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Abstract 

 The demand in the data storage – from mobile devices to enterprise applications - has 

been driving the explosive development of non-volatile memories (NVMs). Based on the 

field effect transistor (FET), flash memory has benefitted from the geometric scaling and 

dominated the electronics market over the past decades. However, as Moore’s Law 

approaches its fundamental limit, there will be little reward from the process aspect. Flash 

memory is facing increasing challenges from technical issues as well as economic concerns. 

The emergence of Internet of Things (IoT) also brings up new challenges including faster 

access and low-voltage operation that are not compatible with flash memory. Therefore, 

for a feasible next-generation NVM solution with high storage density, high performance 

and low fabrication cost, a novel non-FET based replacement of flash memory is urgently 

desired. Among different candidates, resistive switching memory (RRAM) has attracted 

broad interest due to its simple structure, high speed, long retention, excellent endurance 

and energy efficiency. 

 In this work, we present studies on resistive switching memories and related 

reconfigurable devices. First, we systematically investigate the “sneak-path” issue of 

crossbar RRAM arrays and specify the device requirement of nonlinear selector element 

in the one-selector-one-resistor (1S1R) configuration. Through numerical simulations, we 

analyze the crossbar array from a perspective of device-circuit interaction and propose 

optimized benchmarks for the future improvement of RRAM and selector devices. 

 Next, we develop a tantalum oxide (TaOx) based selector device which exhibits high 



xi 
 

nonlinearity (~104) and good uniformity. Verified by experimental observation and 

theoretical model, the underlying conduction mechanism of this selector is attributed to 

thermionic emission and tunneling emission. A HfO2 switching layer is integrated with the 

proposed selector to constitute a self-rectifying RRAM cell with high LRS selectivity 

(~5×103), which can potentially enable large-scale crossbar array (up to 1Mbit) with less 

than 4% degradation in read margin. 

 Further, we demonstrate sub-nA operation current in a Cu based conductive bridge 

RAM (CBRAM) device for the first time, which offers significant energy savings during 

program and read steps. An improved Cu/Al2O3/aSi/Ta cell with a built-in barrier/rectifying 

layer is developed to enhance device reliability. Apart from low current, other attractive 

properties including high on/off ratio (>100x), retention (over 104 seconds at 100°C) and 

endurance (500 cycles without external current compliance) can be obtained. The proposed 

process is fully compatible with mainstream CMOS back-end-of-line (BEOL) integration. 

 Additionally, we explore coupling the ionic migration process in resistive switching 

devices with transistor operation. A reconfigurable top-gate transistor structure is 

developed for the LaAlO3/SrTiO3 heterojunction system which offers a two-dimensional 

electron gas (2DEG) at the oxide interface. By incorporating ionic processes in the gate 

stack, we show that the channel conductivity can be modulated in a non-volatile manner 

by an external electric field.  

 Finally, we propose a novel in-memory computing architecture using crossbar RRAM 

arrays, which breaks the boundary between computing and memory and offers high 

parallelism. We design the basic protocols and demonstrate a prototype circuit. As proof-

of-concept verification, a 1-bit full adder and a 4-bit multiplier are designed and verified.
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Chapter 1 

Overview 

 

1.1. Background 

With surging storage demand driven by the big data and the Internet of Things (IoT), 

the market of non-volatile memory (NVM) has been growing rapidly and became a main 

driver for the entire semiconductor industry over the past decade. In particular, NAND 

flash has enjoyed great success and dominated the NVM market owing to the aggressive 

node shrinking and the reduced price from a dollar-per-bit perspective. 

However, further scaling of NAND flash will inevitably face serious challenges in 

terms of technology and cost. On one hand, the operations of NAND will be susceptible to 

several major technical issues, including (1) crosstalk between adjacent cells; (2) device 

variability due to the limited trapped electrons; (3) compromised endurance from dielectric 

damage and (4) retention degradation caused by random telegraph noise (RTN) [1], [2]. On 

the other hand, the reduction in memory price from planar size scaling may be offset by 

the soaring process-development cost and the unsatisfactory yield [3].  

To explore the scaling feasibility and extend the Moore’s Law in the NVM segment, 

different 3D NAND solutions have been proposed [4]–[8]. By stacking memory layers and 

adopting less advanced process nodes, high-density NAND arrays can be constructed 

vertically, thus avoiding the process obstacles in purely lateral scaling. However, given the 

fundamental physics limitation associated with transistors, 3D NAND will eventually 
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come across the same bottlenecks in the next few generations.  

Since critical applications are becoming more data-centric today, the design of modern 

large-scale high-performance system are required to overcome the giant gap between 

memory (SRAM and DRAM) and storage (flash and HDD disk). The concept of storage-

class memory (SCM) has been proposed to bridge these two distinct hierarchies [9], [10]. 

An ideal SCM element is expect to possess fast access time of DRAM, high integration 

density of flash and nonvolatile features allowing low-power applications.  

Therefore, not only the challenges in scaling flash memory, but also the future 

computing needs on SCM propel the development of new memory technology. 

 

1.2. Emerging nonvolatile memory 

To find a replacement for NAND flash and a candidate of future SCM element, several 

novel nonvolatile memories have been proposed, including Phase-Change Random Access 

Memory (PCRAM) [11]–[13], Ferroelectric Random Access Memory (FeRAM) [14], [15], 

Spin-Transfer Torque Random Access Memory (STTRAM) [16]–[18] and Resistive 

Random Access Memory (RRAM)[19]–[21]. In this section, PCRAM, FeRAM and 

STTRAM will be briefly introduced. 

PCRAM exploits the resistance difference between crystalline (low resistance) and 

amorphous (high resistance) phases of the phase-change material (generally chalcogenide 

alloy, such as Ge2Sb2Te5) for memory application [22]. The material phase is determined 

by the internal temperature, and its transition can be controlled by applying external pulses 

that provide necessary Joule heating. Once rapidly heated to the melting point (>600 °C) 

by a high current pulse, the phase-change material loses the crystallinity, and eventually 
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becomes amorphous and resistive after fast cooling down (quenching). If another medium 

pulse is applied to keep a temperature between the glass transition temperature and the 

melting point for long enough time (~100ns), the material will crystallize and transform 

back into the conductive state. Relying on the thermal process, PCRAM consumes large 

power and has endurance issues due to the thermal stress and related material degradations 

[23]. The minimum set pulse length also limits the speed of PCRAM. 

 

Figure 1.1. (a) Internal temperature profile of PCRAM during SET/RESET. PCRAM 

cell in the amorphous (b) and crystalline (c) states. Reproduced from [12] 

 

 FeRAM achieves the non-volatile memory functionality by storing different dipole 

moment states in a variable ferroelectric capacitor which typically consists of a lead 

zirconate titanate (PZT) layer [14], [15]. With an external electric field applied across the 

dielectric, the atoms/ions will shift in the direction of the field and align the dipoles 

accordingly. The atomic positions and the corresponding polarization states can be used to 

store “0” and “1” in the binary logic. FeRAM offers an advantage of extremely low energy 

consumption (<0.1pJ/bit). However, the scaling issue and the destructive read operation 

constrain the wide application of FeRAM. 
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Figure 1.2. Typical architecture for a 1transistor-1MTJ (1T-1R) STTRAM cell. 
Compatible with the CMOS technology, the STTRAM device can be integrated during 

the back-end-of-line (BEOL) process. Reproduced from [18] 
 

 STTRAM is an emerging subset of magnetic random access memory (MRAM). The 

memory element of STTRAM is typically comprised of a MgO-based magnetic tunnel 

junction (MTJ) where the storage layer and the reference magnetic layers are separated by 

a tunnel barrier [17]. Due to the magnetoresistance effect, the MTJ shows high (low) 

resistance when the storage layer exhibits the magnetizations antiparallel (parallel) to the 

reference layer. Different from conventional toggle MRAMs, STTRAM uses spin-

polarized current, instead of an external magnetic field, to switch the magnetization of the 

storage layer. As a result, STTRAM requires a substantially reduced switching energy (a 

few pJ) and overcomes several challenges facing conventional MRAMs such as the 

crosstalk issue. In the meantime, STTRAM inherits the merits of long endurance (1016) and 

fast switching (~10ns) from MRAM. However, the process reliability of STTRAM has to 

be proven prior to large-scale manufacturing due to the use of many (typically > 20) non-

conventional material layers. Scalability and cost are the other challenges facing STTRAM 

applications. 
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1.3. Resistive Random Access Memory 

Resistive Random Access Memory (RRAM) is based on a simple two-terminal MIM 

(metal-insulator-metal) structure, with a switching medium sandwiched by the top and 

bottom electrodes, as show in Figure1.3. By applying external electric signals on the 

electrodes, the resistance of a RRAM device can be modulated and used to store different 

states for memory and computing application. The change in resistance value can be 

understood by the formation/rupture of conductive filaments within the (much more 

resistive) switching medium. Once a filament is formed (ruptured), the device exhibits low 

(high) resistance state.  

 

Figure 1.3. Two-terminal sandwiched RRAM structure. Reproduced from [24]  

 

Typically, the resistive switching process in a RRAM device includes three operations: 

Forming, SET and RESET. Forming (or electroforming) is performed to initialize the as-

fabricated RRAM cell and create the conductive filament for the first time. Afterwards, the 

filament material typically will not be fully removed and subsequent SET and RESET 

processes are based on the remaining filament structure. SET refers to the completion of 

the filament and the switching process from high resistance state (HRS) to low resistance 

state (LRS). RESET corresponds to the rupture of the filament and the associated process 
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from LRS to HRS. To prevent the device from over-programming, a compliance current is 

usually applied during the forming and SET/RET operations. 

 

Figure 1.4. Classification of RRAM Devices according to the switching polarity: (a) 

Unipolar RRAM; (b) Bipolar RRAM. Reproduced from [25] 

 

RRAM can be classified into various categories according to different criteria, such as 

switching polarity (bipolar vs. unipolar) and switching mechanism (cation vs. anion).  

As show in Figure 1.4, the switching of a unipolar RRAM device is not dependent on 

the polarity of the applied bias. With either positive or negative voltage, the unipolar 

RRAM device can be SET and RESET. Unipolar RRAM typically requires high RESET 

current, and its resistive switching is essentially believed as a thermal process determined 

by the internal temperature profile of device [21]. On the other hand, the SET and RESET 

transitions must occur at different polarities in a bipolar RRAM cell. Bipolar switching is 

mainly a consequence of ionic motion driven by the electric field. 

Up to now, more than 50 types of materials have been investigated for RRAM 

applications. In most cases, the related resistive switching process originates from the 

migration of either cations or anions. Specifically, cation based RRAM devices are usually 

named as conductive bridge random access memory (CBRAM) or electrochemical 



7 
 

metallization memory (ECM); while anion based devices are termed as valence-change 

memory (VCM) or oxide-RRAM [19]. In CBRAM or ECM, active metal atoms (Cu, Ag, 

et al) are ionized and injected into the switching medium (SiO2, Al2O3, et al). Driven by 

the electric field, these metal cations migrate through the switching layer, and eventually 

become reduced to neutral atoms again. The accumulation of the metal atoms finally forms 

the metallic filaments during the SET and Forming processes [26], [27]. VCM devices are 

typically based on perovskite oxides and transitional metal oxides (TMO) [28]–[34]. The 

resistance states of VCM are tuned by the migration of oxygen vacancies (VO). The 

filament formation during the SET process of VCM can be explained by the creation of an 

oxygen-deficient (Vo-rich) oxide region, which is more conducting than the stoichiometric 

host oxide material. During RESET it is generally believed that Joule heat assists the 

rupture of the filament in unipolar VCMs; while bipolar VCMs rely mostly on the VO 

drifting under electric field but can still be assisted by Joule heating. It is worth noting that 

apart from the filamentary resistive switching characteristics similar to ECM, VCM can 

also exhibit non-filamentary switching behaviors decided by the modulation of the 

effective Schottky barrier height at the electrode/oxide interface [35]. 

 Compatible to the mainstream CMOS technology, high performance RRAM devices 

have been demonstrated with large on/off ratios [26], excellent endurance [31], long 

retention [36], fast switching speed [37] and high integration density [24]. The potential 

commercialization of RRAM is subject to improvement on process yield and device 

variability as well as careful verifications on large-scale array implementation [38]. 
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1.4. Crossbar Array RRAM Architecture 

1.4.1. Integration Configuration 

Due to its simple two-terminal structure, RRAM can be easily integrated into a 

crossbar array architecture. A 2D crossbar array consists two groups of parallel electrodes 

(top electrodes and bottom electrodes) orthogonally crossing each other and sandwiching 

the switching medium between the electrodes (Fig. 1.5). With one memory device defined 

at each cross-point, the crossbar array provides a minimal device area of 4F2, which F 

corresponds to the smallest features size. Once several crossbar arrays are stacked on top 

of each other (Fig. 1.6), the effective device area can be further scaled to 4F2/n, where n 

stands for the stack number. The high packing density makes crossbar RRAM array highly 

attractive as one of the most promising candidates for post-NAND memory applications.   

 

Figure 1.5. Schematic of a 2D crossbar RRAM array. 200nm. Reproduced from [35]. 

 

 

Figure 1.6. Horizontal stacked 3D crossbar RRAM array. Reproduced from [39] 
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Based on the 2D crossbar structure, two types of 3D crossbar RRAM array 

configurations have been proposed. As shown in Figure 1.6, the stacked 3D crossbar 

architecture defines the memory cell horizontally and enhances the storage density by 

simply stacking memory layers. This design hides the area of selection devices and allows 

high cell efficiency. However, a possible negative factor that limits this architecture from 

replacing the NAND technology is the potential higher cost, since the number of 

fabrication steps and masks increases when more memory layers are stacked.  

 

Figure1.7. Schematic view of a vertical 3D crossbar architecture (a) using the sidewall 

RRAM cell and a vertical MOSFET (b) as the bit-line selector. Reproduced from [40]. 

 

Compared to the horizontal stacked configuration, the vertical RRAM (VRRAM) 

solution adopts an integration scheme similar to the VNAND, and is potentially more cost 

effective [40], [41]. In the VRRAM design the RRAM cells are formed at the sidewalls of 

the vertical electrodes. The number of masks is relatively independent of the stack number, 

since different stacks can share the same step of lithography and etching. However, the 

VRRAM structure involves increased process complexity, such as high aspect ratio etching 

and deposition with excellent step coverage. 
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1.4.2. Sneak-Path Issue and Solutions  

A fundamental challenge of crossbar architecture comes from the difficulty in device 

selection and isolation, or the so-called “sneak-path” issue. As illustrated in Figure 1.8, 

while accessing a specific memory cell, the current flows through not only the selected cell 

(Ielement), but also numerous unselected cells (Isneak). Since the peripheral sensing circuit 

cannot distinguish these two different current components, an incorrect cell state may be 

read for the selected cell. Besides affecting read, the sneak current also affects cell 

programming, by increasing the current the peripheral circuitry has to supply while 

reducing the voltage actually applied on the selected cell which makes SET/RESET 

difficult.  

 

Figure 1.8. Schematic of sneak-path issue in a crossbar RRAM array: Ielement corresponds 

to the current through the selected cell (red) during read process. Isneak corresponds to the 

potential sneak leakage current from unselected cells (green). Reproduced from [42]. 

 

To address the sneak-path issue and ensure correct array operations, memory cells with 

highly nonlinear current-voltage (I-V) characteristics are needed in the crossbar memory 

array. By suppressing the leakage current at low bias, the sneak currents from the 

unselected cells (which are biased at a lower voltage than the selected cell) can be 

minimized.  

The I-V nonlinearity can be achieved either by internally tuning the memory element 
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and creating a self-rectifying cell, or by serially connecting an external nonlinear selector 

device and forming a one-selector-one-resistor (1S1R) configuration. Generally, both 

solutions introduce the nonlinearity by integrating selective/rectifying layer(s) with the 

switching medium. On a structure point of view, the main difference is that, the 1S1R 

system needs to insert a middle metal electrode, which is not required in a self-rectifying 

cell. On one hand, the middle electrode explicitly separates the selector and the RRAM 

element, and provides the 1S1R structure with more flexibility in optimizing both 

components independently. On the other hand, the middle electrode requires additional 

process steps that are difficult to adapt with the economic VRRAM scheme. Therefore, in 

general the 1S1R structure provides better device performance than the self-rectifying cell 

structure, such as nonlinearity and on/off ratios; while the self-rectifying cell is more 

integration friendly and less expensive.  

 

1.5. Organizations of Thesis 

This Ph.D. thesis is organized as follows.  

In Chapter 1, the basic background of RRAM and crossbar memory array is briefly 

reviewed.  

In Chapter 2, SPICE simulations are performed to investigate the selector device 

requirements for crossbar RRAM array operation. Theoretical guidelines on selector 

development and 1S1R systems are provided from a perspective of device-circuit 

interaction. 

In Chapter 3, a tantalum-oxide selector device with high nonlinearity and excellent 

uniformity will be discussed. The conduction mechanism is systematically studied by 
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experiment and modeling. Integrated with this selector, a self-rectifying RRAM cell is 

further developed and evaluated for its potential crossbar array applications. 

Chapter 4 focuses on the low-power RRAM devices. Two different novel CBRAM 

cell structures will be discussed to achieve low operating current without sacrificing other 

critical performance. 

 Chapter 5 explores integrating RRAM with transistors and building reconfigurable 

devices in the LaAlO3/SrTiO3 heterojunction. Nonvolatile modulation on transistor current 

is realized by controlling the ionic migration within the complex oxide systems. 

 Chapter 6 discusses a novel in-memory computing architecture using crossbar RRAM 

arrays. Prototype circuit implementation is demonstrated to verify the architecture concept. 

 Chapter 7 summarizes this thesis and proposes several directions for future research.  
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Chapter 2 

 Simulation Study of Selector Devices within Crossbar RRAM Arrays 

 

2.1. Introduction  

As discussed in the Chapter 1, resistive random access memory (RRAM) is inherently 

compatible to the crossbar array architecture, which potentially enables 4F2 scaling, 

vertical 3D stacking and low fabrication cost [1], [2]. However, with continuously scaled 

device and electrodes, the sneak path leakage and the interconnect resistance within such 

a purely passive crossbar array result in major concerns on device isolation and selection.  

To mitigate these issues, the memory cell in a high-density crossbar array requires 

non-linear current-voltage characteristics. Different solutions have been proposed, 

including 1S1R serial configuration (with an explicit separate selector) [3], self-rectifying 

cell (with an implicit integrated selector layer) [4] and complementary resistive switching 

concepts[5]. Despite impressive progress on selector performance[6]–[17], a series of 

bottlenecks on large current density, high on/off ratios, fast switching speed and process 

reliability remain to be resolved.  

There have been several reports on the relationship between cell performance and 

crossbar memory array [18]–[25]. However, due to the oversimplification of the system, 
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an accurate and systematic analysis on the performance metrics required for selector 

devices to achieve successful crossbar array operation was still missing, which poses a 

significant challenge for RRAM array development given the increased emphasis on 

selector device development and integration. For example, the recent ITRS report specified 

performance requirements of the selectors based mainly on the individual cell level [26]. 

However, we expect that a different set of figures-of-merits (FOA) are needed to ensure 

proper operation at the memory array level.  

In this chapter, a comprehensive numerical study on crossbar RRAM array operation 

based on the 1S1R structure is presented. Based on the SPICE simulations, the selector 

device requirements and the device-circuit interaction are carefully investigated, in 

particularly for the read operation. The aim is to provide theoretical references for future 

selector design and optimization. Specifically, the remainder of chapter is organized as 

follows. Section 2.2 describes the simulation framework of crossbar RRAM arrays. The 

device model and bias schemes used for the simulations are discussed here. Section 2.3 

provides specifications of the selector performance metrics at different array sizes to obtain 

optimal read margins. Section 2.4 discusses the choice of bias schemes to improve read 

margins and reduce power consumptions. The effects of the interconnect resistance, 

different sensing circuitry and resistive storage node parameters are analyzed in Section 

2.5-2.7, respectively. The final conclusion of this chapter is summarize in Section 2.8. 

 

2.2. Simulation Framework of Crossbar RRAM Array 

Typically, a crossbar resistive memory array consists of switching cells sandwiched 

by two sets of parallel electrodes as word-lines and bit-lines, as shown in Figure 2.1. The 

transition of the cell element between the high-resistance state (HRS) and the low-
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resistance state (LRS) occurs when proper voltages are applied on the electrodes. This 

simple design allows minimal cell size, but the interconnected passive network structure 

also leads to sneak leakage currents that can severely limit the output read margin. Figure 

2.1 illustrates the cause of misreading in crossbar architecture due to sneak path currents 

through unselected cells. During read operation, parasitic leakage paths through unselected 

cells in the array lead to inaccurate output signal and can prevent proper identification of 

the HRS from the LRS for the target cell.  

 

Figure 2.1.  Schematic of a crossbar memory architecture with 4 different read schemes. 

(Inset) cell structure. (Green dashed arrows) The read current through the target cell. 

(Red solid arrows) Sneak-path currents through unselected cells may degrade the output 

voltage. (Box D1/D2) The circuitry inside the boxes will be removed to create a read 

scheme with floating word-lines or bit-lines, respectively. GN-GN, GN-FT, FT-GN and 

FT-FT stand for different read schemes (see in Section 2.4). Reproduced from [28]. 
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The read operation of a crossbar array is achieved by sensing the output voltage, Vout. 

In practice, sense amplifiers are connected with all bit lines to convert the output current 

into voltage signal. In our simulation, the peripheral sensing circuit is simplified as a 

sense resistor Rsense. The read margin is defined as 

        𝑅𝑀 =
∆𝑉𝑜𝑢𝑡

𝑉𝑟𝑒𝑎𝑑
=

𝑉𝑜𝑢𝑡(𝐿𝑅𝑆) − 𝑉𝑜𝑢𝑡(𝐻𝑅𝑆)

𝑉𝑊𝑆
 

where Vws is the read voltage applied to the selected word-line, and Vout(LRS) and 

Vout(HRS) are the output voltages measured at Rsense when reading 1 (LRS) or 0 (HRS). 

The commonly used ground/ground read scheme was studied first to illustrate the effects 

of the selector and its performance requirements. In the ground/ground read scheme, to 

access a specific target cell within the array, we bias the selected word-line to Vws=Vdd and 

the selected bit-lines to VBS=0; while leaving all the unselected word-lines and bit-lines 

grounded (VWNS=VBNS=0). This bias mode helps raise the read margin, though it has a 

major drawback of high power consumption[18]. Several different read schemes will be 

discussed later in Section 2.4. 

Both the data storage pattern in the crossbar RRAM array and the target cell location 

influence the output voltage swing. Our simulations show that for the commonly used 

grounding scheme, the worst case for sneak current also results in the worst case for output 

voltage, and in both cases the worst case corresponds to the unselected cells being in LRS 

for reading “1” and “0”. Further, due to parasitic interconnect resistance ∆Vout will be 

smallest for the target cell at the farthest corner from the word/bit-line voltage sources. As 

a consequence, in this study the worst case is chosen as the target cell being at the farthest 

corner with the unselected cells in LRS. 
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Figure 2.2.  (a) I-V characteristics of three different selectors (S1-S3) in linear (solid 

lines) and log (symbols) scales. S1: k=102, Isel(on)=10μA; S2: k=103, Isel(on)=100μA; S3: 

k=104, Isel(on)=1000μA. (b) I-V characteristics of memory cells serially connected with 

the selectors and storage elements in (a). Reproduced from [28]. 

 

In this work, we mainly focus on bipolar RRAMs in which set/reset processes occur 

at different bias polarities. Each memory cell in the crossbar array is composed of a non-

volatile storage element serially connected with a symmetric selector device, forming the 

1S1R structure schematically shown in Figure 2.1. The storage node is assumed to have 

fixed values of Ron and Roff in the LRS and HRS, respectively, i.e. dynamic switching 

processes are not studied here since read operation is expected not to disturb the cell states. 

The I-V characteristics of the selector device is modeled by the following hyperbolic sine 

function, 

𝐼𝑠𝑒𝑙 = 𝛾 ∙ sinh (𝛼 ∙ 𝑉) 

where γ is a conductance parameter, and α represents the nonlinearity of select device. The 

I-V characteristics of the selector serially connected with the memory element forming the 
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1S1R structure are shown in Figure 2.2(a) (b). We note that at moderate voltages the 

hyperbolic sine function becomes the exponential function used in [24], and also agree 

reasonably with experimentally observed I-V curves for selector devices based on Schottky 

diode [9], tunnel barrier [10], [17], MIEC [15] and punch-through devices [16]. 

Considering the maximal voltage dropped on an unselected cell is roughly half of the 

read voltage on the target cell in the ground/ground read scheme, we can further define the 

on/off ratio for the selector (which describes the nonlinearity of the selector) as below, 

𝑘 ≡
𝐼𝑠𝑒𝑙 (𝑜𝑛)

𝐼𝑠𝑒𝑙(𝑜𝑓𝑓)
=

𝐼𝑠𝑒𝑙(𝑉𝑤𝑠)

𝐼𝑠𝑒𝑙 (
1
2 𝑉𝑤𝑠)

. 

Obviously, on/off ratio is independent of the selector conductance prefactor, γ. For 

simplicity, the definition above merely describes the nonlinear characteristic of the selector 

itself, measured at VWS = 1 V, without taking the serially connected storage node into 

account. Furthermore, under idealized circumstances with negligible interconnect 

resistance, negligible sneak path leakages and negligible voltage divider effect from the 

select devices [19], the maximum read margin is obtained by setting the sense resistor to 

be 

𝑅𝑠𝑒𝑛𝑠𝑒 = √𝑅𝑜𝑛𝑅𝑜𝑓𝑓 

In Section III we will first discuss the effects of selector performance parameters on 

the crossbar array performance. Optimizations by choosing appropriate Ron, Roff and 

Rsense will then be investigated. The default parameters used in our simulations are listed 

in Table 2.1. 
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Table 2.1. Simulation Parameters for Read Operations. Reproduced from [28]. 

  

Parameters Values 

High resistance state (Roff) 1MΩ 

Low resistance state (Ron) 10kΩ 

Sense resistor (Rsense) 100kΩ 

Interconnect resistance between neighboring cells (Rline) 5Ω 

Voltage at the selected word line (VWS) 1V 

Voltage at unselected word lines (VWNS) 0V 

Voltage at the selected bit line (VBS) 0V 

Voltage at the selected bit line (VBNS) 0V 

Selector On/Off ratio (k) 104 

On-state current of selector (Isel(on)) 100μA 

Nonlinear factor of selector (α) 18.4207 V-1 

Selector Conductance Factor (γ) 2×10-12A 
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2.3. Selector Parameter Dependence  

HSPICE simulations were conducted based on the model mentioned in Section 2.2. 

The read margin of passive crossbar arrays can be calculated numerically for selectors with 

different characteristics. Figure 2.3 summarizes the read margin at different array sizes 

when selectors with different on/off (non-linearity) and on-currents Isel(on) are used.  

Figure 2.3a indicates that for a specific selector on/off ratio of 104, the swing of read 

voltage remains relatively constant for small arrays but degrades significantly as the 

crossbar memory array size increases beyond 64×64. A significant result here is that 

selectors with larger Isel(on) (hence lower effective resistance Rsel) leads to much better 

read margins (e.g. read margins is improved by more than 50% when Isel(on) is increased 

from 10μA to 100μA) due to a smaller voltage divider effect from the selector in the 

serially-connected memory element/selector configuration. Detailed analysis on the HRL 

and LRS show that the LRS tends to benefit more from the enhanced output voltage 

compared to the HRS (since the voltage divider effect is more pronounced when the storage 

element is in the LRS), thus causing a wider read margin. On the other hand, the 

improvement by increasing Isel(on) alone becomes limited in absolute terms as the array 

size is increased. As shown in Figure 2.3a, for selectors with k=104, the read margin drops 

rapidly below the minimum requirement of 10% when the array exceeds 256×256 due to 

the sharp increase in sneak currents at very large arrays, regardless of the 100-fold change 

in selector on-state current. 

Introducing selectors with high on/off ratios can potentially eliminate the sneak-path 

leakage under low reverse bias, and provide more distinguishable output signals on the 

sense resistor, particularly for large arrays, as shown in Figure 2.3b. Figure 2.3c shows the 
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variation of the read margin when the selector on/off ratios are changed (while maintaining 

the same selector on-state current Isel(on)) in crossbar arrays of different sizes. In practice, 

once the array size and the anticipated read margin are chosen, the allowed parameter range 

of on/off ratio can be predicted according to the 2-D contour in Figure 2.3c. 

 

 

Figure 2.3.  (a) Read margin as a function of the crossbar array size at different selector 

on-currents and a fixed selector on/off ratio k=104. (b) Read margin as a function of the 

crossbar array size at different on/off ratios and a fixed selector on-current Isel(on) = 

100μA. (c) 3D and 2D contour plots of the read margin as a function of the array size and 

the selector on/off ratio. The selector on-current is kept 100μA. Reproduced from [28]. 
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Figure 2.4.  (a) Effect of selector on/off ratio on read margin; (b)Effect of selector on-

state current on read margin. Bias (c) and current (d) of the selector device in the target 

cell as functions of selector on-current and on/off ratios during LRS reading. The size of 

crossbar array is fixed (128×128) in (a)-(d). Reproduced from [28]. 

 

One surprising result from Figure 2.3 b-c is that a higher selector on/off ratio (i.e. non-

linearity) does not necessarily result in an improved read margin. This observation is 

counterintuitive and deserves further investigation. To analyze this effect further, we chose 

a fixed crossbar array size (128×128) as our model system and systematically studied the 

effects of selector on/off ratios and on-currents Isel(on) on the read margin. The results are 

shown in Figure 2.4. As shown in Figure 2.4a, for a certain Isel(on), there exists an optimal 

value of selector non-linearity and further increasing the selector non-linearity in fact leads 

to a decrease (albeit slowly) in read margin. The preferred position of the selector non-
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linearity (on/off ratio) also depends on the selector on-current Isel(on) and shifts to higher 

values with increasing peak read margin as the selector becomes more conducting.  

This non-monotonic dependence on on/off ratios can be explained by two competing 

mechanisms: on one hand, increasing the on/off ratio alleviates the sneak-path leakage 

around the target cell; on the other hand, however, a very large on/off ratio means that a 

high voltage is needed for the selector to maintain the desired current as a small drop in 

voltage will severely reduce the current through the selector (and the target cell). As shown 

in Figure 2.4 c-d, with increasing on/off ratios, a larger Vsel is consumed by the selector 

even though the target cell current Isel start to decrease due to the increase in selector 

nonlinearity (on/off) at a given Isel(on). The reduction of output current accumulated by the 

sense resistor in turn leads to the reduced read margin at very large on/off. 

At what point the non-linear behavior plays an adverse role depends on how 

conductive the selector is, and this problem is particularly pronounced for selectors having 

a low Isel(on), as shown in Figure 2.4 a-b.  For the sake of completeness, cases with 

extremely large on-state current are also evaluated in Fig. 4(b). In contrast to Figure 2.4a, 

not all of the curves in Figure 2.4b can reach their peaks within the simulated parameter 

range of Isel(on). A selector with very high on/off ratio (e.g. >104) does not offer any benefit 

compared to a selector with a low on/off (e.g. 300) until the selector on-current is more 

than 200μA. This analysis suggests obtaining a high Isel(on) is a key requirement for a 

nanoscale select device, provided the selection device is of sufficient nonlinearity. 

Previous analyses focused mostly on the role of selector on/off while the requirement 

of selector on-current was normally relaxed. For example, the benchmark prediction of 

International Technology Roadmap for Semiconductors (ITRS) suggested the selector 
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should have an on-state current of 1 μA at 1V and an on/off ratio as high as 106 [26]. 

Another widely used reference value for selector current density is 1MA/cm2, 

corresponding to an on-state current of 4μA for a 20nm×20nm crossbar cell. However, as 

indicated in Figure 2.5, our analysis shows that with this level of on-state current, the 

optimal on/off selector ratio is in fact around 102, and on/off ratios beyond that will actually 

hurt the array performance. Also shown in Figure 2.5 is a further optimized selector with 

on/off = 103 and Isel(on) = 100 μA, which produces much higher read margins compared 

with the ITRS values. Considering an Isel(on) of 1MA/cm2 is already very challenging to 

obtain, this study suggests an urgent need to develop selectors with high on-state current. 

In a typical selector device two distinct regions can be observed in its I-V 

characteristics: “subthreshold region” at low bias with sharp increase (e.g. similar to (2)) 

in current, and “saturation region” at high bias with slowly increasing current. For most 

reported electrical selectors that are the focus of this study [8]–[10], [15]–[17],  their finite 

“subthreshold slope” limits how fast the selectors can be switched. As a result, the 

requirements of high Isel(on) and high on/off are not decoupled but instead end up 

competing with each other. With a given subthreshold slope and Isel(off), a larger on/off 

means the selector will consume a larger voltage to reach the desired Isel(on) hence the 

selector will exhibit a more pronounced voltage divider effect. This explains the 

counterintuitive observation that a high selector on/off actually may lead to a deteriorated 

read margin. To resolve the dilemma, novel selector devices with very sharp subthreshold 

slopes will be highly desired [11]–[13], [27]. 

Additionally, characterizing a selector device with Isel(on) measured at the read voltage 

Vread (e.g. 1V in this study) is not optimal. As shown in Fig.2.4 c-d, during operation the 
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actual voltage of the selector Vsel can be much lower than Vread. In other words, the selector 

device does not need to maintain the exponentially increasing current beyond the actual 

working bias Vsel. A better figure of merit will be the selector subthreshold slope and the 

saturation current (or saturation voltage). For example, a selector with k=103 and saturation 

current of 1.95μA at 0.72V will be equivalent to a selector with the same non-linearity 

factor and on-current of 100μA measured at 1 V (Optimized2 in Figure 2.5), and provides 

a read margin of 15% for a 128×128 crossbar array. 

 

Figure 2.5. Read margins in crossbar arrays with different selectors. ITRS1: k=106, 

Isel(on)=1μA; ITRS2: k=106, Isel(on)=4μA; Optimized1:  k=102, Isel(on)=4μA; 

Optimized2: k=103, Isel(on)=100μA. Reproduced from [28]. 

 

2.4. Bias Configurations 

The analysis so far employed the commonly used “grounding” scheme with grounded 

unselected word lines and bit lines (GN-GN)  during read [18], [19], [22], [24]. In this 

section, we examine possible performance improvements from optimizing the read 

schemes, e.g. by floating, grounding or biasing some of the address lines.   
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Figure 2.6. Comparison of read margins using the four read schemes and in the ideal 

case without sneak currents. Six different parameter combinations of selector are used. 

The crossbar array size is fixed at 128×128. Reproduced from [28]. 

 

Here, GN-FT is referred to the read scheme with grounded unselected word lines and 

floating unselected bit lines. Similar abbreviations apply to other schemes of FT-GN and 

FT-FT, as shown in Figure 2.1. Additionally, 1/2 V (1/3 V) schemes where the unselected 

word-lines are biased at 1/2 (1/3) Vread and the unselected bit-lines are biased at 1/2 (2/3) 

Vread are also considered. In order to provide clear insight into the different read schemes, 

we define the sneak-path coefficient as θ= Isense/Isel, where Isense, Isel are the currents flowing 

through the sense resistor and the target memory cell, respectively. Obviously θ=1 

indicates the sneak current is negligible. θ larger than unity corresponds to a forward 

injection of current into the selected bit-line; while θ smaller than unity corresponds to a 

reverse flow of current into the unselected word-lines. Analyzing the sneak-path coefficient 

θ thus provides us information on how sneak current affects the read margin in the different 

read schemes. For a 128×128 crossbar array, the read margins and the sneak-path 
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coefficients for the four different read schemes are simulated with various combinations of 

selector parameters for the target cell in HRS and LRS, respectively (see in Figure 2.6 and 

Figure 2.7). Results of the ideal case without sneak currents are also included. 

 

Figure 2.7. Sneak-path coefficients defined for different read schemes within a fixed 

RRAM array (128×128) at LRS (a) and HRS (b). Reproduced from [28]. 

 

In term of read margin, it is clear that for any given scheme the read margin will be 

improved as θ is made closer to 1. Figure 2.6 suggests that GN-FT and 1/3 V normally 

offer the best read margins. The lower read margins in FT-GN and GN-GN can be 

attributed to the downward current paths to ground along the unselected bit-lines in the FT-
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GN and GN-GN setups. This leads to an increase in supply current which in turn raises the 

voltage drop on interconnect series resistance in the selected word-line and results in a 

reduced effective read voltage across the target cell.  

We note the performances of the 1/2 V and FT-FT schemes strongly depend on the 

switching function of the select device. The potentials at the unselected word-lines are 

raised by biasing (1/2 V) or by the sneak currents through the unselected bit-lines (FT-FT). 

Consequently, at low on/off ratios, large amount of current is injected into the selected bit-

line and gives rise to an unrecognizable output voltage swing, as shown in Figure 2.7. 

However, when highly nonlinear selectors are introduced, the sneak path leakage from 

unselected word-lines will be inhibited significantly and both schemes can exhibit a 

desirable read margin comparable with that of GN-FT. 

Additionally, it remains true that in all configurations an enhanced selector 

conductance is preferred for better array performance, consistent with earlier conclusions. 

Further, analyses on the extreme cases illustrate that, when selectors are more “ideal”, e.g. 

with on/off = 105 and Isel(on) = 100μA, the read margins of the GN-FT, FT-FT, 1/2 V and 

1/3 V configurations are very similar to the ideal case without any sneak-currents (e.g. 

Figure 2.6), but the GN-GN and FT-GN configurations still exhibit lower read margins due 

to downward current paths through the unselected bit-lines to ground in these two 

configurations. 
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Figure 2.8. The overall power consumption of the entire crossbar array (128×128) with 

different read schemes for reading 1 (a) and 0 (b). The on-state current of selector is kept 

at 100μA. Reproduced from [28]. 

 

Power consumption during read operation can be another concern and is analyzed in 

Figure 2.8 for different read schemes. It can be seen that the FT-FT scheme offers by far 

the lowest power consumption and the GN-GN scheme offers the highest power 

consumption in general. The 1/2 V also offers improved power dissipation since it 

minimizes the current through the unselected cells due to its symmetric bias on unselected 

word-lines and bit-lines. The 1/3 V scheme offers another compromise since the power 

dissipation can be minimized as the selector becomes more non-linear.   
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2.5. Influence of Interconnect Resistance 

Figure 2.9 shows the read margins influenced by different interconnect resistances 

using the GN-FT scheme. We note that when the array size is small the read margin is 

insensitive to the interconnect resistance. However, as the number of cells increases, the 

interconnect resistance can negatively affect the array performance. 

 

Figure 2.9. 2D contour plots showing the read margin affected by interconnect resistance 

using the GN-FT scheme. The selector on-state current is kept at 100μA. (Dashed line) 

Rline=5Ω. (Solid lines) Rline=2.5Ω. Reproduced from [28]. 

 

Three factors from interconnect resistance cause the degradation of read margin: (1) 

voltage dropped on the selected word-line; (2) voltage dropped on the selected bit-line; (3) 

the raising or lowering of potential on unselected word-lines that can drive parasitic current 

into (or out of) the sense resistor. Therefore, even though nonlinear selectors are 

incorporated in crossbar arrays, reducing the interconnect resistance is still crucial for large 

array operation. All three effects can be verified by analyzing the potentials on the word-

lines and bit-lines at different nodes in the array during simulation. 
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As can be seen from Figure 2.9, for a fixed array dimension, electrode lines with lower 

Rline allows a larger range of selector on/off ratios for a given read margin. Equivalently, if 

a selector is already chosen, the maximum array size can be improved with more 

conducting electrodes for a given read margin. 

 

2.6. Optimal Sense Resistance 

 

Figure 2.10. Read margin’s dependence on sense resistor when (a) selector on-state 

current Isel(on) is fixed (100μA); (b) selector on/off ratio k is fixed (103). Reproduced 

from [28]. 

 

According to the simplified model in [19], the maximum read margin is achieved with 

a sense resistor equal to the geometric mean of Ron and Roff, i.e. Rsense= (Ron*Roff)
1/2. 

Nevertheless, it needs to be examined what the optimal sense resistor values is when the 

selector device and interconnect resistances are included. The impacts of sense resistor on 

the read margin is shown in Figure 2.10 a-b, while keeping the selector Isel(on) and on/off 



35 
 

ratio fixed. The results indicate that within a wide range of selector parameter space, the 

optimal value of sense resistor, Rsense_op, remains close to the geometric mean of Ron and 

Roff. The small shift of Rsense_op can be understood by the increase of equivalent cell 

resistance due to the serially-connected selector or electrode resistance. The more 

conducting the selector is, the smaller the shift is. Since the read margin varies slowly with 

the sense resistor, possible trade-off adjustments on the sensing circuitry are feasible when 

other practical parameters need to be optimized, such as power consumption and fan-out. 

 

2.7. Storage Node Parameters 

Below we discuss how the storage node parameters affect the read margin in the 

selector/storage node configuration. In particular, since we only focus on the read operation, 

the storage node can be modeled as a resistor with resistance value of Ron or Roff, at the 

HRS or LRS, respectively. 

Figure 2.11 shows the relationship between the storage node resistance values and the 

read margin. For a given selector, in Figure 2.11a we see that lowering Ron does not 

necessarily lead to improved read margin, even though the Roff/Ron ratio is improved. This 

is due to the fact that reducing Ron in fact aggravates the voltage divider effect from the 

serially connected nonlinear select devices and the finite interconnect resistances. On the 

other hand, an opposite trend is found in Figure 2.11b which shows that increasing Roff 

leads to increased read margin at the same Roff/Ron ratio. This trend is further verified by 

examining the read margin as a function of storage node on/off ratio for different Ron values. 

As shown in Figure 2.11c, the read margin generally increases as the Roff/Ron ratio is 
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increased, but is always higher for higher Ron at the same Roff/Ron ratio due to the voltage 

divider effect. 

 

 

Figure 2.11. Relationship between the read margin and the storage node parameters. (a) 

with fixed Roff = 1M Ω; (b) with fixed Ron=10kΩ; (c) with varying Roff/Ron ratios. In both 

(a) and (b), upper curves marked by squares correspond to Selector1 (k=104, 

Isel(on)=100μA); lower curves marked by triangles correspond to Selector2 (k=104, 

Isel(on)=1000μA). Selector1 is simulated in (c). The sense resistor in (a)(b)(c) is set to 

(RonRoff)
1/2. Reproduced from [28]. 

 

These results suggest that if the device can only provide a limited Roff/Ron ratio, a 

desirable solution to mitigating the output signal degradation is to have high values of both 
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Ron and Roff instead of low values. However, in practical designs this requirement needs to 

be balanced with other demands such as speed requirements. 

 

2.8. Conclusions 

The read operations of an RRAM crossbar array have been systematically studied for 

a proposed 1S1R configuration consisting of memory cells with serially-connected selector 

device and storage node. The read margin was found to closely depend on the nonlinear 

conduction of the select device. Increasing the crossbar array size demands high values of 

not only selector on/off ratio (non-linearity) but also high selector on-current especially at 

low bias, and previously benchmarked selector on-current values seem too low for practical 

applications. The GN-FT and 1/3 V schemes were found to offer better read margin and 

lower operation power compared with the conventional GN-GN scheme. If highly 

nonlinear selectors can be obtained, the FT-FT and 1/2 V schemes are more desirable for 

ultra-low power application. The optimal sense resistor value was found to be still around 

the geometric mean of Ron and Roff but only affects the read margin slowly. The parameters 

of the storage node device should be optimized by considering the inherent voltage divider 

effect from the serially connected selector. These results provide a theoretical guidance for 

the design and optimization of RRAM devices and circuits. 

  



38 
 

2.9. References 

[1] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nat. 

Mater., vol. 6, no. 11, pp. 833–840, 2007. 

[2] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” 

Nat. Nanotechnol., vol. 8, no. 1, pp. 13–24, 2012. 

[3] DerChang Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand, A. 

Diaz, N. Leung, J. Wu, Sean Lee, T. Langtry, Kuo-wei Chang, C. Papagianni, 

Jinwook Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini, “A 

stackable cross point Phase Change Memory,” in 2009 IEEE International Electron 

Devices Meeting (IEDM), pp. 27.1.1–27.1.4, 2009. 

[4] X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, “A self-

rectifying AlOy bipolar RRAM with sub-50-μA set/reset current for cross-bar 

architecture,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1402–1404, 2012. 

[5] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches 

for passive nanocrossbar memories,” Nat. Mater., vol. 9, no. 5, pp. 403–406, 2010. 

[6] M.-J. Lee, S. I. Kim, C. B. Lee, H. Yin, S.-E. Ahn, B. S. Kang, K. H. Kim, J. C. 

Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. 

Kim, and Y. Park, “Low-Temperature-Grown Transition Metal Oxide Based 

Storage Materials and Oxide Transistors for High-Density Non-volatile Memory,” 

Adv. Funct. Mater., vol. 19, no. 10, pp. 1587–1593, 2009. 

[7] K.-H. Kim, S. Hyun Jo, S. Gaba, and W. Lu, “Nanoscale resistive memory with 

intrinsic diode characteristics and long endurance,” Appl. Phys. Lett., vol. 96, no. 5, 

p. 053106, 2010. 

[8] J. J. Huang, Y. M. Tseng, C. W. Hsu, and T. H. Hou, “Bipolar nonlinear Ni/TiO2/Ni 

selector for 1S1R crossbar array applications,” IEEE Electron Device Lett., vol. 32, 

no. 10, pp. 1427–1429, 2011. 

[9] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa, K. Tsuji, S. 

Yoneda, A. Himeno, K. Shimakawa, T. Takagi, T. Mikawa, and K. Aono, “An 8 Mb 

Multi-Layered Cross-Point ReRAM Macro With 443 MB/s Write Throughput,” 

IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 178–185, 2013. 

[10] W. Lee, J. Park, J. Shin, J. Woo, S. Kim, G. Choi, S. Jung, S. Park, D. Lee, E. Cha, 

H. D. Lee, S. G. Kim, S. Chung, and H. Hwang, “Varistor-type bidirectional switch 

(JMAX>107A/cm2, selectivity~104) for 3D bipolar resistive memory arrays,” in 

2012 Symposium on VLSI Technology (VLSIT), vol. 1, no. 2010, pp. 37–38, 2012. 

[11] M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. 

E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim, and B. H. Park, “Two 

series oxide resistors applicable to high speed and high density nonvolatile memory,” 

Adv. Mater., vol. 19, no. 22, pp. 3919–3923, 2007. 



39 
 

[12] X. Liu, S. M. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, and H. Hwang, “Diode-

less bilayer oxide (WOx–NbOx) device for cross-point resistive memory 

applications,” Nanotechnology, vol. 22, no. 47, p. 475702, 2011. 

[13] E. Cha, J. Woo, D. Lee, S. Lee, J. Song, Y. Koo, J. Lee, C. G. Park, M. Y. Yang, K. 

Kamiya, K. Shiraishi, B. Magyari-Kope, Y. Nishi, and H. Hwang, “Nanoscale 

(~10nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode,” in 

2013 IEEE International Electron Devices Meeting, pp. 10.5.1–10.5.4, 2013. 

[14] S. C. Puthentheradam, D. K. Schroder, and M. N. Kozicki, “Inherent diode isolation 

in programmable metallization cell resistive memory elements,” Appl. Phys. A, vol. 

102, no. 4, pp. 817–826, 2011. 

[15] G.W. Burr, K. Virwani, R. S. Shenoy, A. Padilla, M. BrightSky, E. A. Joseph, M. 

Lofaro, A. J. Kellock, R. S. King, K. Nguyen, A. N. Bowers, M. Jurich, C. T. Rettner, 

B. Jackson, D. S. Bethune, R. M. Shelby, T. Topuria, N. Arellano, P. M. Rice, B. N. 

Ku, “Large-scale (512kbit) integration of Multilayer-ready Access-Devices based 

on Mixed-Ionic-Electronic-Conduction (MIEC) at 100% yield,” in 2012 Symp. VLSI 

Technol. (VLSIT), pp. 41–42, 2012. 

[16] V. S. S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. 

Kim, S. Srinivasan, S. Kuppurao, S. Lodha, and U. Ganguly, “Punchthrough-Diode-

Based Bipolar RRAM Selector by Si Epitaxy,” IEEE Electron Device Lett., vol. 33, 

no. 10, pp. 1396–1398, 2012. 

[17] L. Zhang, A. Redolfi, C. Adelmann, S. Clima, I. P. Radu, Y.-Y. Chen, D. J. Wouters, 

G. Groeseneken, M. Jurczak, and B. Govoreanu, “Ultrathin Metal/Amorphous-

Silicon/Metal Diode for Bipolar RRAM Selector Applications,” IEEE Electron 

Device Lett., vol. 35, no. 2, pp. 199–201, 2014. 

[18] A. Flocke and T. G. Noll, “Fundamental analysis of resistive nano-crossbars for the 

use in hybrid Nano/CMOS-memory,” in ESSCIRC 2007 - 33rd European Solid-

State Circuits Conference, pp. 328–331, 2007. 

[19] C. J. Amsinck, N. H. Di Spigna, D. P. Nackashi, and P. D. Franzon, “Scaling 

constraints in nanoelectronic random-access memories,” Nanotechnology, vol. 16, 

no. 10, pp. 2251–2260, 2005. 

[20] M. M. Ziegler and M. R. Stan, “CMOS/nano Co-design for crossbar-based 

molecular electronic systems,” IEEE Trans. Nanotechnol., vol. 2, no. 4, pp. 217–

230, 2003. 

[21] Cong Xu, Xiangyu Dong, N. P. Jouppi, and Yuan Xie, “Design implications of 

memristor-based RRAM cross-point structures,” in 2011 Design, Automation & Test 

in Europe, pp. 1–6, 2011. 

[22] J. Liang and H.-S. P. Wong, “Cross-Point Memory Array Without Cell Selectors -

Device Characteristics and Data Storage Pattern Dependencies,” IEEE Trans. 

Electron Devices, vol. 57, no. 10, pp. 2531–2538, 2010. 



40 
 

[23] A. Chen, “A Comprehensive Crossbar Array Model With Solutions for Line 

Resistance and Nonlinear Device Characteristics,” IEEE Trans. Electron Devices, 

vol. 60, no. 4, pp. 1318–1326, 2013. 

[24] Y. Deng, P. Huang, B. Chen, X. Yang, B. Gao, J. Wang, L. Zeng, G. Du, J. Kang, 

and X. Liu, “RRAM Crossbar Array With Cell Selection Device: A Device and 

Circuit Interaction Study,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 719–

726, 2013. 

[25] L. Zhang, S. Cosemans, D. J. Wouters, G. Groeseneken, M. Jurczak, and B. 

Govoreanu, “Selector design considerations and requirements for 1 SIR RRAM 

crossbar array,” in 2014 IEEE 6th International Memory Workshop (IMW), pp. 1–4, 

2014. 

[26] “International Technology Roadmap for Semiconductors (ITRS),” 2013. 

[27] W. Kwon, J. Jeon, L. Hutin, and T.-J. K. Liu, “Electromechanical Diode Cell for 

Cross-Point Nonvolatile Memory Arrays,” IEEE Electron Device Lett., vol. 33, no. 

2, pp. 131–133, 2012. 

[28] J. Zhou, K.-H. Kim, and W. Lu, “Crossbar RRAM Arrays: Selector Device 

Requirements During Read Operation,” IEEE Trans. Electron Devices, vol. 61, no. 

5, pp. 1369–1376, 2014. 

  



41 
 

 

Chapter 3 

Conduction Mechanism and Array Application of  

Tantalum Oxide Selector 

 

3.1. Introduction 

As mentioned in the previous chapter, even though resistive random access memory 

(RRAM) has numerous advantages, including simple structure, fast switching speed, low 

power consumption and excellent scalability[1]–[3], the sneak current issue needs to be 

solved first before RRAM devices can be implemented within a large-scale crossbar array 

for high-density memory applications [4], [5]. To suppress the sneak current, an additional 

non-linear selector element, such as diode [6], threshold switching device [7], [8], mixed 

ionic-electronic conductor device [9], tunneling device [4], [10], and punch-through diode 

[11] needs to be integrated with the memory cell. Among various selector devices, 

multilayer-oxide (TaOx or TiOx) based selectors have received wide attention owning to 

their high selectivity and high current density [4], [10], [12], [13]. By integrating the 

multilayer-oxide structure with a resistive switching layer without an intermediate 

electrode, “selector-less” or “self-rectifying” RRAM devices can be created [14], [15]. The 

integrated device can retain both the resistive switching behavior of the switching layer 

and the high nonlinear characteristics of the selector layer, and thus can be directly 
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implemented in cross-point memory arrays and mitigate the sneak current issue. Moreover, 

the selector-less RRAM device will simplify the fabrication process of array integration 

and is compatible with three-dimensional (3D) stacking[14]. However, a clear physical 

explanation of the conduction mechanism of multilayer-oxide based selectors is still 

lacking. 

In this chapter, we first investigate the mechanism of a TaOx-based selector device 

which exhibits high non-linearity (~104) and excellent uniformity. The selector consists of 

a Pd/TaOx/Ta/Pd structure. Thermionic emission is observed when the device is positively 

biased (with respect to the bottom electrode) and tunnel emission is observed at reverse 

bias. The current-voltage characteristics at different temperatures were simulated by the 

Simmons trapezoidal energy barrier model and found to be consistent with the measured 

results. Based on the non-linear characteristic of the Pd/TaOx/Ta/Pd device, we further 

demonstrate a selector-less RRAM device using a Pd/TaOx/HfO2/Pd structure, which 

exhibited high non-linearity (~5×103) in low resistance state (LRS) and reproducible 

resistive switching behaviors. To test the effectiveness of the integrated selector-less device, 

the read margin of the RRAM crossbar array was evaluated under different read schemes 

(V/2, V/3, Ground). Our calculations suggested a maximum array size up to 1M bits 

without significant degradation on the read margin, indicating the prospect of 

implementing this selector-less RRAM into high-density memory applications. 

 

3.2. Device Fabrication and Measurement Setup 

The Pd/TaOx/Ta/Pd selector device studied in this chapter was fabricated following 

the steps below: A 50-nm-thickness Pd bottom electrode was deposited on a SiO2/Si 
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substrate by photo-lithography, e-beam evaporation and liftoff process, followed by the 

sputtering of a 12-nm thick Ta layer. The Ta layer was subsequently oxidized at 300 °C for 

30 min under oxygen ambient in a furnace to form the TaOx layer. Finally, a Pd top 

electrode was patterned and deposited using the same method as the bottom electrode, thus 

forming a crossbar structure with a device size of 2 μm × 2 μm. For the Pd/TaOx/HfO2/Pd 

selector-less RRAM, HfO2 layer was deposited by an Oxford atomic layer deposition (ALD) 

system with tetrakis-hafnium (TEMAH) precursor at 250 °C. The thickness of the TaOx 

film was characterized by transmission electron spectroscopy (TEM). The electrical 

characteristics of selector and RRAM devices were measured by a Keithely 4200 

semiconductor parameter analyzer. During the electrical testing, the bias voltage was 

always applied on the top electrode with the bottom electrode grounded. Temperature-

dependent characteristics were measured in a Desert Cryogenics TTP4 probe station 

system in vacuum. 

 

3.3. Conduction Mechanism Study of Tantalum-Oxide Selector Devices 

Figure 3.1a and 3.1b show the SEM image and high resolution cross-sectional TEM 

image of a fabricated Pd/TaOx/Ta/Pd selector device, respectively. From the cross-

sectional TEM image, it can be seen that there are two distinct layers between the top and 

the bottom Pd electrodes: an upper bright layer with a 7.8 nm thickness and a lower dark 

layer with an 8 nm thickness. The upper brighter layer was identified as oxidized TaOx 

while the lower layer with a metallic contrast was identified as remaining un-oxidized Ta. 

To verify this assignment, the chemical compositions of the two layers were analyzed 

inside the TEM apparatus by energy-dispersive X-ray spectroscopy (EDS), as shown in 
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Figure 3.1c. An oxygen peak was clearly observed in the upper layer, while the lower 8 nm 

thick layer shows essentially no O composition, verifying its origin as metallic Ta. Since a 

total of 12 nm thick Ta film was deposited initially, the thickness of the upper layer, 7.8 

nm, corresponds to a volume expansion factor of 1.95 if assuming 4 nm of Ta is converted 

into TaOx via Ta oxidation. This value is lower than the volume expansion factor of 2.3 

when Ta is fully oxidized into Ta2O5[16], and is consistent with a sub-oxide TaOx 

formation during oxidation. As a result, a trapezoidal energy barrier is expected for 

conduction through the TaOx layer, with different barrier heights of qϕ1, qϕ2 at the bottom 

and the top interfaces, respectively, due to the work function difference of the bottom Ta 

and top Pd electrodes, as shown in the inset. 

The Pd/TaOx/Ta/Pd selector device shows pronounced, reproducible non-linear I-V 

characteristics, as shown in Figure 3.1d, where results from 100 DC cycles are overlaid 

and plotted in semi-log scale. The non-linearity (NL), which is a crucial factor for 

evaluating selector, is defined as[17]: 

1
2

D

D

V

V

I
NL

I


 

where VD is the read voltage. In our device, the NL between 1.7 V and 0.85 V is over 104, 

suggesting this device can effectively suppress the leakage current at low bias. 

Significantly, measurements from 100 successive DC cycles show negligible variations 

during cycling, indicating excellent cycle-to-cycle uniformity. 
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Figure 3.1. (a) SEM image of the as-fabricated Pd/TaOx/Ta/Pd devices in a crossbar 

structure. Scale bar: 20 μm. (b) High resolution cross-sectional TEM image of a 

Pd/TaOx/Ta/Pd device showing the different layers. The brown and red circles A and B 

mark the locations for the EDS analysis. (c) EDS spectrum of the TEM specimen tested 

in locations A and B. (d) Typical I-V characteristics of a Pd/TaOx/Ta/Pd selector device. 

Results from 100 consecutive measurements are overlaid together. Very good 

reproducibility and a high NL (104 between 1.7 V and 0.85 V) can be obtained. The inset 

shows the schematic of a trapezoidal energy barrier for electron conduction through the 

TaOx layer with energy barrier qϕ1 and qϕ2 at the bottom (TaOx/Ta) and the top 

(Pd/TaOx) interfaces, respectively. Reproduced from [26]. 

 

The device also exhibits a clear asymmetry with a higher current density and steeper 

slope at positive bias compared to those at negative bias (Fig 3.1d). To clarify the 

conduction mechanism that leads to the asymmetric and highly non-linear I-V 

characteristics of the Pd/TaOx/Ta/Pd selector device, the device was measured in a wide 
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temperature range from 150 K to 300 K. As shown in Fig 3.2c, the measured current I1 

under positive bias is strongly temperature-dependent; while the measured current I2 under 

negative bias shows little temperature dependence within the temperature range studied. 

The distinct temperature dependent behaviors between I1 and I2 suggest that different 

conduction mechanisms are dominating at positive and negative biases, and may explain 

the observed asymmetric and non-linear transport behaviors in the Pd/TaOx/Ta/Pd selector 

device. 

 

Figure 3.2. Band diagram of the Pd/TaOx/Ta/Pd selector device under positive (a) and 

negative bias (b) conditions. (c) Temperatures dependence of device I-V (150 K to 300 

K). (d) ln(I1) vs. (V-Δϕ)1/2 measured at different temperatures for the voltage range from 

1.75 V to 2.5V (e) ln(12/V
2) vs. 1/V measured at different temperatures for the voltage 

range from -1.6 V to -2 V. (f) Simulated I-V curves at different temperatures. Reproduced 

from [26]. 
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We note similar asymmetric I-V characteristics have been observed in thin insulating 

Langmuir films, and can be explained by thermionic and tunneling emission with a 

trapezoidal barrier model[18]. Following a similar approach, the band diagram of the 

Pd/TaOx/Ta/Pd junction under positive and negative bias can be schematically illustrated 

in Fig 3.2a and 3.2b. Here, JTE1 (JTE2), JTN1 (JTN2), J1 (J2) are the net thermionic emission 

current density, tunneling current density and total current density of current flowing from 

the bottom (top) electrode to the top (bottom) electrode, respectively. Due to the lower 

barrier height of qϕ1 at the bottom interface, in the positive bias region both thermionic 

emission and tunneling emission contribute to the electron transport process. In particular, 

thermionic emission dominates the device current at high temperature or large positive bias. 

In the negative region, thermionic emission can be ignored due to the high energy barrier 

qϕ2, and the electron transport process is dominantly controlled by tunneling. Based on the 

Simmons’ model[19], [20], the thermionic emission at positive bias can be expressed as:  
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The tunneling emission at positive and negative bias can be calculated respectively as: 
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Here, A* is the effective Richardson constant, q is the charge of electron, K is the dielectric 

constant of TaOx, s is the thickness of TaOx film, V is the applied voltage, ƞ is the idea 

ideality factor[21]; 1 2, 
 

are mean barrier heights as defined in [18]. 

Table 3.1: Simulation parameters for I-V curves of the Pd/TaOx/Ta/Pd selector. 

Reproduced from [26]. 

Parameter Pd work 

function[22] 

(eV) 

Ta work 

function[22] 

(eV) 

TaOx 

affinity[23] 

(eV) 

qϕ1 

(eV) 

qϕ2 

(eV) 

eΔϕ 

(eV) 

TaOx 

thickness 

(nm) 

Area 

(μm2) 

η 

Value 5.6 4 3.3 0.7 2.3 1.6 7.8 2×2 2.4 

 

Figure 3.2f shows a group of simulated I-V curves based on Eq. 1-4 at different 

temperatures. The Pd and Ta work function values (5.6 eV and 4 eV, respectively) and 

TaOx electron affinity (3.3 eV) were obtained from literature [22], [23] 1 and qϕ2 of 0.7 eV 

and 2.3 eV at the bottom and the top interface, respectively. The TaOx film thickness and 

the device area were obtained from device geometry measurements. The only fitting 

parameter in the simulation is the idea ideality factor ƞ, which was chosen to be 2.4 to yield 

the best simulation results. From Figure 3.2c and 3.2f, it can be seen that our model with 

only one fitting parameter agrees well both qualitatively and quantitatively with the 

experimental results in a broad temperature and bias range. Additionally, Eq. (2) predicts 

a linear dependence of ln(I1) versus (V-Δϕ)1/2 for V >> ϕ1=0.7 V. Indeed, plotting the ln(I1) 

- (V-Δϕ)1/2 curves at different temperatures in the high voltage regime from 1.75 V to 2.5 
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V reveals a good linear dependence, as shown in Figure 3.2d, indicating the thermionic 

emission as the dominating mechanism at high positive bias. Additionally, Simmons’ 

theory ￼￼ tunneling emission will approach the general Fowler-Nordheim formula in the 

high bias region. Indeed, plotting ln12/V
2) and 1/V at high negative bias (-1.6~-2V, Figure 

3.2e) revealed a linear ln(12/V
2) - 1/V dependence at different temperatures, consistent with 

the hypothesis that tunneling emission is the dominant current mechanism at the negative 

bias region due to the asymmetric energy barrier. 

The excellent agreement of the model with experimental results, along with the distinct 

temperature dependence of the device, reveals the physical mechanism behind the observed 

non-linear and asymmetric I-V characteristics of the TaOx selector device. It also serves to 

provide a guidance for the continued design and optimization of selector devices in the 

future, where highly non-linear and asymmetric I-V behaviors are desirable [17], [24] .  

 

3.4. Multilayer Oxide Based Selector-less RRAM Devices 

The simple stack structure and fabrication process, along with the reliable non-linear 

I-V characteristics makes the TaOx-based selector well suited for RRAM applications. To 

this end, we investigated the feasibility of integrating the TaOx selective layer with an 

oxide-based switching layer to form selector-less RRAM devices. HfO2, which exhibits 

reliable resistive switching behavior with a wide tunable resistance range [25], was chosen 

as the resistive switching layer to be integrated with the TaOx selective layer.  
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Figure 3.3. (a) Bipolar resistive switching of the selector-less Pd/TaOx/HfO2/Pd device. 

A current compliance of 2 µA was used during set. Left inset: I-V of a Pd/HfO2/Pd 

control device. Right inset: I-V of the Pd/TaOx/HfO2/Pd device (green) after breakdown 

of the HfO2 layer and I-V of the Pd/TaOx/Ta/Pd selector device (yellow). (b) Endurance 

of the selector-less device measured at VD=1.7 V. (c) Cumulative distributions of VSet and 

VReset. (d) Room temperature (RT) retention of HRS and LRS. The HRS and LRS were 

tested every 100s with a read pulse (10 ms, 1.7 V). Reproduced from [26]. 

 

Figure 3.3a shows the bipolar resistive switching behaviors of an integrated 

Pd/TaOx/HfO2/Pd device. With increasing positive voltage (0→3.5 V) applied on the top 

electrode, an abrupt increase in current occurred at the set voltage (~ 2.9 V) and the device 

switched from the high resistance state (HRS) to the LRS. During negative voltage sweep 

(0→-4 V), a sudden drop in current appeared at the reset voltage (~ -3.3 V), when the 

device switched from the LRS to HRS. Significantly, the Pd/TaOx/HfO2/Pd device also 
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shows a pronounced non-linear behavior in the on-state (LRS state), with a 5×103-fold 

reduction in LRS current observed at ½VD compared with current at VD. For comparison, 

devices based on the Pd/HfO2/Pd structure without the TaOx layer shows well-defined 

resistive switching behaviors but only weak non-linearity in LRS (as shown in the left inset 

of Figure 3.3a). Additionally, after intentional breakdown (BD) of the HfO2 resistive 

switching layer at high bias voltage, the I-V curve of the Pd/TaOx/HfO2/Pd device closely 

matches that of the Pd/TaOx/Ta/Pd selector device (as shown in the right inset of Figure 

3.3a), indicating that the device non-linearity is originated from the TaOx selective layer. 

These results from the prototype Pd/TaOx/HfO2/Pd device suggest that the TaOx-based 

selective element could be used to effectively mitigate the sneak leakage in crossbar 

RRAM arrays in a selector-less device structure.  

Other important parameters for RRAM operations, including endurance, operation 

voltage and retention, were evaluated in the selector-less Pd/TaOx/HfO2/Pd device. Figure 

3.3b shows results obtained from 50 successive DC cycles. The LRS current is reduced in 

the integrated Pd/TaOx/HfO2/Pd device compared with that in the standalone Pd/HfO2/Pd 

device, but a minimum on/off ratio of 8 can still be obtained during cycling. Additionally, 

the current values of HRS and LRS at ½VD are essentially the same and stay unchanged 

during cycling, due to the ability of the TaOx selective layer to effectively suppress current 

at low bias, maintaining a high selectivity (>103) during cycling. The cumulative 

distributions of VSet and VReset are illustrated in Figure 3.3c showing that tight distributions 

can still be obtained in the integrated device. Figure 3.3d shows the data retention 

characteristics of HRS and LRS at room temperature (RT). No significant degradation was 

observed for both resistance states. 
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3.5. Crossbar Array Simulation for TaOx/HfO2 RRAM Devices 

To demonstrate the feasibility of the selector-less Pd/TaOx/HfO2/Pd RRAM device in 

passive crossbar RRAM array applications, circuit level simulations were performed using 

a HSPICE model to estimate the read margin in different read schemes for different array 

sizes. In this model, the HfO2 resistive switching layer is modeled to be in series with the 

TaOx selective layer. Additionally, only the dynamic behaviors of the selector element are 

considered in the model, since the resistive switching element (the HfO2 layer) is not 

considered to be disturbed during read. As a result, the resistance of the HfO2 resistive 

switching layer was modeled as a resistor with either Ron (4×105 Ω) or Roff (1×107 Ω), and 

the I-V characteristics of the TaOx selective layer was extracted from the numerical fitting 

of the Pd/TaOx/Ta/Pd selector device. The simulated I-V curve of the Pd/TaOx/HfO2/Pd 

device is shown in Figure 3.4a, which agrees with the measured data reasonably well. 

Figure 3.4b shows the calculated read margin versus array size under two different read 

voltages (VD=2.1 V and 1.8 V). The worse-case scenario was assumed in the simulation, 

with the target cell located at the farthest corner from the voltage source and all unselected 

cells in LRS [17]. Three different read schemes (V/2, V/3 and Ground, with the unselected 

cells connected to VD/2, VD/3 and ground, respectively[17]) were evaluated to reveal the 

optimal read operation approach. Here, the ground scheme refers to the scheme where the 

selected WL is biased to VD and all other WL/BLs are grounded. The V/2 (V/3) scheme 

biases the unselected WLs to 1/2 (1/3) Vread, the unselected BLs at 1/2 (2/3) VD, and makes 

the selected BL grounded.  
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Figure 3.4. (a) Simulated I-V curve of the Pd/TaOx/HfO2/Pd device using fixed values of 

Ron=4×105 Ω and Roff =1×107 Ω. (b) Calculated read margin under different read voltages 

(VD=2.1 V and 1.8 V) for three read schemes: V/2, V/3 and Ground. The read margin 

generally improves with the increase in read voltage, as shown in the inset. Reproduced 

from [26]. 

 

As shown in Figure 3.4b, the V/3 and Ground read schemes are more preferable to the 

proposed device structure, and read margin degradation is less than 4% under V/3 scheme 

for array size up to 1M bits. These results suggest that the selector-less Pd/TaOx/HfO2/Pd 

device can be implemented in high-density crossbar arrays and can effectively mitigate the 

sneak-current problem. In general, better read margin can be obtained at higher read 

voltage, as shown in the inset of Figure 3.4b. This effect can be explained by the non-linear 

behavior of the selector element such that the increased read voltages reduces the voltage 

divider effect from the selector layer and improves the read current [17]. 
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3.6. Conclusions 

In summary, we investigated the conduction mechanism of a Pd/TaOx/Ta/Pd selector 

device which shows high non-linearity and asymmetric I-V. The trapezoidal energy barrier 

model qualitatively and quantitatively explains the observed electrical transport process at 

different temperatures, and reveals that thermionic emission is dominant at the positive 

bias and tunnel emission is dominant at the negative bias. A selector-less RRAM device 

based on the Pd/TaOx/HfO2/Pd structure was further demonstrated by integrating the TaOx 

selective layer with the HfO2 resistive switching layer. The integrated RRAM device shows 

a high selectivity (5×103) in LRS with the strong ability to significantly suppress sneak 

current at low bias. The read margin of crossbar memory array based on the selector-less 

RRAM cell was evaluated for different read schemes. The simulation results showed that 

the Pd/TaOx/HfO2/Pd device can be implemented in high-density arrays up to 1 Mbit with 

minimal degradation of the read margin. These results not only provide insight in 

understanding the origin of non-linearity in selector devices and selector-less RRAM 

devices, but also will guide the design and optimization of high-density crossbar RRAM 

applications. 

  



55 
 

3.7. References  

[1] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical 

metallization memories--fundamentals, applications, prospects.,” Nanotechnology, 

vol. 22, no. 25, p. 254003, 2011. 

[2] J. J. Yang, M. D. Pickett, X. Li, D. a a Ohlberg, D. R. Stewart, and R. S. Williams, 

“Memristive switching mechanism for metal/oxide/metal nanodevices,” Nat. 

Nanotechnol., vol. 3, no. 7, pp. 429–433, 2008. 

[3] Y. Yang and W. Lu, “Nanoscale resistive switching devices: mechanisms and 

modeling,” Nanoscale, vol. 5, no. 21, p. 10076, 2013. 

[4] W. Lee, J. Park, S. Kim, J. Woo, J. Shin, G. Choi, S. Park, D. Lee, E. Cha, B. H. 

Lee, and H. Hwang, “High Current Density and Nonlinearity Combination of 

Selection Device Based on TaOx/TiO2/TaOx Structure for One Selector–One 

Resistor Arrays,” ACS Nano, vol. 6, no. 9, pp. 8166–8172, Sep. 2012. 

[5] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srinivasa, and 

W. Lu, “A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data 

Storage and Neuromorphic Applications,” Nano Lett., vol. 12, no. 1, pp. 389–395, 

Jan. 2012. 

[6] M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. 

Stefanovich, J.-H. Lee, S.-J. Chung, Y.-H. Kim, C.-S. Lee, J.-B. Park, I.-G. Baek, 

and I.-K. Yoo, “2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch 

Elements for High Density Resistance RAM Applications,” in 2007 IEEE 

International Electron Devices Meeting, pp. 771–774, 2007. 

[7] M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. 

E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim, and B. H. Park, “Two 

series oxide resistors applicable to high speed and high density nonvolatile memory,” 

Adv. Mater., vol. 19, no. 22, pp. 3919–3923, 2007. 

[8] X. Liu, S. M. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, and H. Hwang, “Diode-

less bilayer oxide (WOx–NbOx) device for cross-point resistive memory 

applications,” Nanotechnology, vol. 22, no. 47, p. 475702, 2011. 

[9] R. S. Shenoy, K. Gopalakrishnan, B. Jackson, K. Virwani, G. W. Burr, C. T. Rettner,  

a. Padilla, D. S. Bethune, R. M. Shelby,  a. J. Kellock, M. Breitwisch, E. a. Joseph, 

R. Dasaka, R. S. King, K. Nguyen,  a. N. Bowers, M. Jurich,  a. M. Friz, T. 

Topuria, P. M. Rice, and B. N. Kurdi, “Endurance and scaling trends of novel 

access-devices for multi-layer crosspoint-memory based on mixed-ionic-electronic-

conduction (MIEC) materials,” 2011 Symp. VLSI Technol., vol. 4, pp. 94–95, 2011. 

[10] J. Woo, W. Lee, S. Park, S. Kim, D. Lee, G. Choi, E. Cha, J. Lee, W. Jung, C. Park, 

and H. Hwang, “Multi-layer Tunnel Barrier (Ta2O5/TaOx/TiO2) Engineering for 

Bipolar RRAM Selector Applications,” 2013 Symp. VLSI Circuits, pp. 168–169, 

2013. 

[11] V. S. S. Srinivasan, S. Chopra, P. Karkare, P. Bafna, S. Lashkare, P. Kumbhare, Y. 

Kim, S. Srinivasan, S. Kuppurao, S. Lodha, and U. Ganguly, “Punchthrough-Diode-



56 
 

Based Bipolar RRAM Selector by Si Epitaxy,” IEEE Electron Device Lett., vol. 33, 

no. 10, pp. 1396–1398, 2012. 

[12] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim, S. Park, 

and H. Hwang, “TiO2-based metal-insulator-metal selection device for bipolar 

resistive random access memory cross-point application,” J. Appl. Phys., vol. 109, 

no. 3, 2011. 

[13] J. J. Huang, C. W. Kuo, W. C. Chang, and T. H. Hou, “Transition of stable 

rectification to resistive-switching in Ti/TiO2/Pt oxide diode,” Appl. Phys. Lett., vol. 

96, no. 26, pp. 2008–2011, 2010. 

[14] C.-W. Hsu, Y.-F. Wang, C.-C. Wan, I.-T. Wang, C.-T. Chou, W.-L. Lai, Y.-J. Lee, 

and T.-H. Hou, “Homogeneous barrier modulation of TaOx/TiO2 bilayers for ultra-

high endurance three-dimensional storage-class memory,” Nanotechnology, vol. 25, 

no. 16, p. 165202, 2014. 

[15] J. Woo, S. Kim, W. Lee, D. Lee, S. Park, G. Choi, E. Cha, and H. Hwang, 

“Thermally activated non-linearity of device in resistance-switching memory for 

cross-point array applications,” Appl. Phys. Lett., vol. 102, no. 12, p. 122115, 2013. 

[16] S. W. Park, “Effects of oxidation conditions on the properties of tantalum oxide 

films on silicon substrates,” vol. 207, pp. 258–264, 1992. 

[17] J. Zhou, K.-H. Kim, and W. Lu, “Crossbar RRAM Arrays: Selector Device 

Requirements During Read Operation,” IEEE Trans. Electron Devices, vol. 61, no. 

5, pp. 1369–1376, 2014. 

[18] S. Horiuchi and K. Naito, “Electric Conduction through Thin Insulating Langmuir 

Film,” J. Electrochem. Soc., vol. 115, no. 6, pp. 634–637, 1968. 

[19] J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between 

Similar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys., vol. 34, no. 

6, p. 1793, 1963. 

[20] J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between 

Closely Spaced Parallel Metal Electrodes,” J. Appl. Phys., vol. 35, no. 8, p. 2472, 

1964. 

[21] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from 

forward current-voltage characteristics,” Appl. Phys. Lett., vol. 49, no. 2, pp. 85–87, 

1986. 

[22] H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. 

Phys., vol. 48, no. 11, p. 4729, 1977. 

[23] J. Robertson and C. W. Chen, “Schottky barrier heights of tantalum oxide, barium 

strontium titanate, lead titanate, and strontium bismuth tantalate,” Appl. Phys. Lett., 

vol. 74, no. 8, p. 1168, 1999. 



57 
 

[24] S. Kim, J. Zhou, and W. D. Lu, “Crossbar RRAM Arrays: Selector Device 

Requirements During Write Operation,” IEEE Trans. Electron Devices, vol. 61, no. 

8, pp. 2820–2826, 2014. 

[25] B. Govoreanu, G. S. Kar, Y.-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. 

Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. 

Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, 

and M. Jurczak, “10×10nm2 Hf/HfOx crossbar resistive RAM with excellent 

performance, reliability and low-energy operation,” in 2011 International Electron 

Devices Meeting, pp. 31.6.1–31.6.4, 2011. 

[26] M. Wang, J. Zhou, Y. Yang, S. Gaba, M. Liu and W. D. Lu, “Conduction mechanism 

of a TaO x-based selector and its application in crossbar memory arrays,” Nanoscale, 

vol. 7, no. 11, pp. 4964–4970, 2015. 

  



58 
 

  

 

Chapter 4 

Low Programming-Current Resistive Switching Memory 

  

4.1. Introduction and Motivation 

To approach commercial nonvolatile memory applications, RRAM devices with low 

operating current are highly preferable. Scaling the RRAM programming current will 

reduce the total power consumption and relax the requirement on current-driving capacity 

of the select transistor (1T1R configuration) or the selector device (in 1S1R configuration). 

In the meantime, with lower operation current, less voltage will drop on the word/bit lines 

in a crossbar array, thus mitigating the parasitic series-resistance effect from the electrodes 

and improving the read margin as well as the write disturbance[1]–[3].  

 Recently low-power RRAMs with sub-µA operating current have been demonstrated 

in different material systems [4]–[9]. Typically the low programming current leads to the 

formation of very weak conductive filaments in the switching layer [10]–[12]. Given the 

limited diameter, however, these filaments may be more susceptible to noise and retention 

degradation [13]–[15].  

 In this chapter, we first demonstrate reliable sub-nA operations using a copper based 

RRAM structure with a polycrystalline silicon in-cell resistor. To further support the high 
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density integration and alleviate the sneak leakage issue in crossbar RRAM arrays, a novel 

Cu/Al2O3/aSi/Ta RRAM structure with self-rectifying characteristics is further developed. 

The Cu/Al2O3/aSi/Ta RRAM cell exhibits low operating current (~nA), high on/off ratios 

(>100x) and pronounced nonlinearity. The use of low programming-current RRAM 

elements avoids the current-driving capability bottleneck of selectors, while the integrated 

rectifying layer improves the RRAM operation reliability.  

 

4.2. Copper Based RRAM with Polycrystalline Silicon In-cell Resistor 

4.2.1. Device Structure and Fabrication 

 Experiments were conducted on two-terminal cross-point devices with lateral size of 

2μm × 2μm. 50nm boron-doped polysilicon (1000 ohm/square, ∼1e19 cm−3 doping level) 

was deposited using low pressure chemical vapor deposition (LPCVD) at 580°C on a 

Si/SiO2 wafer. The polysilicon bottom electrodes (BEs) were patterned by 

photolithography and reactive ion etching (RIE) process. Immediately after a short 1:20 

HF dip to remove the native oxide, 10nm Al2O3 was deposited using trimethylaluminum 

(TMA) and water precursors in an Oxford Opal atomic layer deposition system at 150 °C. 

Copper top electrodes (TEs) were then patterned using photolithography and liftoff 

processes. A stack of 800Å Cu/ 400Å Au was used to passivate the Cu electrode. All 

measurements were conducted using a Keithley 4200 semiconductor characterization 

system (SCS). For all electrical testing, the external bias was applied to the Cu TE while 

the polysilicon BE was grounded. 
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4.2.2. Results and Discussions 

 As shown in Figure 4.1, the device can be programmed and erased with sub-nA current 

compliance (0.5nA) provided by the 4200-SCS. The sharp increase (decrease) in the 

current corresponds to the formation (rupture) of the filament during set (reset) process. 

Particularly, the polysilicon BE serves as an in-cell resistor to effectively limit potential 

voltage overshoot during filament growth to prevent the formation of thick filaments 

(Figure 4.2). The effect of the polysilicon BE in-cell resistor was confirmed by fabricating 

devices with metal (e.g. W) BEs. All devices with W BEs shorted out after the forming 

operation even when very low current compliance (0.5nA) was used. This is consistent 

with previous reports suggesting reduction in voltage/current overshoot during forming / 

SET process is required to prevent over-programming of the device [16].  

 

Figure 4.1. (a) Linear and log (inset) scale I–V curve showing sub-1nA current 

operation; (b) Device structure schematic: The polysilicon BE effectively acts as an in-

cell resistor and prevents overshoot during writing. Reproduced from [21]. 
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 With the low current compliance and the in-cell resistor to prevent voltage overshoot, 

we expect improved control of the filament growth process. Specifically, instead of the 

formation of a very weak filament in previously studied low-current RRAM devices, we 

target an incomplete filament which has a solid base but leaves a gap between the filament 

tip and the BE, schematically shown in the inset of Figure 4.2. In this case, low current is 

obtained since the filament does not completely bridge the two electrodes; while good 

retention can still be maintained as the filament does not have a very weak tip that leads to 

retention loss. The concept of controlling filament growth has been recently demonstrated 

by us and verified through in-situ TEM studies [10], [11]. 

 

Figure 4.2. Linear fitting for LRS current vs. V2 indicating SCLC as the conduction 

mechanism. Since the copper filament does not completely bridge the two electrodes 

(lower inset), very low operating current can be obtained. Upper inset shows that the LRS 

resistance is apparently independent of temperature, consistent with the SCLC 

conduction mechanism. Reproduced from [21]. 

 

The hypothesis of the incomplete filament formation was supported by analyzing the 

measured I–V curve in the low-resistance state (LRS). The LRS I–V can be well fitted with 
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a SCLC (space-charge-limited-conduction) model (Figure 4.2), consistent with electron 

transport through a thin ALD Al2O3 layer [17]. The space charge limited current through a 

thin material of thickness d and dielectric constant ε is given by  

𝐽 =
9𝜀𝜇𝑉2

8𝑑3 , 

where μ is the electron mobility in the specific medium, and V is the applied voltage. By 

assuming a gap d between the filament tip and the BE to be ∼2–3nm [18], μ (electron 

mobility in Al2O3) = 7e−9 m2/V-s [17], εr = 4 [17], the effective electrode area responsible 

for LRS conduction can be calculated to be 8–26nm2, suggesting the presence of a 

dominant filament with an effective tip area of 8–26nm2. The estimated filament and gap 

size are consistent with the observed filament shape/characteristics from experiments 

targeted at visualizing the actual filament [10] and support the concept of having a partially 

formed filament in the LRS to maintain low programming current and retention. 

 

Figure 4.3. (a) Elevated temperature retention test. Read pulse (1V/10ms) was repeated 

every 6 minutes. Large read window is maintained after 6 hours at 85 °C. (b) 10000 cycle 

pulse data indicating robust endurance. Write pulse: 5V/5ms, erase pulse: −2.5V/4ms, 

read pulse: 1V, 10ms. Reproduced from [21]. 
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Despite the ultra-low programming current, the devices show good retention behavior 

(Figure 4.3a), since the current is not limited by the narrow filament width but rather by 

the gap between the filament tip and the bottom electrode. An incomplete but robust 

filament results in stable read current even at 85 °C. Excellent device endurance of 10000 

pulse cycles can be also obtained with the help of a 1Gohm series resistance (Figure 4.3b).  

 

Figure 4.4. (a) Read margin for square arrays with N rows and N columns. Line 

resistance of 100 ohm/sq. is assumed. Grounding scheme is utilized for array simulation - 

unselected word/bit-lines are held at ground potential. The selected word-line is biased at 

Vread while the selected bit-line is grounded. Worst case scenario is assumed with the 

target cell located at the farthest corner and all unselected cells in low resistance state. (b) 

Read current as a function of word / bit line resistance for N = 512. Reproduced from 

[21]. 

  

Based on a grounding scheme, HSPICE numerical simulations were conducted to 

verify the read operation of crossbar array integrating this low-current RRAM cell. As 

shown in Figure 4.4a, the read current loss is negligible in a 1M-bit array and is less than 

10% within a 16M-bit array. Besides, the low current negates the detrimental effects of line 

resistance of the word/bit lines, particularly for the grounding scheme during read. 

Normally, increased line resistance causes increased voltage drops on the selected word/bit 
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line, and also raises the potential on unselected word lines which can lead to inaccurate 

read current even for the grounding configuration. Due to the very low current, the voltage 

drops on the electrodes are minimized and no significant read current degradation is 

observed for large arrays (Figure 4.4b). Additionally, the total power dissipation can be 

reduced. For example, the worst-case total power dissipation during read using the 

grounding scheme for a 1 Mb array was calculated to be 2.7e–7W at 1V read voltage, lower 

than the power dissipation for reading a single cell with a read current of 1μA. 

 

4.3. Copper Based RRAM with Self-Rectifying Characteristics 

4.3.1. Device Concept  

In the last section, a sub-nA copper based RRAM with polycrystalline silicon in-cell 

resistor has been demonstrated. Reliable retention and excellent endurance are proven on 

the individual cell level. However, several inherent drawbacks hinder the practical 

application of this cell structure: 1) the LPCVD step for polysilicon bottom electrode, 

which requires high temperature, cannot adapt to the mainstream CMOS technology and 

the back-end-of-line (BEOL) integration, thus eliminating RRAM’s advantage of 3D 

stacking; 2) compared to metal electrodes (e.g. Cu), the polysilicon electrodes is much 

more resistive and will result in severe RC delays on read/write operations; 3) it is 

challenging to precisely control the growth of incomplete conductive filament in the 

switching layer; 4) the LRS fail to provide sufficient nonlinearity and will suffer from the 

sneak leakage issue, in particular when the crossbar array is very large.   



65 
 

A straightforward solution to (1) and (2) is replacing polysilicon with metal materials 

that are CMOS compatible. However, as pointed out in [16], changing bottom electrodes 

alone may sacrifice the low operating current and lead to reliability issues from high 

transient current during forming/set processes. As a RRAM device switches to the LRS 

state, the accompanying current spike from the discharging of the parasitic capacitance 

tends to over-program the memory and cause the over-growth of the filament and a very 

low resistance state. From a microscopic perspective, the variability of incomplete 

conductive filaments in (3) is also highly associated with this discharging current, since the 

migration of Cu ions is driven by the device current which increases significantly as the 

gap distance reduces. Intuitively, a robust barrier layer inserted between the switching 

material and the metal electrode can help resolve the problems by reliably regulating the 

transient current, effectively confining the conductive filament within the switching layer 

and clearly defining the gap between filaments and bottom electrodes. 

It’s worth noting that the inserted barrier layer may also potentially act as a 

rectifying/selector element and provide nonlinear I-V characteristics for the RRAM device 

in the meantime. A major bottleneck for the selector development is the high current-

density requirement to minimize the voltage divider effect with the serially connected 

memory element, and allow sufficient read/write margin for the array operation, as 

discussed in Chapter 2 [1], [2]. The mismatch between the RRAM on-resistance and the 

selector on-resistance lowers the on/off memory window and reduces the effectiveness of 

the non-linear selector in 1S1R memories[3]. In principle, by integrating selectors with 

low-current RRAMs, the requirement for high selector current may be alleviated while the 

advantages of high nonlinearity and low power consumption can be maintained.   
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4.3.2. Amorphous Silicon Based Selector Devices 

Metal/amorphous-silicon/metal (MSM) structures have been reported and 

demonstrated for selector applications in the 1S1R configuration[19], [20] . Using an 

ultrathin amorphous silicon layer acting as the tunneling dielectric, the MSM sandwiched 

structure has been shown to provide high driving current (exceeding 1MA/cm2), large 

nonlinearity and fast switching speed (~ns). With a moderate thermal budget (less than 

600 °C), the device performance and reliability can be further improved by thermal 

annealing treatment and barrier engineering. The relatively simple process is beneficial for 

the high density integration of this MSM selector. 

 

Figure 4.5. (a) I-V plots for the MSM selectors (40nm×40nm) with different silicon 

thicknesses. (b)(c) Cross-sectional TEM images for MSM selector. Reproduced from 

[19], [20]. 

 

Inspired by the reported selector studies, we expect to implement the amorphous 

silicon layer into our low-current RRAM as a barrier layer for Cu migration and as a 

rectifying layer to provide nonlinear IV characteristics. Based on these device conceptions, 
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a novel Cu/Al2O3/aSi/Ta RRAM structure (Figure 4.7) is proposed based on the previous 

Cu/Al2O3/polysilicon system. 

 

Figure 4.6. (a) Band diagram of the MSM selector (under bias), with ultrathin undoped 

amorphous silicon, which behaves as a low-bandgap tunnel dielectric. (b) Trap assisted 

tunneling (TAT) and defect-free tunneling conduction models explain the I-V difference 

between annealed and un-annealed samples. Reproduced from [19], [20].  

 

 

Figure 4.7. Conceptual device schematic of a Cu/Al2O3/aSi/Ta RRAM cell at LRS. Cu 

conductive filaments are expected to form in the Al2O3 and stop growth at the aSi/Al2O3 

interface. 

 

4.3.3. Device Structure and Fabrication 

 The Cu/Al2O3/aSi/Ta cells were fabricated in a crossbar configuration. Starting from 

a Si/SiO2 substrate, the bottom electrodes (BE) were defined by photolithography and 
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50nm sputtered tantalum (Ta). An aSi film was then deposited with a thickness in a range 

from 4.5nm to 9nm by room temperature DC sputtering using a p-type silicon target (with 

a boron doping level of ~1019 cm-3). Immediately after the aSi sputtering, 6nm Al2O3 was 

grown by atomic layer deposition (ALD) at 150 °C, the peak temperature of the entire 

process. The Cu top electrodes (TE) were then patterned by photolithography and liftoff, 

and followed by an Au passivation layer deposition. The device size was 2μm×2μm. The 

device SEM image is shown in Figure 4.8. Besides, control samples with MSM stacks 

similar to [19] but different metal electrodes were also fabricated.  

 

Figure 4.8. Scanning electron microscope image of two Cu/Al2O3/aSi/Ta RRAM devices 

sharing a Ta bottom electrode. 

 

4.3.4. Low-current Operation and Self-Rectifying Characteristics 

A typical I-V curve of a Cu/Al2O3/aSi/Ta device with a 6nm thick aSi layer is shown 

in Figure 4.9. The voltage bias is always applied on the TE; while the BE is grounded. 

After an initial DC forming process with a compliance current (Icc) of 10nA at 5V, the 

device shows repeatable bipolar switching characteristics with very low operating current 

(~nA) even without current compliance. It can be set from the high resistance state (HRS) 
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to the low resistance state (LRS) at ~3.6V and reset back to HRS at ~-2V. The sharp 

increase/decrease in the device current can be understood by the formation/rupture of Cu 

filament in the Al2O3 switching layer, respectively[21]. The inset of Figure 4.9 shows the 

I-V curve plotted in linear scale and resistance variations in cycling tests, highlighting the 

LRS nonlinearity and the on/off ratio of the cell. The half-bias nonlinearity NL1/2 = 

I(Vread)/I(1/2Vread) is ~13, and the 1/3-bias nonlinearity NL1/3 is ~34 when the device is 

read at 2V. The on/off window is ~130x at 2V with a low OFF current of ~1pA. 

Additionally, the device can be erased with a reset current as low as 30pA.  

 

Figure 4.9. Typical I-V curve of a Cu/Al2O3/aSi/Ta device. Upper inset: data plotted in 

linear scale. Lower inset: resistance variations of HRS/LRS over 50 DC cycles. 

Reproduced from [26]. 

 

The low operating current demonstrated in this paper can be well explained by the 

controlled growth of filaments [10] where a small gap between the filament and the bottom 

electrode limits the LRS current. However, as discussed in Section 4.3.1, the polysilicon 

bottom electrode that helps control the filament growth in [21] will introduce numerous 

problems in large-scale crossbar applications, such as parasitic resistance and incompatible 
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processes. Here by inserting a thin amorphous silicon layer as a barrier layer that stops 

filament growth, the gap in the conduction path can now be defined definitely while the 

series resistance of electrodes is minimized by replacing polysilicon with a metal (e.g. Ta). 

Additionally, the CBRAM cell structure proposed here allows low current and LRS 

nonlinearity without an extra middle electrode. This will help alleviate the sneak leakage 

in crossbar array and simply the integration steps. 

 

Figure 4.10. Typical I-V curve of a Cu/aSi/Ta device in log and linear scale (inset). 

Reproduced from [26]. 

 

To further validate the role of aSi barrier layer, control samples without the Al2O3 

switching layer were also measured. Figure 4.10 shows the I-V curve of a Cu/aSi(6nm)/Ta 

control device. It exhibits the expected nonlinear conduction (NL1/2~17 at 2V) very similar 

to that observed in the LRS of the Cu/Al2O3/aSi/Ta device. It is also worth noting that the 

aSi barrier/rectifying layer does not break down at 4V and at current levels more than 

10000 times higher than the programming current of the memory device. These 

observations suggest that the formation/rupture of the filament is confined within the Al2O3 
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layer, and the aSi layer provides the nonlinear conduction effect of the LRS. Figure 4.11 

shows that the nonlinearity and current level strongly depend on the electrode/aSi interface. 

For example, titanium (Ti) electrode yields an improved NL1/2 of 65 and can drive 70 times 

higher current at 2V compared to the Cu/aSi/Ta device. Therefore, further optimizations 

on the NL and the current density (if needed) are feasible by tuning the rectifying layer 

material thickness, the effective Schottky barrier height at the electrode/aSi interface 

through the choice of the BE metal, and the electrode/aSi interface, following an approach 

discussed in [20]. The choice of the rectifying layer also depends on the breakdown electric 

field and its ability to suppress ion migration [11]. 

 

Figure 4.11. The electrode effect on the aSi rectifying layer performance. Reproduced 

from [26]. 

 

The LRS conduction mechanism of the integrated Cu/Al2O3/aSi/Ta cell was further 

investigated. Figure 4.12(a) compares the log(I)–V plots of the Cu/Al2O3/aSi/Ta cell in 

LRS and the Cu/aSi/Ta device. Both curves follow the same trend over the entire bias range. 

By simply scaling the control device current (by a factor of 62500), the log(I)–V curve 
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almost perfectly overlaps with the memory device curve in LRS state. Therefore, it is 

reasonable to assume that: (1) the LRS behavior of the Cu/Al2O3/aSi/Ta cell is dominated 

by the rectifying layer; (2) the reduced absolute current level in the Cu/Al2O3/aSi/Ta cell 

is likely a result from the effective cross-sectional area of the Cu filament/aSi contact in 

the cell. Based on these assumptions, from the current ratio of the two cases and the known 

electrode size of the Cu/aSi/Ta device, the diameter of the Cu filament in the integrated 

Cu/Al2O3/aSi/Ta device is estimated to be ~9nm, which agreed well with the filament sizes 

obtained from direct measurements [10], [12]. As shown in Figure 4.12(b), the current 

shows negligible temperature dependence, consistent with a tunneling current model across 

the thin film [22]. Specifically, the I-V at high bias region can be well modeled by F-N 

tunneling (inset). From the fitting of the ln(J/E2) - 1/E plot, the slope   

𝐾 = −
8𝜋(2𝑞𝑚∗)1/2∅𝐵

3/2

3ℎ
 

can be obtained, where m* (0.1m0 [22]) is the tunneling effective mass, h is the Planck 

constant, and the barrier height ΦB can be extracted to be 0.58eV. Optimizing the tunnel 

barrier height and the metal/aSi interface quality can lead to higher nonlinearity and current 

driving capability by choosing metal materials with proper work function and reactivity 

with aSi [20]. 
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Figure 4.12. (a) Log(I)-V plots of the Cu/aSi/Ta control device (before/after scaling) and 

the Cu/Al2O3/aSi/Ta memory device in LRS. (b) Temperature dependence of the 

Cu/aSi/Ta device. The I-V of control sample can be modeled by F-N tunneling at high 

bias (inset). Reproduced from [26]. 

 

4.3.5. Retention and Endurance 

The ultralow current operation does not come at a cost of performance degradation in 

the proposed structure. The Cu/Al2O3/aSi/Ta cell in this study shows stable retention in 

LRS and HRS for over 104 seconds at 100°C, as shown in Figure 4.13a. Over 500 

SET/RESET pulse cycles can be obtained without the application of external current 

compliance (Figure 4.13b). The switching speed during the pulse test is limited by the RC 

delay in the system due to the very low programing/read current and the relatively large 

device size. We expect the switching speed to be dramatically improved by scaling down 

the device size hence reducing the device capacitance, along with the minimization of 

parasitic capacitances. Nevertheless, very fast switching (~ns level) may still be difficult 

to achieve for such device with extremely low operating current (~nA). On the other hand, 

these devices may be suitable for applications where low power is critical and relatively 

low speed (at the individual device level) can be tolerated, such as in neuromorphic circuits. 
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Figure 4.13. (a) HRS/LRS retention showing over 10000 seconds at 100 °C. (b) Pulse 

endurance test without current compliance. 3.5V/-3V pulses (10ms width) were used for 

SET/RESET in the endurance test. Read was performed with 2V pulses (10ms width). 

Reproduced from [26]. 

 

4.3.6. Multilevel Capability 

Apart from the characteristic dimension (CD) scaling guided by the Moore’s Law, 

multilevel operation will further reduce the cost per bit. By optimizing the program/erase 

procedures, such as adjusting current compliance [23] and pulse amplitude/width [24], 

multilevel cell storage can be demonstrated in a single memory device, thus allowing 

enhanced storage density without extra fabrication complexity.  

In this work, multibit capacity can be obtained by the precise control on the filament 

growth. With different compliance current applied during the SET process ranging from 

100pA to 10nA, the RRAM device can be programmed into distinct low resistance states 

(Levels 1/2/3 in Figure 4.14a). Stable device current can be still read for each state over 

the time, even Level 1 corresponds to an on-current of ~10pA. A well-defined read margin 
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exceeding 10 can be reliably achieved between four different states in the same device, as 

shown in Figure 4.14b.  

 

Figure 4.14. (a) Different compliance currents Icc are employed during the SET process. 

(b) Multibit data retention measured from single device at room temperature. Reproduced 

from [26]. 

 

4.3.7. Device Variability and Optimization 

Figure 4.15a shows the device-to-device variation of the forming voltage (red circles). 

Relatively narrow distribution of the formation process can be obtained. On the other hand, 

the cycle-to-cycle variations is non-negligible even for the same cell (black squares). The 

SET voltage was measured from the DC sweeps and defined as the voltage where the 

device current increases above a threshold value of 0.1nA. These different behaviors can 

be consistently explained by the facts that the forming voltage is determined by the initial 

film stack which can be very uniform between different cells; while the programming 

voltage is determined by the remaining filament shape after the previous reset which can 

exhibit larger variations than the initial virgin state configurations [25]. Figure 4.15b shows 
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the set/forming voltage as a function of the aSi thickness. Overall the devices with a thick 

rectifying layer require higher forming voltage and may be more susceptible to the voltage 

overshoot and programming failure issues, while lowering the rectifying layer thickness 

reduces the forming voltage but may lead to reliability issues such as film breakdown and 

copper injection under extremely high electric fields at reduced film thickness. The 

parameters of the switching/rectifying layer stack have to be carefully engineered, taking 

into account the inherent voltage divider effect in the series configuration. 

 

Figure 4.15. (a) cycle-to-cycle variation of Vset and device-to-device variation of Vform 

for cells with 4.5nm thick aSi. (b) Vset and Vform of the memory cells as a function of the 

aSi layer thickness. Reproduced from [26]. 

 

4.4. Conclusions 

Sub-nA operation of RRAM devices has been demonstrated for the first time on a Cu 

based CBRAM with polysilicon in-cell resistor. A novel Cu/Al2O3/aSi/Ta RRAM cell with 

self-rectifying characteristics was further developed to address the series resistance and 

high-thermal budget issues in the polysilicon electrode devices. By combining a low 
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current RRAM with an amorphous silicon barrier/rectifying layer, the device exhibits low 

current (~nA), high on/off ratio (>100x) and pronounced nonlinearity. Stable retention, 

endurance and multilevel operation can be demonstrated by the precise filament growth 

control inherently offered by the device structure. Further optimizations on the device 

performances, e.g. higher nonlinearity and less parameter variations, can potentially lead 

to the application of such devices in future low-power large-scale crossbar memory arrays. 
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Chapter 5  

Reconfigurable Devices Based on Complex Oxide Heterojunctions 

 

5.1. Introduction 

In previous chapters, selector and low-power RRAM devices have been investigated 

by experimental and simulation studies. In this chapter, we aim to utilize the ionic motions 

in resistive switching processes in logic devices, and demonstrate reconfigurable 

transistors for potential neuromorphic computing applications. Specifically, several recent 

studies with similar device concepts of a programmable resistive transistor have been 

reported, using the hybrid integration where the RRAM device was stacked on the gate 

terminal of bulk silicon MOSFET [1] or horizontal nanowire transistor [2]. The nonvolatile 

modulation of transistor transconductance was essentially discrete and demonstrated by the 

voltage divider effect between the fixed dielectric capacitor and the variable capacitor of 

resistive switching medium. Two metal gates, namely the resistive-switch gate and the 

control gate, have to be processed in one transistor device.  

Different from these proposed structures, our device structure is expected to directly 

control the carrier concentration in a gradual and analog fashion with only one gate [3]. 

The device is based on the two-dimensional electron gas (2DEG) formed at the complex 

oxide heterojunction between the lanthanum aluminate (LaAlO3, or LAO) and strontium 
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titanate (SrTiO3, or STO) interface. Figure 5.1 shows the band diagram of this oxide 

heterostructure. 

Over the last decade, the LaAlO3/SrTiO3 interface has attracted intensive attention due 

to its exotic physical properties. Even though LaAlO3 thin film and SrTiO3 substrate are 

individually insulators, a 2DEG was surprisingly discovered at their interface [4]. The 

LaAlO3/SrTiO3 heterojunction exhibits many other interesting phenomena that do not 

normally co-exist in bulk materials, including superconductivity [5], magnetism [6], [7], 

enhanced Rashba spin-orbital coupling [8] and persistent photoconductivity [9], [10]. 

These interesting properties can potentially lead to not only important advances in the 

condense matters theory, but also promising device applications.  

 

Figure 5.1. Band diagram of the LaAlO3/SrTiO3 heterostructure. Reproduced from [11]. 
 

 
The microscopic origin to these phenomena still remains highly debated. In particular, 

the origin of 2DEG is still not clear. As shown in Figure 5.2, intrinsic electronic 

reconstruction (“polar catastrophe”) [12], [13], oxygen vacancy [14]–[16] and cation 

mixing [17]–[19] have been suggested as the likely mechanisms, although none of these 

theories could perfectly agree with the experimental observations. More recently, Yu et al. 
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proposed a polarity-induced defect mechanism, combining the polar discontinuity with 

surface oxygen vacancy and interfacial anti-site cation mixing [20]. There seems to be a 

consensus that these different mechanisms may not be mutually exclusive, and instead 

jointly contribute to the formation of 2DEG at the LaAlO3/SrTiO3 heterojunction.  

 

Figure 5.2. Possible mechanisms for 2DEG formation in oxide heterostructure. (a) the 

LaAlO3/SrTiO3 interface. (b) Oxygen vacancy donate charge to 2DEG. (c) Cation 

intermixing (La/Sr) dopes the interface. (d) Built-in electric field due to charge transfer. 

Reproduced from [21] 

 

The electric field effect and the memory effect of the LaAlO3/SrTiO3 interface 

conductivity have been intensively investigated [12], [15], [22]–[26]. In most studies, the 

interface conductivity was modulated by either a back-gate with a very high gate voltage, 

or a C-AFM tip. Both methods were not applicable to the practical device applications. In 

the following sections, we demonstrate a reconfigurable top-gated transistor based on the 

LaAlO3/SrTiO3 2DEG system. Sample preparation and device fabrication processes will 

be introduced in Section 5.2. Basic transistor operations and repeatable switching behaviors 
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of the proposed device structure are carefully characterized by electrical measurement and 

discussed in Section 5.3. The microscopic origins of interface conductance switching are 

investigated and modeled in Section 5.4.  

 

5.2. Sample Preparation and Device Fabrication 

The LaAlO3 films used in this study were epitaxially deposited on TiO2-terminated 

(001) SrTiO3 substrates by pulsed laser deposition using a 248nm KrF excimer (Coherent 

Inc.). The samples were provided to us by our collaborators at Case Western Reserve 

University (Prof. Alp Sehirlioglu). Before growth, the substrates were etched with a 

chemical solution of ammonium fluoride and hydrofluoric acid at pH=6 to obtain a TiO2-

terminated surface and then pre-annealed at 950 °C for one hour in an oxygen-rich 

atmosphere. The film growth was conducted in an oxygen pressure of 10-4 torr at 750 °C, 

at a repetition rate of 2Hz. Two samples with LaAlO3 thickness of 5 and 15 u.c. were 

prepared. 

 

Figure 5.3. Schematic view of the device structure: the left inset illustrates the cross-

section along the channel direction; the right inset is the microscopic image of a device 

(W/L=15µm/15µm). 
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After receiving the LAO/STO samples, the transistor device was processed at UM in 

a gate-last manner. First, photolithography was performed to define the conductive channel 

of the transistor device. Using photoresist (SPR220-3.0) as hard mask, a reactive ion 

etching process with argon and fluoride chemistry (Ar/SF6/C4F8, Lam 9400) was carried 

out to etch the LaAlO3 film outside the channel region and isolate different transistor 

devices. Ti/Au (100/1500Å) electrodes were then patterned and deposited by e-beam 

evaporation, forming the source/drain Ohmic contacts. 10nm Al2O3 was deposited by 

atomic layer deposition at 150 °C as the gate dielectric, using the standard tri-methyl-

aluminum (TMA) and water precursors in an Oxford OpAL system. Cr top gate (1000Å) 

and Au passivation (1000Å) were processed by DC sputtering (Kurt. J. Lesker Lab-18) and 

patterned using photolithography and lift processes. Figure 5.3 shows the schematic and 

the optic image of a completed device. 

 

5.3. Electrical Measurement 

The current-voltage (I-V) characteristics of device were measured using a Keithley 

4200 semiconductor analyzer. Capacitance-voltage tests were performed using an Andeen-

Hagerling 2700A capacitance bridge and a Tektronix AFG 3101 arbitrary signal generator. 

All the electrical measurement was conducted in dark and under vacuum. 

5.3.1. Virgin State and Forming Process 

As shown in Figure 5.4, the as-fabricated device with 5 u.c. LaAlO3 (W/L=30μm/15μm) 

exhibits an n-type FET behavior; while the drain current does not saturate at room 

temperature until the gate voltage is more negative than -3V. At -3V Vgs, the saturation 
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current density is calculated to be 8.3μA/μm at 5V Vd,, comparable to the reported works 

[23], [26].  

We note that at room temperature the drain current does not deplete even at -5V Vg. 

When increasing the gate voltage sweep range to -10V, it was found that the device showed 

a very distinct transport behavior during the negative sweep (0V to -10V) vs. during the 

back-sweep (-10V to 0V). During the negative gate sweep, the drain current decreases 

sharply at Vg~-6V, accompanied by a significant increase in gate (leakage) current. The 

gate current reaches a peak value at Vg= -7.8V when the drain current fully turns off. 

During the subsequent back-sweep, the transistor device shows a dramatically reduced 

drain current and a large hysteresis can be observed. 

 

Figure 5.4. Output curves of a virgin LaAlO3/SrTiO3 transistor (W/L=30μm/15μm) 

 

After this one-time negative DC sweep, termed as the “forming process”, the device 

current will increase slowly and eventually stabilize, typically after a few hours (depending 
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on the forming voltage and temperature). However, the drain current does not recover to 

its (high value) virgin state even after applying positive gate sweeps again, suggesting an 

irreversible process occurring within the oxide stacks during the forming process.  

 

Figure 5.5. Drain current (red) and gate current (blue) measured during the forming 

process of the LaAlO3/SrTiO3 transistor 

 

 

Figure 5.6. Stabilized output curves of the transistor measured after the forming process. 

Compared to Figure 5.4, the current was ~5 times lower.  

 

 

Based on the transconductance extracted from the transistor transfer curves and the 

directly measured gate capacitance, the mobility and carrier concentration of 2DEG system 
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at the equilibrium state are obtained as the functions of temperature in Figure 5.7, 

consistent with the Hall measurement results in past studies [23], [24]. 

      

Figure 5.7. Extracted 2DEG (a) carrier concentration and (b) mobility at different 

temperatures. 

 

5.3.2. Reconfigurable Modulation  

The device after the forming process shows stable transistor behavior with a reduced 

(negative) threshold voltage compared with the virgin state. Additionally, the threshold 

voltage and the transistor behavior can be further tuned between an ON state (with overall 
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a more negative threshold voltage) and an OFF state (with overall a less negative threshold 

voltage). Starting from an equilibrium state after the device has stabilized, this all-oxide 

transistor can be reconfigured to the ON (OFF) state with high (low) channel conductivity 

by applying an external positive (negative) bias stress. Figure 5.8 (a) and (b) show the 

device output characteristics (Ids-Vds) of the ON (OFF) state, obtained after 300 seconds of 

5V (-5V) stress programming (erasing), respectively. The current read at 0V Vg exhibits a 

5-fold modulation between the ON and OFF state (45.6μA vs. 9.7μA @5V Vds). 

Figure 5.9 illustrates the device transfer characteristics (Ids-Vgs) in the ON and OFF 

states, showing a clearly shift of the threshold voltage and transconductance. The current 

window (Ids(ON)/Ids(OFF)) between the two states is also plotted, and over two orders of 

magnitude Ids(ON)/Ids(OFF) can be obtained at a negative Vgs read voltage (e.g. at Vgs = 4V). 

After the programming and erasing bias stress, the threshold voltage of the transistor Vth 

shifts between the ON state (-5V) and the OFF state (-2.7V). 

 

Figure 5.8. Output curves of (a) the ON state programmed by 300sec 5V stress; and (b) 

the OFF state erased by 300sec -5V stress. (W/L=30μm/25μm) 



90 
 

  

Figure 5.9. Transfer curves of the ON and OFF states in the LaAlO3/SrTiO3 transistor. 

The dash line shows the current ratio. 

 

 

Figure 5.10. Capacitance-voltage (C-V) curve for the gate capacitance. The drain and the 

source were grounded during the measurement. 30mVac (rms) amplitude and a DC sweep 

rate of 100mV/sec are used.  

 

The capacitance-voltage curve of the LAO/STO device is shown in Figure 5.10. A 

constant capacitance (4.3pF) was measured above Vgs=-4V; while the capacitance 
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significantly reduces at Vgs=-5.5V, indicating the depletion of the 2DEG channel. The gate 

capacitance, directly measured from the C-V measurement, was further used to calculate 

the carrier mobility/concentration in the 2DEG. Interestingly, during gate voltage sweep 

(0V to -8V back to 0V), the C-V curve shows a counter-clockwise hysteresis loop with 

~2V shift in Vth, consistently with the observed Vth in transport measurements (Figure 

5.8/5.9) of the same device. We note the modulation of the threshold voltage is non-volatile. 

As shown in Figure 5.11, the device stays in the ON (OFF) state after the program (erase) 

stress has been removed. Despite a gradual decay, the ON and OFF states maintain a large 

read-out window (~100%) over at least 104
 seconds.   

 

Figure 5.11. Data retention of the ON state and the OFF state. 

 

From a classic transistor model [27], the shift of Vth can be explained as the movement 

of mobile charges across the oxide layers driven by the electric field during the 

programming/erasing stresses. By assuming a parallel plate model and using parameters as 

ε(LaAlO3)=25 [28], ε(Al2O3)=9 [29], the areal charge density to cause such shift in 

threshold voltage is approximately 1013 cm-2, if all the charges are assumed to move back 
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and forth between the LAO/STO interface and the Al2O3 surface. We note this estimated 

amount of mobile charge is of the same order of magnitude as the estimated 2DEG carrier 

concentration.  

 

5.3.3. Cycling Operations 

Program/erase (P/E) cycling tests were also conducted to verify the device operation. 

Immediately after applying positive/negative program/erase pulse, the transfer curve was 

measured to check the device status. As shown in Figure 5.12, the device exhibited 

repeatable ON/OFF states during each cycle, including the drain current and the threshold 

voltage. The targeted conduction states and the Vth shift can be accurately controlled by 

adjusting the width/amplitude of P/E pulses on the fly, which potentially enables the 

“memistor” functionality for neuromorphic circuit applications[3], [30]. 

 

Figure 5.12. (a) Drain current and (b) threshold voltage measured over 50 P/E cycles. 

60sec 5V positive pulse was used for each programming, and 75sec -5V negative pulse 

was used to erase the LaAlO3/SrTiO3 device. The 50 cycles showed repeatable ON/OFF 

states. 
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5.3.4. Switching Dynamics: Stress Test 

To shed light on the observed switching behavior, stress tests that enable in-situ 

monitoring of the time-dependent, cumulative effects of the applied electric field on the 

2DEG conductivity are carried out. Figure 5.13a shows the normalized change of the drain 

current (measured at ±5V Vg) during a 5V (-5V) Vg stress over a 300 second period, starting 

from the equilibrium state. During the positive Vg stress, 26% increase in Ids is observed at 

280K, whereas ~80% Ids reduction is observed for negative Vg. Figure 5.13b shows the 

temperature dependence of the current modulation during a positive gate bias. It is evident 

that the current (i.e. conductance) increase is faster at higher temperatures. For instance, 

after 300 second stress, Ids increases by 44%, 55% and 84% at 295K, 310K and 325K 

respectively. These results indicate that the device switching process is thermally assisted.  

 

Figure 5.13. (a) Normalized modulation of drain current with 5V/-5V stress at 280K (b) 

temperature dependence of current modulation with 5V stress. 

 

To perform semi-quantitative analysis on the switching dynamics, we extract the stress 

time needed to achieve a specific current modulation (e.g. 20% increase) and plot the 
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required stress time vs. temperature and the stress voltage. As shown in Figure 5.14a, the 

relation between the required stress time tw and the absolute temperature T can be fitted 

with an Arrhenius plot with ln(tw) proportional to 1/T. Similarly, the required stress time tw 

is found to reduce exponentially with the stress voltage (Figure 5.14b). As a result, the 

stress time required to reach a certain conductivity state can be empirically described as 

𝑡𝑤 = 𝑡0 ∙ 𝑒𝑥𝑝 (
𝐸𝐴−𝑙∙𝐸

𝑘𝐵𝑇
)      (1) 

where EA is an effective activation energy, kB is the Boltzmann constant, E is the electric 

field. t0 is the inverse of the attempt frequency, and l represents a characteristic length. Eq. 

(1) includes effects from the electric field (E) as well as thermal effects represented by the 

local temperature (T). From the experimental data in Figure 5.14, EA and l were extracted 

to be 0.67eV and 3Å, respectively.   

 

Figure 5.14. (a) Arrhenius plot of the required stress time as a function of temperature 

under 5V stress. (b) Required stress time as a function of the applied positive bias at a 

fixed temperature (295K). In (a) and (b), results of switching time to achieve 20% and 

25% current increase are presented. 
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5.3.5. Switching Dynamics: Pulse Test 

The data in Figure 5.13 and Figure 5.14 represent the switching dynamics of the 

LAO/STO reconfigurable device on a relatively long time scale (hundreds of seconds). To 

reveal transient behavior of the device that may provide better understand the microscopic 

origin of the conductance switching, a train of short pulses (<=100ms) were applied on the 

gate electrode and the drain current response was monitored. In Figure 5.15, the normalized 

change of Ids (ΔIds/Ids(0), Ids(0) is the initial drain current measured before any pulse is applied) 

is plotted after each pulse in the pulse train, at three different temperatures. With a fixed 

drain voltage Vds of 100mV, the pulse train includes 100 consecutive positive pulses (4V, 

100ms, Pulse# 1-100), followed by 100 consecutive negative pulses (-4V, 100ms, Pulse# 

101-200). Each pulse is followed by a small read pulse (0.1V, 50µs) which allows reading 

the drain current without changing the device state. At 280K, Ids increases gradually after 

the application of each positive pulse and decreases gradually after the application of each 

negative pulse, consistent with the observations shown in Figure 5.13. When the 

temperature is cooled down to 220K, however, the response of the current change becomes 

much smaller. Specifically, the first positive pulse leads to a small reduction in the drain 

current, while the subsequent positive pulses gradually increase the drain current. The 

opposite trend is observed for the negative pulses. Interestingly, reducing the temperature 

to 160K leads to a completely opposite behavior compared to the behavior at high 

temperatures (e.g. 280K), where a positive (negative) pulse leads to a decrease (increase) 

of Ids instead. The reversal of the Ids modulation direction shown in Figure 5.15 suggests 

that competing mechanisms may co-exist and become dominate at different temperature 

regimes.   
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Figure 5.15. Drain current Ids change measured after repeated positive (4V, #1-100) and 

negative (-4V, #101-200) gate pulses at different temperatures. The width of 4V/-4V 

pulses is 100ms. Ids is read with fixed Vgs (100mV) and Vds (100mV). 

 

The occurrence of competing mechanisms can be better illustrated in Figure 5.16, 

where the accumulated change of Ids over all 100 positive pulses is plotted as a function of 

temperature, for different pulse voltage amplitudes. This figure clearly shows a transition 

from a reduction of conductance (negative changes in Ids) under positive gate voltage stress 

at low temperatures to an enhancement of conductance (positive change in Ids) under the 

same stress conditions at high temperatures. The same trend is observed for stresses with 

different pulse amplitudes, with a higher amplitude leading to a larger modulation, both for 

conductance reduction at low temperatures and conductance enhancement at high 

temperatures. At the transition temperature regime (220~240K) very weak modulation was 

observed from the pulses, suggesting that effects from the different mechanisms are 

mutually cancelled.   
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Figure 5.16. The accumulated Ids change measured after 100 positive pulses (100ms) as a 

function of temperature and pulse amplitude. Fixed Vgs (100mV) and Vds (100mV) are 

used for reading Ids. 

 

The influence of the pulse width on the conductance modulation near the transition 

temperature (220K) was investigated in detail (Figure 5.17). With different pulse widths 

(1/10/100ms), the first positive pulse always causes a reduced Ids. However, a remarkable 

distinction can be found during the subsequent positive pulses. When short pulses of 1ms 

are applied, Ids keeps decreasing and eventually becomes saturated. For longer pulses of 

10ms, the LAO/STO device generally maintains the same drain current. At even longer 

pulses of 100ms, a rebound in Ids is observed. The exactly reverse trend can be observed in 

Figure 5.17 when negative pulses (#101-200) are applied. Based on these findings, the 

conductance modulation observed in these reconfigurable devices can again be attributed 

to two competing processes. Taking positive pulses as an example, one of the processes is 

comparatively fast and dominates at low temperatures. It leads to a reduction of the 
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interface 2DEG conductance; while the other process is slow and dominants at high 

temperatures, and leads to an enhancement of the interface 2DEG conductance.  

 

Figure 5.17.  Pulse-width dependency of Ids change at 220K. The amplitude of 

positive/negative pulse is 4V/-4V. Ids is read by applying fixed Vgs (100mV) and Vds 

(100mV). 

 

5.4. Microscopic Origins and Simulation Study 

Field-induced conductance switching behaviors have been reported in the LAO/STO 

system with a back-gate[12], [25] or a C-AFM tip[15], [31], [32]. In the previous studies, 

the memory effect on the interface conductivity was generally believed to originate from 

AFM-tip-induced water-ion injection[15], [31]–[33], field driven migration of oxygen 

vacancies (VOs)[34] or the presence of charge trapping states in the STO layer[35], [36]. 

Based on these earlier findings and the observed transition of the conductance modulation 

effects, the current modulation observed in our LAO/STO device may be explained by the 

competing effects of VO migration and electron trapping in the LAO layer.  
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Figure 5.18. Band diagrams of oxide heterointerfaces in the proposed device under 

positive (a) and negative Vg (b). The band effect of positively charged VOs are included. 

 

As pointed out by Yu et al.[20], the built-in polar field across the LAO film triggers 

the spontaneous formation of VOs in LAO (especially at the LAO surface). The electrons 

originated from the (positively) ionized VO donors contribute to the formation of the 2DEG 

at the LAO/STO interface and compensate the polarization field, although part of the 

electrons may also be trapped by acceptor defects (including anti-site cations like Sr-on-

La, and cation vacancies like La vacancies and Al vacancies) around the interface. Within 

this picture, we speculate that the external top gate bias applied on the LAO/STO device 

can lead to both ionic and electronic migration processes in the oxide heterostructure. Here 

the majority of the gate voltage is assumed to drop in the LAO film and in the Al2O3 

dielectric layer, based on simple electrostatic analysis. On one side, the applied gate voltage 

can modify the spatial distribution of VOs in these two oxide layers. The re-distribution of 
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the positively charged VOs between the LAO layer and the Al2O3 layer will lead to changes 

in the device threshold voltage and subsequently the surface potential of the STO layer, 

resulting in modulated 2DEG conductivity. In this case, a positive gate voltage will push 

the VOs towards the LAO/STO interface and make the threshold voltage more negative, i.e. 

enhanced conductance in this n-type transistor device. On the other side, the electric field 

can shift the fermi level and change the occupation state of the acceptor defects in the LAO 

film. When the electrons are captured (released) by these acceptors, the free carrier 

concentration of 2DEG will decrease (increase). In this case, a positive gate voltage will 

lead to the electron trapping in deep traps near the 2DEG and cause a decrease of the 2DEG 

conductance. Figure 5.18 schematically shows the two competing processes: electron 

trapping and VO migration that lead to opposite changes in the threshold voltage and 2DEG 

conductivity of the device. 

This proposed microscopic picture can consistently explain our experimental 

observations. For a virgin device, a large amount of oxygen vacancies exist around the 

LAO/Al2O3 interface and give rise to the initial high conductivity[37]. After the one-time 

forming process with high negative gate bias, part of the VOs are extracted into the Al2O3 

dielectric. At a positive bias, the VO migration from the gate electrode to LAO induces a 

negative shift of Vth and the ON state with high conductivity, and vice versa (Figure 5.8). 

Considering the 2DEG carrier concentration (>1013 cm-2, Figure 5.7), it is reasonable to 

ascribe the mobile charge responsible for ∆Vth (1013 cm-2) to the oxygen vacancies after 

considering possible acceptor trapping. The VO migration can be also supported indirectly 

by the switching dynamics of the device. The temperature (field) dependence of switching 

time shown in Figure 5.14 is very similar to the case of ionic transport, where increased 
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temperature helps ions overcome the hopping barrier while the external electric field 

lowers the hopping barrier and exponentially accelerates the ion migration process. Indeed, 

our extracted activation energy EA and the characteristic length l are comparable to the 

reported VO activation energy in amorphous Al2O3 (0.85eV) [39] and the lattice parameter 

of α-Al2O3 (4.875Å)[40].  

Compared to the slow ionic migration of VO, the electron trapping process is much 

faster. Consequently, at low temperatures (<220K), the electron trapping is more dominant, 

since VOs lack necessary energy to overcome the hopping barrier for ionic movement. 

During electron trapping, the deep level traps become filled (unfilled) and causes Ids 

reduction (gain) when positive (negative) pulses are applied. Once the VO migration is 

activated at higher temperature (>240K), the electron trapping process is masked by the 

stronger ionic effect.  

The effect of Vo migration on the transistor behavior is further modeled by numerical 

simulation. This simulation specifically focuses on the slow evolution of VO re-distribution 

at room temperature (280K). The oxygen vacancy distributions of ON and OFF states are 

schematically illustrated in Figure 5.19 (a) and (b). The Poisson’s equation and the ion 

drift-diffusion models are used to describe the charge redistribution and the VO migration 

processes in a 1D mesh (Figure 5.19c). Figure 5.20 shows the entire simulation flow. 
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Figure 5.19. Schematic illustrations of (a) the ON state and (b) the OFF state in the 

LaAlO3/SrTiO3 transistor. (c) 1D mesh setup for the numerical simulation across the gate 

direction.  
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Figure 5.20. Workflow of the MATLAB based simulations. 

 

 

 In this model, prior to the application of any program/erase stress, an initialization step 

including forming and stabilization is performed to redistribute the oxygen vacancies 

originally located at the LAO surface. Upon a negative stress (-5V), the oxygen vacancies 

are attracted closer to the Al2O3 surface and reduces the electron concentration in the 

LAO/STO interface (Figure 5.21a). Once the negative erase bias is released, the oxygen 

vacancies gradually move away from the gate electrode due to spontaneous diffusion, 
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leading to a gradual recovery of the electron concentration (Figure 5.21b). With the 

application of a positive stress, oxygen vacancies are driven towards the LAO layer (Figure 

5.21c) and leading to an enhancement of the 2DEG density and device conductance. A 

slow decay in ne is also observed when the stress bias is removed and the oxygen vacancies 

revert to the equilibrium distribution (Figure 5.21d).  

 

Figure 5.21. Simulated density of oxygen vacancies nVo (blue) in LAO/Al2O3 and 

electrons ne (red) in STO at different moments: (a) after 300seconds’ -5V stress; (b) 

10000 seconds later after removing -5V stress; (c) after 300seconds’ 5V stress; (b) 10000 

seconds later after removing -5V stress. 

 
 

Suppose that the 2DEG mobility remains roughly constant during the VO migration, 

the current modulation observed of our LAO/STO device is proportional to the change of 

carrier density ne. In this case, the normalized change of device current is simulated, shown 
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in Figure 5.22, along with the experimental observations. Good match with experiments 

can be observed (Figure 5.22). 

 

Figure 5.22. Measured (solid) and simulated (dash) Ids change as a function of stress time 

at 280K. 
 

5.5. Conclusions 

In this study, we demonstrate a reconfigurable top-gate transistor device based on the 

LAO/STO heterojunction. Through electrical measurements and numerical simulations, 

the field induced switching of device conductivity is found to stem from the competing 

effects of ionic migration and electron trapping. Looking into the future, we expect that the 

proposed device can be continuously optimized in terms of performance and scalability 

and implemented for novel computing systems. 
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Chapter 6  

In-Memory Computing Based on Crossbar RRAM Arrays 

 

6.1. Introduction 

The conventional von Neumann architecture is based on separate computing units and 

memory units[1]. For the past few decades, this design principle has remained effective in 

maximizing and balancing the performance of computation and storage. On one hand, the 

processor performance has dramatically benefited from the transistor scaling driven by the 

Moore’s Law. On the other hand, the sophisticated design of memory hierarchy (e.g. cache 

system) efficiently hides the lag from read/write operations and alleviates the “memory 

wall” issues[2]. However, as the CMOS technology marches into the 1x nm era, the free 

ride to exploit computing power from smaller devices is ending. In the meantime, with the 

exploding data volume as a result of “big data” and Internet of Things, today’s computer 

systems severely suffer from the von Neumann bottleneck where significant energy penalty 

and wire delay are caused by the frequent data flow and the limited bandwidth between 

processors and memory[3]. To meet the requirement of data-centric applications, the 

concepts of near-data and in-memory computing have been proposed[4]–[8]. Instead of 

moving data towards computing units and writing back, distributing the computation closer 

to memory can reduce the energy and latency from unnecessary data movement. 

The question then arises how the computation can be implemented on the storage side. 

Some prior works proposed straightforward solutions by incorporating logic components 
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in the memory dies[6]–[9]. However, the processor performance may be sacrificed by the 

relatively slow memory technology, and the available memory space allocated to each 

processor is limited by the chip area. With the rapid progress of through silicon via (TSV) 

technology[10], an improved version of in-memory computing was demonstrated by 

vertically stacking DRAM layers on top of logic layer[11]. 

 

 

Figure 6.1. (a) The von Neumann Bottleneck results from the frequent data flow across 

the entire memory hierarchy. (b) In-memory/near-data processing may reduce the data 

movement and alleviate the related issues concerning energy, bandwidth and delay. 

 

Compared to DRAM, RRAM offers unique advantages, including non-volatility, low 

power consumption, high density and convenient 3D stacking. More importantly, RRAM 

incorporates the capabilities of both computation and storage. As an emerging two-terminal 

device, RRAM is inherently compatible to the crossbar configuration which potentially 

allows high parallelism. Several recent works have realized the logic functionality using 

RRAM devices on the individual cell level[12], [13]; while system-level analysis and 

demonstration are still lacking[14]. Here we expect to explore the feasibility of in-memory 

computing based on RRAM crossbar arrays.  

In this chapter, the basic scheme of proposed computing architecture and its operation 
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protocol will be firstly discussed in Section 6.2. To verify the architecture concept, a 

prototype circuit is built to demonstrate NOR logic and a parallel 1-bit fill adder (FA) with 

RRAM crossbar arrays by experiment and simulation (Section 6.3). A 4-bit multiplier 

(MULT) is further obtained by preprogramming 2-bit MULT and 2-bit FA. Section 6.4 

briefly discusses the performance of this novel architecture. 

 

6.2. Computing Architecture and Design Principle 

The proposed computing architecture is schematically illustrated in Figure 6.2. This 

system consists of RRAM crossbar arrays, microcontroller and related peripheral circuits 

(e.g. buffers and decoders). The essential point of this design is to parse the complex 

functions into fundamental operations where all input values will be stored in the systems 

with the output values computed and recorded simultaneously. As a result, for any previous 

input, the result of a certain function can be directly read out without conducting new 

computations.  

 

Figure 6.2. Schematic block diagram of the proposed architecture. Locally stored 

logic and parallel programming and read-out are developed for efficient computation. 

Reproduced from [16]. 
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To be specific, the RRAM crossbar arrays in this system record all the input and keep 

updating while new entries are received. Managed by the controller, the results of the target 

function can be generated by pulse operations and restored within the RRAM crossbar 

array on the fly. For an input-output pair that has been already stored in the system, the 

input signals will be fed from I/O into the read-in buffer, and the corresponding output can 

be found from the array in a parallel fashion and fed to the read-out buffer. If the input-

output pair has yet been created, the new function (or input combination) encountered 

needs to be written into the array. In this case, a series of programming pulses will be 

generated by the controller to modify the crossbar array content which represents the 

intermediate and final results of target function. With this process repeated, each stored 

input-output pair relation can be reused for future computing operations.  

 
Figure 6.3. Schematic of the wired-NOR logic implementation using the half Vdd 

scheme. Reproduced from [16]. 

 

During the array programing, the target function is decomposed into basic NOR logic 

since it can readily adapt to the RRAM crossbar array and support arbitrary Boolean logic 
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elements. As shown in Figure 6.3, the basic NOR logic can be programmed in the crossbar 

by applying Vdd and Vdd/2 on the word-lines (WLs) of output and input cells, respectively. 

Under such bias scheme, the output cells will be programmed into either HRS (Logic 0) or 

LRS (Logic 1) depending on the potential of bit-lines (BLs), while the resistance states of 

input cells remain unchanged. 

 

Figure 6.4. Proposed procedures for parallel search of input pattern and direct read-out of 

function result. Only one BL whose input cell states match the search pattern will 

produce a current smaller than the predefined threshold current I0. Reproduced from [16]. 
 

The direct parallel search for a programed logic element (an input-output entry for the 

given function, corresponding to one BL in the crossbar array) can be demonstrated at the 

constant time cost without involving additional decoders. As illustrated in Figure 6.4, both 

the input combination and its complement are applied to the corresponding WLs, and the 

currents through all the BLs will be read by the sense amplifiers (SAs) for the search. Only 

the BL whose input cell states match the searched values will produce a current 

significantly smaller than the predefined threshold current I0 (decided by the array size and 
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the LRS/HRS of RRAM). Once this low current is found, the searched input/output 

combination can be located. In the next step, the result of desired function can be directly 

read out from the identified BL by applying a Vread to the output WL.  

Generally, by combining stored logic (analogous to local look-up tables) and direct 

parallel read-out with the non-volatile capabilities of RRAM arrays, the separation between 

computation and storage is eliminated in the proposed in-memory computing architecture. 

The true co-located memory and logic in our systems will avoid the von Neumann 

bottleneck and offer fast operation speed, low power and ultra-high function density. 

 

6.3. Proof-of-Concept Demonstration 

6.3.1. Device Characterization and Array Fabrication 

 

Figure 6.5. (a) Optical microscopic image of the as-fabricated RRAM array, (b) Structure 

schematic of single device and crossbar array. Reproduced from [16]. 

 

To reduce the system power consumption and allow as large arrays as possible, the 

Cu/Al2O3/Poly-Si based CBRAMs discussed in Chapter 4 with low operation current 

(<100nA), high on/off ratio (>103) are used to constitute the crossbar arrays for the in-

memory computing architecture (Figure 6.5-6.6). The detailed fabrication flow is discussed 

in Section 4.2. The experimental I-V curves can be well fitted using a compact dynamic 
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SPICE model [15] (Fig. 6.6a), which enables realistic simulations of large-scale computing 

system. For reliable array application, the device-to-device uniformity is also verified 

(Figure 6.6b). 

 

Figure 6.6. (a) Measured and simulated device I-V. The RRAMs exhibit very low (< 

100nA) programming current. (b) HRS and LRS resistance distribution measured from 

20 randomly chosen devices. Each device is DC cycled for 5 times. Excellent uniformity 

and high on/off are achieved. Reproduced from [16]. 
 

6.3.2. Prototype Circuit Setup 

A prototype circuit is setup as follows to verify the in-memory computing functionality. 

After the microfabrication, the RRAM crossbar array is wire-bonded onto the chip carrier 

(Spectrum LCC 8423) and tested on a special-purpose PCB board (Figure 6.7). Four 

digital-to-analog converters (DACs) on board provide 0-5V voltages independently. 16 

matrix switches are incorporated to support up to 32x32 routing. The on-board current is 

collected using a 12-bit analog-to-digital converters (ADCs). The entire system is 

controlled with a Spartan 6 XC6SLX9 FPGA. High-level programming tools based on 

Python and C++ are implemented for board operation. The circuit block diagram is 

illustrated as Figure 6.8.  
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Figure 6.7. Circuit demonstration of the in-memory computing based on RRAM 

array. Reproduced from [16]. 

 

 

Figure 6.8. Block diagram of the designed PCB and its working setup. 

 

6.3.3. Implementation of NOR Logic and 1-bit Full Adder 

As the most fundamental operation in the computing architecture, NOR is first realized 

experimentally in three neighboring cells in the crossbar array (Figure 6.9), corresponding 
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to the input cells (A, B) and the output cell (C) in Figure 6.3. 4V Vdd is applied on the WL 

of C; while ½ Vdd (2V) is applied on the WLs of A and B. The output value of cell C after 

program is then determined by the resistance states of the input cells A B, following the 

NOR logic C = 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ . 

 

Figure 6.9. Measured current response of NOR logic while applying ½Vdd on Inputs 

A&B and Vdd on Output C. The test method is based on the approach described in Figure 

6.3. Reproduced from [16]. 

 

Further, a 1-bit full adder is demonstrated as a proof of principle of the proposed 

computing architecture. Figure 6.10 shows the simulated programing process of the 1-bit 

FA in an 8x16 crossbar array. The FA function is parsed into NOR operations (Figure 6.10a) 

and stored in the array using the pulse trains shown in Figure 6.10b. The cell values of 

RRAM array after the programming step are shown in Figure 6.10c. After writing the 

function, the desired output can be directly read out for any given input during the 

computing stage.  
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Figure 6.10. Proposed programing process of a 1-bit full adder. (a) Decomposed 

NOR logics for the 1-bit FA. (b) Programming pulses on the WLs. (c) Resistance 

mapping after programming. Reproduced from [16]. 
 

Figure 6.11 shows the simulated current on BL/WLs during the read operation using 

the proposed data identification protocol. During this stage, an identification code designed 

for each input value and its complement is first applied to the input WLs (WL1~6). Taking 

input ABC=101 for instance, the identification code 020202 will be applied on the first 6 

WLs. Here “2” stands for a read voltage of 2V and “0” means grounded. On one hand, if 

the identification code matches the input pattern (and its complement) stored in a BL, the 

current in this BL will be low since read pulses will point to devices at HRS and all devices 

at LRS are grounded. A low current Imatch=n*Vread/RHRS is obtained for the matching BL, 

where n represents the number of HRS leakage paths biased at Vread. On the other hand, 
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any other BLs will output much higher current, since at least one input cell will mismatch 

the identification code and produce a high through-current of Inon-match=Vread/RLRS. As a 

result, the matching BL can be directly identified by a simple comparator without 

additional address decoding schemes. As shown in Figure 6.11, BLs 1, 3 4, 8 are correctly 

identified during four searches (input values 111, 101, 100, 000). The target output values 

of Ci and S are obtained by direct read-out as 10, 01, 11 and 00 respectively. 

 

 

Figure 6.11. Simulated read-out process of the 1-bit FA. The function results can be 

correctly located (middle panel, highlighted by the green windows) and read out (bottom 

panel). Reproduced from [16]. 
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Figure 6.12. (a) Measured resistance mapping after writing the functions into the 

RRAM array for 4 input cases. (b) Measured CAM current from the BLs during data 

identification process (left) and the output results directly read from the WLs (right). 

Reproduced from [16]. 
 

Parallel function write and direct output read are then experimentally performed on the 

fabricated RRAM crossbar array. The resistance mapping in Figure 6.12a confirms the 

successful write of desired logics. Figure 6.12b verifies the response current correctly read 

from the BL/WLs for identifying input and reading output. 

 

6.3.4. Implementation of 4-bit Multiplier 

 

Figure 6.13. Building a 4-bit MULT from a 2-bit MULT and a 2-bit FA. Reproduced 

from [16]. 
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A 4-bit multiplier (MULT) is further developed to show that multiple programed arrays 

with different stored logic functions can be constructed and pipelined to complete more 

complex tasks. Based on the same working protocol, the 4-bit MULT combines a 2-bit 

MULT with a 2-bit FA (Figure 6.13). The 2-bit MULT and the 2-bit FA here are pre-

programmed using the same parallelism NOR logic discussed earlier. Their resistance 

mappings are illustrated in Figure 6.14.  

 
Figure 6.14. Resistance mappings of the pre-programmed 2-bit MULT (a) and 2-bit FA 

(b). Reproduced from [16]. 

 

The process of solving 1011x1101 is simulated as an example. First, the calculation 

results of 11x01 11x11 10x01 10x11 are obtained by reading out results from the 2-bit 

MULT. These products are then shifted and serially added by the 2-bit FA, eventually 
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leading to the results of 4-bit multiplication, as shown in Figure 6.15. Similarly, complex 

functions can be parsed into several sub-functions stored in different RRAM arrays. 

However, the required array size depends on the complexity of each sub-function. 

Therefore, proper tradeoff needs to be handled for speed (operation steps) and area cost 

(array size) in this crossbar array based computing architecture while complex functions 

are involved.    

 

Figure 6.15. Simulated read-out process of the 4-bit MULT: (a) Current response during 

the read of the 2-bit multiplication. (b) Current response during the read of the 2-bit 

summation. Reproduced from [16]. 
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6.4. Performance Analysis 

Critical circuit performance benchmarks such as power consumption and speed are 

analyzed through numerical simulations based on the dynamic model with realistic device 

parameters. Figure 6.16 shows the average energy cost (per operation) during the 

programing and read-out stages. The identification method employed in this novel 

architecture significantly reduces the power and a low energy consumption of 3.67nJ is 

obtained for completing a 4-bit multiplication operation. Since many devices will be 

programed or read at the same time, the maximum current through a BL/WL in the worst 

case scales with the array size. Therefore, low operation current of RRAM device is 

particularly important for the feasible circuit realization. Figure 6.17 highlights the 

essential role of RRAM Ron/Roff ratio in this in-memory computing scheme. Neglecting the 

parasitic resistance from electrodes, the maximum array size that ensures reliable 

computing operations is found to be proportional to the Ron/Roff ratio. As a result, RRAM 

cells that offer low programming/read current, high Ron/Roff ratio and fast operation speed 

are strongly desired for the proposed computing architecture. 

 

Figure 6.16. Average energy cost of the proposed FA/MULT implementation. 

Reproduced from [16]. 
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Figure 6.17. Read-out current ratio (“1” vs “0”) as a function of Ron/Roff ratio and array 

size. Reproduced from [16]. 
 

6.5. Conclusion 

A novel RRAM crossbar-based computing architecture is proposed and demonstrated 

for low current, highly parallel and reconfigurable computing. Key operations and design 

methods are introduced for prototype circuit realization. 1-bit FA and 4-bit MULT are 

implemented by experiment and simulation to verify the proposed architecture. 
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Chapter 7 

Summary and Future Work 

 

7.1. Simulation Study of Selector Element 

In Chapter 2, the read operations of RRAM crossbar array have been systematically 

studied for the 1S1R configuration with nonlinear selector device and storage element. The 

read margin of crossbar array was found to strongly depend on the nonlinearity and the 

conductivity of the selector device. We optimized the selector benchmarks to better 

characterize the device behavior and balance the parameter requirements for device 

development. Several bias schemes have been analyzed to accommodate memory cells 

with different features and improve the entire array performance (e.g. read margin and 

power consumption). Influences from peripheral sensing circuit, parasitic resistance and 

memory resistance were also evaluated to shed light on the inherent voltage divider effect 

in the crossbar array. This simulation work provides a theoretical guidance for future 

RRAM device optimization and circuit design. 

 

Publications resulting from this chapter 

 J. Zhou, K.-H. Kim, and W. Lu, “Crossbar RRAM Arrays: Selector Device 

Requirements During Read Operation,” IEEE Trans. Electron Devices, vol. 61, no. 5, 

pp. 1369–1376, 2014. 

 S. Kim, J. Zhou, and W. D. Lu, “Crossbar RRAM Arrays: Selector Device 

Requirements During Write Operation,” IEEE Trans. Electron Devices, vol. 61, no. 8, 

pp. 2820–2826, 2014. 
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7.2. Tantalum Oxide Selector Device 

In Chapter 3, the conduction mechanism of a Pd/TaOx/Ta/Pd selector device with high 

non-linearity and asymmetric I-V characteristics was investigated. The trapezoidal barrier 

model was adopted to consistently explain the observed transport behaviors at different 

temperatures, revealing dominant thermionic emission at positive bias and dominant tunnel 

emission at negative bias. Based on this TaOx selector, a self-rectifying RRAM cell with a 

HfOx switching medium was further developed. The proposed RRAM structure offers great 

advantages of high LRS selectivity (5×103) and simple fabrication processes. Numerical 

simulations show that up to 1Mb array integration is possible with this novel RRAM device.  

 

Publications resulting from this chapter 

 M. Wang†, J. Zhou†, Y. Yang, S. Gaba, M. Liu and W. D. Lu, “Conduction mechanism 

of a TaOx-based selector and its application in crossbar memory arrays,” Nanoscale, 

vol. 7, no. 11, pp. 4964–4970, 2015. 

 

7.3. Ultra-low Power Conductive Bridge RAM (CBRAM) 

In Chapter 4, we demonstrated the sub-nA operation of RRAM devices for the first 

time using a Cu based CBRAM with polysilicon in-cell resistor. A novel Cu/Al2O3/aSi/Ta 

RRAM cell with self-rectifying characteristics was further developed to improve the device 

reliability and support CMOS-compatible BEOL integrations. With an amorphous silicon 

barrier/rectifying layer, the proposed CBRAM device exhibits low current (~nA), high 

on/off ratio (>100x) and pronounced nonlinearity without sacrificing the retention and 

endurance. These excellent device characteristics can potentially lead to device 

applications in next-generation low-power large-scale crossbar memory arrays.  
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Publications resulting from this chapter 

 S. Gaba, F. Cai, J. Zhou, and W. D. Lu, “Ultralow Sub-1-nA Operating Current 

Resistive Memory with Intrinsic Non-Linear Characteristics,” IEEE Electron Device 

Lett., vol. 35, no. 12, pp. 1239–1241, 2014. 

 J. Zhou, F. Cai, Q. Wang, B. Chen, S. Gaba, and W. D. Lu, “Very Low-Programming-

Current RRAM with Self-Rectifying Characteristics,” IEEE Electron Device Lett., vol. 

37, no. 4, pp. 404–407, 2016. 

 

7.4. Field-Induced Conductance Switching in the LaAlO3/SrTiO3 Interface 

In Chapter 5, we investigated the conductivity switching in the LAO/STO 

heterojunction and demonstrated a reconfigurable top-gated transistor structure. By 

applying an external electric field, the 2DEG in the transistor channel can be modulated in 

a non-volatile manner. The experimental findings and simulation results indicate that the 

conductance switching observed in the oxide interface may originate from competing 

effects of ionic migration process and electron trapping. Our reconfigurable transistor 

device provides a novel structure in developing nanoelectronics component based on 

emerging complex oxides.  

 

7.5. In-Memory Computing Using Crossbar RRAM 

In Chapter 6, we proposed a novel in-memory computing architecture based on 

crossbar arrays. By exploiting the co-located memory-processing functionality of RRAM 

and the high parallelism of crossbar, we aimed to build high-performance systems free 

from the von Neumann bottleneck in conventional computing architectures. Basic design 

principles and operation protocols have been proposed and demonstrated. A 1-bit fuller 

adder and a 4-bit multiplier have been implemented through proto-type circuits and 

dynamic simulations to verify the architecture concept. 
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Publications resulting from this chapter 

 B. Chen, F. Cai, J. Zhou, W. Ma, P. Sheridan, and W. D. Lu, “Efficient in-memory 

computing architecture based on crossbar arrays,” in 2015 IEEE International Electron 

Devices Meeting (IEDM), pp. 17.5.1-17.5.4, 2015. 

 

7.6. Future Work 

Despite these progresses on device optimization, mechanism analysis and circuit 

application, work on resistive switching memory and reconfigurable devices is by no 

means complete. There are still several technical and scientific challenges that deserve 

continued exploration. 

 

 Efficient array-level AC analysis for RRAM devices 

In this work, the SPICE simulations for crossbar RRAM array focus on DC analysis. 

Given the transient response of RRAM device and the widespread parasitic RC delay, the 

conclusions based on the static bias condition may need to be modified for practical pulse 

operations. Although several dynamic RRAM device models have been developed [1], [2], 

conducting AC simulation is extremely time-consuming and limited to relatively small 

array size[3]. Therefore, the trade-off between accurate results and affordable computing 

resources needs to be carefully handled by introducing efficient simulation methods for 

large-scale crossbar array (e.g. Mega-bit).       

 

 Improved material combination of CBRAM thin films 

In Chapter 4, the low operation current of CBRAM device results from the combined 

effects of the switching medium and the rectifying/barrier layer. To constitute robust 

RRAM cells, the breakdown electric fields that cause device failure of the two functional 
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layers and the inherent voltage divider effect between them have to be considered, thus to 

avoid film degradation due to unbalanced voltage drop. Compared with the present 

amorphous silicon solution, a more reliable barrier layer that has stronger capability to 

suppress ion migration and sustain high electric field (e.g. graphene) may also be desirable 

[4]. For higher LRS nonlinearity, the Ta bottom electrode can be replaced with other metals 

with proper work function and reactivity with the barrier layer[5].  

 

 Optimized program/erase algorithm and peripheral circuit 

In addition to material optimization, excellent RRAM device performance requires 

precise electrical control on the filament growth-rapture processes. Several reported studies 

have implemented pulse-train schemes to minimize the distribution of resistance state after 

programming and achieve multi-level storage on metal-oxide RRAMs [6], [7]. In the case 

of sub-nA CBRAM, it is even more challenging to tune the filament shape with external 

electric control, since very limited numbers of metal cations are involved in the 

SET/RESET processes. Besides, low switching current is likely to cause technical issues 

on signal detection during the read. Therefore, adaptive program/erase algorithms and 

sophisticated peripheral circuits (e.g. alternative sensing schemes) need to be developed to 

support the low-power RRAM operations. 
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