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ABSTRACT 

 

Owing to their polyelectrolyte-like character, nucleic acids are known to form nanoparticulate 

structures/aggregates (polyplexes) with polycationic polymers (POCPs), which are of particular interest 

in biology due to their ability to deliver therapeutic nucleic acids. However, very little knowledge exists 

on the structure and dynamics of these complex particles at the molecular/atomic level. In addition, 

experimental descriptions of solvent environment close to interacting surfaces that can arise due to the 

heterogeneity of counterion distributions is also lacking in the field. Such details of structure and 

dynamics of polyplex components can significantly affect polyplex structural organization as well as its 

response to endogenous molecules in the intracellular environment. 

Leveraging solution NMR techniques, we obtain information on the site-specific structure and 

dynamics of polyplex components. Results on a model polyplex of a short hairpin RNA, the 29-

nucleotide transactivation response element (TAR) from the human immunodeficiency virus type 1 

(HIV-1) and PEGylated G5-PAMAM (G5-PEG) show that while the RNA exit, in rapid intermolecular 

exchange between free and bound forms, no significant change in its structure or fast dynamics is 

observed upon polyplex formation at low N:P ratios. However, structural perturbations at N:P ratios > 1 

cannot not be ruled out owing to low signal from RNA. DLS measurements reveal polydisperse 

polyplexes with the majority of polyplexes having small average size consistent with the size measured 

using NMR relaxation parameters. In addition, using fluorescently tagged and untagged RNA, it was 

demonstrated that the RNA in the complexes can be competitively exchanged rapidly in solution over a 

wide range of N:P ratios. Combining these studies we provide a picture of polyplexes as dynamic 

assemblies in which the bound nucleic acid are capable of intermolecular exchange. Such a dynamic 
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exchange could potentially provide mechanisms for intracellular release of delivered therapeutic nucleic 

acids. 

We use prototropic/solvatochromic fluorescein dye to characterize the local solvent environments in 

these complexes. It is observed that the nucleic acid-POCP interactions gives rise to unique 

microenvironments with solvent properties like local pH being significantly different than that of bulk 

solution. The magnitude of local changes is highly dependent on the polymer type, with branched 

polymers displaying more acidic microenvironments compared to linear polymers. This data 

demonstrates that polymer structural details play a key role in defining the heterogeneity in local solvent 

environments in polyplexes. 

We also show that the polyplex environment does not disrupt the functional structure and thus the 

catalytic activity of nucleic acids. Moreover, the product yields are enhanced at higher N:P ratios with 

POCPs that favor exchange of bound RNA under ribozyme excess conditions. The enhancement of 

observed rates, however, is observed only for mutants (sequentially elongated at one of the helices) that 

are less active than the wild type. This suggests that the POCP environment can help overcome the rate 

limiting conditions imposed by the mutation. While the rate limiting steps in the RNA catalysis with and 

without POCP are yet to be elucidated, it is clear from our results that the structural details of the nucleic 

acid and POCP can determine the structural organization of polyplexes, local microenvironment, and 

exchange dynamics in a way that can affect the function of catalytic RNA. 
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CHAPTER 1 INTRODUCTION 

Complexes of polycationic polymers (POCP) and nucleic acids (polyplexes) have long been of interest 

to several areas of physics, chemistry, and biology. Nucleic acid themselves being highly charged 

polymer chains, polyplexes present a special case of the classic polymer physics problem of 

polyelectrolyte complexation.1-3 Despite having a long history of almost three centuries, understanding 

the precise nature of interactions in such polyelectrolyte complexes (PEC) remains a challenge. The 

complexity arises due to the presence of interactions at different length scales; short-range excluded 

volume, long-range columbic, and counterion screening induced intermediate length scale interactions.4 

Moreover, the local structure and dynamics of the constituent polymers, as well as those of solvent 

molecules (water and ions) adds complexity to understanding PECs.5,6 Even the main driving force of 

association, whether it is entropic or electrostatic, is still actively tested, both theoretically and 

experimentally.7 In addition, since the highly charged surfaces of POCPs and nucleic acids in aqueous 

environments are associated with counterions, large effects on the local solvent and ions is expected 

upon complex formation ultimately affecting the chemical properties such as changes in pH, pKa, and 

local counterion concentrations.8-10 With respect to biology, polyplexes have been used as model systems 

to understand how thousands of base-pair long genomic DNA molecules are effectively packaged inside 

seemingly small cellular compartment.6,11 Packaging of long RNA chains is also essential for viruses that 

use RNA as their genome. A second thrust of biological application that spurred interest in study of 

these complex systems is the delivery of therapeutic nucleic acids like plasmid DNA (pDNA) and 

oligonucleotides such as siRNA, antisense RNA/DNA, miRNA, ribozymes and deoxyribozymes to target 

cells.12-14 While there is significant literature on the biological application of a variety of different 

polyplex systems, the mechanistic pathways are not yet elucidated.15,16 Studies have shown correlations 

of knockdown/transfection efficiencies of therapeutic RNA polyplexes with modulations of POCP 
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properties.17-21 However, a molecular-level understanding of these correlations continues to elude the 

field resulting in poor understanding of the relationship between polyplex structure/dynamics and 

function.22,23 

1.1 The Interaction between Oppositely Charged Polymers: Historical Perspective 

The realization of “electrostatic” nature of interaction between two oppositely charged polymers has 

been credited to Kossel,24 who, after his discovery of complexes of nucleic acids with the then empirically 

termed substance “histone” in 1884, described the interaction as “salt-like” linkages. Histone was later 

confirmed to be a charged protein (a polymer of amino acids). In 1934 Willstatter in his studies of 

complexes of polyionic synthetic and natural polymers termed the complexes as “simplexes” as they 

could form under simple mixing conditions. Bungenberg de Jong and Kyut25 are often credited for 

carrying out more conclusive studies of ionic interactions between naturally occurring polymers during 

the 1930s and 1940s. They proposed the term “coacervation” to describe the observed phase separation 

of the complexes. After the observation by Fuoss and Sadek26 in 1949 of precipitates of oppositely 

charged strongly acidic/basic synthetic polymers and by Michaels27 in 1961 on preparation of well 

defined 1:1 stoichiometric complexes, there was a surge of interest in understanding the phenomenon of 

polyelectrolyte complexation and the structure and composition of resulting complexes. Industrial 

application of multilayer thin-films of PECs further fuelled the studies. Systematic studies by Tuschida et 

al.28 and Kabanov et al.1 in the 1970s and 1980s showed that soluble PECs could be formed between 

oppositely charged polyions with weak ionic groups that differed in the degree of polymerization 

(molecular weights). Although the realization that the interaction with natural polyamines could lead to 

a compact state of DNA was much older, the interest in understanding the physical origin of the 

interaction sparked around late 1970s when it was shown that very long DNA molecules could be 

packed by such polyamines into nanometer sized, often toroidal particles in vitro.29-32 Formation of 

similar structures was also observed for cationic polypeptides such as poly(lysine)33 and histone H1.34 In 

the late 1980s, it was demonstrated that DNA in the form of PECs with linear polycations, could be 

delivered and expressed in cells.35-37 As the field of therapeutic nucleic acids grew, in particular after 
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discovery of antisense oligonucleotides and RNAi nucleic acids in the 1990s,38 and more recent 

Crisper/Cas9, POCPs has garnered more attention as delivery vehicles. Several POCPs have even been 

tested in clinical trials (Table 1) as delivery vectors either stand alone or in combination with lipids, 

proteins, and inactivated viruses. Consequently, such prospective applications of POCPs have generated 

a huge amount of interest in understanding their complexes with nucleic acids and their mechanism of 

action. 

Table 1 Polyplexes in human clinical trials 

 

 

 

 

 

 

 

 

 

 

1.2 Interplay of Nucleic Acid Structure, Electrostatics, and Counterion Distribution 

The building block of nucleic acids (Figure 1.1), termed nucleotide, comprises a phosphate group, a 

sugar moiety (ribose or deoxyribose), and a nitrogenous base (purine or pyrimidine). Owing to very low 

pKa (~1.5), the phosphate group in the sugar-phosphate backbone is readily deprotonated in solution 

resulting into a negative charge per nucleotide. Although the nitrogenous bases can also be ionized 

under extreme pH or unique local structural environments,39,40 major contribution to the net charge on 

the nucleic acid chain is due to the phosphate and hence the polyelectrolyte character. The charges in 

any polyelectrolyte chain in solution, however, are surrounded by counterions and depending upon the 

amount of added salt, charges are “screened” to different extents. The electrostatic interaction between 

Polymer vector Nucleic Acid Disease 

Transferrin-PLL IL-2 pDNA Melanoma 

PEG-PLL CFTR pDNA Cystic fibrosis 

PEI DT-A pDNA Bladder cancer 

PEG-PEI-cholesterol IL-12 pDNA Ovarian cancer 

Transferrin-cyclodextrin-oligocation RRM2 siRNA Solid tumors 

PEI-mannose-dextrose HIV antigen coding pDNA HIV  

Tri-NAG-oligoamide conjugate TTR siRNA TTR amyloidosis 

Biodegradable polymer (LODER) KRAS siRNA  Pancreatic Cancer 
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charged residues reduces due to “screening” and with the “screening” effect decreasing exponentially 

with distance.41 Although it has been difficult to quantitatively describe the nature of the counterion 

distribution around polyelectrolyte chains, it is expected that the structure of the chains dictate the 

counterion distribution. On the reverse, their counterion environment is expected to have large effects 

on structural aspects such as chain stiffness and conformation. Therefore, while a large electrostatic 

energy barrier due to repulsive interactions needs to be overcome when nucleic acids chains come 

together in space either during annealing of two base-complementary polynucleotide chains to form 

double stranded helices, tertiary folding, or compaction by proteins or polycations, these processes still 

occur as a result of the interaction of the nucleic acid with its ion atmosphere.42-44 

Besides existing in nature as two distinct chemical forms (DNA and RNA), nucleic acids also occur 

in a variety of different architectures. The genomic DNA is double stranded (base paired) and thousands 

of base pairs long. RNA on the other hand is shorter and exist as single strands more frequently, for e.g., 

either as very short single stranded molecules or longer RNA with base-paired and unpaired sequences 

folded into complex three-dimensional architectures resulting in regions of distinct electrostatic 

potential.45 Theoretical predictions46 as well as emerging new experimental studies47,48 show that the 

electrostatic interactions of nucleic acids with small counterions or polycations significantly depend on 

their details of their molecular architecture. 
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Figure 1.1 Structure of nucleic acids. (a) Chemical representation of DNA and RNA. Polynucleotide 

chains with deprotonated phosphate groups (top). Watson-Crick pairing between nucleotide bases 

(bottom) (b) Structural differences between B-form DNA and A-form RNA. (c) Topology of nucleic 

acid chains. Single stranded DNA and RNA modeled as WLC highlighting, difference in the contour 

lengths. (d) Crystal structures of two RNA molecules that form tertiary contacts. PDB ID 4OJI (left) 

4QJH (right)   
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1.2.1 Double Helical DNA and RNA 

A double stranded helical structure of nucleic acid is formed upon hydrogen bond pairing of the 

nitrogenous bases of two polynucleotide chains. Double helical nucleic acids are known to exist in 

different forms classified as A-form, B-form, and Z-form; B-form and A-form being the most common 

for double stranded DNA (dsDNA) and double stranded RNA (dsRNA) respectively. The A-form RNA 

is shorter and wider compared to B-form DNA of the same base pair length. Its major grove is deeper 

and narrower and the minor groove is shallower. The bases are displaced to a greater degree from their 

helical axis compared to the B-form DNA. The A-form RNA is more rigid and has been shown to have 

longer persistent length (60 nm).49 Even though there is same number of negative charges per base pair, 

due to shorter rise per base pair (~2.8 Å vs. ~3.4 Å), the A-form RNA has increased linear charged 

density compared to B-form DNA. Owing to the charge density differences, theories based on simple 

electrostatics predict that the counterion distribution will be different between the A-form and B-form. 

Pabit et al., based on SAXS and ASAXS measurements, showed that counterions screen the charges of 

dsRNA at much lower ionic strength due to closer proximity of the counterions to the helical axis 

compared to dsDNA.48 Therefore, purely based on electrostatic differences arising due to the details of 

the helix geometry, differences in the recognition of A-form RNA vs. B-form DNA by binding ligands or 

charged polyions can be expected. 

1.2.1.1 Plasmid DNA 

The pDNA molecule naturally occurs in bacteria and some eukaryotes and is used by those cells to 

export certain genes. It is circular, double stranded, and much smaller than the genomic DNA. Naturally 

occurring pDNA are supercoiled, however more relaxed forms such as nicked (cut at one of the strands), 

or linearized (both strands cut) are also used for gene delivery. It has been observed that binding affinity 

with POCPs, polyplex size, and exchange reactions are dependent on pDNA topology.47 Higher binding 

affinities and smaller average sizes have been observed for supercoiled pDNA polyplexes compared to 

linear and nicked. Nuclease resistance and uptake has also been found to be greater for polyplexes of 

supercoiled pDNA.50,51 It has been argued that higher charge density of supercoiled DNA and thus 
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increased number of condensed monovalent counterions should result in more favorable interaction 

with POCPs.47 

1.2.1.2 siRNA 

siRNA molecules are naturally produced in cells by enzymatic cleavage of longer double stranded 

RNA molecules as a part of the RNA interference (RNAi) mechanism that leads to destruction of certain 

mRNA (process termed gene silencing). These are small double stranded nucleic acids with typically 19 

base pairs and symmetric 2-nt overhangs at the 3’ end and a phosphate at the 5’ end of the target 

complementary strand (antisense strand). The double stranded region takes the A-form geometry52,53 

while the terminal base pairs show lower duplex stability54 that could be sequence dependent. While 

sequence dependence of siRNA and POCP interactions is not known, it was found that when 5 to 8-nt 

long complementary overhangs at the 3’ ends of both strands were introduced, enhanced silencing 

activity was observed when delivered using PEI. This was conjectured to be due to increased stability of 

the polyplexes due to increased interaction resulting from formation of siRNA concatemers55 thus 

suggesting that the structure of siRNA can play a role in determining interaction with POCP. 

1.2.2 Single Stranded DNA and RNA Oligonucleotides 

Although single stranded nucleic acids having sequential adenine residues (A-tract) tend to be 

structured (helical) due to the highly favorable stacking interaction of adjacent adenines, unstructured 

single stranded nucleic acids are more flexible compared to dsDNA or dsRNA of same length.40 The 

single stranded forms have a lower linear charge density than the double helical forms, therefore from 

the viewpoint of electrostatics, the free energy of binding of single stranded vs double stranded nucleic 

acids to counter ions are expected to be significantly different. Further more differences exist between 

single stranded RNA (ssRNA) and single stranded DNA (ssDNA) oligonucleotides with respect to 

flexibility. Using SAXS and single molecule FRET based experiments and assuming the WLC model, it 

was found that even for the most unstructured ssRNA, poly(uridine), longer persistence length and 

shorter contour length compared to the single ssDNA counterpart, poly(thymidine).56  
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1.2.2.1 Antisense Oligos 

Antisense oligonucleotides (asOligos) are short single stranded DNA/RNA about 13-25 nt long with 

sequences complementary to target mRNA. While homopolymeric oligonucleotides do not have intra 

strand base pairing asOligos can fold into hairpin structures if the sequence permits intra strand base 

pairs. Surveys57 of asOligo based antisense experiments have shown that the asOligos that are more 

efficient have greater thermodynamic preference for forming duplexes with target mRNA compared to 

self-interaction. However, asOligo structure based interaction with POCP can also be a contributing 

factor to the apparent antisense activity reported in cell-based assays. It has been reported that even 

when there are only few base pairs, hairpin asOligos have significantly higher binding affinity with 

POCP and lower release rates form polyplexes compared to asOligo of same nucleotide length.58  

1.2.3 Complex Tertiary Folded RNA 

Several naturally occurring RNA molecules are known have single stranded and double stranded 

helical regions folded into complex tertiary conformations. While the topological constraints imposed 

by secondary structure of the RNA can restrict the conformational ensemble to a predisposed subset of 

folded structures,59 folding per se is energetically unfavorable due to the dominant repulsive interactions 

of the phosphate groups. For e.g. the electrostatic repulsion energy of a ~400 nt RNA is calculated to be 

~600 kcal/mol44 which is substantially larger than the energy gained by base pairing and base stacking 

interactions. Presence of simple salts, however, favors the folded structures mostly attributed to, in 

simple terms, “screening” of the repulsive interactions. For example, it was observed that at very low 

monovalent salt concentrations the P4-P6 domain of tetrahymena ribozyme existed in an extended 

conformation while at ~100 mM salt the structure was more relaxed and disordered.60 At much higher 

(ten fold) concentration, the RNA structure could fold into near-native structures forming tertiary 

contacts. 

It is generally accepted that metal ions are located within few angstroms of the nucleic acid surface 

and that they are capable of exchanging to the bulk, although precisely describing the ion atmosphere 

around intricately folded nucleic acids is challenging both experimentally and theoretically. Nonetheless, 
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it has been clear that the local atomic details are important in defining the interaction with the 

surrounding ions and consequently affect interactions with binding ligands.61 Calculation of electrostatic 

potentials of folded RNA structures have shown that regions of distinct electrostatic potentials exist 

which could provide specificity in interactions of nucleic acids with divalent metal ions and binding 

ligands.45 As discussed in earlier sections, even apparently small differences in charge density arising due 

to differences the nucleic acid structure can affects its interaction with POCPs. However, there are only 

few systematic studies on how the structure of nucleic acids with complex three-dimensional 

architectures influences the interaction with POCPs. Such studies would be of interest not only from the 

fundamental point of view, but can be informative from the design point of view for delivery of catalytic 

nucleic acids for therapy. 

1.3 Common Nucleic Acid Delivery Polymers and the Role of Structure in their Protonation 

Behaviour  

Figure 1.2 shows the chemical structures of a variety of POCP platforms used in nucleic acid 

delivery. The first generation polycations used in delivery of viral genomes and pDNA (process termed 

as transfection) were diethylaminoethyl (DEAE) dextran,62,63 PLL,64 poly (L-Ornithine) (PLO), poly (L-

Arginine) (PLR).65 These POCPs were pendant-type (i.e. cationic groups on the side chains) with all 

cationic groups protonated at physiological pH. Later much of the attention shifted to integral-type (i.e. 

cationic groups on the backbone) weak polyelectrolyte POCPs that had significant buffering capacity; i.e 

only partially protonated at neutral pH, but at levels enough to bind nucleic acid, while increasing 

protonation levels at lower pH. One such example is the lPEI,66-68 which is a very efficient transfection 

agent. The high transfection efficiency of lPEI led Boussif et al. 69 to propose that the delivered pDNA is 

released from lysosomes due to their buffering capacity, the so called “proton sponge” hypothesis. The 

validity of “proton sponge” hypothesis is still debated;68 nonetheless the discovery of high transfection 

ability of PEI led to significant amount of research on polyplexes of amine-based polyelectrolytes having 

significant buffer capacity. Branched PEI and PAMAM dendrimers are the other two commonly studied 

POCPs. Branched and dendrimeric polymers have gained attention do to the high density of functional 
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groups that can be readily functionalized to achieve multifunctionality.70,71 Cyclodextrins 72 are another 

class of naturally occurring polymers that have been modified to contain different cationic and 

functional groups. 

As encountered in section 1.2, the structure of a polyelectrolyte and the counterion distribution in 

polyelectrolyte chains are intimately related which in turn influence the recognition and binding 

interaction with oppositely charged polyions. Besides the chemical nature of the ionizable groups, 

structural aspects such as the distance between the repeating ionizable units, whether they are located on 

the backbone or the side chain, and whether the overall polymer topology is linear or branched influence 

the protonation behavior of POCPs. The section describes in greater detail more widely employed 

POCPs; poly-L-Lysine (PLL), poly(ethylenimine) (PEI), and poly(amidoamine) (PAMAM) dendrimers 

(Figure 1.2) and with respect to their structure and protonation behavior. All these polymers have amine 

groups that can be protonated at physiological pH allowing for polyvalent electrostatic interactions with 

the negatively charged nucleic acids. 
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Figure 1.2 Chemical structure of common polycationc polymers for therapeutic nucleic acid delivery. 

Cyclodextrin, dextran, and chitosan are naturally occurring polymers. PLL, PLR, PEI, and PAMAM 

dendrimers are synthetic polymers. The primary amine groups that are readily protonated at 

physiological pH are shown as having positive charge. 

1.3.1 Poly-L-Lysine 

PLL polymers were one of the first polycationic polymers demonstrating the ability to deliver nucleic 

acids into cells.35 PLL is synthesized using a ring-opening polymerization of N-carboxy-(N-
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benzyloxycarbonyl)-L-lysine anhydride using a primary amine initiator, with the ratio of L-lysine 

monomer to initiator determining the molecular weight of the PLL chain. The anhydride is obtained 

from conversion of ξ-amine protected L-lysine.73 Each repeating unit of PLL contains L-lysine side 

chain, which has a primary amine in the ξ position (Figure 1.2). The pKa of the primary amines in 

aqueous solution is 9.8574,75 hence at physiological pH each residue of PLL is capable of being protonated 

and interacting with nucleic acid phosphates. 

While the charge per length of PLL is higher compared to lPEI, another most commonly employed 

linear POCP (described in the section below), computational studies76,77 have shown that the charge 

compensation upon interacting with the nucleic acid chain is not as effective thus resulting into overall 

weaker binding. This is a result of charges being located on the side chain instead of the backbone as in 

lPEI. The primary amine in PLL is separated from the backbone by four methylene units that provide a 

steric limit to interaction with DNA/RNA phosphates. Thus simply accounting for the total charges in a 

POCP is not sufficient to understand its interaction with nucleic acids. Moreover, it is also fairly well 

established PLL adopts various secondary structures depending on solution conditions.74,75,78-80 Due to 

the repulsive interactions of protonated primary amines, at pH < 7 PLL mostly assumes extended 

secondary structures. At pH 2 the ratio of PII helix conformation to extended β-helix was reported to be 

60:40. Increase of pH stabilizes α-helical (at pH ~11.6 the conformation is mostly α-helical).80 Therefore, 

the interaction of PLL with nucleic acids can be expected to depend on its protonated state, both due to 

amount of total charge as well as differences in the secondary structures. 

1.3.2 Poly(ethyleneimine) 

PEI polymers can be synthesized as linear or branched chains. The branched forms are synthesized 

via an acid-catalyzed polymerization scheme of aziridine, whereas the linear forms are synthesized using 

ring-opening polymerization of 2-ethyl-2-oxazoline followed by hydrolysis.73 Comparing the two forms 

of PEI, chemically they are very similar with every third atom being protonable (monomer unit -CH2-

CH2-NH-). However, they differ significantly in the arrangement of protonated sites along the main 

chain. The hyperbranched architecture of bPEI results in primary, secondary, and tertiary amines in an 
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estimated ratio 1:2:1. lPEI only has secondary amines except at the chain end which is terminated by 

primary amine. Under physiological pH and salt, the protonated sites in lPEI alternate with un-

protonated sites along the chain.81 In bPEI, there is an additional energetic penalty to protonate the 

already acidic tertiary amines due electrostatic effects from three easily protonable neighboring primary 

or secondary nitrogen atoms.82 Secondly, the branched topology makes bPEI more rigid compared to 

lPEI.83 Differences in the arrangement of protonated sites along with differences in chain flexibility have 

been often attributed to different modes of binding83 with nucleic acid molecules subsequently leading to 

differences in the hierarchical assembly. However, due to large variations in molecular weight 

distribution, accurate quantification of protonable amines in each PEI polymer chain by ensemble 

techniques becomes difficult.  

1.3.3 Poly(amidoamine) dendrimers 

The interest in dendrimers, in general, is due to the ability to achieve superior molecular weight 

homogeneity and thus control the surface charge density and functional group modifications. The 

dendrimer structure can be distinguished into three regions; a core, an interior, and the surface the 

functionality each of which determines the dendrimer 3D structure. The surface groups are important in 

determining the solubility of the dendrimers. Both the ionic groups terminating the surface and 

covalently attached hydrophilic groups can be used to impart solubility. 

PAMAM dendrimers are one of the first dendrimeric polymers synthesized and have been 

extensively studied for applications in drug and nucleic acid delivery and are commercially available. 

The synthesis involves Michael addition of an amine initiator core with methyl acrylate and amidation of 

resulting esters. The steps are repeated multiple times depending on the desired number of successive 

(generation, Gn) layers.84 The theoretical84 molecular mass, number of surface groups, and size for G0- 

G9 using an ethylenediamine core are given in Table 2 (Dendritech, Inc.). Although studies have shown 

that defects and synthesis failures can lead to deviations from theoretically predicted values, dendrimers 

are nonetheless well-defined at the molecular level as compared to most polymers. 
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Table 2 Generation dependent theoretical molecular weight, number of surface groups, and diameters 

of PAMAM dendrimers  

 

 

 

 

 

 

 

 

 

 

 

 

 

Several simulations and theory reveal generation dependent properties of PAMAM dendrimers.85 

For e.g, low generation (G0-G3) mostly behave like small molecules in solution while the higher 

generation PAMAM tend to behave like colloidal/nanoparticles. PAMAM dendrimers are sometimes 

also referred to as synthetic proteins owing to the network of amide bonds (Figure 1.2). The tertiary 

amines provide branching points while the surface terminates with primary amines. These amines can 

be protonated to different extent depending on solution pH imparting polyelectrolyte character. The 

primary amines have higher pKa than the tertiary amines. Due to the high pKa of primary amines they 

are easily protonated at physiological pH while the tertiary amines do not protonate until very low pH 

(<4) is reached.84,86 In general, due to large number of charged units polyelectrolytes are expected to 

show pH dependent conformational changes.87 Several computational and theoretical and some 

experimental studies have reported pH dependent conformation behavior of PAMAM dendrimers.88,89 

Generation Molecular Weight Number of 
Surface Groups 

Diameter (Å) 

0 517 4 15 

1 1430 8 22 

2 3,256 16 29 

3 6,909 32 36 

4 14,215 64 45 

5 28,826 128 54 

6 58,048 256 67 

7 116,493 512 81 

8 233,383 1024 97 

9 467,162 2048 114 
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While some discrepancies exist between computation and experiments,90 computational studies have 

suggested conformational transition from a “dense core” to a “dense shell” upon decreasing pH.88 Such 

particular interest in pH behavior of PAMAM is fueled by the possible implications in pH dependent 

release of bound small molecule drugs and nucleic acids. 

1.4 Polyelectrolyte Complexes of Nucleic Acid/ POCPs 

In the field of therapeutic nucleic acid delivery, it is more common to use the term polyplex for 

complexes of nucleic acids and POCPs.91 While the nucleic acid displays a strong polyelectrolyte 

character owing to the fully charged phosphate backbone, the POCPs employed in delivery of nucleic 

acids (Figure 1.2) often carry weakly dissociating functional groups such as amines and carboxyl groups. 

Polyplexes therefore share several general physicochemical properties of synthetic PECs involving weak 

polyelectrolytes. Moreover, several theoretical and experimental concepts from polyelectrolyte 

complexation can be applied to understand the physical origins of the observed physicochemical 

properties of polyplexes, principles of supramolecular assembly, role of counterions, kinetics and 

thermodynamics of intramolecular exchange reactions, and role of structure and dynamics of 

constituents. 

1.4.1 Physicochemical Properties 

The physicochemical properties of polyplexes depend on the concentrations of the components, 

concentrations of simple metal salts, pH, and presence of uncharged hydrophilic groups. The simplest 

parameter commonly used to describe the polyplexes is the mixing ratio of POCP to nucleic acid, 

expressed as the total cationic charge to anionic charge molar ratio. This mixing ratio is often 

represented as N:P for polyplexes involving protonable nitrogen containing POCPs. Indeed how well-

defined the N:P ratio is depends to how precisely the molar charges can be estimated which is a 

challenge for polymers with molecular weight inhomogeneity. Several studies report a window of mixing 

ratios around a critical mixing ratio where the solution appears turbid or visible precipitate is observed 

compared to very high or very low mixing ratios. Early on Kabanov et al., based on their extensive 

studies of non-stoichiometric synthetic PECs mostly using methods such as light scattering, analytical 
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ultracentrifugation and fluorescence provided the following general explanation of the dependence of 

the on mixing ratios. A) Under conditions where the DNA (or the larger polyion) is in excess, non-

stoichiometric complexes are formed and due to the uncompensated charges of excess polyion the 

complexes remain soluble. B) The complex attains a critical non-stoichiometric composition up to a 

certain concentration of the polycation. Beyond this critical concentration, disproportionation occurs, 

i.e. stoichiometric complexes (complexes where the DNA charge is fully neutralized and hence 

hydrophobic) are formed in addition to the non-stoichiometric complexes of the critical composition. C) 

As the polycation concentration further increases, the population of stoichiometric complexes grows 

and thus the turbidity or precipitation while the population of non-stoichiometric complexes finally 

becomes null when mixing ratios attaining total charge neutrality is reached. D) Beyond a second critical 

composition, the stoichiometric complexes undergo reorganization forming non-stoichiometric 

complexes with excess of polycation, which help them to stay soluble in the solution.1,92 Since large 

numbers of charges are involved the physiochemical properties of such polyplexes significantly depend 

salt concentration, type of the metal salt, and factors such as pH and presence of hydrophilic groups that 

alter the charge density on the POCP as exemplified in the sections below. 

1.4.1.1 Effect of Salt 

The prediction of salt effects on PEC behavior is difficult due to several factors involved, such as 

chemical nature of the ionic groups and structure of the polymer and the type of salt. In general, for a 

giving mixing ratio (charge ratio), PECs are often prone to aggregation in absence and at very high 

concentrations of monovalent salts, while under small amounts of salts are more colloidally stable.93,94 

For polyplexes of pDNA and PAMAM dendrimers was observed using cryo TEM that aggregate size and 

morphology highly depends on salt concentration.95 At low salt (10 mM NaBr) polyplex size was 

independent of dendrimer generation whereas at high salt (150 mM NaBr) the size increases in a 

dendrimer generation dependent manner. Similarly, it has been observed via AFM and TEM, that sizes 

of siRNA/PAMAM polyplexes are much higher at 150 mM NaCl (800 nm –several µM) compared with 

those prepared in absence of salt (30-130 nm).96 From a theoretical standpoint it is generally postulated 
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that even when (primary) complexes have a net surface charge, they tend to aggregate at high salt 

concentrations due to “screening” leading to overcoming of the electrostatic repulsive interactions by 

short-range attractive forces.97 Effect of salt is important from the viewpoint of delivery to cells because 

due to aggregation in the extracellular environment polyplex uptake by cells is hindered. 

1.4.1.2 Effect of pH 

The pH of bulk solution is important especially for PECs involving polyions with weak ionic groups. 

Most of the second-generation POCPs for nucleic acid delivery weak ionic groups: for example PEI and 

PAMAM dendrimers. The protonation behavior of these polymers is discussed in the section 1.3. Several 

theoretical98,99 and experimental studies100-102 show that the strength of interaction depends on the 

charge density of the POCPs, which varies with the bulk solution pH. For e.g. the binding affinity of 

DNA-PEI at lower pH was found to be strong with the average polyplex size being larger. At basic pH, 

the binding was weaker; polyplex size is smaller with more uniform population.102  

1.4.1.3 Effect of Hydrophilic groups 

Due to the tendency of polyplexes to aggregate and precipitate, especially at high concentration and 

high salt environments,103-106 often POCPs or the polyplexes as a whole are conjugated to hydrophilic 

uncharged moieties. PEG is one of the most commonly employed hydrophilic polymer chain employed 

for this purpose.73,107 The general strategy is to PEGylate only a fraction of positively charged groups so 

that nucleic acids can still be complexed. Another strategy is to use block co-polymers with hydrophilic 

uncharged and charged units.19 The average sizes and polydispersity of such polyplexes are often 

reported to be much smaller.108,109 However, evidence exists in literature showing that the activity is 

highly dependent on the chemical nature110,111 and degree of polymerization19,109 of the hydrophilic 

moieties. 

1.4.2 Insights from DNA Condensation Theories 

Much of our understanding of polyplexes is based on the studies of polyplexes of DNA molecules 

much longer than the complexing POPCs. For e.g. the most common model DNA that have been used in 
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experimental studies are pDNA, calf thymus DNA (ctDNA), salmon sperm DNA having sizes > 2000 bp. 

However, as discussed in section 1.2, the local electrostatic properties and counterion distribution in 

nucleic acids are intimately linked to their local as well as global structure. Although expected to be 

important, it is not clearly understood to what extent such local details contribute to the assembly, 

structure and dynamics of polyplexes as the complex nature of the interactions makes polyplexes 

difficult systems to study both theoretically and experimentally. There are relatively fewer experimental 

studies23,112-123 focusing on the effect of the molecular/atomic and structural details of the nucleic acid 

and POCPs as opposed to a vast literature on use of polyplexes as delivery agents. Existing theories have 

mostly focused on understanding how long DNA molecules that behave as a random coil or worm-like 

chains in dilute solutions gets tightly packed in small volumes. This section summarizes the theoretical 

approaches developed to understand condensation DNA. 

Besides the description of the intrinsic polymer physics of the polyelectrolyte chains, much of the 

theoretical difficulty arises from accurately describing the role of counterions within a common 

theoretical framework. Very early on mean-field approaches such as Poisson-Boltzmann (PB) equation 

and Debye-Huckel (DH) approximations were popularly used to understand the interaction of small 

ions with polyelectrolytes modeled as charged cylinders in solution.5 Solutions to the former predict a 

continuous distribution of counterions around polyelectrolyte chain. Using the latter framework 

Manning pioneered the concept of “counterion condensation”124 which implies binding of counterions 

to polyelectrolyte chains even at infinite dilution. Presence of this “bound layer/cloud” of counterions 

then implies that the effective charge on a polyelectrolyte chain is lowered hence reducing the intrinsic 

electrostatic repulsive interactions between two like-charged polyelectrolyte chains. However, neither 

the PB nor the Manning theory directly predicts the attraction between two like-charged 

polyelectrolytes, as the mean-field force between two like charges is always repulsive.5 Theoretical 

conditions have been worked out under which two like-charged polyelectrolytes can be attracted to each 

other due to density fluctuations in their counterion “cloud” or due to correlations between counterions 

themselves. The condensed counterions are treated as being mobile rather than frozen at the 
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polyelectrolyte surface thus giving rise to thermal fluctuations.4,125,126 The correlated thermal 

fluctuations of condensed counterions when two like charged polyelectrolyte chains approach each other 

can lead to attractive interactions in a manner similar to Van der Waals attraction between polarizable 

molecules.4 

By treating the ions as “liquid-like” instead of randomly oriented, correlations between ions 

themselves can mediate attraction between like charged chains in presence of multivalent screening 

counterions. This concept was elegantly used by Shklovskii et al. to explain “charge inversion”, i.e. 

reversal of the sign of the net charge on a polyelectrolyte when an excess of counterions are bound.127 An 

application of this concept is the explanation of the phenomenon of reversal of direction of migration in 

observed in electrophoretic experiments on polyelectrolyte complexes.128 Such a reversal of 

electrophoretic migrations is observed for all polyelectrolyte complexes in aqueous solutions after a 

certain critical composition (positive to negative charge ratio) is reached, regardless of the structure, 

chemical nature, or size of polyelectrolytes involved. Another implication of “charge inversion” is the 

resolubilization of polyelectrolyte complexes that precipitate at charge ratios close to neutrality.128 

Charge inversion plays an important role in designing polyplexes for gene delivery as positively charged 

polyplex surface helps nucleic acids cross the negatively charged membrane barriers. 

Other theories to explain attractive forces between oppositely charged polyelectrolyte chains are the 

hydration force theory129 and electrostatic zipper.130 The so-called hydration force arises due to 

structuring of water by the charged units on the polyelectrolyte chain and the oppositely charged ions. 

The electrostatic zipper model treats the polyelectrolyte chains as inhomogenously charged rods rather 

than homogenously charged rods assumed in most other electrostatic models. This allows accounting 

for the correlations between the counterions themselves, the like charged units between two like charged 

chains as well as the charge on the chain and the screening counterion. However, the underlying 

theoretical principles behind the attractive interactions of oppositely charged helices are still debated due 

to several underlying assumptions and lack of sufficient experiments that definitively prove or disprove 

the theories. 



 20 

1.4.3 Condensation/Aggregation of Small Nucleic Acids Molecules 

Most POCPs that condense/compact large DNA are also capable of forming nanoparticulate 

complexes with small DNA or RNA molecules and have been explored as delivery agents. While the 

physical forces behind packing of nucleic acids much smaller than the persistence length into 

nanoscopic dimensions may be similar to that of large DNA molecules, the effect of huge differences in 

sizes cannot be ignored. Moreover, several reports have shown that POCPs that are effective for delivery 

of pDNA are not as effective for delivery and/or function of small nucleic acids under similar 

conditions.131 pDNA condensed with PEI (both branched and linear forms) have been shown to be 

effectively delivered and show activity (expression), with lPEI usually exhibiting higher efficiency.132 

However, while both linear and branched form of PEI could deliver siRNA, activity was achieved only 

for bPEI under relatively high (0.2 µM) siRNA concentrations.133 Similarly, a 20-nt asDNA could be 

successfully delivered with 25KDa bPEI however no antisense activity was obtained. While the 

differences in fate of the nucleic acid: whether they need to reach the cytosol (siRNA, asOligo, 

ribozymes), find the mRNA on their own (asOligo, ribozymes), or get transported into the nucleus 

(pDNA) is one of the limiting factors, differences in the chemical environment, structure and dynamics 

of the polyplexes cannot be ignored. In case of asOligos, using a systems modeling approach, Roth 

suggested that their ultimate activity depends more heavily on factors such as intracellular trafficking, 

rate of hybridization with target mRNA, and rate of nuclease degradation rather than transfection 

efficiency (crossing the cell membrane barrier).134 The latter, on the other hand, is critical for pDNA 

delivery as only one or few pDNA molecules are condensed in particle size capable of being transported 

through the cell membrane, whereas a single small nucleic acid/POCP particle will have several nucleic 

acid molecules, although it is difficult to estimate the exact stoichiometry. The uptake efficiency has been 

regarded to be mostly dependent on the effective charge on the polyplexes, size, and aggregation 

behavior in the extracellular fluid. However, factors such as hybridization with mRNA,57,135 rate of 

nuclease degradation are more intimately linked with the structure and dynamics of the nucleic acid 

their immediate chemical environment as well as exchange dynamics and sustained release. Therefore, a 
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more fundamental understanding of the complex interplay of chemistry, size and structure/dynamics of 

the constituent polyions and resulting polyplexes is necessary in addition to the physicochemical 

properties such as dependence of size and stability on charge ratios. 

While the term “condensation” is loosely used to refer formation of nanoparticles with POCP, in a 

strict sense the term “condensation” was applied in the pioneering studies to refer to the reduction in the 

fractional volume occupancy of long DNA chain (sometimes also referred to as “compaction”).136 

Moreover, dsDNA molecules condensed in presence of polycations are observed via electron 

microscopy as nanosized toroids and interestingly the dimensions of the toroids are similar regardless of 

the size of the DNA above its persistence length. However, for nucleic acids smaller than their 

persistence length Bloomfield maintained that such condensation couldn’t be achieved as they behave as 

rigid rods, and therefore formation of particles with POCPs is more of an “aggregation” 

phenomenon.136,137 Polyplexes of small nucleic acid/POCP polyplexes are more often observed as 

spherical particles or randomly aggregated structures138-141 as opposed to the more often observed 

toroidal structures for large DNA polyplexes, although toroidal structures have also been reported for 

short nicked and gapped duplexes and some single stranded oligonucleotides.139 

1.4.4 Multivalent Ionic Interactions of Nucleic Acids: DNA vs RNA 

The study of polyplexes of therapeutic RNA with POCPs borrows several ideas from pDNA 

condensation studies. However, besides the differences in the size of small therapeutic RNA vs pDNA, 

the local structural differences of a dsRNA vs dsDNA helix can affect their interactions with POCPs. 

Even for short ssDNA and ssRNA differences in flexibility and chain conformations have been 

observed.56 It has been reported that the A-form vs B-form helix topology gives rise to differences in the 

spatial distribution of counterions, with the A-form RNA helix being more effectively screened 

compared to dsDNA.48 It was also recently reported that dsRNA helices resisted condensation (defined 

as the tendency to precipitate in their experiments) by the trivalent cation cobalt hexamine 

(Co[NH3]6
3+), which is well known to condense DNA.142,143 This was a surprising result as the A-form 

RNA helix has greater linear charge density compared to the B-form DNA helix and thus expected to 
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have stronger interaction with cobalt hexamine. Using atomistic MD simulations, it was shown that the 

A-form vs B-form helices had different modes of binding. The cobalt hexamine ions preferred to bind 

deeply into the major groove of the A-form helices owing to its strong electrostatic potential and hence 

not capable of mediating the ion-bridge between the helices compared to the B-form.144 

1.5 Kinetics of Complex Formation and Intermolecular Exchange in Polyelectrolyte 

Complexes/Polyplexes 

Kinetic studies of complex formation of polyplexes of large DNA molecules and polycationic 

polymers indicate that multiple steps are involved during polyplex formation.145,146 Stopped-flow 

fluorescence studies by Braun et al. on the polyplexes of 4.9 kbp supercoiled pDNA and PAMAM 

dendrimers suggested two kinetic processes; a very fast (<100 ms) step and a slower step. The fast step 

was attributed to binding, the activation energy for which was higher for lower generation dendrimers. 

The slower step, attributed to DNA condensation, showed greater activation for higher generation 

dendrimers. Dey et al. in their studies of polyplexes of calf thymus DNA with PAMAM dendrimers,146 

PEGylated linear block co-polymers,147 and bottle-brush copolymers148 have also reported presence of at 

least two kinetic steps. However, the absolute values of the observed rate constants were dependent on 

the intercalating dye probes used. 

Very early on from their studies149 on PECs of double stranded DNA (calf thymus) and poly-4-

vinylpyridine (PVP) Miller and Bach suggested that polyelectrolyte chains could undergo dynamic 

rearrangements in the PECs of DNA. More comprehensive studies1 on the kinetics and mechanism of 

intermolecular exchange in synthetic PECs was done by Kabanov et al. by monitoring exchange 

reactions upon adding polyelectrolytes of either same or different chemical nature and/or degree of 

polymerization. Using stopped flow measurements on fluorescently labeled polymer, they obtained 

typical rate constant of coupling (i.e formation of PEC) on the order of rate constant of diffusion 

collisions (~109 M-1 sec-1). However, the rate constant of exchange i.e, transfer of shorter chain “guest” 

from in complex with a longer chain “host” to another “host” chain was in order of 104 to 107 M-1 sec-1, 

3-5 orders of magnitude smaller than the rate constant of diffusion collisions, leading them to propose 
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that such exchange reactions occur via an intermediate ternary complex. The exchange reactions were 

highly dependent on concentrations (and type) of simple salts (such as Na+, K+, Li+), and in absence of 

salt no exchange reactions occurred. It was also observed, based on competitive exchange reaction with 

poly(methacrylate) (PMA), that the exchange of large DNA molecules in PECs with poly(N-ethyl-4-

vinly-pyridinium) (PEVP) were completely reversible, i.e. equilibrium was achieved whether the DNA 

was added to preformed PMA-PEVP complexes  or vice versa.150 

1.5.1 Importance of Dynamics Intermolecular Exchange between Polyplex Constituents for Therapeutic 

Nucleic Acid Delivery 

Understanding intermolecular exchange in polyplexes is particularly important for therapeutic 

nucleic acid delivery because polyplexes are in constant interaction with other charged macromolecules 

in the intracellular and extracellular environment, for example the membrane lipids, proteins, 

polyamines as well as cellular nucleic acids. Most of the polyplex literature has focused on aspects such 

as size and stability as these aspects are important with respect to transport across membranes and 

stability against nucleases. However, intracellular release of the nucleic acid cargo a crucial step for 

function,151-154 thus making the studies of intramolecular exchange relevant. Although early studies 

indicated the presence of intermolecular exchange in DNA polyplexes and suggested role of the 

structural aspects of the polycations,155 this area is studied infrequently. More recently studies on DNA 

release from polyplex using Atomic Force Microscopy (AFM)156 suggests a time scale of tens of minutes. 

While emerging studies using MD simulations157 have revealed exchange dynamics at fast times scales, 

only few experimental techniques like 2D-IR and NMR are capable of measuring fast dynamics. 

Considering the variety of POCPs being developed for nucleic acid delivery, detailed and systematic 

investigation of the role of POCPs chemistry and architecture in intermolecular exchange is crucial. 

1.6 Techniques Employed to Characterize Polyplexes 

The most common techniques for routine characterization of polyplexes are gel electrophoresis to 

measure degree of complexation as a function of N:P ratio and DLS to measure hydrodynamic 

diameter.158 In addition, electron microscopy (TEM, SEM)95,103,159-165 and AFM96,119,120 have been 
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applied to access shape and size distribution. Synchroton X-ray diffraction,166 small angle X-ray 

scattering (SAXS)167-172 cross polarized microscopy166 have been used to study phase transition and to 

access size and structure of ordered phases. Optical tweezing force-pull experiments were used by Ritort 

et al.173 to study condensation-decondensation of long DNA molecules complexed with POCPs. Circular 

dichroism(CD)23,119,120,147 and linear dichroism(LD)174 have been useful to access changes in the 

secondary structure of nucleic acids. Some extent of information in changes in structure of nucleic acids 

as well as changes in polymer structure in polyplexes has been obtained using FTIR.23,119-121 Nucleic acid 

melting studies using UV absorption147,175,176 and Differential Scanning Calorimetry (DSC)23  have been 

used to assess thermal stability of nucleic acids in the polyplex forms. Isothermal Calorimetry (ITC)23,169 

has been used to access thermodynamic parameters such as enthalpy, entropy, and absolute charge 

ratios. Zeta potential measurements are also commonly used to measure net charge on the electrostatic 

double layer as net positive charge is considered to be desirable for enhanced delivery through the 

cellular membrane.158 However, owing to the sensitivity of the physicochemical properties of polyplexes 

(and polyelectrolyte complexes in general) to the absolute concentration of the constituents it is 

challenging to study these complexes using solution-based techniques. 

Fluorescence (polarization, fluorescence intensity, fluorescence quenching) has been employed to a 

greater extent to study binding and competitive exchange as the high of fluorescence sensitivity enables 

use of low concentrations that prevent large-scale aggregation and precipitation.158 While fluorescence 

based methods are very useful to study binding, composition and stoichiometry, thermodynamics and 

kinetics of assembly, they lack structural resolution unless single molecule techniques are used.  

Fluorescence based techniques have used both fluorescently tagged POCP/nucleic acids as well as 

intercalating dyes such as ethidium bromide, picogreen, YOYO, while ethidium bromide being most 

commonly used dye for routine characterization of extent of binding.158 Although equilibrium 

measurements are reported more often, kinetics studies are relatively fewer as the kinetic profiles are 

typically non-trivial to interpret. Some of the studies using stopped flow florescence145,146,148 and stopped 

flow circular dichroism145 are discussed in section 1.5. 
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Although studies involving size, shape, size distribution and binding are more commonly reported, 

detailed studies to access local environment, dynamics at different timescales, in addition to overall 

rotational correlation as measured by light scattering, such as intermolecular exchange, dynamics of 

local sites both on the polymer and the nucleic acid are rare. Such aspects in biomolecules and their 

interactions have been widely studied using NMR. However, advantages of NMR have not been fully 

recognized for studying polyplexes. Few studies have implemented NMR to obtain polyplex 

stoichiometry116,177 and rotational correlation based sizes.112 Indeed solution NMR based techniques 

suffers from limitations such as solubility, however these can be overcome for polymers with hydrophilic 

groups such as PEG and dextran, working at N:P ratios far from charge neutrality where soluble 

complexes can be obtained, or working at relatively lower concentrations using site-specifically isotope 

labeled samples.  

In this thesis, a combination of a variety of 1D and 2D solution NMR, fluorescence spectroscopy, 

DLS, and gel electrophoresis have been applied to understand the size, structure, dynamics, local solvent 

environment, and activity of catalytic RNA upon polyplex formation with POCPs. 

1.7 Dissertation Outline 

The remainder of this thesis focuses on the studies of intermolecular exchange of polyplexes of 

different POCPs and small nucleic acids by NMR and fluorescence, characterizing their local solvent 

microenvironment using fluorescence spectroscopy, effect of polyplex interaction on the structure and 

activity of a catalytic RNA (twister ribozyme) and its topological mutants as well as NMR 

characterization of this ribozyme. 

Chapter 2 describes our initial work on characterizing, in site-specific detail using NMR, the effect of 

polyplex formation on the structure and dynamics of a short hairpin RNA, the 29-nucleotide 

transactivation response element (TAR) from the human immunodeficiency virus type 1 (HIV-1) and 

PEGylated G5-PAMAM (G5-PEG). It was observed that while the RNA is in rapid intermolecular 

exchange between free and bound forms, no significant change in its structure or ps-ns dynamics was 

observed upon polyplex formation at low N:P ratios. At N:P ratios > 1 signals from the RNA was 



 26 

unobservable via NMR. However, monitoring the G5-PAMAM signals suggested that while no 

significant perturbations of the polymer structure is observed at low N:P ratios, at N:P ratios > 1 

structural reorganization of the polyplex could occur. DLS measurements revealed polydisperse 

polyplexes of with the majority of polyplexes having small average size consistent with the size measured 

using NMR relaxation parameters. Using fluorescently tagged and untagged RNA, it was demonstrated 

that the RNA in the complexes could be competitively exchanged rapidly in solution in a wide range of 

N:P ratios. Using similar fluorescence assays, the effect of the POCP structure and oligonucleotide 

structure on the degree of complexation and exchange was studied. It was observed that even for the 

same average molecular weights, the degree of complexation was different for branched vs linear POCPs 

and hairpin vs unstructured oligonucleotides. The amount of the oligonucleotide exchanged was also 

dependent on the POCP type. Using fluorescently tagged and untagged G5-PAMAM it was 

demonstrated that the polymer could also be competitively exchanged rapidly into the solution. 

Chapter 3 presents a fluorescence spectroscopy based approach to probe the local solvent 

environment of polyplexes. Using the spectroscopic properties of the solvatochromic and prototropic 

dye fluorescein different microenviroment in polyplexes were revealed that differed in the local pH and 

was a function of the N:P ratio. The magnitude of changes was dependent on the type of POCP, thus 

providing a new observable parameter for characterizing a variety of different polyplexes. 

Chapter 4 describes our studies on the interactions of the env22 twister ribozyme (twister, in short) 

and its helical mutants with POCPs that demonstrate the role of structure and intermolecular exchange 

on activity. NMR titrations showed that the base pairing interactions and tertiary structure are not 

perturbed upon POCP binding at low N:P ratios suggesting the ribozyme should function in presence of 

the POCP. Activity assays using gel electrophoresis showed that preformed twister remained active at 

low N:P ratios. Using a competitive exchange scheme, it was observed that under multiple turnover 

conditions the activity of the wild type twister was significantly enhanced for polyplexes formed at N:P 

ratios > 1 and that the activity depended on the type of POCP. POCPs that were observed to favor 

exchange of bound RNA showed enhancement in activity, suggesting the role of exchange for the 
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availability of the RNA for activity. While the role of tested POCPs in enhancing activity was predictable, 

it was surprising that even small changes in base pairing of the RNA could lead to drastically different 

results in presence of POCP, highlighting the importance of structural details on polyplex function. 

Chapter 5 summarizes the NMR studies of the wild type and mutants of twister and chemical shift 

predictions of the tertiary structure. As the twister class of ribozymes was discovered only recently, only 

one NMR study had been published during the course of our studies. Our goal was to obtain the 

chemical shift signature of twister in absence and in presence of Mg2+ in order to assess the secondary 

structure and tertiary folding of the ribozyme as well as obtain assignments of key residues at the active 

site for dynamics studies. Formation of folded structure of a bimolecular twister construct in presence of 

sufficient concentrations of Mg2+ was evident from imino proton spectra and comparison of aromatic 

spectra with LARMORD predicted spectra. However, significant spectral overlap precluded 

unambiguous assignment of residues. Therefore, the RNA synthesized with site(atom) specific isotope 

labels using solid phase synthesis which enabled assignment of the carbon chemical shifts of the key 

residues in the active site. Comparison with the imino proton spectra of the full-length (single stranded) 

twister suggested that the secondary structure base pairs in hybridized form of bimolecular construct are 

less stable. It was also shown that elongation of helix3 of twister does not significantly affect the overall 

secondary structure. 

Chapter 6 summarizes the studies and presents a future outlook on the importance of the local 

structure based understanding of the interaction between nucleic acid and gene delivery POCPs. 
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CHAPTER 2 INTERMOLECULAR EXCHANGE IN POLYPLEX SYSTEMS 

 

The work presented in section 2.1 of this chapter has been published in the following paper: 

Shakya, A.; Dougherty, C. A.; Xue, Y.; Al-Hashimi, H. M.; Holl, M. M. B. “Rapid Exchange between 

Free and Bound States in RNA-Dendrimer Polyplexes: Implications on the Mechanism of Delivery and 

Release” Biomacromolecules 2016, 17, 154-164. 

2.1 Structure and Exchange Dynamics of RNA-Dendrimer Polyplexes 

Despite being studied for decades as delivery agents for therapeutic nucleic acids, it has been difficult 

to achieve detailed atomic/molecular picture of the polyplex structure and dynamics and how these 

properties vary as a function of key vector properties such as molecular weight, hydrophobicity, and 

charge density as well as the type of nucleic acid.1 Most of experimental studies employed to understand 

polyplex structure have been based on techniques such as electron microscopy (EM),2 atomic force 

microscopy (AFM) imaging,3,4 circular diochroism (CD),5-7 infrared (IR) spectroscopy,8 and small angle 

X-ray scattering studies (SAXS).9,10 On the dynamics front, molecular dynamics (MD) simulations11-14 

have been employed to some extent. However, studies on polyplexes based on NMR spectroscopy, which 

is a powerful experimental tool to study both structure and dynamics of macromolecules, are scant in 

literature.  

Using 1D 1H NMR spectroscopy, a previous study by our group recently provided evidence that a 

20-bp DNA duplex rapidly exchanges (exchange times < ms) between free and bound forms of 

polyplexes formed with generation 5 poly(amidoamine) (G5 PAMAM) dendrimer with 10% of its 

primary amines functionalized with 5000 molecular weight poly(ethyleneglycol) (PEG), (G5-PEG).15 

The G5 PAMAM scaffold was PEGylated to increase polyplex solubility and this form has been shown to 

be effective for in vivo knockdown of protein expression.16 Based on the 1H NMR chemical shifts, there 
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was no evidence for changes in the DNA duplex structure or dynamics upon binding to the dendrimer. 

This study immediately raised the question of whether a similar exchange mechanism might apply for 

RNA/polymer polyplexes, as despite having an overall similar structure, DNA and RNA differ 

significantly in their local structure and dynamics (Figure 1.1). A double stranded DNA helix typically 

adopts a B-form whereas a double stranded RNA helix adopts A-form configuration. Not only these two 

forms have different strctural parameters, they also differ in inherent flexibility and base-pair dynamics. 

DNA B-form helix is more locally flexible than RNA A-form helices. In addition, naturally occuring 

RNA molecules can form alternative secondary structures that contain A-form helices as well as non-

canonical motifs such as bulges and apical loops. RNA and DNA also have distinct dynamic properties. 

Such motifs in RNA can give rise to complex dynamics, including local motions in junctions such as 

bulges and collective motions of helical domains across these junctions.17,18 

We use 2D NMR spectroscopy to characterize the interaction between a 13C/15N isotopically 

enriched model RNA system, the 29-nucleotide transactivation response element (TAR) from the 

human immunodeficiency virus type 1 (HIV-1)19 and G5-PEG.15 TAR is one of the key regulatory RNA 

elements in the HIV-1 viral genome which plays essential roles in viral replication. Although there has 

been interest in studying TAR/PAMAM dendrimer interactions in the context of Tat-TAR 

inhibition,20,21 here we focus on using TAR as a model flexible RNA system22-25 that contains non-

canonical secondary structural elements, including a 3-nucleotide bulge and 6-nucleotide apical loop. 

G5-PEG has several advantages for NMR-based studies of polyplex. The G5 PAMAM scaffold is 

structurally well-defined, has a fairly narrow molecular weight distribution, and is well characterized in 

terms of NMR spectral properties.26-31 The 10% PEGylation gives G5 PAMAM excellent biological 

properties. The structure of PEG-modified poly(ethylene imines) influences biodistribution and 

pharmacokinetics of their complexes. Moreover, it provides convenient aqueous solubility properties for 

NMR experiments.15 

We report exchange and dynamic properties of HIV-1 TAR/G5-PEG polyplexes formed across a 

range of N:P ratios. Using a combination of solution state 1D and 2D NMR spectroscopy, including 13C 
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spin relaxation based dynamics measurements, DLS, and fluorescence spectroscopy, we show that the 

free RNA exists in rapid exchange with polyplex particles in the smaller size range ~12-40 nm that are 

detectable by NMR and larger particles in the size range ~140-200 nm that are NMR ‘invisible’. 

Interestingly, we find that interactions with the dendrimer results in negligible changes in the structure 

and dynamics of RNA that is in rapid exchange with smaller polyplex particles, although we cannot rule 

out changes that might occur in larger particles not observed in the NMR experiments. 

2.1.1 Experimental 

2.1.1.1 Materials 

Sodium chloride (NaCl), sodium dihydrogen phosphate (NaH2PO4), ethylenediamine tetraacetic 

acid (EDTA), 0.1 N hydrochloric acid (HCl), tris (hydroxymethyl)-aminomethane, Triton-X, and 

methoxypoly(ethyleneglycol) tresylate (5000 MW; PEG 5000) were purchased from Sigma, St. Louis, 

MO. 99.96% deuterium oxide (D2O) was purchased from Cambridge Isotope Laboratories, Inc.. G5 

PAMAM dendrimer was purchased from Dendritech Inc. (Midland, MI) and purified using published 

protocols.30 HPLC purified TAR tagged with fluorescein at the 3’ end was purchased from Dharmacon 

(Lafayette, CO).  

2.1.1.2 RNA Synthesis and Purification 

Unlabeled and uniformly 13C/15N labeled TAR was prepared by in vitro transcription using a dsDNA 

(Integrated DNA Technologies) template containing T7 promoter at 5’-end. T7 RNA polymerase 

(Takara Mirus Bio, Inc.) was used to transcribe the dsDNA sequence in the presence of unlabeled 

(SILANTES, ISOTEC, Inc.) or 13C/15N labeled (Cambridge Isotope Laboratories, Inc.) ribonucleotide 

triphosphates. The RNA was purified using 20% (w/v) denaturing polyacrylamide gel electrophoresis 

(PAGE) in 8 M urea and 1X TBE buffer followed by electroelution in 20 mM Tris (pH 8) buffer and 

ethanol precipitation. The purified RNA pellet was redissolved in Tris buffer and exchanged into NMR 

buffer (15 mM sodium phosphate, 25 mM sodium chloride, 0.1 mM EDTA, pH 7.4) using a centricon 
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ultracell YM-3 concentrator (Millipore Corp.). The concentration of RNA was measured by optical 

absorption using Nanodrop 2000 (Thermo Scientific) assuming an extinction coefficient of 268900 L/M. 

2.1.1.3 PEGylation of G5 PAMAM Dendrimer 

G5 PAMAM dendrimer (0.0624 g, 2.22 x 10-6 mol, 1 equiv.) was dissolved in 4.0 mL of 1X PBS in a 

50 mL round bottom flask. In a vial, 5,000 MW PEG tresylate (0.128 g, 2.6x10-5 mol, 12 equiv.) was 

dissolved in 2.0 mL of 1X PBS. PEG solution was added to dendrimer solution dropwise and stirred for 4 

days at room temperature. The resulting conjugate was purified by 8 rounds of dialysis (first 2 rounds 2 

hours each, the rest 4 hours each) in 4 L of water using 30,000-MW cutoff dialysis tubing. Solvent was 

removed using lyophilization yielding a puffy white solid. The yield was 0.169 g. The purified and 

lyophilized product was analyzed by MALDI, which gave average molecular weight of 85239 g/mol 

corresponding to an average of 12 PEG-5000 per dendrimer. From potentiometric titration, the number 

of primary amines was determined to be 101 per dendrimer.  

2.1.1.4 Dynamic Light Scattering 

Polyplexes of TAR/G5-PEG were prepared at the same concentration, buffer, and salt conditions as 

NMR experiments at N:P ratios 0, 0.25, 1, and 5 ( at TAR concentration of 200 µM) and incubated for at 

least 30 min before measurements were recorded. The hydrodynamic diameter was measured at room 

temperature using Malvern Zetasizer Nano ZS (Worchestershire, United Kingdom). Three rounds of 

measurements were performed for each sample, with the diameter obtained in each round being an 

average of at least 6-10 measurements with duration of 40 s. Standard deviation was obtained by 

averaging the width of each peak obtained from the three rounds of measurements. The dispersant 

viscosity and refractive index were assumed to be that of water (cP 0.8872 and 1.33, respectively) 

whereas the material refractive index was assumed to be that of a standard protein sample (1.59). Since 

the intensity distribution showed multiple peaks (polydisperse sample, polydispersity index (PDI) > 0.1), 

we report intensity average and number average diameters separately instead of the commonly used Z-

average size. 
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2.1.1.5 NMR Experiments 

All NMR experiments were carried out on a 600 MHz Bruker instrument equipped with a 5 mm 

triple-resonance cryogenic probe at a temperature of 37°C. The buffer used was pH 7.4 NMR buffer (15 

mM sodium phosphate, 25 mM NaCl, 0.01% EDTA). The spectra were processed and analyzed using 

NMRpipe software,32 unless mentioned otherwise. 

2.1.1.6 1D 1H NMR Titrations.  

200 µM TAR (13C/15N labeled or unlabeled) in NMR buffer was lyophilized and suspended in D2O 

twice to minimize 1H-based signals, including those from exchangeable amide protons that overlap in 

chemical shift with aromatic RNA signals of interest. Increasing volumes of 4 mM G5-PEG (NMR 

buffer, lyophilized and resuspended in D2O twice) was added to the TAR sample resulting in increasing 

N:P ratios (0, 0.17, 0.25, 0.5, 1.0, and 5.0). 1D 1H NMR spectra were acquired with or without 13C/15N 

decoupling during acquisition for labeled or unlabeled RNA respectively following each G5-PEG 

addition. The spectra were collected using excitation sculpting water suppression schemes. For 1D 1H 

NMR titration of TAR into G5-PEG, 5 µM G5-PEG was titrated to decreasing N:P ratios (4, 3, 2, 0.5, and 

0.25) by adding increasing volumes of 1 mM TAR in NMR buffer. 

2.1.1.7 1H CPMG Relaxation Dispersion.  

1H NMR titration of G5-PEG into 200 µM unlabeled TAR to increasing N:P ratios (0, 0.25, 0.5, and 

1.0) was performed as mentioned above. For each titration point, effective “transverse” relaxation rates 

(R2,effective) were measured using 1D Carr-Purcell-Meiboom-Gill (CPMG) experiments.15,33,34 CPMG 

relaxation dispersion experiments can be used to access the contribution of chemical exchange to 

R2,effective in the ms-µs timescale. In this experiment a series of 180° pulses that refocus the observed spins 

are applied with variable time interval between two 180° pulses. While longer time interval (low CPMG 

field strength) allows for observation of chemical exchange in the R2,effective values, short time interval 

(high CPMG field strength) suppress contribution to R2,effective from chemical exchange. How the 

chemical exchange contribution to R2,effective varies with the CPMG field strength, is termed relaxation 

dispersion. For the dispersion experiments herewith, three CPMG field strengths, νCPMG (νCPMG = 1/2τcp 
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in Hz, where τcp is the interval between two 180° proton pulses during the CPMG element); 625 Hz (τcp = 

0.8 ms), 250 Hz (τcp = 2.0 ms), and 125 Hz (τcp = 4.0 ms) were used. For each CPMG field strength, the 

R2,effective rates were obtained from monoexponential fitting of integrated areas of resonances obtained at 

each of the following 14 delay series with two duplicate measurements for error estimation; [1, 10, 20 

(x2), 30, 40, 60, 80, 100, 120, 140, 160 (x2), 200 ms] at 625 Hz, [1, 6, 12, 18, 24, 30 (x2), 42, 48, 54, 60, 70 

(x2), 80 ms] at 250 Hz, [1, 2, 4 (x2), 6, 8, 12, 16, 20, 24, 28, 32 (x2), 40 ms] at 125 Hz for N:P 0; [1, 8 (x2), 

16, 24, 32, 40, 60, 80, 100, 120, 140 (x2), 160 ms] at 625 Hz, [1, 6 (x2), 12, 18, 24, 30, 36, 42, 48, 54, 60 

(x2), 64 ms] at 250 Hz, [1, 4 (x2), 6, 8, 10, 12, 14, 16, 18, 20, 26 (x2), 32 ms] at 125 Hz for N:P 0.25; [1, 6 

(x2), 12, 18, 24, 30, 36, 40, 50, 60 (x2), 70, 80 ms] at 625 Hz, [1, 4 (x2), 6, 8, 10, 12, 14, 16, 18, 20, 26 (x2), 

32 ms] at 250 Hz, [1, 2, 4 (x2), 5, 7, 6, 8, 9, 10, 12 (x2), 14, 16 ms] at 125 Hz for N:P 0.5; [1 (x2), 2, 4, 6, 8, 

10, 12, 14, 16, 18 (x2), 24, 30 ms] at 625 Hz, [1, 2 (x2), 3, 4, 5, 6, 7, 8, 9, 10 (x2), 11, 12 ms] at 250 Hz, [1 

(x2), 2 (x3), 3 (x2), 4 (x3), 5 (x2), 6 (x2) ms] at 125 Hz for N:P 1. Spectra were processed and analyzed 

using mNova software (Mestrelab research) to obtain integrated area. The regions 6.6-9.0 ppm (for 

H2/H6/H8) and 5.1-6.3 ppm (for H5/H1’) were integrated separately. The integrated area versus 

relaxation delay times were fitted to a monoexponential decay using Origin Software (Origin 

Corporation) to obtain R2,effective. To estimate R2,polyplex values, the R2,effective values measured at the highest 

field strength (νCPMG = 625 Hz) for different N:P ratios were globally fit to eq. 115 employing a nonlinear 

regression algorithm using an in house python script. The fits were obtained using random initial values 

of each parameter using the constraints 0 ≤ free ≤ 1; 0 ≤ R2,polyplex ≤ 500. 

2.1.1.8 2D 1H-13C HSQC  

2D 1H-13C spectra were obtained for the same samples used in 1H NMR titrations at N:P of 0, 0.17, 

0.25, 0.5, and 1.0. Spectra were processed using NMRpipe32 and Sparky 3 NMR Assignment and 

Integration Software (University of California, San Francisco). 

2.1.1.9 Measurement of 13C R1 and R2 Relaxation Rates  

13C “longitudinal” relaxation rate constant (R1) and “transverse” relaxation rate constant (R2) were 

measured for the same samples used in 1H NMR and HSQC titrations at N:P of 0 and 0.25 using 2D R1 
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and R1ρ relaxation experiments23 for base C2, C6, and C8 and sugar C1’ carbons. To maintain adequate 

signal to noise ratio, we carried out 13C R2/R1 relaxation at low dendrimer concentration (N:P of 0.25). 

The R1ρ relaxation experiment was carried out using a 3.5 kHz spin-lock field strength and a spin-lock 

carrier centered at aromatic C6 (for C2, C6, and C8) or sugar C1’ resonances. The spin-lock power was 

sufficiently high to suppress undesired chemical exchange (Rex) contributions. For N:P 0, relaxation data 

were collected using the delay series [10, 55, 140, 250 (x3) ms] for R1 and [4, 16, 32, 48 (x3) ms] for R1ρ, 

with triplicate measurements for error estimation for aromatic (C2, C6, and C8) carbons and [20, 140 

(x2), 280, and 580 (x2) ms] for R1 and [0.4, 8.4, 24.4 (x2), and 48.4 (x2) ms] for R1ρ, with two duplicate 

measurements for error estimation for sugar C1’ carbons. For N:P 0.25, the delay series [10, 140 (x2), 

280, and 480 (x2) ms] for R1 and [0.4, 8.4 (x2), 16.4, and 28.4 (x2) ms] for R1ρ, with two duplicate 

measurements for error estimation, was used for both aromatic (C2,C6,C8) and sugar (C1’) carbons. 

The spectra were processed with NMRPipe32 and relaxation rate constants determined by fitting the 

resonance intensities to monoexponential decays using Mathematica 6.0 (Wolfram Research, Inc.). The 

R2 values were calculated from the relationship R1ρ = R1 cos2θ + R2 sin2θ where θ = arctan (spinlock 

power/ resonance offset). 

2.1.1.10 Calculation of Observed Polyplex Hydrodynamic Diameter using 1H NMR Relaxation Data  

1H R2,polyplex values were used to calculate the rotational correlation time (τm) of the polyplex. For a 

X-H group, R2 relaxation rates are dependent on a linear combination of spectral density functions 

evaluated at five frequencies, J(0), J(ωH), J(ωX), J(ωX + ωH), and J(ωX  - ωH), where ωH and ωX are the 

frequencies of H and X nuclei respectively at a given spectrometer field.35 Assuming that dipole-dipole 

coupling dominates 1H R2 relaxation due to directly bonded carbon as well as neighboring protons 

within 4 Å, R2,polyplex was expressed as a sum of R2 relaxation rates15,23,36  

 𝑅!,!"#$!#%&H =  
1
8𝑑

! 4J 0 + 3J ω! + J ω! −ω! + 6J ω!

+ 6J ω! +ω!  

(2.1) 

where d is the dipolar coupling constant given by 
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 𝑑 =
µ!𝛾!𝛾!ℎ
8𝜋! 𝑟!!"

 (2.2) 

µ0 is the permittivity of free space, γH and γC are the magnetogyric ratios of 1H and 13C respectively 

and h is the Plank’s constant. rHC is the distance of the aromatic and sugar protons to their directly 

bonded carbon (1.104 Å and 1.115 Å for base C-H bond and sugar C1’-H1’ bond respectively) and rHH 

are the distances to neighboring protons within 4 Å. These distances were obtained from the solution 

NMR structure of free TAR (protein structure database ID: 1ANR).37 J(ω) as defined by the “simplified” 

model-free formalism for isotropic overall tumbling.35 

 
J ω =

2
5

S!𝜏!
1+ ω𝜏! !  

(2.3) 

where S2 is the generalized order parameter. An average of residue specific S2 values (0.763 and 0.809 

for H2/H6/H8 and H5/H1’ respectively) previously published23 for elongated UUCG-TAR based on 13C 

relaxation data was used. Assuming spherical shape, polyplex hydrodynamic diameter (D) was 

computed using Stokes-Einstein equation for the range of τm values obtained from 1H relaxation data.  

 
R =

3𝑘!𝑇𝜏!
4𝜋𝜂

!/!

 
(2.4) 

where R = D/2 is the radius of a sphere. kB is the Boltzman’s constant, T is temperature, η is the 

viscosity of the solvent at temperature T. 

2.1.1.11 Calculation of Observed Polyplex Hydrodynamic Diameter using 13C Relaxation Data 

Residue specific 13C R2,polyplex were obtained using 13C R2 values in eq. 1 where pfree and pbound values 

were obtained from analysis of 1H relaxation at N:P of 0.25 (Table 1). Since chemical shift anisotropy 

(CSA) also significantly contributes to carbon relaxation, R2,polyplex was obtained as a sum of contribution 

due to dipole-dipole coupling and CSA as given by23,36  

 𝑅!,!"#$!#%&C =  
1
8𝑑

! 4J 0 + 3J ω! + J ω! −ω! + 6J ω!

+ 6J ω! +ω! +
1
18 (𝐶𝑆𝐴×10

!!×ω!)!(4J 0 + 3J ω! ) 

(2.5) 
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where d and J(ω) are as defined earlier and CSA = 134.3 ppm, 178.8 ppm, 149.9 ppm, 40 ppm for C8, 

C6, C2, and C1’ respectively.36,38 Residue specific S2 values (ranging from 0.43 to 0.93) were used in the 

J(ω) expression.23 Assuming spherical shape, polyplex hydrodynamic diameter was obtained using the 

Stokes-Einstein equation as mentioned above. 

2.1.1.12 Fluorescence Quenching Based Competition Assay  

TAR with 3’ end tagged with fluorescein was employed for the fluorescence quenching based assay. 

The RNA was annealed by heating to 95°C for 5 min and then cooled on ice for an hour prior to use. The 

RNA was diluted in pH 7.4 fluorescence assay buffer (50 mM Tris-HCl, 50 mM KCl, 0.01% Trition-X). 

The G5-PEG was dissolved in the assay buffer and serially diluted to obtain aliquots of concentrations 

from 2 nM to 2000 nM. 100 nM TAR was incubated for 30 min in 1:1 volume with varying 

concentrations of the G5-PEG in a 384-well plate such that the final RNA concentration in each well was 

50 nM and the N:P ratios varied from 0 to 28. Fluorescence intensities were measured in triplicates using 

an Omega star plate reader (BMG Labtech) with a 485 nm excitation and 520 nm detection. For the 

exchange assay, to selected N:P ratio sample wells, 0.3 µL of 500 µM untagged TAR was added and the 

resulting fluorescence intensity was measured in a similar fashion after 30 min incubation. The assay was 

also repeated for N:P points 1, 10, and 70 within 2 min of adding untagged TAR.  

2.1.2 Results and Discussion 

2.1.2.1 DLS Provides Evidence for a Major (~12-40 nm) and Minor (~140-200 nm) Polyplex Particles  

We initially used DLS to characterize the size of TAR/G5-PEG polyplex particles formed at different 

N:P ratios. The hydrodynamic diameter obtained using cumulants based intensity mean (Z-average 

diameter),39 which is the commonly used method to obtain particle size from light scattering data, 

yielded values of ~67-170 nm consistent with literature reported values for dendrimer based polyplex 

systems.4,15,16,40 However, the polydispersity index (PDI), which reports on the homogeneity of the 

sample with respect to particle sizes was high (0.27-0.37) and peaks in the range of ~12-40 nm were also 

observed (S I). Since the Z-average diameter gives good description of size only for unimodal 
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distribution with narrow polydispersity (PDI < 0.1),39 we also examined the intensity weighting by the 

number of particles (number average distribution) assuming that the conversion from intensity to 

number holds for our measurements (Figure 2.1 a). The number average analysis indicates that particles 

of ~12-34 nm size range are the major species in the population. The number average diameter increases 

from N:P of 0.25 to 1 and only slightly decreases at N:P of 5. Interestingly, such small polyplex sizes 

haven’t been reported previously for similar polyplex systems using DLS. For example, DLS data 

previously reported for siRNA/G5-PEG polyplexes in tris-HCL buffer at N:P of 10 gave a diameter of 

~100 nm based on Z-average analysis.16 This could be due to different sample conditions or due to 

differences in size estimates obtained from Z-average versus number average analysis. Furthermore, it is 

known that larger particles scatter more light compared to smaller particles causing the average diameter 

obtained by DLS to be biased towards larger particles present in the solution.39 Although DLS reported 

sizes are usually in the larger size range (> 50 nm), there have been reports of smaller sizes for 

unPEGylated PAMAM/ siRNA polyplexes using TEM and AFM (15-130 nm)4 and nanoparticle tracking 

analysis (NTA) (10-80 nm).41 Although the DLS experiments were carried out at room temperature 

compared to the NMR experiments at 37oC (described below) which can affect the equilibrium 

populations, the sizes obtained by DLS are consistent with size estimates (~7.5-15 nm) from our NMR 

results. 
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Figure 2.1 TAR exists in rapid exchange between free and polyplex-bound species. (a) DLS 

measurements of polyplex samples at N:P ratios 0 to 5 at NMR concentrations (200 µM TAR) showing 

presence of ~12-34 nm polyplexes. Data is presented as number average diameter. Overlay of three 

peaks in the same graph indicates triplicate measurements. Only two measurements were collected for 

N:P 0. The diameter of G5-PEG only was previously published to be 5.9 nm.31 (b) Stacked overlay of 1H 

NMR spectra (aromatic H2/H6/H8, sugar H1’, and aromatic H5 region) of 200 µM TAR titrated to 

increasing N:P ratios with G5-PEG at 37°C in pH 7.4 NMR buffer (15mM sodium phosphate, 25mM 

NaCl, 0.01% EDTA) exchanged to 99.99% D2O (c) R2,effective as a function of different CPMG fields in 

Hz for N:P ratios 0, 0.25, 0.5, and 1 measured independently for H2/H6/H8 and H5/H1’ protons.  

2.1.2.2 TAR Exists in Rapid Exchange (< ms) between Free and Polyplex-Bound Particles 

1D 1H NMR titrations of G5-PEG into a solution of unlabeled TAR showed gradual line broadening 

of TAR resonances without significant changes in the TAR chemical shifts (Figure 2.1 b). The line 

broadening indicates that TAR is interacting with G5-PEG but the lack of significant chemical shift 
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perturbations suggests that the interaction does not significantly affect the structural and dynamic 

properties of TAR. This is striking considering that TAR is a highly flexible molecule24,42-44 and that 

chemical shift perturbations are observed when varying salt concentrations,45 upon addition of DMSO,46 

and a wide variety of ligands that bind to TAR non-specifically.22,47 

Analysis of the spectra did not reveal evidence for free RNA with sharp narrow lines, as would be 

expected if small and large species with similar chemical shifts exchange at slow timescales. The line 

broadening could arise due to microsecond-to-millisecond chemical exchange, which results in an 

exchange contribution (Rex) to the observed effective “transverse” relaxation rate constant (R2,effective = R2 

+ Rex , where R2 is the intrinsic “transverse” relaxation rate constant). The exchange could represent 

transitions between free and bound RNA and/or changes in the RNA conformation in the bound state. 

Chemical exchange with a small particle can cause significant line broadening if there were significant 

differences in chemical shifts of free and bound state. For a low population of such a bound state, if the 

chemical shift difference is large enough, and on the slow to intermediate timescales, then the line 

broadening could be significant without inducing a change in the observed RNA chemical shift. 

To assess Rex contributions, we carried out 1H Carr-Purcell-Meiboom-Gill (CPMG)33,34 relaxation 

dispersion experiments (Figure 2.1 c) on polyplexes of unlabeled TAR and G5-PEG using an approach 

similar to that described previously for DNA.15 In this experiment, R2,effective is measured during a 

relaxation period as a function of a time interval (τcp) between successive 180° refocusing pulses which 

serve to suppress the Rex chemical exchange contribution. We relied on 1H CPMG experiment rather 

than 13C CPMG dispersion due to poor sensitivity in 2D 1H-13C HSQC spectra beyond N:P of 0.25. The 

regions of the 1H NMR spectra representing H2/H6/H8 aromatic protons (6.6-9.0 ppm) and aromatic 

H5 and sugar H1’ protons (5.1-6.3 ppm) were integrated separately and R2,effective values were obtained 

from monoexponential decay fits of the integrated area versus decay times (Appendix A, S II). R2,effective 

values were measured for various τcp delays and for N:P ratios of 0, 0.25, 0.5, and 1. We observed an 

increase in measured R2,effective with increasing N:P ratios even when using a short τcp delay of 0.8 ms to 

maximally suppress Rex contributions. Increasing the N:P ratio from 0 to 1 resulted in an increase in 
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R2,effective from 6.7 ± 0.4 s-1 to 150 ± 13 s-1 for H2/H6/H8 and 4.7 ± 0.1 s-1 at N:P of 0 to 63.8 ± 4.7 s-1 at 

N:P of 1 for H5/H1’. These values are comparable to that reported previously published for DNA/G5-

PEG where R2,effective also increased by ~20 fold from 8.1 ± 0.2 s-1 at N:P 0 to 135.6 ± 14.5 s-1 at N:P of 1 

for H2/H6/H8 and 8.7 ± 0.4 s-1 at N:P 0 to 162.7 ± 13.5 s-1 at N:P 1.33 The measured R2,effective values 

showed much smaller (< 10 Hz) variations when varying the τcp delay and carrying out the CPMG 

experiments at three field strengths (νCPMG = 625 Hz, 250 Hz, and 125 Hz) (Figure 2.1 c). These data 

indicate that the increase in line broadening and R2,effective is not principally due to an exchange 

contribution in the intermediate time scale but rather due to rapid exchange of the RNA with large 

polyplex particles which results in an increase in the intrinsic R2 as reported previously for DNA 

polyplexes.15 Indeed, the R2,effective values increase as the amount of dendrimer increases suggesting rapid 

exchange with polyplex particles growing in size (at least up to the N:P ratios probed by the experiment). 

This is consistent with DLS data that also showed an increase in the number average size from N:P of 

0.25 to 1. We were, however, unable to measure R2,effective for N:P of 5 due to severe line broadening. 

To estimate the R2,effective values for the polyplex-bound form, the R2,effective values measured at the 

highest CPMG field strength for different N:P ratios were globally fit to (2.6),15 

 𝑅!,!""!#$%&! =  𝑝!"##𝑅!,!"## + 𝑝!"#$%𝑅!,!"#$!#%&  (2.6) 

where, pbound describes the fraction of RNA bound in the small-sized polyplexes in fast exchange 

with free RNA, and pfree + pbound = 1. R2,free and R2,polyplex are the R2,effective rates for free RNA and RNA 

bound to small-sized polyplexes respectively. The large ~140-200 nm particles observed by DLS are 

likely in slow exchange which do not contribute to the observed R2,effective values. This equation expresses 

R2,effective as a population weighted average for free and polyplex-bound species assuming a two-state 

binding equilibrium for a fast exchange scenario where the chemical exchange rate constant (kex = k1 + 

k-1, where k1 and k-1 are forward and backward rates respectively) is much larger than 2π × Δω (where 

Δω = ωpolyplex – ωfree is the chemical shift difference between free and bound species). The fits were 

obtained using random initial values of each parameter using the constraints 0 ≤ pfree ≤ 1; 0 ≤ R2,polyplex ≤ 



 52 

500. The R2,polyplex values (Table 3) obtained from the two-state fit are similar to those reported 

previously for DNA.15 

Table 3 Exchange parameters obtained from global fitting of relaxation data using eq. 1 (see main text) 

for H2/H6/H8 (6.6-9.0 ppm) and H5/H1’ (5.1-6.3 ppm). pfree = 1 - pbound where pbound is the fraction of 

RNA bound in the small-sized polyplexes in fast exchange with free RNA. 

N:P pfree 
R2,polyplex (s

-1) 

(H2/H6/H8) 

R2,polyplex (s
-1) 

(H5/H1’) 

0 1 

311 ± 111 236 ± 84 
0.25 0.97 ± 0.02 

0.50 0.89 ± 0.06 

1.0 0.64 ± 0.21 

 

Based on the estimated value of R2,polyplex, we can estimate the rate of exchange (kex) to be greater 

than R2,polyplex - R2,free ~304 s-1 for H2/H6/H8 and ~231 s-1 for H5/H1’. The largest Δω observed in the 

proton dimension observed in 2D 1H-13C HSQC spectra described below was ~0.08 ppm (~300 rad s-1 at 

600 MHz spectrometer field). Therefore, for all chemical shift differences smaller than this the kex will be 

greater placing the system in fast exchange.  

We employed the fitted R2,polyplex values to calculate approximate hydrodynamic diameter for the 

polyplex particles. Under the assumptions of isotropic tumbling with internal motions being much 

smaller than overall tumbling, and that dipole-dipole coupling dominates the “transverse” relaxation 

rate, the overall rotational correlation times obtained (see materials and method) were estimated to be 

~36-240 ns. Assuming spherical shape, this corresponds to hydrodynamic diameter in the range 7.5-14 

nm consistent with previously reported values for DNA polyplexes.15 Using the population of free and 

bound at N:P of 0.25 from the two state fit of 1H relaxation data shown in Table 3, 13C R2,polyplex values 

were also calculated using residue specific 13C relaxation data as a cross-validation (see experimental 

section). Despite a number of approximations employed, these values are close to number average size of 

the polyplexes (~12-40 nm) as measured by DLS. 



 53 

It should be noted that in addition to line broadening, we observe a significant reduction in the 

integrated area of the 1H NMR resonances with increasing N:P ratios. Even though this decrease in 

intensity could result due to relaxation during the experiment itself, we cannot rule out some degree of 

exchange with much larger particles such as the ~140-200 nm particles observed by DLS that are not 

directly observable by NMR.48 A similar decrease in resonance signals was reported in the previous 

study15 with 20-bp DNA duplex which was attributed to the small polyplexes in equilibrium with larger 

NMR ‘invisible’ particles. 

2.1.2.3 Insights into RNA-Dendrimer Interactions from 2D NMR Chemical Shift Mapping Experiment 

Previous studies relied primarily on 1H NMR experiments to examine the impact of dendrimer 

binding on DNA structure.15 These experiments did not allow for characterization of any structural and 

dynamic perturbations with site-specific resolution. Here, we used uniformly 13C/15N labeled TAR and 

2D 1H-13C HSQC experiments to analyze TAR G5-PEG interactions and the effects on TAR structure 

and dynamics with site-specific resolution. The ability to measure 13C and 15N chemical shifts provides 

additional probes of structure and dynamics. Prior studies have shown that the TAR 2D 1H-13C HSQC 

spectra are very sensitive to changes in physicochemical conditions, including salt,45 pH,49 and presence 

of a wide range of added ligands.46,47,50 This chemical shift sensitivity is a result of TAR’s high degree of 

conformational flexibility and high susceptibility to structural and dynamic perturbations due to 

environmental cues. Remarkably, despite high susceptibility to chemical shift perturbations, we observed 

little change in the 2D 1H-13C HSQC spectra of TAR following the addition of dendrimer resulting in 

N:P ratio up to a value of 1. The only significant perturbations observed were for the flexible bulge 

residues U23 and C24, and the flexible apical loop residue A35 (Figure 2.2). These perturbations 

including other small chemical shift changes in both 1H and 13C dimensions are similar to those 

observed for TAR conformational changes induced by positively charged ions such as Na+ and Mg2+.45 

At physiological pH, the terminal –CH2CH2NH2 dendrimer surface is protonated yielding –

CH2CH2NH3+ end groups (up to ~101 per dendrimer molecule). These charged end groups of the 

dendrimer could be interacting with TAR in a manner similar to positively charged metal ions. In 
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addition to 1H and 13 C chemical shifts, 15N chemical shifts could also be used to obtain site-specific 

effects of dendrimer interaction, in particular on the base pairs. Such studies are intended to be carried 

out in future. 

 

 

Figure 2.2  Effect of dendrimer interaction on RNA structure. (a) Overlay of 2D 13C-1H HSQC spectra 

of uniformly 13C/15N labeled 200 µM TAR titrated to increasing N:P ratios with G5-PEG at 37°C 

showing cross peaks for H2-C2/H6-C6/H8-C8, H1’-C1’, and H5/C5 correlations. Spectra for N:P of 

0.17 has been omitted for clarity (b) Secondary structure of TAR. Residues that show chemical shift 

perturbations are indicated by orange diamond, circle, triangle, and square symbols representing H8-

C8, H2-C2, H1’-C1’, and H5-C5 perturbations respectively. Larger symbol denotes greater magnitude 

of chemical shift perturbation. 

2.1.2.4 Characterizing how Dendrimer Interactions affect RNA Dynamics 

To more fully characterize the impact of dendrimer binding on the TAR dynamics we measured 13C 

“longitudinal” relaxation rate (R1) and “transverse” relaxation rates (R2) values on the aromatic 
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(C2/C6/C8) and sugar (C1’) carbons. The measured 13C R2/R1 values for TAR in absence of dendrimer 

and at N:P ratio of 0.25 is shown in Figure 2.3 a. The R2/R1 ratio is widely used to estimate the overall 

correlation times as the ratio can be approximated to be independent of rapid internal motions.36 The 

R2/R1 ratio is propotional to the overall correlation times which can be used to describe the relative 

flexibility of residues. The values obtained for free TAR are in agreement with previously published 

data.23,24 In the presence of dendrimer, nearly all TAR residues show an increase in R2/R1, consistent 

with a slow-down in overall tumbling due to formation of small sized polyplex particles as indicated by 

1H NMR relaxation and DLS data. Although the overall tumbling of the RNA is slowed down, the bulge 

residues: U23, C24, U25 and the apical loop residues: U31, G32, G33, A35 retain lower R2/R1 values 

indicating that the RNA retains internal flexibility when bound to the small sized polyplexes. The 

correlation plot (Figure 2.3 b) of R2/R1 values at N:P of 0 vs N:P of 0.25 shows good aggrement indicating 

that the dynamic properties of TAR are not significantly affected upon interacting with dendrimers at 

this N:P ratio. The outlier points correspond to the terminal residue (C45) or near terminal residue 

(G18), which could be the most affected due to dendrimer interaction. Overall these results further 

support that despite interactions with the dendrimer that slow down overall tumbling, at this N:P ratio 

the RNA largely retains key elements of flexibility observed in the free state, including high flexibility at 

the bulge and apical loop. 
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Figure 2.3 Examining impact of dendrimer interaction on TAR dynamics by 13C spin relaxation (a) 

Ratio of 13C “transverse” relaxation (R2) to “longitudinal” relaxation (R1) values (R2/R1) measured on 

TAR at N:P 0 and 0.25 plotted as a function of the nucleotide residue (as base-paired in the helices or 

unpaired in the bulge and apical loop). Values for different nuclei are denoted using different symbols 

and colors (b) Correlation of measured R2/R1 values at N:P 0 and 0.25. 

To cross validate 1H NMR relaxation based overall tumbling time/ hydrodynamic diameter, we 

employed eq. 1 to obtain 13C R2,polyplex using pfree and pbound values obtained from 1H relaxation 

experiment for N:P of 0.25 (Table 3) and 13C R2 values. The 13C R2,polyplex ranged from 460-840 s-1 for the 
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helical, non-terminal residues, and 140-670 s-1 for terminal, loop, and bulge residues for C2/C6/C8. For 

C1’ carbons, the R2,polyplex values ranged from 380-680 s-1 for helical, non-terminal residues, and 180-450 

s-1 for terminal, bulge, and loop residues. Overall tumbling times obtained using these 13C R2,polyplex 

values (see experimental section) ranged bewteen ~80-280 ns. Assuming spherical shape and using 

Stokes-Einstein’s relation15 the diameter obtained was in the range ~10-15 nm. These values are close to 

the range obtained from 1H relaxation (~7.5-14 nm). 

2.1.2.5 Effect on Dendrimer Structure upon Polyplex Formation  

MD simulations have shown that the flexibility of PAMAM dendrimers play a crucial role in the 

binding interactions with nucleic acids.12 However, few atomic level experiments13,15 have been used to 

provide insights into how the dendrimer structure is affected upon polyplex formation.13,15 To this end, 

we performed 1D 1H NMR titrations of 5 µM G5-PEG with increasing TAR concentrations (0-67 µM) 

resulting in decreasing N:P ratios from ∞ to 0.25 (Figure 2.4). These titrations were focused on the 

resonances belonging to G5-PEG. We observe no significant chemical shift perturbations on the proton 

signals (a, b, c, d, e, f) from the PAMAM framework15 of G5-PEG or the PEG proton signals (i, j, k),15,51 

suggesting that the interaction with RNA doesn’t significantly alter the polymer structure and dynamic 

flexibility. Although we do not observe large changes in chemical shift, the proton signals from the 

PAMAM framework broaden with decreasing N:P ratios. The proton signal d, assignable to the 

methylene group alpha to the tertiary amine of the PAMAM framework shows an unusual behaviour in 

which it initially broadens nearly out of detection as the N:P decreases, and then reappears as a broad 

signal at N:P < 2. This could reflect structural reorganization in the polyplex around this N:P ratio, 

which is also suggested by our fluorescence experiments described below. The overall broadening of the 

proton signals from the PAMAM framework is consistent with a dynamic equilibrium between free 

RNA and polyplex-bound RNA as observed from the RNA perspective. Pavan et al. also observed such 

broadening of PAMAM peaks of unPEGylated G5 PAMAM dendrimer upon complexation with siRNA 

at low N:P ratios.13 By way of contrast, the PEG proton signals in our titration spectra remain sharp with 

integrated area and chemical shifts remaining essentially constant. This behavior is consistent with the 
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PEG arms of the dendrimer remaining highly flexible in the polyplex. Absence of broadening of the PEG 

proton peaks also suggests that broadening of both the PAMAM and RNA peaks is due to polyplex 

formation and broadening associated with slower tumbling of the larger particles and not due to overall 

viscosity changes.  

 

Figure 2.4 Effect of RNA interaction on the dendrimer. 1H NMR spectra of 5 µM G5-PEG titrated with 

increasing concentrations of TAR to decreasing N:P ratios with assignments of 1H NMR peaks of G5-

PEG mapped onto its chemical structure shown above the NMR spectra. Peak assignments are based 

on previously published studies.12,31 Peaks representing PAMAM framework of G5-PEG are broadened 

while PEG peaks remain sharp suggesting that the RNA is binding to the PAMAM part while the PEG 

arms remain flexible. 

2.1.2.6 Competitive Exchange of Polyplex-Bound RNA Measured using Fluorescence  

The NMR experiments indicate that the free RNA and DNA15 exists in rapid exchange with 

polyplex-bound forms at N:P ≤ 1. Such a dynamic exchange behavior may help explain the mechanism 

by which polyplexes play a dual role of both protecting the nucleic acids from nuclease degradation as 

well as allowing for oligonucleotide release from the polyplexes that make it into the cells. A dynamic 

equilibrium between free and bound RNA does suggest that the time spent by the RNA in the free state 
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can allow for interaction with nucleases in the cell depending on the off-rate of the polyplex equilibrium 

and on-rate of nuclease binding equilibrium. However, a fast exchange would allow for the RNA to 

spend less time as ‘free’ and ‘attackable’ by nucleases. While we have not specifically tested nuclease 

activity in this work, reports in literature have suggested that association with polyplexes slows down but 

does not completely prevent degradation by nucleases in a N:P ratio dependent manner.52,53 However, 

the NMR experiment is unable to probe what happens beyond N:P > 1 due to severe line broadening of 

the measured signals. To determine if RNA is still exchangeable at higher N:P ratios, we designed a 

fluorescence-based competition experiment (Figure 2.5). In the experiment, TAR containing a 

fluorescein tag on the 3’ end (TAR-FL) was mixed with increasing concentrations of G5-PEG to obtain 

N:P ratios ranging from 0 to 28. The fluorescence intensity was measured at a wavelength of 520 nm for 

each of the N:P points. We observe that the fluorescence intensity of TAR-FL decreases as the 

concentration of G5-PEG increases up to N:P ratio of 2, after which the intensity recovers to about 55% 

of initial fluorescence, and finally levels off at higher N:P ratios. A possible explanation for the initial 

decrease in TAR-FL fluorescence is that due to polyplex formation, RNA molecules come in close 

proximity leading to dye-dye quenching.  

 

Figure 2.5 Fluorescence quenching based competitive displacement assay demonstrating release of 

fluorescein tagged TAR from polyplexes with G5-PEG. Open circles indicate fluorescence of polyplex 

mixture at different charge ratios before adding untagged TAR. Filled circles indicate fluorescence of 

the polyplex mixtures after adding untagged 0.3 µL of 500 µM TAR with numbers below the filled 

circles indicating resulting N:P ratios. The total concentration of tagged TAR in all N:P ratios was 50 

nM. Buffer condition used is 50mM Tris-HCl, 50mM KCl, 0.01% Trition-X, pH 7.4. 
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An interesting feature of the fluorescence intensity binding curve is that the fluorescence recovers 

partially beyond ~N:P 2. Van Rompaey et al.54 and Zheng et al.55 have previously used similar 

fluorescence quenching assays to assess binding of other types of polycationic polymers with 

oligonucleotides. Zheng et al.55 also observed similar recovery in an assay with Tye563-labeled siRNA 

and hyperbranched PEI, which they attributed to molecular reorganization of the polyplexes. 

Interestingly in our case, beyond N:P ratio 2 we also observe in our 1H NMR titration spectra recovery of 

the resonance assigned to methylene group alpha to the tertiary amine of the PAMAM framework. This 

observation is consistent with molecular reorganization leading to conformational changes close to this 

region in the PAMAM framework. Increased electrostatic repulsion as more cationic polymer is added 

may causes an average increase in dye-dye distance. Increase in the volume of polyplex around these N:P 

points also may be a plausible explanation for partial reversal of fluorescence quenching. Beyond N:P of 

6 the fluorescence intensity is constant. This is suggestive of no further changes in the structural 

organization of the polyplex particle. These results are consistent with the DLS results in which the 

number average size increases up to N:P 1 and remains more or less constant at N:P of 5.  

Next we used this assay to test whether the RNA bound at N:P ratios greater than 1:1 remains 

exchangeable. Our prediction was if the RNA is exchangeable, it would be possible to rapidly recover the 

fluorescence intensity observed at low N:P ratios by simple addition of untagged TAR. Excess of 

untagged TAR was added to the preformed polyplex mixture at each N:P ratio described above and the 

resulting fluorescence intensity was measured. In all cases, addition of excess untagged TAR resulted in 

recovery of TAR-FL fluorescence intensity within < 30 min. For selected N:P ratios (1, 10, and 70) the 

fluorescence intensity was re-measured within 2 min of adding untagged TAR (Appendix A, S I). The 

fluorescence intensity was also recovered in this case. Adding excess RNA introduces competition of 

binding; however, this condition also provides a model for the competition with other biomolecules 

when polyplex is introduced to cell culture or an organism. These data indicate that at N:P ratios > 1:1, 

which are not probed by NMR, the polyplex RNA remains exchangeable and that this process is rapid on 

the fluorescence experiment time scale (< 2 min).  
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2.1.2.7 Comparison with Prior DNA Study  

Overall, the exchange behaviour observed for polyplexes of TAR/G5-PEG is similar to that observed 

previously for 20-bp DNA/G5-PEG polyplexes,15 i.e. the exchange is rapid on the NMR timescale. 

Similar R2,polyplex values were obtained in both studies indicating presence of similar sized particles (~8-

15 nm). However, we did observe differences in the 1H NMR spectra. In studies of DNA, the nucleic acid 

resonances broaden with increasing N:P ratio and are nearly undetectable at N:P ratio of 1. However, 

they reappear at N:P ratio of 5 either due to release of the DNA or increased local dynamics at the pico-

nanosecond timescale. However, for the RNA polyplexes, peaks did not reappear beyond N:P of 1. 

Although it is difficult to hypothesize the origin of differences between RNA and DNA at these N:P 

ratios, there are some literature evidences suggesting local structural differences may exist between RNA 

and DNA polyplexes. For example, as the closest comparison, CD spectra of polyplexes of PEGylated 

PAMAM G4 and a double stranded RNA showed little changes at N:P of 5 and above whereas polyplexes 

with a 20-nucleotide antisense DNA showed significant spectral changes at same N:P ratios, suggesting 

conformational changes in the antisense DNA.6 

As for the DLS measurements on the DNA polyplexes, a bimodal distribution was observed only for 

N:P ratio of 0.25 based on intensity where the second peak was observed ~8-20 nm. A unimodal 

distribution was observed for higher N:P ratios with the intensity average diameter ~60 nm. For the 

RNA, particles in the size range ~12-40 nm were observed for all N:P charge ratios in addition to ~140-

200 nm particles. In addition, number average analysis indicated the smaller size particles represented 

the majority population. Overall, both studies suggest the presence of small sized polyplexes as well as 

the larger particles in the more commonly reported size range in exchange with free RNA. 

2.1.2.8 Proposed Model of Exchange in the Polyplex System of RNA and Dendrimer  

Combining results from NMR, DLS, and fluorescence experiments, we can propose a model for 

dynamic exchange illustrated in Scheme 2-I. The scheme shows smaller polyplexes in rapid exchange 

with free RNA as indicated by NMR line broadening without chemical shift perturbations. We 

hypothesize that this intrinsic rapid exchange in the polyplex could provide a mechanism for RNA 
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release and protection from nuclease degradation. It is also conceivable that these dynamics affect 

interaction with other biomolecules in the cell such as plasma membrane components, and intracellular 

RNA, lipids, and proteins. For example, our recent study has shown that in polyplex treated cells the 

induced plasma membrane current is the same value as obtained for POCP-treated cell alone and 

persists even after the cells were allowed to recover by rapidly exchanging with POCP-free ECS solution. 

These data indicate that the POCPs are released into the cell plasma membrane and remain intercalated 

in the form of a stabilized pore or carpet structure.56 The size range for these smaller polyplexes were 

comparable between our NMR (~7.5-15 nm) and DLS (~12-40 nm) diameter measurements. Polyplex 

particles in this size range have been hypothesized to be the active form for effective gene delivery.57-59 

The lower size limit for first pass elimination by kidneys has been estimated to be 10 nm diameter based 

on sieving coefficients simulated for proteins, Ficoll, and Dextran particles using pore theory of 

glomerular permselectivity.60 The upper size limit for particles to successfully reach target locations has 

been suggested57 to be ~70 nm diameter based on a study61 which showed that gylcolipid/liposome 

particles > 70 nm diameters were not recognized by the asialogycoprotein receptor on hepatocytes. The 

NMR data suggests that in the small sized polyplex particle, the RNA maintains its structural and 

dynamic properties without any differences localized in the flexible bulge residues and are consistent 

with effects observed with divalent cations.45 This is consistent with previous circular dichroism (CD) 

spectroscopy studies on RNA polyplexes with PEGylated G4 PAMAM6 and a variety of unPEGylated 

dendrimers7 where the overall CD spectral pattern of polyplexes remained similar to that of A-form 

RNA, minimally indicating that the RNA remains in its A-form helical secondary structure. Similar 

results were also inferred for transfer RNA (t-RNA) polyplexes from both CD spectroscopy and infrared 

(IR) spectroscopy.8 In addition, we also have evidence for presence of larger polyplex particles in the size 

range ~140-200 nm as measured by DLS. It is possible that these larger particles are in exchange with 

either free RNA or the smaller polyplex particles, as suggested by the decrease in integrated area of NMR 

resonances. We note that our data is consistent with the number of particles in the ~12-40 nm size range 

being dominant but a greater volume of material being present in the large ~140-200 nm particles. This 



 63 

leads us to put forward a picture of the polyplex system as an ‘ion-cloud’ like environment where the 

RNA and dendrimer molecules are held together by transient non-specific interactions preserving the 

RNA local structure and dynamics and are in dynamic exchange between free and bound forms. 

 

 

Scheme 2-I Proposed exchange model between polyplex bound forms and free RNA. As suggested by 

DLS, the ~12-40 nm particles represent the majority of polyplex population. 

2.2 Role of Polymer Structure and Oligonucleotide Structure on Compexation and Intramolecular 

Exchange of Polyplexes 

While intraction between nucleic acids and POCPs are largely viewed as non-specific electrostatic 

interactions, owing to the involvement of large number of charges, there are several instances in 

literature (discussed in 0) suggesting that the structural details of the POCP as well as the nucleic acids 

play a role in determining the overall interactions in these complex systems. Here we test three common 

nucleic acid delivery polymers of the roughly similar average molecular weights (25 kDa) and having 

amines as the protonable groups with respect to their ability to complex and exchange HIV-1 TAR using 

fluorescence based competition assay described in section 2.1.1.12. Using fluorophore tag on G5-

PAMAM we show that the degree of complexation as monitored by amount of fluorescence quenched, 

depends on whether the oligonucleotides favor unstructured or hairpin structures irrespective of their 
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molecular weights. It was also shown that when competed with untagged G5-PAMAM, bound G5-

PAMAM were able to be exchanged in solution.  

2.2.1 Dependence of Degree of Complexation and Release of Bound Oligo on POCP Structure  

 

 

Figure 2.6 Binding and exchange of TAR-FL in different polyplexes as monitored by quenching of 

TAR-FL fluorescence. (a) Chemical structure of different POCPs tested. (b) Open circles with lines 

represent TAR-FL fluorescence intensity upon binding with the POCPs at different concentration 

ratios (N:P ratios is provided for G5). Filled dots represent fluorescence intensity after exchange with 

excess untagged TAR.  

Figure 2.6 a shows the different POCPs tested in this study. All three POCPs are known to form 

polyplexes with nucleic acids, with the interactions largely mediated by the protonable amine groups. 

The two forms of PEI are chemically very similar with every third atom being protonable (monomer unit 

-CH2-CH2-NH-). However, they differ significantly in the arrangement of protonable sites along the 

main chain. The hyperbranched architecture of bPEI results in primary, secondary, and tertiary amines 

in an estimated ratio 1:2:1. lPEI only has secondary amines except at the chain end which is terminated 

by primary amine. The repeating unit of PAMAM has amide as well as amine functional groups. The 

branching in PAMAM also results in primary, secondary, and tertiary amines, however the dendritic 

architecture results in unique polymer properties. Figure 2.6 b shows the secondary structure of the 

nucleic acid used in this study with fluorophore tag at the 3’ end. It is observed, as seen in Figure 2.6 c 
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that the total amount of TAR complexed as measured by total amount of fluorescence quenched, which 

we will define as the degree of complexation, is significantly different for the three tested POCPs. At the 

concentration ratio where maximum amount of quenching is observed for all POCPs, the order of the 

amount of quenching is bPEI > lPEI ~ G5. Although the exact effect of protonation in PEIs have been 

difficult to understand, additionally complicated by the molecular weight inhomogeinity, the stronger 

affinity of bPEI compared to lPEI may be attributed to differences in protonation behavior between the 

two types of PEI. The primary amines have the highest pKa followed by secondary and tertiary amines. 

Therefore for a given mass of PEI at physiological pH, bPEI is expected to be protonated to a greater 

extent compared to lPEI, which only has secondary amines. However, this may nontrivial owing to the 

effect on protonation of a amine by its surrounded by its already protonated neighboring amines. For 

e.g. Theoretical analysis and simulations have shown that under physiological pH, the protonated sites in 

lPEI alternate with un-protonated sites along the chain.62 In bPEI, there is an additional energetic 

penalty to protonate amines due electrostatic effects from the easily protonable neighboring primary or 

secondary nitrogen atoms.63 Secondly, the branched topology makes bPEI more rigid compared to 

lPEI.64 Moreover, binding to nucleic acids can alter the protonation of the POCP, which can be structure 

dependent. Therefore, in addition to the overall charge in polymer structural features can play a role in 

determining how many oligonucleotides can bind to a single polymer molecule.  

Beyond the maximum quenching ratio fluorescence is recovered for all three POCPs to some extent. 

This type of quenching profiles, i.e., initial quenching up to ~ N:P 1 and some degree of recovery of 

fluorescence has been attributed to the capability of polyplexes to undergo molecular reorganization 

leading to either increased separation of fluorophore molecules. This also coincides with the “charge 

inversion” behavior of polyplexes in presence of excess positive charges. Theories developed to explain 

“charge inversion” behavior of polyplexes predict that when there are excess positively charged 

polymers present, preformed charge neutral polyplexes can accommodate the excess charges resulting in 

an overall positive charge on the polyplex. This kind of accommodation can result in redistribution of 

the nucleic acid molecules in the polyplexes. Interestingly, while the fluorescence quenching profiles of 
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lPEI and bPEI (ignoring the absolute fluorescence values) are similar, the profile is significantly different 

for G5 suggesting some differences in molecular reorganization of the polyplexes. However, the exact 

nature of these differences cannot be accessed simply from fluorescence quenching. Upon adding 

untagged TAR to the preformed polyplex solutions, fluorescence is recovered for POCPs. However, the 

total amount of fluorescence recovered after the competition is different for different POCP which 

follows the order lPEI> G5 > bPEI. This suggests that the exchange of bound RNA is most favored for 

lPEI while for bPEI the RNA is more tightly bound.  

2.2.2 Dependence of Degree of Complexation of Bound Oligo and Release of Bound POCP on Oligo 

Secondary Structure.  

 

Figure 2.7 Binding and exchange of G5-TAMRA in different polyplexes as monitored by quenching of 

G5-TAMRA fluorescence. (a) Chemical structure of different oligonucleotides tested. (b) Open circles 

represent TAMRA fluorescence intensity upon binding with the olignucleotides different N:P atios. 

Filled dots represent fluorescence intensity after exchange with excess untagged G5. 

Secondly, we tested the effect of oligo structure on the degree of complexation with G5 and exchange 

of G5. Figure 2.7 a shows the different oligonucleotides used in this study. The first is the 29-nt RNA 

used in our previous experiment, while the latter two (HP and SS) are of equal nucleotide length and 

hence comparable masses. However, due to their sequence context, the is HP is predicted to 

thermodynamically favor hairpin structures whereas the free energy of hairpin formation is very high for 
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SS. Sequences for these constructs were obtained from studies by Sundaram et al. 65 where they showed, 

using single stranded oligo binding dye, that the amount of uncomplexed oligo was greater for single 

stranded oligo/polylysine (PLL) complexes compared to hairpin/pLL polyplexes. Figure 2.7 b shows 

quenching of fluorescence of TAMRA conjugated to G5 (G5-TAMRA) upon polyplex formation with 

the three oligos as a function of N:P ratio. In this assay, a constant amount of G5-TAMRA was mixed 

with varying amounts of oligo. As the N:P decreases (equivalently as the oligo concentration increases), 

the TAMRA fluorescence quenches and reaches a saturation around N:P 1. A significant difference in 

the amount of fluorescence quenching for the different oligonucleotides is observed even when 

normalized for the N:P ratios. It is worth mentioning that unlike in the assay where the POCP is varied 

where the estimation of N:P ratio and hence the charge balance is prone to errors due to large molecular 

weight inhomogeneity, in this assay the N:P ratios can closely represent the charge ratio as both the G5 

molecular weight and oligo molecular weights are more precise. Consistent with the studies by 

Sundaram et al., we observed that the HP oligo quenched G5-TAMRA fluorescence the most and the SS 

oligo quenched the least suggesting hairpin structure complex with POCPs to a greater extent compared 

to unstructured oligos. This may be explained by higher charge density of double helical regions 

compared to single stranded regions. However, the flexibility of the unstructured regions may also play a 

role as the higher molecular weight RNA which has twice the number of helices compared to the HP, but 

has a very flexible junction showed lower degree of complexation compared with HP but higher 

compared to SS. When excess of untagged dendrimer was added to the preformed polyplexes, 

fluorescence was recovered for polyplexes of all oligonucleotides used. This indicates that the bound 

dendrimer can be exchanged into the solution. However, the amount of complexed G5 exchanged does 

not appear to be dependent on the oligonucleotide structure. 

2.3 Conclusions 

Using a combination of experimental approaches we describe a coherent picture for the structure 

and dynamics of soluble nanoscopic complexes of a small RNA with polycationic dendrimer. DLS and 

NMR experiments support the view that the RNA-dendrimer polyplexes form two distinct populations 
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with sizes of ~12-40 nm and ~140-200 nm. The smaller polyplexes are expected to be the more 

functional form as this size range falls within the proposed size limits for delivery vehicles. While the 

RNA rapidly exchanges between free and bound forms, we find no significant effect on the secondary 

structure and fast local dynamics of the RNA upon polyplex formation. However, both polymer and 

nucleic acid structure affects the composition of the the polyplexes and the intermolecular exchange as 

indicated by fluorescence experiments. The intermolecular exchange dynamics is crucial for biological 

function, as the nucleic acid cargo needs to be both protected and released. The prospect of having 

functionally active RNA/DNA bound to a dendrimer delivery vehicle is extremely promising for future 

design. Lastly, we hypothesize that the small, active population of polyplexes are in free exchange with 

the larger aggregates observed in DLS. By considering all of these data, we propose a picture of how 

polyplexes may exist in solution that includes rapidly exchanging RNA/DNA molecules on smaller 

RNA-dendrimer polyplexes, as well as on the larger polyplexes aggregating and exchanging. The data 

presented here should prove useful for future engineering of polyplexes for the purpose of therapeutic 

nucleic acid delivery. 
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CHAPTER 3 LOCAL MICROENVIRONMENTS IN POLYPLEXES 

 

The work presented in section 3.2 of this chapter has been submitted for review in the following paper: 

Shakya, A.; Al-Hashimi, H. M.; Holl, M. M. B. “Three Microenvironments Detected in Fluxional 

Gene Delivery Polyplexes”, under review. 

3.1 Local/Interfacial Solvent Structure and Ionic Composition of upon Interaction of Charged 

Polymers 

When two charged surfaces interact large perturbations on the local solvent and ion environment is 

expected.1,2 Interactions close to charged surfaces have been difficult to understand despite being a 

subject of immense theoretical and experimental research. As has been discussed in 0, polyplexes present 

themselves as complex hierarchical assembly of charged surfaces. One of the interesting properties that 

arises due the stoichiometric charge excess when polyplexes are prepared in excess of either the POCP or 

nucleic acid charges, is the so called phenomenon of “charge inversion”.3 From ion correlation 

theories4,5 it follows that under these conditions favorable accommodation of excess of the like charge on 

to a polymer surface occurs resulting into an overall charge. Therefore, in a hierarchically assembled 

polyplex multiple distinct local environments can be expected, for e.g. regions on the polymer surface 

that is completely neutralized by the oppositely charge polyion and regions where charges are not 

compensated by the oppositely charged polyion resulting in differences in the distribution of counterion 

density and identity (positive vs. negative counterions).6,7 Such differences can result into regions with 

local environment very different from bulk. Furthermore it is well known that the water structure close 

to surfaces is significantly different from bulk, although the precise nature is not clearly understood.8 

Since both PCOPs and nucleic acids present different hydrophobic/hydrophilic surfaces, polyplex can 

have complex ordering of water molecules.9 Such local/interfacial properties become important, 
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especially for reactions that pH dependent reactions such as enzyme catalysis.10 However, these 

properties are difficult to measure using bulk measurements. Using small molecule probes that can 

detect local changes is a useful approach. Fluorescein is one such molecule that shows a variety of 

prototropic and solvatochromic response. 

3.1.1 Solvatochroism 

A basic tenant of optical excitation is the molecule undergoes a significant change to the molecules 

dipole moment. Often, the ground and electronically excited states both have a dipole moment, though, 

during excitation and relaxation, the dipole moment undergoes a significant change. In a bath of polar 

solvent molecules, organization of solvent molecules around a chromophore can stabilize the inherent 

dipole moments of the chromophore in the ground and excited states. In this case, the solvent molecules 

must reorganize following excitation, as the sudden change in the chromophores dipole moment drives 

solvent reorganization around the new dipole moment (Figure 3.1).  

 

 

Figure 3.1 Solvatochromism. In a polar solvent, the solvent dipole moments can align to stabilize the 

excited state dipole of a fluorescent molecule. This solvent organization stabilizes the excited state, and 

a resulting red-shift can be measured in the fluorescence emission wavelength. This predictable 

phenomenon can be used to measure solvent polarities, and can also be used to characterize complex 

solvent environments. 
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The stabilization of the ground and excited states of a chromophore by a polar solvent affects the 

energy levels probed by absorption and fluorescence. For instance, the stabilization of the electronic 

excited state relative to the ground state lowers the energy gap, and thus fluorescence emission red shift 

when the chromophore is in a polar solvent. The tuning of the emission wavelength can be calibrated 

and used as an analytical method for determining a solvents polarity. In the case of complex 

environments, such as systems with nanoscale heterogeneity, solvatochroism can be used to characterize 

complex solvent environments, heterogeneous compositions and preferential solvation. 

3.1.2 Fluorescein Protrotopism 

 

 

Figure 3.2 Protrotopism of fluorescein 

Owing to is high molar absorptivity, quantum yield, and photostability fluorescein is one of the most 

commonly used dyes. It exhibits a rich prototropic and solvatochromic behavior making it very useful to 
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study a variety of environments around a molecule. Depending on the pH, fluorescein can exist as 

dianionic, anionic, neutral, and zwitterionic forms, which have unique spectral signatures. The different 

prototropic forms of fluorescein are shown in Figure 3.2. Although a range of different pKa values for 

the protolytic equilibria between the different forms have been reported, the approximate values are 

illustrated in Scheme 3-I.11,12 

 

 

Scheme 3-I Prototropic equilibria of fluorescein. 

3.2 Local Microenvironments in Polyplexes 

Polycationic polymers (POCP) have long been studied for applications in nucleic acid-based therapy 

due to their ability to compact genetic material and transport it within the cell.13-16 They form 

nanoparticulate complexes (polyplexes) with nucleic acids by simple mixing in aqueous solutions. 

Several polyelectrolyte complex models3,17-23 have explained effective attraction (as close as a few 

angstroms) of the highly negatively charged phosphate backbone of nucleic acids in the presence of 

polycations, which constitute the basis for understanding polyplex formation. The emerging picture of 

the polyplex structure in solution is a hierarchical assembly where several nucleic acid molecules bind to 

a polymer (or vice versa depending on relative sizes) and several loaded polymers (“primary” 

complexes) aggregate to form nanoparticulate clusters.24-28  

Studies also suggest the presence of vacant spaces within the clusters26,29,30 that could be a source of 

local water and ionic microenvironments that differ from that of the bulk solution. The functional 

importance of local water and ionic environment at charged interfaces has been highlighted in studies of 

activity of enzymes assembled on charged surfaces.1,10,31 At POCP concentrations greater than that 

required for the most effective charge neutralization (typically around the protonable POCP nitrogen to 

nucleic acid phosphate formulation ratio (N:P) of 1:1), so called “charge inversion” is predicted to occur. 

Favorable non-stoichiometric accommodation of excess POCP molecules via local effects on the surface 
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potential of already neutralized surfaces confers an effective positive charge to the polyplex.4,5,32 Due to 

the effective positive surface charge, an electrostatic double layer and a counterion gradient that 

decreases with increasing distance from the surface (1-100 nm)33 is expected to be present. By virtue of 

this electrostatic double layer and counterion gradients or hydrophilic pockets within the assembly, 

polyplexes can have local water and ions whose physical and chemical properties are dramatically 

different from that of bulk solution. In particular, interactions between charged surfaces result in uneven 

distribution of ions near the interface. This can result in local pH values to be different from bulk pH of 

the solution, which can have functional implications.1,33 For example, enhanced activity of catalytic 

peptides assembled on gold nanoparticles coated with charged monolayers is attributed to an increase in 

interfacial local pH compared to bulk solution.1,34 As for polyplexes, it is conceivable that local water and 

ionic properties are important not only for properties like polyplex mobility often linked with the 

electrostatic double layer charge, but also for functional intracellular events like cargo and target nucleic 

acid hybridization and nuclease activity owing to their sensitivity to local pH, ionic strength, and solvent 

structure. 

This study leverages the rich prototropisim11,12,35,36 and sensitivity to solvatochromic effects37,38 of 

fluorescein to detect multiple microenvironments present in polyplex nanoparticles with local site 

specificity. In particular, fluorescein is a very sensitive reporter of hydronium ion concentrations making 

it ideal for probing microenvironments with different pH.39-41 A variety of fluorophores, including 

fluorescein, have been previously employed to assess nucleic acid-POCP binding employing quenching 

of fluorophore fluorescence upon interaction with POCP.25,42-44 However, in addition to quenching, 

information on solvent structure and composition that fluorophore spectral properties can provide has 

not been tapped to study the local environment of polyplex nanoparticles. The data obtained herein 

employing fluorescein (FL) covalently tagged to the 3’ end of a 29-nt RNA (Trans Activator Response 

Element, TAR-FL) indicate that the RNA in polyplexes exists in at least three different 

microenvironments: a) RNA in association with the polyplex that experience local pH changes; possibly 

on the electrostatic double layer (“Stern layer” or “diffuse layer” that is dependent on POCP to RNA N:P 
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ratio) b) RNA that experience relatively acidic local pH that remains constant in polyplexes formed after 

a charge neutral N:P ratio c) RNA that are packed close enough to mediate fluorophore/fluorophore 

quenching. The magnitude of these changes observed as a function of POCP to nucleic acid N:P ratio 

depends upon the exact type of polymer employed. 

3.3 Experimental 

1.1.1 Materials 

Sodium chloride (NaCl), 0.1 N hydrochloric acid (HCl), tris (hydroxymethyl)-aminomethane and 

Triton-X were purchased from Sigma, St. Louis, MO. G5 PAMAM dendrimer was purchased from 

Dendritech Inc. (Midland, MI) and dialysed before use. bPEI was obtained from Sigma Aldrich 

Corporation with Mw of ~25,000. lPEI was obtained from Polysciences, Inc., with Mw ~25,000. HPLC 

purified TAR tagged with fluorescein at the 3’ end was purchased from Dharmacon (Lafayette, CO). 

3.3.1 Fluorescence Spectroscopy 

All oligos were annealed by heating to 95oC for 5 min and then cooled on ice for an hour prior to 

use. The oligos were diluted in pH 7.54 fluorescence assay buffer (50 mM Tris-HCl, 50 mM KCl, 0.01% 

Trition-X). Polymers were dissolved in the assay buffer and serially diluted to obtain aliquots of 

concentration from 2 nM to 2000 nM. 100 nM oligo was incubated for 30 min in 1:1 volume with 

varying concentrations of the dendrimer in a 384 well plate such that the final oligo concentration in 

each well was 50 nM and varying concentration ratios. Fluorescence emission at wavelengths 500 – 600 

nm with stepwidth of 1 nm using 472 nm excitation wavelength and 16 nm bandwidth of excitation. 

Measurements were done in triplicates using a CLARIOStar Omega plate reader (BMG Labtech) at room 

temperature. 

3.3.2 Bulk pH Measurements 

Polyplex solutions were prepared in the same buffer conditions and concentrations as prepared for 

fluorescence experiments, but in higher volumes in order to facilitate pH measurement using a pH 
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probe. The probe was dipped into the polyplex solution and allowed to equilibrate until the pH reading 

was stable. Both calibration and measurements were performed at room temperature. 

3.4 Results and Discussion 

 

 

      

Figure 3.3 Effect of G5 PAMAM polyplex formation on the fluorescence emission spectrum of FL 

conjugated to the 3’ end of TAR. (a) Ratio of fluorescence intensity at 560 nm (FI560, fluorescein 

monoanion emission maximum) versus 520 nm (FI520, fluorescein dianion emission maximum) 

plotted as a function of N:P. Corresponding concentration ratios are also denoted. b) A scheme 

illustrating the different microenvironments in the G5/TAR-FL polyplexes formed at N:P less and 

greater than 1:1. 

The positive to negative charge balance, represented by N:P ratio, is one of the key formulation 

parameters known to affect the structure, size, colloidal stability, surface charge properties, and 
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fluorophore spectral properties of polyplex nanoparticles. For G5 PAMAM dendrimers, only the 

primary amine nitrogens are considered as they are the only ones predicted to be fully protonated at 

physiological pH.45 Owing to very low pKa (~1.5) nucleic acid phosphates are always deprotonated at 

physiological pH. Figure 3.3 summarizes representative changes in the emission profile of TAR-FL upon 

polyplex formation with G5 at different N:P ratios. A key observation is that the monoanion (FL-) 

fluorescence intensity relative to dianion (FL2-) intensity, approximately captured by FI560/FI520 ratio, 

increases as N:P increases up to 1.7 (assuming 108 primary amines per molecule of G5 and 29 

phosphates per molecule of RNA). This indicates a ground state equilibrium shift towards the 

protonated form FL-, reflecting an increase in hydronium ion concentration surrounding the 

fluorescein, given the pKa of FL2- to FL- conversion to be ~ 6.3.38 It is important to note that no bulk pH 

change was observed as a function of N:P ratio as measured using pH electrodes (Appendix B, T I). 

Moreover, despite increasing dendrimer (a weak polybase) concentration, increased fluorophore 

protonation is observed (increase in FI560/FI520) up to N:P 1.7. This indicates, under the well-buffered 

solution condition, a local increase in hydronium ion concentration in the immediate environment of 

the fluorophore; and not bulk changes in the solution pH. It should also be noted that the emission 

spectrum of free fluorescein itself does not change at different POCP concentrations used in this study 

(Figure 3.4).  
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Figure 3.4 Effect of (a) G5, (b) bPEI, and (c) LPEI on free fluorescein spectrum. The concentration of 

fluorescein was 50 nM and the concentrations of POCP used were same as in presence of polyplex 

formation experiments. All the spectra at different POCP concentrations overlap with each other due 

to insignificant changes in the free fluorescein spectrum. 

Beyond N:P 1.7, the amount of FL- decreases and subsequently saturates at N:P 7. Such a 

dependence of FL protonation/deprotonation on POCP to RNA N:P ratio may be understood based on 

condensation/decondensation behavior of nucleic acid chains in the presence of polycations. It is well 

established for large DNA molecules that as the concentration of polycation is increased, the nucleic acid 

chains become increasingly condensed (compacted).22,46 In the case of shorter nucleic acid chains 

aggregation becomes more dominant, although basic principles of polynucleotide chain attraction in the 

presence of polycations are expected to hold. MD simulations of small aggregates of short DNA chains 

in presence of polycations show that the DNA-DNA distance decreases as the positive to negative charge 

ratio is increased.47 The ratio that allows for the most condensed state of separate nucleic acid chains 

c)

a) b)
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(close to charge neutral ratios, i.e. N:P 1:1) could provide the most acidic microenvironment due to the 

acidic nucleic acid phosphate groups. Beyond this ratio, the nucleic acid chains are predicted to become 

“charge inverted” and can reenter the bulk solution phase from the condensed/aggregated phase or 

reorganize in order to minimize repulsive interactions.22,46 This is consistent with an increase in local pH 

(equilibrium shift from FL- to FL2-) observed after N:P 1.7. However, the local pH appears to remain 

slightly more acidic compared to that experienced by free TAR-FL (N:P 0) suggesting that the RNA 

remains in interaction with other RNA molecules in the complex. This supports the notion of molecular 

rearrangement of “primary” complexes leading to more sparsely distributed RNA in the polyplex 

aggregate.25  

The initial decrease in local pH surrounding the chromophore until charge neutral ratios are 

reached, followed by subsequent increase and saturation, is also reminiscent of the dependence of zeta 

potential on the charge ratios commonly reported in literature. Zeta potential measurement, which is 

based on mobility of colloidal/nanoparticles in an applied electric field, reports on the effective charge on 

the electrostatic double layer surrounding the particles. However, unlike hard nanoparticles, polyplex 

nanoparticles are soft and fluxional; and are expected to have a heterogenous interface and a non-ideal 

electrostatic double layer.48 Nonetheless, zeta potential measurements are often used as a useful tool to 

qualitatively compare the effective charge on the double layer among particles formed at different N:P 

ratios.49 The general trend observed is that zeta potential value decreases as the N:P ratio increases and 

reverses in sign beyond the charge neutral condition. Based on this model, it is likely that the observed 

pH changes reflected by FI560/FI520 ratio are reporting on pH changes within the electrostatic double 

layer surrounding the polyplex nanoparticles. 
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Figure 3.5 (a) Normalized steady state emission spectra (excitation wavelength, λex = 472 nm) of TAR-

FL at various G5:TAR-FL concentration(ug/mL) ratios. Solutions were buffered at a pH of 7.54 using 

tris-HCL. (b) Normalized emission spectra of TAR-FL at different buffer (tris-HCl) pH (λex = 472 nm).  

Secondly, a bathochromic shift of up to ~6 nm is observed for the FL2- emission maximum ca. 520 

nm (Figure 3.5 a). Bathochromic spectral shifts of FL2- are observed when solvent polarity increases 

and/or the FL2- experiences a change in hydrogen bonding status molecules in its ground state.38 The 

observed red shift in emission from the dianionic chromophore suggests either electrostatic interaction 

of FL2- with the POCP charged amines, which is consistent with an increased extent of terminal amine 

protonation, and/or lowered hydrogen bonding interactions with water molecules due to competition 

with RNA phosphates as local water molecules are expected to deplete or change their ordering upon 

POCP/nucleic acid interaction.9 Another feature of the emission spectra that indicates local pH changes 

is a less prominent shoulder peak ca. 526 nm. As seen in emission spectra of TAR-FL at different buffer 

a)

b)

OO

COO
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OO

COO
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pH (Figure 3.5 b), the relative intensity of this peak also increases as the pH is lowered. This intensity of 

this low pH fluorescent species increases up to the same N:P ratio at which maximum FL- emission 

observed. However, unlike the FL- emission at 560 nm, it does not decrease on further increasing the N:P 

ratio. This suggests the presence of a separate relatively acidic polyplex microenvironment that remains 

unperturbed as the POCP is increased beyond the charge balance condition. Although precise structural 

descriptions of the polyplex assembly cannot be made solely based on these fluorescence data, the 

concept of vacant spaces26,29,30 in these soft nanoparticles is consistent with an internal solvent 

microenviroment that is relatively acidic compared to the electrostatic double layer on the surface of the 

polyplex as the latter will have a higher probability of interacting with the excess free POCP in the 

solution.  

 

Figure 3.6 Quenching of FL fluorescence at different G5 to TAR-FL N:P (ug/mL) ratios a) Raw 

emission spectra (λex = 472 nm). b) Comparison of fluorescence intensities at wavelengths 520, 526, 

a)

b)
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560 nm with the total intensity integrated over 500-600 nm. Fluorescence intensities are normalized to 

TAR-FL only sample. Error bars represent standard deviation from triplicate measurements. 

The near charge neutral ratio N:P 1.7, is also the ratio where maximum fluorescence quenching 

occurs (Figure 3.6 a). Such quenching is generally attributed to increased proximity between 

fluorophores molecules upon complex formation.25,44 The degree of quenching at this ratio is essentially 

same regardless of the wavelength of detection and is the same as when the entire spectrum is integrated 

(Figure 3.6 b) indicating that quenching is a general effect, regardless of the relative concentration of 

fluorescing species present. Partial recovery of fluorescence is observed beyond the near charge neutral 

ratio. This dependence of quenching on the N:P ratio has been observed for assays involving other 

covalently attached dye molecules as well. The partial recovery supports the model that beyond the 

critical N:P ratio polyplex nanoparticles undergo molecular reorganization of the assembled “primary” 

complexes in the polyplexes, that allows for increased dye-dye distance25,28 possibly due to the favorable 

accommodation of excess POCP as predicted by ion-ion correlation based “charge inversion” effects. 
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Figure 3.7 Effect of POCP type on FL emission upon polyplex formation. a) Chemical structures of G5, 

bPEI and lPEI b) Comparison of FI560 /FI520 ratio, reflecting on relative F-/F2- concentrations for 

polyplexes of TAR-FL with different POCPs. The N:P ratio is provided for G5. 

Two other commonly studied POCPs, ~25 kDa lPEI and bPEI were also tested, the polyplexes of 

which differ substantially in their functional efficiency. Figure 3.7 shows that the magnitude of changes 

observed in the fluorescence spectrum of TAR-FL at different POCP concentrations is largely dependent 

on the type of POCP. Bathochromic shifts follow the trend G5(6 nm) > bPEI (4 nm) > lPEI (3 nm) 

(Figure 3.5 a, Figure 3.8). The magnitude of bathochromic shift observed when a fluorescently labeled 

molecule is in a binding interaction has been attributed to the increased strength of interaction of the 

fluorophore in the bound state compared to its hydrogen bonding interaction with the solvent.38 

Increased ordering of solvent molecules around fluorophore molecules can also induce red shifts.50 The 

increased bathochromic shift observed for G5 and bPEI compared to lPEI suggests their branched 
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architecture may allow for more stable aggregation of the RNA into the polyplex nanoparticles; and/or 

increased ordering of solvent molecules leading to reduced hydrogen bonding interactions between the 

fluorophore and the solvent. This is consistent with MD studies that suggest greater affinity of higher 

generation dendrimers with nucleic acids compared with the more flexible lower generation 

dendrimers51 and more stable aggregation of bPEI polyplexes compared to lPEI polyplexes.52 On the 

other hand, the FI560/FI520 ratio is highest for bPEI polyplexes suggesting the most acidic local pHs are 

seen for bPEI polyplexes followed by G5 polyplexes and lPEI polyplexes (Figure 3.7 b). The same trend 

follows for total amount of fluorescence quenching observed (Figure 2.6) consistent with a greater 

degree of complexation (more RNA bound per polyplex) for bPEI followed by G5 and lPEI. Comparing 

the two forms of PEI, chemically they are very similar with every third atom being protonable (monomer 

unit -CH2-CH2-NH-). However, they differ significantly in the arrangement of protonated sites along 

the main chain. The hyperbranched architecture of bPEI results in primary, secondary, and tertiary 

amines in an estimated ratio 1:2:1. lPEI only has secondary amines except at the chain end which is 

terminated by primary amine. Under physiological pH and salt, the protonated sites in lPEI alternate 

with un-protonated sites along the chain.53  In bPEI, there is an additional energetic penalty to protonate 

the already acidic tertiary amines due to electrostatic effects from three easily protonable neighboring 

primary or secondary nitrogen atoms.54 Secondly, the branched topology makes bPEI more rigid 

compared to lPEI.52 Differences in the arrangement of protonated sites along with differences in chain 

flexibility has been attributed to different modes of binding with nucleic acid molecules52 which may 

subsequently lead to differences in the hierarchical assembly and hence the observed differences on the 

fluorophore spectrum.  
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Figure 3.8 Normalized emission spectra (λex = 472 nm) of a) bPEI/TAR-FL polyplexes at different bPEI 

to TAR-FL concentration (ug/mL) ratios b) lPEI/TAR-FL polyplexes at different lPEI to TAR-FL 

concentration (ug/mL) ratios. 

3.5 Conclusion 

From these observations, the following descriptions of the polyplex microenvironment can be 

assessed: a) RNA in association with the polyplex experiences an N:P dependent local pH change, 

possibly at the electrostatic double layer) b) RNA experiences relatively acidic local pH that remains 

constant in polyplexes formed with N:P 1:1 c) closely packed RNA experiences fluorophore/fluorophore 

quenching. The N:P ratio giving maximal bathochromic shift and maximal quenching slightly differs for 

the various POCPs. This may reflect the different levels of charge on the POCPs due to differences in the 

degree of protonation of amine groups. This could lead to different stoichiometry of the polyplex 

a)

b)
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resulting in a different degree of interaction of the fluorophore with the polyplex environment. The local 

microenvironment of polyplex may be important for the practical use of polyplexes. It is expected to 

change to a much lesser extent compared to bulk solution upon exposure of the polyplex particles to 

cellular conditions. The surface or the vicinity of the nanoparticles would provide an ideal milieu for 

hybridization of the cargo with target nucleic acids, as nucleic acids not in association with the polyplex 

are prone to nuclease degradation.55,56 Additionally, the different microenvironments may represent the 

functional hierarchy of polyplex bound oligonucleotides. For example, RNA in the more acidic 

microenvironment (possibly internal RNA) compared to the RNA that are close to the electrostatic 

double-layer would be less prone to pH dependent nuclease attack as nuclease activity is reduced at low 

pH. Also in general, lower pH is more favorable for base pairing interactions. Assessment of such 

microenvironments of the polyplex and the dependence on polymer choice can help identify POCPs that 

can provide most favorable microenvironments for optimal function. 
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CHAPTER 4 NUCLEIC ACID CATALYSIS IN PRESENCE OF POLYCATIONIC POLYMERS  

4.1 Introduction 

4.1.1 Catalytic Nucleic Acids 

The discovery that RNA could catalyze reactions independent of proteins1,2 formed the basis of the 

‘RNA World’ hypothesis. According to this hypothesis, existing life evolved from organisms whose 

machinery was dependent solely on RNA molecules capable of both genetic coding and catalysis.3 All 

catalytic RNA molecules (ribozymes) identified so far have been assigned to 11 distinct classes.4 Some of 

the naturally occurring catalytic RNA molecules have well known cellular roles such as protein synthesis 

(RNA subunit in the ribosome),5 splicing (group I and II introns),6,7 and tRNA processing (RNaseP that 

occurs as a RNA-protein complex).2 The roles of few ribozymes in gene regulation have also been 

identified.8-11 However, biological functions of several other ribozymes, especially those identified as 

small self-cleaving motifs (nucleolytic ribozymes) that occur in diverse bacterial and eukaryotic species 

and genetic contexts,4,12-14 are yet to be recognized and clarified. While the naturally occurring 

ribozymes identified so far all catalyze phosphoryl transfer reactions (except ribosomal RNA that 

catalyzes amino acyl transfer), ribozymes capable of catalyzing chemically different reactions have also 

been created using in vitro selection methods. Examples include RNA that can catalyze Diels-Alder 

reaction,15 Michael addition,16 and aldol condensation.17,18 

The discovery of ribozymes has also fuelled much research interest towards understanding RNA 

structure-function relationship as these catalytic molecules fold into intricate 3D structures in order to 

achieve the perfect geometry needed to catalyze the specific reactions.19-21 Due to their ability to catalyze 

sequence-specific cleavage, ribozymes have been also explored as nucleic acid based therapeutics.22 In 

addition, based on the knowledge of catalytic RNA, different catalytic DNA (deoxyribozymes) has also 

been designed for several applications even though the latter are not known to exist naturally.23-25 
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The phosphoryl transfer reaction catalyzed by nucleolytic ribozymes is a SN2 trans esterification 

reaction in which the O2’ of a ribose attacks the adjacent 3’ phosphate yielding cleaved sequences 

containing a 2’, 3’–cyclic phosphate and 5’-OH (Scheme 4-I).26 These ribozymes also catalyze the 

reverse reaction (ligation). Even though these ribozymes catalyze the same basic reaction and appear to 

have similar geometry at the catalytic site, the reaction is highly sequence specific and the ribozymes 

belonging to different classes adopt different global architectures in order to orient the catalytic 

sites.19,26,27 The reaction mechanism of nucleolytic enzymes fall into the general theme of acid base 

catalysis with the nucleobases acting as general acid or base and except in few cases, Mg2+ is thought to 

only play a structural role.26 Another interesting feature of ribozymes and complex RNA structures in 

general, is that the pKa of the nucleobases in the active sites are often significantly shifted from values in 

free or unstructured forms. This has been explained based on differences in the local electrostatic 

environment arising due to the relative positioning of negatively charged phosphate groups.26,28,29 How 

these RNA achieve such shifted pKa values is a matter of significant interest because 

protonated/deprotonated states of nucleobases are implicated to act as general acid/base in catalysis of 

nucleolytic ribozymes. 26,27 

 

Scheme 4-I Trans esterification reaction catalyzed by nucleolytic ribozymes. 
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4.1.2 Effect of Charged Polyelectrolytes on Catalysis  

Driven by several biotechnological and biomedical applications, there has been significant interest in 

assembly of protein enzymes on bulk interfaces, hard and soft nanoparticles, or lipid vesicles.30 The 

nature of the interacting surface (hydrophobicity/hydrophillicity, surface charge density, covalent 

modifications e.t.c) can significantly influence protein folding and catalytic activity.31 Protein enzymes 

interacting with charged surfaces (or polyelectrolyte coated surfaces) can show enhancement or 

reduction/inhibition of catalytic activity depending on whether the surface is positively or negatively 

charged and the overall charge on the protein.32-34 35 In addition, there are increasing number of reports 

showing that nanosized charged surfaces accelerate enzymatic activity as opposed to bulk interfaces.36 

However, similar studies for nucleic acid enzymes are rare, primarily because their chemical repertoire 

of nucleic acid enzymes is not as diverse as that of protein enzymes. Nonetheless, they are capable of 

catalyzing important classes of chemical reactions described in section 4.1.1 that can go beyond 

therapeutic application of nucleolytic cleavage, for example in chemical sensing and 

nanobiotechnological applications.37 

As has been observed for protein enzymes 30 effects on the global fold of nucleic acid enzymes can be 

expected upon interaction with polyelectrolyte surfaces. As discussed in the section 1.2 of Chapter 1, 

since nucleic acids are polyelectrolytes themselves, there is a complex interplay of nucleic acid structure 

and its counterion environment, which can be modulated by binding to oppositely charged 

polyelectrolytes in ways not yet completely understood. Additionally the local solvent environment, pH, 

pKa at charged interfaces are known to be significantly different from bulk (Chapter 3).30 This can have a 

direct impact on the catalytic activity of nucleic acid enzymes as they depend strongly on the 

microenvironment of their catalytic sites. Another important aspect is polyelectrolyte exchange; in 

particular for polycationic polymers (POPC) mediated delivery of ribozymes or deoxyribozymes for 

therapeutic application because both protection and release of bound nucleic acid is necessary for 

effective function.38-41 
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Recently, enhanced catalytic activity of a 10-23 deoxyribozyme in presence of cationic comb type 

copolymer was reported by Gao et al. under substrate excess conditions.42 On the other hand, in an 

earlier study by Wu et al.43 reduced product yields of a Candida ribozyme in presence of triethanolamine 

core dendrimers in a generation dependent manner was reported. Although the mechanisms behind 

these different observations remain to be understood, this suggests that both polycation structure and 

the catalytic nucleic acid structure are intricately related in defining the functional role of polyplex 

systems. Here, we set out to explore how the interaction with POCP influences the structure and activity 

of a ribozyme (env22 twister) belonging to the twister class, a recently discovered class of nucelolytic 

ribozymes that are relatively small in size and seem to follow general acid/base catalysis by nucleobases.14 

We chose this ribozyme, as its 3D structure has been determined via X-ray crystallography 44 clearly 

showing long-range tertiary contacts important for catalysis. Knowledge of these tertiary contacts helps 

us to predict, using TOPRNA simulations, mutations distant from active sites that can play a role in 

catalysis The secondary and tertiary structure of env22 twister (twister, in short) used in this study is 

shown in Figure 4.1. We also tested how small structural mutations in one of the helices of the ribozyme, 

predicted by TOPRNA simulations to affect the tertiary contacts in the ribozyme, can affect the catalytic 

activity upon polyplex formation.  

We find that the interaction with the POCP does not disrupt preformed tertiary contacts of the 

twister ribozyme as judged based on NMR studies and that the ribozyme is able to fold and thus function 

in presence of POCP. Consistent with Gao et al.’s results under multiple turnover conditions,42 we also 

observed significantly enhanced rate and product yield with wild type twister in presence of POCP. 

However, this trend was not maintained for catalytically active twister mutants that topologically 

disfavor the native tertiary structure, even when the mutations were small and distant from the active 

site. The observed (apparent) rates and yields in presence of POCP were significantly different for the 

different mutants, with enhanced rates observed only for those mutants that were less or as active 

compared to the wild type in absence of POCP. In addition, different yields were observed for different 

POCP type. For the POCPs the yields correlated with the ability of the POCP to exchange as well as the 
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acidity of the local microenvironment. This strongly highlights the role of structural details of polyplex 

components, intermolecular exchange, as well as local solvent microenvironment in modulating 

ribozyme catalysis. Additionally, from a practical application point of view, ability of twister ribozymes 

to function, and in some instances be catalytically enhanced, also demonstrates that two POCPs used in 

this study, PAMAM dendrimers and lPEI, can be used for delivery of twister ribozymes for therapeutic 

applications.  

4.1.3 Twister Ribozyme Structure 

The twister ribozyme motif has been identified in bacteria and several eukaryotic species as relatively 

short sequences occurring in genetic contexts very similar to that of hammerhead ribozymes.14 They 

were found to have high catalytic rates,14 comparable to the fastest cleaving hammerhead ribozymes45 

and ~100-500 fold faster than other self-cleaving ribozymes of comparable sizes.46,47 However, the 

mechanism of catalysis of this class of ribozyme is still under investigation.48,49 The twister construct 

employed in this study is a bimolecular construct of env22 twister44 comprising a 19-nt substrate strand 

(S) and a 37-nt strand, which will be called the ribozyme strand (Rz) (Figure 4.1). The secondary 

structure of the bimolecular construct of twister employed in this study comprises; an apical loop, four 

helixes (P1, H1, H2, H3), a three-way junction connecting P1, H3, and H2, an internal loop joining H2 

and H1 and containing the cleavage site (U5-A6). Biochemical studies have shown that the long-range 

base pairing interactions are essential for the catalytic activity of the twister. In the presence of Mg2+, the 

ribozyme-substrate complex (RzS) folds into a catalytically active structure forming five long-range 

Watson-Crick and one non-canonical base pair, as depicted in the crystal structure (Figure 4.1 b).44 
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Figure 4.1 Structure of env22 twister (a) Secondary structure of env22 twister RzS complex with dotted 

lines showing tertiary contacts observed in crystal structure (b) Crystal structure (PDB 4OIJ) of env22 

twister with base pairs in tertiary contacts shown in blue. The UA cleavage site is colored red and pink. 

Green balls represent Mg2+ ions 

4.2 The Tertiary Structre of Wild Type Twister is not Disrupted upon POCP Interaction at Low N:P 

It has generally been implied from studies based on CD spectroscopy and IR that the secondary 

structure of nucleic acids in polyplexes is not significantly altered.50-53 However, atomic-resolution 

studies providing information on the local structure of nucleic acids in polyplex form is scarce in the 

literature.54-58 Our recent atomic-resolution study based on NMR showed that while the highly stable 

structure of A-form helices are not significantly perturbed, the flexible regions such as the single 

stranded loop and bulge regions are amenable to changes in the local chemical environment upon POCP 

interaction.57  

Much less is known about how POCP interactions might influence RNA tertiary structure and 

catalytically important bound metals. Such larger RNA molecules rely on the collective interactions of 

the highly dynamic loop and bulge regions to form long-range base pairs, stabilized by metal cations, to 

form precise 3D structures capable of catalysis. To test whether interaction with a polycationic polymer 

alters the critical base pairing interactions involved in the tertiary contacts of twister, imino proton 

spectra of a two piece twister construct (pre-folded in presence of Mg2+) was collected upon titration 
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with G5 PAMAM with ~10% of the primary amines conjugated to 5 kDa poly(ethyleneglycol) (G5-

PEG). PEGylation of the POCP has been previously shown to reduce aggregation and subsequent 

precipitation frequently observed at the high concentrations necessary for NMR measurements.57,58 The 

substrate strand was synthesized with deoxy sugar at the U5 residue in order to prevent cleavage activity 

during NMR experiments.44 

 

 

Figure 4.2 Effect of G5-PEG on the tertiary base pairs of twister. Proton NMR spectrum of twister in 

presence of Mg2+ upon titration of G5-PEG under to increasing N:P. The spectra as collected at 25oC 

on an 800 MHz Varian instrument. Buffer used was 10 mM sodium phosphate, pH 6.4, 0.01mM 

EDTA. 

The imino proton region (chemical shift range ~10-15 ppm) of 1D NMR spectrum was collected to 

obtain evidence for base pair formation. Each peak in this region represents a base pair arising due to 

hydrogen bonding of the imino protons of Guanine and Uracil bases. Upon annealing of the substrate 

strand with the ribozyme strand, additional imino peaks are observed indicating hybridization between 

the two strands and secondary structure formation. After adding Mg2+ several new imino proton peaks 

appear which indicates formation of long-range tertiary base pairs in addition to secondary structure 

base pairs shown in Figure 4.2. These imino proton signals of the RzS pre-folded in presence of Mg2+ 

decreases in intensity upon adding increasing amounts of G5-PEG to increasing N:P indicating polyplex 
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formation. However, no significant chemical shift perturbation was observed indicating that all base 

pairs of the observed free RzS at N:P <1 remain intact, i.e both secondary and tertiary structure of twister 

is not affected. The disappearance of resonances indicates formation of large polyplex particles in which 

the RNA structure could potentially be altered, especially if the exchange between free and bound states 

was slow on the NMR timescale. While this suggests that the free RNA observed at N:P < 1 can still be 

catalytically active, the effects on twister catalysis cannot be predicted at N:P > 1 as all the imino signals 

were broadened out of detection. 

4.3 Twister is Catalytically Active upon Formation of Polyplex Nanoparticles  
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Figure 4.3 Twister activity in presence of polyplexes with G5 (a) Denaturing PAGE analysis of activity 

when polyplex is prepared with preannealed RzS at different N:P. The reaction (at 25oC) was stopped 5 

min after addition of Mg2+ (final concentration of 10mM). The expected 5-nt product is not observable 

as it doesn’t stain well with nucleic acid binding dyes owing to the small size (b) Denaturing PAGE 

analysis of activity when preformed polyplexes of G5 and Rz at different N:P are treated with excess 

substrate in presence of Mg2+ (final concentration of 10mM). The reaction was stopped after 1hr of 

incubation at 37oC. N:P w/o substrate represents N:P ratio with respect to only the Rz strand. N:P w 

substrate represents N:P ratio taking into account the added excess substrate (c) Observed rate of 

product formation in absence (N:P 0) and in presence of polyplexes (N:P 2.2) under the reaction 

conditions used in (b), see Scheme 4-II. The reaction buffer for all experiments contained 30 mM 

HEPES, 100 mM KCl at pH 7.5. 

As follows from NMR experiments, preformed 1:1 RzS complex was expected to be active upon 

interaction with G5 at low N:P. Indeed, we observe product formation in activity assays (Figure 4.3a). At 

higher N:P ratios, retardation of electrophoretic mobility of polyplex precludes analysis of product 

formation. The next set of conditions tested is illustrated in Scheme 4-II in which the Rz strand was first 

assembled in the polyplex with G5 at different N:P ratios and subsequently allowed to exchange and 

react with excess of substrate strand (30 fold). This design strategy was adopted envisioning delivery of 

Rz/POCP complex to target specific substrate RNA. As the overall concentration of S was in excess over 

the Rz used to form polyplex, this mimics a multiple turnover enzymatic reaction, given that the Rz 

bound to the POCP is exchanged and becomes available to react with the excess substrate. Figure 4.3 b 

shows the denaturing PAGE analysis of the cleavage reaction under these conditions. The 14-nt product 

is clearly observable up to N:P 14 with respect to Rz strand in the preformed polyplex (0.9 accounting for 

the added substrate to the Rz/G5 polyplex solution). Beyond this ratio, migration of all of the RNA 

content is retarded as expected in presence of excess POCP owing to the net positive charge. The 

observations illustrates two important points: even at N:P much higher than 1:1 with respect to Rz 

strand 1) the bound Rz strand is able to exchange with the added substrate 2) the RzS complex is able to 
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form and fold into catalytically active conformation in presence of G5. The more interesting observation, 

is that at N:P ratios > 1.4 with respect to Rz, the product yield is much higher than in absence of G5. The 

observed rates of product formation was ~an order of magnitude higher when G5 was present (Figure 

4.3 c). Multiple thermodynamic and kinetic effects could result into such high activity of the twister as 

the process involves multiple steps; intermolecular exchange of bound RNA, stabilization of helices and 

tertiary structure formation, cleavage reaction, and product release. Moreover, increase in local pH (as 

discussed in Chapter 3) could also contribute to enhanced rates. Gao et al.42 from the analysis of 

observed rates under single turnover conditions (when the total concentrations of substrate and enzyme 

was similar) vs multiple turnover (when the enzyme was in excess), concluded that the enhanced activity 

was due to the polymer promoting turnover and not the chemical cleavage step. Here our goal is not to 

deconvolute the effects on the kinetic steps, given the complexity of the system. Instead we focus on 

establishing whether such observations can be generalized for different POCPs, reinforcing the general 

view of non-specificity of polycation/polyanion interactions or knowing if subtle changes in structure of 

the constituents play a role.  

 

 

 Scheme 4-II Experimental design of twister cleavage reaction under multiple turnover conditions in 

presence of POCP 

4.4 POCPs that Favour Exchange of RNA Promote Activity 
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Figure 4.4 Comparison of twister activity in presence of different POCP under multiple turnover 

conditions. Denaturing PAGE analysis of cleavage reactions at different N:P ratios after 1 hr 

incubation at 37oC in presence of (a) lPEI (b) bPEI. (c) Quantitative comparison of amount of product 

formed in presence of G5, lPEI, and bPEI. 

As discussed in Chapter 2 and from the review of polyelectrolyte complexes in general, 

intermolecular (interpolymer) exchange is an important property of polyplexes, which is highly 

dependent on the properties of the constituent polymers. We had previously observed based on 

fluorescence quenching assays that three POCPs (G5, bPEI, lPEI) with similar size (~25 kDa) were 

significantly different in their ability to exchange bound TAR RNA in solution at a given N:P. The 

amount of RNA exchanged (released) was significantly higher for lPEI compared to bPEI, which has 

chemically similar monomer units but differs in branching topology from lPEI. For G5 polyplexes, the 
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amount exchanged was intermediate therefore allowing us hypothesize that if RNA release was a limiting 

factor, the apparent product yield would be highest for lPEI as at any given time the concentration of Rz 

strand available for catalysis would be greatest for lPEI. Consistent with this hypothesis we observed that 

the product yield after 1hr incubation at 37oC, was the higher for lPEI, while bPEI did not show any yield 

enhancement at any N:P when the activity was tested using Scheme 4-II. However, the product yield was 

highest for G5 compared to lPEI and bPEI, suggesting that while polyplex exchange is important, 

chemical nature of the POCP itself may also contribute to the observed yields. 

 

 

Figure 4.5 Effect of cation charge on twister activity. (a) In absence of cation charge. The primary 

amines on G5 were fully acetylated making the polymer unable to protonate at pH 7.5 (b) In presence 

of spermidine, which has two primary amines and one secondary amine capable of being protonated at 

physiological pH. The cleavage cleavage reaction was analyzed after 1hr incubation at 37oC under 

conditions mentioned above.  

Additionally we observed no increased yield in presence of the small molecule cation spermidine 

(+3) or when there were no charges present in the polymer (fully acetylated G5). This indicates that the 

polyplex structure itself plays a key role, as it is well known that sufficient amount of cationic charge is 
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necessary in order to form such hierarchical complexes. We also provide evidence from DLS for one of 

the POCPs that nanoparticluate polyplexes are present under the reaction conditions. Interestingly, the 

average diameter (measured by DLS) remains more or less constant (~400 nm) when the substrate 

strand is added in excess to preformed polyplexes. However the PDI slightly increases (Figure 4.6). This 

indicates that the preformed polyplexes are not disintegrated into small particles. Instead the polyplexes 

could be either forming ternary complexes59 having both Rz and S or rearrange to similar sized particles 

after the exchange of bound Rz with added S. 

 

 

Figure 4.6 Average hydrodynamic diameter (d) of polyplexes measured by DLS (a) before (G5+Rz) and 

(b) after (G5+Rz+S) adding excess substrate at N:P 2.2. Triplicate measurements are reported. 

4.5 Helix-3 (H3) Elongation Mutation and the Identity of Nucleotides at Three-way Junction Affects 

Observed Catalytic Rates and Yield in Presence of POCP 

Next we examined whether POCP could rescue the activity of twister mutants that are topologically 

challenged to form the catalytic competent 3D structure. Using the coarse-grained simulation program 

TOPRNA (see techniques section of chapter 1), we explored mutations away from the active site that 

could topologically disfavor folding into the catalytically competent twister tertiary structures by 

disfavoring the positioning of residues involved in key tertiary interactions. These simulations indicate 

that the elongation of H3 would disrupt key tertiary contacts thereby potentially reducing overall 

product yield. We synthesized two-piece versions of these mutants in order to test how the observed 

G5+Rz

G5+Rz+S
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catalytic activity would be affected upon polyplex interaction. Activity assay was performed using the gel 

electrophoresis assay described earlier. Figure 4.7 shows the observed rates of product formation in 

presence and absence of G5 for the different mutants. In absence of POCP, interestingly, it was observed 

that except for +3 bp mutants, all mutants had higher or equal observed apparent rates and product 

yields compared to the wild type contrary to TOPRNA predictions. Nonetheless, the trend within the 

mutants themselves follows the prediction that the longer the H3, less active is the mutant owing to the 

thermodynamic destabilization of catalytically competent tertiary structure. Lower activity of wild type 

could be due to the less stable secondary structure (annealing) due to fewer base pairs. However, 

currently, our focus is not on the absolute reaction yield of the RNA mutants compared to the wild type. 

Instead we focus on the relative catalytic rate and yield of the mutants with and without POCP present. 

 

 

Figure 4.7 Observed rates of product formation of twister mutants elongated by 1-3 bp at helix 3 upon 

forming polyplexes with G5. H3 mutants with (a) AU (b) CG as the closing base pair at the three-way 

junction. 

Even though polyplexes are generally viewed as non-specific electrostatic complexes we found that 

surprisingly subtle changes to the RNA sequence lead to drastically different responses of the catalysis to 
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the presence of polymer. In the case of the wild type RNA, we found that the reaction rate increased by 

an order of magnitude when POCP was added to the solution at an N:P of 2.2 (Figure 4.3). Surprisingly, 

this affect was not consistently observed in the cases of the mutants. Instead, elongation of H3 by a 

single-base pair (either AU or CG) lead to decrease of the apparent reaction rate by an order of 

magnitude for AU and five fold for CG compared to that in absence of POCP. Further elongation by 2 

base pairs results in reaction rates that are nearly identical with and without the presence of polymer, 

and elongation by 3 base pairs recovers the trend observed in the wild type RNA.  

The unexpected trend observed in Figure 4.7 adds to the evolving picture of polyplexes as complex 

structures that continually evade generalization.  It is worth noting that the NMR data presented above is 

specific to low N:P. Direct observations of chemical shifts through NMR are not possible at the N:P 

ratios used in the catalysis experiments, however functional 3-dimensional folding and tertiary contacts 

must persist at these higher N:P as catalysis is still observed. While the NMR experiments suggest that 

the presence of polymers does not influence the structure and folding of the RNA, these results open the 

possibility that at higher concentrations the polymer can play an active role the RNA structure and 

catalysis. While the results are preliminary, the work suggests that a systematic engineering of 

dendrimers can strongly influence catalysis rates and yields, and that an appropriate approach to such 

engineering must take into account the mutual surface interactions between the RNA and polymer. 

4.6 Conclusions 

Based on results above following conclusions have been made 1) the long range tertiary contacts 

(base pairs) formed by twister in presence of Mg2+ are not disrupted due to interaction with the POCP at 

low N:P 2) Assembly of RNA chains into polyplex nanoparticles is essential for enhancement in activity 

3) Only polyplexes that readily exchange bound RNA show significant enhancement of product 

formation 4) Small changes in the secondary structure of RNA can lead to drastic changes in observed 

rates and yields in presence of POCP. While, the effect of the POCP was predictable stemming from our 

results described in section 2.1.1.10 of Chapter 2, significant differences in observed rates and yields of 

the mutants in presence of the POCP were unexpected. This strongly highlights that polyplexes cannot 
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be simply viewed as non-specific assembly of positive and negative charges and that more advanced 

studies that elucidate the structure and dynamics of the interaction is necessary in order to develop these 

systems as successful delivery agents. 
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CHAPTER 5 NMR STUDIES OF SECONDARY STRUCTURE AND TERTIARY FOLDING OF 

TWISTER RIBOZYME 

 

5.1 Introduction 

Out of eleven naturally occurring classes of ribozymes identified to date, six (hammerhead, hairpin, 

hepatitis delta virus (HDV), Varkud Satellite (VS), glmS, twister) are self-cleaving (nucleolytic 

ribozymes).1,2 Numerous sequences belonging to three classes (HDV, hammerhead, and twister) have 

been identified in diverse prokaryotic and eukaryotic genomes.1,3-5 All nucleolytic ribozymes are known 

to catalyze the same chemical reaction (trans-esterification cleavage of the phosphodiester backbone) 

despite having different sequences, secondary structure and overall global (tertiary) fold.2,6 The intricate 

teritary structures that these ribozymes need to adopt in order to catalyze seemingly simple reactions has 

generated a lot of interest in understanding the basis of RNA folding.7,8  

The catalytic strategies employed by these ribozymes have been shown to conform to common 

theme of general acid-base catalysis utilizing nucleobases.2,6 As depicted in their atomic resolution 

structures, a conserved guanine base is positioned close in space to the cleavage site in hammerhead,9 

hairpin,10,11 glmS,12,13 and twister14-16 ribozymes that have been implicated to play the role of a general 

base although the precise mechanisms are not clear. For e.g. the N1 of guanine has a pKa of ~9.3,17 

therefore expected to be fully protonated at neutral pH and appearing unsuitable for nucleophillic attack 

of the 2’OH which has an even higher pKa ~13.18 It has been proposed that guanines can adopt alternate 

transient tautomeric or ionized forms that can allow proton abstraction from 2’OH.2,19 An alternative 

model is stabilization of the developing negative charge in the transition state by the guanines.20,21 In 

HDV a hydrated metal ion has been suggested to act as a general base and a cytosine as a general acid.22-

24 In VS ribozymes, while the functional importance of guanines and adenines close to the cleavage site 
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have been realized, whether they act as acids or bases are not clear.25,26 pH titration studies of site-

specifically substituted nucleobases often demonstrate pKa values highly shifted21,27 from their expected 

values in free or in unstructured forms, suggesting that the tertiary folds can stabilize electrostatically 

different local environment at the catalytic sites.28 Therefore, atomic resolution techniques like NMR can 

significantly contribute to understand the site-specific environment27,29 and dynamics at the active site 

such as formation of transient tautomeric and anionic bases30 in order to understand the mechanisms of 

ribozyme catalysis. 

Although recently discovered, there are already several published crystal structures14-16 on different 

twister ribozyme sequences, which to some extent conform the initially predicted general secondary and 

important tertiary contacts in the twister class.3 Biochemical studies16,31 revealed an upper and a lower 

apparent pKa values which has been assigned to be due to the titrable groups of guanine and adenine 

bases respectively in close contact to the cleavage site. In a recently published computational study32,33 it 

was observed that the N1 of the active site guanine and N3 of the active site adenine are positioned to act 

as a base and acid respectively. More interestingly it was observed that the pKa of N3 of adenine 

immediately 3’ to the scissile phosphate was significantly shifted towards neutrality (by ~5 pKa units) 

thus providing additional support that nucleobases can have significantly shifted pKa values in complex 

electrostatic environments. The unexpected participation of N3 as opposed to the usual N1 of adenine 

was explained on the basis of its unique position of the adenine allowing the N6 to have multiple 

contacts with nearby phosphates.6 An NMR study27 on a mini variant of a different twister sequence also 

reported shifted pKa values of a 13C2 labeled adenine in a similar position predicted to be involved as a 

general acid. The same study also revealed that in absence of N1 and N3 of the adenine, catalytic activity 

was absent indicating the critical role of N1 and N3 of adenine. While the active site guanine has been 

implicated as the general base, site-specific pKa values in twister ribozymes are not known. The guanine 

in the crystal structure is involved in a sheared GA basepair, which could potentially adopt transient 

taturomeric/anionic configuration in order to act as a general base, experimental evidence for which is 

still pending. 



 115 

Another aspect that remains to be resolved is the role of Mg2+ (and other divalent metals) in catalysis 

of twister ribozymes. Except for HDV ribozymes, all nucleolytic ribozymes do not appear to involve 

Mg2+ in catalysis.6 The role of Mg2+ is considered to be solely to stabilize the tertiary structure. Within 

the twister class, however, there is some disagreement on the role of Mg2+ ions among the different 

twister ribozymes studied. A major difference was observed between the crystal structures published by 

Ren et al.14 (Env22 twister) and by Liu et al.16 (O. Sativa twister). Only in the former, a co-ordination of 

Mg2+ ions to the non-bridging cleavable phosphate was observed that suggested a direct role of Mg2+ in 

the catalytic mechanism. Additional support for direct role of divalent metals in this twister sequence 

was also provided based on the activity employing phosphothioate modified substrates.27  

Differences in the alignment of U-A cleavage site was also observed between the structures published 

in those two studies. While it is possible that difference in sequences can lead to such local differences, or 

that the crystal structures are simply capturing different structures of comparable energy in the dynamic 

ensemble, solution NMR studies could help resolve these discrepancies and provide further insights into 

the mechanism. However, the NMR spectra of ribozymes in general are difficult resolve due to not just 

the size being large (50 -150 nt) for a regular NMR sample, but also ribozymes sequences tend to have 

stretches of similar base pair repeats resulting into narrow dispersion of chemical shifts. Thus in absence 

of specific labeling schemes, obtaining full assignments of such RNA becomes difficult. Here, we initiate  

NMR studies of a two-piece env22 twister ribozyme (same sequence in the crystal structure published by 

Ren et al.14) and obtain insights into the structure and dynamics of this ribozyme under solution 

conditions. 

5.2 Experimental 

5.2.1 Solid Phase Synthesis, Deprotection, and Purification of Oligonucleotides and NMR Sample 

Preparation  

The RNA strands were synthesized using solid phase synthesis using standard phosphoramide 

chemistry using 2’ – TBDMS phosphoramidites. The synthesis was performed in a Mermade 6 

synthesizer. Base deprotection was performed using the AMA (Ammonia/ Methylamine) reagent using 
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standard protocols. Deprotection of 2’- TBDMS protecting groups on the sugar was performed using 

standard protocols employing TEA-HF reagent. Purification was done using C18 cartridges purchased 

from Bioautomation Inc. followed by ethanol precipitation and buffer exchange. For NMR studies, the 

substrate strand was synthesized with a deoxy uridine at the cleavable uridine position in order to avoid 

cleavage during NMR studies.  

Residue specific and atom specific labeling (13C8/C6) of the enzyme strand was achieved using 

13C8/C6 labeled phosphoramides. Similar synthesis and purification protocols were followed as above.  

The enzyme (Rz) strand and substrate (S) strands were annealed at high concentrations and 

presence of salt in order to promote hybridization.   

5.2.2 NMR Experiments 

1D Mg2+ titration experiments and 1H-13C HMQC (Heteronuclear Multiple Quantum Coherence) 

experiments using the SOFAST (band-Selective Optimized-Flip-Angle Short-Transient) pulse 

scheme34,35 were carried out using a 600 mHz Bruker Spectrometer equipped with a cryoprobe. 1H-15N 

HMQC using the SOFAST pulse scheme and 1H-1H NOESY (Nuclear Overhauser Effect SpectroscopY) 

experiments were carried out in an 800 mHz Varian Spectrometer equipped with a cryoprobe. Use of the 

SOFAST pulse scheme enables fast acquisition of NMR which are useful for natural abundance samples 

which require long acquisition periods other wise to obtain sufficient signal to noise ratio. All NOESY 

spectra were collected using 150 ms mixing time. All experiments were carried out at 25oC, unless 

mentioned otherwise. Two sets of buffer conditions were used in the experiments. For the NMR titration 

experiments to study the effect of Mg2+ on the folding of twister, the same buffer condition (30 mM 

HEPES, pH 7.5, 100 mM KCl) used for cleavage assays were used. However, for the assignment 

experiments a different buffer (10 mM phosphate buffer, 0.01 mM EDTA, pH 6.4) were used in order to 

improve the spectra quality. 

5.3 Result and Discussion 
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5.3.1 Comparison of 1D Spectra of Unmodified and 2’-OH Modified Twister 

Overlay of 1D 1H spectra of deoxymodified and unmodified env22 twister in absence of Mg2+ is 

shown in Figure 5.1. The two spectra overlay very well suggesting the deoxy modifiation does not alter 

the hybridization (secondary structure formation) of the two strands, which was expected as it is only a 

small modification. However, the imino proton resonances were broadened indicating that in absence of 

Mg2+ the secondary structure may not be very stable and partial melting of base pairs allows for rapid 

exchange of the imino protons with water. In particular, the lower stem region comprising consecutive 

UA basepairs (U1A56 through U3A54) is expected to be less stable. This is supported by the recently 

published MD simulations on the same twiser sequence in which the stem was observed to be partially 

melted.33 

 

Figure 5.1 Comparison of 1D proton spectra of unmodified and 2’-OH twister bimolecular construct. 

Buffer conditions were 30mM HEPES at pH 7.5 and100 mM KCl. Spectra were collected at 25ºC using 

excitation sculpting water suppression scheme in a 600 mHz Bruker Spectrometer. 

5.3.2 Effect of Mg2+ 

In presence of 20 mM Mg2+ however, many more resonances in the imino proton region emerge 

(Figure 5.2 a), which can arise both due stabilization of weak base pairs of the secondary structures or 
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new base pairs representing formation of long range tertiary contact. Mg2+ is known to have significant 

stabilization effects on nucleic acid structures compared to monovalent cations. Although the precise 

forces and mechanisms behind this significant stabilization are not yet understood fully, both non-

specific electrostatic stabilization as well as specific interactions is widely discussed to play a role in 

stabilization. Control experiments titrating Mg2+ into substrate strand and the enzyme strand 

independently are shown in Figure 5.2 b and c. respectively. The substrate strand does not show any 

resonances in the imino region upon titrating with Mg2+, suggesting that it does not undergo intra-

strand base pairing or dimerization. The enzyme strand shows imino resonances in absence of Mg2+, 

which is as expected because some intra strand base pairing is possible due to base complementary 

residues present further apart in sequence, also predicted by RNA folding algorithms. However, only 

minor perturbations of the imino proton chemical shifts are observed upon addition of Mg2+. These 

control experiments thus exclude the possibility that the new imino chemical shifts observed upon 

titration of the annealed complex with Mg2+ are as a result of effect of Mg2+ on unannealed single 

strands. Rather, this more likely corresponds to Mg2+ induced folding of the ribozyme into a catalytically 

competent state.  

 

Figure 5.2 Effect of adding Mg2+ on the 1D imino proton spectra of twister bimolecular construct. a) 

Spectra of twister bimolecular construct before (top) and after (bottom) adding Mg2+ in the ratio 

[twister]:[Mg2+] = [0.6 mM]:[20 mM]. b) Control experiment showing effect of Mg2+ on substrate 
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strand only. c) Control experiment showing effect of Mg2+ on enzyme strand only. The absolute 

concentration of RNA in the control experiments were 0.1 mM instead of 0.6 mM, however the relative 

concentration with respect of Mg2+ added was the same compared to the bimolecular construct. Buffer 

conditions were 30mM HEPES at pH 7.5 and100 mM KCl. Spectra were collected at 25ºC using 

selective excitation of imino protons (SOFAST pulse scheme) using a 600 mHz Bruker Spectrometer 

5.3.3 Comparison of C8/C6/C2 Chemical Shift Perturbations in Presence of Mg2+ with LARMORD 

Predictions of Chemical Shifts of the 3D Crystal Structure 

 

Figure 5.3 Effect of adding Mg2+ on the 1H-13C HMQC spectra of twister bimolecular construct. Top 

panel the H6/H8-C6/C8 correlations. Bottom panel show H2-C2 corrleations. [twister]:[Mg2+] = [0.6 

mM]:[20 mM]. Buffer conditions were 30mM HEPES at pH 7.5 and100 mM KCl. Spectra were 
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collected at 25ºC using selective excitation of aromatic protons (SOFAST pulse scheme) using a 600 

mHz Bruker Spectrometer 

In absence of Mg2+, the aromatic region of twister chemical shift shows severe overlap. However, in 

presence of Mg2+ the chemical shifts are fairly dispersed (Figure 5.3). This suggests that twister becomes 

more structured upon addition of Mg2+. Tertiary structure formation often positions the nucleotide 

residues in unique conformations giving rise to more unique electronic environment around the nuclear 

spins of interest. In order to test, whether these chemical shift perturbations agree with those expected 

from the crystal structure, a chemical shift-predicting program LARMORD (LARMOR frequency and 

Distance)36 was employed. LARMORD is an inter-atomic distance based chemical shift prediction 

software developed for predictions of the 13C and non- exchangeable 1H chemical shifts. Figure 5.4 

shows the LARMORD predicted aromatic 1H-13C correlation spectrum. The absolute chemical shifts 

appear to be systematically deviated compared to the experiments. However, qualitatively judging from 

the relative chemical shifts of different residues within the spectra, it can be suggested that the 1H, 13C 

chemical shifts observed in presence of Mg2+ represent a folded structure similar to that observed in the 

crystal structure. In particular, the residues A26, A34, A42, A43 appear to be consistent with prediction. 

The residues A26, A42, and A43 are a part of the three-way junction in which, as observed in the crystal 

structure, A42 and A43 form base triple with a Watson and Crick G-C base pairs. The A34 residue forms 

a non-canonical base pair with A49 as depicted in the crystal structure placing it in a unique electronic 

environment. These results suggest that in presence of Mg2+ the RNA adopts a conformation similar to 

that observed in the X-ray structure.14 
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Figure 5.4 Comparison of experimental C6/C8-H6/H8 spectrum of twister in presence of Mg2+ with 

spectrum using LARMORD predicted chemical shifts. 

5.3.4 Imino Proton Assignments  

Since the buffer condition was changed to low salt phosphate buffer instead of HEPES buffer for 

imino proton assignments, in order to improve the quality of the spectra we first compared 1D spectra of 

samples in both buffers in presence of Mg2+ to see whether there was a significant effect on the secondary 

and tertiary base pairing. Shows that while some of the resonances shifted, as expected due to the 

differences in pH, overall the spectra were very similar. In addition some of the resonances in the 

canonical AU and GC resonances were stronger for samples prepared in the low salt low pH phosphate 

buffer. 
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Figure 5.5 Comparison of imino proton spectra of twister in reaction buffer and in phosphate buffer in 

presence of Mg2+ 
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Figure 5.6 1H-1H NOESY and 1H-15N HMQC spectra of bimolecular twister construct at natural 

abundance at 10oC. Tentative resonance assignment based on imino proton walk of helices formed 

after tertiary contact formation is provided with color codes mapped on to the twister secondary 

structure on the right. 

Figure 5.6 shows the 1H-1H NOESY and 1H-15N HMQC spectra of twister ribozyme pre-folded in 

presence of Mg2+. The NOESY spectra show several NOE cross peaks that can be sequentially walked 

suggesting formation of stacked helices which is expected when the RNA folds. However, the walks are 

non-degenerate, therefore unambiguous assignment of the imino-proton and imino-nitrogen 

resonances of the 1H-15N HMQC spectra were not possible using natural abundance samples. 

Nonetheless, a tentative assignment of resonances is given in Figure 5.6 based on the imino walk of 

helices formed after tertiary structure formation. Based on the sequential walks, formation of a tertiary 
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helix due to the long-range base pairing of residues A50 through G52 with U33 through C31 as depicted 

in crystal structure is evident. The formation of this tertiary contact has be shown to be important for 

catalysis from biochemical studies using substitution mutation of the residues in these locations such 

that they cannot undergo the long range base pairing.3 The sequential walk was observed only in 

presence of Mg2+ which conforms the role of Mg2+ to stabilize the tertiary structure of twister. There is 

also evidence for a G48A7 sheared imino resonance as judged by the upfield shifted 1H chemical shift. 

This GA mispair is of interest because the crystal structure evidences a conserved GA base pair close to 

the catalytic site that could potentially be involved in catalysis.  

5.3.5 13C and 1H Chemical Shifts of Residues Close to the Catalytic Sites 

The conserved G48 residue is of special interest due to its suggested role as a general base in twister 

cleavage reaction. A high apparent pKa value of 9.5 observed in pH dependent biochemical studies by 

Liu et al.16 on an environmental sequence of twister, which was attributed to a guanine in the same 

position. The high pKa value suggests that this guanine could potentially exist in an anionic form. pH 

dependence of NMR chemical shift can also be used to obtain pKa values of the specific residues. 

Samples with the G48 residue isotopically labeled only at the C8 carbon were successfully prepared using 

solid phase synthesis. The 13C and 1H chemical shifts of G48 with only the C8 carbon isotope labeled are 

shown in Figure 5.7. The chemical shifts also overlaid with that of a guanine base in the 13C/15N 

uniformly type-labeled sample thus with helping with the partial assignments of uniformly labeled 

samples. Similarly, samples with A49 residue isotopically labeled only at its C8 carbon were also 

prepared the spectrum of which are overlayed in Figure 5.7. The A49 is a conserved residue at the 

catalytic site, which forms a non-canonical base pair with a distant loop residue A34 in the crystal 

structure. Although the direct role of A49 in catalysis is not known, due to being adjacent to the 

proposed anionic G48, it could be an important probe of the structural dynamics at the catalytic site. 
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Figure 5.7 1H -13C assignment of twister using isotope label at the C8 position of purine bases. All the 

spectra were collected on annealed bimolecular constructs in absence of Mg2+ 

The above-mentioned experiments were performed in absence of Mg2+. The chemical shift 

perturbations in presence of Mg2+ could further help resolve assignments. Moreover, pH titrations and 

NMR relaxation dispersion studies on these site labeled samples could provide insights into the 

dynamics at the catalytic sites without having to solve the full assignment of the NMR spectra. 

5.3.6 Comparison with One Piece (Full-Length) Twister  

The twister samples used above two-piece samples with the ribozyme and the substrate strand 

separate. However, the natural sequence is a hairpin-loop containing both ribozyme and enzyme 
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unstable in absence of Mg2+, as seen in Figure 5.1. Therefore, the natural abundance samples of full-

length construct were also synthesized using solid phase synthesis. Figure 5.8 shows the imino proton 

chemical shift overlays of the two-piece construct and the full-length construct. As, expected more imino 

proton peaks were observed for the full length construct indicating that the helices are more stable for in 

the full-length construct. However, upon addition of Mg2+ the precipitation of the RNA precluded 

further analysis in presence of Mg2+. Mg2+ is known to form aggregates with larger RNA molecules when 

hairpins have certain sequences that can form intermolecular base pairs. Therefore, choice of alternative 

sequences at the loop L3 is suggested for Mg2+ based studies, for example a UUCG loop. 

 

Figure 5.8 Comparison of imino proton spectra of full-length vs. bimolecular construct of twister in 

absence of Mg2+ 

5.3.7 Comparison of Different Helix-3 Mutants of Twister 

The imino proton spectrum of the full-length construct was also compared with the full-length 

versions of Helix-3 mutants described in Chapter 4 in order to test whether the key elements of the 

secondary structure and tertiary folding is similar among the different mutants.  As shown in Figure 5.9, 

the overall chemical shift signatures of the imino protons are very similar, with more number of peaks 
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observed for longer mutants as expected. However, it was difficult to observe sufficient NOE cross peaks 

precluding the NOE walk of the exchangeable protons.  

 

Figure 5.9 Comparison of imino proton spectra of full-length H3 twister mutants in absence of Mg2+ 

5.4 Conclusions 

Formation of folded structure of a bimolecular twister construct in presence of sufficient 

concentrations of Mg2+ was evidenced from imino proton spectra and comparison of aromatic spectra 

with LARMORD predicted spectra. It can be thus be concluded that Mg2+ clearly plays a structural role 

i.e. catalytically competent structures are significantly stabilized in presence of Mg2+. The debated direct 

role of Mg2+ in catalysis is yet to be illustrated for which NMR studies on RNA site-specifically labeled at 

the catalytic site could prove useful. Although unambiguous assignment of residues was not possible 

with natural abundance samples because of significant spectral overlap, site (atom) specific isotope labels 

on the RNA synthesized using solid phase synthesis enabled assignment of the carbon chemical shifts of 

the key residues in the catalytic sites. These will be used to study the dynamics at the catalytic site of 

twister in presence and absence of Mg2+. Additionally, comparison with the imino proton spectra of the 

full-length (one piece) twister suggests that the secondary structure base pairs in hybridized form of 

bimolecular construct are less stable. Lastly, it was also shown that elongation of helix3 of twister does 
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not significantly affect the overall secondary structure and thus are predicted to be catalytically active 

given that they are able to form catalytically active tertiary structures. 
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CHAPTER 6 CONCLUSIONS AND FUTURE OUTLOOK 

The work presented in this thesis is aimed at developing a deeper and more sophisticated 

understanding of polyplex formation, structure, and dynamics so that systematic design principles to 

maximize the efficiency of polyplexes for therapeutic nucleic acid delivery can eventually replace the 

currently favored “look-and-see” approach. The unifying theme of the presented chapters is the use of 

an array of experimental techniques, several of which have previously not been applied to such systems, 

to obtain a basic view of polyplexes in situ, and to explore how our evolving picture of polyplexes can be 

ushered into in vivo and cell based experiments. 

Initial work was focused on visualizing the polyplex assembly of nanoscopic structures. Regarding 

the influence of polyplex formation on the internal structure and dynamics of RNA cargo, NMR analysis 

of the structural features of a small RNA hairpin upon polyplex formation under RNA charge excess 

conditions showed that there was no significant changes in the RNA secondary structure (only small 

perturbations to conformationally flexible “loops” and “bulges” were observed). Fast internal dynamics 

on the ps-ns timescales was unaltered by complex formation. However, polyplex formation introduces 

complex structure and dynamics that go well beyond the internal structure and dynamics of the cargo 

RNA. The first class involves structures formed between one POCP and multiple RNA molecules. 

Through NMR and fluorescence quenching experiments it was found that the RNA is in constant 

exchange between “free” and “bound” forms. This intermolecular dynamic is crucial for the use of these 

structures for nucleic acid delivery, as the bound forms prevent degradation of the RNA from nucleases 

present in the body, while the release of the free form is required for delivery into the cell. 

The second class is the formation of larger structures arising from the interaction between multiple 

polymers and multiple RNA molecules. A hierarchical-like assembly was found between smaller 

assemblies on the order of tens of nanometers, which are considered to be the functional population, 
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with larger assemblies on the order of hundreds of nanometers. Exchange dynamics between these 

populations is expected to occur on timescales significantly slower than the timescale for exchange 

between free and bound RNA, though this fluxionality is needed for the supply of functionally active 

small assemblies. Furthermore, the degree of complexation and the intermolecular exchange was 

strongly dependent on the POPC structure. More surprisingly, degree of complexation was dependent 

on the secondary structure of the nucleic acid, even when the number of nucleotides (and hence the total 

number of phosphate charges) was the same between two nucleic acids. 

Next, we turned to an aspect that has received little attention from the community despite having a 

clear impact on the behavior of the cargo RNA, which is the chemical makeup of the microenvironment 

of the polyplex. Leveraging local labeling with a solvatochromic and prototropic fluorescent dye, 

fluorescence spectroscopy was used to directly observe three distinct microenvironments surrounding a 

small hairpin RNA polyplexes with three different POCPs. Significant observed differences in local pH 

(and expected differences in pKa and counterion composition) from bulk solution suggest that a full 

understanding of the structure, exchange dynamics, and catalytic function of bound RNA must take into 

account the unique chemical environments in which they are exposed to when assembled. This suggests 

that the polymer used for complexation must be viewed as active participants in governing the RNA 

behavior, which can potentially be used to fine-tune catalytic performance of bound RNA. This is in 

stark contrast to the traditional picture of the polymer component of polyplexes as serving a merely 

passive role to bind and release the RNA. 

Working off this previous conclusion, we explored how polyplexes can influence catalytic 

performance of several mutants of a RNA belonging to the nucleolytic ribozyme class, twister. Using gel 

electrophoresis, we monitored the catalytic rate and product yield of the different twister mutants free in 

solution and in the presence of POCPs. Consistent with our previous results, we found that twister 

ribozymes can anneal and form proper 3D contacts required for catalysis while bound in polyplexes. 

Furthermore, we observed that the presence of POCP could significantly influence observed catalytic 

rates and product yield. Polyplexes of POCPs that were observed to favor exchange of bound RNA 
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showed enhanced activity, supporting our earlier predictions of the role of intermolecular exchange for 

the availability of the RNA for function. More strikingly, the role of POCP in influencing the catalytic 

rates was found to be strongly dependent on subtle changes to the RNA sequence and secondary 

structure. For example, wild-type twister sequence showed an order of magnitude enhancement in 

observed rates in presence of POCP, while the scenario was reversed when the RNA was extended by a 

single base pair at the junction. When the RNA was further elongation such that the observed rates 

decreased compared to the one base pair mutant, presence of POCP enhanced the rates compared to 

absence of POCP. In general, it was observed that POCP enhanced rates of only the mutants that had 

rates lower than or equal to the wildtype. This suggested that the rate limiting step arising due to the 

elongation mutation was overcome by presence of POCP. However, it remains to be elucidated what the 

rate limiting step is for all the mutants in absence of POCP. Future studies would involve accessing the 

rate limiting steps using standard mechanistic analysis of kinetic mechanisms. For example, single 

turnover experiments with saturating concentrations of the ribozyme strands would give rates 

representative of the chemical cleavage, as product release would not be rate limiting under single 

turnover conditions. If the observed rates in single turnover conditions with and without POCP is 

similar then it suggest that POCP is not directly involved in the chemical cleavage step. However, since 

the twister cleavage reaction is very fast, either the pH or Mg2+ concentrations will have to be lowered in 

order to have suboptimal conditions for a slower reaction. Temperature dependent measurements of 

observed rates could also reveal whether POCP enhances complex formation between ribozyme and 

substrate strand as the catalytic rates are expected to be least effective under temperatures close to the 

melting temperature of the duplex. Longer the helix, higher the theoretical melting temperatures in 

absence of POCP, therefore increase in observed rates in presence of POCP at temperatures higher than 

the melting temperature will suggest that the rates of association of ribozyme substrate is enhanced in 

presence of POCP. These experiments can help elucidate further why the different mutants respond 

differently with respect to the observed rates of catalysis. 
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It was also observed that the product yield after long enough time (approaching thermodynamic 

equilibrium), was always higher in presence of POCP suggesting that POCP may stabilize the structure 

of the RNA. This stabilization could be either due to stabilization of secondary structure or tertiary 

structure. TOPRNA simulations predicted that longer the helix, less probable the helical mutants are to 

fold into correct 3D structure. It is possible that the enhanced product yield is due to destabilization of 

misfolded states and stabilization of catalytically active properly folded states in presence of POCP. To 

test the conformational heterogeneity of the ribozyme-substrate complex for the different mutants, non-

denaturing gel electrophoresis experiments can be performed. If the different conformers are not in very 

fast exchange, non-denaturing gel electrophoresis could resolve the conformational heterogeneity. 

Finally, we studied twister RNA by itself using NMR to elucidate the secondary structure and tertiary 

contacts important for catalysis. As the twister class of ribozymes was discovered recently, only one 

NMR study has been published to date. Unlike in most known nucleolytic ribozymes, for this particular 

ribozyme it has been suggested that Mg2+ not only stabilizes the tertiary structure but also has a direct 

role in the catalytic mechanism. From our studies, tertiary folded structure of a bimolecular twister 

construct in presence of sufficient concentrations of Mg2+ was evident from imino proton spectra, as 

well as comparison of experimental and predicted aromatic spectra. While we were not able to get the 

complete NMR assignment for non-isotopically labeled RNA, site/atom-specific labeling enabled 

assignment of chemical shifts of key residues at the catalytic site. This will help in carrying out further 

NMR experiments aimed at measuring structure and dynamics at the catalytic site both in the ribozyme 

by itself as well as in presence of POCPs. 

Additionally, helical elongation mutants that showed significantly different catalytic activity, both in 

presence and absence of polymer, did not show significant changes in the secondary structure. This 

suggests that the differences in activity could be due to differences in the tertiary structure or local 

dynamics. There are still open questions regarding how nucleobases at the catalytic sites facilitate the 

acid-base chemistry needed for catalysis. Future work will undertake NMR experiments in conjunction 

with site-specific labeling techniques to understand the precise role of nucleobases in mediating 



 135 

acid/base catalysis, whether Mg2+ plays a direct role in catalysis, and what ways the subtle mutations at 

the non-conserved sites play a role. Though no major structural changes have been observed in the 

helical regions of a simple hairpin RNA via NMR, there is evidence that the more flexible residues at 

loop and bulge regions can be perturbed in presence of POCPs. It is reasonable to think that such 

perturbations may impact ribozyme catalysis because the reaction requires a precise geometry at the 

catalytic site facilitated by long-range interactions of flexible loop and bulge residues. Furthermore, the 

reactions are highly dependent on nucleobase pKa values, which are often significantly shifted when the 

nucleobases are present in these complex structural contexts compared to free or unstructured forms. As 

we have evidenced by fluorescence spectroscopy, local pH/pKa values in polyplexes significantly differ 

from the bulk solution. To this end, fluorescence experiments using fluorescent solvatochromic 

nucleobase analogues like 2-amino purine substituted near the catalytic sites can be employed. Whether, 

local pH/pKa changes at ribozyme catalytic sites in presence of POCPs can be detected using NMR 

remains to be investigated. 

To summarize, when beginning this work the prevailing view of polyplexes was one where the 

interactions were governed through simple electrostatics, the question of whether the resulting 

structures were dynamic was being actively debated, and the polymer was viewed as a simple, passive 

carrier molecule. The prevailing picture today is that polyplexes form highly assembled, hierarchical, and 

dynamic structures that are in constant flux. To predict such structures requires an intimate knowledge 

of not only charge density of the two polymers, but also of flexibility, topology, and structural details of 

the components. As we push towards designing “smart” polymers for polyplexes, we are beginning to 

appreciate the active role that the polymer can perform in modulating the polyplex microenvironment 

(pH, chemical composition), intermolecular exchange, and possibly the structure and dynamics of 

flexible residues at structurally complex contexts. The evolving view of polyplexes as sophisticated, 

“living” assemblies demonstrates not only the progress that has been made, but also the work that 

remains to be done. 
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APPENDIX A 

Appendix A: Supplementary material for section 2.1 

 

 

S I. DLS measurements of polyplex samples at different N:P ratios 0 to 5 at NMR concentrations (200 

µM TAR). The data has been presented as intensity average diameter. Overlay of three peaks in the 

same graph indicates triplicate measurements; only duplicate measurements were obtained for N:P 0. 
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S II. Monoexponential fits of integrated area obtained using 1D 1H CPMG experiment for (A) 

H2/H6/H8 protons (B) H5/H1’ protons to obtain R2,effective for N:P ratios 0, 0.25, 0.5, and 1. 
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S III. Fluorescence quenching based competitive displacement assay demonstrating release of TAR-FL 

from polyplexes with G5-PEG within 2 minutes of adding untagged TAR. Open circles indicate 

fluorescence of polyplex mixture at different N:P ratios before adding untagged RNA. Filled circles 

indicate fluorescence of the polyplex mixtures after adding untagged 0.3 µL of 200 µM TAR, with the 

resulting N:P ratios indicated on top of the data points. The total concentration of TAR-FL in all N:P 

ratios is 50 nM. Buffer conditions used were 50mM Tris-HCl, 50mM KCl, 0.01% Trition-X, pH 7.4.  



 140 

APPENDIX B 

Appendix B: Supplementary material for section 3.2 

T I. Bulk solution pH of G5/TAR-FL polyplex solutions 

 
 

N:P ug/mL ratio pH 
0.00 0.00 7.54 
0.07 0.06 7.54 
0.11 0.09 7.53 
0.18 0.15 7.54 
0.28 0.23 7.54 
0.45 0.37 7.54 
0.71 0.58 7.54 
1.13 0.92 7.54 
1.79 1.46 7.53 
2.83 2.32 7.54 
4.49 3.67 7.53 
7.11 5.82 7.54 

11.27 9.22 7.53 
17.86 14.62 7.54 
28.31 23.16 7.53 
44.87 36.71 7.54 
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S I. Comparison of fluorescence quenching of TAR-FL upon polyplex formation with different POCP 

as a function of POCP to TAR-FL concentration ratios. 

 

 


