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Figure 2.16. Conductivity and small-angle X-ray scattering (SAXS) data after recurrent 

stretching cycles. a, Illustration of the conductivity measurements by two probe 

method in different directions after 10,000 stretching cycles with ε=5%. ①: 

parallel to the tensile direction before strain cycles, ②: perpendicular to the 

tensile direction before strain cycles, ③: parallel to the tensile direction after 

strain cycles, and ④: perpendicular to tensile direction after strain cycles. b, 

Resistance data by two-probe method in the directions and recurrent stretching 

cycles for 1 x LBL and 1 x VAF, respectively. c, SAXS beam images of 10,000 

cycled 1 x LBL and 1xVAF films. Samples were horizntally placed for 

measurements. d, Plots of scattering intensity, I(q), in respect to scattering vector, 

q, for 1 x LBL and 1 x VAF. SAXS measurements were performed on the center of 

the films. ...................................................................................................................... 46 

Figure 2.17. a, Electron mobility and b, Carrier concentration of 1 x LBL and 1 x VAF 

determined by the Hall effect measurements. ............................................................. 47 

Figure 2.18. Photographic images for the set up used in measuring conductivity and 

calculating ν to tensile strain dependence with four-probe method exemplified for 

a 1 x VAF. Geometrical terms are specified. The four probes were placed on the 

sample as shown in b and c. Change of resistance on the multimeter and change of 

strain on the display of tensile machine (just below the multimeter) were video 

recorded together as shown in a. Calculated Poisson’s ratios were as follows: νLBL, 

thickness = 0.26, and νLBL, width = 0.14, νVAF, thickness = 0.39, and νVAF, width = 0.12. ........... 48 

Figure 2.19. Damping properties of polyurethane-nanoparticle nanocomposites with 0 

V at the relevant temperatures (purple bars) under frequency ranges from 1-

90 Hz with reference conditions with 0 and 0.2 V. a, Experimental setup for 

measuring damping properties with voltage. b, c, damping parameter tan δ and 

storage modulus of 1 x LBL, respectively. d, e, damping parameter tan δ and 

storage modulus of 1 x VAF, respectively. .................................................................. 49 
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Figure 3.1. Strain-modulated rotatory optical activity in AuNP multilayers. a, Neat PDMS 

substrates on a glass slide with right-handed Cartesian coordinates. b, PDMS 

substrates twisted in opposite directions. Samples with left-handed and right-

handed twists are denoted as LH and RH, respectively. Clamps in b are retained 

during LBL deposition. c, PDMS substrates after deposition of (PU/NP)5 in LH or 

RH twisted states. d, Relaxed (flattened) PDMS substrates coated with Au NP 

multilayers. Samples were stretched along the y axis. Scale for a–d is given in a. e, 

Apparent CD spectra of LH and RH samples under ε = 0, 10, 25 and 50%. f, Peak 

CD values of LH and RH for five cycles of reversible stretching from 0 to 50% 

(see also Fig. 3.27 for up to 10,000 cycles). For all spectra in this study, red colors 

signify LH samples and blue colors signify RH samples. g,h, Macroscale mapping 

of rotatory optical activity under various strain levels from 0% to 50% of LH and 

RH samples, respectively. Color bar for apparent CD in mdeg and scale for images 

g,h are given in g. Mapping data were obtained from peak and dip wavelengths of 

LH and RH, respectively: (g) 650 nm, 636 nm, 622 nm and 618 nm for ε = 0, 10, 

25 and 50%, respectively, and (h) 650 nm, 644 nm, 628 nm and 624 nm for ε = 0, 

10, 25 and 50%, respectively. With a beam size of 1.5 mm, apparent CD spectra in 

the wavelength regime of interest were also measured for each corner and center 

of the sample strip to show high spatial homogeneity (Fig. 3.32 and 3.33). A total 

of 20 scans were averaged to obtain the maps of optical activity. .............................. 54 

Figure 3.2. Geometrical change with von Mises stress distribution while torsion was solely 

applied on the strip of PDMS.  Top boundary was fixed by setting constraint and 

bottom boundary was allowed to be rotated along the longitudinal axis. Unit for 

numbers around the grid: mm. .................................................................................... 58 

Figure 3.3. Geometrical change with von Mises stress distribution while “torsion plus no 

displacement” was applied on the strip of PDMS.  Simulated images of strips in 

clockwise and counter clockwise rotation for LH and RH strips, respectively, with 

von Mises stress distribution represented by colored scale.  Unit for numbers 

around the grid is mm. ................................................................................................ 59 

Figure 3.4. Stress evaluation for each principal direction.  Principal directions are 

represented in the right corner of the figure.  Stress distribution is represented by 

colored scale.  Unit for numbers around the grid is mm. .......................................... 60 

Figure 3.5. Schematic of Mueller polarimetry device setup. ................................................... 63 

Figure 3.6. Depolarizing index of single sided samples of LH and RH under ε=0% and 

50%. ............................................................................................................................ 66 
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Figure 3.7. Schematics for understanding of polar decomposition in experimental 

procedure for buckled side (a) and cracked side (b). Summarized data (values of 

LH and RH were averaged) for experimental LD and LB of each layer. MD and MR 

were assigned to each layer accordingly. M03 and M30 were regarded as CDNP for 

buckled and cracked sides, respectively. c-f, Diagrams for magnitude of LD from 

NP layer and LB from PDMS with dihedral angles in between them for buckled 

side, ε = 0%, LH (c), buckled side, ε = 50%, LH (d), cracked side, ε = 0%, LH (e), 

and cracked side, ε = 50%, LH (f). LD is from NP layer and LB is from PDMS 

substrate. Direction of LB was considered same as stretching direction regardless 

of tensile stress with an assumption that even very small tensile stress (which was 

actually applied to make sample surface flat for measurements) would align 

polymer chains parallel to the direction. ..................................................................... 67 

Figure 3.8. M03 and M30 elements from Mueller matrix polarimetry measurements. 

Spectra for LH and RH samples under ε = 0% and 50% for buckled side only (a, b) 

and cracked side only (c, d) on PDMS substrate. For all spectra in this study, red 

and blue colors indicate LH and RH samples, and lighter and darker colors 

indicate ε = 0% and 50%, respectively, unless otherwise specified. ........................... 69 

Figure 3.9. Stresses in twisted PDMS substrates with LBL composite films. a, Photograph 

of a twisted and clamped LH sample with marked spots 1, 2 and 3 on the convex 

side. b, Stress distribution in a PDMS substrate. Stresses of different magnitudes 

are generated at points 1, 2 and 3 for twisting deformation of the samples. Stresses 

of the same magnitude but opposite directions are generated in convex and 

concave surfaces of samples. c, Schematic of the cross-sectional view of the 

sample in a. Deposited NP layers undergo compression and extension on convex 

and concave sides, to form buckled and cracked sides in the relaxed flat state, 

respectively. Yellow and pink colors represent buckled and cracked sides, 

respectively. Blue dashed line indicates the edge of the film. A and d are the height 

of the buckles and width of the gold islands in the cracked side, respectively. d,e, 

Gradients of compressive stresses and net stresses on a buckled side exhibiting C2 

symmetry. f, Schematic of an S-like NP chain constituting buckles. g,h, Gradients 

of tensional stresses and net stresses on a cracked side exhibiting C2 symmetry. i, 

Schematic of an NP chain constituting islands. The NPs assemble in the chain 

structures similarly to those in the buckles in the cracked side due to the strain 

gradient; however, the chirality factor in this case is small owing to the smallness 

of the out-of-plane component. ................................................................................... 71 
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Figure 3.10. Strain-induced chiroptically active NP assemblies on buckled sides. All data in 

this figure set are from samples having only buckled sides. a, Schematic drawings 

of mirrored images of NP chains under ε = 0 and 50%. b, CDNP spectra of LH and 

RH samples under various strains from 0 to 50%. See fig. 3.11 for simulated 

spectra. Red colors signify LH samples and blue colors signify RH samples. c–f, 

Magnified AFM images of LH, ε = 0% (c), RH, ε = 0% (d), LH, ε = 50% (e), and 

RH, ε = 50% (f). Large-area AFM images are in Fig. 3.38. Height (z axis) and 

planar (x–y plane) scales for images c–f are given in f. g–j, LD orientation of LH, ε 

= 0% at 600 nm (g), RH, ε = 0% at 600 nm (h), LH, ε = 50% at 565 nm (i), and 

RH, ε = 50% at 568 nm (j). A total of 20 scans were averaged to obtain the maps of 

optical activity. Color angle bar and scale for images g–j are given in i. Angles are 

projectable using classical 2D Cartesian coordinates. k,l, 3D TEM tomography 

images of (PU/NP)5 of LH (k) and RH (l). See Supplementary Movies 1–4* for full 

3D rendering. Scale for images k,l is given in l. ......................................................... 73 

Figure 3.11. Simulated chiroptical properties of S-like Au NP chains. a–d, LH NP chain 

models used in computational simulations for buckled sides with characteristic 

dimensions. Single chains with ε = 0% and 25% are shown in a and b, respectively. 

Arrays of five chains with ε = 0% and 25% are shown in c and d, respectively. 

Five chains are arrayed with a gap of 20 nm in the y direction. Models of opposite 

handedness can be found in Fig. 3.49. Scale for images a–d is given in b. e,f, 

Calculated CD spectra from a single chain (e) and an array of five chains (f). Red 

colors signify LH samples and blue colors signify RH samples. ................................ 76 

Figure 3.12. a, p as an original image and b and q as horizontal and vertical reflection 

images. b, Transformation matrices for horizontal and vertical reflections. c, 

Consecutive applications of horizontal reflections to p. ............................................. 78 

Figure 3.13. a, Chain model for LH, ε = 25%. b-d, RH chain model was generated by 

mirror transformation function and then further rotated and translated. e-g, 

Oppositely handed chains with a mirror plane were viewed from different 

perspectives. ................................................................................................................ 80 

Figure 3.14. “Torsion and no displacement” applied LH and RH PDMS strips. von Mises 

stress distribution is expressed by color scale and relative vector from each mesh 

node is expressed by arrow.......................................................................................... 81 

Figure 3.15. Strain-modulated chiroptical multilayers from semiconducting nanotubes. a, 

Optical images of (PVA/SWNT)10 nanocomposites from LH (left) and RH (right). 

b, Apparent CD spectra of double-sided LH and RH samples under ε = 0, 10, 25 

and 50%. Apparent CD spectra were measured from JASCO J-815. c–j, Scanning 

electron micrographs of buckled and cracked sides of LH and RH samples under ε 

= 0 and 25%. Scale for images c–j is given in j. k,l, STED microscopy images of 

(PVA/SWNT)10(Nano Beads)1 for buckled sides of LH and RH, respectively. See 

Supplementary Movie 5 for full 3D rendering.* Scale for images k,l is given in l. .... 82 
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Figure 3.16. Optical activities of a PDMS substrate and buckled NP layer. a, LD of PDMS 

under ε = 0%, 10%, 25% and 50%. b, LB of PDMS under ε = 0%, 10%, 25% and 

50%. c, LB of buckled side on PDMS, LH, under ε=50% and its polynomial fit of 

two far end regimes. .................................................................................................... 90 

Figure 3.17. M03 and M30 elements from JASCO J-815. Spectra for LH and RH 

samples under ε = 0% and 50% for buckled side only (a, b) and cracked side only 

(c, d) on PDMS substrate. Light propagation in the negative and positive z-

directions were tested by rotating samples by 180° around the x-axis. Insets: 

schematics of light propagation on samples. ............................................................... 91 

Figure 3.18. Comparison of apparent CD from Mueller matrix polarimetry and 

(M03+M30)/2 from JASCO J-815 of both side samples of (PU/NP)5. a, 

Apparent CD spectra of  (PU/NP)5 from Mueller matrix polarimetry. b, 

(M03+M30)/2 CD spectra of  (PU/NP)5 from JASCO J-815. c, Corresponding 

absorbance spectra for b. ............................................................................................. 92 

Figure 3.19. Comparison of Mueller matrix analysis between experimental and 

simulation.  Apparent CD from experimental Mueller matrix polarimetry and 

simulated L03 component from differential Mueller matrix for two layer systems, 

buckled side only (a) and cracked side only (b) on PDMS substrate, were 

compared. Full simulation code and results of representative case (buckled side 

only, LH, ε = 0% at 600 nm) are in Note 3.1. ............................................................. 95 

Figure 3.20. Comparison of Mueller matrix analysis between experimental and 

simulation for double-sided samples. ...................................................................... 97 

Figure 3.21. Linear optical anisotropy in stratified optical media made from buckled 

and cracked NP layers on PDMS. a, Schematics of the experimental setup. b, c, 

Apparent CD (mdeg, in vertical axis) obtained by rotating a buckled layer 

superposed on top of a fixed cracked layer under strains of 0% and 50%, 

respectively. Data under strains of 0% and 50% obtained at 650 nm and 628 nm, 

respectively, which were resonant wavelengths for cracked layers. Radial axis is 

for angle of rotation as described in a. ...................................................................... 100 

Figure 3.22. Control experiments on Au composite. a, CD spectra of various control 

samples for Au NP composite. b, Corresponding absorbance spectra for samples in 

a. For a,b, M03 and (M03+M30)/2 were measured on JASCO J-815 for solution 

and film samples, respectively. c-f, Apparent CD, CB, LD and LB of five bilayer 

deposited on flat PDMS under ε = 0% to 50% by Mueller matrix polarimetry, 

respectively. A dispersion of Au NPs with a peak absorbance of 0.63 had nearly 

zero CD activity; and all other control experiments displayed very small CD 

activity under strains in entire available range of wavelengths. ............................... 101 

Figure 3.23. Control experiments on CNT composites. a, CD spectra of various control 

samples. b, Corresponding absorbance spectra of a. M03 and (M03+M30)/2 were 

measured on JASCO J-815 for solution and film samples, respectively. ................. 102 
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Figure 3.24. Emergence of CD depending on level of twist on Au composite. a, 

Photographs of samples under ω=90°, 180° and 270° of twisting for (PU/NP)5. ω is 

the rotational angle along the y-axis starting from the line of x-direction. b, c, CD, 

(M03+M30)/2, of (PU/NP)5 depending on the level of twist under two different 

strain levels of 0% and 50%, respectively. Only RH samples were used for 

experiments. Twisting more than 360° made the surface of the samples severely 

rugged.  Spectra obtained from JASCO J-815 spectrometer. .................................. 103 

Figure 3.25. Emergence of chiroptical activity upon increase of the macroscale twist angle, 

ω, of the substrate on CNT composite. a, Photographic images of samples for ω = 

90°, 180° and 270° for (PVA/SWNT)10. b, c, CD spectra, (M03+M30)/2, of 

(PVA/SWNT)10 for different ω under two different strain levels of ε = 0% and 

50%, respectively. RH samples were only used for experiments.............................. 104 

Figure 3.26. CNT Sample preparation and M03, M30 CD spectra. a, (PVA/SWNT)10 

were deposited on twisted PDMS substrates in opposite directions; right-handed 

Cartesian coordinates were used to denote directions of twisting and light 

propagation. b, Samples with left-handed and right-handed twists are denoted LH 

and RH, respectively as in the case of Au NPs. Scale for a-b is given in a. c, d, CD 

spectra from double-sided samples of LH and RH under ε = 0%, 10%, 25% and 

50% with light propagation in negative and positive z-directions, respectively. ...... 105 

Figure 3.27. Reversibility test of Au composite. Peak CD, (M03+M30)/2, values of LH and 

RH samples up to 10,000 cycles of reversible stretching to 50% and releasing to 

0%. Spectra obtained from JASCO J-815 spectrometer. .......................................... 106 

Figure 3.28. Absorbance spectra, and reversibility test of CNT composites. a, Absorbance 

spectra, (M03+M30)/2, of LH and RH samples under ε = 0, 10, 25 and 50% in Fig. 

3.15b. b, Peak CD values of LH and RH up to 10,000 cycles of reversible 

stretching to 50% and releasing to 0%. Values were read at 300 nm. ....................... 107 

Figure 3.29. Samples containing less number of NPs and their optical response. a, 

Photographic image of a set of twisted form of (PU/dilutedNP)5. b, c, TEM image 

of two bilayers of PU and diluted NPs and normal concentration of NPs used for 

most of the experiments, respectively. Particle number density in b and care in ca. 

tenfold difference. d, e, Absorbance and CD spectra of (PU/dilutedNP)5 of LH and 

RH under ε = 0% and 50%, respectively. Apparent CD measured from Mueller 

matrix polarimetry. .................................................................................................... 108 

Figure 3.30. a, CD data in the main text with 20 min of dipping time into Au NP 

dispersion. b, CD data from 5 min of dipping time into Au NP dispersion. c, CD 

data from 1 min of dipping time into Au NP dispersion. .......................................... 109 

Figure 3.31. a, CD data in the main text with particle size of 13 ± 1 nm. b, CD data from 

particle size of 16 ± 2 nm. c, CD data from particle size of 37 ± 10 nm. ................. 110 

Figure 3.32. Spatial homogeneity and relevant apparent CD spectra of LH samples. With a 

beam size of 1.5 mm, CD spectra on seven representative spots on double-sided 

samples were measured and relevant spectra are presented: ε=0% (a), and ε=50% 

(b). Color CD bar and scale for images a-b are given in a. ....................................... 112 
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given in a. f, TEM image of (PU/NP)2 deposited on the flat grid. g, h, Buckled side 

TEM images of LH and RH from d, respectively. i-l, Cracked side TEM images of 

LH (i, j) and RH (k, l) from e. For TEM imaging, samples were relaxed to be 

flattened followed by removal of grids from the substrates. For b, d, and c, e, one 
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Scale for f-l is given in f. m, n, Distribution of the center-to-center distance 

between nanoparticles under no-stress (f, 13.8 ± 0.1 nm, n=40) and stressed states 

(g-l, 13.7 ± 0.1 nm, n=80), respectively. ................................................................... 123 
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ABSTRACT 

 

Nanoscale science and technologies have been developed tremendously during the last 

two decades, introducing a variety of nanomaterials with unique properties.  However, 

incorporation of these properties into macroscale functional applications has been limited.  An 

essential challenge is the integration of such unique properties into assemblies for macroscale 

devices.  Here we explore self-organization of nanomaterials in solid-state for discovering 

fundamental understandings of mechanisms and dynamics for various engineering applications.  

An example of excellent stretchable conductors from self-organization of nanoparticles 

(NPs) was first demonstrated.  Free-standing stretchable conductors were prepared using 

layer-by-layer (LBL) assembly and vacuum-assisted flocculation (VAF).  Different properties 

of LBL and VAF were understood from the perspective of structure and property relations.  

High conductivity and stretchability were observed from both composites, and the properties 

originated from dynamic self-organization of NPs.  Modified percolation theory allowed 

incorporation of the self-organization and provided an excellent match with experimental data.  

Stretchable and conductive composites under voltage application provided an additional 

practical aspect of the composites, damping of vibrations. 

Another self-organization of NPs first demonstrated chiroptical nanocomposites for 

applications of photonic material devices and optoelectronics.  They were also LBL assembled, 

from plasmonic NPs and single-walled carbon nanotubes (SWNTs).  A straightforward sample 

preparation method, conformal deposition of plasmonic materials on pre-twisted substrates, is 

a distinctive advantage when producing macroscale photonic materials.  Chiroptical activities 



 xx 

can be increased up to ten fold and were reversibly tunable.  S-like 3D nano-assemblies were 

responsible for the optical activities and this was confirmed by computational simulations.  

Universality of the method was confirmed by introducing polymeric fluorescence beads and 

SWNTs.  Deposition of SWNTs expanded the wavelength regimes from UV to near-IR. 

Solid-state self-organization at the nexus of mechanics, electronics, and 

excitonics/plasmonics can be generalized to other nanoscale materials and opens new 

possibilities for composite-based electronic and optic devices. 

 



 1 

CHAPTER I 

Introduction 

 

 

 Motivation:  Technological Convergence 

Research in nanotechnology has been extremely active during the past three decades, 

introducing a library of building blocks with unique features under a given size into ultra-

precisely assembled supraparticles demonstrating novel behaviors.  Discovery of new 

categories of assembled materials, which are often active and complex, and fundamental 

understandings of their systems, has triggered innovations in interdisciplinary research.  These 

innovations have recently focused upon advanced performance and new domains for 

applications including nano-electronics and -photonics, efficient energy conversion and storage, 

neuro- and cognitive-science, therapeutic pharmacology, and national security1,2,3,4,5. 

These unprecedented advancements have clearly been fueled by various assembly and 

patterning tools because technology integration invariably begins with the ability to manipulate 

material building blocks, often in nanoscale.  Such tools include bottom-ups, e.g. layer-by-

layer (LBL) assemblies, self-assembled monolayers, Langmuir-Blodgett method, DNA origami, 

etc., and top-downs, e.g. various lithography techniques, various vapor deposition methods, 

etc.6. Each has contributed tremendously in the development of nanotechnologies with unique 

advantages and disadvantages.  However, the most versatile, economically viable, 
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environmentally benign method at the forefront of technological convergence is LBL 

assembly7,8,9,10. 

 

 Moving Forward with Layer-by-Layer Assembly  

After its introduction by Gero Decher and co-workers in 199111, LBL assembly, a 

multilayer thin film assembly method, has marked itself as the most versatile method 

assembling nano- and micro-scale materials as well as fine-tuning its properties (Fig. 1.1).  It 

is undergoing exponential growth both in terms of furnishing novel fundamental mechanisms 

and new material building blocks.  LBL assembly’s extensive freedom to employ a myriad of 

materials and substrates unlimited by dimensionality is the primary reason for its success.  

Materials can range from small molecules, inorganic particles and synthetic polymers to 

biomolecules, and substrates just as easily take complex form as spherical form.  Thereby, the 

ability of precise control in nanoscale composition across thickness (thickness of the layers can 

be readily controlled by varying the number of deposition cycles) has attracted many 

researchers into the field.  This controllability subsequently means that material properties of 

assembled layers can be fine-tuned as desired.  LBL assembled thin films are engineered to 

have properties including, but not limited to, electro-mechanical, nano-photonic, electro-

chemical, electro-neural, and pharmacological.  Water-based environmentally benign 

processes and cost-effective experimental setups offer additional benefit for 

commercialization12,13,14. 

Initially LBL assemblies were used to deposit oppositely charged synthetic 

polyelectrolytes on planar substrates11.  Eventually the method grew to include all kinds of 
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organic and inorganic nano/micro building blocks15,10,16,17 on substrates with various 

dimensionalities.  Even binder-free LBL assemblies demonstrated novel properties18,19.  At 

the same time, various multilayer deposition mechanisms, other than electrostatic attraction 

such as hydrogen bonding20,21, covalent bonding22, hydrophobic interactions23 and click 

chemistry24,25, are unveiled widening applicability LBL assembly into related fields26,27,28,29,30.  

Multifarious deposition technologies are also introduced such as dipping, spraying, fluidic, 

spin-coating, and electromagnetic, which are expected to bring different internal structures and 

thus different material properties31,32.  With the help of advanced analytical tools, LBL-based 

nanotechnology paves the way for making advanced nanocomposites for myriad novel 

applications. 

Based on past contributions from many researchers in the LBL community, the field is 

now enjoying matured knowledge.  Now, the paradigms of the field are fast shifting toward 

how we can use our expanded information to make real impacts to improve personal quality of 

life.  Equipped with a better understanding on nano/micro materials, we have sufficient ability 

 
Figure 1.1. Schematic of layer-by-layer assembly. Polymer and nanoparticles are sequentially 

deposited on the substrate by dipping method. 

polymer
water

water
NPs
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for this grand challenge.  By converging technologies, which we define as having synergistic 

functionalities from different disciplines, with LBL assembly, we can address vital human needs 

with new applications.  LBL assembly is now ready to create transformative materials and 

devices. 

Four of the most advantageous qualities of LBL assemblies are their ability to construct 

highly integrated multilayer structures33, their non-toxic water-based nature29, their ability to 

work at room temperature, and the fact that they lend themselves to large scale production at a 

low cost with a short preparation time13.  These qualities are proving invaluable when 

addressing various converging technologies.  For instance, electronic and energy materials 

require qualities of high electron and ion exchange rate.  Additionally, the full potential of 

photonic materials are restricted by the method of lithography which dramatically limits device 

size and production scale34.  Further, in the case of neural probes, the high temperature 

required by chemical vapor deposition restrains the choice of materials considerably limiting 

performance6.  Also, pharmacological applications will be benefited from a purely aqueous 

means for creating drug-carrier complexes35. 

 

 Thesis Overview 

To address the grand challenge and achieve realistic goals, we will pay special attention 

to the phenomena and fundamentals of self-organization of NPs as a response to external 

stresses for advanced properties for practical applications into the areas of, including not limited 

to, stretchable conductors (electro-mechanical systems) and reconfigurable photonic materials 
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(nano-photonics)36–39.  The emergent behavior of self-organized NPs is an important direction 

for future research since it demonstrates generalizable possibilities of making materials with 

properties overcoming classical limits or unprecedented tunable functionalities. 

 

1.3.1 A Model System:  Gold Nanoparticles and Polyurethane 

As a model system, we chose citrate-stabilized highly monodisperse gold NPs 

13.0 ± 0.3 nm in diameter (Fig. 1.2a).  Smaller NPs (< 10 nm) tend to easily aggregate due to 

high surface-to-volume ratio and larger NPs (> 16 nm) normally have low monodispersity.  

The thin citrate layer on the surface of the NPs makes them negatively charged.  The use of 

citrate for colloidal stabilization of gold NPs is expected to bring about minimal barriers for 

charge transport between nanoparticles (Fig. 1.2b), which is not the case of gold nanoparticles 

with stabilizers with long aliphatic chains, e.g. oleylamine and 1,6-hexanedithiol (Table 1.1). 

 

 

 
Figure 1.2. a, TEM image of gold nanoparticles. b, c, Chemical structures of anionic citrate 

and cationic polyurethane copolymer, respectively. 
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Table 1.1. Previous cases of LBL films from Au NPs and their conductivity.  

Diameter 

of Au NP 

(nm) 

 

Stabilizer 

Counter 

polyelectrolyte 

Thickness 

of film 

(nm)  

Conductivity  

(S cm-1) (reference) 

5 sodium 

borohydride  

poly(diallyldimethyl 

ammonium chloride) 

60 2 x 105  (40) 

13 citrate poly(diallyldimethyl 

ammonium chloride) 

60 1.8 x 105  (41) 

2.5 citrate ethanedithiol 52 2.5 x 105  (42) 

2.5 citrate ethylenediamine 52 2 x 105  (43) 

9 oleylamine 1,9-nonanedithiol 60 2 x 10-2  (44) 

10 1,6-

hexanedithiol 

alkanedithiol 26 3.7 x 10-2  (45) 

 

Nanoparticles may initially appear as unfavorable candidates for the task of filling a 

polymer matrix for electrical applications.  First of all, spherical nanoparticles have a 

percolation threshold, Vc, that is 10 to 100 times higher than high-aspect-ratio nanometer-scale 

components.  The charge transport between nanoparticles involves a large number of 

nanoparticle–nanoparticle junctions, resulting in high contact resistance and scattered charge 

carriers.  Additionally, nanoparticles with a strong attraction to polymers cause stiffening of 

the matrix.  On the other hand, nanoparticles in a polymer matrix represent a more dynamic 

system that has greater freedom for reversible nanoscale restructuring, which is essential for 

stretchability.  Although nanoparticle dynamics in a polymer matrix at high stress/strain levels 

are poorly understood, one should expect greater matrix mobility from nanoparticles than from 

nanotubes or nanowires.  Therefore, the conducting pathways lost upon deformation could 
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potentially be recovered in a different particle configuration.  It is also important that the 

conductance between two nanoparticles does not depend on their mutual orientation. 

Polyurethane with two sets of 28 repeating units of ductile moieties (Fig. 1.2c, ca. 903 

nm of main chain length) was used as a polymeric partner for these particles (1.0% by volume 

in aqueous solution).  Its strong positive charge is complementary to the negative charge of 

the nanoparticles and allowed us to use LBL deposition to make corresponding composites46,47.  

The application of LBL allowed us to (1) reach high nanoparticle loadings, (2) maintain the 

uniformity of nanoparticle distribution throughout the material, and (3) make adequate 

comparisons between nanoparticle composites with different nanoscale fillers8.  We also used 

an alternative method of construction, in which the nanoparticle composite materials were 

obtained by vacuum-assisted flocculation (VAF), allowing us to generalize the properties of 

nanoparticle composites as stretchable conductors. 

 

1.3.2 Stretchable Conductors  

The field of stretchable conductors is the best example where a direct combination of 

two seemingly disparate properties co-mingle and produce unprecedented applications.  A 

fundamental understanding of stretchable conductors and a better utilization of them has 

possibilities of opening many sub-fields such as implantable bio-electronics, wearable 

electronics and flexible photovoltaics48,49,50.  High performance stretchable conductors are 
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prepared from simultaneous incorporation of excellent mechanical stretchability and electronic 

conductivity.  However, this has been very challenging due to the fact that molecular 

mechanisms of stretching leads to delocalized electronic orbitals. 

The best known stretchable conductors have partially overcome this challenge by 

utilizing high aspect ratio conducting fillers such as single-walled nanotubes (SWNTs) to make 

promptly percolated networks51.  Randomly mixed SWNT-polymer composite as either free-

standing form or printed ink paste on elastic substrate, polydimethylsiloxane (PDMS), was 

demonstrated to have conductivity up to 100 S/cm (Fig. 1.3a)52,53.  SWNTs were also spray-

deposited onto PDMS substrate to allow for elastic conductivity upon tensile stretching (Fig. 

1.3b)54.  PDMS has been popularly used as a substrate due to its elastic tensile stretching and 

near 100% transparency in the visible spectrum.  However, the use substrate brings an inherent 

disadvantage that stretchability is limited by that of the substrate, ca. 150 %.  In order to 

achieve improved mechanical and electrical properties, we must address the following 

questions:  “Can we distribute filler materials more homogeneously?”, “Can we incorporate 

even more conductive fillers?” and “Can we control distribution state and content of fillers for 

fine-tuned properties?”  

 
Figure 1.3. Stretchable conductors from carbon nanotubes printed (a)53 or deposited (b) 
54 on elastic rubbery substrate. 

ba
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LBL-assembled stretchable and conductive composites answering the above questions 

were recently prepared55.  Negatively-charged Au NPs distributed in positively-charged 

polyurethane matrix show exceptional conductivity of 1.1 x 104 S/cm and stretchability of 

110 %.  Sequential deposition enabled homogeneous deposition of the NPs.  Conductivity 

was easily tuned by the content of NPs, by simply changing the dipping time of the substrate in 

the NP containing beaker.  The LBL dipping method readily enabled fully interdigitated NP 

networks in the polymer matrix allowing for well-established percolated pathways.  The fully 

integrated structures and flexibility of polyurethane networks offer mobility of NPs to make re-

organized conductive pathways under applied strains in order to retain high conductivities.  

This ideal homogeneous network was a good experimental prototype for theoretical analysis.  

Percolation theory was applied to analyze conductive behavior of the composites with and 

without tensile strains.  Experimentally observed conductivity under strain was higher than 

the theoretical limit by percolation theory due to re-organized NPs along the tensile direction.  

The technologically important method of VAF, even simpler and more time-efficient than LBL 

assembly, was introduced to make composites.  VAF composites yielded exceptionally high 

stretchability, 480%, and high conductivity, 1,800 S/cm.  This method makes internal 

distribution NPs more aggregated than those in the LBL samples.  Thus, VAF composite had 

decreased conductivity but higher stretchability. 

More creative converging technologies will inevitably come, not only with LBL, but 

also by combination with other technological methods.  To the LBL-assembled conductive 

composites, Kirigami (a Japanese art of paper cutting) technique can be applied to introduce 

constant electrical properties under even higher mechanical stretching.  Kirigami involves 
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strategically configured arrays of cuts to guide buckling/folding processes in a manner that 

delocalizes stresses under mechanical strain56,57.  LBL-deposited conductive sheets adjunct to 

a top-down method of lithography, demonstrated composites containing nearly constant 

conductance up to 290% of stretching, which without Kirigami had 5% of maximum tensile 

stretching58.  This stretchable but non-compromised performance enabled by Kirigami was 

also applied to photovoltaic panels59.   

LBL assembly may also contribute to effectively create transparent conductors, which 

have tremendous potential to advance technological applications such as transparent 

strain/pressure sensors and transparent displays.  An above example of spray-deposited 

SWNT composites have significant transparency due to the low volumetric content of their 

fillers54.  This, however, is potentially fraught with the problems of SWNT network 

delamination and planar-restricted substrate dimensionality.  The highly versatile LBL 

assembly method can be applied to have comparably high conductivity and to have conformal 

three dimensional geometrical coating60. 

 

1.3.3 Reconfigurable Photonic Materials 

The field of chiroptical photonic materials has rapidly emerged for the potential 

applications of, for example, negative-index materials that refract trajectories of light in 

anomalous directions, invisibility clocking that modifies the electromagnetic interactions 

accompanied by dramatic light confinement, chiral assemblies that rotate the polarization state 

of light a couple orders of magnitude stronger than those from natural organic materials, ultra-

sensitive detection of biomolecules, and even fabrication of transistors34,61,62,63,64. 
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This advance has benefited most from the ability to produce artificial electromagnetic 

media on the sub-wavelength scale using the advance of fabrication tools such as high 

resolution lithography63 and vapor deposition65 and nanoscale precision DNA origami66. One 

of the critical limitations of the above approach is that samples prepared from the above 

methods are restricted by the scale of DNA or lithography.  Preparing samples with large scale, 

high throughput, low cost and short preparation time remain as challenges, and successful 

outcome could trigger another wave of innovation.  Previous studies show the possibility that 

small scale photonic materials can be enlarged by using bottom-up self-assembly methods.  

Examples include macroscale 2D superlattices of polyhedral silver nanoparticles assembled 

using the Langmuir-Blodgett technique67, ordered macroscale assemblies by a self-assembly 

process of sedimentation and solution evaporation68, LBL-assembled 3D colloidal supercrystals 

for controllable transverse (intralayer) and longitudinal (interlayer) near-field coupling69, and 

LBL-assembled fine-tuned inter-particle distance for controlled localized plasmonic coupling70.  

Recently, macroscale and reversibly tunable chiroptical nanocomposites from the 

straightforward preparation method of LBL assembly was demonstrated71.  Separate strips of 

elastic and transparent substrates, PDMS, were twisted clockwise and counterclockwise 

respectively and then subjected to deposition of a few layers of Au NPs and PU on top, and 

 
Figure 1.4. Chiroptical photonic materials prepared from the method of DNA bridge 

(a)155, glancing angle deposition (b)114, and high resolution lithography (c)156. 

ba c
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were released having planar geometry.  Deposition of nanomaterials on 3D geometry and on 

soft rubbery substrate has strong advantages when employing the versatile deposition method 

of LBL assembly.  This twist-deposit-release process transfers chirality from macroscale 

substrate to nanoscale LBL films:  chiral distribution of stresses was imprinted to the 

interfaces of multilayers and substrate in the form of buckles.  A primary technological 

advantage is that solid-state macroscale thin films were prepared at low cost with short 

preparation time.  This ensures high applicability of materials.  

Mueller matrix polarimetry revealed that the as-prepared planar films had modest 

chiroptical activities of plus and minus 50 mdeg depending on respective initial substrate twist 

direction.  However, polarization rotation increased by ten-fold under strain of 50% due to NP 

chains re-organizing into curvier geometries along the z axis.  500 mdeg of intrinsic circular 

dichroism is one of the highest values reported thus far.  The chiroptical activities were 

extremely homogeneous in macroscale and reversibly tunable in real-time up to 10,000 cycles.  

Homogeneous distribution of NPs throughout the polymer matrix and fully integrated internal 

structures should subsequently contribute to homogeneous chiroptical activity.  The versatile 

applicability of LBL assembly enabled incorporation of SWNTs, therby widening active ranges 

of chiroptical responses from UV to near-IR.  This proves that more diverse nanomaterials can 

be deposited for unprecedented applications. 

This area of photonic materials from self-assembly has very recently emerged, and 

many creative outcomes are expected to follow.  Additionally, LBL-assembled composites 

fabricated by a conventional method ushers in newly creative paradigms for engineering as a 

whole.  The above example of Kirigami-applied stretchable conductors exemplifies this.  
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These all would result in plethora of creative engineering such as tunable circular polarization 

based sensors.  A plethora of ingeniously engineered devices, such as tunable circular 

polarization based sensors, awaits.   

 



 14 

CHAPTER II 

Stretchable Nanoparticle Conductors with Self-Organized 

Conductive Pathways  

 
Reproduced with minor modifications with permission from Kim, Y.; Zhu, J.; Yeom, B.; Prima, M. D.; 

Su, X.; Kim, J. G.; Yoo, S. J.; Uher, C.; Kotov, N. A., “Stretchable nanoparticle conductors with self-

organized conductive pathways.” Nature 500, 59–63 (2013). Copyright 2013 Nature Publishing Group 

 

 

 Introduction and Background 

Research in stretchable conductors is fueled by diverse technological needs.  Flexible 

electronics, neuroprosthetic and cardiostimulating implants, soft robotics and other curvilinear 

systems require materials with high conductivity over a tensile strain of 100 per cent (refs 72–

74).  Furthermore, implantable devices or stretchable displays53 need materials with 

conductivities a thousand times higher while retaining a strain of 100 per cent.  However, the 

molecular mechanisms that operate during material deformation and stiffening make 

stretchability and conductivity fundamentally difficult properties to combine.  The macroscale 

stretching of solids elongates chemical bonds, leading to the reduced overlap and delocalization 

of electronic orbitals75.  This conductivity–stretchability dilemma can be exemplified by 

liquid metals, in which conduction pathways are retained on large deformation but weak 

interatomic bonds lead to compromised strength.  The best-known stretchable conductors use 

polymer matrices containing percolated networks of high-aspect-ratio nanometer-scale tubes or 

nanowires to address this dilemma to some extent52,54,76–79.  Further improvements have been 

achieved by using fillers (the conductive component) with increased aspect ratio, of all-metallic 

composition80, or with specific alignment (the way the fillers are arranged in the matrix)81,82.  
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However, the synthesis and separation of high-aspect-ratio fillers is challenging, stiffness 

increases with the volume content of metallic filler, and anisotropy increases with alignment83.  

Pre-strained substrates84,85 buckled microwires86 and three-dimensional microfluidic polymer 

networks87 have also been explored.   

Here we demonstrate stretchable conductors of polyurethane containing spherical 

nanoparticles deposited by either LBL assembly or VAF (nanoparticles and polyurethane 

described in Fig. 1.2).  High conductivity and stretchability were observed in both composites 

despite the minimal aspect ratio of the nanoparticles.  These materials also demonstrate the 

electronic tunability of mechanical properties, which arise from the dynamic self-organization 

of the nanoparticles under stress.  A modified percolation theory incorporating the self-

assembly behavior of nanoparticles gave an excellent match with the experimental data.  
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 Stretchable and Conductive Nanocomposites 

Free-standing composite films were obtained after 500 LBL deposition cycles and the 

resulting polyurethane–nanoparticle film is denoted (PU/NP)500.  Their thickness was 

determined by scanning electron microscopy (SEM) to be 2.0 ± 0.2 μm.  The ellipsometric 

thickness for one to ten layer pairs gave a total thickness of 1.97 ± 0.1 μm for 500 layer pairs 

(Fig. 2.10a).  It is nearly identical to the SEM thickness, which indicates excellent thickness 

 
Figure 2.1. Preparation of polyurethane–nanoparticle nanocomposites. a, Photographs of 

a free-standing film (PU/NP)500, a consolidated 5 × LBL stack, a free-standing film made by 

VAF, and a consolidated 5 × VAF stack. b, SEM images of 1 × LBL and 1 × VAF. c, Cross-

sectional SEM images of 5 × LBL and 5 × VAF. 



 17 

control of the LBL growth88,89.  Similar free-standing VAF sheets had an SEM thickness of 

30 ± 3.0 μm.  Both LBL and VAF sheets had an unmistakably metallic appearance (Fig. 2.1a). 

LBL and VAF composites were made to have the same volumetric fraction of fillers Vf, 

21.7 vol.% (Fig. 2.2a, 2.11).  Experimentally determined values of Vc for the LBL and VAF 

composites were 16.2 vol.% and 17.5 vol.%, respectively.  To transition to fully macroscopic 

materials as-prepared LBL and VAF free-standing films were laminated into stacks90.  Hot-

pressing 3–10 free-standing sheets together at 120 °C and a pressure of 20 MPa for 1 h revealed 

a high degree of consolidation (Fig. 2.1c).  The lamination temperature was chosen because no 

phase change was observed up to 130 °C for all materials according to differential scanning 

calorimetry data (Fig. 2.12).  The laminated samples of five sheets were denoted 5 × LBL or 

5 × VAF and had SEM thicknesses of 6.5 ± 0.7 μm and 110 ± 10 μm, respectively. 

LBL and VAF films had different properties even when the gold content was the same.  

The LBL composites had better dispersed nanoparticles, leading to more efficient conducting 

pathways than did the VAF composites, whose nanoparticles were more aggregated.  

Simultaneously, the presence of larger polyurethane domains resulted in a higher stretchability 

of the VAF composites (Fig. 2.2h–k and 2.13).  The free-standing 1 × LBL and 1 × VAF had 

conductivities σ of 6,800 S cm−1 and 510 S cm−1 and maximum tensile strains εmax of 16% and 

75%, respectively.  Lamination increased the conductivity of both types of film and 

considerably improved stretchability.  The conductivities of the 5 × LBL and 5 × VAF 

composites were 11,000 S cm−1 and 1,800 S cm−1 for ε = 0% (Fig. 2.2b).  Compared to the 

conductivities of other LBL films from gold nanoparticles stabilized by longer capping agents88, 
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those of our composites were more than 105 times better (see Fig. 1.2 and Table 1.1 for details).  

 
Figure 2.2. Mechanical and electrical properties of polyurethane–nanoparticle 

nanocomposites.  a, Dependence of strain and conductivity of 1 × LBL and 1 × VAF on the 

volumetric gold content at ε = 0%.  The green line shows the calculated conductivity of the 

LBL composite based on the power-law relation in Eq. 2.1 and three-dimensional percolation 

power law relation.  b, Conductivity data of laminated films composed of 1, 3, 5 and 10 

consolidated films for LBL and VAF. Error bars in a and b are mean ± s.d. (n = 3).  c, d, 

Stress–strain curves for consolidated LBL (c) and VAF (d) stacks composed of 1, 3, 5 and 10 

films, respectively.  e, Conductivity as a function of uniaxial strain of 5 × LBL and 5 × VAF.  

f, Temperature dependence of conductivity for 1 × LBL and 1 × VAF.  g, Change in 

conductivity (σ/σ0) of 1 × LBL and 1 × VAF after recurrent stretching cycles, ε = 5%.  h–j, 

Atomic-force-microscopy amplitude, SEM and TEM images of (PU/NP)2, respectively.  k, 

TEM image of a VAF nanocomposite. 



 19 

The εmax values for 5 × LBL and 5 × VAF were 115% and 486%, respectively (Fig. 2.2c and d).  

The conductivity of 5 × LBL and the stretchability of 5 × VAF are, to the best of our knowledge, 

the highest for previously studied composites. 
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 Self-Organized Nanoparticles for Conducting Pathways 

 

Figure 2.3. Reorganization of nanoparticles under stress.  
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a–f, TEM images of (PU/PAA)2(PU/NP)4(PU/PAA)1 under strains of 0%, 10%, 20%, 30%, 40% 

and 50%, respectively, where PAA is polyacrylic acid.  g–k, SAXS beam images of 5 × LBL 

and 1 × VAF at various strains.  l, SAXS diffraction curves for films at different strains. P(q) 

is form factor from the size and shape of nanoparticles.  The diffraction curve segments around 

the peak at q = 0.045 Å −1 are given in the inset.  m, Calculated conductivity dependence on 

strain for LBL composites described by percolation theory for self-assembling systems (Eq. 

2.12 and 2.13) with various self-assembly coefficients α in comparison with actual data for 5 × 

LBL.  n–u, SEM images of focused-ion-beam milled 5 × LBL and 5 × VAF at various strains.  

The images in q and u were taken after five consecutive stretches to 110% and 200%, 

respectively.  Milling depths for samples in this study are 1 μm for 5 × LBL and 2 μm for 5 × 

VAF.  Stretching directions are indicated by the double arrows. 

 

As expected, the conductivity of LBL and VAF composites decreased with the increase 

of strain ε (Fig. 2.2e).  ε = 60% resulted in a reduction of conductivity to 3,500 S cm−1 for 

5 × LBL and a reduction to 210 S cm−1 for 5 × VAF. ε = 110% resulted in a reduction to 

2,400 S cm−1 for 5 × LBL and a reduction to 94 S cm−1 for 5 × VAF.  However, the conductivity 

values for high strain were slightly or considerably higher than similar values for carbon-

nanotube-based materials53,79, despite the much smaller aspect ratio of the nanoparticles.  

Moreover, no other composites have displayed σ = 35 S cm−1 at ε = 480%, as 5 × VAF does. 

It is thus essential to understand how these composites retain the capability to transport 

electrons efficiently at very high deformations.  From the outset we knew that nanoparticles 

are capable of self-assembling in solution into chains91.  Atomic force microscopy, SEM and 

transmission electron microscopy (TEM) images indicated that nanoparticles in the LBL 

composites produced chains of 20–40 nanoparticles while they were being deposited (Fig. 2.2h–

j).  Such chains can behave similarly to high-aspect-ratio nanocomponents, reducing Vc (ref. 

92) while displaying a high conductance similar to that of bulk gold.  This ability to self-

assemble at the time of LBL deposition was initially hypothesized to be the cause of such an 

unusual combination of properties.  We, however, could not find evidence for nanoparticle-
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chain formation in the bulk from small-angle X-ray scattering (SAXS) data immediately after 

deposition at 0% strain (Fig. 2.3g, i, and l) or by using high-voltage electron microscopy (Fig. 

2.14) for the LBL and VAF composites.  We next considered the possibility that although they 

may be almost fully disorganized initially, the nanoparticles can self-organize under stress.  

Some elements of self-organization have been seen for low filler concentrations and high-

aspect-ratio nanomaterials47,93,94. 

Indeed, we found clear evidence of stress-induced nanoparticle organization in both 

LBL and VAF composites from TEM images, SAXS data and SEM images (Fig. 2.3).  First 

of all, TEM images of ultrathin (130 nm) LBL films under tensile strain showed a high mobility 

of the nanoparticles in the polymer matrix.  As the strain increased, the nanoparticles gradually 

re-organized into bands along the stretching direction (Fig. 2.3a–f).  In the SAXS data the 

well-developed hourglass-shaped scattering patterns were observed at higher elongations of ε 

= 50% for both composites, confirming that nanoparticles were organized in elongated 

structures (Fig. 2.3h, j, and k).  The intensity of the diffraction peak at scattering vector q = 

0.045 Å−1 also substantially increased at ε = 50% for both composites (Fig. 2.3l). 

Unlike other stress-induced composite reorganization, the beam patterns and intensity 

plots of SAXS data that developed upon stretching disappeared when the tension was released.  

The self-assembled nanoparticle patterns observed here were remarkably different from other 

patterns observed in both solutions and solids91,93,94.  To reveal the nanoparticle patterns in the 

bulk of the composites, focused-ion-beam milling was applied to a depth of 1–2 μm.  SEM 

images of such samples remaining under ε = 110% for 5 × LBL and ε = 200% for 5 × VAF 

revealed three-dimensional cellular self-organized patterns with characteristic dimensions of 1–
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5 µm (Fig. 2.3o, p, s and t).  These distinct nanoparticle networks can be the result of local 

phase separation of the nanoparticles in the polymer under high strain. 

Importantly, when the tension was released, these cellular networks were not observed 

even after five consecutive stretches, indicating that the nanoparticle networks were 

reconfigurable (Fig. 2.3q and u).  However, slight irreversible reconstruction of the material 

did occur on the surface, leading to formation of bands of nanoparticles running perpendicularly 

to the stress direction and decreased stiffness (Fig. 2.15).  With ε = 5% (the elastic limit of 

both composites is considered to be less than ε = 10%), the films were repetitively stretched to 

observe changes in conductivity with deformation cycling.  Interestingly, conductivity after 

5,000 cycles increased substantially by 1.7-fold for 1 × LBL and 1.5-fold for 1 × VAF (Fig. 

2.2g).  The resistance of 1 × LBL and 1 × VAF films after 10,000 stretch cycles, measured 

parallel and perpendicular to the stretching direction, also confirmed the gradual internal 

rearrangement of the nanoparticles, which are completely isotropic without stress.  Resistance 

in both directions decreased but decreased slightly more in the parallel direction than in the 

perpendicular direction. SAXS data for 1 × LBL and 1 × VAF films after 10,000 stretch cycles 

also confirmed the reorganization of nanoparticles (Fig. 2.16). 
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 A Study of Conductivity by Percolation Theory 

The prepared composites presented an interesting case for percolation theory because 

of (1) the unusually high conductance of particles with minimal aspect ratio and (2) the 

extensive structural characterization (Figs 2.2, 2.3).  We note that there are no examples of 

applications of percolation theory to self-organized systems.  The classical power law relates 

the conductivity of an unstretched material σ to Vf as follows: 

𝜎(𝑉𝑓
0) = 𝜎0(𝑉𝑓

0 − 𝑉𝑐
0)

𝑠
             (Eq. 2.1) 

where σ0 is the scaling factor, the conductivity of the filler, 
0

fV , and 
0

cV  are the volumetric 

fractions of the filler and percolation threshold at ε=0%, respectively, and s is the critical 

exponent.  Calculated conductivity is roughly proportional to the fraction of nanoparticles as 

we experimentally observed (Fig 2.2a).  Unambiguous application of Eq. 2.1 to VAF 

composites is difficult owing to aggregation of nanoparticles (Fig. 2.2k). 

 

2.4.1 Theoretical Conductivity as a Function of Filler Volume Fraction 

In order to describe the behavior of our nanoparticle composites in terms of the power-

law of percolation theory (Eq. 2.1), the critical exponents, s, corresponding to both materials 

were determined to be sLBL=1.50 and sVAF=1.17 from the slopes of dependencies in Fig. 2.4a 

and b, respectively.  The application of the classical percolation theory to VAF composite 

system is impeded by the fundamental assumption of individual filler particles to be 

homogeneously dispersed in the matrix which Eq. 2.1 is based on.  Despite the successful 

linearization in the log-log plot in Fig. 2.4b, further application of the theory is impeded by 
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significant agglomeration of gold particles clearly visible in Fig. 2.2k that result in the distinct 

mismatch of experimental and predicted values in Fig. 2.4d95.  Indeed, σLBL calculated showed 

excellent agreement with σ1 × LBL in the absence of strain at various volume fraction of fillers 

(Fig. 2.4c). 

 

 
Figure 2.4. Experimental dependence of σ on Vf and its linearization according to the 

classical power-law relation of 3D percolation theory. a, b, Log plots of σ in respect to  

log(Vf
0 –Vc

0) with a linear fit as described as Eq. 2.1 for 1 x LBL and 1 x VAF, respectively. c, 

d, Comparison of calculated conductivities and actual data of 1 x LBL and 1 x VAF for 

unstrained composites, respectively. 
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2.4.2 Theoretical Conductivity as a Function of Engineering Strain 

Conductivity of Au NP filled LBL composites with fixed volume fraction of 

nanoparticles can be simulated as a function of engineering strain using the 3D power law 

relation79,96.  Due to the fundamental restriction of the equation that NPs are homogeneously 

distributed in the matrix, we restricted consideration of percolation theory to LBL composites, 

which represent an almost ideal case for this theory owing to the nearly uniform distribution of 

nanoparticles.  Vf was converted as a function of engineering strain using relations below and 

σ0, Vc and s were considered as constant upon stretching.  Composite volume change was 

reflected by Poisson’s ratio which were experimentally obtained using a high speed camera.  

Values were obtained by calculating the difference between initial stretching and final rupture 

(See section 2.4.3 for comparison of calculated conductivity values using constant and strain-

specific Poisson’s ratio).  The material was anisotropic and Poisson’s ratios thickness- and 

width- wise were νLBL, thickness = 0.26, νLBL, width = 0.14.  

𝜈𝑤(𝜀) = −
(𝑤2−𝑤1)/𝑤1

(𝐿2−𝐿1)/𝐿1
=

𝑤1−𝑤2

𝑤1·𝜀
              (Eq. 2.2) 

𝜈𝑡(𝜀) = −
(𝑡2−𝑡1)/𝑡1

(𝐿2−𝐿1)/𝐿1
=

𝑡1−𝑡2

𝑡1·𝜀
              (Eq. 2.3) 

Volume of composites under stretching can be expressed using following equations: 

𝑉𝑓 =
𝑉𝑔𝑜𝑙𝑑

𝑉2
              (Eq. 2.4) 

𝑉2 = 𝐿2 ∙ 𝑤2 ∙ 𝑡2            (Eq. 2.5) 

Length, width and thickness of composite under stretching can be obtained using following 

relations: 

𝐿2(𝜀) = 𝐿1 ∙ (𝜀 + 1)              (Eq. 2.6) 

𝑤2(𝜀) = 𝑤1 ∙ (1 − 𝜈𝑤 ∙ 𝜀)              (Eq. 2.7) 
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𝑡2(𝜀) = 𝑡1 ∙ (1 − 𝜈𝑡 ∙ 𝜀)              (Eq. 2.8) 

Eq. 2.7 and 2.8 were obtained from rearrangement of Eq. 2.2 and 2.3, respectively. Thus, 

volume of stretched composite as a function of strain can be  

𝑉2(𝜀) = 𝐿2(𝜀) ∙ 𝑤2(𝜀) ∙ 𝑡2(𝜀) = 𝐿1 ∙ 𝑤1 ∙ 𝑡1(𝜈𝑡 ∙ 𝜈𝑤 ∙ 𝜀
3 + (𝜈𝑡 ∙ 𝜈𝑤 − 𝜈𝑡 − 𝜈𝑤)𝜀

2 − (𝜈𝑡 +

𝜈𝑤 − 1)𝜀 + 1)           (Eq. 2.9) 

Therefore, volume fraction of gold in the composite under stretching and calculated 

conductivity as a function of strain will be obtained as follows: 

𝑉𝑓(𝜀) =
𝑉𝑔𝑜𝑙𝑑

𝑉2(𝜀)
             (Eq. 2.10) 

𝜎(𝜀) = 𝜎0(𝑉𝑓(𝜀) − 𝑉𝑐
0(𝜀))

𝑠
           (Eq. 2.11) 

As strain increases, the calculated σ dropped faster than did the experimental data, despite the 

general tendency of the method to overestimate the conductance for large strains.  This finding 

showed that the current percolation theory cannot explain the dynamic nature of conductive 

pathways under strain.  The influence of stress-induced self-organization processes could be 

described as an apparent increase of the aspect ratio of the fillers (Fig. 2.3a-f), which reduced 

Vc and hence increased σ.  Thus, 𝑉𝑐
0 in Eq. 2.11 was modified by introducing a self-assembly 

coefficient α with square-root dependency of ε as follows: 

0

( )
1

c
c

V
V 

 



           (Eq. 2.12) 

Therefore, overall conductivity equation including effect of volume change and re-organization 

of NPs becomes as follows: 

𝜎(𝜀) = 𝜎0 (
𝑉𝑔𝑜𝑙𝑑

𝐿1∙𝑤1∙𝑡1(𝜈𝑡∙𝜈𝑤∙𝜀3+(𝜈𝑡∙𝜈𝑤−𝜈𝑡−𝜈𝑤)𝜀2−(𝜈𝑡+𝜈𝑤−1)𝜀+1)
−

𝑉𝑐
0

1+𝛼√𝜀
)
𝑠

     (Eq. 2.13) 
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When α = 0.14 the theoretical curve fitted the experimental data nearly perfectly (Fig. 2.3m).  

As the coefficient α increases the ability of particles to reorganize to form conductive pathways 

becomes more pronounced.  The numerical value of α reflects the effects of both the ability of 

nanoparticles to form non-random associations in solids and their directionality. 

 

2.4.3 Use of Constant Poisson’s ratio  

When calculating volume of composite under stretching, use of strain specific Poisson’s 

ratio could make the calculation more precise, because Poisson’s ratio could change under large 

strains.  To check on this point, sample dimensions were measured at each 10% strain level 

and Poisson’s ratio at each level was calculated (Fig. 2.5a, b).  Dimensions of the sample at 

each strain level changed proportionally to tensile deformation and calculated Poisson’s ratio 

at each strain level was nearly constant:  averaged strain-specific Poisson’s ratio were 0.26 ± 

0.01 for thickness wise and 0.15 ± 0.01 for width wise (Fig. 2.5c).  

The obtained Poisson’s ratio values were further used to calculate theoretical 

conductivity at every 10% strain level using the above Eq. 2.11 combined with Eq. 2.12 (Fig. 

2.6).  Calculated conductivity dependence on strain with strain-specific Poisson’s ratio had 

very close match to the one calculated using constant Poisson’s ratio.  Because dimension 

change of samples under tensile deformation were linear.  Averaged Poisson’s ratio with 

standard deviation were νLBL, thickness = 0.26 ± 0.01, νLBL, width = 0.15 ± 0.01 (Fig. 2.5c) while 

constant Poisson’s ratio used for calculation in Fig. 2.6a were νLBL, thickness = 0.26, νLBL, width = 

0.14.  

http://www.nature.com/nature/journal/v500/n7460/full/nature12401.html#f3
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 Use of strain-specific Poisson’s ratio (even smaller strain levels such as every 5% could 

more precisely) could potentially give us better fitted calculated conductivity under strain.  

This will be especially true for samples where non-linear deformation properties are dominant.  

However, in our case, due to sample’s linear deformation upon stress, the effect of introducing 

strain-specific Poisson’s ratio was not significant.  Therefore, application of constant Poisson’s 

ratio is valid in this study. 

 
Figure 2.5. a, Photographic images of 5xLBL composite under stretching up to 100%.  b, 

Dimensions of samples at each 10% strain level.  c, Poisson’s ratio of the sample width- and 

thickness- wise at each 10% strain level. 
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2.4.4 Theoretical Conductivity as a Function of True Strain 

Engineering strain is sometimes not appropriate to use for analysis when the strain level 

is high, often greater than 50%, where non-linear deformation is dominant.  Although, the 

samples in this study underwent linear deformation, true strain method was applied to calculated 

simulated conductivity and the resulted is compared with the ones from using engineering strain.  

Experimentally measured dimensions of length, width, and thickness under stretched 

state (data from Fig. 2.5) were used for calculation using the equation below: 

𝜎(𝜀) = 𝜎0 (
𝑉𝑔𝑜𝑙𝑑

𝐿2∙𝑤2∙𝑡2
− 𝑉𝑐

0(𝜀))
𝑠

     (Eq. 2.14) 

 

 
Figure 2.6. a, Calculated conductivity dependence on strain for LBL composites with constant 

Poisson’s ratio in comparison with actual data for 5xLBL.  b, Calculated conductivity 

dependence on strain for LBL composites with strain specific Poisson’s ratio in comparison 

with actual data for 5xLBL. 
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Natural log relation of strain made “maximum tensile true strain” to be shorter than the 

one using engineering strain.  Except the difference in strain level, the results show that 

calculated conductivity values and patterns using either engineering strain or true strain were 

almost the same (Fig 2.7).  This is presumably due to linearly deformed sample dimensions 

upon uniaxial tensile stretching.1 

                                                 
1 In this study, strain values were expressed using engineering stain rather than true strain. Use of engineering 

strain to measure and evaluate strain-stress relations of materials, especially for stretchable conductors which 

mostly tensile deformed in uniaxial manner, is the most commonly used methods: literally, all published work of 

“stretchable conductor” studies used engineering strain rather than true strain. This is because researchers in this 

field are more interested in change of electrical properties of samples under applied strains (Refs. Chun et al.; Baik, 

S. Nature Nanotech. 5, 853–857 (2010), Lipomi et al.; Bao, Z. Nature Nanotech. 6, 788-792 (2011), Matsuhisa et 

al.; Someya, T. Nat. Commun. 6, 7461 (2015), Stoyanov et al.; Kofod, G. Adv. Mater. 25, 578-583 (2013), Sekitani 

et al.; Someya, T. Science 321, 1468-1472 (2008), Shim et al.; Kotov, N.A. ACS Nano, 3, 1711–1722 (2009)).  

Additionally, considering practicality of the topic and real applications in diverse industries, use of engineering 

strain will be more suitable for the researchers in each different field to communicate better. However, we would 

like to make a note that further analyses using true strain could be one of interesting future research directions 

from a view point of solid mechanics. (Refs. Hencky, H. "Ü ber die Form des Elastizitätsgesetzes bei ideal 

elastischen Stoffen". Zeitschrift für technische Physik. 9, 215–220. (1928). Rees, David “Basic Engineering 

Plasticity: An Introduction with Engineering and Manufacturing Applications.” Butterworth-Heinemann. ISBN 0-

7506-8025-3 (2006).) 

 
Figure 2.7. a, Calculated conductivity dependence on engineering strain for LBL composites 

using equation 2.13 with α=0 in comparison with actual data for 5xLBL.  b, Calculated 

conductivity dependence on true strain for LBL composites using equation 2.14 in comparison 

with actual data for 5xLBL. 
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 Charge Transport Mechanism 

An understanding of charge transport in these materials is academically and practically 

essential.  Three different conduction mechanisms are possible between neighboring gold 

nanoparticles:  (a) direct contact; (b) variable-range hopping and (c) tunneling.  The relative 

contribution of hopping and tunneling mechanisms depends on the shape of the barrier, the 

separation of the sites and thermal energy97,98,99.  Dependence of conductivity on temperature 

 
Figure 2.8. Charge transport in polyurethane-nanoparticle nanocomposites. a, b, 
Equations for variable-range hopping and tunneling mechanisms, respectively. c, d, Plots of ln 

σ vs T-1/4 and T-1/2 from data points of 1 x LBL film (Fig. 2.2f), respectively. e, f, Plots of ln σ 

vs T-1/4 and T-1/2 from data points of 1 x VAF film (Fig. 2.2f), respectively. 

 



 33 

provides a reliable criterion by which conduction mechanism that dominates the samples can 

be unveiled.  Fitting the equations for variable-range hopping and tunneling conduction 

mechanism demonstrate that electron transfer mechanism in LBL and VAF stretchable 

conductors is governed neither by hopping nor by tunneling:  plots of ln σ vs T-1/4 and T-1/2 

drawn from data points from Fig. 2.2f with equations in Fig. 2.8a and 2.8b did not conform to 

expected linear dependence. 

Fitting the temperature dependence of conductivity from 2 to 300 K with variable-range 

charge transport equations revealed clear metallic behavior via direct nanoparticle contact (Fig. 

2.2), whereas the temperature dependence of conductivity from 2 to 300 K in the stretchable 

conductors from carbon nanotubes showed semiconducting behavior and hopping electron 

transport81.  Importantly, gold nanoparticle composites had high electron mobilities of 

1.75 × 10−4 m2 V−1 s−1 for 1 × LBL and 5.45 × 10−5 m2 V−1 s−1 for 1 × VAF, and the carrier 

concentration of 5.83 × 1028 m−3 for 1 × LBL at 300 K approached very closely to that for bulk 

gold, 5.90 × 1028 m−3 (Fig. 2.17). 
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 Additional Practical Aspect: Damping of Vibration 

As one of many possible demonstrations of the practical relevance of the new 

composites, we performed a dynamic mechanical analysis under small voltage to illustrate the 

electro-tunability of their viscoelastic properties.  The relaxation of composites at a frequency 

of 1–10 Hz significantly increased when a small voltage of 0.2 V was applied, owing to 

repulsive transient charges on nanoparticles. As such, the damping parameter tanδ increased by 

2.2-fold and 1.6-fold and the storage modulus decreased by 2.1-fold and 1.5-fold for 1 × LBL 

 
Figure 2.9.  Viscoelastic properties of polyurethane–nanoparticle nanocomposites for 

different applied voltages.  a, b, Damping parameter tanδ and storage modulus for 1 × LBL, 

respectively.  c, d, Damping parameter tanδ and storage modulus of 1 × VAF, respectively. 
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and 1 × VAF, respectively (Fig. 2.9 and 2.19).  Solid materials with electro-tunable mechanical 

properties are more practically viable than metallic structures filled with liquid electrolytes100. 

 

 Conclusion and Outlook 

From a fundamental perspective, these composites with high gold-nanoparticle loading 

displayed a previously unknown reorganization into cellular networks under stress.  To some 

degree such restructuring imitates the behavior of atoms in liquid metals, while retaining 

structural integrity and strong bonding.  The nanoparticle dynamics in such composites can be 

described by a variation of classical percolation theory and can be extended to a variety of other 

nanoparticle–polymer systems.  Further improvements can be achieved by the development 

of commercially affordable conducting fillers and new polyelectrolytes to optimize properties.  

Further fabrication of such composites could aim to meet the demands of applications in 

medicine, optoelectronics, and energy storage devices that require electro-tunable properties. 

 

 Materials and Methods  

Unless otherwise specified, LBL and VAF films had same gold contents in all the tests.  

The described measurements were performed under room temperature and relative humidity of 

20-30% for both LBL and VAF composites.  

Synthesis of Au NPs.  To ultrapure DI water (950 mL) in a 1 L glass beaker equipped 

with a magnetic stir bar was added Gold(III) chloride trihydrate (180.0 mg, 0.458 mmol).  

Gold(III) chloride trihydrate, sodium citrate tribasic dihydrate (Sigma-Aldrich) were used as-
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received.  The mixture was heated to boil under vigorous stirring followed by additional 

heating for 20 min.  Subsequently, 50 mL of 34 mM sodium citrate solution was added to the 

mixture.  The aqueous solution was heated for 20 min followed by cooling to room 

temperature.  Citrate stabilized Au NPs with diameter 13 ± 0.3 nm were synthesized.  As-

prepared aqueous solution was directly used for the preparation of VAF films.  In some cases, 

it was further concentrated to be used as dipping solution for LBL films.  For the concentration 

process, the as-made aqueous Au NPs dispersions were transferred into 50 mL centrifuge tubes 

and concentration of the solutions increased via Sorvall Legend Mach 1.6R (Thermo scientific, 

MA, USA) at the speed of 10,000 rpm for 1 hr.  Less than 5 mL of concentrated of Au NPs 

solution was settled at the bottom of the tube.  Supernatant of 45 mL were removed by suction 

pipettes, while taking special care to prevent disturbing of the sedimented nanoparticles.  

Finally, the resultant NPs were collected to be used for LBL process. 

Preparation of LBL films.  For LBL assembly, substrates were sequentially dipped 

into a diluted solution of PU and a dispersion of concentrated Au NPs with each step followed 

by rinsing with DI water and drying with compressed air.  As-received cationic polyurethane 

aqueous dispersion (30 vol%, MW ≈ 92,000, Hepce Chem Co., South Korea) was used after 

diluting to 1 vol% solutions in deionized (DI) water.  This deposition cycle constitutes a pair 

of layers, and can be repeated n times as necessary to obtain desirable thickness.  The resulting 

film will be denoted as (PU/NP)n. Desirable gold contents in the composites were acquired by 

controlling the dipping time of a substrate to the dispersion of Au NPs. 

Glass slides (25 mm x 75 mm, Fisher Scientific) cleaned by piranha solution (Sulfuric 

acid:hydrogen peroxide, from Sigma-Aldrich, in a 3:1 volume ratio.) overnight were dipped 
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into a 1 vol% solution of PU, for 5 min, rinsed with DI water for 1 min and gently dried with 

compressed air.  Note that the piranha solution is dangerous and extremely reactive with 

organic substances so appropriate handling precautions must be ensured at all times.  Then 

they were dipped into a dispersion of concentrated Au NPs, for several minutes, rinsed 1 minute, 

and again dried with compressed air.  After having desired thickness, free-standing films were 

isolated by etching of the glass slides with 1 vol% HF (Sigma-Aldrich) solution.  Note that 

HF solution even diluted is very toxic so extreme precautions must be taken at all times.  After 

through rinsing with water, the detached films were dried in an oven at 60 ºC overnight and 

then kept in ambient conditions (room temperature and relative humidity of 20-30%) for 

another overnight prior to measurement of properties.  Conditions and procedures for 

preparation of LBL films with various Au contents were same except dipping time to the 

dispersion of concentrated Au NPs.  LBL films containing 15.4 vol%, 16.2 vol%, 16.9 vol%, 

19.4 vol%, 21.7 vol%, 24.0 vol% of Au NPs were prepared with dipping times of 1 min, 2 min, 

3 min, 8 min, 14 min, and 20 min, respectively.  When substrate is dipped into the Au NPs 

dispersion, tiny amounts of PUs, which might be weakly bonded, are slowly diffused into 

dispersion of Au NPs.  In the process of cyclic deposition, PUs are accumulated in the 

dispersion of Au NPs and when that over the specific threshold, Au NPs are flocculated.  To 

keep the homogeneity of LBL film, careful monitoring of flocculation is needed.  If it is 

observed, the dispersion of Au NPs needs to be changed.  LBL thin film of 

(PU/PAA)2(PU/NP)4(PU/PAA)1 was prepared for TEM experiments.  Detail methods for films 

preparation here were exactly same as above typical process.  Dipping time of glass slide into 

PAA was 5 min. 



 38 

Preparation of VAF films.  For VAF film preparation, mixture and stirring of a 

dispersion of as-prepared Au NPs and a diluted solution of PU followed by filtration were done.  

Desirable gold contents in the composites were achieved by controlling the volume of a 

dispersion of as-prepared Au NPs solutions.  

To a 1 L glass beaker containing 1 L of as-prepared Au NPs dispersion (no additional 

concentration steps were applied) equipped with a magnetic stir bar was slowly added 1 mL of 

1.0 vol% aqueous PU.  The mixture was kept stirring for 15 min followed by filtration.  Filter 

papers of 0.8 µm pore size with 47 mm diameter, and filtration assembly were obtained from 

Fisher Scientific.  The resultant gold-colored film was peeled off from the filter paper.  It is 

recommended to dry the film completely before taking it out from the filtration assembly.  

Individual films peeled off has some fibrous material that came from the filter paper, thus 

removal of those materials is needed by gentle scratching.  Conditions and procedures for 

preparation of VAF films with various Au contents were same except volumetric ratio of a 

dispersion of as-prepared Au NPs solutions.  VAF films containing 15.9 vol%, 16.4 vol%, 17.3 

vol%, 18.0 vol%, 19.1 vol%, 21.0 vol%, 21.7 vol%, 22.8 vol%, and 23.4 vol% of Au NPs were 

prepared with 250 mL, 500 mL, 650 mL, 700 mL, 800 mL, 900 mL, 1,000 mL, 1,050 mL, and 

1,100 mL of as-prepared Au NPs dispersion, respectively.  To make a 30 μm thick VAF film, 

total ca. 1,800 mL solution needs to be filtered. 

Characterizations.  Initial stages of LBL deposition were monitored using an 8453 

UV-vis Chem Station spectrophotometer (Agilent Technologies, CA, USA).  Thickness of 

initial assembly of LBL film was calculated using a BASE-160 Spectroscopic Ellipsometers (J. 

A. Woollam Co., Inc., NE, USA).  Calculations were fitted using a Cauchy’s model.  The 
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LBL film for ellipsometry was prepared on silicon wafers following the same procedure 

previously described as LBL film. 

Stress-strain curves were obtained by testing ~1 mm wide and 5-7 mm long rectangular 

strips of samples with a mechanical strength tester 100Q (TestResources Inc., MN, USA).  

Tests were performed at a rate of 0.01 mm/s for LBL films and 0.08 mm/s for VAF films with 

a ~111 N range load cell.  Five samples were tested for each film.  The force measurements 

from the load cell were divided by the measured initial thickness and initial width of the sample 

gauge section to give nominal stress.  This procedure results in a plot of nominal stress versus 

nominal strain.  The cyclic tensile test (Fig. 2.2g) was performed by a Servopneumatic 

Axial/Torsion Test Instrument with custom made grips (EnduraTEC, MN, USA). Tests were 

performed at a rate of 0.01 mm/s. 

Conductivity measurements with two-probe and four-probe methods were obtained 

using an 34401A Digital Multimeter, 6 ½  Digit (Agilent Technologies, Inc., CA, USA).  

Measurements of conductivity as a function of strain (Fig. 2.2e) were done in a custom four-

probe set up depicted in Fig. 2.18.  Measured resistance and applied tensile strain were 

recorded simultaneously by a video camera, and close up images of sample were photographed 

by a high speed camera to calculate the thickness of sample at some strain level with the 

assumption that volume of sample was kept constant.  The temperature dependence of 

conductivity was measured by four probe method using a Magnetic Property Measurement 

System (MPMS) (Quantum Design, Inc., CA, USA).  The MPMS is basically a cryogenic 

probe which integrates a superconducting magnet with a SQUID detection system and a 
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temperature controller in a specially designed Dewar.  These sophisticated configurations 

provide rapid precision measurements over a temperature range from 2 to 300 K.  

Filler fraction of sample was determined by a Pyris 1 TGA (PerkinElmer, MA, USA) 

with a temperature ramp from 25 °C to 800 °C at 10 °C/min under an air atmosphere at a flow 

rate of 20 mL/min.  The Differential Scanning Calorimetry analysis was performed using a 

Q200 (TA Instruments, DE, USA).  Scanning electron microscopy (SEM) images were 

obtained with an FEI Nova Nanolab dual-beam FIB and scanning electron microscope.  TEM 

images were obtained with a JEOL 2010F Analytical Electron Microscope.  HVEM images 

were obtained with the high voltage electron microscope (1,250 kV, JEOL, JEM-ARM 1300S).  

AFM imaging was performed with a Nanoscope III atomic force microscope (Digital 

Instruments/Veeco Metrology Group).  X-ray scattering data were obtained with a Bruker 

NanoStar Small-Angle X-ray Scattering System equipped with Siemens Kristalloflex 770 X-

Ray Generator, and Cu Kα Radiation (0.1542 nm) X-ray tube with Peak power of 1.5 kW on a 

Hi Star Area 2D detector with 1 min of exposure time.  Damping parameter tanδ and storage 

modulus of the samples were obtained with an RSA 3 dynamic mechanical analyzer (TA 

instruments) with applied ε=0.5 % within the frequency range of 1-90 Hz. Load cell with a 

maximum capacity of 3.5 N and a resolution of 1 μN was used. 
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 Supplementary Information 

2.9.1 Particle Deposition  

 

The shift of the plasmon peak from 515 nm (free gold nanoparticles) to 650-660 nm 

for LBL films is indicative of strong plasmonic coupling and nanoparticles proximity to each 

other, which is beneficial for efficient charge transport between nanoparticles. 

 

 

 

 

 
Figure 2.10. a, Dependence of thickness of the (PU/NP)n film on the number of the deposition 

cycles. Polyurethane (3P, 4P, 5P…) and gold nanoparticles (3A, 4A, 5A…) layers with the same 

number correspond to one deposition cycle. Thickness change was measured by ellipsometry 

as the LBL film was deposited on a silicon wafer. Thickness of each layer was averaged on the 

basis of three independent measurements. Average thickness increments for polyurethane and 

gold nanoparticles layers are 1.89 nm and 2.04 nm, respectively. b, UV-Vis absorbance spectra 

measured every 5th layer pairs of LBL assemblies. The multilayers were formed on both sides 

of a glass substrate. 
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2.9.2 Thermal Responses  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.11. Thermal gravimetric analysis (TGA) of pure gold, pure polyurethane, and single 

free-standing, 1x, LBL and VAF films with different gold contents. The vol% given in 

parentheses refers to Vf of gold in each film and 21.7 vol% is equal to 87.7 wt%. 
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2.9.3 Percolated Networks  

Theoretical values of Vc volume fractions, which reflected site percolation probability 

and filling factor together, for nanoparticles composite assuming that (a) one nanoparticle takes 

place one lattice spot and (b) a cluster is connected only with nearest neighbors, for simple 

cubic lattice, body-centered cubic lattice, and face-centered cubic lattice are 0.162, 0.163, and 

0.144, respectively101,102. 

 

 
Figure 2.12. Differential scanning calorimetry (DSC) for pure polyurethane, LBL films, VAF 

films, and pure gold. Nanoparticle contents of composites are given in parentheses and refer to 

Vf of gold in each film. 
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Figure 2.14. High-voltage electron microscopy (HVEM) images of 1 x VAF. Imaging was 

performed on the ruptured point. The specimens were prepared by using FIB. 

 
Figure 2.13. Idealized schematics of well-dispersed nanoparticles in LBL and VAF composites 

with distributed random aggregates (number of particles is same for both cases and spaces are 

filled with polymers in the lattice) in a 2D cross-sectional grid array with percolation pathways 

to nearest neighbors of nanoparticles. 
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2.9.4 Mechanical and Electrical Properties after Repetitive Stretching  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.15. a, b, SEM images of surfaces of 5 x LBL and 5 x VAF in a relaxed state after five 

consecutive stretches to 110% and 200%, respectively. c, d, Stress-strain curves for 5 x LBL 

and 5 x VAF after specific stretching cycles with ε=110% and 200%, respectively. 
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Figure 2.16. Conductivity and small-angle X-ray scattering (SAXS) data after recurrent 

stretching cycles. a, Illustration of the conductivity measurements by two probe method in 

different directions after 10,000 stretching cycles with ε=5%. ①: parallel to the tensile direction 

before strain cycles, ②: perpendicular to the tensile direction before strain cycles, ③: parallel 

to the tensile direction after strain cycles, and ④: perpendicular to tensile direction after strain 

cycles. b, Resistance data by two-probe method in the directions and recurrent stretching cycles 

for 1 x LBL and 1 x VAF, respectively. c, SAXS beam images of 10,000 cycled 1 x LBL and 

1xVAF films. Samples were horizntally placed for measurements. d, Plots of scattering 

intensity, I(q), in respect to scattering vector, q, for 1 x LBL and 1 x VAF. SAXS measurements 

were performed on the center of the films. 
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2.9.5 Electron Transport under Various Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.17. a, Electron mobility and b, Carrier concentration of 1 x LBL and 1 x VAF 

determined by the Hall effect measurements. 
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Figure 2.18. Photographic images for the set up used in measuring conductivity and 

calculating ν to tensile strain dependence with four-probe method exemplified for a 1 x 

VAF. Geometrical terms are specified. The four probes were placed on the sample as shown in 

b and c. Change of resistance on the multimeter and change of strain on the display of tensile 

machine (just below the multimeter) were video recorded together as shown in a. Calculated 

Poisson’s ratios were as follows: νLBL, thickness = 0.26, and νLBL, width = 0.14, νVAF, thickness = 0.39, 

and νVAF, width = 0.12. 
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When 0.2 V was applied, temperature of composites increased to 26 °C and 28 °C for 

1 x LBL and 1 x VAF, respectively.  To show that change of damping properties at the low 

frequency region were mainly caused by applied voltage, those with no voltage and at the 

temperature of 26 °C for 1 x LBL and 28 °C for 1 x VAF were measured.  Data showed applied 

 
Figure 2.19. Damping properties of polyurethane-nanoparticle nanocomposites with 0 V 

at the relevant temperatures (purple bars) under frequency ranges from 1-90 Hz with 

reference conditions with 0 and 0.2 V. a, Experimental setup for measuring damping 

properties with voltage. b, c, damping parameter tan δ and storage modulus of 1 x LBL, 

respectively. d, e, damping parameter tan δ and storage modulus of 1 x VAF, respectively. 
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small voltage significantly tuned damping properties especially at the low frequency region 

while only temperature couldn’t tune the damping properties at specific frequency ranges 

instead it slightly affected over the entire frequency region. 
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CHAPTER III 

Reconfigurable Chiroptical Nanocomposites with Chirality 

Transfer from the Macro- to the Nanoscale 

 
Reproduced with minor modifications with permission from Kim, Y.; Yeom, B.; Arteaga, O.; Yoo, S. 

J.; Lee, S. G.; Kim, J. G.; Kotov, N. A., “Reconfigurable chiroptical nanocomposites with chirality 

transfer from the macro- to the nanoscale.” Nature Materials (2016) doi:10.1038/nmat4525. Copyright 

2016 Nature Publishing Group 

 

 

 Abstract 

Nanostructures with chiral geometries exhibit strong polarization rotation.  However, 

achieving reversible modulation of chirality and polarization rotation in device-friendly solid-

state films is difficult for rigid materials.  Here, we describe nanocomposites, made by 

conformally coating twisted elastic substrates with films assembled layer-by-layer from 

plasmonic nanocolloids, whose nanoscale geometry and rotatory optical activity can be 

reversibly reconfigured and cyclically modulated by macroscale stretching, with up to tenfold 

concomitant increases in ellipticity.  We show that the chiroptical activity at 660 nm of gold 

nanoparticle composites is associated with circular extinction from linear effects.  The 

polarization rotation at 550 nm originates from the chirality of nanoparticle chains with an S-

like shape that exhibit a non-planar buckled geometry, with the handedness of the substrate’s 

macroscale twist determining the handedness of the S-like chains.  Chiroptical effects at the 

nexus of mechanics, excitonics and plasmonics open new operational principles for optical and 

optoelectronic devices from nanoparticles, carbon nanotubes and other nanoscale components. 
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 Introduction and Background 

Optically active chiral materials have been known since the time of Louis Pasteur and 

are predominantly based on chiral geometries of sp3-hybridized carbon atoms103.  Chiral 

isomers typically found in organic chemistry generally exhibit modest chiroptical anisotropy, 

have limited spectral range, and are problematic to separate.  The advent of nanoscale 

engineering has brought about the ability to create new types of chiral structures that can be 

made by design in pure forms of stereoisomers.  Chiral metallic and semiconducting 

nanostructures have been shown to exhibit particularly strong optical activities in a wide region 

of the electromagnetic spectrum104–106.  The origin of high chiroptical activity of nanoscale 

assemblies104 is linked to high polarizability of nanoscale inorganic materials, leading to 

plasmonic and excitonic effects on the polarization rotation of incident photons107. 

Both bottom-up and top-down manufacturing processes have been used to impart 

nanoscale chirality to complex systems of electronic oscillators, often described as photonic 

materials34,61,108,109.  Use of chiral helical templates66,110,111 and chiral polymeric matrices112,113 

exemplifies bottom-up assembly of electronic resonators, whereas direct laser writing114, 

lithography115, and glancing angle deposition116 represent current top-down methods.  These 

preparatory techniques have expanded the technological relevance of chirality from drug design 

to new optical devices61,108,64,114 and (bio)chemical analyses117.  However, both the bottom-up 

and top-down methods tend to produce ‘rigid’ systems: their chiral geometry is determined by 

either strong chemical bonds, supramolecular networks or lithographic masks.  Modulation of 

rotatory optical activity in these structures necessitates modifications of their manufacturing 

protocols, templates or DNA-bridging sequence, and so on. ‘Flexible’ chiral geometries have 
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thus far been demonstrated only in solutions118–120 and reversible modulation of optical 

properties will be transformative for solid-state optical devices, microelectromechanical 

systems and other technological areas of chiroptical materials that are just beginning to 

emerge34,64,66,114,115.  

Gold and other NPs dispersed in polymers can self-organize into nanoscale geometries 

with three-dimensional (3D) patterns55,94.  High charge carrier concentrations and strong 

asymmetries of these assemblies are conducive to strong polarization rotation in their 

composites.  Considering the well-recognized versatility of nanoscale composites, finding a 

method to prepare NP assemblies with specific handedness in NP organization would lead to a 

large family of new optical materials with a possibility of high rotatory activity. 
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 Macro-to-Nano Transfer of Chirality  

 
Figure 3.1. Strain-modulated rotatory optical activity in AuNP multilayers. a, Neat PDMS 

substrates on a glass slide with right-handed Cartesian coordinates. b, PDMS substrates twisted 

in opposite directions. Samples with left-handed and right-handed twists are denoted as LH and 

RH, respectively. Clamps in b are retained during LBL deposition. c, PDMS substrates after 

deposition of (PU/NP)5 in LH or RH twisted states. d, Relaxed (flattened) PDMS substrates 

coated with Au NP multilayers. Samples were stretched along the y axis. Scale for a–d is given 

in a. e, Apparent CD spectra of LH and RH samples under ε = 0, 10, 25 and 50%. f, Peak CD 

values of LH and RH for five cycles of reversible stretching from 0 to 50% (see also Fig. 3.27 

for up to 10,000 cycles). For all spectra in this study, red colors signify LH samples and blue 

colors signify RH samples. g,h, Macroscale mapping of rotatory optical activity under various 

strain levels from 0% to 50% of LH and RH samples, respectively. Color bar for apparent CD 

in mdeg and scale for images g,h are given in g. Mapping data were obtained from peak and 

dip wavelengths of LH and RH, respectively: (g) 650 nm, 636 nm, 622 nm and 618 nm for ε = 

0, 10, 25 and 50%, respectively, and (h) 650 nm, 644 nm, 628 nm and 624 nm for ε = 0, 10, 25 

and 50%, respectively. With a beam size of 1.5 mm, apparent CD spectra in the wavelength 

regime of interest were also measured for each corner and center of the sample strip to show 

high spatial homogeneity (Fig. 3.32 and 3.33). A total of 20 scans were averaged to obtain the 

maps of optical activity. 
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Herein we describe solid-state chiroptical materials for which their handedness at 

nanoscale can be controlled in a top-down fashion using macroscale deformations.  This can 

be accomplished by taking advantage of 3D stress transfer from macroscale substrates to 

nanoscale films made by LBL assembly, providing high structural uniformity and 

transparency12.  Moreover, polarization rotation can be cyclically modulated by mechanical 

stretching.  Elastic poly(dimethylsiloxane) (PDMS) substrates were initially twisted around 

the y axis of the substrate in a clockwise or anticlockwise direction by an angle, ω, equal to 

360˚ for most experiments (Fig. 3.1a,b); the corresponding samples were denoted as left-handed 

(LH) or right-handed (RH) (Fig. 3.1d).  Most tests in this study were carried out with Au NPs 

having a diameter of 13.0 ± 0.3 nm that exhibited no chiroptical activity as established by 

circular dichroism (CD) spectroscopy (Fig. 3.22).  Negatively charged Au NPs (Fig. 1.2a,b) 

were deposited46 on PDMS (Fig. 3.1c) in the twisted state using positively charged 

poly(urethane) (PU) (Fig. 1.2c) as an LBL partner.  A total of five bilayers, denoted as 

(PU/NP)5, were deposited; and the substrate was subsequently allowed to relax to the original 

planar shape (Fig. 3.1d).  Besides Au NPs, (6,5) single-walled carbon nanotubes (SWNTs) and 

100 nm polymer beads were used for our studies to demonstrate the generality of the observed 

phenomena.  

The layered composites from Au NPs exhibited strong rotatory optical activities 

observed as distinctive CD peaks around plasmonic resonance wavelengths (Fig. 3.1e).  As-

prepared, the LH sample had a dip (580 nm) and a peak (660 nm) with an absorbance of 0.87 

(Fig. 3.22).  LH and RH samples exhibited mirror-image peaks, indicating that chiroptical 

activity of the materials is determined by the macroscale twist.  Emergence of chiroptical 
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activity was observed with a rotational angle, ω, of 180˚ (Figs 3.24 and 3.25).  The simplicity 

and practicality of controlling the direction of polarization rotation of the films compared with 

microfabrication techniques or the traditional synthetic methods of organic or NP chemistry114–

116,121 should be noted.  Also, no biological or other templates with a priori chirality were used 

in this work.  Benchmark samples prepared without twisting of the original PDMS substrates, 

samples carrying no Au NPs, or those made under other conditions revealed no rotatory optical 

activity in the range of wavelengths relevant to this study (Fig. 3.22).  

In a search for unique properties that enantioselective composites can contribute to the 

fields of chemical chirality and chiroptical materials, we investigated how planar stretching of 

the NP films along the sample's y axis (Fig. 3.1) affected their rotatory optical activity.  The 

apparent CD bands became considerably more intense when the strain, ε, increased.  Quite 

remarkably, ellipticity values for plasmonic peaks increased by at least one order of magnitude 

for both LH and RH samples on stretching to 50% (Fig. 3.1e).  Importantly, the chiroptical 

peaks returned to near their original values when the stress was released.  Reversibility of the 

strain-induced optical response can also be appreciated from the repeated stretch-release cycles 

(Fig. 3.1f, 3.27 and 3.28b).  Also, mappings of the entire centimetre-scale sample area with a 

pixel resolution of 0.25mm revealed that optical responses at all strain levels in the sample's 

plane were homogeneous (Fig. 3.1g,h). 

 

3.3.1 Stress Accumulation on Hyperelastic Substrates 

COMSOL Multiphysics with a module of Solid Mechanics was employed to better 

understand deformation mechanics of hyperelastic PDMS strip.  For all simulations, 
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extremely fine physics-controlled mesh was used.  Then parametric sweep of the calculations 

with a rotational increment equal to 3.6° was performed.  PDMS (Sylgard 184) substrate is a 

hyper elastic material (non-linear deformation under large strain, often > 40%) as opposed to 

Hooke’s law in linear elasticity.  To adequately calculate mechanical properties of PDMS, the 

Arruda-Boyce model122, derived from statistics on polymer chain networks, was set up on 

COMSOL.  Although calculations were also done with other hyper elastic models such as neo-

Hookean, Mooney-Rivlin123,124, and Yeoh125, this analysis will focus on the results from the 

Arruda-Boyce model due to its superior ability to represent three-dimensional stress-strain 

relation with a minimal number of parameters, and its initial shear modulus and chain 

extensibility.  In the settings of the model, N (limiting chain extensibility) was set as 8, as was 

the basic assumption of the Arruda-Boyce model.  Even larger extensibility, such as with N = 

40 or 82 for more soft materials, also resulted in calculated values very similar to those from 

with N = 8.  Interestingly, the Mooney-Rivlin two parameter model resulted in von Mises 

stress one order of magnitude smaller than those from the Arruda-Boyce and Yeoh models.  

However, stress distribution patterns were very similar for all three models.  

In the COMSOL simulation, torsion was applied to the PDMS strip in order to observe 

the effect of torsion alone.  The result differed greatly from the actual PDMS strip (Fig. 3.2).  

Length during torsion decreased continuously as the rotational angle increased, which one 

would naturally assume, but this differed from the actual PDMS strip in a surprising way in 

terms of length, stress distribution and surface smoothness.  Additionally, after 360° of torsion, 

the actual PDMS strip did not drop below the initial strip plane geometry while the torsion-only 
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simulation did.  In the simulation, a rotational angle of 324° was the maximum, likely limited 

by severely corrugated surface mesh. 

In addition to simple torsion, the strip was further stretched to keep the initial length.  

This was done by setting “no displacement” in all directions, with special attention to the 

longitudinal direction.  This made the simulation result nearly the same as the real strip (Fig. 

3.3).  Setting “no displacement” in the longitudinal direction (slight stretching from the 

perspective of torsion-only applied geometry) was key in making the strip geometry, from 

which two-fold rotational symmetry structure was obtained, and along the central symmetry 

line a gradient of curvatures was obtained (Fig. 3.3).  From the experimental perspective, 

bending stress at each representative point was calculated using the Hooke’s law, with an 

assumption of pure bending, to be 0.98 MPa, 0.57 MPa and 0.38 MPa for points 1, 2 and 3, 

 
Figure 3.2. Geometrical change with von Mises stress distribution while torsion was solely 

applied on the strip of PDMS.  Top boundary was fixed by setting constraint and bottom 

boundary was allowed to be rotated along the longitudinal axis. Unit for numbers around the 

grid: mm. 
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respectively126 (Fig. 3.34 and Eq. 3.3).  Calculated von Mises stress at each comparable point 

was also obtained to be 0.67 MPa, 0.43 MPa and 0.25 MPa.  The reason we was able to obtain 

almost the same calculated results from using both linear (the Hooke’s law equation) and 

hyperelastic models (the Arruda-Boyce model) is that cured PDMS (Sylgard 184) substrate is 

a hyperelastic material with non-linear deformation under large strain, often > 40%.  Overall, 

COMSOL simulation using the Arruda-Boyce model for non-linear deformation of hyper 

elastic materials worked exceptionally well in terms of reproducing nearly identical geometry 

and nearly identical stress distribution. 

 

 
Figure 3.3. Geometrical change with von Mises stress distribution while “torsion plus no 

displacement” was applied on the strip of PDMS.  Simulated images of strips in clockwise 

and counter clockwise rotation for LH and RH strips, respectively, with von Mises stress 

distribution represented by colored scale.  Unit for numbers around the grid is mm. 
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3.3.2 Stress Evaluation for Each Principal Direction 

The accumulated stress presented as von Mises stress in Fig. 3.3 is further evaluated to 

show contribution from each principal direction using second Piola Kirchhoff stress. 

As it can be clearly seen from the colored figures, stress contribution from planar 

directions were significant (Fig. 3.4).  Lateral contribution (Y component) from the torsion 

was the dominant.  Longitudinal contribution (Z component) was also fairly significant which 

should originate from slight stretching of the strips while torsion, by the setting of no 

displacement.  Another planar component (YZ) was also notable.  However, stress 

 
Figure 3.4. Stress evaluation for each principal direction.  Principal directions are 

represented in the right corner of the figure.  Stress distribution is represented by colored scale.  

Unit for numbers around the grid is mm. 
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contribution from the direction normal to the original plane (X component) and related out of 

plane components (XY and XZ) were very minor. 

 

 Rotatory Optical Activity in Superposed Layers  

3.4.1 Origin of Rotatory Optical Activity 

Rotatory optical activity of the stratified optical media can be complex when each layer 

interacting with the transmitting beam has a distinctively different optical property, such as 

dichroic and birefringent.  The observed CD bands can be associated with structural chirality 

of the individual strata, that is, deposited LBL films; we will refer to this portion of rotatory 

optical activity as CDNP in the case of NP films.  Also, rotatory optical activity can be 

associated with superposed achiral films when the principal axes of linear dichroism (LD) in 

one film and linear birefringence (LB) in the other film form a non-zero dihedral angle; we shall 

refer to this contribution as circular extinction from linear effects, CElinear.  

Besides the chiroptical activity arise from material properties of consisting layers, we 

carefully considered the following mechanisms for potential source of optical activities:  (1) 

dipolar interaction between chiral molecules (or segment of a polymeric chain) and plasmonic 

particles107, (2) effective medium interactions when metal nanoparticles embedded in a chiral 

medium127 (formed, for instance, by twisting the polymeric chains of LBL components), (3) 

chiroplasmonic effects from a chiral molecule or portion of a polymeric chain located in hot-

spots between metal particles128 and (4) polarization rotation associated with combinatory 
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effects of vectorial LD and LB, i.e. a non-zero dihedral angle between the principal axes of 

linear optical activities as well as significat magnitudes of them, CElinear.  

To better understand the possibile contribution of the above mechanisms, we recorded 

absorbance and CD spectra from UV to near-infrared (NIR) range for chiroptical 

nanocomposites both from AuNPs and SWNTs.  The multiple relevant control samples, e.g. 

AuNPs, SWNTs, PU, PVA and PDMS etc., were measured as well (Fig. 3.16, 3.22 and 3.23).  

No chiroptical activities for absorption band of polymers were found.  Also, no CD signals in 

the relevant ranges wavelengths for the aggregates of PU/AuNP and PVA/SWNT (mix ratio of 

solution is 1:1000 v/v) were observed.  The obtained data do not allow us to base this 

manuscript on optical effects mentioned above.   

Additionally, we evaluated a possibility that strong polarization rotation and strain 

modulation are related to the plasmonic enhancement of chiral activity of organic components 

located in gaps between the NPs129.  However, interparticle gap measured by X-ray scattering 

and direct observation from traditional TEM and TEM tomography showed virtual constancy 

of 13.8 ± 0.1 nm before and after stretching (Fig. 3.40 and 3.41).  This data indicates that 

variations of electrical-field intensity in the plasmonic hot-spots alone, without considerable 

reorganization of NP networks in the composite, are not responsible for the strain-induced 

chiroptical effects.   

On the balance of diverse data sets, including experimental and computational 

simulations, and careful considerations, we exclude possibilities of above (1)-(3) mechanisms 

for the origin of chiroptical activities.  Mechanism (4) is responsible for the apparent CD in 

the cracked side originating from superposition of linear anisotropies with a non-zero dihedral 
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angle in stratified optical media, while the buckled side indeed had chiroptical activity by strain-

induced assembly of plasmonic/excitonic nanoscale materials.  This conclusion was 

comprehensively analyzed and supported by data from experimental measurements of Mueller 

matrix polarimetry and its polar decomposition and theoretical study of differential Mueller 

matrix in the following sections. 

 

3.4.2 Mueller Matrix Polarimetry 

Given the large amount of strain resulting in increased LB in PDMS and non-zero 

dihedral angles in between PDMS and NP films, one should expect that the measured apparent 

CD spectra are a superposition of CDNP and CElinear.  To elucidate the complex optical activity, 

we first implemented Mueller matrix polarimetry130 to obtain each component of apparent CD, 

apparent CB, LD and LB, in each distinct optical strata, buckled layer, PDMS and cracked layer. 

Polarimetric chiroptical measurements were done with the spectroscopic Mueller 

polarimeter130.  This instrument uses four photoelastic modulators (PEMs) with different 

 
Figure 3.5. Schematic of Mueller polarimetry device setup. 
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frequencies to modulate polarization state of light both before and after the sample (Fig. 3.5).  

Fourier analysis of the time varying signal delivers simultaneously all sixteen elements of the 

Mueller matrix with high precision.  All transmission measurements were done in the straight-

through configuration, using a rectangular spot size of approximately 15 mm x 8 mm.  A 

smaller round beam, with 1.5 mm diameter, was also applied to measure optical activity of 

small spots for test of homogeneity. 

The 4x4 Mueller matrix (M) is a linear operator that provides the optical response of a 

material for any arbitrary form of polarization.  Complete polarimeters measure all the 

elements of the Mueller matrix, while partial polarimeters measure only some selected elements.  

For instance, all commercial circular dichroism spectropolarimeters were intended for analysis 

in solutions to deliver only M03 element of the Mueller matrix.  This is achieved by 

modulating only the input light polarization with a single PEM placed before the sample.  

Under certain conditions M03 can be taken as CD, but, in most general cases, especially for 

complex optical media with several optically active strata, reliable measurements and 

calculations of CD require knowledge of all Mueller matrix elements. 

In a homogeneous and non-depolarizing medium, the normalized Mueller matrix has at 

most six parameters131.  A non-depolarizing Mueller matrix is called a Mueller-Jones matrix 

and can be represented as follows132: 

𝐌 = exp(𝐋) = exp [

0 −𝐿𝐷 −𝐿𝐷′ 𝐶𝐷
−𝐿𝐷 0 𝐶𝐵 𝐿𝐵′

−𝐿𝐷′ −𝐶𝐵 0 −𝐿𝐵
𝐶𝐷 −𝐿𝐵′ 𝐿𝐵 0

]       (Eq. 3.1) 

where, L is the differential Mueller matrix.  The elements of L have a direct physical 

interpretation as the fundamental optical properties for light-matter interaction: LD - horizontal 
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linear dichroism, LB - horizontal linear birefringence, LD -́ 45˚ linear dichroism, LB´- 45˚ 

linear birefringence, CD - circular dichroism and CB - circular birefringence.  

Once M is experimentally determined, L can be calculated numerically from its 

logarithm (L = LnM) or analytical approach133.  Then the CD of a medium can be obtained.  

However, when there is a depolarization, the symmetry of L may be broken, and the optical 

properties are then taken as the average values of related elements, e.g. CD = (L03+L30)/2132.  

However, for the plasmonic samples measured herein, the depolarization was negligible and 

the symmetry of Eq. 3.1 is applicable (Fig. 3.6). 

The physical interpretation that we have provided for the elements of L corresponds to 

a medium that is homogenous in the direction of light propagation.  In the case of 

inhomogeneous system, for example, by a medium and an anisotropic substrate, the 

representation given by Eq. 3.1 is still valid but, in such conditions, the apparent optical effects 

in L do not necessarily correspond to fundamental properties of the medium.  Because, it is 

possible that the optical effects in L arise from the compounded effect of the different strata, 

e.g. dichroic NP layers and a birefringent PDMS substrate.  Thus, apparent CD of our samples 

could be decomposed into one from assembled NPs and the other from combinatory effects of 

vectorial linear parameters.  The latter, called as circular extinction due to linear effects, 

CElinear, tend to be significant if LB of substrate is large and it is non-parallel with respect to 

LD of medium.  For optically complex systems it can result in misinterpretation of apparent 

CD data, directly obtained from Mueller matrix polarimetry.  To avoid that, we carefully 

considered optical activity of each strata of our samples along the light path and then employed 

polar decomposition to further deconvolute different contributions to the apparent chiroptical 
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activity.  For comprehensive study, we also considered spatial homogeneity of our samples 

and analyzed their optical properties by theoretical studies of differential Mueller matrix. 

 

 
Figure 3.6. Depolarizing index of single sided samples of LH and RH under ε=0% and 

50%. 

400 500 600 700 800
0.97

0.98

0.99

1.00

1.01

1.02

1.03

D
e

p
o

la
ri

z
in

g
 i
n

d
e

x
 (

a
.u

.)

Wavelength (nm)

 Buckled side, LH, 0%

 Buckled side, LH, 50%

 Cracked side, LH, 0%

 Cracked side, LH, 50%

 Buckled side, RH, 0%

 Buckled side, RH, 50%

 Cracked side, RH, 0%

 Cracked side, RH, 50%



 67 

3.4.3 Polar Decomposition of apparent CD into CDNP and CElinear 

 
Figure 3.7. Schematics for understanding of polar decomposition in experimental 

procedure for buckled side (a) and cracked side (b). Summarized data (values of LH and 

RH were averaged) for experimental LD and LB of each layer. MD and MR were assigned to 

each layer accordingly. M03 and M30 were regarded as CDNP for buckled and cracked sides, 

respectively. c-f, Diagrams for magnitude of LD from NP layer and LB from PDMS with 

dihedral angles in between them for buckled side, ε = 0%, LH (c), buckled side, ε = 50%, LH 

(d), cracked side, ε = 0%, LH (e), and cracked side, ε = 50%, LH (f). LD is from NP layer and 

LB is from PDMS substrate. Direction of LB was considered same as stretching direction 

regardless of tensile stress with an assumption that even very small tensile stress (which was 

actually applied to make sample surface flat for measurements) would align polymer chains 

parallel to the direction. 



 68 

In this section, we study case-by-case the chiroptical activity for our samples arising 

from distinctness of the optical strata (NPs layers and PDMS) in the direction of light 

propagation.  Based on the experimental Mueller matrix polarimetry data, NP layer had strong 

LD whereas PDMS had strong LB (Fig. 3.7 and 3.16).  Any non-depolarizing Mueller matrix 

can be decomposed in the product of two Mueller matrices, one being a pure retarder and the 

other a pure diattenuator.  As the matrix product is not commutative two possibilities are 

allowed134. 

𝑴 = 𝑴𝑹𝑴𝑫,   (Eq. 3.2a) 

𝑴 = 𝑴𝑫𝑴𝑹,   (Eq. 3.2b) 

where, 𝑴𝑹 corresponds to a retarder, i.e. a medium having only retarding properties such as 

LB and CB, and 𝑴𝑫 corresponds to a diattenuator, i. e. a medium having only diattenuating 

properties such as LD and CD. 

Our single-sided samples agree well enough with this product decomposition (Fig. 3.7).  

In this case PDMS substrate is the retarding medium and NP layer would be the diattenuating 

medium.  The agreement to this product model is not perfect because NP film also displays 

some LB but it tends to be much smaller than the one coming from PDMS substrate, especially 

when samples are strained.  

In all optical measurements in this study, light passed through samples in the order of 

“buckled side, PDMS then cracked side” for double-side samples, and “buckled side then 

PDMS” and “PDMS then cracked side” for single-side samples.  Angle of light incidence was 

always kept same as normal to the samples’ surface.  Thus, for the analysis of buckled side on 

PDMS, Eq. 3.2a will hold and M03 will be better representing CDNP, while Eq. 3.2b will hold 
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for cracked side on PDMS and M30 will be CDNP.  M03 of buckled side had fairly strong 

response, while M30 from cracked side had nearly zero response (Fig. 3.8).  This is a 

demonstration that buckled side had strong CDNP from assembled NPs, whereas cracked side 

did not.  This may not be completely correct but should be the most reasonably acceptable 

way of interpreting apparent CD in our superposed solid-state layers. 

We found that the optical activity of the cracked side is primarily associated with CElinear, 

while contributing little to the CDNP.  The analysis also indicated that chiroptical activity from 

the cracked side is responsible for the apparent CD peak at 640-660 nm in Fig. 3.1e.  On the 

 
Figure 3.8. M03 and M30 elements from Mueller matrix polarimetry measurements. 

Spectra for LH and RH samples under ε = 0% and 50% for buckled side only (a, b) and cracked 

side only (c, d) on PDMS substrate. For all spectra in this study, red and blue colors indicate 

LH and RH samples, and lighter and darker colors indicate ε = 0% and 50%, respectively, unless 

otherwise specified. 
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other hand, the apparent CD peak observed at 550 nm corresponds to the rotatory activity of 

the buckled layer, which included both CDNP and CElinear (Fig. 3.8).  The study of CElinear can 

have potential technological significance as witnessed in Fig. 3.21 but, here stereoselective 

preparation of chiral nanostructures in solid state represents particular academic and 

technological novelty.  Thus, identification of the nanoscale organization of the LBL films of 

NPs on the buckled sides and understanding of their chiroptical activity, CDNP, will be the 

primary focus now. 

 

 Solid-State Self-Assembly into Chiral Superstructures 

3.5.1 Strain-induced Chiral Assembly 

To explain the mechanism of strain-modulated chiroptical activity of NP multilayers on 

buckled sides, we first needed to identify the representative chiral elements in the composite 

films responsible for polarization rotation.  Observed reversal of CD spectra with the direction 

of initial twist indicates that mechanical deformation of the PDMS substrate is essential for the 

emergence of nanoscale chirality (Fig. 3.1e).  When twisted substrate was released, NP layers 

on convex and concave surfaces were exposed to compressive and tensile stresses, respectively, 

opposite to those built into the twisted substrates (Fig. 3.9b,c).  The stress distribution along 

the surfaces of the sample is not uniform but has a strong gradient (Fig. 3.9d-i).  For instance, 

the bending stresses for points 1, 2 and 3 on the convex side in Fig. 3.9a,b are calculated to be 

about 0.98MPa, 0.57MPa and 0.38MPa, respectively (Fig. 3.3).  This stress gradient (Fig. 3.9) 

combined with mismatched materials properties (Table 3.1) should effectively transfer 
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macroscale chirality (10-2 m) to nanoscale thin films (10-10-10-6 m) on release of samples.  This 

transfer also should allow us to obtain optical activity in the visible spectral range.  However, 

a symmetrical stress distribution (that is, samples obtained on a roll-shaped substrate) led to 

negligible chiroptical activities (Fig. 3.37).  The buckles have asymmetric shapes with 

dimensions of 10-6 m (Fig. 3.38), which coincide with the expected dimensions of plasmonic 

 
Figure 3.9. Stresses in twisted PDMS substrates with LBL composite films. a, Photograph 

of a twisted and clamped LH sample with marked spots 1, 2 and 3 on the convex side. b, Stress 

distribution in a PDMS substrate. Stresses of different magnitudes are generated at points 1, 2 

and 3 for twisting deformation of the samples. Stresses of the same magnitude but opposite 

directions are generated in convex and concave surfaces of samples. c, Schematic of the cross-

sectional view of the sample in a. Deposited NP layers undergo compression and extension on 

convex and concave sides, to form buckled and cracked sides in the relaxed flat state, 

respectively. Yellow and pink colors represent buckled and cracked sides, respectively. Blue 

dashed line indicates the edge of the film. A and d are the height of the buckles and width of 

the gold islands in the cracked side, respectively. d,e, Gradients of compressive stresses and net 

stresses on a buckled side exhibiting C2 symmetry. f, Schematic of an S-like NP chain 

constituting buckles. g,h, Gradients of tensional stresses and net stresses on a cracked side 

exhibiting C2 symmetry. i, Schematic of an NP chain constituting islands. The NPs assemble in 

the chain structures similarly to those in the buckles in the cracked side due to the strain 

gradient; however, the chirality factor in this case is small owing to the smallness of the out-of-

plane component. 
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structures known to generate strong polarization rotation at 400-800 nm (refs 66,112,115,116,121).  

We initially reasoned that NP buckles are responsible for the chiroptical activity.  However, 

stretching LH and RH samples along the y axis caused them to be more symmetrical in the x-y 

plane especially at a higher strain level.  This factor presumably leads to a decrease of 

chiroptical activity and differentiation between strained LH and RH samples, which is opposite 

to experimental observations (Fig. 3.8, 3.10b, and 3.48a).  

This contradiction prompted us to explore multiple optical effects possible for hybrid 

polymer-particle materials.  These included, among others, dipolar coupling between chiral 

sp3 atoms with NP plasmons, interactions of metal NPs with a chiral medium, and 

electrodynamic effects for highly polarizable systems in the presence of chiral components117.  

The absence of CD signals for composite components regardless of twist or NP presence for 

200-900 nm observed in the numerous blank experiments (Fig. 3.22 and 3.23) did not allow us 

to attribute the observed chiroptical phenomena to any of these effects mentioned above.  This 

is also true for different absorbing materials including semiconducting SWNTs (see below).  

We gave extensive consideration to ‘hotspot’-induced chiroptical activity107,117,129.  However, 

the average distance between NPs obtained from small-angle X-ray scattering (SAXS) and 

transmission electron microscopy (TEM) data was found to be on average of 13.8 ± 0.1 nm, 

and was virtually unaffected by stretching (Fig. 3.40 and 3.41).  The constancy of the 

interparticle gap indicated that variations of electrical-field intensity in the plasmonic hotspots 

alone, without considerable reorganization of NP networks in the composite, are not responsible 

for the strain-induced chiroptical effects; these effects are likely to make only a minor 

contribution to the observed phenomena.  
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3.5.2 Reconfigured S-like NP chains 

 
Figure 3.10. Strain-induced chiroptically active NP assemblies on buckled sides. All data 

in this figure set are from samples having only buckled sides. a, Schematic drawings of 

mirrored images of NP chains under ε = 0 and 50%. b, CDNP spectra of LH and RH samples 

under various strains from 0 to 50%. See fig. 3.11 for simulated spectra. Red colors signify LH 

samples and blue colors signify RH samples. c–f, Magnified AFM images of LH, ε = 0% (c), 

RH, ε = 0% (d), LH, ε = 50% (e), and RH, ε = 50% (f). Large-area AFM images are in Fig. 

3.38. Height (z axis) and planar (x–y plane) scales for images c–f are given in f. g–j, LD 

orientation of LH, ε = 0% at 600 nm (g), RH, ε = 0% at 600 nm (h), LH, ε = 50% at 565 nm (i), 

and RH, ε = 50% at 568 nm (j). A total of 20 scans were averaged to obtain the maps of optical 

activity. Color angle bar and scale for images g–j are given in i. Angles are projectable using 

classical 2D Cartesian coordinates. k,l, 3D TEM tomography images of (PU/NP)5 of LH (k) 

and RH (l). See Supplementary Movies 1–4* for full 3D rendering. Scale for images k,l is given 

in l. 
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To better understand the emergence of chiroptical activity, we studied the surface of 

buckled sides with AFM and TEM.  Aside from the formation of buckles, deformation of LBL 

films on flattening of PDMS substrates also resulted in the formation of NP chains with S-like 

shapes (Figs 3.9d-i, 3.10c-f and 3.38).  Although the geometry of NP assemblies in strained 

LBL films can be very complex, we reasoned that S-like NP chains can serve as the simplest 

geometrical element capable of visualizing and capturing the essential geometrical and optical 

properties of these films.  Hence, we evaluated their 3D geometry thoroughly with and without 

strain.  The S-like NP chains are fully 3D, significantly protruding in the z direction as 

observed by TEM tomography of the cross-sectioned samples (Fig. 3.10k,l and Supplementary 

Movies 1-4*) and AFM (Fig. 3.10c-f, 3.38, 3.43 and 3.44).  TEM tomography images 

confirmed the surface topography and interparticle distances obtained from AFM and SAXS, 

respectively.  

The S-like chains in LH and RH samples are chiral, as they cannot be superposed owing 

to the out-of-plane component (height; Fig. 3.10).  Note that some of these chains might have 

also formed spontaneously during LBL deposition (Fig. 3.41f) but they were reorganized during 

the substrate release from the twisted to the planar state.  Maps of LD orientation helped us to 

quantitatively understand directions of NP chains (Fig. 3.10g-j), and these precisely matched 

with patterns observed from magnified AFM images (Fig. 3.10c-f).  For complementary 

optical mapping information for single-sided samples, see Fig. 3.42.  One could note that NP 

islands on the cracked side are also made from such chains (Fig 3.42).  However, they had a 

flattened geometry predominantly confined to the x-y plane of the film, thus excluding chiral 

conformations and CDNP, being responsible, however, for CElinear.  The geometry of NP chains 
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can be described in terms of a chirality factor, F, representing deviation from the linear (achiral) 

approximant in three dimensions (Eq. 3.7 and Fig. 3.47).  For NP chains on the buckled side, 

ε = 0%, the F-factors were 1.4 (LH) and 2.6 (RH).  A parallel can be made between the 

chirality factor F and so-called Guye's asymmetry products used in organic chemistry, which 

are known to correlate with molecular optical activity.  Stretching of samples along the y axis 

was accompanied by compression along the x axis and protrusion along the z axis due to a high 

Poisson's ratio of PDMS along the x axis.  Accordingly, the length of the NP chains decreased 

but their height and width increased (Fig. 3.45).  In other words, the NP chains became curvier 

in the x-y plane and more protruded in the z direction.  Not only did such geometrical 

transformation lead to stronger coupling with circularly polarized photons, but it also increased 

chain chirality.  The chirality F-factor for the buckled side increased to 5.9 (LH) and 8.7 (RH) 

at ε = 25%, and further increased to 7.1 (RH), and 9.2 (RH) at ε = 50% (Fig. 3.47).  

 

3.5.3 Computational Simulations  

Computational simulations of chiroptical properties based on numerical solutions of 

the Maxwell equation using the finite element method confirmed that these transformed chains 

must reveal increased optical activity (Fig. 3.11 and a section of 3.9.14).  For buckled sides, a 

single S-like shaped chain and an array of five chains were used to simulate their 

chiroplasmonic properties (Fig. 3.11a-d and 3.49) with geometries obtained from AFM images 

(Fig. 3.38, 3.43 and 3.44), SAXS data (Fig. 3.40) and TEM images (Fig. 3.41).  The simulated 

spectrum from the single chain of LH, ε = 0%, yielded a sigmoidal chiroptical spectrum with 

negative and positive peaks at 550 and 575 nm, respectively (Fig. 3.11e).  The NP chains 
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observed in RH samples revealed calculated spectra that mirrored those of LH samples.  

Overall, the simulated spectra of the buckled side closely matched the experimental data (Fig. 

3.10b).  When the strain increased to 25%, calculated chiroptical peaks at positive maximum 

 
Figure 3.11. Simulated chiroptical properties of S-like Au NP chains. a–d, LH NP chain 

models used in computational simulations for buckled sides with characteristic dimensions. 

Single chains with ε = 0% and 25% are shown in a and b, respectively. Arrays of five chains 

with ε = 0% and 25% are shown in c and d, respectively. Five chains are arrayed with a gap of 

20 nm in the y direction. Models of opposite handedness can be found in Fig. 3.49. Scale for 

images a–d is given in b. e,f, Calculated CD spectra from a single chain (e) and an array of five 

chains (f). Red colors signify LH samples and blue colors signify RH samples. 
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also increased their intensity by 5.5- fold.  Shape, spectral position and growth of calculated 

peaks with strain increase were similar to the increase of CDNP shown in the experimental data 

(Fig. 3.10b).  Simulated g-factors showed comparable magnitude and shape of spectra to those 

found in the experiment (Supplementary Fig. 3.48).  The differences between simulated and 

experimental spectra, for example the differences in the spectral width of CD peaks, are to be 

attributed to the diversity of NP arrangements in the experimental films.  In addition, 

simulated results from an array of five S-like chains showed a similar pattern of CD spectra to 

the single chain even with the larger contribution of scattering (Fig. 3.11 and 3.50). 

 

3.5.4 Non-Superimposable Chains 

The terms chiral and chirality were introduced by Lord Kelvin (Lord Kelvin, Robert 

Boyle Lecture at the Oxford University (1893)):  “I call any geometrical figure, or group of 

points, chiral, and say that it has chirality if its image in a plane mirror, ideally realized, cannot 

be brought to coincide with itself.”  Following the definition above, chirality is understood if 

a geometry cannot be mapped to its mirror image by rotations and translations alone.  Simply, 

a geometry is chiral when it cannot be superimposed with its mirror symmetric image. 
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However, from the perspective of “mathematical matrix”, a one-handed object in a 

Euclidean space can be obtained by applying a transformation matrix, such as reflection about 

an axis (or a line), from the other side.  In this regard, reflected entities can be seen as the same.  

 
Figure 3.12. a, p as an original image and b and q as horizontal and vertical reflection images. 

b, Transformation matrices for horizontal and vertical reflections. c, Consecutive applications 

of horizontal reflections to p. 
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Here we have a simple 2D case (Fig. 3.12).  b and q are reflected images of p.  The letter p 

can be characterized by a configuration of A, B and C in a column matrix.  The transformation 

operation can be represented as a (3x3) matrix135.  The reason reflected images can be regarded 

as the same can be that “a reflection is an involution”.  When the same tensor transformation 

is applied twice, every element of the geometry will be brought back to its original position:  

M(M(x)) = x, for all x in the domain of M (Fig. 3.12c).  With this perspective, p and b can be 

recognized as interchangeable.  This may be why the view point of the observer is important136.  

However, in a Cartesian vector space, that does not mean each component in p is same as each 

in b:  x ≠ M(x), for all x in the domain of M.  Therefore, p is different from b even after 

applications of translation or rotation.  They cannot be superposed.  All these properties can 

be logically extended to chiral geometries in a 3D coordinate system, and essentially the same 

results will be obtained. 

NP chain models with handedness obtained from AFM measurements of sample were 

compared if they are non-superimposable.  A RH chain was obtained from LH chain using 

“mirror transformation” function in COMSOL software over a mirror plane of x-z plane to be 

placed on the same coordinate system (Fig. 3.13b).  Then the RH chain was further rotated 

and translated to overlap starting and ending particle positions with the LH chain (Fig. 3.13c,d).  

Mirror plane was inserted between two entities for comparison of geometries (Fig. 3.13e-g).  

However, chains cannot be superposed and significant gaps between the two were observed.  

Circular dichroism COMSOL simulation results using each model show distinctively opposite 

responses (Fig. 3.11).  Therefore, LH and RH chains are different because they cannot be 

superimposed.   
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Figure 3.13. a, Chain model for LH, ε = 25%. b-d, RH chain model was generated by mirror 

transformation function and then further rotated and translated. e-g, Oppositely handed chains 

with a mirror plane were viewed from different perspectives. 
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Non-superimposable NP chains can also be addressed by comparing von Mises stress 

distribution of “torsion + no displacement” PDMS and surface vectors from initial plane 

geometry of both left-handed and right-handed cases (Fig. 14).  Stress distribution and arrow 

vectors in LH and RH strips are mirror symmetric and cannot be superimposable, though 

mathematically one handedness can be generated from the other side. 

 

 
Figure 3.14. “Torsion and no displacement” applied LH and RH PDMS strips. von Mises 

stress distribution is expressed by color scale and relative vector from each mesh node is 

expressed by arrow. 
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 Generality of the Macro-to-Nano Chirality Transfer Method 

 
Figure 3.15. Strain-modulated chiroptical multilayers from semiconducting nanotubes. a, 

Optical images of (PVA/SWNT)10 nanocomposites from LH (left) and RH (right). b, Apparent 

CD spectra of double-sided LH and RH samples under ε = 0, 10, 25 and 50%. Apparent CD 

spectra were measured from JASCO J-815. c–j, Scanning electron micrographs of buckled and 

cracked sides of LH and RH samples under ε = 0 and 25%. Scale for images c–j is given in j. 

k,l, STED microscopy images of (PVA/SWNT)10(Nano Beads)1 for buckled sides of LH and 

RH, respectively. See Supplementary Movie 5 for full 3D rendering.* Scale for images k,l is 

given in l. 
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 The chirality transfer based on asymmetric macroscale strains should not be specific 

to Au NPs—the technique is potentially applicable to films from a variety of nanoscale 

components.  As such, we implemented the same process for purified (6,5) SWNTs, with a 

median diameter of 0.78 nm, LBL-assembled with poly(vinyl alcohol) (PVA) (Fig. 3.15a and 

3.26).  Our special interest in adding nanotubes to the toolbox of chiroptical materials is 

justified by their significance to a variety of composite-based devices.  LH and RH samples 

consisting of (PVA/SWNT)10 layers showed mirror-symmetrical CD spectra from 200 nm to 

1,100 nm, representing multiple absorption peaks of (6,5) SWNTs (Fig. 3.23b, 3.26c,d and 

3.28a).  The intensity of the chiroptical bands reversibly increased by more than one order of 

magnitude following stretching to 50% (Fig. 3.15b and 3.26).  Apparent anisotropy g-factors 

for double-sided samples were as high as 0.007 at 1,000 nm and 0.012 at 350 nm for ε = 50%.  

Scanning electron microscopy imaging of SWNT multilayer topography (Fig. 3.15c–j and 3.35) 

revealed 3D S-like shapes along buckles.  These were similar to those found in NP films and 

had opposite mirror symmetry in LH and RH samples.  Control experiments showed that the 

chiroptical activity originated solely from the macroscale twist experienced by the LBL films, 

rather than any intrinsic chirality of the nanotubes (Fig. 3.23).  To further demonstrate the 

generality of the enantioselective manufacturing of nanocomposites and to obtain an additional 

visual representation of the 3D S-like shapes forming in the twist–deposit–release process, we 

added a layer of 100 nm fluorescent nanoscale beads (NanoBeads) on top of (PVA/SWNT)10.  

Super-resolution stimulated emission depletion (STED) microscopy unequivocally 

demonstrated that the nanoscale beads are aligned in S-chains on the full wavelength of buckles 

(Fig. 3.15k,l and Supplementary Movie 5*).  Note that the macro-to-nano chirality transfer 
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may not be applicable to thin films made from dyes and other molecular scale materials due to 

the difference in deformation and assembly patterns compared with nanoscale materials. 

 

 Conclusion and Outlook 

Macroscopic gradients of biaxial strain fields stereoselectively convert achiral and x-y 

isotropic composite films into chiral material with nanoscale topography.  The out-of-plane 

component of 3D nanoscale assemblies can be reversibly enlarged by elastic deformations, 

which markedly enhance the polarization rotation of transmitted photons.  Macro-to-nano 

chirality transfer demonstrated for NPs, nanobeads and SWNTs can be extended to other 

nanoscale components.  This new family of composites enable one to combine mechanical, 

plasmonic and excitonic properties of various nanoscale ‘building blocks’ with 

manufacturability, scalability and uniformity of hybrid organic-inorganic materials made by 

LBL assembly12.  Real-time modulation of the polarization rotation over thousands of cycles 

(Fig. 3.27 and 3.28b) originating from strain dependence of chiral geometries and dihedral 

angles between LD/LB principal axes and the possibility of integrating semiconductor 

nanomaterials with solid-state optics, each contribute to a plethora of creative engineering 

opportunities in the areas of information, optoelectronic64 and optomechanical devices. 

 

 Materials and Methods  

Preparation of substrates.  PDMS (Dow Corning Sylgard 184; ratio of base to cross-

linker, 10:1 by mass) was poured, mixed and degassed in a petri dish.  Curing in an oven at 70 
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˚C over 6 h produced PDMS membranes that were 0.5 mm thick.  These were then cut into 

strips of 10 mm (width) x 45 mm (length) x 0.5 mm (thickness) as shown in Fig. 3.1a.  

Preparation of PU, Au NPs, PVA and SWNTs.  As-received cationic polyurethane 

aqueous dispersion (30 vol%, MW ≈ 92,000, Hepce Chem Co., South Korea) was used after 

diluting to 1 vol% solutions with deionized (DI) water.  Gold(III) chloride trihydrate and 

sodium citrate tribasic dihydrate (both from Sigma-Aldrich, USA) were used as received.  

Citrate-stabilized AuNPs with a diameter of 13.0 ± 0.3 nm were synthesized as described 

elsewhere55.  As-received polyvinyl alcohol (MW ≈ 13,000 - 23,000, Sigma-Aldrich, USA) 

was used after diluting to 0.2 vol% solutions with DI water.  Single-walled carbon nanotubes, 

(6,5) chirality ≥ 95%, and sodium dodecylbenzene sulfonate (both from Sigma-Aldrich, USA) 

were used as received.  To the dispersion of 0.2 mg/mL SWNTs, sodium dodecylbenzene 

sulfonate was added (nanotube-to-surfactant ratio was 1:25 by weight), followed by tip-

sonication for 1 h (5 sec for each pulse on and off with 40% amplitude).  The as-prepared 

dispersion was then centrifuged using a Sorvall LegendMach 1.6R centrifuge (Thermo 

Scientific, USA) at 10,000 r.p.m. for 1 h to separate any larger aggregates.  

Preparation of chiroptical composite films.  Strips of PDMS were twisted in 

clockwise and counterclockwise directions along the y-axis by an angle, ω, equal to 360° and 

fixed using clamps for LH and RH substrates, respectively (Fig. 3.1b).  Next, the surfaces of 

PDMS were activated for 30 min by a UV ozone cleaner (model no. 342, Jelight Company) to 

modify the hydrophobic surface of PDMS with hydrophilic functionalities.  Note that this step 

produces ozone, therefore good ventilation is required.  Activated and pre-twisted PDMS 

strips were dipped into a 1 vol% aqueous solution of positively-charged PU for 5 min, rinsed 
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with DI water for 1 min and gently dried with compressed air.  Then they were dipped into a 

dispersion of negatively-charged Au NPs for 20 min, rinsed for 1 min and again dried with 

compressed air.  Five bilayers were sequentially deposited (Fig. 3.1c) to have a thickness of 

40 nm on a silicon wafer by ellipsometry (Fig. 3.36a).  Electrostatic attraction was found to 

be a reasonable driving force for deposition.  This one cycle of deposition constitutes one 

bilayer of PU/NP.  For measurements of chiroptical properties, samples were released and 

allowed to flatten (Fig. 3.1d).  Single-sided samples were prepared by detachment of one side 

using adhesive tape.  For preparation of (PVA/SWNT)10, a nearly identical procedure was used 

except with different lengths of dipping time: 5 min into 0.2 vol% PVA solution and 5 min into 

a SWNT dispersion.  The sequential deposition of 10 bilayers onto a silicon wafer resulted in 

a thickness of 18 nm by ellipsometry (Fig. 3.36b).   

Preparation of samples for STED imaging.  As-prepared (PVA/SWNT)10, in twisted 

state, was further dipped into a 0.1 vol% solution of fluorescence beads (FluoSpheres®  

Carboxylate-Modified Microspheres, 100 nm, (505/515), Life Technologies) for 20 min, rinsed 

with DI water for 1 min and gently dried with compressed air, followed by flattening, 

(PVA/SWNT)10(Bead)1.  Fluorescent labeled chiroptical nanocomposite was mounted on a 

glass slide with mounting media (ProLong®  Diamond Antifade Mountant, Life Technologies) 

on which a cover slip with refractive index of 1.5 was placed. 

Characterization.  Transmission electron microscopy (TEM) images were obtained 

with a JEOL 2010F analytical electron microscope.  Absorbance measurements in UV-Vis-

NIR were performed on BioMate™ 3S Spectrophotometer (Thermo Scientific).  Thickness of 

the initial assembly of the LBL film was calculated using a BASE-160 spectroscopic 
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ellipsometer (J. A. Woollam) and a multi-wavelength-imaging null-ellipsometer (EP3 

Nanofilm).  LBL film for ellipsometry was prepared on silicon wafers following the same 

procedure as described for the LBL film.  Weight growth of films was investigated by a quartz 

crystal microbalance (QCM) 200 from Stanford Research Systems with 5 MHz quartz crystals. 

Circular dichroism (CD) spectra were obtained using a Mueller matrix polarimeter130 and a 

Jasco J-815 CD spectrometer.  Otherwise mentioned, optical responses were measured at the 

center of the films.  Atomic force microscope (AFM) images were obtained by Bruker 

Dimension Icon AFM and multimode AFM with ScanAsyst mode.  X-ray scattering data were 

obtained with a Bruker NanoStar Small-Angle X-ray Scattering System equipped with a 

Siemens Kristalloflex 770 X-Ray Generator, and a Cu Kα radiation (0.1542 nm) X-ray tube 

with peak power of 1.5 kW on a Hi Star Area 2D detector with 1 min of exposure time.  Super-

resolution confocal images were acquired using a Leica SP8 multi-fluorescent confocal 

microscope equipped with a white light laser combined with 592 depletion laser utilizing STED 

applications.  Tilt-series BF-TEM (Bright field TEM) images were obtained from an 

aberration corrected energy filtering transmission electron microscope (Carl Zeiss, Libra 200 

HT Mc Cs) operating at 200kV with an advanced tomography holder (E.A. Fischione 

Instruments, Model 2020). 

3D TEM Tomography imaging.  Epoxy cured and microtomed samples were placed 

on 200 mesh TEM grids (Ted Pella Inc.).  All BF-TEM images were obtained with zero-loss 

filtering using in-column omega filter.  Single-axis tilt-series of 62 and 69 BF-TEM images of 

two samples were acquired in range of -60˚ - +62˚ (buckled side, RH) and -66˚ - +70˚ (buckled 

side, LH) in tilt steps of 2˚. As fiducial markers for fine alignment, gold nanoparticles (5 nm) 
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were used.  Full alignment of the tilt-series BF-TEM images (0.55 nm/pixel) were done by the 

commercial tomography reconstruction software package (JEOL, TEMographyTM) which can 

be applied the simple cross correlation technique.  Based on the alignment of 2D projections, 

3D tomographic reconstruction was carried out with the SIRT (simultaneous iterative 

reconstruction technique) using the same software137. 

Calculated CD spectra.  Computations of CD spectra were performed using the 

wave-optics module embedded in the COMSOL Multiphysics module.  The optical constants 

of gold were taken from elsewhere138.  Simulated CD spectra were first calculated by 

subtracting the cross-section extinction of RH circularly polarized light (RCP) from that of LH 

circularly polarized light (LCP), and then the values were normalized to the maximum peak of 

the spectra.  CD = extinction of LCP - extinction of RCP, where the extinction cross-section 

is the summation of the absorption cross-section and the scattering cross-section.  

 

 Supplementary Information  

*Supplementary Movies 1-5 can be found at 

http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4525.html#supplementary-

information. 

 

3.9.1 Methods for Parameters Calculations 

1. PDMS is transparent enough to disregard dichroism in the wavelength ranges of interest, 

200 – 800 nm (Fig. 3.16a). 
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2. LD of each NP layer was directly obtained from single-sided samples.  

3. LB of each NP multilayer was obtained from measurement of single-sided samples after 

subtraction of LB contribution from the PDMS substrate.  This was achieved plotting a 

polynomial fit of two far end regimes of wavelength and subtracting this contribution from 

measurements (Fig. 3.16c).  LB of NP layers always have a peak at the plasmonic 

wavelength while LB of PDMS does not have any peaks in the wavelength ranges of interest. 

4. LB of PDMS substrates were calculated from the polynomial fit results (Fig. 3.16c). 

5. Magnitude of LD and LB were calculated from √𝐿𝐷2 + 𝐿𝐷′2  and √𝐿𝐵2 + 𝐿𝐵′2 , 

respectively. 

6. Angle of LD was obtained by using “atan2” function, such as 0.5 ∗ ATAN2(LD, LD′).  

Because the atan2 function can gather information of the signs of the input and will choose 

the proper quadrant of the computed angle, whereas simple “atan” function cannot. 
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7. Calculated angles of LD and LB in the NP layers are same. 

 

 

 

 

 
Figure 3.16. Optical activities of a PDMS substrate and buckled NP layer. a, LD of PDMS 

under ε = 0%, 10%, 25% and 50%. b, LB of PDMS under ε = 0%, 10%, 25% and 50%. c, LB 

of buckled side on PDMS, LH, under ε=50% and its polynomial fit of two far end regimes. 
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3.9.2 Comparison between Mueller Matrix Polarimeter and Commercial 

Instrument  

CD spectra from most commercial equipment, including JASCO J-815, are based only 

on the M03 element of the Mueller matrix.  Same measurements with sample being flipped by 

180˚ along the y-axis will give M30 element.  Comparing each M03 and M30 value from both 

pieces of equipment, polarimetry and JASCO J-815, will be interesting for us to see the 

difference and this will be very helpful for colleagues in the same field as well.  M03 and M30 

 
Figure 3.17. M03 and M30 elements from JASCO J-815. Spectra for LH and RH samples 

under ε = 0% and 50% for buckled side only (a, b) and cracked side only (c, d) on PDMS 

substrate. Light propagation in the negative and positive z-directions were tested by rotating 

samples by 180° around the x-axis. Insets: schematics of light propagation on samples.   

M30 spectra of cracked side sample had very small intensities which corresponds well with the 

spectra from Mueller matrix polarimetry (Fig. 3.8d). 



 92 

of single-sided samples from J-815 are not exactly same as those from Mueller matrix 

polarimetry.  However, they are quite similar in terms of location of peaks and intensity 

increase upon stretching (Fig. 3.8, 3.17, and 3.18).  

JASCO J-815 was also used for control experiments and CNT composites.  Part of the 

reason here is that our polarimetry device covered wavelength only up to 800 nm while CNT 

composites had chiroptical peaks in NIR. For double-sided CNT composites, (M03+M30)/2 

was applied.  Single spectra of either M03 or M30 for double-sided would contain artifacts or 

 
Figure 3.18. Comparison of apparent CD from Mueller matrix polarimetry and 

(M03+M30)/2 from JASCO J-815 of both side samples of (PU/NP)5. a, Apparent CD spectra 

of  (PU/NP)5 from Mueller matrix polarimetry. b, (M03+M30)/2 CD spectra of  (PU/NP)5 

from JASCO J-815. c, Corresponding absorbance spectra for b. 
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multiple reflected light in between two NP layers.  We would expect that the averaged should 

effectively calculate apparent CD139–142.  Again, we still need to admit that this is not fully 

equivalent to the apparent CD provided by the Mueller matrix polarimetry.  We include a 

comparison of (M03+M30)/2 of double-sided chiroptical nanocomposite samples, (PU/NP)5, 

from polarimetry and J-815 (Fig. 3.18).  Unless otherwise mentioned, CD spectra in this study 

were obtained from Mueller matrix polarimetry. 

 

3.9.3 Differential Mueller Matrix for Calculation of CElinear 

Analysis of chiroptical activity by polar decomposition of distinct optical layers in 

stratified optical system should be the best way of recognizing CDNP.  We, however, still tried 

further to know if we can calculate amount of the contributions of CElinear.  Even though this 

has to be done with an assumption of optical “homogeneity” along the light path, calculations 

will expand our knowledge of optical properties and its prediction from matrix calculations. 

 Based on the Mueller matrix polarimetry measurement of single-sided samples, we 

were able to obtain optical properties of our samples, both circular (CD and CB) and linear (LD, 

LB, LD  ́ and LB )́.  With those real values, we were able to simulate differential Mueller 

Matrix corresponding to single-sided samples (i.e. single NP layer on a PDMS substrate).  

Then we compared the simulated values with experimentally obtained apparent CD. 

For the clarity of codes, numbers of 1, 2 and 3 were assigned to each buckled, PDMS 

and cracked side, respectively.  Thus, calculation for double-sided, buckled side only, and 

cracked side only were done with operations of J=J3.J2.J1, J=J2.J1 and J=J3.J2, respectively. 
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After analyzing components of differential Mueller matrix (L03) and comparing them 

to experimental values of apparent CD, we confirmed that chiroptical activity of buckled side 

has two principal contributions:  chiral NP assemblies in buckled layer and combinatory 

effects of vectorial LD and LB. At the same time, chiroptical properties associated with cracked 

side arise primarily from the linear contributions.  The rationales for the conclusion are: 

1. Magnitude of simulated L03 components for two-layer system of buckled side on a 

PDMS substrate, were significantly lower than experimental CD from buckled side only 

samples (Fig. 3.19a). 

2. Magnitude of simulated L03 components for two-layer system of cracked side on a 

PDMS substrate, were very closely matched with those from experimental apparent CD 

from cracked side only samples (Fig. 3.19b). 
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Figure 3.19. Comparison of Mueller matrix analysis between experimental and 

simulation.  Apparent CD from experimental Mueller matrix polarimetry and simulated L03 

component from differential Mueller matrix for two layer systems, buckled side only (a) and 

cracked side only (b) on PDMS substrate, were compared. Full simulation code and results of 

representative case (buckled side only, LH, ε = 0% at 600 nm) are in Note 3.1. 
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Note 3.1: Code and results for two layer system, buckled side only, LH, ε=0% at 600 nm 

LD1m=0.0531994; (*Magnitude of LD of buckled layer*) 

LB1m=0.010921392; (*Magnitude of LB of buckled layer*) 

a1=-1.256170154; (*Calculated angle of LD in buckled layer. This is also used for angle of 

LB.*) 

LD1=LD1m Cos[2 a1]; (*LD in buckled layer*) 

LDp1=LD1m Sin[2 a1]; (*LD  ́in buckled layer*) 

LB1=LB1m Cos[2 a1]; (*LB in buckled layer*) 

LBp1=LB1m Sin[2 a1]; (*LB  ́in buckled layer*) 

N1=(1/2) {{-LD1-I LB1,-LDp1-I LBp1},{-LDp1-I LBp1,LD1+I LB1}}; (*Calculation of 

differential Jones matrix for buckled layer, N1*) 

J1=MatrixExp[N1]; (*Calculation of Jones matrix for buckled layer, J1*) 

LB2=-0.0485; (*LB in PDMS. LB  ́was nearly zero because the samples were stretched along 

the vertical direction. LD of PDMS is also zero in the wavelength range of interest. It is 

reasonable to disregard LB  ́and LD in PDMS.*) 

N2=(1/2) {{-I LB2,0},{0,I LB2}};(*Calculation of differential Jones matrix for PDMS layer, 

N2*) 

J2=MatrixExp[N2]; (*Calculation of Jones matrix for PDMS layer, J2*) 

J=J2.J1;  

A={{1,0,0,1},{1,0,0,-1},{0,1,1,0},{0,I,-I,0}};  

M=A.KroneckerProduct[J,Conjugate[J]].Inverse[A]; (*Conversion of Jones matrix to Mueller 

matrix, M*) 

L=Chop[MatrixLog[M]]//MatrixForm (*Conversion of Mueller matrix to differential Mueller 

matrix, L*) 

({ 

  {0, 0.0430084, 0.0313061, -0.000759322}, 

  {0.0430084, 0, -0.000155745, -0.00642121}, 

  {0.0313061, 0.000155745, 0, 0.0573334}, 

  {-0.000759322, 0.00642121, -0.0573334, 0} 

 }) 
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Overall, all the simulation data for single-sided cases are reasonably accurate.  

Logically we expanded the calculations for double-sided cases (three layers).  However, 

simulations for three layer systems were less accurate and less valid.  Simply due to optical 

parameters for each buckled and cracked layers (in the same sample) were obtained separately 

from two different single-sided samples.  Consequently the values of LD and LB for every 

participating layer are not known with precision as in the case of single-sided samples, and 

these indeterminations can generate important errors in the final results.  Additionally, buckled 

and cracked layers have both substantial reflectance, so multiple reflections through the PDMS 

substrate are possible and these are not taken into account in the simulations. However, we still 

compared CD values for the three layer systems (Fig. 3.20). 

 
Figure 3.20. Comparison of Mueller matrix analysis between experimental and simulation 

for double-sided samples. 

Full simulation code and results of representative case (double-sided, LH, ε=0% at 580 nm with 

incorporated parameters of linear from both buckled and cracked layer plus circular from 

buckled layer) are in Note 3.2. 
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Note 3.2: Code and results for three layer system, double-sided, LH, ε=0% at 580 nm, with 

incorporated parameters of linear from both buckled and cracked layers plus circular 

from buckled layer 

LD1m=0.049296105; (*Magnitude of LD of buckled layer*) 

LB1m=0.025488683; (*Magnitude of LB of buckled layer*) 

a1=-1.261827079; (*Calculated angle of LD in buckled layer. This is also used for angle of 

LB.*) 

LD1=LD1m Cos[2 a1]; (*LD in buckled layer*) 

LDp1=LD1m Sin[2 a1]; (*LD  ́in buckled layer*) 

LB1=LB1m Cos[2 a1]; (*LB in buckled layer*) 

LBp1=LB1m Sin[2 a1]; (*LB  ́in buckled layer*) 

CD1=-0.00229; (*CD in buckled layer*) 

CB1=0.00019217; (*CB in buckled layer*) 

N1 = (1/2) {{-LD1 - I LB1, -LDp1 - I LBp1 + CB1 - I CD1}, {-LDp1 - I LBp1 - CB1 + I 

CD1, LD1 + I LB1}}; (*Calculation of differential Jones matrix for buckled layer, N1*) 

J1=MatrixExp[N1]; (*Calculation of Jones matrix for buckled layer, J1*) 

LB2=-0.04891; (*LB in PDMS. LB  ́was nearly zero because the samples were stretched along 

the vertical direction. LD of PDMS is also zero in the wavelength range of interest. It is 

reasonable to disregard LB  ́and LD in PDMS.*) 

N2=(1/2) {{-I LB2,0},{0,I LB2}}; (*Calculation of differential Jones matrix for PDMS layer, 

N2*) 

J2=MatrixExp[N2]; (*Calculation of Jones matrix for PDMS layer, J2*) 

LD3m=0.02950363; (*Magnitude of LD of cracked layer*) 

LB3m=0.053419683; (*Magnitude of LB of cracked layer*) 

a3=-1.139472338; (*Calculated angle of LD in cracked layer. This is also used for angle of 

LB.*) 

LD3=LD3m Cos[2 a3]; (*LD in cracked layer*) 

LDp3=LD3m Sin[2 a3]; (*LD  ́in cracked layer*) 

LB3=LB3m Cos[2 a3]; (*LB in cracked layer*) 

LBp3=LB3m Sin[2 a3]; (*LB  ́in cracked layer*) 
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N3=(1/2) {{-LD3-I LB3,-LDp3-I LBp3},{-LDp3-I LBp3,LD3+I LB3}}; (*Calculation of 

differential Jones matrix for cracked layer, N3*) 

J3=MatrixExp[N3]; (*Calculation of Jones matrix for cracked layer, J3*) 

J=J3.J2.J1; 

A={{1,0,0,1},{1,0,0,-1},{0,1,1,0},{0,I,-I,0}}; 

M=A.KroneckerProduct[J,Conjugate[J]].Inverse[A]; (*Conversion of Jones matrix to Mueller 

matrix, M*) 

L=Chop[MatrixLog[M]]//MatrixForm (*Conversion of Mueller matrix to differential Mueller 

matrix, L*) 

({ 

  {0, 0.059426, 0.0508506, -0.00202861}, 

  {0.059426, 0, 0.000812155, -0.0553647}, 

  {0.0508506, -0.000812155, 0, 0.104398}, 

  {-0.00202861, 0.0553647, -0.104398, 0} 

 }) 

 

3.9.4 Strong Polarization Rotation from CElinear 

Here we demonstrate that very strong polarization rotation in LBL films can originate 

from CElinear by controlling angle between samples by rotation, and magnitude of linear 

parameters by stretching.  We observed that measured rotatory optical activity was fluctuating 

by increasing the angle of rotation (Fig. 3.21).  Maximum of ca. 1500 mdeg was obtained at 

certain angle with increased LB in polymeric substrate, ε = 50%.  The other interesting 

observation here is the change of lobe patterns before and after stretching.  The reason can be 

attributed as follows:  before stretching, LD orientation of layers should have ca. 90˚ phase 

difference but they were synchronized after stretching. 
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Figure 3.21. Linear optical anisotropy in stratified optical media made from buckled and 

cracked NP layers on PDMS. a, Schematics of the experimental setup. b, c, Apparent CD 

(mdeg, in vertical axis) obtained by rotating a buckled layer superposed on top of a fixed 

cracked layer under strains of 0% and 50%, respectively. Data under strains of 0% and 50% 

obtained at 650 nm and 628 nm, respectively, which were resonant wavelengths for cracked 

layers. Radial axis is for angle of rotation as described in a. 
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3.9.5 Control Experiments  

 
Figure 3.22. Control experiments on Au composite. a, CD spectra of various control samples 

for Au NP composite. b, Corresponding absorbance spectra for samples in a. For a,b, M03 and 

(M03+M30)/2 were measured on JASCO J-815 for solution and film samples, respectively. c-

f, Apparent CD, CB, LD and LB of five bilayer deposited on flat PDMS under ε = 0% to 50% 

by Mueller matrix polarimetry, respectively. A dispersion of Au NPs with a peak absorbance of 

0.63 had nearly zero CD activity; and all other control experiments displayed very small CD 

activity under strains in entire available range of wavelengths. 
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Figure 3.23. Control experiments on CNT composites. a, CD spectra of various control 

samples. b, Corresponding absorbance spectra of a. M03 and (M03+M30)/2 were measured on 

JASCO J-815 for solution and film samples, respectively.   

A dispersion of (6,5) SWNTs with peak absorbance in the range of 0.5-0.9 had nearly zero CD 

and all other control experiments had small rotatory activity under stretching in the entire 

available range of wavelength. 
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Figure 3.24. Emergence of CD depending on level of twist on Au composite. a, Photographs 

of samples under ω=90°, 180° and 270° of twisting for (PU/NP)5. ω is the rotational angle along 

the y-axis starting from the line of x-direction. b, c, CD, (M03+M30)/2, of (PU/NP)5 depending 

on the level of twist under two different strain levels of 0% and 50%, respectively. Only RH 

samples were used for experiments. Twisting more than 360° made the surface of the samples 

severely rugged.  Spectra obtained from JASCO J-815 spectrometer. 
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Figure 3.25. Emergence of chiroptical activity upon increase of the macroscale twist angle, 

ω, of the substrate on CNT composite. a, Photographic images of samples for ω = 90°, 180° 

and 270° for (PVA/SWNT)10. b, c, CD spectra, (M03+M30)/2, of (PVA/SWNT)10 for different 

ω under two different strain levels of ε = 0% and 50%, respectively. RH samples were only 

used for experiments. 
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Figure 3.26. CNT Sample preparation and M03, M30 CD spectra. a, (PVA/SWNT)10 were 

deposited on twisted PDMS substrates in opposite directions; right-handed Cartesian 

coordinates were used to denote directions of twisting and light propagation. b, Samples with 

left-handed and right-handed twists are denoted LH and RH, respectively as in the case of Au 

NPs. Scale for a-b is given in a. c, d, CD spectra from double-sided samples of LH and RH 

under ε = 0%, 10%, 25% and 50% with light propagation in negative and positive z-directions, 

respectively. 
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Figure 3.27. Reversibility test of Au composite. Peak CD, (M03+M30)/2, values of LH and 

RH samples up to 10,000 cycles of reversible stretching to 50% and releasing to 0%. Spectra 

obtained from JASCO J-815 spectrometer. 
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Figure 3.28. Absorbance spectra, and reversibility test of CNT composites. a, Absorbance 

spectra, (M03+M30)/2, of LH and RH samples under ε = 0, 10, 25 and 50% in Fig. 3.15b. b, 

Peak CD values of LH and RH up to 10,000 cycles of reversible stretching to 50% and releasing 

to 0%. Values were read at 300 nm. 
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3.9.6 Effect of Chain Length (Particle Density) for Chiroptical Activity. 

We investigated chiroptical possibilities of linear contributions from dichroic NPs in 

discontinued or short chains combined with LB in strain polymer substrate.  Same five 

bilayers were deposited by the same procedure to have decreased NP number density by more 

than one order of magnitude. The prepared samples had quite big absorbance up to 0.28 but had 

very small CD spectra (Fig. 3.29). 

13 nm Au NPs used and five bilayers deposited for all four cases 

 
Figure 3.29. Samples containing less number of NPs and their optical response. a, 

Photographic image of a set of twisted form of (PU/dilutedNP)5. b, c, TEM image of two 

bilayers of PU and diluted NPs and normal concentration of NPs used for most of the 

experiments, respectively. Particle number density in b and care in ca. tenfold difference. d, e, 

Absorbance and CD spectra of (PU/dilutedNP)5 of LH and RH under ε = 0% and 50%, 

respectively. Apparent CD measured from Mueller matrix polarimetry. 
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Different dipping times for Au NPs results in different NP fractions, as we learned from 

the previous study55.  Apparent CD of double-sided samples were measured.  13 nm Au NPs 

used and five bilayers deposited for all four cases.  We found a fact that with fewer NPs (which 

could mean shorter NP chains), CD peak under ε=50% blue-shifted:  658 nm, 625 nm and 610 

nm (from a to c) 

 

 

 

 

 

 

 

 

 

 
Figure 3.30. a, CD data in the main text with 20 min of dipping time into Au NP dispersion. b, 

CD data from 5 min of dipping time into Au NP dispersion. c, CD data from 1 min of dipping 

time into Au NP dispersion. 
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3.9.7 Effect of Particle Size for Chiroptical Activity. 

Different sized Au NPs were synthesized by changing amount of citrate surface 

stabilizer.  Five bilayers deposited with controlled dipping time of 5 min for PU and 20 min 

for NPs.  Apparent CD of double-sided samples were measured.  CD peaks under ε=50% 

red-shifted: 658 nm, 663 nm and 668 nm (from a to c).  This matches with the trend of the 

 
Figure 3.31. a, CD data in the main text with particle size of 13 ± 1 nm. b, CD data from 

particle size of 16 ± 2 nm. c, CD data from particle size of 37 ± 10 nm. 
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absorption peak of NP dispersion:  larger particles have peak at higher wavelengths.  These 

(stronger extinction and red-shift pattern) was predicted by Mie theory 

𝜎𝑒𝑥𝑡 =
9𝑉є𝑚

3/2

𝑐
·

𝜔є2(𝜔)

[є1(𝜔) + 2є𝑚]2 + є2(𝜔2)2
 

where V is the spherical particle volume, c the speed of light, ω the angular frequency of the 

exciting radiation, and є𝑚 is the dielectric constant of the surrounding medium. є1(𝜔 ) and 

є2(𝜔 ) denote the real and imaginary part of the dielectric function of the particle material, 

respectively ( є(𝜔 ) = є1(𝜔 ) + 𝑖є2(𝜔 ) ).  Extinction cross-section, σext, increases as the 

volume (4/3πR3) of spherical particle increases.   Mie’s solution to the Maxwell equation is 

valid for small nanoparticles, < 100 nm143,144.  The red-shift is regarded as electromagnetic 

retardation in larger nanoparticles145,146,147. 
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3.9.8 Spatial Homogeneity 

 

 

 
Figure 3.32. Spatial homogeneity and relevant apparent CD spectra of LH samples. With 

a beam size of 1.5 mm, CD spectra on seven representative spots on double-sided samples were 

measured and relevant spectra are presented: ε=0% (a), and ε=50% (b). Color CD bar and scale 

for images a-b are given in a. 
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LBL process is known for production of highly uniform coating with homogeneous film 

thickness throughout the substrate12,148,149,46,121.  Multilayer deposition on twisted substrate 

were homogeneous and conformal (Fig. 3.1c).  

 
Figure 3.33. Spatial homogeneity and relevant apparent CD spectra of RH samples. With 

a beam size of 1.5 mm, CD spectra on seven representative spots on double-sided samples were 

measured and relevant spectra are presented: ε=0% (a), and ε=50% (b). Color CD bar and scale 

for images a-b are given in a. 
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Mapping of samples by Mueller matrix polarimetry showed how our NP layers were 

spatially homogeneous in large regions of samples.  In addition to entire sample area mapping 

data (Fig. 3.1g, h), spectra for all interested wavelength regime was also obtained by 

polarimetry with a beam size of 1.5 mm diameter for representative 7 spots (Fig. 3.32 and 3.33).  

All the above data proved our chiroptical samples were homogeneous even under higher strains.  

However, we should note that samples had marginal optical inhomogeneity due to; 1) twisting 

and clamping makes the stress field to be in a gradient (Fig. 3.9d-i and Fig. 3.30) and 2) stress 

are higher in the center of the films and lower at the edges. Since shapes of buckles and cracks 

are dependent on local stress fields, geometry of assembled particles should have some 

differences over samples.  Still, this inhomogeneity was extremely minor and only observed 

within very small areas such as at the edge or close to the clamps.  All the above statements 

can be applied to more than 100 samples tested in the course of this work.  
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3.9.9 Bending Stresses and Buckling/Cracking Phenomena 

Stress accumulated to each point was calculated by Hooke’s law, (Eq. 3.3), for bending 

deformations: 

max maxsE c       (Eq. 3.3) 

where, Es is elastic modulus of the substrate, cmax is distance from the neutral axis to the 

outermost surface of convex side, and κ is curvature (reciprocal of radius)126.  For calculation, 

Es of 2.6 MPa, Cmax of 0.25 mm, and κ of 1500 m-1, 874 m-1 and 583 m-1 for points of 1, 2 and 

3 were used, respectively. 

 

 

 

 

 
Figure 3.34. Curvature of substrate and bending stresses. a, Photographic image of twisted 

and clamped PDMS showing gradient of curvatures. b, Schematic of twist-only geometries 

showing same curvatures throughout the substrate. 
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3.9.10 Theoretical Parameters of Buckling and Cracking Phenomena. 

Composite LBL films on convex and concave sides were buckled and cracked, 

respectively, due to compressive and tensional forces occurring during relaxation to the flat 

state.  Periodicity of buckles, λ, and cracks, d, as well as amplitude of buckles can be calculated 

as follows84,150,151: 

𝜆 = 2𝜋𝑡 [
(1−𝜈𝑠

2)𝐸𝑓

(1−𝜈𝑓
2)𝐸𝑠

]
1/3

   (Eq. 3.4) 

 = ℎ√
𝜀𝑝𝑟𝑒

𝜀𝑐
− 1  where, 𝜀𝑐 =

1

4
[
3(1−𝜈𝑓

2)𝐸𝑠

(1−𝜈𝑠
2)𝐸𝑓

]
2/3

  (Eq. 3.5) 

𝑑 =
4𝑡𝜎∗

𝐸𝑠𝜀
   (Eq. 3.6) 

 

Table 3.1. Definition of constants and their values for each chiroptical nanocomposites. 

 (PU/NP)5 (PVA/SWNT)10 

t, thickness of the multilayers  40 nm 18 nm 

νs, Poisson’s ratio of the substrate in z-direction 0.18 0.18 

νf , Poisson’s ratio of the multilayers in z-direction 0.26 0.07 

Es, elastic modulus of the substrate 2 MPa 2 MPa 

Ef, elastic modulus of the multilayers 125 MPa 1190 MPa 

σ*, ultimate strength of the multilayers 13 MPa 720 MPa 

ε, strain to the x-axis in percent, (Cmax/radius)*100 21.9% 21.9% 

 

t values were obtained from Fig. 3.32. νf , Ef, and σ* were measured from free-standing 

LBL films.  Ability to obtain such data is one of advantages of LBL composites over some 
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other methods of composite preparation. Poisson’s ratios of PDMS were measured to be νlength 

= 0.176 and νheight = 0.008. 

From the above parameters we calculated periodicities of the buckles, λ, and cracks, d, 

for both chiroptical nanocomposites (Fig. 3.35) and they all give a close match with the 

experimentally measured values (Fig. 3.38, 3.44, 3.45, and Table 3.1 and 3.2).  d was 

calculated/measured for the center of the film where equal magnitudes of tensional stresses 

were applied. Experimental values are measured from LH samples. 

 

 

 
Figure 3.35. Comparison of theoretical and experimental parameter values. NP and SWNT 

signify NP composite, (PU/NP)5, and SWNT composite, (PVA/SWNT)10, respectively. Error 

bars are mean±s.d for 95% confidence (n=20). 
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Figure 3.36. Multilayer growth profiles. a, Thickness of (PU/NP)5 was measured by 

ellipsometry after deposition of each layer on silicon wafer. Polyurethane (3P, 4P, and 5P) and 

Au NP (3G, 4G, and 5G) layers with the same number correspond to one deposition cycle.  

Error bars are mean±s.d. for 95% confidence (n=3). b, Thickness and weight of (PVA/SWNT)n 

were measured by ellipsometry after deposition of each bilayer on silicon wafer and by quartz 

crystal microbalance frequency shifts after deposition of each layer on 5 MHz quartz crystals, 

respectively. Carbon nanotubes (3C, 4C, and 5C) and polyvinyl alcohol (3P, 4P, and 5P) layers 

with the same number correspond to one deposition step. 
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Figure 3.37. CD spectra and morphology without a strain gradient. a, Photographic images 

of the sample with constant curvature of 645 m-1. Samples were released to have buckled and 

cracked sides and stretched along the y-axis. b, CD spectra, (M03+M30)/2, of buckled and 

cracked sides only under ε = 0% and 25%. c, d, AFM images of buckled and cracked sides of 

the composite films. CD spectra obtained from JASCO J-815 spectrometer. 
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Figure 3.38. Large area AFM images with different deformation modalities of Au 

composites. a, Buckled and cracked sides of LH and RH samples of the composite films under 

ε = 0%, 25%, and 50%, respectively. b, Larger area images of a. Height (z-axis) and planar (x-

y plane) scales for images are given lower right section of each data set. 
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Figure 3.39. SEM surface images of CNT composites. a-h, Buckled and cracked sides of 

LH and RH samples under ε = 0%, and 25%, respectively. Scale for images a-h is given in h. 
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3.9.11 Interparticle Distance and Arrangements  

 

 

 

 
Figure 3.40. Small angle X-ray scattering (SAXS) measurements for interparticle 

distance.  a-f, Beam patterns of LH and RH samples under ε=0%, 25% and 50%, respectively. 

g, Plot of intensity, I(q), as a function of scattering vector, q. d-spacing, 2π/q*, values were 

averaged from six measurements to be 13.8 ± 0.1 nm. 
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Figure 3.41. Reorganization of NPs into S-like chains under stresses. a-e, Photographic 

images of sample preparation: a, TEM grid was placed on the middle of the elastic substrate 

and then liquid-state PDMS was pasted around the grid, followed by curing. b, c, The substrates 

were coiled and clamped to have handedness. d, e, (PU/NP)2 films were deposited onto the 

twisted substrates. The scale for a-e is given in a. f, TEM image of (PU/NP)2 deposited on the 

flat grid. g, h, Buckled side TEM images of LH and RH from d, respectively. i-l, Cracked side 

TEM images of LH (i, j) and RH (k, l) from e. For TEM imaging, samples were relaxed to be 

flattened followed by removal of grids from the substrates. For b, d, and c, e, one and three 

substrates were used, respectively, in order to apply maximized stresses to the grid on each side 

and a large gradient of stresses throughout the samples. Scale for f-l is given in f. m, n, 

Distribution of the center-to-center distance between nanoparticles under no-stress (f, 13.8 ± 

0.1 nm, n=40) and stressed states (g-l, 13.7 ± 0.1 nm, n=80), respectively. 
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Figure 3.42. Mapping of single-sided samples. a-e, Apparent CD, LD magnitude, apparent 

CB, LB magnitude and LB orientation of LH and RH samples under strains of 0% and 50% 

buckled side. f-j, Apparent CD, LD magnitude, apparent CB, LB magnitude and LB orientation 

of LH and RH samples under strains of 0% and 50% on cracked side. 
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3.9.12 Dimensions of NP S-chains. 

Dimensions of NP chains were measured from AFM height images and summarized in 

Fig. 3.45. 

Length and Width:  Directly measured from planar AFM height sensor images.   

Height:  For the buckled side, a section line in white color was drawn on the AFM height 

sensor image and the depth profiles are generated.  Heights are obtained from the distance 

between the highest and the lowest values in the plot.  For the cracked side, depth histograms 

of AFM image were generated and heights were taken from the distance between two peaks 

with the most and second-most dense populations.  

 

 

 

 

 

 
Figure 3.43. Schematic drawings showing unified dimension descriptors for chains of 

both buckled and cracked sides. 
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Table 3.2. Calculated number of NPs in S-chains. Error bars are mean±s.d. for 95% 

confidence (n=20). 

 

 Buckled side Cracked side 

LH, ε=0% 49 ± 14 71 ± 7 

LH, ε=25% 37 ± 5 48 ± 10 

LH, ε=50% 31 ± 7 36 ± 10 

RH, ε=0% 49 ± 14 70 ± 11 

RH, ε=25% 35 ± 8 44 ± 6 

RH, ε=50% 32 ± 8 38 ± 9 

 

 
Figure 3.44. AFM images and relevant plots for geometry assessments. Left and right 

columns for the buckled and cracked sides of the composite films, respectively. 
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Figure 3.45. Dimensions of NP S-chains. Each dimension (length, width, and height) for each 

handedness and each side, buckled a and cracked b, of the composite films under ε =0, 25, and 

50% was summarized as bar charts. Error bars are mean±s.d. for 95% confidence (n=20).  

Mean values for each dimension were used for construction of chain model for simulation. 
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Figure 3.46. Orientation and alignment of NP chains on cracked side. All data in this figure 

set are from cracked side only. a, Schematic drawings of mirrored images of NP islands under 

ε = 0 and 50%. b-e, LD orientation of LH, ε = 0% (b), RH, ε = 0% (c), LH, ε = 50% (d) and 

RH, ε = 50% (e), respectively, obtained from plasmonic wavelengths. Numerically averaged 

values (n=20) written by the mapping data. Color angle bar and scale for images b-e are given 

in d and e, respectively. Angles are projectable using classical 2D Cartesian coordinates. f-i, 

Magnified AFM images of LH, ε = 0% (f), RH, ε = 0% (g), LH, ε = 50% (h) and RH, ε = 50% 

(i), respectively. Large area AFM images are in Fig. 3.34. 
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3.9.13 Chirality F-factor for S-chains. 

We shall define the chirality factor as  

𝐹 = (
𝑊𝑖𝑑𝑡ℎ

𝐿𝑒𝑛𝑔𝑡ℎ
) ∗ (

𝐻𝑒𝑖𝑔ℎ𝑡

𝐿𝑒𝑛𝑔𝑡ℎ
)  (Eq. 3.7) 

where width, height and length represent the geometrical parameters as defined in Fig. 3.35, 

3.43 and 3.44.  Eq. 3.7 was applied to calculate chirality F-factor of chains for buckled side 

and values are summarized in Fig. 3.47.  We assumed that arrangement of NPs into S-shaped 

chain can be described by trigonometric functions.  The 3D chiral F-factor for chains made 

from identical NPs represents how much the geometry of the particle arrangement deviates from 

the achiral 1D straight line or 2D wavy line, which will have F=0. 

 
Figure 3.47. Chirality F-factor of NP chains. F-factor of LH and RH of chiroptical 

composites for buckled and cracked sides under ε = 0, 25, and 50%, respectively, are 

summarized as bar charts. Error bars are mean±s.d. for 95% confidence (n=20). F-factor values 

were multiplied by 100. 
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Magnitude of g-factor:  Chiral anisotropy g-factor is used as a measure to compare strength 

of optical activities of chiral systems.  g-factor of 0.025 for RH, buckled side, under ε = 50% 

is one of the highest when compared to recently reported examples.  Previous publications 

have disclosed g-factors as high as 10-2 (refs. 109,112).  One paper reported g-factors of ca. 0.3 

(ref. 64) for a special case of solid films obtained by angled deposition of metal. 

 
Figure 3.48. Experimental and calculated g-factors. a, g-factor spectra from CDNP of 

buckled side of LH and RH under ε=0% and 50%. b, c, Calculated g-factor spectra from a 

single chain and an array of five chains, respectively. 
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3.9.14 Computational Simulations 

CD spectra with differential absorbance were calculated by solving Maxwell equations 

using the finite element method (FEM)-based computational simulations, and were then 

converted into ellipticity.  The electromagnetic wave module within COMSOL Multiphysics 

was used with governing Eq. 3.8 under scattered electric field conditions152,153. (εr: relative 

permittivity, µ r: relative permeability, ε0: permittivity of a vacuum. σ: conductivity, k0: free-

space wave number, κ: angular frequency) 

∇ × (
1

𝜇𝑟
∇ × 𝐄) − 𝑘0

2 (𝜀𝑟 −  𝑗
𝜎

𝜅𝜀0
)𝐄 = 0  (Eq. 3.8) 

Values of CD as differential absorption at specific wavelengths were calculated by 

subtracting the extinction cross-section of right-handed circularly polarized light (RCP) from 

the extinction cross-section of left-handed circularly polarized light (LCP).  LCP and RCP are 

expressed by the following Eq. 3.9 and 3.10 (ref. 154) where 𝐸0 is the amplitude of the electric 

field of incident light propagating along +z direction, and k is the wave number. 

LCP: 𝐄𝐿(𝑧) =
𝐸0

√2
[𝐄𝑥𝑒

−𝑗𝑘𝑧 + 𝐄𝑦𝑒
−𝑗(𝑘𝑧+

𝜋

2
)]  (Eq. 3.9) 

RCP: 𝐄𝑅(𝑧) =
𝐸0

√2
[𝐄𝑥𝑒

−𝑗𝑘𝑧 + 𝐄𝑦𝑒
−𝑗(𝑘𝑧−

𝜋

2
)]  (Eq. 3.10) 

Extinction cross-section (𝜎𝑒𝑥𝑡) is calculated by the sum of absorption cross-section 

(𝜎𝑎𝑏𝑠) and scattering cross-section (𝜎𝑠𝑐𝑎𝑡)
152,153, Eq. 3.11.  Absorption cross-sections were 

obtained by integrating resistivity loss (𝑄𝑙𝑜𝑠𝑠) over the total volume of the nanoparticles and 

dividing by incident power flux (𝑃0), Eq. 3.12.  Scattering cross-sections were calculated from 

integration of the dot product of the time-averaged power flux (Poynting vector, 𝓟) and the 
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surface normal vector (n) over the surface of nanoparticles and divided by incident power flux 

(𝑃0), Eq. 3.13. 

𝜎𝑒𝑥𝑡 = 𝜎𝑎𝑏𝑠 + 𝜎𝑠𝑐𝑎𝑡  (Eq. 3.11) 

𝜎𝑎𝑏𝑠 = ∭ 𝑄𝑙𝑜𝑠𝑠𝑑𝑉/𝑃0𝑉
  (Eq. 3.12) 

𝜎𝑠𝑐𝑎𝑡 = ∯ 𝓟 ∙ 𝐧𝑑𝑆
𝑆

/𝑃0  (Eq. 3.13) 

The geometry of the chiral structures consists of an array of NPs138 with a diameter of 

13 nm from TEM images (Fig. 3.41).  The distance between NPs was calculated to be constant 

(13.8 nm) for both buckled and cracked sides during stretching deformations from SAXS and 

TEM experiments (Fig. 3.40 and 3.41).  NP chain models are displayed in Fig. 3.11a-d and 

3.49.  The refractive index (ne) of the environment was set to be 1 as air.  Simulations on left-

handed geometries were performed and that of right-handed ones were mathematically 

calculated.  Calculated CD spectra as differential absorption spectra are converted into 

ellipticity, then normalized by the number of Au NPs in their models and the highest amplitude 

of CD spectra obtained from ε = 25% models.  
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Figure 3.49. Buckled side, right-handed S-chains NP models used for simulation. a-d, A 

single chain and an array of five chains at strains of ε = 0% and ε=25%, respectively, with 

characteristic dimensions. 
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Figure 3.50. Calculated extinction cross-section of the LH buckled side for a single chain 

(a) and an array of five chains (b). Maximum peaks of extinctions are located near 562 nm 

and 575 nm for a and b, respectively. 
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CHAPTER IV 

Conclusion and Future Directions  

 

 Conclusion 

The field of nanotechnology developed tremendously during the past three decades in 

terms of fundamental understandings and practical applications for a number of independent 

fields.  Interdisciplinary research triggered by innovation, is now heading towards converging 

technology, which has a holistic perspective.  We focus on the fact that the facile and versatile 

LBL assembly methodology inherently has a holistic view toward science especially in terms 

of the wide variety of materials which can be incorporated/deposited and the breadth of 

possibilities for geometries and thereby unlimited functionalities.  Fundamentals and 

technologies of LBL assembly hare comprehensively understood.  This mature technology is 

now ready for transformative technical applications.  This close interrelation between LBL 

assembly and converging technology presents enormous opportunities.  The research 

presented in this work demonstrates LBL-assembled composites applicability as high 

performance multifunctional materials for converging technologies.  Those applications allow 

facile control over compositions, structures, alignments and interfacial interactions. 

In chapter II, we demonstrated how self-organized NPs can make excellent conducting 

pathways in both LBL and VAF composites.  Mechanical and electrical properties of LBL and 

VAF were compared by structure-properties relations.  Conductivity of LBL composites was 

further analyzed by percolation theory.  Conducting NP networks formed during tensile 

stretching, had higher conductivity than theoretical predictions by percolation theory.  The 
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high electron density and mobility from metallic filler particles offered additional practical use 

of the composites for voltage-controlled damping of vibration.  We witnessed greater freedom 

of NP arrangement upon external stress, and this fundamental understanding has been applied 

to find unique optical activity utilizing plasmonic resonance of NP assemblies. 

In chapter III, we demonstrated NPs can be organized into a three dimensional S-shape 

in order to become geometrically chiral.  NP layers deposited on stressed, pre-accumulated 

substrates obtained chiral geometries and upon release of the stress returned to planar 

geometries.  The chiral chain patterns obtained from the processes were reversibly tunable by 

elastic deformation of substrates, which accordingly tuned the polarization rotation of 

transmitted photons.  We also addressed universality of the macro-to-nano chirality transfer 

method by showing that 3D S-patterns can be obtained from SWNTs and polymeric nanobeads.  

This new family of composites, with respect to mechanics and optics with low-cost 

manufacturability, scalability, uniformity, tunability, and optical homogeneity, provides a new 

perspective towards converging technology of reconfigurable photonic materials. 

In summary, this dissertation is devoted to developing converging technologies using 

LBL-assembled composites.  This dissertation is interdisciplinary study that ranges over 

chemical engineering, chemistry, nanotechnology, materials science, electronics, mechanics, 

and optics, and is corroborated by computational simulations and mathematical analysis.  First, 

we prepared unique nanocomposites combining inorganic functional fillers in a polymeric 

matrix.  Then, we proved that the nanofillers in the matrix can be reorganized upon external 

stress, which induced enhanced electrical conductivity and chirooptical activity with 
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reconfigurability.  We further addressed the universality of the self-organization of NPs from 

fillers of SWNTs and polymeric beads. 

 

 Future Directions 

Although we have created the design framework for the re-organization phenomena of 

Au NPs and SWNTs composites, many other aspects of the nanocomposites are still unexplored.  

Systematic study, changing parameters such as aspect ratio of NPs, electronic state of NPs (band 

gap), effect of different surface ligands, and molecular weight of polymer matrix, is a natural 

direction for our work.  Extension of our findings to other nanomaterials, e.g. quantum dots, 

metallic nanorods, graphene and graphite sheets, magnetic NPs, or other natural/synthetic 

nanomaterials, is another interesting direction. 

Even though we proved self-organization of NPs for advanced electrical and optical 

properties, there are more outstanding opportunities that need to be addressed.  For example, 

battery electrodes and membranes (electrochemical), neural probes (nano-bio interface, neural) 

and drug carriers (bio) are the areas where converging nanotechnology can make significant 

strides.  The qualities of LBL assemblies, such as their ability to construct highly integrated 

multilayer structures33, their non-toxic water-based nature29, their ability to work at room 

temperature, and the fact that they lend themselves to large scale production at a low cost with 

a short preparation time13, are proving invaluable when addressing these areas.  For instance, 

electronic and energy materials require qualities of high electron and ion exchange rate.  

Further, in the case of neural probes, the high temperature required by chemical vapor 
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deposition restrains the choice of materials considerably limiting performance6.  Also, 

pharmacological applications will be benefited from a purely aqueous means for creating drug-

carrier complexes35. 

After systematic understanding of re-organization phenomena and application into 

cross-related fields (electrochemical, bio, and neural) real impact may be found from 

commercialization of these materials.  Inherent features of LBL assembly, such as simple, fast 

and low-cost processing operations, will likely be very helpful for commercialization.  There 

are also several challenges in adapting the means of processing LBL films to achieve rapid 

assembly and maintain, or possibly increase, the control and flexibility of this approach.  

These efforts will lead LBL technologies toward ultimate translation in the commercial realm, 

and to new discoveries in cross-cutting fields of research.  

In the end, the tremendous diversity of the available pool of nanocolloids and the 

versatility of the LBL assembly to combine multiple components into user-defined architectures, 

holds unlimited possibilities for converging materials design and research for many years to 

come. 
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