer frameworks. Here, we note that the tertiary structures of two components are 

both from the top threading template, although the oligomer frameworks can come from the lower 

rank threading templates. Based on our training results, using the top-rank monomer templates can 

generate on average better quality of complex models than using lower-rank monomer templates 

based on both local and interface scores. This is because the top monomer templates have generally 

a higher accuracy of alignments than lower-rank ones. Moreover, for reasonable frameworks the 

structures of component chains and the top monomer templates are often close, and the alignment 

loss from the superimpositions is minimal. Nevertheless, most of the top complex models by 

SPRING are built from the top oligomer frameworks. In these cases, the component models of the 

probe chain are taken directly from the oligomers, and no structural superimposition is needed. To 

improve the efficiency, we exclude template/partner frameworks if the corresponding binding 

partner is not homologous to any of the monomer templates (TB) identified for chain B. The 

homology can be quickly verified through our precalculated look-up table, which is essentially a 

one-to-one PDB ID map to associate every binding partner in the oligomers to its closest 

homologues monomer structure from our tertiary template library (middle column of Figure 2.1). 

The look-up table was pregenerated by an all-against-all PSI-BLAST search [26] of the PDB 

library, where the partner/homologue association with the lowest E-value was selected for each 

binding partner. The look-up table is particularly useful to increase the efficiency for genome-wide 

all-against-all modeling studies, since only a small subset (~1%) of protein pairs that can find 

putative template/partner frameworks is needed for the consequent model construction. 

 

The models constructed from monomer-to-oligomer mappings are evaluated by the SPRING-score 

which is a linear combination of three terms: 

 

SPRING-score = min(ZA,ZB) + w1*TM + w2*contact 

 

where the first term is the smaller Z-score of threading of the two target sequences; the second is 

the TM-score returned by TM-align [38] when aligning the top-ranked monomer model for B to 

the subset of interface residues of the selected binding partners of chain A (PA); the third counts 
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for a distance-specific interface contact potential, which was derived from 3897 non redundant 

dimer protein structures with a sequence identity <30% to each other [18]. It uses a formula similar 

as Zhou et al. but with the atomic distances taken from residues in separate chains [46], and w1 

=12.4 and w2 = -0.2 are the weights factors balancing the terms. We determine the weighting 

parameters through a grid search on a separate training set of 200 randomly selected protein 

complexes by maximizing the number of 'acceptable' models, where an acceptable model refers to 

the top-ranked models >30% of correctly predicted Cα-atom contacts in the interface. 

 

For heterodimer proteins, this process is repeated using B as probe to identify binding partners for 

the complex template identification and model construction. The models of the highest SPRING-

score in the two processes are finally selected as predicted models. For homodimer proteins, a 

single threading starting on one chain is sufficient due to the symmetry of the complex structures. 

 

2.2.2 Libraries of Protein Structure Templates.  

SPRING is based on monomer threading, and we constructed from the PDB a representative set 

of 43,571 monomeric protein structures, sharing a pairwise sequence identity of <70%. Obsolete 

structures and theoretical models were removed. For multiple-domain proteins, both individual 

domains and whole proteins are included in the library, which has been proven to increase the 

alignment accuracy of single domain proteins [78]. 

 

For benchmarking SPRING with other methods, we also constructed a set of non redundant 

dimeric complex structures that is needed by COTH and the naïve complex threader using 

MUSTER, HHsearch and PSI-BLAST. This library was derived from DOCKGROUND [148] with 

a filter of pairwise sequence identity <70%. In addition, irregular structures, transmembrane 

complexes, and complexes with alternate binding modes were removed. To rule out crystallization 

artifacts, complexes with <30 interface residues or with a buried surface area <250 Å2 were not 

included. It finally contains 7404 dimeric protein structure templates at the same date cutoff of the 

monomer library. 

 

2.2.3 Test Set of Protein-Protein Complexes.  

The evaluation of prediction performance was conducted using a set of 1838 non homologous 

protein-protein complexes from the PDB, including dimers derived from higher order oligomers, 
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similar to that used by Lu et al [83]. Each of the 3676 monomer structures from the dimers contain 

at least 40 interface residues with at least 30 interface residue-residue contacts, where a contact is 

defined as a pair of residues from different chains with at least one pair of side-chain heavy atoms 

within 4.5 Å. In addition, the dimers have a sequence identity <35% to each other (i.e., at most 

one chain in a dimer can have >35% sequence identity to any of the chains in another dimer so 

that homodimers are included). 

 

2.2.4 Measures of Dimer Model Quality.  

The global model qualities are evaluated using TM-score [34], the global complex RMSD, and the 

sequence-template alignment coverage. Local model qualities are measured using the fraction of 

native Cα-atom contacts (fnat) in the interface, the interface RMSD (I-RMSD), and the interface 

alignment coverage, where interface residues are defined as those with a heavy atom distance of 

<10 Å to any residue of the other atom. 

 

TM-score has been extensively used to assess the quality of monomeric protein structure 

predictions, because of its attribute to balance alignment accuracy and coverage. In order to 

calculate TM-score of dimeric models, we convert the dimer into an artificial monomer by 

connecting the C-terminal of the first chain with the N-terminal of the second and then run TM-

score program using the length of the query complex as normalization scale. This definition of 

complex TM-score is sensitive to the topology of individual chains and their relative orientation. 

A high complex TM-score indicated the correct modeling of both individual chain structures and 

their relative orientation [149]. 

 

2.3 Results 

 

2.3.1 Control of SPRING with Competing Threading Methods.  

SPRING derives complex structure by mapping monomer alignments as identified by single-chain 

threading algorithms, e.g., MUSTER [78] and HHsearch [76] (Figure 2.1). To examine the gain of 

the threading and mapping procedure over the traditional dimeric or monomeric threading 

procedures, we implement SPRING using the monomer alignments from MUSTER (called 

SPRING-M), in control with COTH (threading and superposition) and a naïve implementation of 

MUSTER (called NAIVE-M). In NAIVE-M, MUSTER is used to align every chain of the target 
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complex with that of known proteins in the complex template library. A template model is obtained 

if both chains from a template are aligned with the target. This procedure is identical to the strategy 

that was used by several authors in the former studies [83-85]. 

 

Figure 2.2 shows a comparison of the three methods on a set of 1838 interacting protein-protein 

sequence pairs, based on the global TM-score, the fraction of correctly predicted interface contacts 

(fnat), the interface RMSD, and the global RMSD, respectively. To rule out contamination from 

close homologous templates which are easy to identify by sequence comparisons, any templates 

which have a sequence identity >30% to target proteins in the testing set have been excluded from 

the template libraries. This filter is implemented in all the following threading calculations unless 

noted specifically. 

 

Overall, the number of successful predictions by SPRING-M is the highest among all methods in 

each of the TM-score ranges. The same is true for the fraction of interface Cα-atom contacts and 

the interface and global RMSD results. For instance, if we consider a TM-score threshold of >0.5 

SPRING-M, COTH, and NAIVE-M generated valid dimeric models for 1029 (56%), 767 (42%) 

and 568 (31%) of the 1838 protein targets, respectively. Similarly, if we count for the number of 

cases which have an I-RMSD < 5 Å and with at least 50% interface residues aligned, the number 

for SPRING-M, COTH, and NAIVE-M is 638 (35%), 381 (21%), and 359 (20%), respectively. 
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Figure 2.2 Cumulative fraction of TM-score, native contacts, and interface and global RMSD at different threshold 

cutoffs, for models on 1838 proteins predicted by SPRING-M, SPRING-H, SPRING-C, COTH, and NAÏVE-M, 

respectively. The shown data are from the best out of five top-ranked models for each protein target. 

To further examine the detailed difference between the algorithms, in Figure 2.3A, B we present a 

head-to-head comparison of dimeric models predicted by SPRING-M and COTH, with regard to 

the TM-score and contact accuracy (fnat). There are 1023 cases where SPRING-M generates 

models of a higher TM-score than COTH, where COTH does so in 539 cases. Overall, the average 

TM-score of the predicted SPRING-M models is 13% higher that than of COTH. For interface 

structure modeling, SPRING-M models preserve 31% of the native contacts, whereas in COTH it 

does so in only 17% of cases (see Figure 2.3B). Since both methods used the top-ranked 

monomeric models to form the dimer models, their global alignment coverage is close (~88%). 

Thus, this TM-score increase is purely due to the identification of better dimer templates from the 

SPRING-M threading mapping, which results in more precise chain orientations. This is further 

manifested by the modeling quality at the interface structures. If we defined a high-quality hit as 

that with an I-RMSD < 2.5 Å on >90% of interface residues aligned, SPRING-M produced 162 
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hits compared to 89 by COTH, which corresponds to an increase of 82%. 

 

In Figure 2.3C, D we present a similar head-to-head comparison of SPRING-M with NAIVE-M, 

where the TM-scores of the dimeric models predicted by SPRING-M are on average 40% higher 

than that of NAIVE-M. The major reason for the TM-score increase in SPRING-M is due to the 

boost of template libraries because SPRING-M has the monomer structures built from the tertiary 

template library (43,571 entries) which is much larger than the quaternary template library (7404 

entries), while the latter was the only source used for NAIVE-M for building the complex models. 

For interface structure, the NAIVE-M alignments conserve 17% of native contacts (see Figure 

2.3D), which is similar to that of COTH but 45% lower than that of SPRING-M. Here, although 

the individual COTH models are on average of higher TM-score, they do not contain more correct 

interface contacts than NAIVE-M. The poor performance of COTH relative to SPRING-M is 

mainly due to the alignment strategy that COTH employs to combine the monomers of the 

identified dimeric template. Since COTH uses a full-length global superposition strategy, it focuses 

less on the interface conservation, rather than the global topology of the complexes. In contrast, 

SPRING-M maps the monomer alignment using a subset of interface residues, which guarantee a 

better match in the interface regions. Meanwhile, many of the top alignments have the partner 

chain directly coming from the original oligomer entry which helps enhance the shape match of 

the interface. Third, the quaternary chain orientation of the complexes as identified by SPRING-

M mapping has a better quality than that by monomeric or dimeric threading, which further 

contributes to the interface contacts. 
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Figure 2.3 Head-to-head comparison of 1838 SPRING-M models with that by the control methods. The left column 

shows TM-score of the best in top-five complex models, and the right column is the fraction of the correctly predicted 

interface contacts. (A, B) SPRING-M vs NAÏVE-M. 

The observed performance differences of SPRING-M from COTH and NAIVE-M with regard to 

the TM-scores are statistically significant, which have p-values from the Wilcoxon signed-rank 

test of 10-42 and 10-161, respectively. In Table 2.1, we summarize the overall model qualities for 

each method, according to the average TM-score, the fraction of native Cα-atom contacts, the 

number of hits with an I-RMS <2.5 Å, and the global alignment coverage, respectively. The results 

are shown from both the first model and the best in top five models, where SPRING-M clearly 

outperforms the control methods in all the criterions. 

 

Methods TM-scorea fnatb hitsc Coveraged 

NAÏVE-Pe 0.25/0.26 0.10/0.11 42/47 45/47% 

NAÏVE-Hf 0.35/0.37 0.15/0.17 80/93 56/58% 

NAÏVE-Mg 0.38/0.40 0.15/0.17 60/67 87/88% 

COTH 0.48/0.50 0.15/0.17 70/89 88/88% 

SPRING-M 0.54/0.56 0.26/0.31 133/162 88/88% 

SPRING-H 0.55/0.57 0.29/0.33 211/246 81/81% 

SPRING-C 0.56/0.58 0.29/0.34 187/219 86/83% 
Table 2.1 aAverage TM-score of predicted complex models. bAverage fraction of conserved interface native contacts. 
cNumber of targets with model of I-RMSD <2.5 Å and >90% interface covered. dAverage fraction of aligned complex 

residues. eNAÏVE implementation of PSI-BLAST. fNAÏVE implementation of HHsearch. gNAÏVE implementation 

of MUSTER. 
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2.3.2 Illustrative Examples of Dimeric Threading. 

To further analyze the strength and weakness of SPRING-M in comparison with the other methods, 

we dissect in detail several typical examples. Figure 2.4 presents the model predictions for the 1-

Cys peroxiredoxin complex (PDB ID: 1XCC), which is a typical homodimer complex. First, 

NAIVE-M identified a template from the glutathione peroxidase-5 (PDB ID: 2P5Q) with a 

sequence identity of 11% to the target. The predicted model has a TM-score = 0.37 and an I-RMSD 

= 12 Å, covering 64% of interface residues. The model predicted by COTH uses the same complex 

(PDB ID: 2P5Q) as the global template. However, COTH derives both monomer models from the 

peroxiredoxin-4 protein (PDB ID: 2PN8). The combination of the monomer templates on the dimer 

framework increases the TM-score from 0.37 to 0.52, which has an I-RMSD of 7.1 A to the native 

crystal structure complex. In total, it has 376 residues aligned, which are much higher than that in 

the NAIVE-M alignment. 

 

Finally, SPRING-M derives the orientation based on the single-chain MUSTER threading, which 

retrieves the dimer template from tryparedoxin (PDB ID: 1UUL). The individual monomers of 

this dimer template are structurally similar (TM-score = 0.67) to the monomers of the template 

(PDB ID: 2P5Q) as identified by COTH and NAIVE-M, but the chain orientation in 1UUL is much 

closer to the native than that in 2P5Q. The closer orientation of the framework allows SPRING-M 

to generate a dimer model of higher quality after the mapping of monomer structures (see Figure 

2.4). 

 

 

 
Figure 2.4 Predicted dimer models (dark color) of NAÏVE-M, COTH, and SPRING-M for target protein superposed 

with native structure of the 1-Cys peroxiredoxin complex (light color, PDB ID: 1XCC). The values below each 

superposition are TM-score, I-RMSD, and fraction of aligned interface residues. 
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An interesting question is why 1UUL was only successfully identified by SPRING-M but no other 

methods since both COTH and NAIVE-M use MUSTER for monomer threading. A closer analysis 

showed that this template is not included in the non redundant dimer structural library since the 

complex structure contains a single decamer and thereby multiple alternate binding modes for the 

homologue chain pairs. Since the other two algorithms did not select particular binding modes 

from a set of alternatives, none of the putative orientations could be detected. As an essential 

advantage, however, SPRING-M considers all alternative binding modes from all complexes of 

the oligomer structure, since it starts from monomer threading with the composite SPRING-score 

selecting the most suitable pair. In this example, although all monomer templates have a low 

sequence identity to the target (<30%), the SPRING-score is high (27.5), which gives us a high 

confidence on the prediction. The overall TM-score of the mapped dimer model is 0.75 with an I-

RMSD of 3.0 Å. Again, the fraction of aligned interface residues of both SPRING-M and COTH 

models is the same (= 83%), where the improvement of SPRING-M is on the choice of the better 

template framework and the closer mapping of monomer structures in the individual domains. 

 

Figure 2.5 presents another example from the putative kinase complex (PDB ID: 2AN1, chains A 

and D). In this example, the best template (PDB ID: 1YT5) is included in the dimeric structural 

library. But the oligomer complex includes 8 biomolecules based on 4 homologues chains; these 

correspond to 48 dimeric alternative binding modes. The COTH library can chose only one binding 

mode from the dimeric pair of chains A and D that has the lowest solvent free energy (-183 

kcal/mol) as defined in the PDB; this template results in an incorrect orientation for this target 

(fnat = 0.09 and I-RMD = 14.2 Å), although the individual monomer models are similar to native 

(TM-scores > 0.77). 
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Figure 2.5 Complex models (dark color) are superposed with the native crystal structure of putative kinase complex 

(light color, PDB ID: 2ANI). (A) COTH and (B) SPRING-M. 

In contrast, since SPRING-M retrieves partners from original oligomer complex structure, it 

naturally considers all 48 putative binding modes in the look-up table. Despite the slightly higher 

solvent free energy (-139 kcal/mol), the complex of biomolecules 3 and 5 with chains A and B was 

selected by SPRING-M as the most suitable framework, since the TM-score from TM-align 

superposition (0.82) and the contact potential (-41) are both better than all other partnerships (TM-

score and contact potential values for the A/D pair template are 0.44 and -22, respectively). The 

choice of this A/B template results in a complex model with much better quality (fnat = 0.70 and 

I-RMSD = 2.6 Å) than that by COTH (see Figure 2.5). Meanwhile, since only one chain was 

required for other proteins (instead of both chains in COTH) to be superimposed on the framework, 

the interface shape match is another contribution to the quality of the interface structures of the 

SPRING-M models in this example. 

 

2.3.3 Performance of SPRING Using Different Monomeric Threading Algorithms.  

In the previous sections, we compared SPRING-M, COTH, and NAIVE-M with all three 

algorithms based on MUSTER to ensure a fair comparison of different template identification and 

complex constructing strategies. However, neither SPRING mapping nor the SPRING-score is 

restricted to specific monomer threading algorithms. An interesting question is whether and how 

the SPRING pipeline benefits from choosing different target-template alignment algorithms. Here 

we test the performance of SPRING using another threading program, HHsearch [76] (SPRING-

H). While MUSTER generates the target-template alignment based on a composite sequence and 
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structural profiles, HHsearch uses the hidden Markov models. They can have significantly 

different results on template selection and target-template alignment for specific cases, although 

the overall performance in the tertiary template identification was shown comparable in previous 

benchmark tests [14]. 

 

Based on the data of the 1838 protein complexes, we found that SPRING-H identifies on average 

better quality quaternary templates than that by SPRING-M. For instance, if we consider a TM-

score threshold > 0.5, SPRING-H and SPRING-M generated valid dimeric models for 1082 (59%) 

and 1029 (56%) protein targets, respectively, after excluding homologous templates (see Figure 

2.2). Similar conclusion is obtained, regarding the average TM-score, contact accuracy, interface, 

and global RMSDs. In particular, if we count the number of correct models with an I_RMSD <2.5 

Å and >90% interface coverage, SPRING-H has about 1.5 times more hits than SPRING-M (see 

Table 2.1). 

 

This difference is quite striking since MUSTER and HHsearch alignments have about the same 

TM-score on the tertiary template recognitions (i.e., <TM-score> = 0.57 for both alignments in 

our test). A detail analysis showed that the alignment coverage of the MUSTER alignments is ~8% 

higher than that of HHsearch. These extra residues of alignments have number of acceptable 

models (TM-score >0.5) increases from 1082 (59%) in SPRING-H to 1115 (61%) in SPRING-C. 

In Figure 2.6C, D we also present a head-to-head comparison of SPRING-M with SPRING-C, 

where the TM-scores of dimeric models predicted by SPRING-C are on average 4% higher than 

that of SPRING-M. Considering the contact accuracy, SPRING-M preserves 31% of native 

contacts (see Figure 2.6D) compared to 34% by SPRING-C. The overall results of the comparisons 

are summarized in Table 2.1. These data demonstrate that a complementary alignment from 

different threading algorithms can further improve the yields of SPRING. 
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Figure 2.6 Head-to-head comparison of the SPRING models using different monomeric threading methods of 1737 

test proteins. The left column shows TM-score of the best in top-five complex models, and the right column is the 

fraction of the correctly predicted interface contacts. (A,B) SPRING-C vs SPRING-H and (C,D) SPRING-C vs 

SPRING-M. 

2.3.4 Specificity of SPRING Predictions.  

The confidence of the SPRING method is assessed by the SPRING-score, which is a combination 

of threading Z-score, structural mapping TM-score, and the interface contact potential (see eq 1). 

In this section, we examine whether the SPRING-score is able to distinguish correct from incorrect 

SPRING predictions, which is important in practical applications since confidence scores of 

predictions essentially decide how the models should be used by biologist users. We use SPRING-

C for the illustration. 

 

Figure 2.7 presents TM-score, fnat, and interface and global RMSDs of the predicted models to 

the native complexes in different SPRING-score interval. Considering the first models for the 1838 

cases, SPRING-C made 987 (54%) predictions with a SPRING-score > 13. In 774 (78%), 579 

(59%), 601 (61%), and 519 (53%) cases, the predicted models have a TM-score >0.5, a fnat >0.5, 

and interface and global RMSDs < 5A (see the dark regions in Figure 2.7). Apparently, when 

SPRING-score is higher, there is a higher fraction of protein targets that have models with a better 

quality and vice versa. For example, when considering TM-score >0.5 as a threshold, the fraction 

of successful modeling is 60, 80, and 88% for the targets in the SPRING-score interval of [13, 15], 
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[15, 20], and >20, respectively. If we use a threshold of SPRING-score >13 to predict the correct 

template alignments, the false-positive and false-negative rates for TM-score >0.5 are 0.22 and 

0.27, respectively. A similar tendency was also seen when using other criterions (see Figure 2.7.). 

 

 
Figure 2.7 Fraction of predicted models above and below specific quality thresholds within a given SPRING-score 

interval for the top-ranked models. The depicted quality measures are TM-score, fraction of native interface contacts, 

interface and global RMSD. Models with <50% of aligned residues are included in the RMSD category > 10 Å. 

Nevertheless, there is a considerable fraction of proteins which have low specificity, i.e., the 

proteins that have a high-scoring prediction but with poor model qualities when compared to the 

native or vice versa. For instance, we identified overall 53 structures which have a SPRING-

score >20 but with a TM-score <0.5. In the majority of these cases, we found that SPRING ranks 

the templates of alternative binding modes as the highest score templates. Incorporation of specific 

binding affinity energy terms, such as the binding predictions by BSpred [86], can be a possible 

solution to further improve the specificity of SPRING. 

 

2.3.5 Comparison of SPRING with Other Conventional Threading Strategies.  

The majority of above SPRING benchmark data are controlled with other internal algorithms of 
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COTH [86] and MUSTER [78]. To have a general control with other external threading algorithms, 

we implement two additional procedures of the naïve extension of PSI-BLAST (NAIVE-P) and 

HHsearch (NAIVE-H) for complex modeling. Following the traditional homology-based 

multimeric threading strategy [83-85], these procedures first match the monomer chains through 

the dimer template library by PSI-BLAST or HHsearch. If the two target chains hit the monomers 

from the same complex template, the aligned regions isolated form the template constitute the 

complex models. 

 

As shown in Table 2.1, SPRING significantly outperforms NAIVE-P and NAIVE-H, in terms of 

global and local quality of the models. For example, the TM-score and the number of native 

contacts in the first model of SPRING-C is 124 and 190% higher than that of NAIVE-P and 60 

and 93% higher than that of NAIVE-H. Among the naïve extensions of the monomer threading 

algorithms, NAIVE-M has a slightly higher TM-score than NAIVE-H due to the higher alignment 

coverage but with a lower number of hits considering the I-RMSD cutoffs. Both algorithms have 

a significantly better model quality than NAIVE-P, which stems from the improved sensitivity of 

profile-profile alignments by MUSTER and HHsearch on monomer threading over the sequence-

profile alignment by PSI-BLAST. 

 

2.3.6 Control of SPRING with Rigid-Body Docking Algorithms. 

To have a control of SPRING with the rigid-body docking methods [123, 125, 135, 142-146], we 

implement SPRING-H on the dimer complexes of the protein docking benchmark set [70] 3.0, 

which have both complex and unbound monomer structures solved in the PDB. Since SPRING 

has often partial structure aligned, we implement another version of SPRING-UB which 

superimposes the unbound monomer structures to the SPRING-H models after threading. 

 

In Figure 2.8, we present the modeling results of SPRING-H and SPRING-UB in terms of the 

number of targets with an I-RMSD < 5 Å in the top-five models. As expected, the SPRING 

algorithm strongly depends on the level of filters for excluding homologous templates. At the 

sequence identity cutoffs of 30, 50 and 70%, SPRING-H generated models with I-RMSD <5 Å for 

16, 23, and 28 targets, respectively. SPRING-UB has a slightly better result (with 17, 24, and 31 

targets, respectively) due to the better model of the monomer structures. 
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As a control, two ZDOCK programs (V2.32 and V3.02) are implemented, which represents one of 

the best rigid-body algorithms according to the CAPRI experiments [150]. While both ZDOCK 

programs use the fast Fourier transformation technique to sample the conformation space of 

docking, ZDOCK V3.02 incorporates a new statistical pairwise potential to improve modeling 

selections [61]. ZDOCK V2.32 generates models of I-RMSD <5 Å for 11 targets, which is lower 

than both SPRING-H and SPRING-UB. However, the new pairwise potential significantly 

improves the ZDOCK V3.02 program with models of I_RMSD <5 Å for 26 targets, where 

SPRING could produce a similar number of correct models only if the homologue filter cutoff 

increases up to 50-70%. 

 

In the right column of Figure 2.8, we also show the results of a hybrid modeling which has two 

models selected from SPRING-UB and three from ZDOCK V3.02. This combined approach 

outperformed all the four individual methods at different sequence identity thresholds (30, 50, and 

70%) with correct models in the top five for 32, 36, and 40 targets, respectively. The results 

illustrate that the approaches of SPRING and ZDOCK are complementary to each other and a 

combination can lead to improved prediction accuracy. 
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Figure 2.8 Comparison of SPRING and ZDOCK models at different target-template sequence similarity thresholds 

(30, 50, and 70%) on 77 heterodimeric protein complexes. The number of correct prediction, i.e., with I-RMSD < 5 

Å, is shown for SPRING-H, SPRING-UB, ZDOCK (V2.32 and V3.02) and a combination of SPRING-UB and 

ZDOCK V3.02. 

2.4 Conclusion 

 

We presented SPRING, a new method to identify protein complex structural templates by mapping 

single-chain-based threading alignments with complex frameworks. Large-scale benchmark 

testing was performed in control with a recently developed cothreading method COTH [86] and 

the naïve extension of three monomer threading algorithms (MUSTER, HHsearch and PSI-

BLAST), where the latter strategy is identical to that used by other authors in former template 

identification studies [84-86]. 

 

Based on a large test set of 1838 non homologous protein complexes, we showed that SPRING 

can produce models in the top five for 1115 (61%) targets with a TM-score >0.5, after all 

homologous template with a sequence identity >30% are excluded. The average TM-score for all 

targets is 0.58 with 34% of native interface contacts correctly predicted. In our recent studies, we 

have demonstrated that a TM-score >0.5 is statistically significant, which corresponds to a model 

of the correct fold in tertiary structure prediction [37] and in quaternary structure comparisons 

[18]. These data demonstrate that SPRING has the ability to generate reasonable correct complex 
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models for more than half of non homologous targets. 

 

On the same benchmark protein set with the same homology filter, the TM-score of the SPRING 

models is 16, 45, 57, and 123% higher than that by COTH, MUSTER, HHsearch, and PSI-BLAST, 

respectively. The differences are statistically and all with p-values <10-42 in the Wilcoxon signed-

rank test. Considering the fraction of correctly predicted interface contacts, the SPRING models 

preserve at least twice as many native contacts compared to the competing methods. The 

corresponding p-values of the Wilcoxon signed-rank test are below 10-06 in all the comparisons. 

The number of targets with high quality models (i.e., with an I-RMSD <2.5 Å and >90% of 

interface residues aligned) was 219 in SPRING, compared to 89/67/93/47 in the competing 

methods, respectively. 

 

Compare to COTH, a method that is conceptually closest to SPRING among the control methods, 

the major advantage of SPRING is the employment of the monomer-to-oligomer mapping which 

allows the use of the entire PDB library for complex frame derivation, while COTH exploits only 

a subset of complex structures at certain sequence identity cutoff which renders a loss of template 

frameworks; in particular the different binding modes from same monomer sequences (see the 

example in Figure 2.5). Such loss cannot be recovered by improving the scoring function of 

ranking.  

 

We also control SPRING with the rigid-body docking algorithms on the docking benchmark 

databases [70]. As expected, the relative performance of algorithms strongly relies on the 

thresholds that are used to filter out homologous templates. However, a combination of the two 

approaches outperforms individual ones at all homologous cutoffs, which demonstrates the 

complementarities of the algorithms. Thus, a combination of both threading and rigid-body 

docking methods should represent a promising and reliable approach to the genome-wide structure 

modeling, where various targets with different levels of homology and difficulty need to be 

modeled. 

 

For the evaluation of model qualities, we illustrated that there is a strong correlation between 

SPRING-score and the quality of the predicted models. If we consider a cutoff of good quality 
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models of TM-score >0.5, the false-positive and false-negative rates for a SPRING-score >13 are 

0.22 and 0.27, respectively. These data not only underline the high specificity of the SPRING 

predictions but also highlight the limitation of current threading-based approaches, since SPRING 

does not have high confidence predictions in nearly 50% of testing cases. This is partly due to the 

limited availability of analogous template structures since all homologous templates with a 

sequence identity >30% have been excluded in the test. Nevertheless, considering the large number 

of possible protein-protein interactions in genomes, high accuracy predictions for even less than 

half of all interactions would yield highly valuable new insights, not saying that a higher successful 

rate should not be possible if homologous templates are included. 

 

As a threading-based modeling approach, SPRING only provides partial structures on the target 

sequences, with C-alpha structural models derived from complex templates. The full length atomic 

structural models need to be generated using separate assembly and refinement procedures, such 

as TACOS (http://zhanglab.ccmb.med.umich.edu/TACOS/). Moreover, in the presented version, 

SPRING only considers pairwise protein sequences known to interact. The extension of the 

method to the high-order complex prediction is straightforward since no additional template library 

and monomer complex lookup table are needed. We are working on addressing these issues and 

plan to apply the SPRING mapping technique to the construction of genome-wide structural 

networks. 

  

http://zhanglab.ccmb.med.umich.edu/TACOS/
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3. CHAPTER 3. Improving Quaternary Homology Based Structure 

Prediction by Inclusion of Intramolecular and Intermolecular Domain-

Domain Interfaces 

3.1 Introduction 

Protein structure prediction has shifted from a physics based problem to a fold recognition problem 

where new sequences are matched to structures in the Protein Data Bank (PDB) in order to guide 

modeling [13, 14, 75]. For single domain proteins, the library is nearly complete and theoretically 

any domain can be folded using homology based approaches [2]. Modeling quaternary structures 

is analogous to using known homologs to model the structure of a single protein chain; identifying 

homologous structures at the quaternary level, interlogs, can be used to model and predict protein 

quaternary structure [151, 152]. Quaternary structures can be confidently modeled when a template 

is provided, but unlike the single domain library the quaternary library is not complete.  

 

Though the number of interactions stored in the PDB is growing, and a confident template can 

often be identified for all queries [16]; the library of protein interactions is far from complete [18]. 

Due to the fact that proteins often associate in multiple orientations [153, 154] a confident template 

does not always align with finding the correct orientation. It has been hypothesized that there are 

a limited number of protein interface types and that it will take another twenty five years before 

the protein interface library is near completion [18]. Fortunately, it may be possible to extract more 

structural information from the PDB than is currently being utilized, since the interface between 

domains within a protein have some similarity between protein interfaces [6, 99, 100]. 

 

Its hypothesized that multidomain protein chains mainly arose from a series of gene fusions [155]. 

There is evidence that proteins that interact in one genome may be fused together in others; this 

fusion can provide an evolutionary benefit if the function occurs at the quaternary level, and this 

information can be used to confidently predict protein interactions [99]. Here domain-domain 

interactions are searched to observe for preservation of quaternary interface. Figure 3.1 provides 
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an overview of the methodology. Using the combined information of domain and protein interfaces 

can further extend the prediction capabilities of template based modeling of protein quaternary 

structure. Furthermore, the effectiveness of using the protein interaction library to orient the 

domains within a protein chain is also investigated. In this study we compare monomer and 

complex threading along with their respective libraries to evaluate their independent and combined 

potential for quaternary assembly and function prediction. 

 

Figure 3.1 Incorporation of domain-domain template structures into the protein dimer library. Protein dimers 

homologous to the query sequence pair are searched for in the dimer library. The library is incomplete and often no 

information is present. By additionally searching through the monomeric multidomain library the domain orientations 

can be used as homologous templates for the query sequences. 

 

3.2 Methods 

3.2.1 Evaluation 

Evaluating the global similarity of a protein model to the native structure is normally sufficient, 

but for protein interactions the quality of the interface is also important. The critical assessment of 

protein interactions (CAPRI) is a blind competition to assess the state of the art methods for 

predicting the structures of protein-protein interactions [40]. One of the CAPRI scores used for 

identifying the correct orientation between model and native is the fraction of native contacts 

(FNAT). The FNAT are the percentage of correctly predicted Cα-Cα interface contacts contained 

in the model within 8 Angstroms. An interface is considered similar if the model to native 

interfaces share at least 30% FNAT. The FNAT threshold is used here to consider if a template 

model correctly identifies the query interface. For monomer similarity the TM-score is used. TM-
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score is used to compare global similarity between a model and native structure; the similarity 

score ranges from 0 to 1, with a value of 0.5 or greater being considered significant [34, 37]. 

 

3.2.2 Databases and Datasets 

The domain interface benchmark was generated by creating a non-redundant set from over one 

hundred thousand monomer chains contained in the PDB. The structures were ordered by length 

and then filtered by a 70% sequence identity threshold. The protein chains were checked for 

multiple domains using the domain parser algorithm [11]. Each pair of domains were required to 

have at least 20 Cα interface contacts within 8 Å. Additionally, no discontinuous domains were 

allowed in the benchmark set. This resulted in 8942 chains containing 11838 domain pairs. 

 

The complex library was created by extracting all experimentally determined complexes from the 

PDB [1]. All alternative binding modes of complexes were obtained from the PDB, and complexes 

with more than two chains were split into all possible dimeric combinations of protein chains. 

Then they were filtered by interface and monomer similarity. A new dimer is excluded from Dimer 

Library if it has at least 70% sequence identity and a TM-score similarity greater than 0.7 to a 

structure already in the library. This resulted in 29,454 dimer complexes. For identifying useful 

multidomain proteins as templates, the full monomeric PDB Library of over one hundred thousand 

chains is used. 

 

3.2.3 Monomer and Protein Complex Fold Recognition 

Monomer threading was preformed using the HHsearch algorithm [76] which is currently a 

preliminary step for quaternary fold recognition using SPIRNG; SPRING maps monomer 

alignment to protein complexes using a pre-calculated lookup table [88]. The lookup table contains 

listings of monomer structures that are similar to protein constituents in protein complexes. When 

the first chain is matched to a protein complex, a list of binding partners in the PDB file is obtained. 

The homologs identified from the second chain are quickly matched to the binding partners using 

the lookup table. A complex template that is found to be similar to both groups of homologs 

representing query chain A and B respectively, pass the first filter. The top ranked monomers for 

both sequences are structurally aligned to the complex frameworks and the template model is 

further evaluated by a statistical energy potential. The ranking of structures is evaluated by the 
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SPRING score, which is a linear combination of the HHsearch E-value, structural similarity from 

the docking of monomers to the complex framework and the interface statistical energy. 

 

3.2.4 Identifying Protein Interaction Templates from Multidomain Protein Chains 

Given two sequences, each are independently run through the monomer library using HHsearch. 

The protocol identifies single chains that are identified by both query sequences independently. 

When the query sequences align to the same set of residues in the template, preference is given to 

the query template alignment with the lower E-value. Multidomain templates identified with 

overlapping residues covering more than twenty percent of both alignments are realigned. The 

alignment with a higher similarity score blocks those residues from being considered from the 

alignment of the second chain. The realignment consists of structural alignments of the initial 

template model from the multidomain structure and the top ranked monomer template. These two 

structures are docked to the remaining region of the multidomain protein chain and the highest 

scoring alignment based on TM-score is retained. If neither has a TM-score above 0.5 the structure 

is removed from the confident hit list. 

 

3.3 Results 

3.3.1 Assessment and Improvement of Protein Dimer Library by Inclusion of Multidomain 

Protein Chains 

Two approaches are generally used to evaluate the completeness of the PDB library. The first 

involves observing trends in the PDB and looking at rates of new information being added to the 

library; and the latter removes a set of structures from the library and looks for homologs using 

structural alignment below a sequence identity threshold of 30%. The density of the Dimer Library 

was evaluated using the latter approach, SPRING [88] and structural alignment with TM-align 

[38] was run on all protein complexes to evaluate the current completeness and the ability of 

threading to properly capture the information in the PDB. Table 3.1, shows the percentage of 

correctly identified templates at different sequence identity thresholds: 70%, 50% and 30%. An 

FNAT of at least 30% is generally considered to indicate a matching interfaces between two 

complex structures [156, 157]. Benchmark settings consist of excluding matching structures above 

a certain sequence identity threshold. At the 30% threshold SPRING identified confident templates 

for 72% of the complexes. There are often several binding modes that can be confidently predicted 
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given a pair of sequences [158]; however in this test only 39.4% of the target hits contained 

information regarding the orientation of the target complex. The current information identification 

gap between identifying the correct template with threading and its presence in the library was 

8.7% under benchmark settings. The sparsity of the heterodimers is highlighted in Table 3.1. 

Regardless of orientation less than half are confidently identified at a high homology threshold of 

70% sequence identity. Using the benchmark setting only 15.5% have confident hits and 6.7% of 

the targets have homologs with correct orientation. The difficulty in identifying heterodimers is 

due to the structural distribution of information in the PDB. 

Identification Method 70% Seq ID Cutoff 50% Seq ID Cutoff 30% Seq ID Cutoff 

Structure Alignment Hit 64.9% 61.2% 48.7% 

SPRING Hit 58.5% 53.7% 39.4% 

Multidomain Hit 6.03% 5.9% 5.6% 

SPRING and Multidomain Hit 59.3% 54.5% 41.1% 

SPRING Predicted Dimer Hit 85.4% 82.5% 72.6% 

SPRING Predicted Heterodimer Hit 46.3% 36.6% 15.5% 

Table 3.1 Percentage of Dimer Library that has homologs identified by structure and sequence alignment matches 

below sequence identity thresholds of 70%, 50% and 30%. Structure Alignment uses TM-align to search the PDB. 

SPRING and Multidomain Hit uses threading through the Dimer Library and Multidomain Library respectively. The 

predicted hits have confident sequence alignment matches that may also preserve orientation to the target.  

The current PDB is dominated by homodimers and structures that have diverged from them. 

Protein dimeric complexes are often grouped into two structural classes homodimers and 

heterodimers based on sequence and/or structural similarity of the interacting chains. Here the 

structural classes are determined by TM-align [38], if there is structural similarity between units 

they are classified as structural homodimers. Homodimer are interacting chains sharing high 

sequence and structural similarity. A complex whose components have dissimilar sequences but 

highly similar topologies are often classified as heterodimers, but they can often be modelled by 

homodimers due to their divergence from an ancestral homodimer. The term heterodimer here 

refers to structures whose interacting constituents are structurally distinct; they are often the most 

interesting and difficult cases to model. Only 9.5% of the PDB falls into this class. 11,838 pairs of 

interacting domains within 8,942 single chain multidomain proteins were also classified into 

homodimers and heterodimers. Unlike the dimer library, intramolecular domain-domain 

interactions are dominated by heterodimers which make up 73% of domain-domain interactions. 

The structural similarity between domain-domain interfaces and protein-protein interfaces were 
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then combined to test for improvement in predicting the orientations of protein-protein 

interactions. 

 

Protein complexes were mapped to multidomain structures using HHsearch. Each alignment 

search requires each constituent protein to confidently align to the multidomain protein structure 

at different locations with a strict E-value threshold of 0.01. Under benchmark settings, 1658 out 

of 29454 complex structures were matched to multidomain structures that preserved the orientation 

and structure of the constituent chains. SPRING threading properly identified 11,603 complexes. 

The combination of the two libraries resulted in the identification of 12,098 structures. More 

prominent though was the improvement in identified heterodimers, Table 3.2. 111 heterodimers 

were identified within the Multidomain Library compared to 190 from the Complex Library. The 

procedures provided complementary results recognizing different types of heterodimers; 

combining the methods resulted in 266 identified complexes which provided a 40% improvement 

in heterodimer recognition. Figure 3.2 illustrates four examples of heterodimeric protein targets 

that now have suitable templates due to the inclusion of the multidomain library. Using benchmark 

setting of 30% sequence identity, SPRING using the dimer library was unable to identify structures 

with the correct quaternary structure resulting in all orientation having a FNAT of zero. The four 

example targets were matched to multidomain proteins that have highly significant global 

structural and interface similarity as defined by the TM-score and FNAT. The multidomain 

templates identified would allow for medium to high resolution structures to be modelled where it 

would not have been possible before. 

 

Identification Method 70% Seq. ID Cutoff 50% Seq. ID Cutoff 30% Seq. ID Cutoff 

SPRING 882 627 190 

Mulditomain Hit 160 152 111 

SPRING and Multidomain Hit 935 680 266 

Improvement 53 53 76 

Table 3.2 Percentage of the 2823 heterodimer structures where threading using dimer and multidomain libraries can 

identify templates below sequence identity thresholds of 70%, 50% and 30%. 
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Figure 3.2 Four examples of heterodimer targets that are not identified by SPRING using the dimer library at the 30% 

sequence identity threshold but are contained in the multidomain library. The red and blue colored chains are the target 

heterodimer structures; the black line is the C-alpha trace of the multidomain template model. 

3.3.2 Orientation of Domains Using the Complex Library 

Incorporating interfaces in the dimer library in order to orient the domains in a multidomain protein 

was also investigated. The general approach to modeling multidomain protein chains is to use 

threading algorithms to identify full coverage templates that give structural information about the 

topology of the individual domains and their respective orientations [104, 159]. Often full coverage 

templates are not available and the sequence needs to be partitioned into individual domains 

modelled separately and then reoriented [159]. However the sequence partition and reorientations 

of the domains are both difficult and unsolved problems [159-161]. 

 

Multidomain protein are treated as artificial protein complexes and searched for through the dimer 

library using SPRING. Multidomain protein sequences are given ideal partitions into domains 

based on the proteins structure using the domain parser algorithm [11]. Domain pairs were 

submitted to the SPRING algorithm as artificial complexes. Additionally as a control, each pair of 

interacting continuous domains were run through HHsearch as an artificial monomer. The results 

are tabulated in Table 3.3. At benchmark settings, 553 of the domain pairs are identified by protein 

interactions. The majority of the domain pairs, 8701 out of 11838, were identified by general 

monomeric threading using HHsearch. There was substantial overlap between the targets 

identified by both methods. Combining the two methods identified 8797 domain interface pairs. 

Although multidomain proteins are often hard targets to model, the current library shows that 

interacting continuous domains stored in the monomer library are well represented.  
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Identification Method 70% Seq. ID Cutoff 50% Seq. ID Cutoff 30% Seq. ID Cutoff 

HHSEARCH 10200 9856 8701 

SPRING 714 677 553 

SPRING and HHSEARCH 10263 9923 8797 

Improvement 63 67 96 

Table 3.3 A tabulation of the number of successes of correctly orienting domain-domain interactions with monomer 

threading (HHSEARCH) and dimer threading (SPRING) along with their corresponding libraries. 11838 domain pairs 

were oriented using HHSEARCH and SPRING templates below three sequence identity threshold. 

3.3.3 Diversity of Multidomain Templates for Dimeric Modeling 

There are a multitude of ways two proteins can interact and form distinct interfaces amongst 

themselves; it is important to investigate the range of unique dimer interfaces that can be modeled 

using multidomain structures. Overall 1,936 protein dimer structures were mapped to 5,895 single 

chain proteins. The dimer library was clustered into families and interfaces in order to evaluate 

what class of dimeric interactions are similar with domain-domain interaction. A family consist of 

all interlogs where an interlog is a protein-protein interaction which is preserved among pairs of 

homologs. An interface cluster is a group of interlogs where the interaction and interface are 

preserved. Two protein complexes belong to the same family if two quaternary structures have 

interacting chains that are structurally similar. If the interlog pair A and B are similar to another 

pair, they belonged to the same family. Structures are considered to have similar tertiary structure 

if they shared a TM-score greater than or equal to the 0.5 threshold after structure alignment with 

TM-align. SPRING was used to quickly rank similar structures in the dimer library and check for 

tertiary and interface similarity. If two pairs contained at least 30% of similar interface contacts, 

they are grouped into the same interface cluster. 

 

Single-linkage clustering is the criteria used for including a new structure or merging two clusters 

together. Under single linkage clustering if two groups of structures share any pairwise similarity 

the two groups are merged into one cluster. SPRING threading along with structural alignment 

were used to compare each protein complex to all other protein complexes. The first protein 

complex SPRING results are obtained and all homologs within the similarity threshold are 

considered neighbors. Then for each neighbor the SPRING results are checked again for new 

structures that meet the similarity threshold. This process is repeated until no new structures are 

added to the cluster. The next cluster is generated starting with a protein complex not currently in 
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a cluster. Hierarchical clustering is completed when all complexes belong to a cluster. The 

clustering generated 4,234 family clusters and 13,046 interface clusters. The domain-domain 

interactions that matched protein interactions were contained in 211/4,234 family clusters and 

311/13,046 interfaces. 

 

3.3.4 Functional Conservation and Alternative Binding Modes 

Confident alignments between multidomain proteins and query pair interacting proteins can be 

used as templates for predicting structure and function; here it’s investigated how often confident 

dimer alignments to multidomain structures correlate to robust structure and function information. 

Gene ontologies (GO terms) were used to investigate functional conservations amongst protein 

fusions with both conserved and new interfaces identified compared to the complex constituents. 

Gene ontologies provide a standard definition of biochemical properties of macromolecules [162, 

163]. Here the conservation of molecular functions is looked at. Not all proteins in the PDB are 

covered by the GO ontologies. Of the 302 heterodimer targets only 137 had GO terms for both 

target chains and the multidomain templates. On average, after removal of generic functions, each 

remaining protein chain had 2.42 GO terms. Two proteins are classified as having the same 

conserved functionality if the share any go terms.  

 

Multidomain protein chains that were identified to be homologous to both chains in a dimeric 

structure often shared similar go terms to both individual components of the complex. Table 3.4 

highlights conservation of molecular function and protein orientations amongst domain-domain 

and protein-protein interactions. Each dimer target can map to many individual protein chain 

structures with confidence. Each row shows confident matches within a ranking threshold that 

share functional or structural interface similarity to the target dimer. The columns are counts of 

targets for which multidomain structures can be used to predict the dimer structure or function 

with increasing confidence due to consensus information from multiple protein fusion matches. 

The functions in our testing set are shown to be 1.7 times as likely to be preserved as the specific 

orientation. The vast majority, 92%, of highly ranked homologs that preserve the orientation also 

preserve the function. 
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Top Ranked Templates Go Term Hit Go and Interface Hit Interface Hit 

Top 5 100 53 57 

Top 10 102 55 58 

Top 50 104 56 61 

All Confident Templates 104 56 61 

Table 3.4 Structural and functional recognition from multidomain templates. The table provides a count of the 

number of heterodimers out of 137 that are matched to homologs that share GO terms and interface structure. 

The ideal match for protein structure and function prediction refers to recognizing homologous 

structure that has a high structural and functional similarity. Figure 3.3 is an example of an ideal 

match. The protein 1a5k in Enterobacter aerogenes is permanently associated in a higher level 

organism Cajanus cajan. Three separate chains of protein 1a5k have significant alignments to the 

protein chain 4g7eA, and both structures are ureases. Although this structure is easily identified 

using the dimer library the structure represents a protein containing three separate chains and 

highlights the potential of orienting more than two proteins at a time using protein fusions.  

  

 

Figure 3.3 1a5k trimeric complex mapped to protein fusion 4g7eA. 

Surprisingly many of the highly confident alignments preserved function but not orientation to the 

target structure. Changes in orientation did not have much of an effect on the specific molecular 

function of the protein complex or multidomain structure. We present two interesting cases where 

the orientation in the two images where expected to be preserved but were not. It is anticipated 

that when two structures that interact are found within a single chain with a long enough linker 

regions the original interface should be preserved. Figure 3.4 shows an example of a confident hit 

where the domains A and B of the single chain are highly similar to chains Aʹ and Bʹ respectively. 

The linker is long enough to preserve the orientation of complex but it is not contained in the 
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image. It appears that the error is due to the simplification of an assumption regarding how proteins 

interact. Here we assume that each binary interface within a large multimeric complex can form 

pairwise interaction independently. However, this is not necessarily true. The case study 3qqc has 

two chains that map to 4ddiA. Yet the 3qqc structure is actually a tetramer where there may be an 

order of assembly. The first two proteins may undergo an interaction that causes a conformational 

change in the second chain that allows the third chain to bind. In the tetramer the third chain is 

floating in the cytoplasm and the formation of the complex is restricted by the third chain finding 

the complex. However in the multidomain structure the second and third chains are fused together. 

This can increase the formation speed of the tetramer due to the permanent localization of the third 

chain. In Figure 3.5, the protein complex 3vonAC matched to a protein chain 4ddiA that has similar 

tertiary components, but the orientation is not preserved. However the 4ddi protein is homo-mer 

in the PDB and the interface in the complex 3vonAC is used to construct the quaternary structure 

of the homomeric protein 4ddi. 

 

Figure 3.4 Case study of interaction loss between domains. The target dimer 3qqcDE has tertiary structural similarity 

to the protein chain 2exuA. A.) Shows the superposition of the two domain structure to the trimer complex 3qqcCDE. 

The red and blue chains are used to search for multidomain structure; the orientation is not preserved although there 

is a high similarity between the protein fusion and dimer and the linker region appears to be long enough to not disrupt 

the assembly of the dimer interface. B.) The D chain colored red shares a TM-score of 0.83 to the first domain while 

the E chain colored blue has a TM-score of 0.77. The sequence identities are 0.232 and 0.328 respectively. 
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Figure 3.5 Dimer 3vonAC (red and blue) aligns to both domains in multidomain chain 4ddiA (purple), but interaction 

is preserved between homodimers contained in 4ddi protein. A.) Shows the superposition of 3vonAC to 4ddiA. Despite 

the high tertiary similarity of 3vonAC having TM-scores of 0.97 and 0.922 to the constituent domains the interface is 

not preserved. B.) The3vonAC orientation is observed between two separate protein chains in the 4ddi PDB file. 

3.3.5 Multidomain Structures Potential for Predicting and Modeling Protein Interactions. 

The goal of incorporating multidomain structures is increasing the current capabilities of 

bioinformatics based approaches towards predicting and modeling novel dimeric structure. The 

previous sections were used to validate the inclusion of the library by observing how many 

structurally resolved dimers could be confidently identified using the single chain library. 162 

heterodimeric complexes with similar orientations and topologies to single chain proteins were 

identified. 302 complex structures had high confident matches, where the tertiary constituents had 

higher similarity to a multidomain protein but the orientations were different. These interfaces may 

still represent actual protein interfaces that cannot be verified by the current PDB. Furthermore it 

is worth seeing the potential for interactions to be modelled by proteins fusions. If two proteins 

align to a single chain, it is worth considering that these two structures or homologs of them 

interact. Here we look at all possible combinations of proteins that may interact by mapping them 

to multidomain protein chains. 22,136 non redundant by sequence protein chains were obtain. 

Every possible pairwise combinations was compared to the monomer library. 7,085,057 proteins 

pairs independently mapped to 10,057 protein chains. This is 1.7 times as many protein structure 

as were identified using the dimer library, and suggest there are many more interactions that 

multidomain proteins chains can model that the dimer library cannot. 
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3.6 Discussion 

There are two similar yet separate hypothesis that guided this project: there are limited number of 

interface topologies and domain-domain interfaces are ancestral fused protein interactions. Similar 

to the single domain case there may be a structural limit to how two domains can interact which is 

irrespective of the domains interacting within a single polypeptide chain or between two 

polypeptide chains. Due to the sparsity of the interfaces in the PDB the domain and protein 

interaction sets appear to be separate with minor overlap, but with time the structural overlap will 

be significant. The alternate hypothesis is if two separate protein chains are only functional at the 

quaternary level there is an evolutionary benefit to permanently associating the structures together; 

a protein interaction in one genome may be permanently fused in another one [99]. Regardless the 

merging of the two sets provides complementary information that improves the breadth of 

information regarding multidomain and protein-protein interaction orientations. The augmented 

orientation libraries were compared to the independent constituent monomer and dimer libraries 

to assess similarities, limitations and enhancements of template based structure and function 

prediction of quaternary structure. 

 

The depth of the dimer library was examined using structure alignments and the ability of the 

SPRING dimer alignment algorithm to identify dimer templates was assessed. Structural 

alignments reveal extraction of information under a perfect scenario, when correct tertiary 

templates can be identified and a template is available, the quaternary structure homolog can be 

identified 48.7% times using the current dimer library under benchmark exclusion settings whereas 

a similar experiment using single domain proteins always found a suitable match [10]. A proper 

template is identified 39.4% of the time when performing sequence alignments using SPRING 

when excluding homologous matches above 30% sequence identity. The test reveals that the dimer 

library is still sparse and several years of unique additions to the PDB are required to complete the 

dimer library which is especially true for heterodimers. Most of the sequentially defined 

heterodimers still have highly similar tertiary level topologies; these are often believed to be the 

results of divergence and gene duplications from a homodimer ancestor [164]. Those heterodimers 

formed from structurally distinct proteins represent only 9.5% and are often the sole representative 

of a pairwise interaction. Intramolecular domain-domain interfaces have some overlap with protein 
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interfaces, and furthermore the structural classes of domain-domain interactions are mostly in the 

category lacking in the dimer library, the heterodimers. 

 

Combining the two libraries resulted in significant improvement in the heterodimer set and a minor 

overall improvement for overall protein interactions. Minimal improvement was found in orienting 

domain-domain interactions using combined library. Although identifying domain-domain 

orientations remains an open and difficult problem; the region where the protein interactions 

overlapped with multidomain proteins was abundant in the monomer library. Whereas the 

intersection of the sets is contained in a sparse data region of protein dimer library. Additionally 

integration of the two data sets can provide new information such as conservation of residue 

position in a sequence/structure profile which is an important feature for bioinformatics based 

hotspot detection and binding energy predictions [165]. Still even with confident sequence 

alignments caution has to be taken due to the many alternate binding modes two proteins that 

interact can have. Two cases Figure 3.4 and 3.5 present confident matches with high sequence 

identity of the dimer target to a protein fusion chain; however neither contains the target interface. 

The molecular function appears to have higher conservation then the set of biological interaction 

networks or the assembly order of the complex. 

 

The matching of a pair of dimer sequences to a single chain protein provides a threshold of 

confidence that the protein preserves the tertiary and quaternary structure of the protein dimer. 

PDB structural information has been shown to be useful for predicting genome wide protein 

networks [87, 88, 166]. The primary test set revolved around verifying the validity of this 

argument. However the interesting cases are predicting and modeling new interactions not already 

stored in the dimer library. Here a sequentially non-redundant set of protein chains were obtained 

and every pair of chains was checked to see if they both map to a protein fusion chain. HHsearch 

confidence scores above its threshold has low false positive rates; given two protein chains 

mapping to a single protein fusion suggest the tertiary structure of both independent chains is 

represented by the protein fusion chain. The dimer library confidently mapped to 5,895 protein 

fusion chains whereas the all against all confidently mapped to 10,057 protein fusion chains. This 

suggest that there are many structural pairs of proteins that map to a single chain which in turn 

may provide interface information for a distantly related interlog. 
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3.7 Conclusion 

The dimer library is far from complete, even with a perfect fold recognition algorithm there is a 

significant gap between the dimer interactions in nature and those that can be modeled and 

predicted with the current PDB. Excluding homologous structures at 70, 50 and 30% sequence 

identity thresholds only 58.5, 53.7 and 39.4% of the Dimer Library have a suitable template 

identified by SPRING, whereas structural alignment identifies 64.9, 61.2 and 48.7% of the library 

respectively. This demonstrated that the current limitations in dimeric threading is not the 

searching algorithms, but the limited number of structures in the library. To circumvent this 

problem the interface between domains with a protein chain can be used to boost the dimer library. 

Excluding homologous structures above 30% sequence identity, the new comprehensive library 

had an overall improvement of 1.7% for recognizing dimers, and a 40% improvement for 

identification of heterodimeric templates. A similar attempt was made using the comprehensive 

library to model multidomain structures that led to a 1% improvement in identifying a correct 

template. The two libraries were found to share a structural overlap of 5.6% under benchmark 

settings, the major improvement revolves around heterodimers being sparse in the dimer library 

which represents 9.5% of the database whereas structurally distinct domains interacting within a 

single protein chain constitutes 73% of the pairwise interactions. The correct orientation and 

function of heterodimer targets could be extracted from multidomain templates 76% and 41% of 

the time respectively. Overall the information regarding orientation of domains and proteins is still 

rather sparse within the PDB. Template based modeling is currently the most accurate approach 

for predicting protein structure and function. Integrating structures from domain-domain and 

protein-protein interactions into a comprehensive library can further extend the capabilities 

template based structure and function prediction on the quaternary level. 
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4. CHAPTER 4. Full-length Structure Prediction of Protein Complexes 

from Sequence by Template Identification and Atomic-level Structural 

Refinement 

 

4.1 Introduction 

Proteins are large macromolecules that carry out numerous essential cellular functions. The 

majority of protein function occurs at the quaternary structure level, which is composed of multiple 

interacting protein chains, some of which are permanent while others are transient in nature. To 

obtain system level understanding of living cells, it is essential to obtain structural and functional 

level information of the protein interactome. While a number of high-throughput methodologies 

exist that are capable of elucidating functional level information of the interactome [167, 168] 

(such as the constituents of a protein complex) there is a dearth of information in the three 

dimensional structural space. Accurate structural determination methods such as X-ray and NMR 

techniques could in principle provide this information, but the cost and labor intensiveness of these 

methods have caused structural genomics to lag behind the number of validated protein-protein 

interactions [169].  

 

Regarding protein structure prediction, there are two classes, modeling ab initio and template 

based methods. ab initio methods use first principle based potentials to fold a protein from a 

random state. There have been some success but the computational expense of these methods limit 

them to small proteins and peptides. Template based modeling identifies structural analogous to 

the target sequences and uses their constraints to model the protein structure. Template based 

modeling of tertiary level structures is capable of producing high resolution structures when a 

suitable template is identified [13]. A limiting factor in template based modeling is the requirement 

of a structural analog being present in the PDB; for single domain proteins there is strong evidence 

that all the protein folds are already contained in the PDB [10]. Fortunately for protein complexes, 

there is evidence that the diversity of structural interfaces is finite and the PDB library for 
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complexes is approaching completion [16, 17]. Given the encouraging progress observed in the 

field of template-based structure prediction of monomeric proteins [13, 170, 171] along with the 

current set of representative interfaces within the PDB, a similar level of success is expected for 

these methods extensions towards quaternary structures. 

 

Two of the major existing problems in template-based protein structure prediction are the detection 

of remote homologous templates and the refinement of the template closer to the target. A number 

of significant efforts have been made in recent years to develop bioinformatics based approaches 

to predict protein interactions [40, 79-81]. Currently there are three classes of bioinformatics based 

approaches for identifying and modeling protein-protein interactions by sequence alignment: 

dimer threading, monomeric threading and oligomer mapping and modeling the constituent chains 

followed by docking [82]. Dimer threading directly aligns the query sequences to the target 

complex which allows for interface information to be considered during the alignment, example 

programs are: MULTIPROSPECTOR [83]by Skolnick’s group, HOMBACOP by Kundrotas et. 

Al [84], the strategy used by Aloy et. al. [85] and the work by Sinha et al [89], and COTH [86]. 

Monomeric threading and oligomer mapping starts with generating query alignments to the 

monomer library. Complexes are identified using a pre-generated lookup table where every protein 

chain constituent in an interaction is represented by a homologous structure in the monomer 

library. The recently developed programs SPRING and PrePPI are examples of this protocol [87, 

88]. The last approach for identifying possible binding orientations uses monomer models which 

are docked using a physics potential [125], statistical based potential, and in some cases template 

coordinates [87, 88, 166]. Physics based docking can be applied to the structural constituents of a 

protein complex using programs such as ZDOCK, but successful cases are limited to special 

classes of protein-protein interactions [125]. Additionally, ZDOCK has a reduced performance 

when using homology models [127]. Proper template identification is an essential prerequisite for 

homology modeling, combining multiple methods that produce complementary results can 

improve modeling. The three approaches independently have inherent strengths and weaknesses 

for identifying protein complexes, but by combining the results together in a manner analogous to 

the monomer meta threading servers [14] may improve the coverage of complex interaction can 

be improved. Here we investigate the use of this methodology to quaternary level orientation 
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prediction using the three classes of bioinformatics based interface prediction algorithms 

represented by COTH, SPRING, and docking using I-TASSER models docked by ZDOCK.  

 

Threading templates do not generate full length models, and docking often needs refinement 

regarding clashes, interface contacts and flexible regions. Here, we describe a new algorithm, 

TACOS, a hybrid approach geared towards generating full-length protein dimer structures from 

sequences alone similar to the approach used by M-TASSER which is a modelling program using 

templates identified by MULTIPROSPECTOR as starting structures [140]. TACOS starts from 

threading alignments, and construct full-length structure models by modelling threading gapped 

regions ab initio, and reassembling the continuous aligned template fragments in a course-grained 

schematic similar to the monomer structure prediction algorithm I-TASSER [47, 110, 172]. 

Importantly, in addition to TACOS retaining the portion of the I-TASSER energy and protein 

folding methodology, it introduces a set of statistical-based interface potentials to capture the 

unique idiosyncrasies of protein-protein interactions, along with a movement for improving the 

relative orientation of the chains.  

 

4.2 Methods 

TACOS is a sequence to structure algorithm for protein complexes, Figure 4.1. There are four 

critical steps for template based modeling; (1) template identification; (2) a robust funnel shaped 

energy function; (3) an efficient protocol to search the conformational space; (4) identifying the 

best decoy from a set of ten thousands possible structures; (5) and generating full atom models. 

Each of the steps is described in detail in the following sections.  

 

4.2.1 Template selection  

In the first step, TACOS attempts to identify homologs/structural analogs of the given query 

sequence of the complex by threading it across representative libraries of structures for monomers 

and protein complexes. The complex library is obtained from the PDB biounit files and screened 

for structural templates at 70% sequence identity and TM-score of 0.8. Complex templates are 

searched for by COTH/SPRING, while the individual chains of the query complex are threaded 

across the monomer structure library, which is six times larger, by LOMETS. LOMETS is a 

threading alignment approach that combines multiple complementary threading alignment 

algorithms for fold recognition [14]. The currently included threading program in LOMETS are: 
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FFAS (sequence profile-profile match) [173], HHsearch (hidden Markov model to hidden Markov 

model alignment) [76], Muster (multiple structural profile-profile alignments) [78], PRC (hidden 

Markov model match) [174], PROSPECT2 (contact-assisted profile-profile alignment) [175], 

dPPAS (depth profile profile alignment) [176], SAM-T02 (sequence to hidden Markov alignment) 

[75], SPARKS (profile alignment assisted with single-body potential) [112], SP3 (profile 

alignment assisted with fragment depth) [177]. The individual chain templates thus identified by 

LOMETS are superimposed on the dimer template framework identified by COTH/SPRING 

threading.  

 

4.2.2 Mapping of the dimer onto an artificial monomer on a CAS lattice  

The initial template is course-grained and represented by the C-Alpha Side Chain Based (CAS) 

model consisting of only the Cα atom for each residue and the side chain center of mass (SG). The 

portion of the template without alignment to the query sequence, gapped regions, are initially 

missing from the model. To generate the initial full-length CAS model, a Cα framework for the 

full-length structure is first constructed by using a Cα random walk on a cubic lattice to build the 

gapped regions between aligned fragments. If any of the unaligned regions between two aligned 

fragments cannot be connected completely by a series of 3.8 Å Cα-Cα bonds, then an external 

spring-like harmonic force is applied to bring the fragments together until reasonable bond lengths 

are achieved [104]. The structure of the complex is then segregated into “template-aligned” and 

“template-unaligned” regions and placed on the CAS on- and off-lattice model used by I-TASSER. 

Here, the Cα atoms of the template unaligned (gapped) regions are placed on the lattice for 

computational efficiency and are built de novo, while the template aligned fragments are placed 

off-lattice for maximum accuracy and subjected only to rigid body adjustments. The side-chain 

SG atoms are always placed off-lattice. The dimer is represented on the lattice as a single artificial 

monomer with a long “psuedobond” connecting the C-terminal of the first chain with the N-

terminal of the second chain. The pseudobond is kept completely flexible during the assembly and 

refinement simulations and can have any length. This convenient trick allows the well-established 

simulation protocol of I-TASSER to essentially treat the complex as a monomer prediction 

problem and ensures the direct adoption of the many energy potentials and movement schemes in 

I-TASSER to TACOS.  
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4.2.3 Structure assembly 

The initial dimer structure developed in the previous step is then placed on the CAS lattice and 

subjected to parallel hyperbolic Monte Carlo sampling [47, 104, 116]. The movement scheme for 

the Monte-Carlo sampling can be divided into 2 distinct types; 1) local intra-chain moves for 

packing the individual chains of the complex and 2) large rigid-body inter-chain moves for 

identifying the correct orientation of the chains with respect to each other. In general for each 

replica, each large inter-chain move is followed by multiple intra-chain moves to stabilize the local 

structure of the individual chains and the process is repeated. A flow-chart of the movement 

scheme of TACOS is shown in Figure 4.1. 

 

Local intra-chain movements. The local intra-chain moves adapted from I-TASSER can be 

classified into two types: 1) on-lattice bond rebuilding of the unaligned regions and 2) off-lattice 

rigid body moves for the template aligned fragments. On-lattice movement includes extensive 

bond rebuilding moves for the ab initio generation of the template unaligned regions. For the on-

lattice moves, 312 bond vectors restricted to the cubic-lattice points are pre-computed with a bond 

length varying between 3.26-4.25 Å (the variability of the bond length allows for larger 

conformational flexibility). During each attempted movement, 2 or 3 continuous bond vectors 

picked randomly from any of the on-lattice regions are replaced by the pre-computed bond vectors. 

Larger movements are achieved by a combination of multiple 2 or 3 bond replacements. Each 

move is accepted based on the standard Metropolis Monte Carlo criteria. 

 

Inter-chain movement: Inter-chain movement was incorporated on the premise that the initial 

orientation of the two chains may be incorrect or require readjustments. Here, one of the chains of 

the dimer (the smaller one for heterodimers and either chain for the homodimers) is first randomly 

moved to a new position and then drawn closer by a short independent Monte Carlo simulation. 

To draw the chain closer, the vector between the center of mass (COM) of both chains is defined 

and the chain is subjected to small randomly selected rigid body rotation and translation motions 

with each move accepted or rejected based on the standard metropolis Monte Carlo criteria. During 

these moves, the center of mass is kept fixed along the original COM vector. Newly defined inter-

chain specific potential terms were defined to guide the movement. At the end of each cycle of the 
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inter-chain move, the final position is rejected or accepted once again based on the Metropolis 

criteria.  

 

4.2.4 Energy Function 

A statistical, knowledge based energy function was designed and optimized to drive the TACOS 

simulation. Since TACOS seeks to simultaneously build both the individual chains of the dimer as 

well as modeling their orientation and interface match, the potential terms belong to two distinct 

classes: 1) local terms aimed at mimicking the monomeric conformational energy landscape and 

2) inter-chain terms to maximize the complementarity of the dimer interface required to stabilize 

the interaction. Due to the use of the pseudobond, the simulation protocol can essentially treat the 

problem as a monomer prediction problem, thus allowing all the inherent I-TASSER potential 

terms [47, 110] to be directly carried over and used to guide the local conformation search. 

 

The new inter-chain energy terms contain a mixture of template based restraints and knowledge-

based potentials derived from the structure library of protein complexes. The new energy terms 

are discussed in more detail in the following. The coefficient w indicates the weight of the energy 

term (all terms are combined linearly), which was carefully optimized by large-scale 

benchmarking on the training set proteins. 

 

 

 

 

 



67 
 

 
Figure 4.1 Flowchart of the TACOS, Template-Based Assembly of Complex Structures, protocol. Given two protein 

sequences known to be involved in a protein-protein interaction, TACOS first searches a curated structure library of 

dimeric protein complexes using COTH/SPRING. The TACOS energy, predicted interface contacts and interface 

distance restraints are derived from the Dimer PDB library. The identified templates coordinates are used as starting 

positions and an initial full length model is built from them. This initial structure is placed on the C-Alpha Side-chain 

(CAS) based on-off lattice system similar to that used by the I-TASSER. The templates are then reassembled and 

refined using the TACOS replica-exchange Monte Carlo simulation. The decoys (native-like protein conformations) 

thus generated are then clustered by SPICKER and the cluster centroid is refined further by the ModRefiner program 

to generate full atomic models. 
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i) ECOM: This term based on the distance between the Center of Mass (COM) of the two dimer 

chains is required to prevent the two chains from drifting too far away during the simulation 

procedure. The equation is given by 

         2

COMCOM dwE         (1) 

where dCOM is the distance between the two centers of masses. On the other hand, this potential 

can dictate one chain into collapsing onto the other and therefore needs to be balanced with a large 

clash penalty to ensure a roughly accurate placement of the chains with respect to each other. 

 

ii) Eclash: A large clash penalty is assessed if any atom (Cα or SG) of one chain has a distance < 

3.8 Å from any atom in the opposite chain. 

 

iii) ENcontact: To be stable, a number of inter-chain contacts are required to stabilize the dimer 

interface. Accordingly, based on the hypothesis that at least 30 inter-chain contacts are required 

for a stable complex formation, a large penalty was assessed for decoys with no inter-chain 

contacts. This penalty is gradually decreased as more inter-chain contacts are formed, eventually 

becoming a constant for more than 30 inter-chain contacts. The equation for this energy term is 

given by  
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where N is the number of inter-chain contacts. The energy is kept constant after 30 inter-chain 

contacts are formed to prevent the structures being compressed into being flat sheets where all 

residues are forming contacts. 

 

iv) Eoricontact: For any residue i and j in opposite chains which are in contact, the orientation of the 

unit bisector vectors of i and j can be in three different orientations as defined by their dot product: 

parallel, anti-parallel or perpendicular. This energy term is described in the form of a general 

exclusion volume potential for the SG atoms and is given by  
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where 



69 
 

 














otherwise                                                                                         0

 6 and ),,(),,(en         wh),,(

6 and ),,(   when                                         6

)( ,ji,max,ji,min,

,,min,

,, jijijijijiji

jijijiji

jiji cAARsAARAAe

cAARs

sE 



 (4) 

Here, Lch1 and Lch2 are the lengths of chain 1 and 2 respectively, ci,j (si,j) is the distance between 

the Cα (SG) atoms of residue i and j, Ai (Aj) is the amino acid type for residues i (j), γi,j is the 

orientation of the bisector vectors of i and j, Rmin(Ai,Aj,γi,j) (Rmax(Ai,Aj,γi,j)) is the minimum 

(maximum) distance observed between amino acids Ai and Aj for either of the three γi,j types in the 

complex structure library and e(Ai, Aj, γi,j) is the probability of an amino acid pair to be in the 

orientation γi,j (equal to the total number of times any particular amino acid pair is observed in the 

orientation γ divided by the total number of times that particular amino acid pairing is observed in 

the protein complex structure library). 

 

v) Erespref : This is defined as the preference of the Cα atom of an amino acid Ai to be present in 

one chain when the Cα of another amino acid Aj is present at a distance less the 6.0 Å on the 

opposite chain and is given by the equation: 
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Here, f(Ai,Aj) is the total number of times the pairing of amino acids Ai and Aj is observed at a Cα 

distance less than 6.0 Å among the complex structures in the library, while t(Ai) is the total number 

of times the amino acid Ai is observed among the structures in the library. 

 

vi) Eresdistpref : This potential terms seeks to account for the preferred distance between the Cα atoms 

of any two pair of amino acids Ai and Aj. Since we are only interested in the interface residues in 

this case, the range of distance considered is from 4.0 Å to 12.0 Å which was divided into 8 

distance bins λi,j of 1.0 Å each. Thus the final potential is given by the equation 
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where  
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Here, q(Ai,Aj,λi,j) is derived from the protein complex structure library and is given by the total 

number of times the Cα atoms of the amino acids Ai and Aj belonging to different chains of a 

complex are present in the distance bin λi,j divided by the total number of time the Cα atoms of Ai 

and Aj are present within 4.0 Å to 12.0 Å of each other. 

 

vii) Edistmap : This energy function is a template-based restraint which penalizes the deviation 

observed between the distance of residue i in chain 1 and residue j in chain 2 in the generated 

decoys with respect to the template and is given by the equation 

             
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where rij is the distance between the residue i and j in the decoy, dij is the average distance between 

residue i and j in the top templates while δij is the standard deviation. 

 

viii) Etcontact : A penalty of 1 is assessed when residue i and j belonging to opposite chains of the 

complex are found to be in contact (dij ≤ 4.5 Å) in multiple templates but are not in contact in a 

given decoy. 

 

ix) Edfire: This potential terms seeks to account for the preferred distance between the Cα atoms of 

any two pair of amino acids Ai and Aj. Since we are only interested in the interface residues in this 

case, the range of distance considered is from 0.0 Å to 10.0 Å which was divided into 20 distance 

bins ri,j of 0.5 Å each. Thus the final potential is given by the equation 

          
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where  

𝐷(𝑖, 𝑗, 𝑟) =  {
−𝑤𝑙𝑛

𝑁𝑜𝑏𝑠(𝑖,𝑗,𝑟)

(
𝑟

𝑟𝑐𝑢𝑡
)

𝛼

(
∆𝑟

∆𝑟𝑐𝑢𝑡
)𝑁𝑜𝑏𝑠(𝑖,𝑗,𝑟𝑐𝑢𝑡)

, 𝑟 < 𝑟𝑐𝑢𝑡

0                𝑟 < 4 𝑜𝑟 𝑟 > 12

 

(12) 

 

Here, D(Ai,Aj,λi,j) is derived from the protein complex structure library using the DFIRE equation 

[46]. Nobs is given by the total number of times the Cα atoms of the amino acids Ai and Aj 
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belonging to different chains of a complex are present in the distance bin ri,j divided by the total 

number of time the Cα atoms of Ai and Aj are present within 0.0 Å to 10.0 Å of each other. Δr(Δrcut) 

is the bin width and it is set to 0.5 Angstrom, rcut is 10 Angstroms, and α equals 1.61. 

 

4.2.5 Ranking and refinement for generation of full atomic models 

The TACOS simulation is implemented in replica exchange cycles, and the decoy created at the 

end of each cycle is stored for the five lowest temperature replicas. At the end of the simulations, 

these decoys are clustered by SPICKER [117] using a global RMSD matrix. The cluster centroids 

of the ten largest clusters are then selected and the full atomic structure including side-chain atoms 

is generated using ModRefiner [53]. ModRefiner attempts to optimize the hydrogen bonding 

network, remove clashes, and impart a general protein like conformation on the final models. 

 

4.2.6 Evaluation 

Evaluating the global similarity of a protein model to the native structure is normally sufficient, 

but for protein interactions the quality of the interface is also important. The critical assessment of 

protein interactions (CAPRI) is a blind competition to assess the state of the art methods for 

predicting the structures of protein-protein interactions [40]. CAPRI uses the interface RMSD, 

ligand RMSD, fraction of native contacts (FNAT), global RMSD, FNAT, and accuracy (ACC) for 

evaluation purposes. Where RMSD is the root mean squared deviation, FNAT are the percentage 

of correctly predicted ca-ca interface contacts contained in the model within 10 Angstroms, and 

ACC is the accuracy of the predicted contacts [40]. The ligand RMSD is calculated after optimal 

superposition of the native structure onto the model. The CAPRI criteria for an acceptable interface 

hit requires the model has at least 20% of the correctly predicted interface contacts while having a 

ligand RMSD less than 10 Angstroms.  

 

A common metric for evaluating protein models is the TM-score. The TM-score is a score that 

measures the structural similarity between two proteins, and it is used here to compare the quality 

of the model to native [34]. The TM-score ranges between 0 and 1 with a score greater than 0.5 

being highly significant [37]. Additionally a new score, the reciprocal TM-score (rTM-score), is 

introduced for assessing protein complexes. It’s a score that considers the individual model quality 

of both chains while assessing the correct orientation. Similar to the TM-score it ranges from 0 to 

1. 
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𝑟𝑇𝑀𝑠𝑐𝑜𝑟𝑒 =  
2

(
1

𝑇𝑀𝑠𝑐𝑜𝑟𝑒𝑐ℎ𝑎𝑖𝑛1
) + (

1
𝑇𝑀𝑠𝑐𝑜𝑟𝑒𝑐ℎ𝑎𝑖𝑛2

)
 

4.3 Results and Discussion 

4.3.1 Benchmark Set. 

The TACOS data set contained 500 non-redundant protein complex with medium and long 

sequence lengths which were used for the training and testing of the TACOS pipeline. The 

complexes in this set have a sequence similarity cutoff of 30% for each chain. Over half of the 

structures are enzymes; 37 are antibody-antigen complexes, 45 are enzyme-inhibitor complexes 

and the remaining fall into a large assortment of biological classes. The set was split into 150 

training and 350 testing sets. The training set contained 92 homodimers and 58 heterodimers while 

the test set contained 227 homodimers and 123 heterodimers. The average complex in the TACOS 

benchmark contains 424 residues, with the smallest complex containing 112 residues and the 

largest containing 712 residues. 

 

4.3.2 Benchmark Target Classification   

During benchmarking of monomeric threading target structures are normally classified into three 

groups: easy, medium and hard. The classification is based on confidence of identified templates 

determined by various threading programs. Easy targets have multiple high confidence templates 

identified by threading which allows for consensus based restraints for modeling. Medium targets 

have one confident threading result, and hard targets have no confident templates for modeling. 

The individual template confidence levels along with the target classification can be used to assess 

the quality of the final model.  

 

The classification for protein interactions is more complicated. The templates can still be classified 

as easy, medium and hard but the confidence scores are not as robust as the monomeric analogues 

due to possible alternative binding modes. The tertiary sequence to structure similarity is a major 

component for template recognition for complexes, however groups of protein interactions with 

similar tertiary components may share little to no similarity regarding the orientation of their 

respective interactions. A target is classified as ‘easy’ if multiple templates have a COTH 

alignment score above 2.5 or a SPRING score above 20, as ‘medium’ if only one target has an 

alignment score above the COTH or SPRING thresholds and hard otherwise. Regarding the 
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TACOS benchmark set 290 are classified as easy, 25 medium and 35 hard. However, only 162 of 

the 290 easy targets have templates that provide some level of correct information regarding the 

correct orientation of protein chains. The training set consisted of 70 easy, 23 medium and 57 hard 

targets. 

 

4.3.3 Template Selection and Interface Restraints: 

Currently there are three classes of bioinformatics based approaches for identifying and modeling 

protein-protein interactions: dimer threading (i.e. COTH), monomeric threading and oligomer 

mapping (i.e. SPRING) and docking with homology models (i.e. ZDOCK) [82]. In an approach 

analogous to meta threading, which is a consensus based approach where multiple complementary 

threading methods are used for monomeric structure prediction, we evaluated the potential for 

combining methods for quaternary structure prediction. Using updated protocols and databases for 

SPRING and COTH, we ran them on a benchmark set of 1830 structures at 30% sequence identity 

threshold to evaluate their performances, Figure 4.2. COTH identified 948 and SPRING identified 

953 hits within the top 10 structures. Combining the top 5 structures from SPRING and COTH, 

threading were able to identify 1046 hits with an overall improvement of 5.3 percent compared to 

COTH and 5.1 percent compared to SPRING. 

 

The consensus threading was then evaluated against ZDOCK using the ZDOCK benchmark set of 

99 complexes. ZDOCK was ran with two sets of starting structures: ZDOCK was given models 

generated by I-TASSER and ZDOCK NATIVE used the native unbound monomeric constituents. 

Using the native structure, ZDOCK at most sequence identity thresholds was able to outperform 

COTH/SPRING, but threading was still able to identify interfaces not predicted by ZDOCK. Given 

monomer models threading outperformed ZDOCK at all sequence thresholds. ZDOCK using 

models and native structures identified 6 and 25 targets respectively, whereas threading identified 

7, 21 and 27 when homologous templates are excluded at 30, 50, and 70 percent sequence identity 

thresholds. The combination of docking with models and threading identified 12, 25 and 31 of the 

targets at the respective sequence thresholds. This showed promise in combining docking with 

threading for the modeling protein complex. 
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Figure 4.2 COTH and SPRING consensus threading and comparison by FNAT. The left plot is a comparisons of the 

top ten templates generated by COTH and SPRING. The middle plot is the top ten templates by COTH compared to 

the top 5 from COTH and SPRING. The plot on the right is the top ten generated by SPRING compared to the top 5 

in COTH and SPRING.  

 

Figure 4.3 Comparison of threading compared to docking using ZDOCK. The ZDOCK benchmark has 99 target 

structure where ZDOCK NATIVE starts with the native constituents for docking. ZDOCK, using I-TASSER models, 

is compared to threading at three different sequence identity thresholds. The second plot is the TACOS benchmark 

containing 350 target structures. ZDOCK is given the best I-TASSER model in the top ten determined by TM-score, 

and threading excludes all templates with a sequence identity greater than or equal to 30%. The CAPRI criteria is used 

to designate a hit. The third plot contains the complex targets constituent quality generated by I-TASSER. The Y-axis 

is a count of the targets where both monomer models for a complex have TM-score’s above the thresholds on the X-

axis. 

The comparison of protein docking with threading was repeated using I-TASSER models of the 

individual units from the 350 TACOS benchmark set, Figure 4.3. ZDOCK was given the best 

monomer, by TM-score, modeled by I-TASSER at a 30% sequence identity threshold within the 

top 10. ZDOCK identified 43 of the targets complexes having a FNAT of at least 20% and only 
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34 of the complex model meet the CAPRI criteria. Whereas COTH/SPRING identified 170 targets 

with an FNAT of at least 20%. Combining the two increased coverage to 173 targets which was 

less than a percent increase. 

 

4.3.4 Energy Function Correlation with Native Structure 

To partly assess the quality of our force field, the Pearson’s correlation coefficient was calculated 

between the energy and the TM-score of decoys to the structure of the native complex. The 

correlation can have variation depending on the quality of the complex and monomeric templates. 

When the correct monomeric and complex templates are correctly identified with a single binding 

orientation the correlation average is 0.791. For easy cases where there are multiple binding 

orientations predicted by threading, the correlation average drops to 0.748. Cases where the 

complex templates are wrong but the monomeric templates are correct the correlation average is 

0.751. Finally when both monomeric and complex threading fails to identify the correct templates 

the correlation drops to 0.505.  

 

In Figure 4.4, we show 3 representative examples of each modeling category (easy, medium, and 

hard) showing the correlation between TM-score and energy. In general, the decoy set for the easy 

cases spanned a larger TM-score range compared to the medium and hard cases and showed 

increased sampling in the higher TM-score ranges. The increased specificity of the TACOS force-

field towards native-like structures in the easy and medium cases can therefore be attributed to the 

agreement in restraints between the monomer and complex templates. 

 

Figure 4.4 Correlation of TACOS energy with TM-score. Three representative examples, one each for easy (left), 

medium (middle) and hard (right) modeling targets, are shown, which illustrate the correlation between energy and 

TM-score for each category. 
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4.3.5 Modelling Protein Complexes with TACOS. 

The primary goal of homology modeling is to generate full length full atom models that are closer 

to native than the starting template. It is important to check if the pipeline is able to generate models 

that are of higher quality than the starting template trajectory identified by COTH and SPRING. 

Additionally, it is necessary to compare it to other methods that can generate protein complex 

models. 

 

Overall TACOS made improvements to the global quality of the protein models. When considering 

the global similarity using the TM-score, and then new rTM-score, which is more sensitive to 

orientational differences, TACOS was consistently able to make improvements compared to the 

starting templates. For the top ranked structure 300/350 structures were improved when being 

evaluated by the TM-score. Regarding the rTM-score 240/350 models showed improvement. Note 

that the rTM-score will be close to or at zero for orientations that are far away from native. Out of 

the 350 structure 149 had rTM-scores equal to zero for the highest ranked template. When 

comparing the best structures in the top 10, 298/350 TM-score and 273/350 rTM-score showed 

improvement compared to the best template. The interface I-RMSD for templates is much lower 

than the I-RMSD of the TACOS model. Part of this is due to the templates being fragmented, and 

TACOS attempting to rebuild those regions ab initio. That being said, the other measurement and 

assessment scores values can be affected by the varying lengths between the template and full 

length model. COTH and SPRING templates often contain gap regions that are unable to 

contribute to the overall TM-score and rTM-score. Thus for comparison purposes, full length 

models were also built by the homology modeling program MODELLER [54] which can accept 

quaternary level templates.  

 

MODELLER builds full length models from the template with only slight deviations from the 

starting CA positions. The overall global similarity to native is usually improved when using 

MODELLER. Comparing the first ranked structures of the modeling programs, TACOS energy 

potential and clustering is able to correctly rank 108 model orientations compared to 

threading/MODELLERs 77. However, in Figure 4.5, there are three PDB target structures where 

MODELLER appears to generate rank 1 models with significantly better interface structure than 

TACOS: 1a22, 1jag and 1osg. Regarding 1a22, dimer threading results are dominated by high 
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confidence templates with very similar orientations that are not close to the native orientation. The 

second model built by TACOS contains the correct orientation. The second protein 1jag is actually 

correct. TACOS ranks another correct alternative binding mode that was not in the 1jag file; the 

pdb file 1jag was superseded by 2ocp which contains the rank 1 TACOS orientation. Finally 1osg, 

has the correct orientation but the structure of the interface is poor. In general, TACOS has 

improved global and interface structure when compared to MODELLER. For the highest rank 

models, in terms of the TM-score TACOS outperforms MODELLER 260/350 cases and has a 

lower interface RMSD 213/350 cases. Figure 4.5 shows a head to head comparison of the two 

programs. The series of data points on the X-axis for the FNAT, ACC and the rTM-score plots 

highlights TACOS energy function and clustering capabilities regarding reranking the models 

when the first ranked template contains the wrong orientation, but the correct orientation is 

contained in the template set.  

 

 

Figure 4.5 Set of six scatter plots showing benchmark results of TACOS on a test set of 350 proteins compared to 

MODELLER for the 1st ranked structure. The six scores are Root Mean Squared Deviation (RMSD), TM-score, rTM-

score, Interface-RMSD (I-RMSD), Fraction of Correctly Interface Contacts (FNAT), and the Accuracy of the 

predicted interface contacts (ACC). For TM-score, rTM-score, FNAT and ACC, points below the diagonal show better 

performance by TACOS. For RMSD and I-RMSD, points above the diagonal show better performance by TACOS. 

On average TACOS has better assessment scores than MODELLER regarding the top ranked 

structure and the best in top 10. Table 4.1 and Table 4.2 contain summary information of the two 

categories respectively. Regarding the best in top 10, TACOS outperforms the other methods in 

terms of the global and interface structure at a p-value threshold of 10-3 using the Wilcoxon signed-
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rank test. For many of the large and medium sized complexes, increasing the FNAT is not an issue 

of the orientation but the quality of the monomeric constituents. Although the two dimensional 

contact maps of the best TACOS model is only marginally better than the best MODELLER model 

the three dimensional structure of the interface is generally better than MODELLER’s. 

Additionally it was noticed that TACOS tends to maintain alpha helix structure at the interface 

compared to beta sheet. Prediction of alpha helices tends to be higher than for beta sheets, also 

helices often form individually whereas beta sheets occur in groups, which requires accurate long 

distance contacts.  

Method Median I-RMSD FNAT ACC RMSD TM-score rTM-score Hits 

ZDOCK I-TASSER 18.139 0.034 0.053 18.306 0.469 0.072 11 

Dimer Threading 16.490 0.153 0.180 17.241 0.452 0.201 --- 

MODELLER 17.730 0.161 0.166 18.471 0.464 0.207 71 

TACOS 14.732 0.210 0.227 15.343 0.530 0.274 108 

Table 4.1 Comparison of TACOS against controls for the rank 1 structures. 

Method Median I-RMSD FNAT ACC RMSD TM-score rTM-score Hits 

ZDOCK I-TASSER 13.602 0.090 0.137 14.093 0.515 0.173 34 

Dimer Threading 8.032 0.311 0.350 10.920 0.551 0.380 --- 

MODELLER 10.838 0.331 0.322 12.941 0.587 0.399 137 

TACOS 9.325 0.353 0.323 11.032 0.622 0.414 154 

Table 4.2 Comparison of TACOS against controls for the top ten structures. 

In Figure 4.6, three high resolution structures with different topologies are presented and compared 

to the best ranked template model with the correct orientation. Human glutathionine transferases, 

16gs, is the first example, it contains a majority α-helix homodimeric complex. The template had 

a global RMSD of 4.13 Angstroms of which TACOS was able to refine to 2.35 Angstroms. The 

1c3h complex is a serum protein with beta sheet topology involved in metabolism. TACOS refined 

the template from 2.95 to 2.4 Angstroms. Finally the hetero complex 1go3 is a part of the 

eukaryotic RNA polymerase and it contains recognition sites for RNA motifs. TACOS built a 2.06 

Angstroms compared to 3.77 Angstroms from the template. 
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Figure 4.6 Near-native models built by TACOS. Plot showing examples of TACOS modeling for both homo- and 

heterodimers. The predicted models are shown in red and slate for chain A and B; the native structure shown in 

transparent green and yellow is superimposed onto the model structure. 

4.3.6 Information quality required for TACOS models against different classes. 

TACOS uses information to guide protein structure prediction. The quantity and quality of the 

information has a major impact on the quality of the final models. Quality is determined from 

threading and quantity is dependent on the structural diversity and size of the protein library which 

is limited for quaternary structure. Consensus of predicted contacts from the template alignments 

are considered as important conserved regions for binding and are more heavily restrained in the 

simulation than those without. 
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Unlike monomer structure prediction, there can be multiple alternate quaternary structures. Most 

cases often contain only one template per orientation, or identify multiply confident templates with 

the incorrect orientation which occurs for 128 of the 290 targets with confident templates. This 

makes it difficult to generate statistics on interface contacts. The majority of medium to high 

resolution structures generated by TACOS occurs when there are at least five identified templates 

with similar orientations that have at least thirty percent of the correct interface contacts.  

 

Protein-protein interactions are often grouped into homodimers and heterodimers. Sixty percent of 

the complexes in the PDB are homodimers. Eighty five percent consists of complexes that are 

homodimers or complexes that diverged from homodimers, i.e. the interacting chains are 

structurally similar. The last fifteen percent consists of heterodimers where the interacting chains 

do not share similar topologies. This distribution results in template(s) for modeling being more 

readily available for modeling homodimers than heterodimers. In our benchmark set, 117 

homodimers and 37 heterodimers meet the CAPRI criteria.  

 

4.4 Conclusion 

Learning from the experiences gathered in the field of protein structure prediction, we developed 

a new algorithm, TACOS, to predict the structure of protein-protein complex structures from 

sequence alone. TACOS uses a hybrid comparative modeling-ab initio approach which first 

identifies putative templates from a non-redundant protein complex structure library by 

COTH/SPRING threading. Simultaneously, TACOS uses LOMETS singe chain threading to 

generate intra-chain restraints for the individual subunits of the protein complex. In the second 

step, TACOS uses a lattice-based replica exchange Monte-Carlo simulation to build ab initio the 

template un-aligned regions and further refine the template aligned regions through rigid body 

moves. TACOS also seeks to search the ideal orientation for the component chains of the complex 

with respect to each other by using a newly designed inter-chain movement which implements a 

predefined discrete set of rotation and translation moves to produce the best fit at the interface. 

The TACOS simulation is driven by an energy function composed of intra-chain template based 

restraints from LOMETS, inter-chain distance and contact restraints from templates identified by 

SPRING and COTH threading, and knowledge based terms. While some of the knowledge based 

potential terms were adapted from the well-known monomeric structure prediction algorithm I-
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TASSER, other newly derived inter-chain potential terms were added to recreate the uniqueness 

of the protein-protein interface in a course-grained fashion. 

 

The TACOS simulation parameters were trained on a non-redundant set of 150 dimeric protein 

structures and tested on an independent 350 protein dataset. No homologous templates with ≥ 30% 

sequence identity to the query were used for either training or testing. Despite this, TACOS 

performs well and can predict full length structures with the same basic fold as the target when a 

confident template is identified. In 44% of the cases the final TACOS models meets the CAPRI 

requirements for an acceptable solution. TACOS also tends to make improvements in the starting 

aligned regions.  

 

Another important observation noted was that TACOS performed better overall for certain 

structural classes of protein complexes. Generally complexes with the majority of secondary 

structure as alpha helixes were the easiest to model. Targets that had substantial interface structure 

consisting of beta sheets tended to be more difficult to generate higher resolution structures. The 

performance of TACOS is greater for homodimers than for heterodimers due to the depth of 

homodimer templates in the PDB. 

 

TACOS thus represents one of the first algorithms designed to predict the structure of dimeric 

protein complexes given the sequence alone. Importantly, TACOS capabilities will improve with 

time as the depth of the protein complex structure library will continue to grow in the years to 

come. Also, since TACOS models both chains simultaneously while taking into account their 

relative orientation, it can potentially model the conformational changes brought about by complex 

formation, a task that is difficult to do currently with rigid body docking algorithms. The TACOS 

algorithms can be used freely by the academic community through the web-server made available 

at http://zhanglab.ccmb.med.umich.edu/TACOS/. 

  

http://zhanglab.ccmb.med.umich.edu/TACOS/
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5. CHAPTER 5. Conclusions 

 

Predicting the structure and function of proteins from sequence is a forefront problem in 

computational biology. Over the last few years there have been many advances for predicting 

tertiary structures using primarily two approaches: ab initio (free modeling) and template based 

modelling with the latter showing promise for generating high quality structural models [171, 178]. 

While the first approach attempts to model a protein solely using an energy potential, the second 

approach incorporates spatial restraints from identified homologous proteins. Although the 

majority of recent protocols have focused on predicting protein tertiary folds, the function of 

proteins vastly occurs at the quaternary level where multiple protein chains assemble into one large 

complex. The most common approach to assembling complexes is docking, where a 6-dimensional 

search is performed to identify the interface, but in many cases the correct structure is not identified 

[71, 127]. Fortunately in recent years the number of available quaternary structures has grown 

substantially allowing template based modeling to be incorporated into quaternary structure 

prediction [16]. Here the state of the art template based modeling pipeline I-TASSER is extended 

to handle quaternary structure. In this dissertation, I developed methods for the three main 

challenges regarding the extension of template based modeling to quaternary structure prediction: 

identifying homologs in the PDB, increasing the number of interfaces in the dimer library, and 

refining the initial model towards the correct structure. 

 

The first and most essential component of template based modeling is correctly identifying a 

homolog to the target in the PDB Library. I have developed a threading method, SPRING, to 

address the first requirement. SPRING uses monomer threading to identify protein complexes. The 

monomer protein structures are connected to its binding partners obtained from the PDB. A 

precalculated look up table assesses whether a pair of monomeric templates are structurally similar 

to an interacting pair of proteins in the Dimer Library. After a set of dimer templates are identified, 

the dimer template models are ranked by the tertiary similarity to the top ranked monomer model, 
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the threading Z-score and an interface potential calculated with DFIRE [88]. Similar to the 

monomer threading case for deep distant homology searches, no single algorithm can recognize 

all of the homologs. Hence, several algorithms are run in a meta threading approach to identify 

protein homologs. Thus, I combined SPRING with a previously created threading program, 

COTH, in order to recognize lower homology quaternary templates. COTH, an extension of the 

MUSTER algorithm with an incorporated interface profile, treats dimers as artificial monomers 

during the alignment. Using updated protocols and databases (incorporating all biomolecules) for 

SPRING and COTH, I ran them on a benchmark set of 1830 structures at 30% sequence identity 

threshold to evaluate their performances. COTH and SPRING identified 948 and 953 hits 

respectively, within the top 10 structures. Combining the identified structures from SPRING and 

COTH, threading were able to identify 1046 hits with an overall improvement of 5.3% and 5.1% 

compared to COTH and SPRING, respectively. Despite the improvement in template 

identification, the consensus program misses 42.8% of the target set due to the lack of 

representation in the PDB. 

 

The major limitation of the template based modeling for quaternary structures is the scarcity of 

suitable templates in the Dimer Library. Even with a perfect quaternary threading alignment 

program the limited size of the dimeric information in the PDB would prevent most targets from 

being modelled using template based methods.  Here I assessed the current limitations of the dimer 

library and threading algorithms as well as incorporating the interface information between 

domains within single polypeptide chains in order to boost the dimer library. Structural alignment 

under benchmark exclusion settings was only able to identify a suitable template 48.7% of the time 

due to the sparsity of the dimer library.  The limited number of dimer interactions restricts template 

based prediction and modeling of dimer interactions. However, it has been shown that the interface 

between domains within and between protein chains have structural similarity. Incorporating 

domain interfaces into the modeling of protein complexes improved template recognition overall 

by 1.7% and by 40% for heterodimers. The incorporation of domain orientations within the dimer 

library allows for a larger set of protein interactions to be confidently modelled. 

 

Although threading can provide structural frameworks of dimeric interactions they often only 

produce partial Cα trace structures. To this effect, I developed a sequence to full atom structure 



84 
 

pipeline, TACOS. Starting from fragmented templates identified from SPRING/COTH initial full 

length models are built by connecting fragments using a random walk. The TACOS 

conformational search uses a hybrid comparative modeling-ab initio approach to generate a model 

that is closer to the native like structure. A combination of monomeric spatial restraints from 

LOMETS and interface restraints from COTH/SPRING are merged with physical potentials 

inherited from I-TASSER along with its replica exchange Monte Carlo search engine to refine the 

initial model towards a more native topology. Given a confident set of templates, the energy score 

on average has a correlation of 0.79 with the TM-score. The TACOS pipeline was tested against 

two independent methods: homology models built by MODELLER and I-TASSER models of the 

constituent chains docked by ZDOCK. TACOS outperformed both methods in terms of model 

ranking, global and interface evaluation scores. 

 

Most high order biological processes occur at the quaternary level, which necessitates determining 

the final assembly of protein chains fundamental in order to understand cell physiology. Structural 

information around a proteins interface can provide significant insight into which residues are 

essential for binding and which residues are most susceptible to disease related mutations. 

Furthermore query alignments to structures in the PDB can provide further validation of 

interactions determined by large scale low confident experiments. Due to the importance of 

determining and modeling protein quaternary structure, the developed methods were integrated 

into a webserver to provide easy access to the general scientific community. The methods 

presented in this dissertation are available as three separate webservers hosted at 

http://zhanglab.ccmb.med.umich.edu/.  

 

5.1 Future Directions 

5.1.1 Improving the TACOS Pipeline 

As shown in chapter two there is a gap between the templates that are readily available in the PDB 

library and those identified by SPRING. Currently, SPRING only uses HHsearch for its 

monomeric search. However, previous research has shown [14], meta-threading programs 

consistently outperform the constituent threading algorithms. Here, LOMETS can simply be 

exchanged for HHsearch with regard to identifying monomeric templates for SPRING. 

Additionally the precalculated lookup table was created using a simple blast alignment which can 

http://zhanglab.ccmb.med.umich.edu/
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easily be replaced with structural alignment using TM-align. This should further allow for mapping 

monomers to dimeric templates with low homology. 

 

Often the dimer template frameworks represent a small portion of the whole dimer complex 

causing extensive loop regions. An alternative is to try to structurally dock the top monomer into 

the image using structural alignment, but this may lead to heavy clashes or loss of interface 

structure. Another alternative is to try to dock it into the framework, but this reverts the assembly 

back into the fundamental problem that TACOS is trying to circumvent. A quick alternative is to 

use I-TASSER models as restraints in the creation of an initial model. A weighted RMSD, to 

emphasize restraints on consensus regions, with a simple interface potential can potentially quickly 

construct strong starting conformations before the template refinement by the full TACOS 

simulation. Additionally, the other forms of docking models into dimer frameworks can be 

incorporated and ranked by the TACOS energy to recognize strong starting conformations before 

the standard simulation takes place. 

 

5.1.2 Genome Wide Modeling of E. coli 

The entire E. coli genome was modelled by the structure prediction pipelines I-TASSER and 

QUARK. Using SPRING 46,033 dimer complexes were predicted in the E. coli. Using the 

pregenerated data from I-TASSER and QUARK [179], TACOS can be used to refine and assemble 

the predicted protein dimeric interactions. The models from I-TASSER and QUARK can be used 

in the initial stage of dimer threading to identify distant homology complexes and improve 

recognition of conserved binding residues at the interface. 

 

5.1.3 Extending TACOS to Higher Order Quaternary Assemblies 

Extending the threading and modeling protocols to higher order structures is technically a straight 

forward process. SPRING would only require threading additional sequences and searching for a 

single PDB files that contain all of the constituent templates. The virtual bond trick used in TACOS 

to treat the dimer as an artificial monomer can be extended to as many protein chains as needed. 

The main limitations would be the size of the system being modelled and the limited number of 

large quaternary structures in the PDB. 
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5.1.4 Structural Models as a Feature for Prediction of Interface Mutation Stability 

Many disease mutations in the human genome have been found to be present at the interface 

between proteins, suggesting many disease disrupt protein interaction networks [180]. A recent 

method in the Zhang Lab was developed to predict the effect of point mutations on the stability of 

protein interfaces [165]. The prediction accuracy should be improved by incorporating structural 

models as features into the prediction. Incorporating high quality structural models into function 

prediction generally results in better prediction algorithms.  
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