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ABSTRACT 

 

Scalable Data Management and Data-Driven Analytics for Structural Condition 

Assessment using Structural Monitoring Data 

 

By 

 

Yilan Zhang 

Chair: Dr. Jerome P. Lynch 

 

Structural monitoring systems are an objective and quantitative-based management tool that have 

been developed to assist structure owners with their diagnostic and prognostic structural condition 

monitoring processes. As sensing technologies mature, the deployment of permanent sensing 

arrays in structures are becoming more popular resulting in increasing volumes of sensing data. 

This thesis focuses on the advancement of structural condition assessment by developing a scalable 

data management system for the curation and analysis of large-scale data sets associated with long-

term structural monitoring systems.  A hybrid database system termed SenStore is proposed 

consisting of a relational database system for the storage of structural information and a 

hierarchical data format (HDF) repository for the storage of time history sensor measurements.   

By storing sensor data in an HDF repository, sensor data can be queried at high speeds resulting 

in greater scalability of analytics to be performed on the data.  The thesis also develops novel 
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approaches to interrogating data associated with long-term structural monitoring systems.  Data-

driven analytics are built on top of the SenStore data management platform to extract information 

associated with the performance and condition of the monitored structure from the curated data.  

Automated modal parameter extraction by stochastic subspace identification (SSI) is implemented 

to obtain the modal properties of structures monitored using accelerometers.  Long term trends in 

modal parameters are modeled by Gaussian process regression (GPR).  A load estimation 

algorithm is also proposed for highway bridges monitored using strain gages.  The data-driven 

analytics developed in the thesis are evaluated using long-term monitoring datasets from the New 

Carquinez Bridge (Vallejo, CA) and the Telegraph Road Bridge (Monroe, MI). 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Structural Monitoring and the Need for Data Management Solutions 

Undetected structural deterioration (e.g., corrosion, fracture) and extreme loading events (e.g., 

earthquake, hurricane, floods) are two major causes of structural failures in civil infrastructure 

systems (Brownjohn 2007; Çatbaş et al. 2013; Farrar and Worden 2007; Nagayama and Spencer 

2007).  In current practice, trained inspectors regularly carry out visual inspections to qualitatively 

evaluate the condition of structures to ensure their safety for public use.  To track long-term 

conditions and to detect deterioration in a timely manner, visual inspections are typically carried 

out on a regular basis (e.g., quarterly, yearly, etc.).  In the United States, highway bridges, railway 

bridges, and pipelines are just some examples of infrastructure requiring routine visual inspection 

as mandated by law (DOT 2014; FHWA 2004; US Congress 2006).  When extreme load events 

occur, inspectors inspect the structure immediately following the event to determine if the structure 

can safely resume operations.  For example, recently enacted building occupancy resumption 

programs allow structure owners to rapidly assess if their structures are safe immediately following 

a large seismic event; findings from visual inspections are a key input to re-occupancy decisions 

(BORP 2011; Çelebi et al. 2004).  While visual inspections are critical to ensuring safety, they 

have limitations including: 1) inspectors only have access to the surface of the structure (making 

subsurface damage difficult if not impossible to detect), 2) inspectors are required to interpret 
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visual cues to make conclusive statements regarding structural conditions, and 3) visual inspection 

only provides qualitative information in the form of inspector ratings (with no real quantitative 

basis to those ratings).  

 

Structural monitoring has been proposed as a potential means to help address the limitations of 

visual inspections by tracking the performance and health of a structure. Structural monitoring 

systems consisting of sensors and a communication medium (wired or wireless) are installed in a 

structure to measure structural responses to loads (e.g., dead and live loads) and environmental 

conditions (e.g., temperature, wind speed), and to communicate the response data to a data 

repository. The goal of structural monitoring is two-fold. First, structural response data is valuable 

for validating design assumptions and understanding structural performance under routine and 

extreme loads. Second, engineers can use data to quantitatively assess structural conditions over 

time. In particular, monitoring systems designed to assess structural health in an automated fashion 

are differentiated from ordinary structural monitoring systems by being termed structural health 

monitoring (SHM) systems. There are several notable deployments of structural monitoring and 

SHM systems on operational structures including on buildings (Brownjohn 2003; Çelebi et al. 

2004; Kijewski-Correa and Pirnia 2007; Nayeri et al. 2008), dams (de Sortis and Paoliani 2007) 

and wind turbines (Rolfes et al. 2007; Smarsly et al. 2012). Especially in the field of bridge 

engineering, wired structural monitoring systems have been widely adopted to monitor critical 

bridges such as long-span bridges in areas known for seismic events and wind storms (Brownjohn 

et al. 2010; Çelebi 2006; Fujino et al. 2000; Ni and Wong 2012; Wang et al. 2000; Zhou and Ou 

2005). More recently, wireless monitoring systems have emerged as a viable alternative to wired 

systems. Wireless monitoring systems use wireless communication in lieu of expensive wiring for 
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the exchange of data between sensors and a data repository (Lynch 2002, 2007; Spencer et al. 2004; 

Straser and Kiremidjian 1998). Early examples of wireless monitoring systems installed in 

operational bridges include short-term (Lynch et al. 2006; Pakzad et al. 2008; Straser and 

Kiremidjian 1998; Whelan and Janoyan 2008),  long-term (Jang et al. 2010), and permanent 

(Feltrin et al. 2010; Kurata et al. 2013; O’Connor et al. 2016) installations.  Regardless of the type 

of communication used (wired versus wireless), structural monitoring systems have the potential 

to generate large amounts of data with time.  For example, the permanent monitoring system 

installed on the Ting Kau Bridge  in Hong Kong has 227 sensing channels recording environmental 

parameters (e.g., temperature, wind speed) and structural responses (e.g., vibration, displacement, 

and strain) (Wong 2004). The bridge monitoring system collects 55 MB of data every hour which 

is equivalent to 470 GB of data every year. As structural monitoring systems reduce in cost and 

are easier to install (e.g., wireless), more structures instrumented with higher nodal densities are 

likely.   As monitoring grows,  the need to store and analyze massive amounts of sensor data grows 

in tandem.   Scalable data management technologies are needed to allow data to be securely stored 

and analyzed in an autonomous manner.  

 

The need for scalable data management solutions is further motivated by the growing popularity 

of data-driven approaches (e.g., machine learning) for structural health assessment(Farrar and 

Worden 2012). Such algorithms typically entail the processing of large sets of data to develop 

statistical models from the data. One of the earliest approaches to data-driven analytics in structural 

health monitoring was treating the problem of damage detection as a pattern classification problem.  

In contrast to traditional approaches to damage detection that are based on physical models of the 

structure (Doebling et al. 1996), supervised pattern classification methods classify damage based 
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on statistical models of a feature vector with the statistical models “trained” from previous data.  

The power of the methodology is the generality of the framework.  Different feature vectors and 

various classification methods can be used to attain a high level of performance (i.e., damage 

discrimination).   With training an integral part of the pattern classification methodology, large 

data sets are typically needed with data corresponding to the structure in its full range of 

environmental and operation conditions (EOC).  The role of data-driven analytics has rapidly 

expanded to go well beyond characterizing damage in structures. Data-driven methods have 

proven valuable for modeling complex and often nonlinear structural behavior under the range of 

EOC parameters structures are exposed to.   For example, modal parameters extracted from 

experimental data are known to be EOC dependent; advance regression methods can be adopted 

to fit nonlinear models to modal and EOC parameters(Cross et al. 2012; Hua et al. 2007; Moser 

and Moaveni 2011; Sohn et al. 2001).   With the ability to perform these analyses over large 

volumes of data, statistical models can be applied to characterize response distributions and model 

uncertainties.  In a similar fashion, the nonlinear behavior of structures can be modeled by 

nonlinear regressions methods.  A common strategy is the use of neural networks to train nonlinear 

restoring force curves from extensive amounts of experimental data(Nakamura et al. 1998; Pei and 

Smyth 2006).  Another area that benefits from data-driven analysis is the assessment of structural 

reliability which is based on probabilistic and regression analysis (Ditlevsen and Madsen 2007).   

To facilitate the continued development of data-driven analytics of structural monitoring data, 

scalable data management solutions that support high-speed, high-volume querying of large sets 

of data are needed.     
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1.2 Existing Data Management Solutions for Scientific and Engineering Applications 

The growing need for scalable data management platforms for massive sets of sensor data exists 

in many engineering and scientific domains including in water management (Goodall et al. 2011; 

Muste et al. 2012), medicine (Buetow 2005), urban planning (Tomko et al. 2012), and earthquake 

engineering (Bardet et al. 2004), just to name a few. In all of these domains, researchers typically 

seek to integrate two types of data: metadata providing information about the object of interest and 

large-volumes of temporal sensor data. The needs of the structural engineering field are no 

different.  

 

Comprehensive data management platforms that store information associated with structural 

management have been developed. In the domain of buildings, building information modeling 

(BIM) systems have flourished in recent years (Autodesk 2002; Eastman et al. 2011). Similarly, 

Bridge Information Modeling (Herman et al. 2012) or BrIM is the BIM counterpart for bridges. 

BIM (and BrIM) models are a digital representation of information associated with the design, 

construction, and operational phases of a structure’s life-cycle unified in a single database system. 

While effective in their ability to store building information, researchers have only recently began 

to contemplate the extension of BIM to store sensor data (Hajian and Becerik-Gerber 2009; Liu 

and Akinci 2009; Nader et al. 2010). These early efforts focus on storing sensor data in a separate 

database or file system. Sensor locations that are stored in the BIM platform serve as the linkage 

to the sensor data that is externally stored. This framework largely limits the type and speed of 

queries that can be done by BIM users on the data. In the domain of bridge engineering, a data 

management platform termed AASHTOWare Bridge Management (formerly known as PONTIS) 

was developed to assist bridge owners with storing bridge information (e.g., location, geometry, 
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materials) along with visual inspection data (Robert et al. 2003). AASHTOWare is designed using 

an element-based modeling ontology because bridges are rated on an element-by-element basis 

(e.g., beam, column, deck, bearing).  A strength of AASHTOWare is its ubiquitous use by bridge 

owners in the United States, leading to a widely accepted standard in the representation of bridge 

information and inspection condition data (i.e., element rating). Unfortunately, AASHTOWare 

was not designed to store sensor data associated with bridge monitoring.  

 

Several projects are underway in the structural monitoring community exploring scalable data 

management platforms for structural monitoring. These research efforts have focused on the 

storage of large sets of sensor data. For example, Koo et al. (2011) proposed a MySQL database 

system for storing structural response data, visualization tools for viewing sensor data, and 

interfaces for data processing. In a similar fashion, Smarsly et al. (2012) proposed and 

implemented an agent-based framework for storing structural monitoring data and performing 

distributed analytics. A benefit of their system is its use of software agents to automate data 

processing in a distributed computing environment such as in a wireless sensor network. Other 

notable efforts in data management for structural monitoring applications includes Kijewski-

Correa et al. (2013) who created a powerful SHM database platform for tall buildings and Zárate 

et al. (2013) who proposed a scalable cyber-environment for storage and analysis of non-

destructive evaluation (NDE) data (e.g., acoustic emission data). While these references offer 

innovative means of storing and exposing structural monitoring data for analysis, these systems 

often do not store detailed structural information regarding the structure nor link structural 

information to the collected sensor data. This in effect limits the type of analyses that can be done 

using the sensor data collected. Ultimately, asset managers will require data management systems 
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to comprehensively combine: 1) structural information (e.g., geometric details, material properties) 

herein termed structural metadata, 2) life-cycle information (e.g., inspection and rehabilitation 

history), and 3) sensor data. One system that seeks to overcome the existing fragmentation between 

structural metadata platforms (e.g., AASHTOWare) and sensing data platforms is the Wind and 

Structural Health Monitoring System (WASHMS) implemented by the Highway Department of 

Hong Kong (Wong 2004). WASHMS stores both bridge metadata (in the form of a finite element 

model) and sensing data.  

 

1.3 Modal Analysis of Monitored Structures 

One of the most common analyses conducted on structural accelerations measured by structural 

monitoring systems is modal analysis.  Modal analysis corresponds to analytical tools used to 

extract the modal parameters of structures from vibration data: modal frequency, modal damping, 

and mode shapes (Ewins 2000).  Modal parameters are intrinsic global structural properties that 

have found wide spread use in structural engineering.  For example, the spectra-based approach to 

the design of structures rely on estimates of modal frequencies and modal damping.  Modal 

properties are also used as the basis of structural performance assessment.  For example, modal 

properties are used for the updating of finite element models of the structure (Brownjohn et al. 

2003; Friswell and Mottershead 1995; Michael et al. 1997).  Finally, modal properties have been 

proposed for damage detection.  While there is some debate surrounding the efficacy of modal 

properties as damage sensitive features in civil engineering structures, significant research efforts 

have been devoted to modal-based damage detection (Doebling et al. 1998; Salawu 1997).  
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Dynamic testing methods for modal analysis of bridges are either based on controlled excitation 

or ambient excitation.  In controlled excitation, the bridge is typically closed to traffic with modal 

shakers installed to excite the bridge.  By controlling the dynamic load, accurate input-output 

dynamic models of the structure can be developed. However, controlled dynamic testing is 

expensive and can only be performed for short periods of time.  Given these limitations, dynamic 

measurement of operational structures is often performed using ambient vibration source (i.e., 

wind and traffic induced vibration).  The ambient excitation source is assumed to be broadband, 

zero mean white noise.  This assumption is often necessary to apply classical linear system theory.  

To process ambient excited vibration response data, output-only system identification algorithms 

are adopted with operational modal parameters extracted from the models produced.  System 

identification algorithms are divided into two groups: frequency- and time-domain methods.  

Frequency-domain algorithms identify modes based on Fourier spectra or power spectral density 

(PSD) functions derived from time history data  (Brincker et al. 2001; Heylen et al. 1995; 

Richardson and Formenti 1982). One common output-only system identification method 

performed in the frequency-domain is the  Frequency Domain Decomposition (FDD) algorithm 

(Brincker et al. 2001).  FDD converts time history data to the frequency-domain through a fast 

Fourier transfom (FFT).  There, PSD matrices are assembled for each discrete frequency with 

singular value decomposition (SVD) of the PSD matrix revealing modal information including 

modal frequencies and mode shapes. Time-domain algorithms do not rely explicitly on the 

frequency-domain and perform their operations in the time-domain using time-series data (Cunha 

and Caetano 2006).  Examples of time-domain system identification algorithms include time series 

models (e.g., autoregressive models),  random decrement technique (Ibrahim 1977), and sub-space 

methods, just to name a few.  A time domain output-only system identification method gaining 
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popularity in recent years is stochastic subspace identification (SSI) (Peeters and De Roeck 1999) 

which uses the oblique projection of the time history data to compute the Kalman filter state 

sequence from which the system matrices of a state-space model can be solved using a least square 

approach. The aforementioned system identification methods used for modal analysis have been 

applied widely to a broad array of bridges ranging from short-span multi-girder bridges to long-

span suspension bridges.   

 

Modal analysis can be performed on limited data sets due to short-term monitoring campaigns or 

can be applied to long-term response data collected over prolonged periods. Several projects have 

observed that the operational modal parameters obtained using vibration-based structural 

monitoring system are not constant and naturally vary within a 5% range around their mean values 

(Cross et al. 2012; Li et al. 2010; Sohn et al. 2002). Specifically, EOC parameters affecting bridges, 

including temperature and wind profiles, have been investigated for their environmental impact on 

structural modal properties. Cornwell et al. (1999) performed force vibration testing (i.e., hammer 

excitation) on the Alamosa Canyon Bridge (New Mexico), a steel girder highway bridge. They 

used a wireless structural monitoring system to collect structural accelerations during excitation 

while also recording deck temperatures during testing. A peak picking method was applied to 

extract modal frequencies using two 24-hour test data sets. Regression analysis was performed to 

model the relationship between modal frequency and temperature. Peeters and De Roeck (2001) 

performed SSI on one-year worth of vibration data collected from the structural monitoring system 

instrumented on the Z24-Bridge, a concrete box girder bridge in Switzerland. Their study revealed 

a bimodal relationship between modal frequencies (extracted from the SSI state space models) and 

temperature with a clear change in slope near the point of water freezing (0 °C); other researchers 
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have reported similar observations(Moser and Moaveni 2011).  Ni et al. (2005) reported regression 

modeling on modal frequencies and temperature using a support vector machine (SVM) applied 

to a 6-month period of monitoring data from the Ting-Kau Bridge which is a pre-stressed concrete 

cable-stayed bridge in Hong Kong. In a similar fashion, Li et al. (2010) reported on the 

environmental impact on the modal parameters of the Tianjin Yonghe Bridge, a pre-stressed 

concrete cable-stayed bridge in Tianjin, China. The relationships between modal parameters 

(modal frequencies, damping ratio and modal assurance criterion (MAC) values of mode shapes) 

with temperature and wind velocity were modeled using linear regression and artificial neural 

networks using 16 days of monitoring data. Cross et al. (2013) performed an environmental impact 

study on modal frequencies using one-year worth of monitoring data collected from the Tamar 

Bridge which is a steel truss suspension bridge in the United Kingdom. Their study used accounted 

for the impact of traffic load, thermal loads and wind loads. Conte et al. (2008) and Hong et al. 

(2011) individually performed short-term dynamic testing of the New Carquinez Bridge, a large-

scale suspension bridge in California. Using the acceleration response of the bridge steel box girder, 

both studies have identified modal parameters of the bridge using the stochastic subspace 

identification algorithm. The structural response induced by traffic and aerodynamic loads were 

also investigated to provide evidence of the EOC impact. The abovementioned bridge monitoring 

campaigns, modal frequencies and mode shapes were identified; however, bridge modal damping 

ratios were not reported in all cases due to the high uncertainties that exits in damping estimation 

by many of the system identification algorithms used. Also lacking in many of these studies are 

quantitative analysis of the contribution of each EOC variable on changes in modal parameter 

through regression modeling. Better understanding of the modal properties of different types of 
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bridges under various EOCs would better inform bridge design methods when considering seismic 

and aerodynamic loads. 

 

Modal analysis is often conducted in a manual fashion but it can also be automated for execution 

by computers.  Manual analysis is beneficial because intermediate results can be interpreted by the 

operator during the analysis.  However, when contending with large data sets, manual approaches 

are no longer scalable and automation is required.  Automation comes with some challenges 

including automating an interpretation process that yields more accurate modal results.  In the 

family of frequency-domain methods, Brincker et al. (2007) automated the FDD method by 

applying a peak picking algorithm that identifies modes based on singular values and distinguishes 

physical and mathematical modes based on the statistics (kurtosis) of each peak. Peaks with large 

kurtosis are identified as harmonic solutions. With respect to time-domain algorithms, a series of 

algorithms have been developed to automate the process of model extraction using the stochastic 

subspace identification algorithm (Häckell and Rolfes 2013; Magalhães et al. 2009; Zhang et al. 

2014). These methods take advantage of the observation that physical modes are stable (invariant) 

across different model orders of the state space model. Magalhães et al. (2009) applied clustering 

algorithms to extract real physical modes from the SSI results. In their study, SSI solutions across 

a range of system model orders are clustered based on similarity in modal frequency and mode 

shape. Each cluster represents one mode and clusters with little elements are discarded as 

mathematical modes.  While these methods aim to remove the need of an operator to manually 

determine an appropriate system order, they sometimes lack generality and can add to the 

computational costs of the algorithm implementation (especially in SSI methods where large 

number of model sizes are attempted leading to orders of magnitude higher computational costs).   
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1.4 Traffic Load Identification using Weigh-in-Motion Systems 

Weigh-in-motion (WIM) stations are a critical component of highway traffic monitoring systems 

because federal governments (e.g., Federal Highway Administration in the United States) use 

traffic data to measure the traffic demands on national highway systems and to allocate highway 

funding (FHWA 2013).  As opposed to traditional weigh station where trucks are diverted from 

the flow of traffic for weight measuring on scales, WIM stations have the benefit of measuring 

truck loads continuously at highway speeds.  WIM stations consist of load measuring sensors (such 

as bending plate, piezoelectric sensors and load cells) embedded in the road surface to measure 

axle weight, axle spacing, and vehicle speed.  Installation costs range from approximately $22,600 

per lane for piezoelectric-type WIM stations to more than $73,900 per lane for load cell-type WIM 

stations; maintenance costs also ranges from $7,350 to $10,100 per lane per year (Hallenbeck and 

Weinblatt 2004). The installation and maintenance of sensors embedded in the road surface 

requires lane closures resulting in distribution to traffic; this adds cost and complexity to WIM 

station installation and maintenance.  

 

An alternative to installing WIM stations in the road network is to monitor bridges where bridges 

serve as a crude WIM station.  So called bridge WIM (or BWIM) technologies first emerged as a 

concept in the late 1970’s (Moses 1979).  Due to the many advances in sensing technologies over 

the past two decades, the concept of BWIM is re-emerging as a lower cost and potentially easier 

to maintain WIM platform.  BWIM utilizes an existing bridge structure and uses it as a linear 

system to compute loads based on structural responses.  Compared to bending plates or load cells 

that must be installed in the road, the cost of installing sensors such as strain gages on a bridge is 

much lower. Additionally, with the sensors installed underneath the main bridge deck in many 
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instances, installation and maintenance of the BWIM sensors does not require traffic interruptions.  

An early BWIM system consisting of road surface axle detectors and strain gages on steel girders 

was proposed in 1979 by Moses (Moses 1979).  The road surface axle detectors determined the 

axle counts while the girder strain measurements were used to estimate gross vehicle weight.  Later, 

Snyder and Moses (1985) expanded the system to extract axle weight by solving a linear regression 

between theoretical influence lines and the measured strain response of the bridge.  While their 

work advanced BWIM methods, the system still required the use of axle detectors in the road 

(which can be costly to install) and relied on modeling to derived accurate influence lines.  More 

recently, a contactless sensing method was presented using camera imagery to accurately measure 

bridge displacements under truck loading (Ojio et al. 2016);  gross truck weight and axle weight 

can then be extracted from span displacements using Moses’s algorithm (Moses 1979).  

 

A second generation of BWIM concepts that are extensions of Moses work emerged in Europe in 

the 1990’s. These methods aimed to improve the accuracy of load estimates (Jacob and O’Brien 

1998; Jacob et al. 2001) . For example, O’Brien et al. (2006) proposed an algorithm to calculate 

accurate influence lines from experimental sensing data as opposed to reliance on modeling to 

derive theoretical influence lines.  Their algorithm extracted the single-axle influence lines directly 

from bridge strain responses that correspond to calibrated multi-axle trucks driven over a bridge. 

Rowley et al. (2009) later applied Tikhonov regularization (Tikhonov and Arsenin 1977) to 

improve the traditional method by Moses (Moses 1979).   The inversion methods in Moses’s 

approach can be ill-conditioned leading to inaccurate estimates for axle weights; hence, Rowley et 

al. (2009) introduces a regularization term on the norm of the axle weight vector to improve the 

least square solution.   Other researchers have proposed BWIM methods based on influence 
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surfaces (Quilligan et al. 2002).  In these methods, two dimensional influence surfaces enable 

multiple vehicles to be identified in a more accurate manner.   

 

Another set of BWIM concepts have been proposed based on the coupled dynamics between 

bridges and moving vehicles; such methods are often classified as moving load identification 

methods. The earliest moving load identification algorithms modeled bridge spans as second-order 

dynamic beam systems. Strain or acceleration response of the bridge are used as the system output 

and truck axles are modeled as the system input using step functions.  One approach in the time-

domain is to solve the equations of motion by modal superposition methods in order to extract the 

axle loads of one or two axle vehicles moving at constant speed over a flexible beam (Law et al. 

1997). Another approach is proposed in the time-frequency domain method where axle loads are 

identified in the modal coordinate space (Law et al. 1999).  Gonzalez et al. (2008) expands on 

prior moving force identification methods to account for two dimensional distribution of moving 

loads. All of these moving force identification algorithms are reliant on modal parameters; hence, 

accurate modal parameters are necessary to ensure these methods are accurate in identifying 

moving loads.    This approach has a number of challenges. First, to be accurate, model parameters 

should be found experimentally. Second, experimentally derived modal parameters have 

uncertainties associated with them (especially modal damping estimates).  Finally, modal 

properties are well known to exhibit high sensitivity to EOC variations (Brownjohn et al. 2010; 

Hua et al. 2007; Li et al. 2010; Moaveni and Behmanesh 2012).   
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A major obstacle in BWIM development is the difficulty associated with algorithm validation. 

Validation must be conducted under in-service conditions with different types of trucks with 

varying load configurations required to test the robustness of the algorithms. Some of the 

aforementioned studies adopted validation procedures based on the use of calibrated trucks; but 

this controlled truck loading strategy prevents large variations in loads that can be observed on the 

bridge. Some projects were able to use regular truck traffic with trucks later weighed at a weigh 

station.  Weighing trucks that crossed a bridge can be a major effort that takes time and resources.    

 

Some long-term BWIM studies have been conducted on operational bridges.  The WAVE project 

(Jacob et al. 2001) reported on BWIM system instrumentation on the Autreville Bridge, a three 

span orthotropic steel plate highway bridge located in France. A total of 21 strain gages were install 

in the bridge and 44 trucks were randomly selected and pulled over after crossing to measure their 

static axle weights over a two year period. The 1-dimensional algorithm achieves D+(20) class, 

meaning 95% of the identified gross weight is within ±20% error, and 2-dimensional algorithm 

achieves C(15) accuracy. Two short 2-span slab bridges of skewness 7°  and 26°  were also 

instrumented and tested using calibrated trucks. The systems achieved class D+ and class C 

accuracy, respectively, where using COST323 Management Committee accuracy ratings (Jacob 

and O’Brien 1998). A D+ and C rating are generally good rating with the truck weight estimates 

within 20 and 15% of their true static gross weights respectively. More testing results on different 

bridges can be found in the WAVE project report (Jacob et al. 2001). Commercial bridge WIM 

software termed SiWIM was developed from this project and is distributed by Cestel 

(http://www.cestel.eu/).  

 

http://www.cestel.eu/
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In the United States. The University Transportation Center for Alabama has reported its study of 

BWIM using SiWIM applied to the I-459 bridge which is a 3 span prestressed concrete highway 

bridge (Hitchcock et al. 2012). During a 2-day in-service validation test, 24 trucks were pulled out 

of the traffic with SiWIM identifying15 out of the 24 trucks with class C accuracy for gross weight 

and class E for axle accuracy (class E characteristic weights to within 30% of static gross weight). 

Wall et al. (2009) reported a field instrumentation of BWIM on a single-span steel girder bridge 

with 11.5° skewness and 2.56% slope along I-91 in Connecticut. A nearby (0.8km) weigh station 

was used to obtain the truck static weight data for comparison. In total, 117 truck events were 

recorded and the bridge WIM system achieved a 95% confidence interval bounded by −27.3% 

and 23.4% error on estimated fross weights for 109 trucks in the slow lane and bounded by 

−39.2% and 21.7% for 8 trucks in the passing lane. Collectively, all of these projects illustrate 

the potential for BWIM. The studies identify optimal selection criteria for bridges, the algorithm 

options for different systems, and highlight methods to improve the workability of on-site 

implementation and data collection. At the same time, several aspects of BWIM still need 

improvement, such as needs for dense sensor arrays, measurement sensitivity to truck path, the 

weight identification accuracy and the high costs of system calibration and validation. 

 

1.5 Goals and Objectives 

The previous sections highlight some of the advances made in the management and analysis of 

structural monitoring data.  While advances have been made, the previous sections also illuminate 

areas where additional research is needed.  Because data management systems are the foundation 

upon which analytical tools are implemented, the overarching goal of this thesis to advance the 

state-of-the-art in monitoring data management to ensure powerful analytical tools can be 
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implemented in an autonomous fashion on large monitoring data sets. Data management systems 

that can accommodate the increasing amounts of data are needed, especially as structural 

monitoring systems gain popularity as a structural asset management tool.  An integral part of the 

thesis goal is to also develop a suite of analytical tools that can query data from the data 

management system to extract actionable information for system end users (e.g., asset managers 

and owners).   

 

The specific objectives of the thesis can be summarized as follow: 

 Develop a scalable and secure data management system based on the design of a novel 

hybrid database architecture: a database server that supports high speed queries on 

monitoring data will be designed to store and curate relational data pertinent to the structure 

in a relational database while storing time history sensor data in a hierarchical data format 

(HDF) repository.     

 Develop a relational database ontology compatible with existing bridge management data 

standards: the relational database ontology will be designed to facilitate a broad array of 

analyses on data (e.g., finite element modeling) while ensuring representations of data are 

consistent with element-based representations of the structure.  

 Validate the performance of the data management system using data from long-term 

wireless bridge monitoring systems:  the performance of the data management system will 

be validtaed by using it to store and process data associated with two long-term wireless 

monitoring campaigns on the Telegraph Road Bridge (Monroe, MI) and the New 

Carquinez Bridge (Vallejo, CA).  In addition to validating the data management system, 
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both monitoring systems provide opportunities to learn many valuable lessons on how to 

deploy wireless monitoring systems in harsh field settings.    

 Analyze long-term bridge monitoring data to model the influence of EOC parameters on 

modal parameters: a fully autonomous implementation of the SSI method for modal 

analysis will be developed to process long-term monitoring data from the New Carquinez 

Bridge to discover relationships between modal parameters (e.g., modal frequency, modal 

damping, and mode shapes) and EOC variations.    

 Develop a data-driven approach to BWIM by estimating truck load information using long-

term bridge monitoring data:  a robust data-driven analytical framework will be developed 

to use the strain response of structural components of steel girder bridges to estimate the 

parameters associated with vehicular loads (e.g., number of axels, axle weights, and vehicle 

speed).  The framework proposed is validated on the Telegraph Road Bridge using a WIM 

station in close proximity to the bridge as a baseline for assessing the framework.   

 

An outline of the thesis is presented in Figure 1.1. The thesis can be divided into three major parts. 

First, two testbed bridges that will be used extensively for validation throughout the thesis are 

introduced.  In Chapter 2 (Long-term Wireless Monitoring Systems on the New Carquinez Bridge 

and the Telegraph Road Bridge) introduces the Telegraph Road Bridge in Monroe, Michigan and 

the New Carquinez Bridge in Vallejo, California; both bridges have wireless monitoring systems 

installed. A portion of the chapter will be devoted to a discussion on the lessons learned from these 

two long-term wireless monitoring campaigns.  With wireless monitoring still a relatively new 

technology that has only been deployed on a small number of structures, a distillation of what does 

and doesn’t work is a valuable contribution of the chapter. With two testbed bridges selected, the 
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second part of the thesis focuses on data management of sensor data. In Chapter 3 (SenStore: a 

Scalable Cyberinfrastructure Platform for Implementation of Data-to-Decision Frameworks for 

Infrastructure Health Management), a cyberinfrastructure platform termed SenStore is presented.  

SenStore has been developed for the management of the heterogeneous set of data associated with 

bridge monitoring.  A hybrid database architecture is presented consisting of a relational database 

for the storage of metadata (e.g., structural geometry, materials, coordinates, elements, sensors, 

sensor locations, sensor parameters) associated with a bridge and its monitoring system and a non-

relational data repository (i.e., HDF5) for the storage of large tracts of time history sensor data.   

The third part of the thesis is devoted to the data analytics that ca nbe implemented on top of 

SenStore, For example, the performance of SenStore is validated using long-term monitoring data 

from the Telegraph Road Bridge in Chapter 4 (Case Study: Automated Modal Analysis and Finite 

Element Model Updating using SenStore). The Telegraph Road Bridge case study demonstrates 

the capability of SenStore in enabling automated modal and finite element analyses. Bayesian 

model updating using adaptive Markov Chain Monte Carlo (MCMC) simulation is applied to 

update finite element model parameters using temperature normalized modal parameters.  With 

the capabilities of SenStore established and validated, the thesis then turns its attention to the 

development of two novel analytical frameworks for the processing of long-term bridge response 

data.  In Chapter 5 (Automated Long-Term Modal Analysis of Suspension Bridges under Varying 

Environmental Conditions using Wireless Structural Monitoring Systems) automated modal 

analysis for the modeling of modal dependencies on EOC parameters for long-span bridges is 

developed. The SSI algorithm is adopted for the identification of output-only state-space models 

from which modal frequency, modal damping ratio and mode shapes are extracted.  A rigorous 

framework that standardizes SSI algorithm parameters (e.g., size of Hankel matrix and model order 
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selection) is proposed to ensure the SSI method is applied in a consistent manner across the large 

data set. Consistency in the modal results is vital for aggregation of modal properties over long 

periods of observation for regression against EOC parameters.  Ridge regression and Gaussian 

process regression (GPR) are applied to model relationships between modal parameters and EOCs. 

Chapter 6 (Data-driven Regression Analysis for Bridge Weigh-In-Motion) presents a new approach 

to BWIM which applies regularized regression analysis on the strain response of a critical bridge 

element to extract reliable estimates of truck load parameters including truck speed, axle counts 

and axle weights.  The proposed BWIM algorithmic framework is applied to the Telegraph Road 

Bridge for which load data recorded at a traditional WIM station in close proximity is readily 

available.  Finally, the thesis concludes with Chapter 7 (Conclusions and Future Work) which 

summarizes the key thesis findings and highlights areas where future work is needed to further 

progress data-driven analytics for structural asset management applications. 

 

Figure 1.1, Thesis outline: chapter layout and key objectives 
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CHAPTER 2 

LONG-TERM WIRELESS MONITORING SYSTEMS ON THE NEW CARQUINEZ 

BRIDGE AND THE TELEGRAPH ROAD BRIDGE 

 

2.1 New Carquinez Bridge 

The New Carquinez Bridge (Figure 2.1), also named the Alfred Zampa Memorial Bridge, is a long-

span suspension bridge that spans over the Carquinez Strait between Crockett, CA and Vallejo, 

CA.  The bridge carries four lanes of westbound traffic on I-80 between Sacramento and San 

Francisco.  The bridge, whose construction was completed in 2003, is the first suspension bridge 

to be constructed in the United States since 1973. The bridge design consists of a longitudinally 

continuous closed orthotropic steel box girder 29 m (95 ft) wide and 3 m (9.8 ft)  deep with a cross-

section designed to be aerodynamically stable (OPAC 2016).  The steel box girder and suspension 

 

 
Figure 2.1, Photo of the New Carquinez Bridge in Vallejo, CA 
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cables are supported by two concrete towers that are designed to exhibit high ductility under the 

high seismic demands common for this area of California.  The bridge span is divided into three 

segments that measure 147 m (482 ft), 728 m (2388 ft) and 181 m (594 ft) when going from south 

to north (Figure 2.2).    The main suspension cables consist of 8,584 carbon steel wires (zinc coated) 

stranded together to form a 51.2 cm (20 in) diameter cable encased in a corrosion protective skin.  

The vertical load of the deck is transferred to the suspension cables using vertical suspenders that 

are 12.4 m (40.7 ft) apart along both sides of the bridge span.  The bridge is designed for a service 

life of 150 years with wind and seismic loading considered.  The design wind loads were based on 

wind speeds corresponding to a 100 year return period and drag, lift and flutter coefficients derived 

from wind tunnel tests of the bridge span and tower cross sections (OPAC 2016).  The seismic 

design was based on nonlinear time history analysis of the bridge using safety evaluation 

earthquake (SEE) and functional evaluation earthquake (FEE) records with return periods of 1000-

2000 and 285-300 years, respectively (OPAC 2016).  Soil-structure interaction and spatial 

variations in the earthquake record were considered during the nonlinear time history analysis.       

  

 
Figure 2.2, Sensor instrumentation layout of the Narada wireless monitoring system on the 

New Carquinez Bridge 
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A permanent seismic monitoring system was installed on the New Carquinez Bridge by the 

California Strong Motion Instrumentation Program (http://www.conservation.ca.gov/cgs/smip) 

shortly after construction.  The CSMIP monitoring system consists of 76 force balance 

accelerometers (installed along the main span, towers, and foundations) and 1 anemometer all 

wired to a central data acquisition system (Hong et al. 2011).  The wired monitoring system is 

operated based on triggering from ground motions but manual data collection is possible.  A 

separate wireless structural monitoring system was also installed on the New Carquinez Bridge in 

2010 with iterations to the monitoring system configuration occurring through 2011 (Kurata et al. 

2013).  The wireless monitoring system is designed to collect data on a regular basis (e.g., based 

on a schedule) but is not designed to be triggered based on motion.  The bridge response data 

collected by the wireless monitoring system is the primary focus of this thesis.   

 

The NCB is an ideal bridge for instrumentation and study. For example, the NCB offers good 

accessibility for sensor instrumentation. First, there are travelers (i.e., movable platforms) 

underneath the bridge girder which makes it possible to install wireless sensors along the girder. 

Second, there are elevators inside the concrete tower which permits equipment to be carried to the 

top of the towers. Third, there are electrical outlets at certain locations in the bridge which provides 

substantial convenience during each stage of the installation.  

 

The bridge is subject to live loads such as wind load, heavy traffic load and occasionally seismic 

load. The different excitation sources and the induced response of the bridge provides valuable 

data to study the behavior of large-scale suspension bridges. This chapter will describe the design 

http://www.conservation.ca.gov/cgs/smip)
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and installation of the wireless monitoring system installed on the NCB by the thesis author as part 

of this thesis.  

  

2.1.1 Long-Term Wireless Structural Monitoring System 

2.1.1.1 System Overview 

The wireless monitoring system was designed based on the Narada wireless sensor platform  

developed at the University of Michigan for structural monitoring applications (Swartz et al. 2005).  

Narada support data acquisition on 4 sensing channels with a 16-bit analog-to-digital conversion 

(ADC) resolution.  The platform communicates data through a power amplified (10 dB gain) 

IEEE802.15.4 wireless transceiver providing a communication range of 500 m line-of-sight and a 

communication data rate of 250 kbps. Narada has 128 kB of flash memory for program storage 

and an additional 128 kB of on-board random access memory for temporary data storage.  When 

Narada is active including transmitting data at the maximum output power setting on the 

transceiver the node consumes 375 mW of power; this power consumption can be reduced to 215 

mW by placing the radio into a low-power sleep mode. Narada has been successfully used to 

monitor (in both permanent and temporary capacities) a variety of structures including bridges 

(O’Connor et al. 2016), buildings (Kim and Lynch 2012), ships (Swartz et al. 2012) and wind 

turbines (Swartz et al. 2010).       

    

The long-term wireless structural monitoring system for the NCB was designed to record bridge 

responses (i.e., strains, displacements and accelerations) and environmental conditions (i.e., 

temperature, wind speed and wind direction).   In total, 35 Narada sensor nodes collecting data 
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from 76 sensing channels (Figure 2.2) were installed.  To measure the vertical and transverse 

motion of the orthotropic steel deck along its length, 19 tri-axial accelerometers (MEMSIC 

CXL02TG3) were installed.  At the top of each tower, two tri-axial accelerometers (MEMSIC 

CXL02TG3) measuring one vertical, one transverse and two longitudinal degrees-of-freedom were 

also installed.   To measure strain of the orthotropic steel deck, metal foil strain gages (Tokyo 

Sokki Kenkyujo FLA-6-11-3LT) were mounted to the interior surface of the box girder at 3 

locations: over the north tower, over the south tower, and approximately at mid-span.  At each 

location, three strain gages were installed to measure longitudinal strain on the top and bottom 

girder surfaces and transverse strain on the top surface.  For thermal compensation, three 

thermistors (National Semiconductor LM35DT) were installed to measure the top and bottom 

girder surface temperatures and the ambient internal air temperature of the girder.  At the girder 

midspan, one additional strain gage was installed at a bolted plate connection but the bottom girder 

temperature was not measured. To capture relative longitudinal displacement of the steel 

orthotropic deck relative to the concrete towers, three string potentiometers (Celesco SP2–25) were 

installed: two at the south tower and one at the north tower.   In addition, three weather stations 

were installed each consisting of one anemometer (NRG Systems 40H).  Also included at each 

weather station were two additional environmental sensors consisting of either a wind vane (NRG 

Systems 200P), thermistor (National Semiconductor LM35DT) or humidity sensor (TDK CHS-

UPS).   In total, 46 channels of acceleration, 10 channels of strain, 3 channels of displacement, and 

17 channels of environmental parameters (i.e., wind speed, wind direction, temperature, humidity) 

have been installed.   
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Figure 2.3. Fully packaged Narada wireless sensing unit: 1) Narada with amplified 

IEEE802.15.4 radio, 2) anti-aliasing signal conditioning board, 3) solar charge controller, 4) tri-

axial accelerometer, 5) rechargeable NiMH battery pack, 6) directional antenna and 7) 

connection to solar panel 

 

Each Narada node (Figure 2.3) has one power amplified long-range IEEE802.15.4 transceiver, 

one directional antenna, and up to four sensing transducers (e.g., accelerometer, strain gage, etc.) 

attached.  Signal conditioning boards designed for each transducer including anti-aliasing filters, 

amplifiers, and Wheatstone bridge circuits are adopted to condition sensor outputs before 

interfacing to the Narada sensing interface.  All Narada nodes (except those measuring strain and 

displacement) are powered by 5 AA rechargeable nickel-metal hydride (NiMH) batteries 

(Energizer NH15-2300) with a net nominal voltage of 6 V and 2300 mAh capacity. The node 

battery pack is continuously charged during daylight hours using a single 5W solar panel (UL 

Solar 5W 12V) and a custom solar charge circuit.  The Narada nodes collecting strain and 

displacement are plugged directly into the bridge electrical system and hence do not have batteries 

or solar panels.  Each node was enclosed within a weatherproof polycarbonate enclosure (Bud 
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Industries PN-1324-C) but the directional antenna, sensing transducer and solar panel are outside 

of the enclosure.   The nodes installed along the length of the girder are magnetically mounted to 

the steel box girder while the nodes on the top of the towers are epoxy bonded to the concrete 

surface.   

 

The wireless monitoring system is divided into three sub-networks (termed the north, south and 

tower sub-networks) with each sub-network consisting of a collection of Narada nodes 

communicating data to a single base station in a hub-spoke network topology.  In Figure 2.2, the 

nodes assigned to the north, south and tower sub-networks are labeled with the number NX, SX, 

and TX, respectively (where X denotes the node number).  Each base station consists of a single-

board PC104 computer (WinSystems) that operates the Ubuntu 10.04 LTS operating system.  The 

base stations each have a IEEE802.15.4 transceiver for communication with the Narada nodes and 

a 3G cellular modem for communication with the Internet via a cellular network (Sprint). The 

north and south sub-network base stations are powered by the bridge electrical system while the 

tower base station is powered by a solar panel (UL Solar 110W 12V) that charges a 12V sealed 

lead acid battery (AGM SLA-12V35) using a charge controller (SunSaver 10L).  The base stations 

were packaged in a weatherproof polycarbonate plastic enclosure (BUD Industries NBB-15253) 

and installed on the bridge.  The system is capable of performing scheduled or remote manual data 

acquisition.  Based on a preliminary dynamic study of the bridge (Kurata et al. 2010), data 

acquisition is scheduled to collect data at  20 Hz for 8 minutes. During favorable solar charging 

conditions (i.e., daylight hours) the system performs sensing hourly or every other hour; otherwise, 

sensing is performed every four hours to limit power consumption. The detailed power 

consumption breakdown is summarized in Table 2.1. The energy demand of the node is 903 mAh  
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Table 2.1 Power consumption of Narada node 

 Duration 
Power 

(mW) 

Voltage 

(V) 
Consumption (per day) 

Active 
8 min/hour ×12 

hours = 96 min ** 375 6 
96 min*375 mW/6V/60 min/hour  

= 100 mAh 

Sleep 

24 hours × 60 

min/hour – 96 min 

= 1344 min 

215 6 
1344 min*215mW/6V/60 min/hour  

= 803 mAh 

Total    100 mAh + 803 mAh = 903 mAh 
** Assuming sensing every 2 hours for 8 minutes 

 

per day. The battery pack included with each node has a capacity of 2300 mAh. Hence, the battery 

is capable of powering the node for 2.5 days if no solar power was available. 

 

2.1.1.2 Phase One Installation (October 2010) 

The first wireless sub-network was installed underneath the girder box along the north side of the 

bridge in June 2010 as shown in Figure 2.2. In this system, 11 Narada nodes are installed evenly 

along the north half of the girder. 10 Narada node were connected to tri-axial accelerometers 

(MEMSIC CXL02TG3) to measure the vibration response of the bridge. As previously mentioned, 

each Narada node along with its accelerometer, signal conditioning board, battery pack and solar 

charging circuit is packed into a weather proof enclosure. The Narada node package is mounted 

to the bottom surface of the bridge girder using rare earth magnets (Figure 2.4 (a)). The directional 

antenna of the node is then attached to the bottom surface of the enclosure to allow the antenna 

direction to be adjusted easily. Another Narada node was used to collect the weather profile of the 

bridge from anemometer, wind vane and humidity sensor; the detailed installation is shown in 

Figure 2.4 (b). Each node is recharged by a 3.3W solar panel. The solar panels are magnetically 

mounted on the deck surface with a 60° angle facing south as shown at the bottom of Figure 2.4 
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(b). About 20 ft wire (gauge 18) is used for each solar panel to convey the power to the Narada 

node located on the bottom surface of the girder.  

 

 
 

(a) (b) 

  

(c) (d) 

Figure 2.4 Photos of sensor instrumentation: (a) accelerometers installed underneath the steel 

box girder, (b) anemometer and wind vane installed on the suspender and the solar panels 

installed on the deck surface, (c) string potentiometer installed at the wind tongue and (d) strain 

gages installed inside the girder box 
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2.1.1.3 Phase Two Installation (January 2011) 

The second and third wireless sub-network were installed during January 2011 (Figure 2.2). The 

second sub-network was installed along the south side of the bridge girder and the third sub-

network includes Narada nodes installed on the top of the north and south concrete towers to 

capture the tower dynamic properties. Narada nodes and server stations are configured to be 

consistent with the first sub-network. For example, 9 Narada nodes with tri-axial accelerometers 

are installed along the main deck in a configuration mirroring the north subnetwork (see Figure 

2.2). The third subnetwork consisted of the two tower tops with two tri-axial accelerometers 

installed on each tower top. Another two weather stations are also installed at the south side and 

on the top of the north tower (and assigned to the south and tower subnetworks, respectively). 

Therefore, weather profile (wind speed, wind direction, humidity, temperature) of the bridge is 

measured at three different locations. The south subnetwork is serviced by a base station with 

cellular service at the south tower; similarly, a third base station is installed on the north tower for 

the tower subnetwork. To achieve the time synchronization between the three subnetworks, the 

three Narada base station are configured to use the Network Time Protocol (NTP). The three 

subnetworks are scheduled to take measurement at hour 1, 5, 9, 13, 17, 21 every day for 8 minutes 

at 20 Hz.  

 

2.1.1.4 Phase Three Installation (May 2012 to March 2013) 

More Narada nodes with different transducers are added into the long-term monitoring system 

between May 2012 and March 2013, in order to capture more bridge responses. Three string 

potentiometers (Celesco Position Transducer SP2-12) are installed at the wind tongue of the bridge 
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as shown in Figure 2.4 (c); two at the south tower (east and west sides) and one at the north tower 

(west side) to measure the displacement of the steel box girder in the longitudinal direction 

(relative to the towers). In addition, 10 metal foil strain gages (Tokyo Sokki Kenkyujo FLA-6-11-

3LT) are installed inside the girder box at three locations near the north tower, near the south tower 

and near the middle of the center span, measuring longitudinal and transverse strains on the top of 

the girder box (Figure 2.4 (d)) and only longitudinal strain on the bottom of the girder box. The 

strain gage locations along the girder length are carefully chosen to capture points of maximum 

flexural moments on the girder. Thermistors are installed on the steel surface near the metal foil 

strain gages for thermal compensation and to measure the structural temperature. During phase 

three, the measurement frequency of the monitoring system is increased to acquire more data at 

different time of the day. The system is configured to collect data every hour from 06:00 to 20:00 

and every three hours from 20:00 to 06:00. Each measurement period is for 8 min and is sampled 

at 20Hz just as before.  

 

After examining the first two years (2010 to 2011) of monitoring system performance, some 

hardware upgrades were applied during the phase three installation. These upgrades aimed to 

achieve a more robust system performance and better signal quality. The major weakness of the 

system during the first two years was the performance of the Narada nodes during winters. In the 

San Francisco Bay Area, solar radiation from sunshine is usually adequate all year round. However, 

there is a significant rain season in the area during the winter; during this time, the solar panels 

may not be able to get enough energy. In this case, the Narada nodes may still operates, but with 

very low energy supply. If the energy supply gets too low, operation may malfunction leading to 

the loss of wireless communication until the node can reset. The node design used in installation 
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phase one and two only allowed for reset by physically turning the node off and on using the power 

switch. To avoid this issue, a low voltage cut-off (LVCT) solar charge controller is designed and 

implemented during phase three to prevent the Narada nodes from malfunctioning when there was 

a low power supply. The LVCT circuit has two major components, an integrated circuit (IC) 

(Microchip MCP100) and a diode. The MCP100 compares the battery pack voltage and cuts off 

the load (i.e., Narada node) when the voltage is less than 5.7V. The MCP100 also has hysteresis 

built-in by turning the load back on when the battery voltage increases to 6.2 V. The MCP100 

protects Narada nodes from a low energy supply by temporarily sacrificing the sensing routine, 

but this is acceptable because it dramatically improves the system long-term durability. In 

additional, the solar panels are upgraded during phase three to 5W solar panels; these new panels 

are prepackaged in aluminum frame for mechanical mounting. 

 

Also during phase three, an active 4-pole butterworth analog signal filter board with adjustable 

amplification is designed to replace the previous passive filter (Figure 2.3). The new signal 

conditioning board largely reduces the noise level of measurement signals by rejecting below 

0.001 Hz and above 20 Hz. The new signal conditioning board is designed to be physically 

compact to fit into the Narada node enclosure. 

 

2.1.2 Review of System Performance and Observed Vulnerabilities  

The system performance of the long-term wireless monitoring system on the NCB improved 

largely over five years (2011-2015) via the upgrade of both software and hardware of the system 

over its years of service. Figure 2.5 shows the availability of each node of the bridge monitoring 
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system from January 1st 2011 to December 31st 2015. Each dot in the figure is when a node logs 

data to the base station; absence of a dot implies a node was unsuccessful in reporting its data. 

During the phase one and two installations, the system performance was not as desired leading to 

many lessons learned and corresponding system changes. However, after the implementation of 

various hardware and software improvement in 2012, the system performance was largely 

improved, reaching 85% node availability for long periods of time, especially during the non-

winter months. Even still, regular maintenance trips have been needed to repair failed nodes and 

to upgrade the base station firmware. The following paragraphs highlight some of the key lessons 

learns. 

 

System wide subnetwork outages are usually caused by failure of the base station due to a 

connection problem with the wireless radio (i.e., the computer failed to register the USB Narada 

receiver correctly or when the receiver was damaged due to external disturbances such as birds). 

Figure 2.6 (a) shows a damaged receiver radio board. The receiver radio board coaxial connector 

for the antenna was soldered on to the radio board top. As external forces (e.g., birds or accidental 

human operation) was applied on the coaxial cable, the connector has a tendency to pull off the 

radio board leading to the disconnection of the antenna (and the loss of communications). Similar 

damage can also happen to coaxial cable extension connector where it enters the antenna base as 

shown in Figure 2.6 (b). Again, this type of damage leads to the loss of wireless communications 

between the base station and the nodes. 
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Figure 2.5, Narada node and server performance plot 
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(a) (b) (c) 

  

 
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 2.6, Photos of monitoring system failure modes: (a) broaken raido connector, (b) 

broken antenna extension, (c) water condensation inside Narada node enclosere, (d) severe 

water damage to Narada node, (e) corroded connector, (f) solar panel broke off from the 

brakcet,  (g) new solar panel mechanically bonded to brackets, (h) over heated battery pack, 

(i) reflective shield for Narada node, (j) corroded maganet on the tip of a scewdriver and 

corroded bridge surface, (k) string potentiometer braket broke off from adhesive bonding and 

(j) broken string from the potentiometer 
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After the first phase of installation, some nodes failed over time due to two reasons: water damage 

and low power. While water tight enclose are used to package the nodes, water damage occurred 

during the first winter. Water was able to penetrate the enclosures through glands installed on the 

side of the enclosures that allow wires for the solar panel and antenna to enter. To solve this issue, 

wires entering the enclosure were later placed in a manner to ensure gravity pulls water away from 

the enclosure. In addition, all glands were also epoxied to enhance their water tightness. A second 

mode of water intrusion occurred if the water tight enclosures were packaged in a humid 

environment. Humidity inside the enclosure can lead to condensation inside the enclosure. In 

Figure 2.6 (c), you can see condensation on the top surface of the enclosure. During later 

installation silica gel packets were included inside each enclosure to absorb water from humid air. 

Irrespective of origin, the results of water intrusion can be catastrophic including corrosion of the 

circuits (Figure 2.6 (d)) and wire connectors (Figure 2.6 (e)).  

 

Some of the nodes also failed after the first phase of installation due to power issues. During the 

winter when there is less solar power (due to shorten days and inclement weather), the batteries of 

the nodes are not replenished by the solar panels. This can result in an eventual decrease in battery 

voltage. When the battery voltage drops below the required voltage of the node’s regulator, the 

microprocessor is affected in a manner that requires a physical turning off and on of the unit to 

resume normal operations. Even if the battery voltage returns to a higher, acceptable level, without 

a manual cycling of the power the unit will not operate. To remedy this problem, a low-voltage 

cut-off circuit was added to the node design which eliminated this issue. The low voltage cut-off 

circuit detects when the battery voltage is approaching the lower threshold of the regulator and 

cuts power to the Narada board. When voltage rises, the circuit turns the Narada board back on. 
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During the third phase of installation, new units used the low-voltage cut-off circuit and previously 

deployed units were retrofitted with the circuit.  

 

Another issue encountered in 2015 was the loss of solar panels. The solar panels were attached to 

the angled brackets initially using glue. Under prolonged exposure to the weather, the glue broke 

down allowing the solar panels to disengage from the brackets. Under strong winds, the panels 

would blow off the bridge tearing the wire connecting the panels to the nodes enclosures. Figure 

2.6 (f) shows a flipped solar panel that debonded from its bracket. A total of 10 panels were lost 

in 2015 due to this problem. At that time, all of the panels were retrofitted with a bolted connection 

to their brackets. A picture of the improved bolted connection of the solar panel to the bracket is 

shown in Figure 2.6 (g).  

 

It was found that direct exposure of the battery packs to sunlight during hot summer months can 

lead to catastrophic destruction of the batteries. Figure 2.6 (h) shows on the right a damage battery 

pack and on the left a new battery pack. To solve this problem, Narada enclosures on the top 

surface of the bridge with direct exposure to sun were fitted with a thin reflective plate. Figure 2.6 

(i) shows on such Narada node with reflective surface added. This repair was performed during 

the third installation phase.  

 

In 2014, the rare-earth metal magnets used to bond the Narada nodes and solar panels to the steel 

bridge surface were found corroded. The corroded magnets not only weaken the bonding force, 

but also cause damage to the bridge painted surface, defeating the original purpose of using 



38 

 

magnets instead of adhesive bonding. Figure 2.6 (j) left shows a corroded magnet and right shows 

a damage bridge paint surface, bare metal being exposed after removing the magnet. This problem 

was solved by adding a thin layer of tape (e.g., electric tape) between the magnets and the bridge 

surface preventing the magnets corrosion spreading to the bridge surface. 

  

Transducers are subject to physical damage as well. Among the various sensors installed on the 

NCB, string potentiometers have failed several times. The base of the string potentiometer is 

mounted on the wind tongue and the end of the string is mounted to the shear key. The string 

potentiometer has failed due to two different failure mechanisms. First the bracket used to hold the 

string to the shear key has debonded resulting in the string returning to the potentiometer housing. 

Figure 2.6 (k) shows the failed bracket end. More epoxy has been used to resolve this issue. A 

second failure mechanism encountered is due to the birds sitting on the potentiometer string. The 

location of the string potentiometer is a known nesting area for birds as is evident from bird 

droppings near the shear key. No immediate remedy has been made as this failure mechanism has 

only occurred once. Figure 2.6 (l) shows the failed string potentiometer due to a bird. 

 

2.2 Telegraph Road Bridge 

The second bridge to be extensively used in this thesis is the Telegraph Road Bridge (TRB). The 

TRB is a highway bridge that carries three lanes of I-275 traffic over Telegraph Road in Monroe, 

Michigan. The bridge was built in 1973 and has a total length of 68 m (224 ft) as shown in Figure 

2.7.  The bridge consists of three spans with one main span of 43 m (140 ft) supported by two 

abutment spans that are each 13 m (42 ft).  The bridge has a skewed (57°) reinforced concrete deck 
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supported by seven steel girders. The main bridge span and the abutment spans are connected 

through pin and hanger assemblies (as annotated in Figure 2.7) at each of the seven girders. These 

assemblies consist of steel link plates pinned at one end to the main span and the abutment span at 

the other; these assemblies fundamentally transfer vertical load from the main span to the abutment 

spans through axial tension in the plate.  The pin and hanger detail was a popular design approach 

for steel girder bridges up to the 1980s due to their easy design and low cost construction.  The 

bridge sees large loads including heavy trucks associated with the automotive manufacturing 

industry prevalent in the area. The location of TRB also exposes it to harsh winter weather from 

December to March each year. Since 2011, the lowest temperature at the bridge site was -26 ℃ 

and the maximum 24-hour snowfall was 20.3 cm (8 in).  

 

TRB is currently inspected bi-annually by the Michigan Department of Transportation (MDOT). 

Structural deterioration has been noted by bridge inspectors in the past. For example, material loss 

on the concrete deck, corrosion of the pin and hanger connections, a severely spalled abutment 

structure, and web fatigue fracture are just some of the major deteriorations observed during past  

 

Pin and Hanger
 Assemblies

 
Figure 2.7, Side view of the Telegraph Road Bridge located in Monroe, MI (pin and hanger 

connections are pointed out in the figure) 
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inspections. These forms of bridge deterioration are typical among similar types of skewed, steel 

girder bridges.  In 2011, the deck condition was sufficiently poor that the top of the existing deck 

was replaced with high strength concrete with an average compressive strength of 48 MPa (7 ksi).  

This deck repair increased the deck strength and may have changed the global properties of the 

bridge (e.g., deck stiffness). 

 

A long-term wireless structural monitoring system was firsly installed on TRB in 2011 (O’Connor 

et al. 2012). The system was designed to monitor the acceleration and strain response of the bridge 

for global structural analysis and local damage quantification. The Narada wireless sensor node 

(Swartz et al. 2005, 2007) was installed as the primary data acquisition unit of the TRB wireless 

monitoring system. The monitoring system was also installed with a single board computer (PC 

104) serving as the on-site base station. The base station runs the Ubuntu operating system and has 

Internet access via a 3G phone card. The wireless Narada nodes (and their interfaced sensing 

transducers) and the base station are all powered by solar energy. Figure 2.8 shows the deployment 

plan of the TRB monitoring system. The system includes  14 accelerometers installed along the 

external steel girders (girder 1 and 7) to monitor bridge vibrations from traffic, one tri-axial 

accelerometer installed in the center of the main span to measure vertical and transverse 

acceleration, 24 strain gages installed at six locations to monitor the flexural strain response of the 

main and abutment spans, 16 strain gages are installed at two pin and hanger connections to 

evaluate the fatigue life of the link plate at each of these connections and 1 strain gage installed 

one the hanger plate near the bottom pin hole of the middle girder (see Figure 2.9) for bridge 

weigh-in-motion (BWIM) station application (see Chapter 6). Furthermore, six channels of 
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thermistors were installed for temperature correction of the strain gages and to measure the 

structural temperature of the girders.  

 

 

 
Figure 2.8, Wireless sensor installation plan on the Telegraph Road Bridge 

 
Figure 2.9, Installation details on strain gage near bottom pin hole of middle girder 
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The long-term wireless sensor network is configured to perform data acquisition at 200 Hz for 

accelerometers and 100 Hz for strain gages for 1 minute every 2 hours daily. However, during the 

winter months (December - March) the system is only run when there is sufficient solar energy. 

This can vary from two to four collections of data per day (as opposed to twelve during the warmer 

months of April to November). Once wireless sensor data is collected by the TRB base station, it 

is communicated via a 3G cellular connection to a central data server, SenStore (see Chapter 3), 

implemented on an Ubuntu server (12.04 LTS) at the University of Michigan. The long-term 

wireless structural monitoring system on TRB alone generates nearly 3 MB of data each 

measurement cycle, equivalently 7 GB of data each year.  

 

A traditional WIM station is installed 12 miles downstream of the TRB on the I-275 corridor; the 

WIM station is managed by the Michigan Department of Transportation. It is a 2-lane type II 

quartz station that measures vehicle direction, class, gross weight, speed, number of axles, axle 

spacing and axle weight. The station has ±30% , ±20% , ±15% , ±2𝑘𝑚/ℎ (1 𝑚𝑝ℎ)  and 

±150 𝑚𝑚 (0.5 𝑓𝑡)tolerance for 95% probability of conformity for axle load, axle group load, 

gross vehicle weight, speed and axle spacing, respectively. There are four highway entrances/exits 

along the I-275 highway between the TRB and the WIM station. The WIM station is one mile 

before the next exit, Eureka Road, which leads to the Detroit Metropolitan Airport. The WIM 

station provides insight to the vehicular loads TRB sees. It will also be a valuable tool for validation 

a BWIM solution presented in Chapter 6. 
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CHAPTER 3 

SENSTORE: A SCALABLE CYBERINFRASTRUCTURE PLATFORM FOR 

IMPLEMENTATION OF DATA-TO-DECISION FRAMEWORKS FOR 

INFRASTRUCTURE HEALTH MANAGEMENT 

 

3.1 Introduction 

Cost-effective and dense low-power wireless sensor networks have been proven effective in 

offering the ability to serve as long-term structural monitoring systems for the evaluation of 

structural performance and health (Lynch et al. 2009). While such systems offer tremendous 

promise, they also have the potential to produce large volumes of sensing data.  Comparatively 

less work has been conducted on data management and processing architectures that can harness 

the full potential of the data collected.  Furthermore, to extract meaningful information from the 

data, decision makers still urgently require computational tools that can automate the processing 

of data to make structural assessments. A secure cyberenvironment, customized for structural 

condition monitoring applications, is required to manage not only large volumes of sensing data, 

but also structural metadata (e.g., the structure’s geometric details, material properties, inspection 

history). Previously, several tools have been developed by researchers that begin to address these 

needs including sensor data storage using single relational database systems (Allen et al. 2003; 

Cross et al. 2012; Koo et al. 2011; Magalhães et al. 2012). The objective of this chapter is to 
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propose a cyberinfrastructure platform for data management using a top-down design strategy 

where user needs dictates the design of the database ontology.  

 

This chapter presents a novel data management platform that aims to unify the storage and curation 

of structural metadata, life-cycle information and sensor data collected from monitored structures. 

Cyberinfrastructure technologies now allow scalable and secure data management platforms to be 

developed that facilitate analysis of data in the cloud (i.e., Internet-based computing). First, the 

chapter describes SenStore, a data server architecture that is designed to serve as a core 

cyberinfrastructure component upon which data-to-decision frameworks for infrastructure health 

management can be built. The design of the SenStore ontology is next described. The ontology 

provides a rich representation of the monitored structure that enables a broad class of performance 

and health assessment analyses to be applied to the collected sensor data. The chapter concludes 

with the performance of SenStore evaluated and quantified. 

 

3.2 SenStore: A Platform for Data-Driven Structural Asset Management 

Figure 3.1 provides an architectural overview of the SenStore cyberinfrastructure framework. The 

proposed framework can be delineated into three major components: 1) sensor network (i.e., 

structural monitoring system), 2) data management system, and 3) system end users. The sensor 

network consists of sensors (wired or wireless) installed in a structure for structural monitoring. 

This monitoring system connects to the Internet via a wireless link such as through cellular 

communication. The structural monitoring system utilizes this link to push data to a remotely 

located database server that is designed to securely store sensor data and to expose the data to 
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authorized clients for interrogation and information extraction. While the database server will 

serve as the heart of the data-to-decision framework, it may be complemented by both third-party 

databases (housing relevant information such as metrological data) and data processing services 

distributed on the Internet. The automated analytics performed using the data stored in the database 

server (as well as data from the third party databases) is intended to provide actionable information 

that empowers the decision making process of the system end users.  

 

The database server is the central component of the proposed data-to-decision framework. Thus, 

its design must explicitly account for the following data management and decision making needs 

of the end-users. First, the database server must integrate sensor data with other data (e.g., 

structural metadata including geometric details, materials, sensor types and sensor locations) to 

provide context for the sensor data. This is especially important for data processing clients which  
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Figure 3.1, Overview of the SenStore cyberinfrastructure architecture for structural asset 

management 
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require this context to process the sensor data. In this chapter, this set of other data will be 

generically called system metadata. Second, the database server must be compatible with other 

structural management systems. For example, in the case of bridges, the representation of data in 

the database must be compatible with AASHTOWare (formerly called PONTIS). Third, the 

database server must scale well to manage massive amounts of sensor data. Specifically, the query 

speed of the database must not degrade significantly to ever increasing volumes of sensor data 

stored in the database server. This is critical for ensuring timely execution of data processing 

algorithms accessing the data for analysis. Fourth, the database server must balance security of the 

data with access. Especially after September 11th, 2001, infrastructure owners require data 

regarding their assets to be stored in a secure manner to ensure individuals with malicious intent 

cannot exploit data to identify structural vulnerabilities. Finally, the database server must allow 

authors of processing clients the flexibility to use programing languages of their choice. These 

desired functionalities are summarized in Table 3.1. 

 

SenStore, jointly developed by SC Solutions (Sunnyvale, CA) and the University of Michigan, is 

a state-of-the-art data management platform whose design aims to include the functionality 

summarized in Table 3.1. The implementation details that specifically address each of the five 

design objectives (i.e., desired functionality) are summarized in Table 3.1 and described in detail 

in the chapter sub-sections that follow. 
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Table 3.1, Design requirements and implementation strategies for SenStore 

Design Objective Implementation Strategy 

Unification of structural metadata and 

temporal sensor data for data analytics 

Combination of a relational database, flat file system 

and HDF5 as a hybrid database system; the relational 

database also maintains the relationship between the 

data stored in the HDF5 and flat file systems 

Compatibility with existing structural 

management systems (e.g., 

AASHTOWare) 

SenStore database ontology that includes industry 

established structural element classes 

Scalability to handle growing volumes 

of data from dense sensor array 

Hybrid database; store data in their most efficient 

format (storing temporal data in HDF5, multi-media 

file in flat file system) 

Secure access to the sensor data and 

structural metadata 

IP address restriction, web access certification, and 

the logging of all data access 

Support for multiple programming 

language 
Selection of ZeroC Ice middleware 

 

 

3.2.1 Hybrid Databases System 

Data sources relevant to structural asset management can be categorized into five major source 

types: 1) structural metadata; 2) sensor metadata; 3) functional element data; 4) inspection data; 

and 5) sensor data. Structural metadata includes structural dimensions, geometric configuration, 

material properties, etc. Structural metadata could be represented in various forms. However, in 

the design of SenStore, the representation commonly used by finite element method (FEM) 

modeling tools will be used. For example, structural geometries, boundary conditions and material 

properties will be defined using nodes and elements defined on a Cartesian coordinate system. 

Sensor metadata corresponds to information regarding the monitoring system configuration such 

as sensor type (e.g., accelerometer, strain gage, etc.), sensor location, and sensor properties (e.g., 

sensitivity, accuracy, range, etc.). Functional element data refers to the representation of the 
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structure on an element-by-element basis (i.e., beam, column, joint, bearing, wall, etc.). This is 

especially valuable when SenStore is used for bridge management because bridge inspection data 

stored in AASHTOWare is based on bridge elements. Inspection data obtained from visual 

inspections can be numerical (e.g., element ratings) or graphical (e.g., photos). Finally, sensor data 

is numerical and consists of time histories of sensor measurements. The full integration of these 

five data sources within SenStore’s database design will facilitate advanced data analyses (e.g., 

finite element model updating, reliability and risk analyses, life-cycle analyses, etc.) in an 

automated fashion. Furthermore, by relating sensor data to the other four data sources, the context 

of the sensor measurements is established, thereby allowing any conceivable analysis on the data 

to be implemented and automated in the future.  

 

To store and establish relationships within the data associated with the five data sources, a 

relational database is a viable option. Many mature options exist for storing relational data 

including relational databases based on structured query language (SQL). However, the database 

architecture must ensure that the speed of data input/output is adequate for the quick processing of 

data by data processing agents. Some of the data types previously defined could present a 

performance bottleneck for the database in terms of query speed. Specifically, large vectorized 

sensor time history data and file-like data objects such as inspector reports, inspector pictures, and 

bridge drawings might slow query speeds. As a result, these data sources are stored in separate 

repositories better suited for the fast querying of these data types. Therefore, three separate data 

repositories each optimized for a specific data type are integrated in SenStore. A relational database 

is used to store the majority of the data. PostgreSQL (http://www.postgresql.org/) is chosen for 

SenStore because it is well developed and open source licensed. PostgreSQL is used in SenStore 

http://www.postgresql.org/
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to store data in a relational manner for data from four of the data sources: structural metadata, 

sensor metadata, functional element data, and some of the inspector data such as element ratings. 

Three basic data types are used in PostgreSQL including integers (int), floating-point numbers 

(float) and strings (string); pre-defined enumeration is also used for fields with limited values (e.g., 

material type, boundary type) in order to minimize database redundancy.  

 

Sensor data is not stored in the PostgreSQL database. Rather, a hierarchical numerical data 

repository is used because it will be faster in querying numerical and vectorized data (van der 

Linden et al. 2013).  HDF5 (http://www.hdfgroup.org/HDF5/), netCDF 

(http://www.unidata.ucar.edu/software/netcdf/) and CDF (http://cdf.gsfc.nasa.gov/) are three 

popular hierarchical data repositories for scientific data. For SenStore, HDF5 (Hierarchical Data 

Format) is chosen to store the large volume of time history sensor data. HDF5 stores this time 

history data in its natural format (i.e., 2D arrays of time stamp and measurement) thereby 

improving input/output speed. HDF5 also supports random access to its multi-dimensional data 

objects using PyTable.  

 

File-like data sources are ill-suited for storage in a relational database or in a hierarchical numerical 

data repository. Hence, these file-like sources (e.g., inspector reports and images) are stored in 

their original format in a file repository integrated into SenStore. Links are established between 

PostgreSQL, HDF5 and the file repository to maintain the relationships between the data stored 

across the three different databases. Specifically, object IDs from HDF5 and the file locations (i.e.,  

 

http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/
http://cdf.gsfc.nasa.gov/
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Figure 3.2, An overview of the SenStore hybrid database architecture 

 

paths) are stored in corresponding PostgreSQL tables as links. The integrated hybrid SenStore 

database is shown in Figure 3.2. 

 

The ontology of the PostgreSQL relational database is designed to express the relationships 

between the different data types contained in the database. The data contained in the database is 

generally dived into 6 groups of tables as shown in Figure 3.3. The first group of tables (10 tables), 

contains structural inventory information such as structure location, year of construction, etc. The 

second group of tables (86 tables) pertains to the geometric design of the structure including 

definition of structure nodes and elements that define the structure in a manner similar to how 

geometry is represented in a FEM program. The third group of tables (3 tables) define the structure 
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as elements such as beams, columns, piers, decks, etc. The fourth group of tables (8 tables) relates 

to the sensing system including sensor location, type, specifications, etc. The fifth group (31 tables) 

corresponds to data associated with visual inspections including dates of inspection, inspection 

ratings, inspectors’ names, etc. Finally, the sixth group of tables (7 tables) corresponds to results 

derived from analysis of sensor data including modal parameters, load characteristics, etc. In total, 

the SenStore database schema consists of 145 tables. For simplification, only a smaller select 

number of tables are shown in Figure 3.3 to illustrate the database ontology.  

 

Figure 3.3 depicts how the tables build relationships across the data. These relationships are vital 

to providing context for data processing clients. Consider a simple steel girder-concrete deck 

highway bridge. The table Structure contains the structure name, links to structural drawings 

(stored in the file repository), owner name, date built, inventory ID, and location (e.g., longitude 

and latitude coordinates). The relationship between a structure and its structural elements is 

maintained by a one-to-many relationship of table Structure to table 

StructureComponent.   The geometry of the structure is contained in the group of tables 

associated with the structure geometry.  

 

For example, FEMNode is a table containing the X, Y, Z coordinates of nodes defining the bridge 

in 3-D space. The geometry of the structure adds spatial information to the structural elements by 

maintaining relationship of FEMNode and StructureComponent. The element-based 

structure inspection results (e.g., StructureComponentRating) is stored with its associated 

StructureComponent. The sensor system information contains metadata including 

information of data acquisition (DAQ) channels, sensor types, the connection between each DAQ 
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Figure 3.3, Illustration of the relationship in the SenStore database ontology 

 

sensor channel and data collection parameters. The sensor system information also maintains the 

spatial definition of each sensor by associating a FEMNode to DAQUnitChannel. Analytical 

results can also be stored in HDF5 with analysis parameters stored in PostgreSQL. For example, 

if modal analysis is performed, links (i.e., object IDs) to extracted modal parameters stored in 

HDF5 are stored in the table SensorModalAnalysisResults. In addition to the seamless 

connections among PostgreSQL, HDF5 and the file system, the design of the SenStore ontology 

also offers the compatibility between SenStore and external databases. Two illustrative examples 

are shown in Figure 3.3: 1) additional environment data can be extracted from online weather 

databases (e.g., Weather Underground); 2) in the case of bridges, structural component rating data 

in AASHTOWare database can be directly pushed into StructureComponentRating table. 
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3.2.2 Ice Middleware for Remote Access 

Middleware is needed that allows remote users (mostly, professional engineers and researchers) 

easy access to data contained in SenStore. At the same time, the middleware must have a sufficient 

level of security to protect confidential data contained in the database. An additional requirement 

is an expressive application programming interface (API) that supports multiple programming 

languages. The Internet Communication Engine (Ice) that is distributed by ZeroC 

(http://www.zeroc.com/) is chosen for SenStore over other existing middleware options (e.g., 

SOAP, RMI, CORBA) due to its strong technical support, easy implementation, proven robust 

performance (van der Linden et al. 2013). The three major functions of the Ice middleware layer 

are: 1) to direct the flow of data internal to SenStore among its three integrated data repositories 

(i.e., PostgreSQL, HDF5 and a file repository system); 2) to provide a defined API for remote 

users that streamlines the development of data processing clients; 3) to provide a moderate level 

of security.   

 

Python is chosen as the primary programming language for the SenStore implementation because 

of the Python libraries available which speeds the SenStore development time. For example, 

PyTables in Python is one such supporting library which interface with the HDF5 repository to 

provide high HDF5 input/output data rates. Numpy is another library in Python which supports 

advance math operations; it is used in SenStore to offer array operations. In addition, intrinsic 

Python features such as compatibility with the object-oriented programming paradigm, readable 

syntax and easy integration with the server operating system all enhance the advantage of choosing 

Python over other programming languages for SenStore’s implementation.  

 

http://www.zeroc.com/
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After the ZeroC Ice middleware layer is implemented, wrappers are created to perform the read 

and write functions for each data repository (e.g., PostgreSQL, HDF5, and flat file system) of 

SenStore (Figure 3.4). Table access is supported with a series of Python methods/functions (e.g., 

add new objects, modify fields of a certain object, equality search with multiple conditions) which 

provide sufficient and powerful data access options. The data traffic among the three different data 

repositories is managed by the Ice server layer with database architectural details hidden from the 

users (van der Linden et al. 2013). A server-client model is also established through the Ice 

implementation to create a distributed development environment. The majority of SenStore users 

are structural engineers, so the API required must be easy to understand and implement. 

Furthermore, the supporting language for the API should not be limited to a single language. ZeroC 

Ice offers both features by standardizing and simplifying the functions/syntax provided by the API 

to perform complex operations (e.g., data query across different data repository). Several popular 

programming languages are supported by ZeroC Ice, such as Python, Java and C#, thus offering 

system and users the freedom to develop in their preferred programming environment. 
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Figure 3.4, SenStore implementation with ZeroC Ice 
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3.3 Performance Validation of SenStore 

Infrastructure health management systems are established with different purposes, such as to 

evaluate structure safety after extreme load events and to monitor progressive structural 

deterioration. These systems face the same set of challenges: rapidly growing data volume (e.g., 

continuous sensing data, updated inspection inputs), increasing data complexity (e.g., data 

relationships, external data linkage), and high demand computing (e.g., automated data analysis 

on a continuous basis). This section showcases how SenStore meets the demands of SenStore end 

users such as structural owners. The Telegraph Road Bridge of Chapter 2 will be used as the 

bestbed. The performance of SenStore is validated by quantifying data query speed and illustrating 

scalability and controlled access.  

 

SenStore has been implemented to manage the metadata and sensing data of the Telegraph Road 

Bridge since 2011. The metadata of TRB consists of bridge inventory information from the bridge 

owner, detailed geometry information, inspection data (e.g., element ratings) and sensor system 

configuration information. This set of metadata stored in PostgreSQL is about 1 MB in size. 

Multimedia files, including bridge drawings, inspection photos and scanned reports are also stored 

in the SenStore flat file system and are about 7.5 MB in size. The size of the metadata and 

multimedia files are not very large and more importantly, they generally do not grow with time. 

The sensing data consists of data and its time stamp from each TRB sensing channel of the wireless 

monitoring system. Unlike metadata, the size of the sensing data grows continuously with time as 

shown in Figure 3.5 (a). SenStore gracefully handles the growth of sensor data due to the hybrid 

database system. Figure 3.5 (a) illustrates the cumulative amount of TRB data stored in SenStore 

from 2011 to 2014. As more sensing channels are added into the system, the data size grows faster 
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(e.g., the slope of data accumulation in late 2012 is steeper than the slope of early 2012). During 

the winter season, limited solar energy results in less sensing activities and therefore the growth 

of the data size is slower (e.g., no data in February 2013) and slow accumulation during the winter 

months of early 2014. As sensing data is stored in HDF5 in SenStore, the growth in the amount of 

sensor data stored will have no negative effect on the performance of SenStore queries.  

 

Query speed of a database directly reflects the fitness of the selected hybrid database architecture 

and the design of the SenStore middleware. In order to examine the performance of SenStore, two  

 

 
(a) 

 
(b) 

Figure 3.5, SenStore performance validation: (a) growth of data stored in SenStore, (b) query 

time comparison between SenStore and baseline PostgreSQL database 
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PostgreSQL databases, termed as the “baseline PostgreSQL” and “modified baseline PostgreSQL”, 

are built to serve as comparative baselines. Both comparison databases mimic the schema of 

SenStore and use a single PostgreSQL database to store both metadata and sensing data (schema 

shown in Figure 3.6). For sensing data, the baseline PostgreSQL database uses one big table to 

hold the all sensing data (value) together with time stamp (time_stamp) and data acquisition 

channel information (channel_id); most traditional relational database intended for storing 

monitoring data adopt this design strategy. The modified baseline PostgreSQL database creates 

separate tables for each data acquisition channels in order to achieve the best performance of 

queries on sensing data. In this modified baseline PostgreSQL database, each table holds sensing 

data (value) and time stamp (time_stamp). SenStore and the comparison PostgreSQL 

databases (and their data query clients) are implemented on the same server to eliminate unfairness  

caused by different machine performance or remote communications. The server has dual core 

Intel   64  bits 3.40GHz CPU, 4GB RAM and 500GB SSD, it  operates  on Ubuntu 12.04 LTS and  

 

 

 

(a) (b) 

Figure 3.6, Baseline and modified baseline PostgreSQL schema: (a) baseline PostgreSQL uses 

one big table to store sensor data from all channels, (b) modified baseline PostgreSQL creates 

separate tables for each channel to optimize performance 
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runs PostgreSQL 9.1. B-tree indexes are created on the time_stamp data to improve the 

performance of range search on time information; this is the most common search method used 

when processing time history sensor data. A hash index is created on the channel_id  on the 

data table of the baseline PostgreSQL database to reduce the data acquisition channel search time 

to constant. Four years’ worth (2011 to 2014) of sensing data is stored in SenStore, while for test 

purposes only 1 year worth (Year 2013) of sensing data is stored in the baseline PostgreSQL 

database and modified baseline PostgreSQL database. Test queries are designed to examine query 

speed for big queries on the stored sensing data. The overhead is near 1 second of SenStore queries 

and 0.04 second of PostgreSQL database queries. Figure 3.5 (b) illustrates the time needed to 

process queries of different sizes after removing the overhead. When the size of the query is small 

(0 to ~10000 data points), the baseline PostgreSQL databases slightly outperform SenStore if 

considering the overhead introduced by the SenStore. When the query size increases, the baseline 

PostgreSQL database performs poorly as the query time grows linearly. The query time of the 

modified baseline PostgreSQL and SenStore system both grow sub-linearly, but the growth of the 

SenStore query time is slower than the modified baseline PostgreSQL. SenStore adopts a binary 

search algorithm and the PostgreSQL database adopts B-tree indexing to reduce search costs. As 

the time complexity of both searching algorithm is 𝑂(log𝑛), the input/output speed of PostgreSQL 

is the bottleneck with HDF5 input/output speed significantly outperforming PostgreSQL. If these 

trends are extrapolated out to large data sets performing large queries, the time advantages of using 

SenStore are significant.   

 

Data security is one of the basic requirements for any infrastructure health management system. 

SenStore offers multiple tiers of access control to provide a moderate level of security. At the 
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SenStore client level, users are required to obtain the SenStore client software package, the server 

address of the SenStore server and the open port number from the server administrator. Client 

access is also controlled by IP address with clients categorized by the server into groups with 

different access permissions (e.g., only administrator can delete data). On the SenStore server side, 

data access through client APIs and the web viewer are logged with the name and IP address of 

the client with the content accessed and any system errors raised. The server administrator can use 

the log file for routine server maintenance or to detect malicious attacks. 

 

3.4 Chapter Summary  

With technological advancement of data acquisition systems and structural monitoring systems 

now proceeding rapidly, the lack of scalable data management systems that can effectively 

aggregate data, curate data and process data in an autonomous manner is evident.  As a result, the 

value of structural monitoring is greatly hindered as structural owners wrestle with how to extract 

valuable information from data collected that beneficially impacts their decision making. This 

chapter described SenStore which offers an efficient hybrid data management system for structural 

monitoring applications.  SenStore provides a cloud-based server for multiple, distributed clients 

that processes sensor data in an automated fashion.  The system scales well with the growing 

volume of sensing data with current SenStore instantiations now hosting 18GB of metadata and 

sensor data from the wireless structural monitoring system installed permanently on the Telegraph 

Road Bridge since 2011. Query speed tests of SenStore show that SenStore outperforms baseline 

relational database systems based on strictly relational database architectural designs. The query 

overhead is nearly 1 second using SenStore; however, the data search and input/output cost grows 

much slower with the size of the query compared to the “baseline PostgreSQL” and “modified 
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baseline PostgreSQL” databases selected for comparison in this study. SenStore not only serves as 

the central data repository for sensor data and bridge metadata, but also provides users with a 

platform for data analytics such as data mining, data visualization, cloud computing, and data 

integration. 
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CHAPTER 4 

AUTOMATED MODAL ANALYSIS AND FINITE ELEMENT  

MODEL UPDATING USING SENSTORE 

 

 

4.1 Introduction 

SenStore has been successfully implemented as part of two long-term structural monitoring 

systems operating on the New Carquinez Suspension Bridge (Kurata et al. 2013) and the Telegraph 

Road Bridge (O’Connor et al. 2012) since 2010 and 2011, respectively. In this chapter, a set of 

automated data analysis tools are presented to demonstrate how a data-to-decision framework can 

be created on top of SenStore. Automated finite element model updating using data from the long-

term wireless structural monitoring system installed on the Telegraph Road Bridge is used to 

showcase and validate the functionality of SenStore. 

 

Finite element method (FEM) analysis is a standard tool for advanced structural analysis. Structure 

owners often maintain FEM models to assist with structural design (Friswell and Mottershead 

1995) and to estimate structural capacity during states of deterioration (Michael et al. 1997). More 

recently, FEM models have been expanded via model updating procedures to assess structural 

damage using sensor data (Brownjohn et al. 2003; Ni et al. 2009). Regardless of the role of the 

FEM model, standard practice is to perform model updating in order to ensure the model accurately 
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reflects the physical system as is represented by the monitoring data collected. Model updating 

minimizes the difference between the FEM model and the actual structure due to either structural 

uncertainty (Farhat and Hemez 1993) or due to progressive structural deterioration (Brownjohn 

and Xia 2000). To showcase the functionality of SenStore, an automated data analysis framework 

is created in this study. The framework seeks to automate the updating of FEM models that are 

part of an  owner decision making process (e.g., capacity estimation, etc.). The example used in 

this chapter is intentionally generic so that the process of setting up an automated analytic 

framework based on the SenStore architecture could be highlighted. With model updating serving 

as an integral part of many data-to-decision frameworks (e.g., damage detection, capacity 

estimation), it is considered a well suited analytical example.  

 

A set of distributed SenStore data analysis clients are implemented to concurrently meet four 

analytical objectives: 1) automate FEM model generation for multiple FEM platforms using 

SenStore metadata; 2) automate modal parameter extraction from vibration-based sensor data; 3) 

use of machine learning techniques to develop and remove the non-linear regression relationships 

between modal and environmental parameters; 4) automate the updating of FEM models to 

develop an accurate analytical representation of the structure. The computing algorithms used to 

achieve each objective are well established in the literature. These four data analysis clients will 

be combined in a single work flow (Figure 4.1) to demonstrate the ease and flexibility of 

developing powerful data-to-decision frameworks based on the SenStore platform. The automated 

finite element model generation client generates a model input file for multiple FEM platforms 

(e.g., SAP2000, ABAQUS) using the structure geometry information stored in SenStore. The client 

interfaces and runs with the FEM software using  the input file  generated. The  automated modal 
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Figure 4.1, Flowchart of the prototype model updating framework based on the SenStore 

platform 

 

analysis client extracts structural modal parameters autonomously from large sets of response data 

stored in SenStore and writes its results (e.g., modal frequency (ω), damping (𝜉), and mode shape 

(φ)) back to SenStore. The environmental impact analysis client then connects with a public 

weather database to query environmental data such as temperature time history data of the structure 

site, connects with SenStore to read modal data, and then uses machine learning techniques (e.g., 

support vector regression) to model a non-linear relationship between the modal parameters and 

environmental variables and to exploit the modal properties uncertainties decoupled from 

environmental dependency. The automated model updating client interacts with the automated 

finite element model generation client and the environmental impact analysis client to develop an 

accurate and representative finite element model of the structure that explicitly accounts for 

parameter uncertainty.  
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The following chapter subsections will describe in detail each of the clients proposed. The clients 

will be used to update a FEM model of the Telegraph Road Bridge. 

 

4.2 Automated Finite Element Model Generation Client 

The SenStore PostgreSQL database ontology is designed to store details on the structural properties 

in a manner consistent with finite element model standards. SenStore stores structural geometric 

(e.g., nodes and elements) and material (e.g., constitutive law) information in its relational database 

to ensure relationships between element, materials, and boundary conditions are maintained. The 

automated finite element model generator automatically extracts structural metadata from 

SenStore, interprets the relationships between information, constructs an input file for a user-

defined finite element analysis engine (e.g., SAP2000, ABAQUS, and ADINA) and executes the 

finite element analysis using the input file. The generator presented here is based on the finite 

element representation of the Telegraph Road Bridge and uses the finite element software package 

SAP2000 (Computers and Structures, Inc.).  

 

The generator classifies the finite element model and analysis data into five groups: FEMmaterial, 

FEMnode, FEMbeam, FEMshell and FEMcontroldata. Class is constructed under each group and 

each class is dedicated to one input field of the finite element engine and is designed to map the 

relevant data stored in SenStore to a field in the finite element engine input file. For example, as 

shown in Figure 4.2, under group FEMNode, six classes are constructed. First, JointCoor class 

defines coordinates of each finite element node. Within this defined class are columns and 

SenTable which define the involved tables and columns of SenStore storing the structural node 

coordinates. Also match maps data from SenStore to the specific format of the input file for SAP 
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Figure 4.2, Screenshot of automated finite element analysis driver code 

 

2000. The syntax is supported by a set of utility functions that extracts data from SenStore 

according to the mapping definition and computes the data according to the syntax. The run 

method processes each class and generates the corresponding portion of the input file. The analysis 

output is also defined. Once the input file is complete, the generator interfaces with SAP2000 using 

its defined Open Application Programming Interface (OAPI) provided that triggers the analysis.  

 

4.3 Automated Modal Analysis Client 

Modal parameters, including modal frequency (ω) and mode shape (φ), are important structural 

properties. Most model updating algorithms aim to minimize the error between the modal 

parameters of a finite element method model and those extracted from vibration-based sensor data. 

The automated modal analysis client takes advantage of the SenStore platform in order to automate 
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the following processes: sensor data extraction, system identification and analysis results 

management. SenStore maintains sensor type and location information of data acquisition nodes 

that allows clients to distinguish sensors by functionalities. Additionally, SenStore also allows 

clients to create a new analysis, define the associated data acquisition nodes and later store analysis 

results back to SenStore in matrix format. These built-in features of SenStore enable the automation 

of sensor data extraction and the results management processes. The automated modal analysis 

process is implemented using existing output-only system identification algorithms such as 

frequency domain decomposition (Brincker et al. 2001) and stochastic subspace identification (SSI) 

(Peeters and De Roeck 1999). Here, SSI is implemented for demonstration.   

 

A linear dynamic system in continuous-time state space can be modeled as: 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡) (4.1) 

𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡) (4.2) 

where 𝑨 ∈ ℝ2𝑛×2𝑛  is the system matrix, 𝑩 ∈ ℝ2𝑛×𝑚 is the input matrix, 𝑪 ∈ ℝ𝑙×𝑛 is the output 

matrix and 𝑫 ∈ ℝ𝑙×𝑚 is the direct transmission matrix. Also l is the number of elements in the 

system output (𝑦), 𝑚 is the number of inputs (𝑢) and 2𝑛 is the number of elements in the state 

matrix, 𝑋. Therefore, 𝑛 is also a representation of the model order. In a stochastic system, the input, 

𝑢, is assumed to be white noise defined by a zero-mean Gaussian process. 

 

The SSI algorithm estimates the system matrix, 𝑨, and the output matrix, 𝑪 via regression. The 

detailed algorithm derivation and explanation can be found in Peeters and De Roeck (1999 and 

2001a); the method will also be described in Chapter 5. Modal parameters, including the structure 

modal frequencies, damping ratios and mode shapes, are extracted from the system matrix via a 
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standard eigenvalue decomposition. To discard modal parameters associated with mathematical 

modes, a knowledge-based automated modal parameter extraction method (Zhang et al. 2014). 

The method follows four steps: 1) set up expected ranges of modal frequencies and damping ratios; 

2) loop through each defined frequency range; 3) exclude modes outside of the allowable modal 

frequency ranges; 4) exclude modes outside of the allowable damping ratios ranges; 5) exclude 

modes based on the modal assurance criteria (MAC) (Allemang 2003) value. 

 

For automated modal analysis of the TRB, the SSI algorithm and extraction algorithm are executed 

using the 14 vertical accelerations recorded on the main span as shown in Figure 2.8. The SSI 

analysis is performed on a model order 2𝑛 = 28 and 35; these model orders are established based 

on a stability plot analysis. Based on the finite element model of the TRB (Mosavi et al. 2014), the 

range of expected modal parameters are known; based on this a priori knowledge higher and lower 

bounds can be set as shown in Table 4.1 to aid the knowledge-based modal parameter extraction 

method. The MAC value is established on mode shapes for the two models (2𝑛 = 28 and 35). For 

a mode to be a true physical mode, the MAC value is ensuring the mode is relatively unchanged 

as a function of model order.  

 

Table 4.1, Modal frequencies of TRB and parameter setup for automated modal parameter 

extraction method 

Modes 

Expected 

Modal 

Frequency (Hz) 

Lower 

Bound (Hz) 

Higher 

Bound (Hz) 

Damping 

Ratio 

Limit 

MAC Value 

Limit 

1 2.4 2.35 2.7 0.03 0.95 

2 2.8 2.7 3.0 0.1 0.95 

3 4.8 4.6 5.2 0.1 0.95 

4 8.0 7.5 8.5 0.1 0.95 

5 9.0 8.6 9.4 0.1 0.95 

6 9.5 9.4 10.1 0.1 0.9 
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Figure 4.3 shows a histogram of the first four modal frequencies and damping ratios. The 

Automated Modal Analysis client autonomously extracted from TRB data collected from 

September 2012 to February 2014. The distributions of modal frequency are hard to identify using 

common distributions (e.g., normal, log normal) due to environmental influence (as will be 

discussed shortly) but the distributions are clustered around the expected frequencies. For the first 

four modes, the counts are negligible near the pre-set boundaries (Table 4.1) verifying that the 

knowledge-based automated modal extraction method successfully identifies and separates these 

modes. The distribution of mode 1 appears to consist of two individual distributions with one 

centered near 2.49 Hz and the other near 2.56 Hz. A similar phenomenon is observed in the 

distribution of mode 3. As will be later discussed, the lack of a single Gaussian distribution will 

be due to the environmental influence on the modal frequencies. Modal damping ratios for the first 

four modes have a log normal distribution with modal damping of 1% or lower. 

 

 
(a) 

 
(b) 

Figure 4.3, Distributions of modal parameters for first four modes: (a) modal frequency 

distributions, (b) modal damping ratio distributions 

 



69 

 

During the sensor data extraction process, the automated modal analysis client repeatedly queries 

sensor data from SenStore therefore resulting in unneglectable cost in time. Unlike the query 

example demonstrated in Chapter 3, the query size of each channel in this client depends on the 

sampling frequency and duration and is usually fixed, but data from different channels are queried 

which requires access to different tables of the database. To process long-term monitoring data for 

modal analysis, this type of query is repeated over thousands of times. For the case of the TRB 

testbed, accelerometers sense at 200 Hz for 1 min, resulting 12000 points from each channel per 

dataset, and 15 accelerometers (15 channels) are installed on TRB. From September 2012 to 

February 2014, about 1000 quality datasets were collected for modal analysis. Therefore, the query 

extracts 12000 points from 15 different tables repeatedly 1000 times. To validate SenStore 

performance, the query time of SenStore is again compared with the baseline PostgreSQL and 

modified baseline PostgreSQL databases using the same hardware. The query time (including 

overhead) is 1.01s, 7.50s and 1.49s for SenStore, baseline PostgreSQL and modified baseline 

PostgreSQL, respectively. Figure 4.4 projects the time cost when large amounts of data are 

processed; hence, the benefit of using SenStore is reaped when large amounts of data are queried. 

Users can further optimize SenStore performance by selecting a batch query size in order to reduce 

overhead and avoid disk input/output at the same time.     

 
Figure 4.4, Query time comparison using an identical dataset (15 sensor channels collected at 

200Hz for 1 min) 
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4.4 Automated Environmental Impact Analysis Client 

Environmental and operational conditions (EOC) (e.g., temperature, wind speed, wind direction, 

precipitation, and traffic) are known to impact modal properties (Brownjohn et al. 2010; Cross et 

al. 2012; Hua et al. 2007; Moaveni and Behmanesh 2012; Moser and Moaveni 2011; Peeters and 

De Roeck 2001a; Zhang and Lynch 2013). The wireless structural monitoring system on TRB is 

equipped with thermistors to measure structure surface temperature. Other environmental 

parameters of interest are also available from online weather databases while traffic information 

is obtained from the Michigan Department of Transportation (MDOT) weigh-in-motion station 

(WIMS) databases. Taking advantage of the open development platform provided by SenStore, 

the environmental impact analysis client is able to seamlessly query data from the sensing network 

and public weather database to develop nonlinear regression relationships between modal 

parameters and EOCs.  

 

The automated environmental impact analysis client interacts with the automated modal analysis 

client to extract the identified modal parameters from different data sets, extracts temperature 

information from the thermistor data stored in SenStore, and interfaces with an online weather 

database (www.wunderground.com) and the MDOT WIMS database to obtain additional EOC 

data during the same time period as the TRB sensor data set. Figure 4.5 (a) illustrates the bi-linear 

dependency between the 1st modal frequency (identified by automated modal analysis client) and 

structural temperature with a distinguishable pivot near the freezing point (0° C). The data shown 

in Figure 4.5 is consistent with the data used in Section 4.2. To characterize the relationship 

between modal frequency and environmental factors, a non-linear regression algorithm termed 

support vector regression (SVR) (Chang and Lin 2011; Smola and Schölkopf 2004) is  
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(a) 

 
(b) 

Figure 4.5, Impact of temperature on the 1st mode frequency: (a) 1st mode frequency versus 

structural temperature, (b) prediction of the 1st mode frequency using support vector regression 

 

implemented. The SVR algorithm projects low dimensional data into high dimension space via a 

kernel function (e.g., Gaussian kernel) and searches for a hyperplane that minimizes the absolute 

model error. To discover the relationship of TRB modal frequencies and EOC, seven 

environmental parameters are chosen as features including: the first principal component (Jolliffe 

2005) of structural temperatures, wind speed, wind direction, air pressure, dew point, visibility and 

estimated traffic load from data collected by the nearest WIMS. The data is divided into training 

and testing groups for support vector regression analysis. The first principle component of 

structural temperatures, wind speed and direction are identified as the features having the strongest 

correlation with modal frequency. The SVR prediction is shown in Figure 4.5 (b), that the 

prediction and original testing data have an excellent match both numerically and geometrically. 
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The mean square error of the prediction from SVR and the testing data (normalized to zero mean 

and unit variance) is as low as 0.3, thereby validating SVR as an effective tool for removing the 

impact of EOC on the 1st modal frequency.  

 

The error, 𝜺, between observed modal frequencies and predicted frequencies from SVR reveals 

that the environmental dependency is effectively removed with only a small error process 

remaining. The sum of the mean, 𝜇 , of modal frequencies and error, 𝜺 , is considered as the 

corrected model frequencies which are independent of environmental impact.  

𝒇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜺 + 𝜇 (4.3) 

𝜺 = 𝒇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝒇𝑆𝑉𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 (4.4) 

𝜇 = 𝑚𝑒𝑎𝑛(𝒇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) (4.5) 

The corrected modal frequencies are further used in the automated model updating client.  

  

4.5 Automated Model Updating Client 

Model updating calibrates the existing finite element model so that the model has similar modal 

properties as those estimated from the vibration-based sensor data. A wide collection of model 

updating algorithms have been proposed over the past 50 years (Friswell and Mottershead 1995; 

Levin and Lieven 1998; Mottershead and Friswell 1993; Perera and Ruiz 2008). Due to the 

rehabitation of the TRB deck surface in 2011, the stiffness, thickness and material density of the 

deck have been changed and require updating in the finite element model. Therefore, in this work, 

the model updating scheme focuses on estimating the distribution of the deck stiffness (i.e., 

compressive strength, 𝑓𝑐
′) for given corrected modal parameters inherited from the aforementioned 

environmental impact analysis client. To demonstrate the capability to distribute and automated 
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the finite element analysis using SenStore, Bayesian model updating using adaptive Markov Chain 

Monte Carlo (MCMC) simulations (Andrieu and Thoms 2008; Beck and Katafygiotis 1998; 

Behmanesh and Moaveni 2015) is used to update the finite element model parameters for given 

observed bridge modal parameters.  

 

Under the Bayesian model updating framework, the probability distribution function (PDF) of the 

finite element model parameters, 𝛉, given the corrected model parameters, 𝐝, and the probabilistic 

model class, M, is defined as: 

𝑃(𝛉|𝐝,M) = c𝑃(𝐝|𝛉,M)𝑃(𝛉|M) (4.6) 

𝑃(𝛉|M) is the prior PDF, 𝑃(𝛉|𝐝,M) is the posterior PDF, 𝑃(𝐝|𝛉,M) is the likelihood function 

and c is the normalization constant. In this study, corrected modal frequencies are used as the 

evidence and only one probabilistic model class is considered (hence, the variable, M, is dropped). 

Therefore, 

𝑃(𝑑|𝜃) = ∏ 𝑃(𝑓𝑚 |𝑓𝒎(𝜃))

𝑵𝒎

𝒎=𝟏

 (4.7) 

where, 𝑁𝑚  is the total DOF considered in the model updating, 𝑓𝒎  is the mth corrected modal 

frequency and 𝑓𝒎(𝜃) is the mth eigen-frequency of the finite element model given model parameter, 

𝜃 . The error between the corrected model parameters and the eigen-frequencies of the finite 

element model is modeled as a random variable of a zero-mean Gaussian distribution: 

𝑒𝑚 = 𝑓𝒎 − 𝑓𝒎(𝜃) (4.8) 

The likelihood function can therefore be modeled as: 

𝑃(𝑓𝑚 |𝑓𝒎(𝜃)) ∝ exp (−
1

2

(𝑓𝑚 − 𝑓𝒎(𝜃))2

𝜎�̃�𝑚 

2 ) (4.9) 

https://en.wikipedia.org/wiki/Posterior_probability
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𝑃(𝒅|𝜃) = 𝑃(𝑑1, 𝑑2 …𝑑𝑁𝑘
|𝜃) ∝ �̂� ∏exp (−

1

2
∑

(𝑓𝑘,𝑚 − 𝑓𝒎(𝜃))2

𝜎�̃�𝑘,𝑚 

2

𝑵𝒎

𝑚=1

)

𝑁𝑘

𝑘=1

 (4.10) 

and, where 𝑁𝑘 is the number of evidence. 𝜎�̃�𝑚 
is formulated as 𝐶𝑂𝑉�̃�𝑚 

𝑓𝑚 and 𝐶𝑂𝑉�̃�𝑚 
 is the average 

coefficient of variance of 𝑓𝑚 .  

 

In this study, the first 4 corrected modal frequencies from 66 data sets are used as the evidence, 𝐝, 

and compressive strength of the concrete, 𝑓𝑐
′, is used as the hypothesis, 𝛉. The algorithm 4: AM 

algorithm with global adaptive scaling as presented in Andrieu and Thoms (2008) is used to 

updated the finite element model parameters due to its efficiency in model parameter convergence 

(Behmanesh and Moaveni 2015 and Andrieu and Thoms 2008). The sample acceptance rate is set 

at 40% and to ensure the updating parameters are meaningful in the physical domain, boundary 

conditions are applied when drawing samples as shown in Table 4.2; samples selected from outside 

of the boundaries are discarded. The histogram of the total 21278 accepted samples and the 

posteriori distribution are shown in Figure 4.6 (a) and (b), respectively. Taking the maximum a 

posteriori estimation of the results, the compressive strength of the new concrete deck is estimated 

 

  
Figure 4.6, Bayesian model updating results: a) histogram of accepted samples, (b) posterior 

distribution 
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Table 4.2, Modal parameters and physical parameters of original and updated finite element model 

 Original Updated 
Observe

d Mean 

Error 

(%) 

Lower 

Bound 

Upper 

Bound 

1st Modal Freq. (Hz) 2.46 2.498 2.488 0.40 N/A N/A 

2nd Modal Freq. (Hz) 2.86 2.906 2.934 -0.95 N/A N/A 

3rd Modal Freq. (Hz) 4.75 4.822 4.890 -1.39 N/A N/A 

4th Model Freq. (Hz) 8.30 8.429 8.295 1.62 N/A N/A 

Concrete 

Compressive 

Strength (MPa) 

34.5 43.4 N/A N/A 13.8 62.1 

 

at 43.4 MPa (6.3 ksi). The updated modal frequencies and the model parameters results are listed 

in Table 4.2. 

 

4.6 Chapter Summary 

The case study presented in this chapter demonstrated a data-to-decision framework performing 

autonomous modal analysis and finite element model updating using structural metadata and 

sensor data from the Telegraph Road Bridge.  This test case consisted of four data clients executing 

in an autonomous manner:  automated finite element model generation client, automated modal 

analysis client, automated environmental impact analysis client and automated finite element 

model updating clients.   The ease of integrating these distributed clients into a cohesive data 

processing framework was illustrated in this study.  Future work will focus on advancing the 

SenStore cyberinfrastructure platform including utilization of a distributed database system to 

provide a cloud-based computing platform with flexible APIs and user-friendly data visualization 

tools. Another focus for future work is the creation of more meaningful data-to-decision 

frameworks that can be upon the SenStore foundation that are more specific to the health 

management of structures.   
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CHAPTER 5 

AUTOMATED LONG-TERM MODAL ANALYSIS OF SUSPENSION BRIDGES 

UNDER VARYING ENVIRONMENTAL CONDITIONS USING WIRELESS 

STRUCTURAL MONITORING SYSTEMS 

 

5.1 Introduction 

Modal characteristics (e.g., modal frequency, modal damping ratio and mode shape) are 

considered one of the most important properties of a civil structure because they control the free 

and forced (e.g., ambient vibrations, earthquakes, and wind load) vibration response of a structure.  

When designing seismically excited structures using design spectra, modal frequencies and 

damping ratios are carefully considered so that the maximum response of the structure in the modal 

domain can be determined (ASCE 2013).  Alternatively, if a time history analysis approach is 

taken to analyze the maximum response of the structure, the accuracy of the approach is dependent 

on the accuracy of the structural model. Modal parameters are often extracted from structural 

monitoring data using system identification techniques so that accurate structural models can be 

obtained through model updating methods (Friswell and Mottershead 1995).   

 

Due to the difficulties inherent to measuring the load imposed on a large operational civil 

engineering structure such as a bridge, output-only system identification methods are often used 
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to estimate global modal parameters. System identification methods in both the frequency (e.g., 

frequency domain decomposition (Brincker et al. 2001), peak picking) and time (e.g., auto-

regression model (Ljung 1998), stochastic subspace identification (Peeters and De Roeck 1999)) 

domains are widely used to obtain the modal frequencies, damping ratios and mode shapes of a 

structure. Theoretically, modal frequencies and damping ratios are inherent properties of a 

structure and are assumed to be invariant. However, several studies (including Chapter 4 of this 

dissertation) have shown that operational modal parameters obtained using vibration-based 

structural monitoring systems are not fixed and can vary within 5% of their range from their mean 

value.  In the case of bridges, environmental parameters such as temperature, wind profile and 

traffic are all known to influence modal frequency (Cross et al. 2012; Hua et al. 2007; Moser and 

Moaveni 2011; Peeters and De Roeck 2001a; Zhang and Lynch 2013). By observing modal 

parameters over long periods of time, the variations in modal properties can be modeled over large 

EOC profiles. Better models of modal parameter estimation can improve the understanding of 

large structures leading to improvement of future design methods. 

 

Research presented in this chapter aims to: 1) develop data-driven techniques to expand the 

stochastic subspace identification algorithm to efficiently extract structural physical modes for 

long-term vibration monitoring data, 2) quantitatively identify environmental and operational 

impact on large-scale suspension bridge structures using linear and non-linear models, and 3) 

provide statistical models for modal frequency, damping and mode shapes for the bridge monitored. 

In this study, modal analysis as well as an operational and environmental impact study are 

performed using vibration-based monitoring data collected over 2 years by the long-term wireless 

structural monitoring system installed on the New Carquinez Bridge, a large-scale suspension 
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bridge in Vallejo, California. A novel data-driven method for modal parameter estimation is 

presented which utilizes statistics from long-term data to improve detection robustness for 

operational modes that are low in energy or close to one another. Modal analysis is performed in 

an autonomous manner on over 4,000 datasets using SSI optimized for automated mode selection 

and computational speedup. In total, 27 of the bridge are identified under 2 Hz. The statistics of 

the identified modal frequencies and damping ratios of each mode are tabulated. Environmental 

and operational impact on the bridge acceleration, strain and displacement response are also 

investigated. Specifically, the relationships between modal frequencies, operational and 

environmental parameters, including time of the day, girder acceleration, structural temperature 

and wind speed, are modeled using Ridge regression and Gaussian Process regression for 

performance comparison.  

 

5.2 Bridge Response to Environmental and Operational Conditions 

The New Carquinez Bridge is subject to a variety of dynamic excitation sources including traffic, 

wind, temperature and earthquakes.  Bridge responses to traffic, wind and temperature loads are 

evident from the response data collected.  A typical response of the bridge to traffic load on 

Thursday, June 27, 2013 at 3:00 pm is shown in Figure 5.1.  The top plots illustrate the vertical 

acceleration response of the bridge measured at sensor N1, N5, N10, S5 and S1 (see Figure 2.2).  

The vertical acceleration response, which is attributed to traffic loads is typically less than 50 mg 

and in this figure well below 30 mg.  While individual vehicle responses cannot be easily 

deciphered from the time history acceleration plots, there is an ordered delayed acceleration 

response with higher energy content as vehicle groups travel from north (N1) to south (S1).  To 

further characterize the traffic impact on the bridge accelerations, spectrum analysis is performed 
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Figure 5.1, Typical time history response of the New Carquinez Bridge for select sensing 

channels (Recorded: June 27, 2013, 3:00 PM) 

 

(Figure 5.2) using vertical acceleration responses collected from sensors located at N10 (middle 

point of the main span) and N5 (quarter points of the main span) for the same time period as shown 

in Figure 5.1, albeit for a longer time history. Figure 5.2 includes sample time history plots of 

vertical acceleration (top), corresponding spectrum amplitudes (middle) and time frequency 

spectrogram (bottom) plots for each sensing locations. The spectrum amplitude plots based on Fast 

Fourier Transform (FFT) of the entire time history record (9600 data points) reveal the modal 
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frequencies of the bridge.  Several dominant modes are observed at both locations including 0.20, 

0.26, 0.48, 0.79, 1.03, and 1.16 Hz.  

 

The spectrum plot at N10 generally provides larger modal peaks than the N5 spectrum plot but 

some modes have larger peaks at N5 such as modes near 0.35 and 0.65 Hz.  The spectrogram plots 

of Figure 5.2 are based on the Fast Fourier Transform (FFT) of 10 seconds of data (200 data points) 

with 50% overlap resulting in a resolution of 0.1 Hz in the frequency-domain.  They reveal that 

the first few modes of the bridge dominate the frequency spectrum and are always present in the 

data.  However, higher frequency content in the bridge is evident at times when the acceleration 

amplitudes are higher; this is attributed to traffic on the bridge.         

 

 

 

 
(a) (b) 

Figure 5.2, Acceleration time history plot, spectrum amplitude and spectrogram (top to bottom) 

of the vertical acceleration responses from sensors located at: (a) N10 and (b) N5 (Recorded: 

June 27, 2013, 3:00 PM) 
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Figure 5.3, Structural temperature (thermistor at N16) impact on bridge girder longitudinal 

displacement (string potentiometer at S11) measured 2013-2014 

 

Time synchronized plots of the longitudinal strain measured at the center of the main span (i.e., by 

sensor N15 and N16) is shown.  The bottom strain ranges from 30 (compressive) to 65 (tensile) 

microstrain while the top strain ranges from 30 (compressive) to 20 (tensile) microstrain. The strain 

response is based on global deflections of the girder as would be expected for the orthotropic steel 

box girder.  The induced flexural moment on the span ensures that when the bottom is in tension, 

the top is in compression (and vice versa).  Furthermore, the bottom strain is larger in magnitude 

due in part to the composite action of the road surface that is on the top of the steel girder.  Finally, 

the top strain gage experiences local excitation (roughly at 1.2, 1.3, 1.6, 1.7 and 1.85 min in Figure 

5.1) which is hypothesized to be due to traffic wheel loads immediately over the gage location 

resulting in a localized strain response in the wall of the box girder.   The girder also displaces 

longitudinally relative to the tower as measured by the linear potentiometer at N11 as shown in 

Figure 5.1.  This displacement is relatively small (less than 0.25 cm) and is likely due to the slow 

variations in the weight of traffic on the bridge superimposed on the global modal response of the 

girder excited by traffic and wind.  However, more dramatic displacements are observed over 

longer periods of monitoring.  For instance, Figure 5.3 plots the longitudinal displacement of the 
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girder relative to the tower collected at S11 over two years of monitoring (from January 1st, 2013 

to December 31st, 2014).  The displacement is perfectly linear as a function of the top girder 

structural temperature (as measured at N16) revealing the thermal expansion of the deck (estimated 

to be 0.095 cm/°C).      

 

5.3 Modal Analysis using Stochastic Subspace Identification 

As previously presented, a primary study objective is to assess the relationship between modal 

properties (i.e., modal frequencies and damping) of long-span bridges exposed to common EOCs 

including thermal, wind and traffic loads. Since the initiation of the monitoring system deployment 

on the New Carquinez Bridge in 2010, a total of 35 GB of sensor data has been collected from the 

wireless monitoring system. The extensive amount of data collected opens the possibility of 

assessing bridge properties as a function of EOCs but manual data processing is not a feasible 

option.  In this study, an automated approach to modal analysis is created to extract the modal 

properties of the New Carquinez Bridge.  Modal analysis of operational structures often adopts 

output-only system identification algorithms because the forcing input of the structure is difficult 

to measure and quantify.  In this study, stochastic subspace identification (SSI) is adopted to extract 

the modal parameters of the New Carquinez Bridge from the long-term data acquired.  Specifically, 

the deck and tower accelerations acquired from January 1st, 2013 to December 31st, 2014 are 

selected for analysis.  

 

5.3.1 Stochastic Subspace Identification  

The SSI algorithm used in this study is based on the works of Van Overschee and De Moor (1996).  

A brief description will be provided but interested readers are referred to Van Overschee and De 
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Moor (1996) for a complete theoretical treatment of the SSI algorithm.  The dynamics of a 

structural system can be modeled as a linear, time invariant input-output state space model 

(Equation 5.1) in continuous time space: 

�̇�(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

(5.1) 

where 𝐴𝑐 ∈ ℝ𝑛×𝑛 is the system matrix, 𝐵𝑐 ∈ ℝ𝑚×𝑛  is the input matrix, 𝐶 ∈ ℝ𝑙×𝑛  is the output 

matrix, and 𝐷 ∈ ℝ𝑙×𝑚 is the direct transmission matrix; 𝑥(𝑡) ∈ ℝ𝑛×1 is the state vector at time t 

and 𝑦(𝑡) ∈ ℝ𝑙×1 is the output vector at time t. Dimensions 𝑛, 𝑚 and 𝑙 represent the state-space 

model order (also the dimension of the state vector), the number of inputs and the number of 

outputs/sensor locations, respectively. However, the structural system is observed using a digital, 

discrete time data acquisition system; hence, the system output, 𝑦, and input, 𝑢, vectors can only 

be obtained at discrete times defined by the sampling rate of the data acquisition system (𝑓𝑠 =

1/∆𝑡).  The state space model of Equation 5.1 must be transformed into discrete time state space: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

(5.2) 

where 𝐴 = exp (𝐴𝑐∆𝑡), 𝐵 = [𝐴 − 𝐼]𝐴𝑐
−1𝐵𝑐 and 𝑥𝑘 = 𝑥(𝑘∆𝑡) are the state matrix, input matrix and 

state in discrete time, respectively.   

 

As previously mentioned, the system input, 𝑢, is hard to measure and is replaced in the model with 

a broadband stochastic disturbances, 𝜔𝑘 ∈ ℝ𝑛×1and 𝑣𝑘 ∈ ℝ𝑙×1 defined in discrete time: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 

(5.3) 
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Under normal ambient excitation, these noise vectors are assumed to be zero mean white noise 

processes with covariance matrices as defined:  

𝐸 [(
𝑤𝑝

𝑣𝑝
) (𝑤𝑞

𝑇 𝑣𝑞
𝑇)] = (

𝑄 𝑆

𝑆𝑇 𝑅
) 𝛿𝑝𝑞 (5.4) 

where 𝛿𝑝𝑞 is the Kronecker delta function.  SSI is a time-domain system identification method that 

will estimate an optimal system (A) and output (C) matrices corresponding to the linear time 

invariant model of Equation 5.3. 

 

The SSI method begins with the construction of the Hankel matrix of the measured system output 

𝐻 ≝
1

√𝑗

(

 
 
 
 
 

𝑦0
𝑦1     … 𝑦𝑗−1

…
𝑦𝑖−2

…
𝑦𝑖−1

…
…

…
𝑦𝑖+𝑗−3

𝑦𝑖−1 𝑦𝑖     … 𝑦𝑖+𝑗−2

𝑦𝑖 𝑦𝑖+1 … 𝑦𝑗−1

𝑦𝑖+1

…
𝑦𝑖+2

…
 
…
…

𝑦𝑖+𝑗

…
𝑦2𝑖−1

𝑦2𝑖     … 𝑦2𝑖+𝑗−2)

 
 
 
 
 

≝ (
𝑌0|𝑖−1

𝑌𝑖|2𝑖−1
) ≝ (

𝑌𝑝

𝑌𝑓
) ∈ ℝ2𝑙𝑖×𝑗 (5.5) 

where 𝑦𝑖 is the output vector at t = i,  𝑌𝑝 denotes the upper half of the Hankel matrix and is referred 

to the “past” portion of the data matrix, and 𝑌𝑓 denotes the lower half of the Hankel matrix and is 

referred to the “future” portion of the data matrix.  Based on the theory of SSI presented by Van 

Overschee and De Moor (2012), the geometric projection of the row space of the “future” output 

on the row space of the “past” output can be calculated directly and is equal to the product of the 

extended observability matrix, O, and Kalman state sequence, �̂�𝑖:  

𝑃𝑖 = 𝑌𝑓/𝑌𝑝 = 𝑌𝑓𝑌𝑝
𝑇(𝑌𝑝𝑌𝑝

𝑇)
†
𝑌𝑝 = (

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑖−1

)(�̂�𝑖  �̂�𝑖+1 … �̂�𝑖+𝑗−1) = 𝑂𝑖�̂�𝑖 ∈ ℝ𝑙𝑖×𝑗 (5.6) 



85 

 

Hence, by performing the projection the resulting projection matrix, 𝑃𝑖, can be factored by singular 

value decomposition (SVD) to expose the extended observability matrix, O, and Kalman state 

sequence, �̂�𝑖. The projection matrix is rewritten as: 

𝑃𝑖 = 𝑈1 𝑆1𝑉1
𝑇 (5.7) 

where 𝑆1 ∈ ℝ𝑛×𝑛 is the singular value matrix, 𝑈1 ∈ ℝ𝑙𝑖×𝑛 is the left singular vector matrix, 𝑉1 ∈

ℝ𝑗×𝑛  is the right singular vector matrix, and n is the effective rank of 𝑃𝑖 . The extended 

observability matrix can be calculated as: 

𝑂𝑖 = 𝑈1 𝑆1
1/2 ∈ ℝ𝑙𝑖×𝑛 (5.8) 

Once the extended observability matrix is found, the Kalman state sequence, �̂�𝑖 is determined: 

 �̂�𝑖 = 𝑂𝑖
†𝑃𝑖 ∈ ℝ𝑛×𝑗 (5.9) 

 

This Kalman state sequence is the key to the estimation of the state space model matrices A and C.  

Specifically, a second state sequence is required which is derived from repartitioning the Hankel 

matrix as follows:  

𝐻 ≝
1

√𝑗

(

 
 
 
 
 
 
 

𝑦0
𝑦1    … 𝑦𝑗−1

…
𝑦𝑖−2

…
𝑦𝑖−1

…
…

…
𝑦𝑖+𝑗−3

𝑦𝑖−1

𝑦𝑖

𝑦𝑖

𝑦𝑖+1

…
…

𝑦𝑖+𝑗−2

𝑦𝑗−1

𝑦𝑖+1 𝑦𝑖+2 … 𝑦𝑖+𝑗

… …       … …
𝑦2𝑖−1

𝑦2𝑖     … 𝑦2𝑖+𝑗−2

)

 
 
 
 
 
 
 

≝ (
𝑌0|𝑖

𝑌𝑖+1|2𝑖−1
) ≝ (

𝑌𝑝
+

𝑌𝑓
−) (5.10) 

 The projection of the repartitioned “future” output row space on the “past” output row space is:  

𝑃𝑖−1 = 𝑌𝑓
−/𝑌𝑝

+ = 𝑂𝑖−1�̂�𝑖+1 ∈ ℝ𝑙(𝑖−1)×𝑗 (5.11) 

The extended observability, 𝑂𝑖−1, is derived from an SVD of 𝑃𝑖−1 as described in Equation 5.8. 

The Kalman state sequence can be found as: 



86 

 

 �̂�𝑖+1 = 𝑂𝑖−1
† 𝑃𝑖−1 ∈ ℝ𝑛×𝑗 (5.12) 

Equation 5.3 can be modified in a more condense form using the Kalman state estimate matrix, 

 �̂�𝑖, and a reduced data matrix of the system output, 𝑌𝑖|𝑖 ∈ ℝ𝑙×𝑗:   

(
 �̂�𝑖+1

𝑌𝑖|𝑖
) = (

𝐴
𝐶
) ( �̂�𝑖) + (

𝜌𝑤

𝜌𝑣
) 

(5.13) 

 

The unknown system matrix and output matrix can be determined using the least square method: 

(
𝐴
𝐶
) = (

 �̂�𝑖+1

𝑌𝑖|𝑖
)  �̂�𝑖

†
 

(5.14) 

The modal properties of the monitored system can be extracted from the discrete time linear state 

space model.  An eigenvalue decomposition of the state matrix, 𝐴: 

𝐴 = ΨΛΨ−1 (5.15) 

yields the diagonal eigenvalue matrix Λ ∈ ℂ𝑛×𝑛 and the eigenvector matrix Ψ ∈ ℂ𝑛×𝑛.  Diagonal 

terms of the eigenvalue matrix correspond to pole locations on the discrete time complex plane.  

For lightly damped systems, such as bridges, the eigenvalues will be complex valued and will be 

within the unit circle.   To extract the frequency and damping ratio corresponding to each mode, 

the conjugate pair eigenvalues, λ𝑞 and λ𝑞
∗ , are mapped to the continuous time complex plane: 

𝜆𝑐𝑞 =
ln (λ𝑞)

∆𝑡
 (5.16) 

where λ𝑐𝑞 is the eigenvalue of the 𝑞𝑡ℎ mode in the continuous time complex plane and ∆𝑡 is the 

time step. Modal frequency, 𝜔𝑞, and damping ratio, 𝜉𝑞, for the qth mode is then obtained: 

𝜔𝑞 = |𝜆𝑐𝑞| (5.17) 

𝜉𝑞 =
𝑅𝑒(𝜆𝑐𝑞)

𝜔𝑞
 (5.18) 
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The operational mode shapes can be obtained as: 

Φ = 𝐶Ψ (5.19) 

“Operational” mode shapes is a more accurate term due to possible violations in the broadband 

white noise input assumptions stated at the outset of the SSI derivation. 

 

5.3.2 Automated Implementation of Stochastic Subspace Identification  

 The critical component of the SSI algorithm is determination of the order (n) of the state-space 

model.  This is often done using stabilization diagram analyses.  Stabilization diagrams plot modal 

frequency or modal damping ratio (abscissas) for a range of model orders (ordinate) varied 

sequentially (Ewins 2000).  Physical modes tend to stabilize (i.e., modal properties don’t vary) as 

the model order is increased.  Hence, the stabilization diagram serves two purposes: it helps 

identify physical modes from non-physical (i.e., mathematical) modes and it provides a tool for 

picking an appropriate model order, n.  However, the SSI algorithm has two other user-defined 

tuning knobs to consider: the dimensions of the Hankel matrix (namely, i and j).  Typically, the 

end user of the system identification algorithm would manually adjust these parameters to ensure 

the SSI method yields physically reasonable modal parameters. However, when seeking to 

automate the SSI algorithm, the system end-user is no longer in the loop. In addition, when the 

SSI method is applied to large datasets with results aggregated in a comparative manner, a 

consistent approach to the application to SSI must be used to ensure modal results from one data 

set can be more fairly compared to modal results from another.  In this section, the method for 

establishing an appropriate Hankel matrix size that can be used in an automated implementation 

of the SSI algorithm will be described.  In addition, the method for the determination of the model 

order, n, is also presented.  
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A Hankel matrix is constructed with synchronized acceleration response data corresponding to the 

accelerometer channels (l = 46) installed along the bridge girder and towers.  Each data set is 

collected at 20 Hz for 8 minutes resulting in 𝑁𝑠 = 9600 points per channel per data set.  The size 

of the Hankel block is constrained by the amount of data by the relationship: 

2𝑖 + 𝑗 − 1 ≤ 𝑁𝑠 (5.20) 

For a given i, it is convenient to set the Hankel matrix width 𝑗 = 𝑁𝑠 − 2𝑖 + 1 in order to maximize 

the number of data points used for estimation.  Maximizing the amount of data used in the Hankel 

matrix is known to lead to improved estimates for the modal damping ratio (Meng et al. 2011; 

Pridham and Wilson 2003).  The Hankel matrix width, j, will bias the determination of the model 

order, n, during SVD of the projection matrix (Peeters et al. 1997).  To ensure the bias is consistent, 

this study will fix j while varying the number of block rows, 2i, in the Hankel matrix.   Therefore, 

to compare the estimated modal parameters using different values of 2𝑖, the width of the Hankel 

block is set as:  

𝑗 = 𝑁𝑠 − max (2𝑖) + 1 (5.21) 

where max (2𝑖) corresponds to the largest 2i considered through a stabilization diagram analysis 

where i will be varied.   

 

SVD of the projection matrices 𝑃𝑖 and 𝑃𝑖−1 are critical steps in the data-driven SSI approach which 

establish the model order, n. Given the size of 𝑃𝑖 ∈ ℝ𝑙𝑖×𝑗 where li < j, a total of li singular values 

will be obtained during SVD of 𝑃𝑖.  Within the set of li singular values are n physical (true) modes 

of the system where n < li.  For some structures, it can be difficult to determine an appropriate 

model order.  Over the years, many rule-based methods have been developed to distinguish 

physical modes from mathematical modes (Häckell and Rolfes 2013; Zhang et al. 2014).  In this 
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study, the method for choosing 𝑛 is to examine the difference between two neighboring singular 

values, ∆λ, as a means of establishing the effective rank of P (van Overschee and de Moor 2012).  

When analyzing large amounts of data sets in an automated fashion as done herein, rules are 

established to automate the determination of n.  All singular values obeying the following two 

conditions (i.e., rules) are deemed as corresponding to physical modes counting towards the model 

order:  

𝜆 ≥ 𝑘1 × 𝑚𝑎𝑥 (𝜆) (5.22) 

𝜆 ≥ 𝜆𝑝 (5.23) 

where 𝜆𝑝  is the last singular value that is true for ∆𝜆𝑗 ≥ 𝑘2 × 𝑚𝑎 𝑥(∆𝜆) , ∆𝜆𝑗 = ∆𝜆𝑗 − ∆𝜆𝑗−1 .  

Here, 𝑘1 and 𝑘2 are determined empirically to ensure most of the modes extracted are physical 

modes with mathematical modes eliminated.  The first condition (Equation 5.22) ensures the most 

dominant singular values count towards the model order.  The second constraint (Equation 5.23) 

ensures singular values are contributing significantly towards the model with the smaller singular 

values in the tail excluded.  The number of singular values satisfying the two constraints 

correspond to the model order, n.  In this study, manual evaluation of a large number of 

acceleration response data sets from the New Carquinez Bridge is conducted to the determine an 

appropriate value of 𝑘1 and 𝑘2; they are set at 𝑘1 = 0.05 and 𝑘2 = 0.0025√2𝑖
2

.  

 

Computational optimization of the data driven SSI method is important to ensure scalability when 

implemented on the extensive data sets acquired. SVD of the projection matrix, 𝑃𝑖 ∈ ℝ𝑙𝑖×𝑗 , 

taking 𝒪(𝑙2𝑖2𝑗)  floating point operations is the most expensive step in the automated 

implementation of SSI (Trefethen and Bau 1997).  Since only the left singular vectors and singular 

values are required for determination of the state space model, a normalization trick can be applied  
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(a) (b) 

Figure 5.4, Stabilization diagram as a function of the Hankel matrix block row size i: (a) modal 

frequencies separated as vertical and transverse (horizontal); (b) modal damping ratios for select 

modes 

 

to reduce the computation time of Equation 5.7. Instead of performing SVD of the projection,  𝑃𝑖 ∈

ℝ𝑙𝑖×𝑗, the SVD is performed on 𝑃𝑖𝑃𝑖
𝑇 ∈ ℝ𝑙𝑖×𝑙𝑖 which for nonsingular 𝑃𝑖 reduces to: 

𝑃𝑖𝑃𝑖
𝑇 = 𝑈1 𝑆1

2𝑈1
𝑇 (5.24) 

SVD on 𝑃𝑖𝑃𝑖
𝑇 reduces the computation costs to 𝒪(𝑙3𝑖3) floating point operations. 

 

 

For illustration purposes, consider one instance of the New Carquinez Bridge acceleration data set 

collected at 6 PM on June 26th, 2013. First, the accelerations are digitally filtered using a 4-pole 

Butterworth low-pass filter with a cutoff frequency at 2.5 Hz.  Second, the size of the Hankel 

matrix must be determined.  The choice of 𝑖 has a direct effect on the modal results due to under- 

and overfitting issues of the SSI model.  The choice of 𝑖  is determined by examining the 

stabilization diagrams of modal frequencies and damping ratios over a range of 𝑖.  Figure 5.4 is 

the stabilization diagram which shows modal frequencies stabilize when 𝑖 > 110; similarly, modal  
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(a) (b) 

Figure 5.5, Singular values of the projection when l =3 and i = 200: (a) all singular values; (b) 

zoom on the first 30 singular values 

 

damping ratios stabilizing when 𝑖 > 200.  In order to visualize the damping ratio of individual 

modes more clearly, only a subset of the modes is shown in Figure 5.4b.  Therefore 𝑖 ∈ [200,250] 

is determined to be the range to consider for the Hankel matrix block row size in this study; with 

max(2i) = 500, the width of the Hankel matrix is fixed at j = 9101 based on Equation 5.21.  Based 

on the stabilization diagrams, the modal parameters are extracted including modal frequency and 

damping ratio. The results corresponding to the transverse (horizontal) modes appear slightly less 

stable when viewing both modal frequencies and damping ratios.  Furthermore, there appears to 

be some overlap between the transverse and vertical modal frequencies (i.e., near 0.41, 0.48, 0.74, 

0.97 and 1.03 Hz) in this data set.  This will be investigated in greater depth in the later phases of 

this study.   

 

A key component of assembling the stabilization diagrams is the automated determination of the 

model order, n, based on the rules established in Equation 5.22 and 5.23. To highlight this facet of 

the implementation, using three outputs (i.e., vertical accelerations at N1, N5 and N10 in Figure 

2.2) where i = 200 and j = 9101 are used.  The singular values from this set are plotted in Figure  
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Figure 5.6, Stabilization diagram of modal frequency with and without rules on singular values 

 

5.5 (a); applying the rules to the singular values of this data set results in 𝑛 = 64 autonomously 

determined as shown in Figure 5.5 (b).  The 10 modes extracted between 0.15 and 1 Hz are at 

0.196, 0.258, 0.349, 0.406, 0.481, 0.555, 0.641, 0.737, 0.794, 0.956 Hz, which match well with 

the spectrum amplitude peaks in Figure 5.2; this underscores the effectiveness of the rules on the 

singular values in effectively discarding mathematical modes. Figure 5.6 shows a comparison of 

modal frequencies obtained with and without rules on the singular values. All of the consistent 

modes extracted without rules were also extracted with rules proving that the rules retain the 

physical modes while removing mathematical modes.  As previously mentioned, SVD is 

performed on 𝑃𝑖𝑃𝑖
𝑇  in lieu of 𝑃𝑖. When 𝑙 = 3, 𝑖 = 200and 𝑗 = 9101 the time to compute the SVD 

on 𝑃𝑖𝑃𝑖
𝑇 using MATLAB R2015b on a standard personal computer (i5-2400 CPU at 3.10 GHz, 6 

GB RAM) is approximately 0.2 seconds while the corresponding time to perform SVD on 𝑃𝑖 is 

approximately 4.7 seconds; this is a speedup of 23 times. 

 

Considering all acceleration channels (l = 46) in this data set, a total of 15 operational mode shapes 

are extracted under 2 Hz, including 5 transverse (horizontal), 7 vertical and 3 torsional modes. The  



93 

 

 
Figure 5.7, Mode shapes of the bridge extracted using SSI analysis 

 

operational mode shapes are shown in Figure 5.7. A cubic spline is used to interpolate the shape 

between nodes. The torsional modes (T-1, T-2, T-3, T-4 and T-5) show displacement in both 

vertical and transverse directions which explains the frequency overlapping near 0.74 and 1.03 Hz 

in Figure 5.7. The primary vertical mode, V-1 at 0.19 Hz, is closely located with mode V-2 at 0.20 

Hz; therefore, it is difficult to extract mode V-2 for some data sets as has been pointed out by other 

studies (Kurata et al. 2013). Modes near 0.41 and 0.56 Hz have similar mode shapes as modes V-

4 and V-5, respectively, with the exception that the displacements on the end spans are much larger.  

It is also worth noting that the number of plotted mode shapes is limited by the number of 

accelerometers installed along the main span of the girder, which is 7 on both sides of the bridge 

main span, meaning more vertical modes may exist under 2 Hz. The operational mode shapes 
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determined are in close agreement with those previously reported for the bridge (Conte et al. 2008; 

He et al. 2009). 

 

5.3.3 Identification of Modal Frequencies  

Acceleration time history data is first filtered using a 4-pole Butterworth low-pass digital filter 

with a cutoff frequency at 2.5 Hz to remove high frequency signal components outside the 

spectrum of interest (< 2 Hz).  The SSI algorithm is conducted separately on the data in the vertical 

and transverse directions in order to avoid model coupling.  A histogram of all frequency solutions 

obtained using five variations in the Hankel matrix row parameter 𝑖 =  [210,220,230,240,250] 

over all of the datasets is shown in Figure 5.8.  This histogram is intended to determine the primary 

modal frequencies of the New Carquinez Bridge based on histogram peaks. Each labeled peak is 

considered a mode (structural or operational) due to being consistently identified over the set of 

4426 datasets and variations in the Hankel matrix row parameter, i.  Based on analysis of 

operational mode shapes at these modal frequencies, modes are labeled as vertical (V), horizontal 

(H), or torsional (T).  Operational modes considered the true structural modes based on comparison  

to previous reported modal  analyses (Conte et al. 2008; He et al. 2009)  are labeled  according to 

mode order (e.g., V-1 for the first vertical mode, V-2 for the second vertical mode, etc.).  The other 

modes are considered as operational deflection shapes influenced by the bridge loading; these 

modes are then labeled according to mode frequency (e.g., V-0.14 at 0.14 Hz).   
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Figure 5.8, Histogram of operational modal frequencies extracted from SSI solutions using 4426 

data sets from N1, N5 and N10 and five SSI models of varying Hankel matrix size 

 

Using a histogram to aggregate all modal frequencies extracted from a large set of bridge response 

data under a consistent set of SSI algorithm parameters (e.g., five Hankel matrix row parameters) 

is a novel data-driven approach that more accurately determines the operational modal frequencies 

of the bridge. First, aggregating modal frequencies over such a large volume of data sets makes 

structural modes easier to distinguish from mathematical modes.  Specifically, structural modes 

are more consistent over all the data sets resulting in high counts in the frequency bins; in contrast, 

mathematical modes will vary more resulting in lower counts in the frequency bins.   Second, the 

method provides a dramatic improvement in the ability to identify closely spaced modes over 

traditional implementations using a limited set of bridge response data.  For example, the mode V-

2 peak (at 0.20 Hz) is “buried” in the mode V-1 peak (at 0.19 Hz) in the spectrum amplitude plots 

of Figure 5.2. In the data-driven method, the two modes are easy to distinguish with the modal 

frequencies showing as overlapped distributions in Figure 5.8.  

 

According to Figure 5.8, 27 peaks under 2 Hz are selected as potential modal frequencies.  Based 

on an analysis of the mode shapes (Figure 5.7), a total of 15 true structural modes are finally 

identified from the 27 peaks as denoted in Figure 5.8. The 15 peaks identified in this study are in 
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agreement with the modes previously identified by He et al. (2009) in an experimental modal 

analysis of the bridge prior to its opening in 2003.   The other peaks are deemed to correspond to 

operational deflection shapes that have dependency on the loads.  For example, the peaks below 

H-1 (less than 0.19 Hz) in Figure 5.8 are hypothesized to be induced by traffic and wind loads.  

Mode V-1 and V-2 are closely located in the frequency-domain; the peaks overlap but the V-1 

peak is more dominant. Torsional modes (T-1, T-2, T-3, T-4 and T-5) are identified in both the 

vertical and transverse signals.  He et al. (2009) identified structural modes at 0.96 Hz, 1.16 Hz, 

1.35 Hz, and 1.57 Hz (denoted in Figure 5.8 as V-0.96, V-1.16, V-1.35, V-1.57).  However, the 

insufficient number of accelerometers along the main span installed in the wireless monitoring 

system did not allow the mode shapes to be accurately identified.  In a similar fashion, the three 

peaks above 1.7 Hz (V-1.76, V-1.85, and V-1.99) in Figure 5.8 are likely structural modes, but 

they cannot be confirmed as well.  For example, He et al. (2009) was also not able to identify these 

modes due to the limited number of sensors those authors used in their study.   

 

5.3.4 Statistical Analysis of Modal Frequency and Modal Damping Ratio 

The 27 peaks below 2 Hz identified in Figure 5.8 are analyzed further.  For each dataset, all 

frequencies obtained are discretized into 27 frequency bins (ranges). For each bin, the median 

frequency and damping ratio from the five SSI models (corresponding to  𝑖 =

 [210,220,230,240,250]) are used as the modal frequency and damping ratio for the dataset.  

Histograms of the median modal frequency and median damping ratio of mode H-1, V-1, V-2, V-

3, V-4, H-2, T-1 and V-5 are plotted in Figure 5.9 (a) and (b), respectively.  The histograms of 

modal frequency are similar to Figure 5.8 with symmetric distributions seemingly consistent with 

a normal distribution.  However, when fitting a normal distribution to modal frequencies it is 
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discovered that high kurtosis in the data renders a poor fit.  After exploring alternative distributions, 

the logistic distribution is found to fit the modal frequency data best.  The modal damping ratios 

have asymmetric distributions, heavily skewed to the left; it is reasonable to categorize such as log 

logistic.  The probability density functions of logistic and log logistic distribution are plotted over 

the histograms of the modal frequency and damping ratio, respectively, to illustrate the fitness of 

distribution. The damping ratio for modes in the vertical directions are low with most falling well 

below 0.8%. The transverse and torsional modes show slightly higher damping ratios most of 

which are under 1.5%.  The much higher damping ratios of mode V-2 are likely a result of high 

  
(a) 

 
(b) 

Figure 5.9, Histograms and logistic statistical distributions of the modal properties of the New 

Carquinez Bridge: (a) modal frequency; (b) modal damping ratio 
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uncertainty in the damping estimation due to the low participation factor of this mode resulting in 

a small number of data sets for which V-2 was identifiable.  The relatively low damping ratios are 

similar to what the literature has reported for structures experiencing low level vibrations (Fujino 

et al. 2012).  Due to the origin of damping (e.g., friction) it should be kept in mind that higher 

damping ratios are likely when response amplitudes are higher, such as during earthquakes and 

strong winds (Spence, S. and Kareem 2014).    

 

Table 5.1 summarizes the statistical properties of the modal frequency and modal damping ratio 

for the operational modes identified.  For each operational mode, the number of data sets for which 

the mode is identified is presented as a percentage of the 4426 data sets analyzed.  The mean (𝜇) 

and scale parameter (s) of a best fit logistic distribution to the histograms of median modal 

frequency are documented. Treating the damping ratios, 𝜉, as log logistic distributed, Table 5.1 

also reports the mean and scale parameters of ln(𝜉) as well as the mode of the distribution based 

on a best fit log logistic distribution.  Table 5.1 provides a statistical basis for modal frequencies 

and damping ratios for future designs of long-span suspension bridges such as the New Carquinez 

Bridges.  For damping ratio in particular, the assumed 0.3% damping ratio assumed during the 

design phase of the bridge (OPAC 2016) was an accurate estimate that is now supported by the 

empirically derived modal damping ratios in this study. 

 

5.4 Environmental and Operational Condition Impact on Modal Parameters 

Modal parameters are well known to exhibit sensitivities to EOCs (Çatbaş et al. 2008; Cross et al. 

2012; Fraser et al. 2010; Hua et al. 2007; Loh and Chen 2013; Moser and Moaveni 2011; Sohn et 
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al. 1999; Zhang et al. 2014). In this study, the sensitivity of modal parameters of the New 

Carquinez Bridge to the bridge environmental and operation conditions is investigated.  

 

Specifically, three environmental and operation conditions are considered: temperature, wind, and 

traffic loads.  While the temperature of the steel box girder and ambient air are both measured, it  

 

Table 5.1, Modal frequency and damping ratio statistical properties of identified operational modes 

Operatio

nal 

Mode 

ID  

Rate (%)* 

Modal Frequency, 𝝎 

(Hz) 
Modal Damping Ratio, 𝝃  

𝜇𝜔 𝑠𝜔 𝜇ln (𝜉) 𝑚𝑜𝑑𝑒(𝜉) 𝑠ln (𝜉) 

V-0.14 9.38 0.138 0.0028 -2.723 0.0066 0.1963 

H-1 95.77 0.175 0.0029 -4.483 0.0113 0.4268 

V-1 62.45 0.194 0.0006 -5.320 0.0049 0.5014 

V-2 26.19 0.204 0.0015 -3.358 0.0348 0.2485 

V-3 95.93 0.258 0.0005 -5.907 0.0027 0.4798 

V-4 78.69 0.350 0.0010 -5.757 0.0032 0.5368 

H-2 88.88 0.372 0.0020 -4.709 0.00912 0.4490 

V-0.41 99.23 0.412 0.0019 -4.721 0.0089 0.2635 

T-1 67.40 0.463 0.0035 -4.527 0.0108 0.4432 

V-5 95.12 0.481 0.0016 -5.060 0.0064 0.2783 

H-0.51 73.72 0.516 0.0092 -4.878 0.0076 0.3600 

V-0.56 98.64 0.559 0.0017 -5.352 0.0047 0.2740 

V-6 95.73 0.644 0.0015 -5.490 0.0041 0.3200 

T-2 23.14 0.739 0.0020 -5.609 0.0037 0.4070 

V-7 96.57 0.797 0.0018 -5.799 0.0030 0.3144 

V-0.96 54.90 0.961 0.0030 -5.250 0.0053 0.3178 

H-3 83.15 0.972 0.0047 -4.380 0.0125 0.3000 

T-3 85.99 1.033 0.0028 -5.335 0.0048 0.3880 

V-1.16 97.58 1.163 0.0031 -5.089 0.0062 0.2086 

V-1.35 46.43 1.347 0.0043 -4.946 0.0071 0.2453 

T-4 68.50 1.372 0.0083 -5.005 0.0067 0.4220 

V-1.45 88.43 1.450 0.0041 -5.053 0.0064 0.2283 

V-1.57 97.74 1.568 0.0036 -5.362 0.0047 0.2438 

T-5 71.22 1.687 0.0049 -5.432 0.0044 0.2838 

V-1.76 86.49 1.755 0.0048 -5.293 0.0050 0.2661 

V-1.85 87.14 1.851 0.0043 -5.280 0.0051 0.2269 

V-1.99 34.07 1.985 0.0042 -5.397 0.0045 0.2563 
* Identification rate from 4426 data sets 
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is the temperature of the box girder that is used because it reflects the thermal condition of the 

structure.  In addition, the wind speed and wind direction are measured by the monitoring system 

anemometers and wind vanes.  Traffic load is not directly measured in this study so the study 

adopts two quantifiable parameters that correlate to traffic: the peak vertical acceleration of a data 

set and the time of the day.  More vehicles moving faster increase the bridge vertical accelerations 

while time of the day (on a 24 hour scale) roughly captures traffic volume (e.g., 17:00 experiences 

high traffic volume due to rush hour while 03:00 experiences very low traffic volumes).    

 
(a) 

 
(b) 

Figure 5.10, Relationship between modal, environmental (wind speed, temperature) and 

operational parameters (peak acceleration): (a) modal frequency, (b) modal damping ratio 

 



101 

 

Figure 5.10 shows the relationship between three EOC parameters (peak acceleration, wind speed, 

and temperature) and the model parameters for six representative modes (H-1, V-1, H-2, V-5, T-

2, V-7).  These six modes span frequency range and mode type (i.e., horizontal, vertical and 

torsional). Close inspection of the modal frequencies reveal that many of the modal frequencies 

exhibit sensitivity to all three EOC parameters.  For example, modal frequency trends downward 

with increasing temperature and increasing wind speed as is visually evident in modes V-5, T-2 

and V-7. While some trends are evident in modal frequency, the modal damping ratios are too 

scattered for trends to be observed as a function of EOC parameters.  As a result, regression 

analysis is performed on the modal frequencies to develop models between modal frequency and 

bridge EOC parameters. To quantify the relationship between EOC parameters and modal 

frequencies, two forms of regression analysis were performed: ridge regression and Gaussian 

Process Regression (GPR). 

 

If the relationship between EOC parameters (system input) and modal frequency (system output) 

is assumed linear but there is a belief that the input parameters have a high degree of correlation, 

ridge regression would be an appropriate choice for regression due to its benefits in dealing with 

collinearity.  Ridge regression represents a modification on traditional linear regression by 

penalizing the size of the regression coefficients through the introduction of regularization in the 

least square regression solution (Hoerl and Kennard 1970).  Ridge regression begins with a linear 

model as: 

𝑦 = 𝑿𝛽 (5.25) 

where 𝑦 ∈ ℝ𝑛×1 is the modal frequency vector in this regression analysis, 𝑿 ∈ ℝ𝑛×𝑚 is the feature 

vector (consisting of environmental and operation parameters), 𝛽 ∈ ℝ𝑚×1  is the vector of 
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regression coefficients corresponding to each feature,  𝑛 is the number of observations and 𝑚 is 

the number of features.  In ridge regression, the optimal set of regression coefficients, 𝛽, are those  

that minimize the following cost function:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑚

𝑗=1
)2

𝑛

𝑖=1
+ 𝜆 ∑ 𝛽𝑗

2
𝑚

𝑗=1
 (5.26) 

where 𝜆 is the penalty term associated with large regression coefficients.  The minimization is 

solved by least squares to yield the optimal regression coefficients, �̂�: 

�̂� = (𝑿𝑇𝑿 + 𝜆𝑰𝑝)−1𝑿𝑇𝑦 (5.27) 

where 𝑰𝑝 ∈ ℝ𝑚×𝑚 is the identity matrix.  Ridge regression is dependent on the selection of the 

penalty term.  To select an appropriate penalty term, 𝜆, cross validation should be conducted on 

the data.     

 

For this study, five input features are chosen: structural temperature (C), wind speed (m/s), cosine 

of wind direction, maximum peak vertical acceleration (g) and hour of the day (hour of day on 24 

hour clock); the output of the regression is the modal frequency of each mode. The first four input 

features and the output are continuous real variables while the hour of the day is a discrete integer 

parameter.  Vectorization is used to handle the discrete parameter, which converts each hour into 

a 1 by 24 vector with 1 on the column of the hour and 0 on the rest. For example [0,0,0,1,0… ,0] ∈

ℝ1×24 represents 04:00. Data normalization (i.e., data is shifted and scaled to have a zero mean 

and unit variance) is also applied to both the input and output vectors.  Half of the data is chosen 

randomly and used as the training data set to estimate 𝛽; the remainder of the data is then used to 

evaluate the regression performance.  To select 𝜆, the data randomly sampled once to create the 

training data set.  Then, 𝜆 is varied from 0 to 1 in 0.1 increments to produce regression models for 
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each 𝜆. The regression model with the minimum mean square error (MSE) on the predicted modal 

frequency using the remaining (testing) data corresponds to the best 𝜆. After 𝜆 has been established 

for each mode, training and testing sets are again randomly chosen with ridge regression repeated 

30 times; the mean value of the MSE is used to evaluate the regression performance (as 

summarized in Table 5.2). The MSE is normalized using the variance of the testing data. If the 

normalized MSE ≥ 1, the regression model cannot capture any relationships between the inputs 

and the output. If the normalized MSE is close to 0, the regression model perfectly captures a linear 

relationship. According to the results shown in Table 5.2, ridge regression performs well on most 

of the modes with the normalized MSE falling below 1 for all structural modes, and well below 

0.5 for many of the modes (e.g., V-6, V-7, T-3, T-5).  An intrinsic benefit of ridge regression is 

the interpretation of the regression coefficients 𝛽.  The larger the absolute value of the regression 

coefficient, the more that input parameter influences the modal frequency.  Table 5.2 summarizes 

the average regression coefficient 𝛽  associated with each operational mode.  As can be seen, 

temperature is the most dominant regression input (with a mostly negative regression coefficient) 

for half of the modes with wind speed (with a mostly positive regression coefficient) and maximum 

acceleration (with a uniformly negative regression coefficient) the next two dominant inputs.    

 

To explore if nonlinearity exists in the relationship between the EOC parameters and modal 

frequency, Gaussian process regression (GPR) is conducted using the same input and output 

features as those used in the ridge regression analysis.  Gaussian process regression has received 

considerable attention in recent years due to its strong statistical foundation.  A brief description 

of GPR is provided based on the description of the method in Rasmussen and Williams (2006).   

The regression model is stated as a stochastic (Gaussian) process:  
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𝑦 = 𝑓(𝑿) + 𝜀 (5.28) 

𝜀~𝑁(0, 𝜎2) (5.29) 

𝑓(𝑿)~ℕ(0, 𝐾) (5.30) 

where  𝑦 ∈ ℝ𝑛×1  is the output vector of modal frequencies, 𝑿 ∈ ℝ𝑛×𝑚  is the feature set of 

environmental and operational parameters, and 𝜀 ∈ ℝ𝑛×1 is a zero mean Gaussian noise process 

of variance 𝜎2.   The observation is considered from a zero mean Gaussian process with the 

covariance function K. In GPR, the joint distribution of observations, y, and model predictions, y*, 

is assumed as: 

[
𝑦
𝑦∗] |𝑿,𝑿∗~ℕ(0, [

𝐾(𝑿, 𝑿) + 𝜎2𝑰 𝐾(𝑿, 𝑿∗)

𝐾(𝑿∗, 𝑿) 𝐾(𝑿∗, 𝑿∗) + 𝜎2𝑰
] (31) 

Where I ∈ ℝ𝑛×𝑛 is the unity matrix.  Based on Bayesian inference, the posterior probability for 𝑦∗ 

is defined as: 

 𝑃(𝑦∗|𝑿∗, 𝑿, 𝑦)~ ℕ(𝜇, Σ) (32) 

𝜇 = 𝐾(𝑿,𝑿∗)[𝐾(𝑿, 𝑿) + 𝜎2𝑰]−1𝑦 (33) 

Σ = 𝐾(𝑿∗, 𝑿∗) − 𝐾(𝑿, 𝑿∗)[𝐾(𝑿,𝑿) + 𝜎2𝑰]−1𝐾(𝐗∗, 𝐗) (34) 

Many different covariance functions, K, can be considered.  Here a kernel trick is applied with the 

square exponential (SE) kernel selected:  

𝑘(𝑥𝑖, 𝑥𝑗) = exp (
‖𝑥𝑖 − 𝑥𝑗‖

2

−2𝑙2
) (35) 

where 𝑥𝑖 and 𝑥𝑗 are the ith and jth rows of X  and l is a hyperparameter that is selected through 

maximization of the marginal log-likelihood function: 

𝑙𝑜𝑔 𝑃(𝑦|𝑿, 𝑙) = −
1

2
log|𝐾(𝑿, 𝑿) + 𝜎2𝑰| −

1

2
𝑦𝑇(𝐾(𝑿, 𝑿) + 𝜎2𝑰)−1𝑦 −

𝑛

2
𝑙𝑜𝑔2𝜋 (36) 
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An advantage of GPR is that the regression model provides a statistical basis with the mean and 

variance of the regression offered by the GPR model.     

 

Table 5.2, Mean Square Error of Regression Analysis of Environmental Impact on Modal 

Frequencies 

Oper. 

Mode 

Mean Square 

Error/Variance 
Ridge Regression Average �̂� 

Gaussian 

Process 

Regression 

Ridge 

Regression 

Temper- 

ature 

Wind 

Speed 

Cos 

(Wind 

Dir.) 

Max. 

Acc. 
Hour* 

V-0.14 1.00 1.17 0.11 0.06 -0.02 -0.29*** 0.15 

H-1 0.51** 0.66 0.37 0.24 0.17 -0.01 0.28 

V-1 0.82 0.82 0.15 0.26 0.02 -0.15 0.19 

V-2 0.85 0.86 0.24 0.08 0.05 -0.27 0.22 

V-3 0.85 0.83 -0.20 0.27 0.02 -0.14 0.13 

V-4 0.79 0.80 -0.34 0.16 0.01 -0.12 0.15 

H-2 0.85 0.87 0.16 0.19 0.14 0.00 0.17 

V-0.41 0.51 0.53 0.00 0.00 0.03 -0.45 0.25 

T-1 0.99 0.99 0.07 0.05 0.00 0.08 -0.10 

V-5 0.60 0.61 -0.24 -0.32 0.04 -0.19 0.13 

H-0.51 0.45** 0.65 0.31 0.24 0.12 0.04 0.28 

V-0.56 0.64 0.65 -0.37 -0.12 0.00 -0.25 0.14 

V-6 0.43 0.43 -0.53 0.03 0.01 -0.20 0.17 

T-2 0.55 0.55 -0.64 -0.05 -0.05 0.01 0.12 

V-7 0.33 0.32 -0.62 -0.01 0.01 -0.16 0.18 

V-0.96 0.67 0.67 -0.36 -0.04 0.04 -0.29 0.15 

H-3 0.80 0.80 0.22 0.05 0.08 0.00 0.23 

T-3 0.31 0.32 -0.56 0.02 0.02 -0.23 0.20 

V-1.16 0.29 0.30 -0.58 -0.01 0.01 -0.19 0.20 

V-1.35 0.66 0.66 -0.46 0.06 0.06 -0.15 -0.17 

T-4 0.46** 0.57 -0.08 0.19 0.14 0.00 0.28 

V-1.45 0.57 0.57 -0.50 -0.02 -0.02 -0.07 0.16 

V-1.57 0.25 0.25 0.11 0.06 -0.02 -0.29 0.15 

T-5 0.41 0.41 0.37 0.24 0.17 -0.01 0.28 

V-1.76 0.55 0.55 0.15 0.26 0.02 -0.15 0.19 

V-1.85 0.38 0.38 0.24 0.08 0.05 -0.27 0.22 

V-1.99 0.34 0.33 -0.20 0.27 0.02 -0.14 0.13 
* The maximum �̂� of hour 0 to 23 is used to represent the impact of time of the day 
** Significant improvement using Gaussian Process Regression 
*** Highlighted columns labels the highest impact variable 
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In this study, GPR is applied to the same modal frequency (output, y) and environmental and 

operational data (input, X) as used for the ridge regression analysis. Normalized MSE is again used 

as the basis of evaluation of the regression model yielded.  To handle the randomness in the 

selection of training and testing datasets, the regression is conducted 10 times and the mean MSE 

is used for comparison.  Table 5.2 summarizes the mean normalized MSE for GPR applied to each 

operational modal frequency.  The performance of GPR is shown to be similar to ridge regression.  

Operational modes involving modal participation in the transverse directions, H-1, H-2, H-0.51, 

T-2, H-3, T-3, T-4 and T-5, all have better results from GPR.  For mode H-1, H-0.51 and T-4, GPR 

substantially improves the regression with mean normalized MSE reducing 0.15, 0.20 and 0.11, 

respectively.  The fit of the GPR model for each modal frequency can be best seen when plotting  

 

 
(a) 

 
(b) 

Figure 5.11, Gaussian process regression (GPR) model of modal frequency versus EOC 

parameters for selected modes: (a) GPR prediction versus observed data, (b) distribution and 

cumulative distribution function plot of GPR model residuals 
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predicted modal frequency as a function of the complete EOC vector.   Projections of the GPR 

results on the modal frequency (Hz)-peak acceleration (mg), -wind speed (m/s), and –temperature 

(C) spaces are presented in Figure 5.11 (a) for the same six selected modes of Figure 5.10. The 

residuals of the GPR results (i.e., difference between the prediction and observation) of the six 

modes are plotted as histogram and cumulative distribution functions (CDF) in Figure 5.11 (b).  

 

The probability density functions (PDF) as well as the CDF of standard normal distributions are 

plotted over the data histograms and the data CDF, respectively. The fitness between the GPR 

residual distribution and the standard normal distribution validates the Gaussian noise assumption 

in the GPR model (equation 5.28). In all of the cases, the GPR model accurately captures the modal 

frequency dependency on peak acceleration, wind speed and temperature. In all of the cases, the 

GPR model accurately captures the modal frequency dependency on peak acceleration, wind speed 

and temperature.    

 

5.5 Chapter Summary 

A long-term wireless structural monitoring system was first installed on the New Carquinez Bridge 

in 2010.  Since that time, the wireless monitoring system has collected bridge responses 

(accelerations, strain and displacements) and bridge EOCs (temperature, wind speed, wind 

direction) daily for 8 minutes at 20 Hz every hour or every four hours, depending on energy 

availability.  This has produced an extensive set of bridge response data that can be used for 

analysis of the bridge behavior under its normal loading environment. In this study, 4426 data sets 

collected between January 1, 2013 to December 31, 2014 were utilized to evaluate the long-term 

modal properties of the bridge.  Motivation for the study was the importance of modal parameters 
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in both the design of the bridge and in updating bridge finite element models that are central to 

rapid assessment of the bridge health after an earthquake.   The analysis of such a vast repository 

of response data necessitated fully automated processing strategies.  The study developed a 

consistent approach to the application of SSI for the estimation of an output-only state space model 

from which modal properties were extracted.  A key innovation of the study was the use of multiple 

projection sizes (as specified by the size of the Hankel matrix row space) for each data set with the 

median modal results utilized.  By standardizing the implementation of SSI, modal parameters 

extracted could be fairly compared.  To ensure scalability of the modal parameter extraction 

strategy, a limited number of sensor outputs (6 deck acceleration measurements at node N1, N5 

and N10) were considered in the SSI implementation.  A novel approach to the creation of a modal 

frequency histograms was introduced that aggregated the result of five SSI models with different 

Hankel matrix row spaces (𝑖 =  [210,220,230,240,250]) to ensure modal frequencies are easily 

identified.  Using the histogram, a total of 27 operational modes were identified from the results 

of which 15 were confirmed to correspond to previously reported structural modes.  With accurate 

estimation of modal frequencies, the median modal frequency and damping ratio of each mode 

was reported for each data set analyzed allowing extensive histograms of modal frequency and 

modal damping ratio to be created.  Investigation of the histograms revealed that the normal 

distribution was not an appropriate statistical model for describing the distributions due to high 

kurtosis levels. The logistic function was determined to be the best statistical model that accurately 

fit the modal frequency distributions.  Similarly, log-logistic distributions proved very accurate in 

modeling the distribution of modal damping ratio.  The empirically derived distributions for modal 

damping revealed that the mode of the distributions for most structural modes were well below 

0.8% with many low order modes less than 0.3% such as the first, third and fourth vertical 
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structural modes.  These low modal damping ratios confirm that the 0.3% damping ratio used in 

the design of the New Carquinez Bridge was a reasonable value.  Finally, the study developed two 

regression frameworks for mapping the relationship between the bridge EOCs and modal 

frequency.  A GPR model proved to provide relatively accurate estimates of modal frequency 

given the bridge temperature, wind speed, wind direction, peak vertical acceleration and time of 

day.   

 

As time progresses, future efforts should update the statistical models developed using newly 

collected bridge response and EOC data.  Given the high uncertainty associated with estimations 

of modal damping, future work should explore approaches that aim to reduce the uncertainty in 

modal damping ratios.  Due to the origin of damping, more data is needed for the bridge under 

larger levels of excitation (e.g., earthquake and strong wind loads) from which modal damping can 

be explored.  It is anticipated that higher responses in the bridge will lead to increases in modal 

damping as has been reported in the literature for other bridges.  Finally, the significance of the 

variations reported in modal parameters should be studies using a finite element model of the 

bridges.  Specifically, the sensitivity of critical structural responses investigated after earthquakes 

(such as stress levels in key load carrying components) should be evaluated under the normal 

variation in modal parameters.         
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CHAPTER 6 

DATA-DRIVEN REGRESSION ANALYSIS FOR BRIDGE WEIGH-IN-MOTION 

 

6.1 Introduction 

Identification of moving loads on highway bridges is critical for assessing structural performance.  

In the domain of bridge structural health monitoring (SHM), direct estimation of load on the bridge 

system can enhance understanding of structural response data.  Weigh-in-motion (WIM) stations 

are routinely used to record load information on vehicles passing a specific location within a 

highway network. WIM stations are typically installed in the highway pavement system but 

unfortunately not on bridge decks.  Furthermore, existing WIM stations may be located far from 

bridges of interest.  WIM stations, regardless of their design (e.g., bending plates, piezoelectric 

sensors), are designed to record the number of axles and the static weight imposed by the axle to 

the road.  Translating measured static load of a vehicle to true dynamic load imposed on a bridge 

requires extensive analysis which must account for the dynamic properties of a vehicle’s 

suspension system, the dynamic properties of the bridge, and the roughness of the bridge deck.  

An alternative strategy to identifying and characterizing the dynamic loads imposed on bridges is 

to instrument the bridge in a manner that allows it to be used as a WIM station of sorts.  A clear 

advantage of this strategy is that the response of the bridge can also be used for other purposes 

such as for structural health identification.    
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Several bridge WIM (BWIM) systems developed in academia and industry exist and typically 

consist of sensing and data processing units. A typical sensing unit, the nothing-on-road (NOR) 

system, uses a group of strain gages as an axle detector  which take advantage of local stress peaks 

caused by the wheel passing the instrumented area. Axle information is extracted by identifying 

the sharp peaks in the strain response data and is later used as critical input to the weight 

identification process. This type of axle detector is highly sensitive to the wheel path, thus reducing 

the success rate of the truck identification. In terms of data processing, weight identification is 

constructed as a regression problem constructed from the axle influence line and bridge strain 

response. Having accurate axle influence line, speed and axle configuration is critical to the 

accuracy of the weight estimation. Most BWIM system obtain the influence line via structural 

modeling or finite element modeling, which can introduce errors related to differences between 

the model and structure.  

 

Research presented in this chapter focuses on the extension of the bridge condition monitoring 

systems for bridge weigh-in-motion measures in order to obtain explicit traffic load information. 

The algorithm developed aims to remove the need for axle detectors, reduce identification error 

from physical modeling, add robustness against highway traffic and automate the identification 

process for long-term monitoring. In this chapter, a data-driven regression method is proposed to 

identify truck gross weight, axle weight, axle spacing and speed with a single strain gage sensor. 

The algorithm uses experimental influence lines and an expansion of the Moses’s algorithm to a 

ℓ0-norm regression problem. To solve the  ℓ0  regression, a ℓ1-norm algorithm least absolute 

shrinkage and selection operator (LASSO) is applied to estimate the solution; the best subset 

selection method is used to extract the exact axle spacing and weight. Truck speed is determined 
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based on best fitting of the resampled influence line during regression analysis. The data-driven 

regression method removes the needs for dense sensor arrays, making the system a good candidate 

for quick installation short-term traffic evaluation and ultra-low cost long-term traffic monitoring. 

The system was installed and tested on the Telegraph Road Bridge, a highway bridge in Monroe 

Michigan, and achieved a type II (ASTM 2009) WIM station accuracy. The regression algorithm 

was also applied to track truck weight using long-term data from May 2015 to April 2016. The 

truck weight distribution from the proposed approach is in high agreement with weight records 

from the downstream MDOT owned WIM station, demonstrating the long-term reliability of the 

bridge WIM system and success of the proposed algorithms. 

 

6.2 Data-driven Bridge Weigh-In-Motion Algorithm Overview 

The data-driven BWIM algorithm discussed in this chapter is based on best fitting of structural 

strain response data with experimentally obtained influence lines. The algorithm can extract truck 

total weight, speed, number of axles (tandem), axle weight and axle spacing. It can also be 

automated, a significant advantage for long-term operations. Similar to traditional methods, strain 

response is used to estimate axle weight. However, this algorithm also extracts the number of axles, 

axle spacing and speed information from the same strain response data, thereby removing the need 

for an axle detector. The algorithm has three major steps as shown in Figure 6.1.  

 Step 1: An experimental static influence line is extracted using calibration vehicle 

information and measured strain data.  

 Step 2: A ℓ0 normalization problem is constructed using measured strain (as the dependent 

variable) and a Toeplitz matrix of the time-shifted experimental influence line (as the 
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independent variables). Least absolute shrinkage and selection operator (LASSO) 

regression, which is a ℓ1 solver, is used to estimate the ℓ0  regression due to the 

computational demand of the ℓ0 solution. It is repeated for many Toeplitz matrices over a 

range of speeds (each matrix is constructed with influence lines of a single speed). The best 

fit solution thereby provides a best fit estimation of vehicle speed and potential axle/tandem 

locations.  

 Step 3: Based on potential axle or axle group location information, a list of combinations 

from all potential axle occurrence time stamps is constructed. For each combination in the 

list, least square linear regression is applied using the strain from the last step (as the 

dependent variable) and a subset of the Toeplitz matrix (as the independent variable). The 

best fit solution provides number of axles, axle weight, axle spacing and total weight of the 

vehicle.  

 

 
Figure 6.1, Flow chart of data-driven truck identification algorithm 
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The strain gage used for the bridge WIM regression analysis is installed near the bottom pin hole 

on a hanger plate (as shown in Figure 2.9) of the 4th girder (middle lane) on the leaving span. The 

stress concentration effect around the pin hole magnifies the strain response thereby improving the 

signal-to-noise ratio. The weldable axial water-proof strain gage (HBWF-35-125-6-10GP-TR) 

from Hitec Products Inc. (http://www.hitecprod.com/) measures both static and dynamic responses; 

an external signal conditioning circuit board is used to magnify the strain gage output signal by a 

factor of 500.  The installation required a lift truck near the bridge pier and did not disrupt traffic 

on or below the bridge. Since the strain gage is installed as an add-on component to an existing 

permanent structural monitoring system, the cost was minimal, including $100 for the weldable 

stain gage, $100 for the wireless Narada node, $133 for the solar power supply and roughly $60 

for miscellaneous circuits and packing materials. At a total additional cost of $400, the existing 

bridge monitoring system was equipped with a WIM system as well, proving the exceptional value 

addition by the proposed BWIM approach.  

 

There are four entrances/exits between the TRB site and the WIM station located 12 miles 

downstream from the TRB. In order to synchronize the bridge strain response collected at the TRB 

and the corresponding truck data recorded at the WIM station, two cameras were setup at the TRB 

site and the WIM station site to record continuous video images of the traffic for truck 

synchronization. Based on the preliminary video test, nearly 70% trucks passing the TRB will pass 

the WIM station, therefore providing a basis to that similar traffic characteristics are expected 

between the TRB and the WIM station. Additionally, the video at the TRB site is used to 

synchronize a particular truck event with the corresponding strain signal and the video at the WIM 

http://www.hitecprod.com/
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station is used to extract the corresponding vehicle records based on time stamp and consecutive 

vehicle events.  

 

6.3 Influence Line Extraction 

The algorithm used to extract the influence line using experimental sensing data is a modified 

version of the algorithm discussed in O’Brien et al. (2006).  At time step 𝑘, the load in the hanger 

plate,  𝑆𝑘 is given by: 

𝑆𝑘 = 𝐸𝜀𝑘
𝑡  

(6.1) 

where 𝐸 is the Young’s modules of hanger plate and 𝜀𝑘
𝑡  is the theoretical tensile strain of the 

hanger plate at time step 𝑘.  

The load can also be expressed as the superposition of axle loads: 

𝑆𝑘 = ∑𝑃𝑖𝐼𝑘−𝐶𝑖

𝑁

𝑖=1

 (6.2) 

𝐶𝑖 =
𝐷𝑖𝑓

𝑣
 (6.3) 

where 𝑃𝑖 is the axle load of the ith axle, 𝑁 is the total number of axles, , 𝐷𝑖 is the distance between 

axle 𝑖 and 𝑖 − 1 (𝐷1 is set to be 0), 𝑓 is the sampling frequency, 𝑣 is the speed of the vehicle, 𝐶𝑖 is 

the number of data points offset between axle 𝑖 and 𝑖 − 1 and 𝐼𝑘−𝐶𝑖
 is the influence line ordinates 

of the ith axle at time stamp 𝑘 (as shown in Figure 6.2). Combing equations 6.1 and 6.2, 𝜀𝑘
𝑡  is 

expressed as:  

𝜀𝑘
𝑡 =

1

𝐸
∑𝑃𝑖𝐼𝑘−𝐶𝑖

𝑁

𝑖=1

 
(6.4) 
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Figure 6.2, Influence line ordinates of a 5 axle truck at time stamp 𝑘 

 

Define the error between the measured strain response and the theoretical values as:  

𝐸𝑟𝑟𝑜𝑟 =  ∑(𝜀𝑘
𝑚 − 𝜀𝑘

𝑡)2

𝐾

𝑘=1

= (𝜀1
𝑚 − 𝜀1

𝑡)2 + (𝜀2
𝑚 − 𝜀2

𝑡)2 + ⋯+ (𝜀𝐾
𝑚 − 𝜀𝐾

𝑡 )2 
(6.5) 

Take equation 6.4 into equation 6.5, the error is expressed as: 

𝐸𝑟𝑟𝑜𝑟 =  
1

𝐸2
[(𝜀1

𝑚 − 𝑃1𝐼1)
2 + ⋯+ (𝜀1+𝐶2

𝑚 − 𝑃1𝐼1+𝐶2
− 𝑃2𝐼1)

2
+ ⋯

+ (𝜀𝐾
𝑚 − ∑𝑃𝑖𝐼𝑘−𝐶𝑖

𝑁

𝑖=1

)

2

] 

(6.6) 

To minimize the error, partial derivatives of the error with respect to a set of influence ordinates 

are set to be zero: 

𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝐼𝑅
= 0, 𝑅 = 1,2, … , 𝐾 − 𝐶𝑁 (6.7) 

The 𝐾 − 𝐶𝑁 equations from the partial derivations can be re-organized into matrix format: 

[𝑊](𝐾−𝐶𝑁)×(𝐾−𝐶𝑁) × {𝐼}(𝐾−𝐶𝑁)×1 = {𝜀}(𝐾−𝐶𝑁)×1 (6.8) 

Where the 𝐼 is the influence line ordinates vector. The rows of {𝜀} are defined as:  
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𝜀𝑅 = 𝐸(𝑃1𝜀𝑅
𝑚 + 𝑃2𝜀𝑅+𝐶2

𝑚 + ⋯+ 𝑃𝑁𝜀𝑅+𝐶𝑁

𝑚 ), 𝑅 = 1,2, … , 𝐾 − 𝐶𝑁 (6.9) 

The elements of [𝑊] are defined as: 

𝑊𝑖,𝑖 = ∑𝑃𝑖
2

𝑁

𝑖=1

 

𝑊𝑖,𝑖+(𝐶𝑗−𝐶𝑘) = 𝑃𝑗𝑃𝑘, 𝑖 + (𝐶𝑗 − 𝐶𝑘) < 𝐾 − 𝐶𝑁 

𝑖 = 1,2, … , 𝐾 − 𝐶𝑁 , 𝑗 > 𝑘, 𝑗 = 1,… ,𝑁, 𝑘 = 1,… ,𝑁 

(6.10) 

{𝐼} can be solved by taking the least square solution of equation 6.8.  

 

Figure 6.3 shows the influence line extracted from experimental strain response data from a 

calibration vehicle load. The calibration vehicle was chosen to be a two axle truck with axle 

weights of 7.8 kips and 11.2 kips and axle spacing of 22.8 ft. The super positioned influence line 

was computed according to equation 6.4. As the experiment was conducted without traffic 

interruption, ideal calibration truck conditions (bridge at rest before the truck arrives, truck driving 

on the middle lane and no other truck on the bridge at the same time) existed. The specifications 

of the calibration truck (i.e., axle weight and spacing) were obtained from the WIM station. The 

speed of the truck, which was used when computing 𝐶𝑖, was unknown but could be determined 

using a grid search. A range of speeds were used to compute the 𝐶𝑖 individually and the speed 

resulting in the minimum squared sum error, ∑ (𝜀𝑘
𝑡 − 𝜀𝑘

𝑚)2𝐾−𝐶𝑁
𝑘=1 , was used as the calibration truck 

speed, which was 96 ft/s (65 mph). The experimental influence line follows the same trend as the 

one from the CSiBridge model, but more accurately represents the influence line of the structure. 

Therefore, the experimental influence line shall be used for future analyses. 
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Figure 6.3, Influence line extracted from experimental sensing data 

 

6.4 Speed and Potential Axle/Axle Group Location Extraction 

6.4.1 Axle/Axle Group Estimation 

Estimation of the axle weight and spacing of a truck can be treated as a regression problem between 

the measured strain response vector, {𝜀}𝑚×1, and the superposition of the influence line vector. 

The regression problem is constructed as: 

[𝐼]𝑚×𝑡 × {𝑃}𝑡×1 = {𝜀}𝑚×1 (6.11) 

where 𝑚 is the number of data points in the strain response, 𝜀, and 𝑡 is the number of time-shifted 

influence lines, {𝐼} from equation 6.8, comprising the Toeplitz matrix [𝐼], 

[𝐼]𝑚×𝑡 =

[
 
 
 
 
 
 
 
𝐼1 0 ⋯ 0 0
𝐼2 𝐼1 ⋯ ⋮ ⋮
⋮ 𝐼2 ⋯ 0 0
𝐼𝐾 ⋮ ⋯ 𝐼1 0
0 𝐼𝐾 ⋯ 𝐼2 𝐼1
0 0 ⋯ ⋮ 𝐼2
⋮ ⋮ ⋯ 𝐼𝐾 ⋮
0 0 ⋯ 0 𝐼𝐾

 

]
 
 
 
 
 
 
 

 (6.12) 
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and {𝑃} is the axle weight sparse vector, where the non-zero elements represent axle weights and 

the number of zeros between the neighboring non-zero elements can be translated to axle spacing:  

{𝑃}𝑡×1 = [0 … 0 𝑃1 0 × 𝐶2 𝑃2 0 × 𝐶3 𝑃3 … 𝑃𝑁 0 … 0]𝑇 (6.13) 

To solve for the axle weight vector, {𝑃}, the regression problem is subject to:  

{𝑃} = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝜀𝑖 − 𝛼 − ∑𝑃𝑗𝐼𝑖𝑗

𝑡

𝑗=1

)2

𝑚

𝑖=1

}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑‖𝑃𝑗‖0

𝑡

𝑗=1

= 𝑁  (6.14) 

where 𝛼 is the intercept, which is a small constant correcting the offset of the strain signal. This is 

therefore a ℓ0-norm regularized regression problem. 

 

However, ℓ0-norm regularization problem is computationally hard. It is often solved using the best 

subset selection (BSS) algorithm which evaluates all (
𝑡
𝑁

) models that have exactly 𝑁 non-zero 

elements of {𝑃}, and then selects the best model. One obvious problem of BSS is that if 𝑡 is non-

trivial, the number of models becomes too large to implement. Therefore, ℓ1-norm regularization 

is often used to estimate the ℓ0-norm solution. The least absolute shrinkage and selection operator 

(LASSO) algorithm (Tibshirani 1996) is applied to solve: 

{𝑃} = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝜀𝑖 − 𝛼 − ∑𝑃𝑗𝐼𝑖𝑗

𝑡

𝑗=1

)2

𝑚

𝑖=1

}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑‖𝑃𝑗‖1

𝑡

𝑗=1

≤ 𝑤  (6.15) 

where 𝑤 is a positive tuning parameter. The solver for Lasso solutions is an iterative algorithm 

that uses the Kuhn-Tucker conditions (Kuhn and Tucker 1951) and soft shrinkage function. The 

detailed algorithm can be found in (Tibshirani, 1995). The solver returns a set of {𝑃} for a range 

of 𝑤, and the best fitting {𝑃} and 𝑤 are determined using cross-validation of the squared sum error 

(SSE) defined as:  
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𝑆𝑆𝐸 = ∑(𝜀𝑖 − 𝛼 − ∑𝑓(𝑃𝑗)𝐼𝑖𝑗

𝑡

𝑗=1

)

2
𝑚

𝑖=1

 

𝑓(𝑃𝑗) = {
𝑃𝑗  , 𝑖𝑓 𝑃𝑗 ≥ 𝑙

0, 𝑖𝑓 𝑃𝑗 < 𝑙
 

(6.16) 

As 𝑃𝑗 essentially means axle weight of the truck, which is usually larger than 2 kips, the threshold 

function 𝑓(𝑃𝑗) eliminates small 𝑃𝑗, so the SSE focuses on the fitness of the axle influence line 

instead of noises. The threshold, 𝑙 , can be set to a constant number or can be determined 

dynamically based on the peak of the strain response (i.e., the higher the strain, the larger 𝑙 is).  

 

6.4.2 Truck Speed Extraction 

To determine the truck speed, a range of possible truck highway speeds are tested and the best 

model is selected. As the calibration truck had a speed of 96 ft/s (65 mph), several influence lines 

corresponding to a reasonable speed range of [88,110] ft/s ([60,75] mph) were obtained by 

resampling the calibration influence line, discretized by 1 ft/s, resulting in a set of 23 influence 

line vectors. Therefore, the Lasso regression is repeated 23 times using 23 different Toeplitz 

matrices (equation 6.11). The model with the smallest SSE is selected and the corresponding speed 

is used to represent the truck speed.  

 

6.4.3 Validation and Discussion 

To partially validate the proposed algorithm, the calibration truck sensor data shown in Figure 6.3 

is used as the measured strain response data, {𝜀}, in equation 6.11, and the Lasso solution is shown 

in Figure 6.4. Figure 6.4 (a) shows that the Lasso solution fits the sensor data very well and is  
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(a) (b) 

Figure 6.4, Lasso solution of axle weight and axle spacing for the calibration truck: (a) measured 

strain and fitted strain and (b) Lasso solution of {𝑃} and axle weight and spacing from WIM 

station 

 

robust to the noisy data at the ends caused by consecutive vehicles and structure dynamics. Figure 

6.4 (b) is a bar plot showing the Lasso solution of {𝑃}  and truck axle information from the WIM 

station (axle weights of 7.8 kips and 11.2 kips, axle spacing of 22.8 ft and speed of 96 ft/s). The 

Lasso solution has eight non-zero elements, but only two of which have significant positive values 

(row 68 and 91 in Figure 6.4 (b)), representing the two axles of weight 7.4 kips and 10.8 kips, 

respectively. Axle spacing is computed as 
91−68

100𝐻𝑧
× 96𝑓𝑡/𝑠 = 22.08𝑓𝑡 . The validation test 

accurately identified axle weight and spacing, thereby showing the effectiveness of the LASSO 

estimate to the ℓ0 regression solution.  

 

The results of a 5-axle truck (axle weight of 9.3, 15, 15.9, 17.9 and 17.3 kips and axle spacing of 

11, 4.4, 30.8 and 10.2 ft., according to WIM station records) is also shown to demonstrate the  

proposed algorithms on regular traffic data (non-calibration vehicle data). When using regular 

traffic data, due to signal noise, structure dynamics and slight differences in truck path (with 

respect to the influence line path, e.g., truck shifted in transverse direction within the lane), higher 
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rank Lasso solutions always produce better fits (lowest squared sum errors), as shown in Figure 

6.5 (a1). However, the amplitude of these non-zero elements are often not accurate as shown in 

Figure 6.5 (a2). These are referred to as “over-fitted” solutions, and can be eliminated by limiting 

the maximum number of non-zero elements in {𝑃}. Therefore, an additional filter was applied to 

{𝑃}: 

∑‖𝑃𝑗‖0

𝑡

𝑗=1

< 𝑛  (6.17) 

This is similar to the ℓ0-norm condition with the upper boundary labelled as 𝑛. A smaller 𝑛 can 

eliminate “over-fitted” solutions. However, too few 𝑛 (e.g., 𝑛 = 𝑁) can also lead to an “under-

fitted” solution, where the Lasso solution only concentrates near the dominant axles, or takes a 

position between axles and omits the remaining axles as shown in Figure 6.5 (b1) . This is also the 

result of signal noise, structure dynamics and a difference in truck path from the influence line 

path. The Lasso solution “spreads” the axle weight among the neighboring elements, so a small 𝑛 

will force the algorithm to shrinkage the light weight axles and pick a compromised position 

between axles. For trucks with less than five axles, 𝑛 = 30 is a good choice as shown in Figure 

6.5 (c1) and Figure 6.5 (c2). As shown in Figure 6.5 (c1), the “well-fitted” Lasso solution of {𝑃} 

is a good fit in the time history strain response, especially the latter half of the data where axle 

loads cause sharp peaks. The non-zero elements of {𝑃} shown in Figure 6.5 (c2) are spread into 

three groups (near row 23, 35 and 77, with more elements concentrated near row 35 and 77) which 

can be treated as a single axle or a tandem of two axles. In conclusion, the ℓ0-norm regularized 

regression modelling estimated using Lasso has been shown to provide accurate information on 

truck axle/tandem weights and spacing.  
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(a1) (a2) 

  

(b1) (b2) 

  
(c1) (c2) 

Figure 6.5, Lasso solution of axle weight and axle spacing for: (a) “over-fitted” condition, 𝑛 =
180, (b) “under-fitted” condition, 𝑛 = 5 and (c) “well-fitted” condition, 𝑛 = 30; (1) measured 

strain and fitted strain and (2) Lasso solution of {𝑃} and axle weight and spacing from WIM station 
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6.5 Number of Axles, Axle Weight and Spacing Extraction 

By revealing estimations of truck speed and axle locations (within a range) using ℓ1 methods, the 

originally posed regression problem can be re-posed but with greatly reduced dimensions (focused 

only on the estimated speed and axle location dimensions). With the reduced problem setup, ℓ0 

methods become tractable using the BSS algorithm. Reduced models are constructed by:  

1) Apply a threshold function (from equation 6.16) on Lasso solutions to zero out 

insignificant elements.  

2) Form 𝑁𝑔 groups of row numbers from the Lasso solution, based on neighboring positive 

elements. Each group contains 𝑁𝑔𝑖 elements (𝑖 is the group number) and represents an axle or a 

tandem. 

3) For each group, construct the possible combinations (2-combination for tandem and 1-

combination for single axle) of the row elements, resulting in a total of (
𝑁𝑔𝑖

2
) + (

𝑁𝑔𝑖

1
) 

combinations.  

4) Construct the possible combinations of axles for all 𝑁𝑔  groups, with only one 

single/tandem axle selected from each group. In total, there are ∏ [(
𝑁𝑔𝑖

2
) + (

𝑁𝑔𝑖

1
)]

𝑁𝑔

𝑖=1
 models; 

each model has 𝑁 elements.  

For each model, re-construct the Toeplitz matrix from equation 6.11 by extracting the 

columns according to the row number elements in the 𝑁𝑔-combination. The regression problem is 

re-structured as:  

[𝐼]𝑚×𝑁 × {𝑃}𝑁×1 = {𝜀}𝑚×1 (6.18) 
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which can be solved using least square. Models with non-physical solutions (e.g., negative and 

insignificant values) should be discarded. The best fitting model is selected by evaluating the 

squared sum error. 

 

6.5.1 Validation and Discussion 

After applying the threshold function on the Lasso solution from last step, the solution could be 

divided into 3 groups of row numbers:[23], [31: 37], [70: 85] having significant values. Therefore, 

totally 3808 models are evaluated. The proposed algorithms successfully picked a best fitting 

model with 𝑁 = 5 axles, having row numbers of [23, 33, 37, 72, 84]. At a speed of 92 ft/s and 

considering 100 Hz sampling frequency, the row numbers are converted into axle spacings of 

[9.2, 3.68, 32.2, 11] ft. The least square solution for this model is {𝑃} =

[10.8 11.2 14.2 23.1 15.9]𝑇 kips. The difference between the proposed solution and the truck data 

received from the WIM station is listed in Table 6.1. The total weight difference is 0.3%, individual 

axle weight ranges from 8.1% to 29%, and axle spacing ranges from 4.5% to 16%.  

 

Table 6.1, Truck information comparison between regression results and WIM station data 

 
Total 

Weight 

Weight 

1 

Spacing 

1 to 2 

Weight 

2 

Spacing 

2 to 3 

Weight 

3 

Spacing 

3 to 4 

Weight 

4 

Spacing 

4 to 5 

Weight 

5 

WIMS 75.4 9.3 11 15 4.4 15.9 30.8 17.9 10.2 17.3 

Regress

ion 
75.2 10.8 9.2 11.2 3.68 14.2 32.2 23.1 11 15.9 

Differe

nce  
-0.3 16 -16 -25 -16 -11 4.5 29 7.8 -8.1 
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6.6 Results and Discussion 

Of all 189 truck events considered in this experiment which crossed the TRB, 150 of them also 

crossed WIM station, but only 42 of them satisfied identification conditions: 1) driving on the 

middle lane and, 2) being the only vehicle on the bridge when passing the TRB. Therefore, the 

data-driven truck identification algorithm was applied only to these 42 truck events. Among the 

42 trucks, 4 were 2-axle, 3 were 3-axle, 3 were 4-axle and 32 were 5-axle. In total, 34 of these 

truck events resulted in a successful number of axles detected (according to WIM results).  Of the 

8 unsuccessful cases, 1 was mis-identified by the WIM station (a 5-axle truck as a 3-axle and 2-

axle), 4 occurred on trucks with multiple axles where there was difficulty separating tandem from 

single axle, and 3 occurred on trucks with low axle loads (low values in {𝑃}). 

 

Figures 6.6 (a) and 6.6 (b) show a distribution of truck weights from the WIM station records and 

identified using the data-driven regression algorithm. Figure 6.6 (c) shows the distribution of total 

weight difference between the regression analysis and the WIM station records. A difference of 

15% or less is shown for 91% of trucks. As WIM station records are not necessarily a true 

representation of the truck total weight, further analysis was performed to evaluate the quality of 

the regression analysis. Given the WIM station has an accuracy of 95% trucks with error of 15% 

for truck total weight, the error of the WIM station record is simulated as a random variable, 𝑆1, 

from normal distribution of 𝑁(0,0.075) . Assuming the regression analysis also carries the 

accuracy of type II WIMS, a random variable, 𝑆2 , is draw from the same distribution. The 

histogram of the difference between 𝑆1 and 𝑆2 is normalized and plotted as reference to evaluation 

of the quality of the regression  
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(a) (b) 

 
 

(c) (d) 

Figure 6.6, Distribution of identified truck weight and speed: (a) truck weight from WIMS 

record, (b) truck weight identified using data-driven regression algorithm, (c) truck weight 

difference and (d) speed identified using data-driven regression algorithm 

 

 

analysis. As shown in Figure 6.6 (c), the difference between the regression analysis and the WIM 

station records is under the area of the difference between two simulations, meaning the regression 

analysis is likely to have a smaller error variance than the type II WIM station and performing at 

least as good as a type II WIM station in total weight identification. Figure 6.6 (d) shows a 

distribution of identified truck speed with mean speed of 66 mph.  

 

Among the 34 trucks, 45 single axles and 59 tandem/axle groups were identified. The identified 

axle weight information is shown in Figure 6.7. The type II WIM station has ±30% and ±20% 
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tolerance for 95% probability of conformity for single axle and axle group weight. Therefore, the 

reference difference distributions are plotted in Figure 6.7 (a) and (b) using 𝑁(0,0.15)  and 

𝑁(0,0.10), respectively. As shown in Figure 6.7, the performance of the axle weight identification 

using the data-driven regression analysis is as good as a type II WIM station for the both single 

axle and axle group.  The one outlier in the axle group weight identification is from a light load 

axle group of 13.7 kips, well below the mean axle group weight of 21.0 kips. Low axle weight 

results in lower signal-to-noise ratio and dynamic-to-static ratio in the strain response, therefore 

reducing the accuracy of the regression analysis. 

 
(a) 

 
(b) 

Figure 6.7, Axle weight difference between regression analysis and WIM station records: (a) 

single axle weight and (b) axle group weight 
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Axle spacing results are shown by histogram in Figure 6.8 as the difference between the identified 

spacing and the WIM station records. The accuracy of the axle spacing is reasonable but not as 

good as a WIM station, given the WIM station has an accuracy of 0.5 ft. Signal noise, dynamic 

impact and speed change are the three main causes for the estimation error. The axle spacing 

detection is based on the assumption that the vehicle is driving at a constant speed across the bridge. 

However, based on observation, some of the truck drivers tend to slow down when approaching 

the road side experiment setup, including a video camera and two researchers, and the drivers tend 

to speedup once pass the cameras. This change of speed could introduce errors in axle spacing 

estimation.  

 

  
(a) (b) 

  
(c) (d) 

Figure 6.8, Axle spacing difference between regression analysis and WIM station records 
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6.7 Truck Weight Identification using Long-term Data 

To evaluate the long-term traffic conditions of the TRB, the proposed data-driven bridge WIM 

approach is expanded to identify the gross vehicle weight for all truck events captured from May 

2015 to April 2016. Data acquisition is performed every two hours for one minute due to power 

constraints; as a result, the data is only a sample representation of bridge traffic. Peak picking and 

threshold algorithms are used to first identify truck events in the strain response, and the bridge 

WIM algorithm is applied to extract the gross truck weight. In total, 1,968 trucks were identified 

using the 1-year data.  Figure 6.9 (a) shows the distribution of gross vehicle weight. 92% of the 

trucks are under the legal weight 80 kips. Among these trucks, three groups are identified which 

corresponds to the three types of typical Michigan trucks: light weight medium, medium and 

standard semi-trailer, according to an MDOT report (MDOT 2012). Over 1,000,000 trucks 

traveling north were recorded at the WIM station from May 2015 to April 2016. Figure 6.9 (b) 

shows the distribution of gross vehicle weight. Without permanent video data at each site, it is 

difficult to produce a one-to-one mapping between the trucks passing TRB and the trucks passing  

 

  
(a) (b) 

Figure 6.9, Histogram of gross vehicle weight: (a) truck identified at the TRB bridge WIM and 

(b) truck records at the WIM station 
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the WIM station. However, by observing histograms of large data sets from each location, very 

similar statistics can be seen in the distribution shapes, providing evidence of the reliability of the 

proposed data-driven bridge WIM system for long-term implementation and analysis. The 

representation of the traffic (i.e., gross vehicle weight) collected using the ultra-low cost bridge 

WIM system can be further used for long-term load estimation and traffic analysis.  

 

6.8 Chapter Summary 

This chapter described a data-driven regression algorithm for bridge weigh-in-motion system using 

a single strain gage sensor. The algorithm constructs a ℓ0  linear regression problem of the 

influence line Toeplitz matrix and the strain response to extract gross weight, number of axles, 

speed, axle weight and spacing. The axle influence line used in the analysis was extracted using 

experimental sensing data from a calibration truck. The Least Absolute Shrinkage and Selection 

Operator (LASSO) solver was first applied to estimate the solution of the ℓ0 regression problem. 

The estimated solution provides information on possible axle locations and truck speed. A list of 

all reasonable truck models are constructed based on the LASSO solution and the best subset 

selection is applied to evaluate all models using Moses’s theory. The best fitting model and its 

solution provide details on the truck gross weight, number of axles, axle weight and spacing. The 

testbed used to validate the algorithm and evaluate the accuracy is the Telegraph Road Bridge, a 

pin-and-hanger highway bridge in Monroe, Michigan. The bridge carries northbound traffic and 

has three traffic lanes. A strain gage installed on the hanger plate of the middle girder is used as 

the bridge WIM sensor. Truck data recorded at an existing MDOT owned WIM station 12 miles 

downstream on the I-275 highway was used for reference data. Video data captured at both the 

TRB site and the WIM station was used to generate a one-to-one mapping between trucks passing 
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both sites. Based on the results obtained from 34 truck events satisfying the identification 

conditions, the bridge WIM system using the data-driven regression analysis algorithm achieves a 

type II WIM accuracy. The algorithm has also been applied to long-term data from May 2015 to 

April 2016 where nearly 2000 trucks were identified. Long-term data histograms of the bridge 

WIM and the MDOT owned WIM have very similar shapes, proving that the ultra-low cost bridge 

WIM system is capable of providing an accurate representation of long-term traffic conditions for 

local traffic analysis.  
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CHAPTER 7 

CONCLUSIONS 

 

7.1 Summary of Results and Contributions 

The main focus of this thesis is to advance structural condition monitoring by taking advantage of 

big data opportunities created by long-term structural monitoring systems. The low cost of sensing 

technology encourages deployment of dense sensor arrays in structural monitoring systems, which 

generate a large volume of sensing data as well as information (metadata) of sensing activities. 

Data size can grow into the GB and TB scale, especially for long-term monitoring systems with 

high-frequency sampling (e.g., collecting acceleration data for modal analysis). Large volume 

sensing data creates opportunities for researchers to apply data-driven analytics, extracting 

physical system (structure) information based on statistical modeling. Additionally, long-term 

monitoring adds a level of confidence in modeling results since a full range of structural 

observations and environmental conditions are experienced over an extended period of time. With 

big data opportunities also comes challenges of data management such as date curation, storage, 

distribution processing of data in an effective and efficient manner.  

 

This thesis proposes and validates solutions for managing the challenges associated with long-term 

structural condition monitoring. The solution presented is two-fold: 1) a customized data 
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management system for structural condition monitoring purposes, and 2) a series of data-driven 

analytic tools to improve and automate existing algorithms in order to extract new information, 

about structural performance while improving modeling accuracy. The research results and 

contributions of each chapter are presented as follows: 

 

 In Chapter 2, two long-term wireless monitoring systems, on the New Carquinez Bridge 

(NCB) in Vallejo, CA and the Telegraph Road Bridge (TRB) in Monroe, MI, were 

presented to showcase the current state-of-the-art in long-term wireless monitoring systems 

for operational structures. Evaluation of the systems’ performance over six-years of 

monitoring activities validated the long-term reliability of the wireless monitoring systems 

and their readiness for application to large-scale civil infrastructure. A description of 

lessons learned over a three phase systme installation on the NCB contributes valuable 

information to the wireless monitoring community in terms of harsh environment field 

deployment. First, the system design of the wireless monitoring system on the NCB was 

customized for the owner’s decision making needs: assistance in post-earthquake decision 

making. As the current decision making process employed by Caltrans on the NCB relies 

on non-linear time history finite element analysis, the majority of sensing channels were 

assigned to collect bridge acceleration responses for modal analysis and finite element 

model updating purposes. To further study the environmental impact on the bridge 

properties, weather stations were implemented to collect ambient environment conditions. 

Sensor locations were carefully chosen to offer easy accessibility for installation and 

maintenance without compromising sensing accuracy. 
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 In Chapter 3, a cyberinfrastructure SenStore was presented as a solution to data 

management of long-term structural monitoring data. The top-down database ontology 

design for customized structural condition monitoring applications is a key feature. 

Specifically, the needs of system end-users (e.g., structural owner, stake holders) dictate 

the design of the database ontology. SenStore is designed to host structural metadata, 

inspection data, sensing metadata as well as sensing data itself; SenStore also offers 

compatibility to other existing databases such as AASHTOWare, a bridge inventory and 

inspection software used by the Departments of Transportation in multiple states. To curate 

and store the relational metadata and large volume sensing data, SenStore adopts a hybrid 

databases architecture using PostgreSQL (for relational data) and HDF5 (for sensor data). 

Segregating vectorized sensor data from the relational database maintain the data 

relationships without losing query speed when integrating data. The system scalability and 

efficiency was evaluated using metadata and 18GB of sensing data from the long-term 

wireless monitoring system on the TRB. Despite the constant overhead (about 1 second) 

introduced by the database system, the sublinear query speed of SenStore outperformed the 

relational database-only solutions, highlighting the efficiency of the hybrid database design. 

The cloud-based SenStore server provides distributed clients with secure access to data via 

an application programming interface (API) in multiple programming languages. 

Therefore, analytical clients can use SenStore as a cloud platform to perform and data 

mining, data visualization. 

 

 In Chapter 4, a case study of an automated finite element model updating tool was 

presented to demonstrate the capability of SenStore for complex structural analysis. 
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SenStore served as the data management platform upon which four distributed clients, 

(serving different functionalities of the total analysis) were implemented in an autonomous 

manner. The automated FEM model generation client created a FE model using the 

structural metadata stored in SenStore; the automated modal parameter extraction client 

performed modal analysis from the long-term sensing data also stored in SenStore; the 

automated environment impact modeling client used machine learning techniques to 

develop and remove the non-linear relationships between modal and environmental 

parameters; and, the automated FE model updating tool incorporated the temperature 

impact on the modal parameters and updated a finite element model of the structure based 

on Bayesian statistical modeling. This is just one example that demonstrates the capability 

and efficiency of SenStore to serve as a data center and analytics platform for advanced 

structural condition management.  This implementation utilized the TRB and its long-term 

data to validate the SenStore-based tool chain. 

 

 Chapter 5 presented two novel data-driven analytical tools which automate the modal 

analysis of structures and models the environmental and operational conditions (EOC) 

impact on modal characteristics using long-term monitoring data. Improvements made on 

the output-only time series algorithm, stochastic subspace identification  

(SSI), contributes to the modal analysis community in the following four areas. First, it 

automates the SSI algorithm to extract only physical modes (from mathematical modes).  

Mathematical modes are specifically rejected by applying rules on the singular values from 

the output projections. Second, the singular value decomposition process was performed 

on the product of the projection matrix and its transpose ( as apposed on the projection 
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matrix itself) in order to improve the computational time by a factor of 20. Third, the 

implementation removes bias in terms of model order selection by controlling the data size 

for modal estimation. Finally, the implementation provides confidence information of each 

mode by investigating the distribution and identification success rate of the SSI results 

using two years’ worth of data. The second part of the chapter focuses on the results and 

contributions from linear and non-linear modeling of EOC impact on modal frequencies of 

the NCB given wind, temperature and time of the day information. The selected regression 

frameworks quantitatively identified the EOC impact on the bridge model frequencies. The 

extracted model parameters (i.e., modal frequencies, damping ratios and mode shapes) 

contribute to the bridge design community as valuable experimental reference data for 

future suspension bridge designs. The quantitative EOC modeling of modal frequencies 

contributes a rare and complete EOC impact study for large-scale suspension bridges. In 

addition to the direct contributions to modal analysis and the bridge design communities, 

these two data-driven analytic tools also showcase the opportunities to incorporate big data 

techniques on long-term monitoring data in order to extract new information and 

behavioral insight about bridges. 

 

 Chapter 6 presented a novel bridge weigh-in-motion (BWIM) system using a low cost 

wireless monitoring system and a series of data-driven algorithms. Based on the existing 

TRB long-term wireless monitoring system, the proposed BWIM system only required one 

additional strain gage sensor installed at a strategically selected location to capture the 

structural strain response due to a moving truck load. The algorithm applies a series of 

regression analyses on strain data to extract the truck configuration by solving a ℓ0 



138 

 

regression problem. The 3-step algorithm first extracts the experimental influence line 

using a least square regression. Second, a ℓ1 regression solver, Least Absolut Shrinkage 

and Selection Operator (Lasso), is applied to estimate the solution. Finally, the best subset 

method is used to solve a ℓ0 regression problem, estimating vehicle gross weight, axle 

weight, axle spacing and speed. The proposed BWIM system removes the need for 

standard-practice axle detectors, which are fragile when installed on the road surface or too 

sensitive to truck path when installed underneath the bridge. Moreover, the algorithm does 

not require physical modeling of the bridge (e.g., finite element model), which is one of 

the major sources of computational error in existing BWIM systems. Based on the results 

of 34 testing trucks, the BWIM strain gage sensor together with the algorithm developed 

for truck identification added full weigh-in-motion functionality to the existing bridge 

wireless monitoring. The accuracy of the system was validated to be a type II weigh-in-

motion on gross vehicle weight, axle weight and axle group weight identification. The 

long-term application of such a system is also proven promising. This novel BWIM 

introduced a new direction to the BWIM community for truck identification algorithms 

based on data-driven analytics.  

 

7.2 Future Research Recommendations 

The potential of data-driven analytics using long-term monitoring data for structural condition 

monitoring is growing. The increasing amount of commodity sensing units available on the market 

ease the installation and maintenance of the sensing system. Therefore, the research direction will 

be focused on the advancement of cloud-based data management systems and improved data-

driven analytics. Several future research directions are identified: 
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 Fully utilize cloud services to improve the system availability, scalability and 

computational power of the data management system, as well as reduce the initial 

investment and operational cost. If using public cloud services, data security must be a 

primary concern.  

 Expand the bridge weigh-in-motion system to comprehend multi-truck events and trucks 

on different lanes using more sensors. One sensor each lane should suffice, and by solving 

the load distribution and using superposition, an optimization algorithm could extract the 

response data for each truck event.  

 Moving load identification algorithms using the dynamics of the bridge may be adopted 

by the bridge weigh-in-motion system to improve the accuracy. System matrices can be 

determined using the free vibration data following a truck event. The input matrix can be 

estimated using sampling and optimization techniques.  

 Apply machine learning and statistical modeling techniques to structural damage detection 

applications. With the implementation of dense sensing arrays, the characteristics of each 

sensing channel as well as the correlations between sensing channels can be translated into 

feature vectors or an index for damage detection to improve the success rate and accuracy.  
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