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ABSTRACT

Cancer is and has long been a major threat to human health, and in seeking to better
treat cancer, we seek first to better understand cancer. Consequently, the current era of
cancer research has aimed to catalog the full range of molecular abnormalities in
cancer's genome, epigenome, transcriptome, and proteome. Next-generation short read
sequencing has empowered these cataloging efforts, but requires sophisticated
algorithms to fully harness, particularly in the case of splicing and transcript variation.
The aim of this dissertation was to address this need by establishing and applying novel

methods to analyze RNA sequencing data in cancer.

In chapter one, we present Oculus, a software package that attaches to standard aligners
and exploits read redundancy by performing streaming compression, alignment, and
decompression of input sequences. This nearly lossless process (> 99.9%) led to

alignment speedups of up to 270% across a variety of data sets.

In chapter two, we profile performance characteristics of two-pass alignment, which
separates splice junction discovery from quantification. Across a variety of
transcriptome sequencing datasets, two-pass alignment improved quantification of at
least 94% of simulated novel splice junctions, and provided as much as 1.7-fold deeper
median read depth over those splice junctions. Two-pass alignment promises to

advance quantification and discovery of novel splicing events.

In chapter three, we present a novel bioinformatics pipeline to analyze splicing and

transcript variation from cancer transcriptome data, using splice junction read depth,

Xiv



and correlative analysis to circumvent known biases such as tumor content. We
demonstrate the value of this pipeline through application to the oncogenes MET and

ALK.

Finally, in chapter four, we present the application of our transcript variant calling
pipeline to transcriptome data from prostate cancer. We present several recurrently
differentially spliced genes which are not attributable to noise or bias and may serve as
novel biomarkers, evidence for transcript variants of the androgen receptor, and an

apparent genome-wide pattern of alternative transcription start site usage.

XV



CHAPTER 1
INTRODUCTION

1.1 Cancer

Cancer is a heterogeneous class of diseases which poses a significant threat to human
health worldwide. In 2016, in the United States, there are projected to be approximately
1.6 million new cancer cases and six hundred thousand cancer deaths, from a
population of about 320 million people.'? To further underscore its significance, cancers
are the second-leading cause of death in the United States, and the lifetime probability
of being diagnosed with an invasive cancer is 42% for men and 38% for women.! As

such, cancer has long been and remains an area of intense research interest.

Broadly defined, cancer is the uncontrolled growth of an organism's cells in its own
body. The first universal truism of cancer is that cancers follow Darwinian selection,
meaning that as cancer cells replicate, mutations arise in single cancer cells and confer
selective advantages by which the cancer as a whole adapts over time.3* Precisely,
cancers meet the criteria necessary and sufficient for evolution to occur : variability
between individuals, heritability of traits, and that traits confer selective advantages.>
Second, virtually all cancers possess DNA mutations, differences between the genetic
code inherited by the organism and shared by the cancer cells, though the burden of
mutations varies greatly.® The prevailing belief is that each cancer possesses at least one

mutation which confers a selective advantage, commonly referred to as a "driver



mutation” in contrast to a "passenger mutation," though very rare exceptions involving

selective non-DNA traits may exist.®”

Beyond evolution and mutations, cancer begins to defy broad generalization. First,
cancers arise from dozens of cell types and tissues in the human body.® As an example,
The Cancer Genome Atlas, a massive multi-institutional attempt to survey the
landscape of mutations in cancer, aggregated samples from at least thirty-three
relatively common cancer types, and still excluded many rarer cancer types.’ Further,
even within single cancer types there exists substantial heterogeneity.’ For instance,
invasive breast carcinomas are commonly subtyped into five categories on the basis of
their molecular characteristics, with substantial differences in clinical outcome.1%12 The
most enduring attempts to categorize cancers have usually focused on their functional
characteristics as in the Hallmarks of Cancer, and on the set of driving mutations
common to subtypes of a cancer, as in The Cancer Genome Atlas.?’*!* Cancers tend to
sustain their own growth signaling, evade suppression of that growth, evade
programmed death signals, achieve replicative immortality, recruit blood vessels, and
ultimately spread throughout the body, but every cancer is different in its path to
achieve these and other functions and not every cancer exhibits every function.” In
summary, to best understand cancer, it is necessary to first understand that cancer is a

heterogeneous class of diseases.

1.2 Prostate cancer

The prostate is a walnut-sized organ which contributes alkaline fluids to semen in men
and is situated around the urethra.’® Women do not have prostates in the identical
sense, but instead possess a developmentally and functionally homologous organ called

the Skene's gland, which develops cancer extremely rarely.'*! In contrast, all men



develop at least benign prostate tumors as they age.?*?? In 2016 in the United States
there are projected to be about one hundred and eighty thousand new prostate cancer
cases diagnosed, which leads amongst all cancer types in men, and about twenty-six
thousand deaths, which comes second after lung cancer.! A different disease of the
prostate, benign prostatic hyperplasia, is also common, but it is completely distinct from
prostate cancer, and does not progress into prostate cancer.'> Prostate cancer incidence
and death vary by race, and while environmental links are currently not completely
understood, some correlations have been established between prostate cancer and red

meat and dairy consumption.!5%2

Histologically, the prostate is comprised of epithelium, including secretory luminal
epithelial cells, which produce the alkaline fluid contributed to semen and become
cancer, basal epithelial cells situated beneath the luminal cells at a 1:1 ratio, and
relatively rarer neuroendocrine epithelial cells; and stroma, including smooth muscle
cells and fibroblasts, which provide the mechanical means to expel fluid from the
prostate, and other relatively rarer stromal cell types. Of these, the luminal epithelial
cells and smooth muscle cells express the androgen receptor (AR), and only the luminal
epithelial cells express the prostate specific antigen PSA, whose expression is driven by
AR.? Extensive paracrine signaling exists between the epithelial cell types, and between
the epithelial cells and stroma, which is interesting considering these cell types are

displaced over the progression of prostate cancer.

Prostate tissue and cancers are critically linked to the expression and activity of
androgen and the androgen receptor, and the most effective therapy for treating
progressing prostate cancer works by blocking androgen signaling. Androgen
deprivation therapy was pioneered by Charles Brenton Huggins, who was awarded the

Nobel prize in physiology or medicine for this work in 1966.2¢ While the field



previously believed that prostate cancers which progressed after androgen deprivation
therapy were beyond or apart from androgen signaling ("androgen-independent"), it is
now understood that these cancers have reactivated androgen signaling by circuitous
means, and the disease was thus renamed "castration-resistant” prostate cancer to reflect

this new understanding.?”8

A typical treatment course for prostate cancer is : 1) a patient presents with early
symptoms of prostate cancer, including possibly an elevated level of the prostate
specific antigen PSA in his blood ; 2) a needle biopsy may then be taken from the
prostate and scored for histopathological aggressiveness, called Gleason grade ; 3) if the
biopsy appears non-aggressive, a period may elapse wherein the physician and patient
wait to monitor if symptoms progress, called active surveillance ; 4) if the biopsy
appears aggressive or symptoms progress, then scans may be performed to test the
extent of the cancer ; 5) treatment is performed, commonly either surgical removal of
the prostate and nearby lymph nodes (to gauge aggressiveness), or localized radiation
therapy, or androgen deprivation therapy in advanced cases or if symptoms progress
after surgery or radiation therapy ; 6) if the patient's cancer is treated with androgen
deprivation therapy and progresses, and they nearly always do progress after androgen
deprivation therapy, usually having metastasized to bone, the liver, lymph nodes, or
soft tissues, alternative, second-line anti-androgen deprivation therapy or
chemotherapy may be applied, but these therapies usually prolong life only by several
months.>?7230 When we study cancer tissue samples, they are taken at the fifth and
sixth steps in this treatment course, and are referred to as hormone-naive primary

prostate tumors, and metastatic castration-resistant prostate cancers.*

As is true with other cancers, prostate cancers are increasingly appreciated as a

heterogeneous group of diseases, with multiple different molecular aberrations.3*3



Primary molecular aberrations include activating gene fusions of the E26
Transformation-Specific (ETS) family of transcription factors, particularly the
TMPRSS2:ERG gene fusion, mutations in the Speckle-type POZ protein (SPOP),
mutations in the Forkhead box protein A1 (FOXA1), though aberrations in these genes
account for only 74% of prostate cancers, a variety of other rarer possible driver events,
and a variety of inactivation variants affecting tumor suppressor proteins common to
many cancers, including Tumor protein 53 (TP53), Retinoblastoma protein 1 (RB1), and
the Phosphatase and tensin homolog (PTEN), and some apparently specific to prostate
cancer such as NK3-homeobox 1 (NKX3.1).34 Beyond these, prostate cancers have
recurrent copy-number aberrations, particularly gain of chromosome 8q and loss of
chromosome 8p and extreme amplification of the androgen receptor locus after
androgen deprivation therapy, recurrent DNA methylation and gene expression
changes, and recurrent overexpression of the enhancer of Zeste homolog 2 (EZH2) and
serine protease inhibitor Kazal-type 1 (SPINK1), as well as activation of a variety of
other developmentally significant signaling pathways.3341-4 Finally, prostate cancers are
associated with the expression of a number of cancer-specific long non-coding RNA
species, most notably the second chromosome locus associated with prostate-1

(SChLAP1).45-4

Clinically, PSA is the primary means to detect early prostate cancer, but high false
positive rates have undercut the medical field's confidence in the marker.** PSA is
exactly what its name advertises, a prostate-specific antigen, which means that while
specific to the prostate, and capable of detecting amplified amounts of prostate
signaling in the blood, it can perform poorly in distinguishing prostate cancer from
other prostate tissue. Therefore, utmost translational importance is placed on the

development of biomarkers which are capable of detecting prostate cancer early, and



particularly, capable of prognosticating prostate cancers into those which are likely to

metastasize in order to inform decisions to accelerate therapy.%%

1.3  RNA splicing

The central dogma of molecular biology was first postulated by Francis Crick in the
1950s, and dictates that genetic sequence information cannot transfer from protein to
nucleic acid, or from protein to protein.>'* Today, we rephrase this to state that the flow
of sequence information in biology proceeds from deoxyribonucleic acid (DNA), to
ribonucleic acid (RNA), to protein, with rare exceptions (reverse polymerase in
retroviruses, and RNA-dependent RNA replication in RNA viruses). Put simply, DNA
is transcribed into RN A, and RNA is translated into protein. In this dynamic, RNA is
the messenger that conveys information between the genetic code of the cell to the

functional processes the cell carries out.

The understanding of RNA was further advanced in 1977, when two independent
research teams led by Phillip Sharp and Richard Roberts discovered the existence of
"split genes," a discovery which merited the Nobel Prize in Physiology or Medicine in
1993.5%% Briefly, gaps within genes (introns) are removed from neighboring sequence
(exons) in RNA by a catalytic molecular process later termed RNA splicing. Splicing is
executed by two mechanisms in eukaryotes : catalytic excision by the spliceosome, a
complex molecular machine involving many core proteins and context-dependent
cofactors (termed "splicing factors"), and self-splicing introns which catalyze their own
excision through secondary structural mechanisms. Since the discovery of splicing, we
have come to appreciate that nearly all human genes are spliced (about 95%), and
turther, that genes are frequently spliced in multiple patterns, yielding multiple mature

proteins per gene with varying functions.>® The phenomenon of splicing genes in



multiple ways is called alternative splicing, and has been suggested as a possible means
of increasing the phenotypic complexity of eukaryotic gene expression.”” Further, we
also now appreciate that RNA splicing performs a critical role in regulation, through
binding of the exon junction complex and nonsense-mediated decay.®*¢! In short,
splicing is equally fundamental to molecular biology as transcription : both are

necessary to perform the message conveying function of RNA.

1.4  RNA splicing in cancer

Owing to RNA splicing's fundamental role in molecular biology, and the fact that
cancers will hijack any means to increase their proliferative potential, there are many
examples of both driver and passenger splicing variants in cancer. Examples of cancer-
driving splice variants include exon skipping and alternative transcript initiation of the
anaplastic lymphoma kinase (ALK), exon skipping variants of the hepatocyte growth
factor receptor (MET), truncation of the androgen receptor (AR), and many, many
others.®2%¢ Similarly, splicing factors themselves are often overexpressed or mutated in
cancer, in order to generate driving splice variants or networks of splice variants
downstream. These include mutations of splicing factor 3B subunit 1 (SF3B1), U2 small
nuclear RNA auxiliary factor 1 (U2AF1), serine/arginine-rich splicing factor 2 (SRSF2),
and zinc finger CCCH-type, RNA binding motif and serine/arginine-rich 2 (ZRSR2) in
acute myeloid leukemias, and expression modulation of RN A-binding protein Fox-1
homolog 2 (RBFOX2) to drive epithelial to mesenchymal transition in solid tumors,
again amongst many, many other examples (NOVA*, ESRP*, SRSF*, MBNL*, QKI,
RBM*, SF3B*, and more, where * represents multiple gene family member numbers).®72
Next, RNA splicing has specific interest to clinical translation in the form of cancer-
specific biomarkers, owing both to the apparent exquisitely-tissue-specific regulation of

splicing in many cases, and RNA splicing's inclination to generate novel and specific



cell-surface proteins which may be used as neoantigens in immunotherapy.”?7¢ Finally,
cutting-edge translational research is investigating the use of antisense oligonucleotides
(ASOs) to knock-down expression of specific RNA molecules in vivo, which is
particularly exciting from a treatment standpoint : splice variants at the RNA level may

one day be routinely druggable.”

1.5  Next-generation sequencing and RNA-seq

The current technologies to research nucleotide sequences have a long and storied
history, involving contributions from many scientists over many years. Critical
highlights in that history include : the development of Sanger sequencing in 1977,
which received a Nobel prize ; the isolation of the temperature-resistant Taq
polymerase in 1976 ; the invention of the polymerase chain reaction in the 1980s, which
received a Nobel prize ; the isolation of reverse transcriptase in 1970, which received a
Nobel prize ; the innovation of shotgun sequencing during the Human Genome Project
in the late 1990s ; and finally the independent development of "next-generation"
technologies, most notably the "sequencing by synthesis" technology of the Solexa
corporation in the early 2000s.58788 After these developments, sequential application
of reverse transcriptase to RNA to create complementary DNA (cDNA), and high-
throughput sequencing of that DNA was a matter of course, and in 2008 high-

throughput RNA sequencing or RNA-seq was first described.®

To describe a typical RN A-seq experiment : first, a biological sample of interest,
possibly cells, tissues, or whole organisms, is disaggregated, lysed, and RNA is
extracted; next, the RNA is reverse transcribed to cDNA; the cDNA is fragmented to
shorter sequences, and often size-selected, usually to about 350 nucleotides; the cDNA

is ligated to sequencing adaptors and amplified by PCR; the resulting cDNA library is



sequenced on a high-throughput sequencing instrument (e.g., from the Illumina
corporation); and, finally, short (50nt to 150nt) paired-end sequence reads are output as
files on a computer. In the end, the result is a list of about 60 million short paired read
sequences which require no prior sequence expectation, and which fairly reflect the
abundance of RNA molecules in the original sample, owing to random sampling
(described at length in section 1.7). Due to these properties, RNA-seq provides a
strongly quantitative means to estimate gene expression, and discovery of new
sequences, including novel mutations, short insertions and deletions, splice variants,
gene fusions, antisense gene expression, long noncoding RNAs, and any other kind of

transcript variant.”82

1.6 Sequence alignment

Bioinformatics analysis begins following high-throughput sequencing. First, a reference
copy of the human genome is searched for each sequence read by a process called
sequence alignment. The reference human genome most commonly used today ("hg19"
or "hg38/GRCh38") has its origin in the Human Genome project, though it continues to
be refined over the years.”” Alignment itself has a long history, but key highlights
include the development of the Needleman-Wunsch global sequence alignment
algorithm in 1970; dynamic programming optimization of Needleman-Wunsch in 1972;
the development of the Smith-Waterman local sequence alignment algorithm in 1981,
upon which all modern sequence alignment is really based; development of the Basic
Local Alignment Search Tool BLAST and its extensions, which serve to computationally
optimize Smith-Waterman, in the 1990s; the innovation of searching in Burroughs-
Wheeler transformed sequence space using a Ferragina-Manzini index, introduced by
the Burroughs-Wheeler Aligner (BWA) and Bowtie in the late 2000s; the development of

aligners specifically designed to handle spliced RNA sequences such as Tophat,



MapSplice, and SpliceMap; and finally further optimized spliced aligners which use
larger memory structures such as STAR and HISAT. %1% Alignment of RNA sequences
is often aided by prior knowledge of gene annotations, and two of the most commonly
used gene annotation databases for this purpose are Refseq, and GENCODE (which
combines the Havana and Ensembl databases).1”1% Additional protein-level databases,

such as UniProt, can serve to further guide downstream analysis.'”

The key idea in sequence alignment is that it is fundamentally a process of determining
the most likely genomic origin for an observed sequence read. As such, prior
expectations of the sample being aligned which affect the parsimony of sequence
alignment explanations come into play, such as the likelihood of mismatches
(mutations), gaps (insertions and deletions, and splice junctions), and more complex
rearrangements (structural variants, and gene fusions), as are possible to call from DNA
sequencing data.!'*!'2 In short, intelligent decisions about parameterization of sequence
alignment are critical to any application that uses it, and because sequence alignment is
the first step in nearly all bioinformatics analyses of sequence data (the exception being
counting approaches, which still implicitly use sequence), these decisions should be
weighed carefully. Much of the work presented in this thesis concerns applications of

sequence alignment to specific problems.

1.7  Bioinformatics of splicing analysis

Following sequence alignment, three main approaches can be taken to analyze
transcript variant expression (i.e. isoform expression) levels from RNA-seq, all of which

hinge on its "fair sampling" property : that the number of sequence reads is

approximately proportional to the number of RNA molecules present in the original

10



sample. The tools and methods listed in this section are meant to be representative ;

there many other tools in the area of splicing bioinformatics from RNA-seq.

The first and oldest approach is to estimate and compare expression of individual
exons. Computationally this is simple to perform, by counting read depth over exons,
but requires prior knowledge of exon boundaries and usually involves sophisticated
statistical analysis downstream, such as edgeR or DEseq / DEXseq.!"*!7 Exon
expression approaches suffer from non-random PCR amplification over the
transcriptome, but this PCR bias may be overcome through sophisticated comparison of
case and control samples. More importantly, however, prior knowledge of exon
boundaries is often infeasible in research projects concerned with novel biology (e.g.,
cancer research), where actual novel exons or genomic ranges may be expressed, so a

non-trivial pre-processing step of identifying such ranges is necessary.

The second and most common approach is to estimate and compare expression of entire
gene isoforms. In this approach, reads are counted over exonic regions and splice
junctions, and probabilistically or fractionally assigned to multiple annotated isoforms
at the gene locus based on unique and shared coordinate ranges. The counting piece of
this approach is sometimes coupled with the task of determining the coordinates of the
tull length transcripts, called sequence assembly. Two popular tools to achieve this
dual task are Cufflinks and Trinity, though many others exist, particularly if the steps
are handled independently.!181% A relatively new variant of this approach is to calculate
expression of anticipated transcripts without alignment, by counting observed
subsequences termed "k-mers" extremely quickly, as in Sailfish.*® Once expression of
transcript variants has been estimated, relative abundances can be compared between
conditions using another range of tools. This approach is robust to PCR bias, but

suffers grievously from misalignment owing to rare spurious reads (e.g., ligation
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artifacts). For instance, an independent review of transcript assemblers found that the
best performing tool, of fourteen, recovered merely 21% of full transcripts in Homo
sapiens transcriptomics data, and expression estimates for the tools correlated between
0.34 and 0.70 with independent expression estimates.'?! Further, in the presence of
sample degradation, such as deeper coverage over the 3' end of the gene owing to
polyadenylation capture of degraded RNA ("3' bias," which is extremely widespread),
probabilistic assignment weighs all the gene's isoforms equally, which makes little
sense in terms of parsimony if any of the isoforms are expected to be rare. This is to say,
3' UTR depth provides no actual evidence for the individual presence of all the

transcripts that share it, only the set of transcripts sharing that 3' UTR as a group.

Finally, the newest and least common approach to analyze RNA splicing from
sequencing data is to estimate and compare expression of splice junctions themselves.
This method is the simplest to execute, requiring only spliced alignment to the genome
and counting, and uses similar sophisticated downstream statistical analysis to exon
expression. Two examples of methods using this approach are MISO and MATS.12%123
Splice junction expression benefits from prior knowledge of junction boundaries, but
novel junctions can easily be discovered by spliced aligners, and through use of
methods presented in this dissertation can easily produce expression counts
comparable to known junctions. Splice junction expression also suffers from position-
specific PCR bias, the same as exon expression, but again through comparison of case
and control samples this can be circumvented. Finally, perhaps the largest drawback of
junction expression as an approach is that it doesn't make full use of the available data
over the length of the transcript, but in cases of degradation this is a boon rather than a

liability.

1.8  Alternatives to sequencing to study RNA splicing
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RNA sequencing is undoubtedly the highest-throughput current means to analyze
splicing at the RNA level, but for historical perspective, orthogonal validation, and

analysis at the level of the protein, it is useful to be aware of alternative technologies.

High-throughput alternative technologies include expressed sequence tags (ESTs),
serial analysis of gene expression (SAGE), and exon microarrays. ESTs were popular in
the early 2000s, and work by first reverse transcribing RNA in a sample of interest into
complementary DNA (cDNA), inserting that cDNA with a constitutive promoter and
without introns and other normal regulatory regions as circular DNA into host cells
("transformation,” using bacteria), having the host cells express high levels of the gene,
and then performing traditional Sanger sequencing in parallel on many copies of the
gene the host cell expresses.’? ESTs give long sequence reads (>500 nucleotides), and
are therefore appropriate for characterizing gene and isoform structure, but are not
quantitative with respect to the original sample. SAGE was also popular in the early
2000s, and works by reverse transcribing RNA to cDNA, attaching biotin which serves
to anchor cDNA to beads which bind biotin (streptavidin), truncating the cDNA
molecules at one end using an enzyme to digest DNA (restriction endonucleases) to
short fragments, amplifying the short sequences with PCR, and eventually sequencing
the short fragments.’? SAGE is quantitative to the level of gene expression because it
uses samples directly, but loses full transcript structures because of the digestion step,
so it cannot be used in analysis of isoform expression. Finally, exon microarrays were a
major advancement over these other technologies in the mid 2000s, and work by tiling
sequences complementary to known transcribed regions (exons) on a microarray,
introducing RNA from a sample directly or after PCR into the microarray, and
measuring hybridization intensity as fluorescence, thereby measuring expression of

individual exons. Exon microarrays require prior knowledge of exon sequences, and are
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biased depending on the strength of the complementary oligonucleotide binding, but
were a dramatic improvement over previous technologies and still see some use today
in validation. A relatively new variation of the microarray from NanoString
Technologies requires no PCR amplification, and could also in principle be used to

validate isoform expression, but is more commonly used for gene expression.'*

There are many targeted validation approaches. First, the polymerase chain reaction
(PCR) can be used to quickly and easily validate the presence of specific, targeted, short
sequences in samples, and is highly quantitative. Next, Sanger sequencing can be used
to validate full transcript structures for enriched sequences, but is relatively slow.
Similarly, 3" and 5' rapid amplification of cDNA ends (RACE), can provide full
transcript structures, given targeted sequences at the 3' or 5' end of the gene. Each of

these is well-established, and work well in the context of validating individual targets.

Finally, high-throughput technology such as short read sequencing from Illumina can
be complemented, validated, or even replaced with other current high-throughput
technology, such as longer read sequencing like IsoSeq from PacBio or Ion Torrent from
ThermoFisher.?1% These decisions usually weigh expense and throughput, and come
down to the individual researcher and project, but it's worth mentioning that many
tissue samples have some level of RNA degradation, which limits the utility of long-

read sequencing.

1.9  Methods to study splicing at the protein level

Although most researchers currently analyze splicing and other transcript variants at

the level of RNA to leverage the throughput and sensitivity of NGS, many or most
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researchers, particularly disease researchers primarily interested in phenotypes, are

often more interested in the effect that variation has on expressed mature proteins.

Currently, the best high-throughput means to study splicing at the protein level is
through use of mass spectrometry. Briefly, a typical workflow for mass spectrometry is
tirst to isolate proteins from a sample of interest (cells, tissues, or targeted fractions such
as organelles or immunoprecipitation pulldowns), digest the proteins into protein
fragments called peptides using the digestive enzyme trypsin (produced by one or
more animals), ionize and separate the peptides by their mass to charge ratios (using
one of several technologies), fragment the peptides and separate again by mass to
charge ratio, termed MS-MS owing to this second iteration (again using one of several
technologies), and finally search the resulting mass to charge ratio data against a
database of expected fragments, usually the non-redundant human transcriptome for
human studies.®3 In a splicing context, without advance warning of the possible
presence of isoforms they may be missed by database searching, so the key idea is to
extend the database with novel expected sequences ahead of time ; this field is called
proteogenomics.!**1¥ This approach has been used successfully to identify breast
cancer-specific splice variants at the protein level, and intriguingly further, predict their

expected function using annotations and protein folding methods.!40-144
Splice isoform expression can be easily validated at the protein level using antibodies

which bind to each variant, and running the pulled down proteins on Western blots,

which separate input proteins by their mass.
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CHAPTER 2

Oculus: faster sequence alignment by streaming read compression

Citation: Veeneman BA, Iyer MK, Chinnaiyan AM. Oculus: faster sequence alignment

by streaming read compression. BMC Bioinformatics, 13:297 (2012).145

This manuscript was ranked as "Highly accessed” by BMC Bioinformatics, and has been
accessed over 5000 times and cited three times as of September, 2016. The subject of read

compression in alignment remains an area of attention for algorithm developers.14614

2.1 Abstract

Despite significant advancement in alignment algorithms, the exponential growth of
nucleotide sequencing throughput threatens to outpace bioinformatic analysis.
Computation may become the bottleneck of genome analysis if growing alignment costs
are not mitigated by further improvement in algorithms. Much gain has been gleaned
from indexing and compressing alignment databases, but many widely used alignment
tools process input reads sequentially and are oblivious to any underlying redundancy

in the reads themselves.

Here we present Oculus, a software package that attaches to standard aligners and
exploits read redundancy by performing streaming compression, alignment, and
decompression of input sequences. This nearly lossless process (> 99.9%) led to

alignment speedups of up to 270% across a variety of data sets, while requiring a
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modest amount of memory. We expect that streaming read compressors such as Oculus
could become a standard addition to existing RNA-Seq and ChIP-Seq alignment

pipelines, and potentially other applications in the future as throughput increases.

Oculus efficiently condenses redundant input reads and wraps existing aligners to
provide nearly identical SAM output in a fraction of the aligner runtime. It includes a
number of useful features, such as tunable performance and fidelity options,
compatibility with FASTA or FASTQ files, and adherence to the SAM format. The
platform-independent C++ source code is freely available online, at

http://code.google.com/p/oculus-bio.

2.2 Background

Nucleic acid sequencing throughput has grown exponentially for the past ten years,
and is expected to continue to shatter Moore’s law.!*® Though the highly anticipated
onslaught of inexpensive sequencing empowers exciting new biological studies, it also
presents a critical problem: the skyrocketing computational costs of sequence
analysis.'* Computers may become the bottleneck of genomics research if these
growing processing demands are not mitigated by improvements in software

algorithms, especially in light of the sequencing demands of personalized medicine.

Much intellectual effort has been invested in minimizing the time required to align a
single read against an indexed database. When performed sequentially, each sequence
in the input is processed individually, such that the sum of the alignment times of the
input sequences is the total running time. Today’s fastest and most widely used
aligners, such as Bowtie, BWA, MAQ, RazerS, and BLAST, process input reads

sequentially.?8104150151 These aligners can typically be configured to be consistent and
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guarantee that identical copies of an input sequence will produce identical alignment
results. Therefore, given a set of input reads with ample redundancy, we envisioned
that alignment time could be reduced without compromising accuracy by distilling the

unique set of sequences and aligning them using a sequential alignment tool.

Harnessing redundancy in sequence alignment input is not a new concept. BLAST +
gains a performance benefit by saving alignments within batches.*® Cloudburst and
CloudAligner use MapReduce, and feature a shuffle step wherein seed sequences in the
query and database are brought together and combined.!>!® SEAL also uses
MapReduce; it effectively parallelizes BWA, and can remove duplicate reads by
comparing alignment position, after aligning all of them.'> Similarly, SlideSort sorts
together sequences with common substrings, and mrsFast uses a sophisticated blocking
map to identify unique seeds before performing a direct map-to-map comparison.!351%
Finally, Fulcrum performs hashing on seed sequences using MapReduce to conserve
computation time in genome assembly.'” While all of these are excellent tools in their
own application spaces, sequential aligners such as Bowtie and BWA enjoy extensive
support, remain popular for many applications, and can benefit from the same
approach. Furthermore, decoupling the process of compressing input reads from the
alignment kernel itself could be productive, as improvements to both algorithms can
proceed independently. To date, no application exists that performs streaming read

compression in a generalized way.

2.3 Methods

We explored the nature of read redundancy across thirteen publicly available next-
generation nucleotide sequencing datasets. In a series of experiments we measured the

contributions of the application (whole genome, targeted exome capture, RNA-Seq, and
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ChIP-Seq), read length, and sequencing depth to overall read redundancy, measured in
the percentage of unique reads. Using these observations, we wrote the streaming read
compression algorithm Oculus and constructed a model to determine the value of
streaming read compression for a given dataset. Finally, we benchmarked Oculus on

full sequencing datasets.

2.3.1 Sequence data profiling

We evaluated thirteen publicly available datasets that were representative of the major
applications of high-throughput sequencing, identified here by their NCBI Sequence
Read Archive (SRA) accession numbers. There were five RNA-Seq datasets (ERS025093
(pooled), and SRR097790, SRR097792, SRR097786, and SRR097787 from the iDEA
challenge), three genome datasets (SRR097850 and SRR(097852, also from the iDEA
challenge, and ERR000589), three Exome sequencing datasets (SRR098490, SRR098492,
and SRR171306), and finally two ChIP-Seq datasets: (SRR227346, and SRR299316 +
SRR299313 (pooled)). The ChIP-Seq data was downloaded from the ENCODE Project,
hosted on the UCSC genome browser. [llumina, Inc. carried out the IDEA dataset
sequencing, first used by Sun et al.’®¥> Additional run metadata can be found in

Appendix A.

2.3.2 Sequencing type

The sequencing datasets we selected varied widely in their composition. We compared
read redundancy between sequencing types by standardizing the number of reads per
dataset to 24 million with random subsetting, and read length to 36 bases with 3’ end
trimming (both lowest common denominators). RNA-Seq had relatively redundant

reads; only 43% to 57% of each single-end dataset was unique (Figure 2.1). In contrast,
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Exome and Genome sequencing had very little read redundancy. The two ChIP-Seq
datasets had disparate content, varying greatly in their %unique reads — without
delving into the specifics of those samples, we believe this may reflect the wide variety
of ChIP-Seq applications. As expected, paired-end data compressed less well than

single-end, since paired-end compression requires identity on both reads.

2.3.3 Depth of coverage and read length

Given some fixed input DNA from which fragments are sampled, each incremental
read will be more likely to duplicate previous reads. In particular, RNA-Seq reads may
disproportionately reflect highly expressed genes, suggesting that higher sequencing
coverage could have a nonlinear effect on read redundancy.'® Therefore, we measured
the impact of coverage depth/sequencing run size (number of reads) and read length on
the unique read percentage of each dataset, treating reads individually (single-end) or
as pairs (paired-end) (Figure 2.2). We fixed the read length for RN A-Seq runs and
evaluated %unique reads for a series of random fractions of the original datasets. As
predicted, larger sequencing runs corresponded logarithmically to a lower unique
fraction of the datasets (Figure 2.2A). The unique read fraction varied between 56-69%
for 10 million reads, 32-49% for 25 million reads, and 28% for 385 million reads in RNA-
Seq dataset #1. The differences between datasets likely relates to sample biology and
preparation. Next, we fixed coverage depth and evaluated the percentage of unique
reads for a series of read lengths (trimming from the end) (Figure 2.2B). The impact of
read length on uniqueness appeared to be exponential in one case (RNA-Seq #1, for
which 100 bp reads were available) and linear in the rest (RNA-Seq #2-5). It’s interesting
to note that some RNA-Seq algorithms, such as TopHat, dice unmapped reads into
segments and align each piece individually.'® This might entail a ~3-fold alignment

speedup for RNA-Seq dataset #1 by use of 25 base segments, if further communication
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between a streaming read compressor such as Oculus and Tophat’s core algorithm

could be engineered.

24  Implementation

The overall architecture of Oculus is shown in Figure 2.3. Oculus reads FASTA or
FASTQ input files, processes sequences into a compressed form, and compares them to
a map containing all sequences it has seen before; new sequences are passed into the
aligner as FASTA, while previously observed sequences increment counts in the map.
At the reconstitution step, sequences in the SAM output file are then compared back
against the map and re-printed as many times as they appeared in the input, correcting
for alignment orientation. Paired-end sequences are handled by concatenating the two
sequences to ensure the pair is unique. Oculus can wrap any aligner capable of

producing SAM-formatted output.

By design, Oculus sacrifices FASTQ quality scores, read names beyond the first instance
of the sequence, and the original order of the reads in the output. Optionally, users can
direct Oculus to restore the original read names and quality scores by writing them to
an intermediate file, sorting it, and reattaching them during the reconstitution step. This
option incurs additional memory overhead, and additional time to sort the intermediate

file.

2.4.1 Data structures

Oculus uses hashmap data structures to store sequences in memory. Users can either
compile in standard library (STL) hashmaps, or Google-SparseHash maps, which are

faster and require significantly less memory (2 bits of overhead per entry).'!
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Optionally, users can direct Oculus at runtime to store unique reads in a separate
hashset, reducing the burden on the hashmap to only redundant sequences. The effect
of this is to reduce lookup times in the reconstitution step and total memory
consumption, at the cost of more operations in the compression step. Hashsets are

expected to be beneficial for lower redundancy input.

Oculus uses a modified version of MurmurHash2 to hash binary sequence data.'®* It has
a low incidence of collision for binary data, and was recommended for use with Google-
SparseHash by its developer (C. Silverstein, personal communication). To reduce
collisions, the hash algorithm operates only on the sequence field of the compressed

sequence objects.

2.4.2 Binary compression

Instead of storing sequences in memory as ASCII characters, Oculus uses compressed
sequence objects of our own design (cseqs) (Figure 2.4). DNA sequences are
dynamically compressed into 2 or 3 bits per base, depending on the presence of N
nucleotides. Optionally, a 2-bit encoding can be forced if the user wishes for N’s to be
evaluated as A’s. Each cseq has three fields: a representation bit indicating the
nucleotide encoding, its size in memory, and a variable-length compressed sequence.
Storing the size is necessary because null-termination is obviated by the possibility of

null bytes in the sequence field.

The most obvious benefit of using cseqs is an approximate four-fold reduction in
memory use. However, two engineering benefits also arise for cseq string comparison,

which help efficiently resolve map collisions. Sequences with different lengths or
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representations can be differentiated by comparing the first byte in constant time (very
quickly). Moreover, by comparing nucleotides in blocks instead of individually,
comparison time is reduced four-fold. Memory for sequences is allocated in large

chunks (default: 10kB), which reduces overhead greatly.

2.4.3 Reverse complements

Lastly, Oculus can be directed to compress together reverse complements in single-end
data, or reversed read order in forward-reverse oriented paired-end data, under the
presumption that they should align to the same place in the database. This improves
compression and therefore reduces aligner runtime. Using reverse complements is
optional because BWA and Bowtie both use left-end seed sequences, so the orientation

of the read can affect its alighment (though typically in a tiny fraction of sequences).

244 Runtime model

We developed a model to predict the effectiveness of Oculus for any given data set.
Given Ni input reads that compress to Nc sequences, and assuming sa and so are the
speeds of the aligner and Oculus, in reads/unit time, the following equations give the

expected benefit of using Oculus as a fraction of the aligner’s run time.
Aligner Run Time = Ni/ sa

Oculus Run Time = (Ni / so) + (Nc / sa)
Run Time Ratio = Oculus / Aligner = (sa / so) + (Nc / Ni)
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The aligner’s run time is simply the total number of input reads divided by the average
alignment speed in reads per unit time of the aligner. In the second case, since Oculus
passes some fraction Nc of Na into the aligner, the aligner only has to do N¢/sa work.
However, there’s also an overhead for Oculus on the order of the total number of input
reads. The fractional benefit of using Oculus is therefore related only to the compression
achieved and Oculus’s speed relative to the aligner it's wrapping. We therefore derived
processing rates in reads per second for Oculus and each aligner, for both single-end
and paired-end data, using experimental results for the 50 and 51-mer datasets. Table
2.1 indicates the calculated ratio of the speed of the aligners to Oculus. Based on these
parameters we predict that Oculus will have a runtime benefit for sequence data with
greater than 10% redundant reads, and that benefits would scale linearly with the
unique read fraction. This model discounts non-linear factors such as hash collisions,
read length, percent successful alignment, and potentially, alignment location, and disk

I/O will produce noise, but it is an effective rule of thumb.

2.4.5 Benchmarking

We compared the performance of Oculus with BWA (version 0.5.9-r16) and Bowtie 1
(version 0.12.7 64-bit) by themselves. All alignment was performed against the reference

human genome GRCh37/hg19.

Every benchmarking test was run on the Flux supercomputing cluster maintained by
the Center for Advanced Computing at the University of Michigan, using single CPU
cores of 2.67 GHz Intel X5650 processors, with 64 GB of 1333 MHz DDR3 memory, and
distributed access disks. To reduce noise in runtime measurement from disk I/O, each
benchmark test was run three times, and the average runtime is presented here.

Memory consumption was much less noisy, so similar averaging was unnecessary in
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reporting memory use. Both aligners ran with entirely default options, and Oculus used

only the reverse complement storage option, “--rc”.

To test consistency, we ran Bowtie using “-m 1” to eliminate multi-mapping reads, for
which Bowtie reports one random alignment by default. We extracted alignment
positions, sorted by read sequence (grouping together forward and reverse
orientations), and counted and classified alignment differences. BWA has no such
mono-mapping option, so we did not test Oculus’s wrapping of BWA for consistency

(BWA was still tested for performance).

2.5 Results

2.5.1 Compression and performance

Oculus yielded performance benefits that strongly correlated with the unique read
fraction of each dataset (Figure 2.5). Notably, the single-end RNA-Seq datasets aligned
in 49.7% as much time on average, i.e., they ran 2.0 times as fast in Oculus compared
with Bowtie and BWA. The paired-end datasets compressed less well than their single-
end counterparts; on average, the paired-end RNA-Seq datasets aligned 1.2x as fast.
ChIP-Seq dataset #1 received the greatest performance benefit: its single-end Bowtie
alignment ran 3.7x as fast. However, our Genome and Exome datasets, and ChIP-Seq
dataset #2, were generally non-redundant and Oculus did not greatly outperform either
aligner. This was consistent with our expectations - if reads are not redundant, they
cannot be compressed, and the aligner will receive nearly the complete set of input
reads. Since compressing and decompressing incurs a small time overhead, it follows

that a nearly completely unique dataset might run more slowly.
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Though BWA was much slower than Bowtie for single-end data, and somewhat slower
for paired-end data, Oculus produced similar fractional speed improvements for the
two aligners. Additionally, for the datasets tested, Oculus’s hashset option did not yield
a significant improvement. For sequencing run information and exact CPU run times,

see Appendix A.

2.5.2 Consistency

Oculus maintained high fidelity to original alignments for every dataset. Defining
accuracy as the percentage of input reads that Oculus mapped to exactly the same
location as the aligners, on average Oculus was >99.9% accurate, and in the worst case

was 99.874% accurate. For individual dataset accuracy, see Appendix A.

Since they change the seed sequence used in alignment, the vast majority of the
differences (inaccuracies) produced were for reads that Oculus either reversed the
orientation of (88% of single-end differences), or order of (67% of paired-end
differences). Mostly these were previously unaligned reads that aligned and vice versa,
but in some cases, an unambiguously mapped read actually changed alignment
positions (single-end, 0.09% of differences; paired-end, 10.15% of differences). Though
initially surprising, this can be explained by mismatches in seed sequences. Bowtie is
less permissive of mismatches in the seed than at the end of a read under the
assumption that read quality tends to be better toward 5 end. Of two closely
homologous regions of the genome, one may count as the best hit in the forward

orientation, and the other in reverse orientation. For example:

CAGT - read

CATT - genome position 1
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CCGT - genome position 2

In this case, if CA is the seed, position 1 would be the optimal alighment and the third
base would count as a G-T mismatch. However, if the reverse-complement were
aligned, and the seed proceeded from the opposite direction, position 2 would be

optimal and the third base would be recorded as a C-A mismatch.

2.5.3 Memory use

Oculus very consistently used (sequence length/4) + 20 bytes of memory per map entry.
This 20-byte overhead comes from the forward and reverse count integers (4 each), the
hash of the sequence (4), a pointer to the sequence (up to 8 on a 64-bit OS), the size field
(2), and some heap memory structure overhead. Although these sum to 22 bytes, hash
values are not stored multiple times for hash collisions, and pointer memory use varies
by OS architecture, often using less than 8. This 20-byte overhead is halved for paired-
end map entries, because each pair is stored together. Using the hashset option reduced

memory use by about a third, by mitigating some of this overhead for unique reads.

Total memory use is therefore highly dependent on the quantity and redundancy of
input sequence, but in a worst-case scenario (perfect non-redundancy), 100 million
single-end 80mers will use about 3.7 GB of memory, on top of memory used by the
aligner’s database. Redundancy translates linearly to reduction in memory use — if only

half of those reads were unique, 1.85 GB would be required instead.

2.6 Discussion
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Our benchmarking tests suggest Oculus will generally perform very well with RNA-
Seq data and on a case-by-case basis in other applications, particularly those with low
complexity libraries. The likely source of benefit to RNA-Seq arises from highly
expressed genes that are sequenced at great depth and generate multitudes of duplicate

reads.

Shorter read length and larger datasets both correlated with higher redundancy in
sequencing runs. The hidden variable of actual biological redundancy remains at large
(particularly, the effects of PCR and the targeted scope of sequencing), but those two
metrics provide good insight into the expected value of streaming read compression for
a given sequencing application. We noted the added value Oculus provides for RNA-
Seq applications that segment reads (Oculus can significantly benefit the alignment of
many 25mers), but Oculus may also yield benefit to customized bioinformatics analyses
that take similar approaches. Also of note is that for highly-sensitive but slow aligners
such as BLAT and Smith-Waterman, Oculus’s relative runtime will be insignificant (i.e.,
sa/so - > 0), so streaming read alignment will be of greater use to applications that
require such sensitivity.!%>163 Perhaps most importantly, as sequencing throughput
increases so too will read redundancy and the marginal benefit of compressing input

reads, though this will be mitigated by longer read lengths and paired-end reads.

To be effective, Oculus requires read redundancy and an aligner that does not already
exploit that redundancy. To be consistent, Oculus requires the aligner to ignore quality
score and use parameters that guarantee deterministic behavior. By default, Bowtie will
report one alignment at random for ambiguously mapping reads, and Oculus by
definition cannot produce multiple alignments for a single read sequence. The

exception to this is if the aligner is configured to report multiple alignments per read,
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either on single or multiple SAM lines, in which case Oculus will reconstitute the reads

aligning to each location.

Since both Bowtie and BWA use left-end seeds, it makes sense that Oculus may report
different alignments for reverse-complemented single-end reads. However, we were
surprised to find alignment differences for paired-end reads with reversed order. Read
order shouldn’t matter in paired-end alignment: since the read orientation remains the
same, so should the seeds. Developers who wish to incorporate streaming read
compression into their aligners may be interested in exploring this phenomenon.
Another surprising result was that Oculus + Bowtie actually outperformed compression
for the second ChIP-Seq data set (it ran in 27.0% of the original time, on 35% of the
original data set). Stranger still, the runtime data for that dataset was not noisy — each of
the three tests ran in < 28% of the original time. It is possible that Oculus may have
compressed a disproportionately large number of slow-aligning reads — reads that take
longer to align to the human genome. Better understanding this phenomenon may be a

key to further alignment algorithm improvements.

Though Oculus provides immediate benefit to RNA-Seq alignment, further
performance gains may be possible by harnessing the idea of streaming read
compression. Although implemented here as a customizable “attachment” to a
sequential aligner, the streaming compression algorithm could be integrated directly
into alignment kernels. One obvious benefit of this would be the ability to store paired-
end reads individually (with an extra bit denoting the read number) thereby leveraging
additional redundancy (see Figure 2.1). A more nuanced logical continuation of this
idea would be for aligners to use cache objects that retain in memory the alignments of
the mostly commonly occurring reads. If present, a skew toward very common reads

away from reads with few copies could create the perfect conditions for caching. The
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combinatorics of sequence length suggests an even greater benefit in storing and

reusing alignments of common seed sequences, either in a complete object or a cache.

There are three limitations of Oculus’s current implementation of streaming read
compression: FASTQ quality scores are lost, read names are lost beyond the first
instance of the sequence, and the order of the reads in the output will not be consistent
with normal aligner output. Quality scores and read names can be restored to the final
output at the cost of computation time and memory, which adds value for downstream
analyses such as SNP calling. However, the alignment itself is still performed without
quality scores, which can alter alignment results. In cases where little faith is placed in
the read quality scores this may be acceptable, but to mitigate this loss otherwise, we

suggest the use of read filtering or trimming as a preprocessing step.

2.7 Conclusion

Oculus provides a demonstrable speed improvement in aligning redundant data, with
high fidelity and low memory cost. Further, streaming read compression of redundant
reads is generally useful; aligning the unique set of reads is faster than the full set since
the overhead of compression is sufficiently low. We expect streaming read compression
will play an important role in RNA-Seq alignment and potentially other sequencing

applications in the future as data grows and algorithms improve.

2.7.1 Availability and requirements

Project Name: Oculus
Project Home Page: http://code.google.com/p/oculus-bio
Operating system: Platform independent
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Programming language: C++

Other requirements: Perl version 5 or higher (for configuration), g++ version 4.1.2
or higher (lower versions may work but are untested),
Bowtie or BWA (versions 0.12.7 or 0.5.9-r16, respectively), or
another SAM-compatible alignment algorithm

License: GNU GPL v3
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Figure 21 RNA-Seq compresses better than other sequencing platforms. Each
benchmark dataset was randomly subset to the lowest common denominator number of
reads (24 million) and read length (36 bases). Subsequently, Oculus computed the
unique read fraction for each dataset using the reverse-complement option. For data
with paired-ends available, 12 million pairs were used to computer %unique reads.
RNA-Seq #1, Exome #1, and ChIP-Seq #1-2 did not have available paired-end data.

32



100% 100%

A) B) 5
90% [ 0% =
80% . 80% |
ON ) .8-:0:-00:0-08“33”3"“ / ......... « Pai
. oo ! Paired-End

/ ——Single-End

w 60% \\ w 60% [
T ko] |
g \\\ g | /
& 50% ~ ¥ 50% —
SN L e
2 40% 2 40% L4 RNA-Seq 2
= \ \ = : RNA-Seq 3
X X H =
S 30% > 30% | —
0 — = ——RNA-Seq 4
20% 20% |— RNA-Seq 5
10% 10% (—
0% 1 1 1 ) 0% : 1 1 1 1
0 100 200 300 400 20 25 40 60 80 100
Sequencing run size (million reads) Read length (bases)

Figure 2.2  Compression improves for larger sequencing runs and shorter read
lengths. A) Each RNA-Seq dataset was trimmed to 50-base reads, and %unique reads
was computed for a series of simulated sequencing run sizes (between 10 million single-
end or paired-end reads and their original size). B) Each RNA-Seq dataset was
randomly subset to 79 million single-end or paired-end reads, and %unique reads was
computed for a series of simulated read lengths by trimming from the end (between 20
bases and their original read size). 25 bases is a typical sequence length that advanced
RNA-Seq pipelines such as TopHat may use for segmented alignment.
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AAAA chrl 001
AAAA reads alignments chrl_001
CGCG AAAA chrl 001 chrl 001
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AAAA Alignment chr2 001
CGCG chr2 001

: TTTT ! chr3 001

Compression Reconstitution

Figure 2.3  Flowchart depicting Oculus behavior with example sequences. As input
is parsed, new sequences are passed into the aligner in the order they are observed. The
aligner then performs normally, mapping each passed read to the database.
Downstream of the aligner, Oculus expands the alignment file to reflect the count of
each input sequence. Since compression and reconstitution are faster than alignment,
there is a net reduction in runtime. In reverse-complement mode (Section 2.4), Oculus
would remove the read sequence TTTT, having already seen AAAA, and print an
additional alignment: chr-001 with reversed orientation. By default, Oculus treats
AAAA and TTTT as distinct sequences — both would be passed into the aligner.
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Figure 24 Compressed sequence object (cseq) diagrams. Numbers below the data
tields indicate the O-based index in bits from the left end. (A) The sequence ACGTAA
contains no N’s, so its encoding bit is 0, indicating 2 bits per base. By that encoding, two
bytes are required to store 6 nucleotides, so the size field is 2. The sequence field is
populated by A =00, C=01, G=10, T =11, etc., with the right-most byte padded on the
right by zeros. (B) Compression proceeds as before, until the N nucleotide is
encountered, at which point the compression starts over and sets the encoding to 1,
indicating 3 bits per base. At that compression, now 3 bytes are required to store 6
nucleotides, and the size field is updated accordingly. The sequence field is populated
by A =000, C=001, G=010, T=011, N =100, etc., and again the right-end is padded
with 0's.
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Figure 2.5 Oculus provides a speedup that correlates linearly with %unique reads.
%Runtime represents the ratio of the runtime of Oculus, wrapping each aligner, to the
runtime of the aligner by itself (in CPU time). To best demonstrate fractional benefit,
Bowtie and BWA results are combined in this graph — individual run data is available in
Appendix A. Oculus provided a speed benetfit for points below the dashed line. These
datasets span a variety of sequencing types, read number, and read length, which we
hypothesized all contribute to the %unique reads for a sequencing run. Filled symbols
(rather than black) indicate single-end vs. paired-end. See Appendix A for individual
sequencing run characteristics such as read number and read length.
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Table 2.1 Relative processing speeds of Bowtie and BWA to Oculus, for single-
end and paired-end data.

SE PE
Sa/So Bowtie 0.079 0.023
BWA 0.017 0.015

sa is the aligner’s speed, and s. is Oculus's speed. Since speeds are measured in reads
aligned per second, these values indicate that Oculus runs faster than the aligners, and
relatively more fast for paired-end data than single-end data. As expected, Bowtie was
measured to be faster than BWA, particularly for single-end data. Both aligners were
run with default options.
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CHAPTER 3

Two-Pass Alignment Improves Novel Splice Junction Quantification

Citation: Veeneman BA, Shukla S, Dhanasekaran SM, Chinnaiyan AM, Nesvizhskii AL
Two-pass alignment improves novel splice junction quantification. Bioinformatics, 32:43

(2016).16¢

3.1 Abstract

Discovery of novel splicing from RNA sequence data remains a critical and exciting
focus of transcriptomics, but reduced alignment power impedes expression

quantification of novel splice junctions.

Here, we profile performance characteristics of two-pass alignment, which separates
splice junction discovery from quantification. Per sample, across a variety of
transcriptome sequencing datasets, two-pass alignment improved quantification of at
least 94% of simulated novel splice junctions, and provided as much as 1.7-fold deeper
median read depth over those splice junctions. We further demonstrate that two-pass
alignment works by increasing alignment of reads to splice junctions by short lengths,
and that potential alignment errors are readily identifiable by simple classification.
Taken together, two-pass alignment promises to advance quantification and discovery

of novel splicing events.

3.2 Introduction
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Since the first successful application of short read sequencing to cDNA in 2008, broad
uptake has proven RNA-seq an indispensable tool in the arsenal of molecular biology.%
However, for as long as it has existed, analysis of RN A-seq data has been complicated
by consequences of the gapped nature of RNA.% Briefly, when RNA is transcribed from
DNA, putative functional sequences (exons) are interspersed with sequences which are
later removed (introns). Because exons originate from noncontiguous genomic contexts,
separated by varying distances, the primary challenge in ascribing RNA sequences to
their genomic origins is gapped alignment, for which many good tools have been
developed.'®® These aligners typically support the use of annotated gene references,
which facilitate alignment to known splice junctions, while maintaining the ability to
discover novel splice junctions. This approach has the implicit effect of requiring greater
evidence for reads spliced over novel splice junctions compared with known splice
junctions, and is implemented either by aligning in multiple stages as in Tophat, or by
varying alignment scores for different splice junction classes as in STAR (Spliced
Transcripts Alignment to a Reference).!?>1% In all such tools, preference is given to
known splice junctions, which reduces noise but biases quantification against novel

splice junctions.

Two-pass alignment, a framework in which splice junctions are separately discovered
and quantified, has recently gained traction owing largely to massive speed
enhancements achieved by new aligners, which make aligning twice computationally
feasible.’>165 The rationale behind two-pass alignment is elegant: splice junctions are
discovered in a first alignment pass with high stringency, and are used as annotation in
a second pass to permit lower stringency alignment, and therefore higher sensitivity. In
the absence of annotation, compared to traditional single-pass alignment, an

independent analysis demonstrated that two-pass alignment with STAR provides
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comparable mapping rates (though more multimapping), similar mismatch alignment
rates, reduced read truncation, superior read placement accuracy, comparable indel
accuracy, improved splice junction recall, and better annotated splice junction detection,
with comparable discovery of true novel splice junctions at the cost of more false
positive discoveries.!® While the effects of two-pass alignment on transcript assembly
and transcript quantification have also been investigated, our primary interest is in
splice junction expression quantification, which is relevant to ascertaining the validity
of discovered splice junctions, and has not yet been thoroughly investigated.'* In light
of the evidence that two-pass alignment can improve alignment rate and sensitivity, we
investigated what advantages and disadvantages this approach might yield for splice

junction quantification.®

Here, we describe for the first time several appealing performance characteristics of
two-pass alignment. In an experiment in which known splice junctions are treated as
unannotated, two-pass alignment provided excellent quantification accuracy, and
significantly more accurate quantification than single-pass alignment. Underscoring the
wide applicability of the technique, these quantification benefits were observed across a
variety of RNA-seq datasets, including Arabidopsis samples. As a salient takeaway, this
corresponded to as much as 1.7-fold median deeper read coverage over novel splice
junctions (see Table 3.1 for full per-sample performance statistics). We go on to
demonstrate that two-pass alignment works by permitting alignment of sequence reads
by fewer nucleotides to splice junctions. Finally, while we find that two-pass alignment
can introduce alignment errors as previously suspected, we demonstrate that these are
relatively simple to detect. In summary, two-pass alignment significantly improves
quantification of novel splice junctions, and we recommend its use in studies concerned

with novel splice junction discovery and quantification.
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3.3 Methods

3.3.1 Datasets

We acquired twelve publicly-available Illumina paired-end RNA sequencing datasets
from five studies, with read lengths ranging between 48 and 101 nucleotides, and
library sizes ranging between 34 million and 202 million read pairs. These samples
were: two independent pairs of matched tumor-normal lung adenocarcinoma samples
from The Cancer Genome Atlas and the study by Seo et al.; two replicates of Agilent's
Universal Human Reference RNA (UHRR), sequenced at Illumina; four lung cancer cell
lines from the Cancer Cell Line Encyclopedia; and one leaf sample and one flower bud
sample from Arabidopsis thaliana (unpublished as of this writing).'*-'”° These libraries
were selected as high-quality representatives of the breadth of RNA-seq data types
typically encountered in biomedical research. Sample descriptions are provided in

Table 3.1, and full sample metadata is available in Table B.1.

3.3.2 Sequence Alignment

All sequence alignment in this study was performed with STAR (version 2.4.0h1), a fast
and sensitive alignment algorithm designed for RNA-seq, which we selected for
multiple reasons.'” First, because STAR was independently reviewed as performing
similarly or favorably compared to other methods in splice junction detection and
transcript abundance estimation, it reasonably represents modern alignment algorithms
in general.’®® Second, STAR provided transparent and fine-grained description and
control of critical alignment parameters, which we anticipated would be useful in
understanding its behavior. Next, STAR's use in recent publications concerning both

broad and sensitive detection of novel transcription suggested it may continue to be
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used for such purposes, and investigating increased sensitivity using it would be of
additional value.!”'”2 Finally, STAR's speed made aligning twice in succession more
computationally feasible. While aligning in two passes should theoretically affect all
single-pass alignment algorithms similarly, here we restricted our analysis to one

alignment algorithm for simplicity.

In addition to non-default parameters governing resource management, we followed
ENCODE's example as described in the STAR manual in using the following non-
default parameters: outFilterType BySJout, for consistency between reported splice
junction results and sequence read alignment results; alignIntronMin 20, to set the
minimum intron size to 20 nucleotides, for speed and to reduce the likelihood of
reporting short indels as introns; alignIntronMax 1000000 and alignMatesGapMax
1000000, to set the maximum intron size to one million nucleotides, longer than the
longest known introns, for speed and to reduce the likelihood of mistaking chimeric
splice junctions as normal introns; and alignSJoverhangMin 8, to require sequence reads
span novel splice junctions by at least eight nucleotides, for specificity. Deviating from
ENCODE, we kept: alignSJDBoverhangMin 3, to require sequence reads span known
splice junctions by at least three nucleotides (nt), as the suggested Int seemed likely to
exacerbate alignment errors, and set: scoreGenomicLengthLog2scale 0, to not penalize
longer introns compared with shorter introns, which in our experience was more

accurate. Full alignment parameters are available in Table B.2.

Human samples were aligned to GRCh38 (full), and Arabidopsis samples were aligned
to TAIR1O0 (all autosomes, plus mitochondrial and chloroplast genomes). We evaluated
multiple alternatives for human gene annotation, and selected the GENCODE-Basic
gene annotation (v21) as optimal for use in first-pass alignment (when used). It

provides a reasonably comprehensive and high-quality gene set, which excludes rarely
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observed or poorly supported transcript nominations in the complete GENCODE
database. GENCODE-Basic v21 is comprised of 107,529 transcripts, containing a total of
265,193 splice junctions, and is available on the GENCODE website. For Arabidopsis
gene annotation, we used TAIR10, acquired from www.arabidopsis.org (127,554 splice

junctions across 40,745 transcripts).

To generate data for the quantification accuracy experiments (described below), we
performed four types of alignment: single-pass alignment with and without annotation
(Annotation 1-pass and De Novo 1-pass), and two-pass alignment with and without
annotation (Annotation 2-pass and De Novo 2-pass). We implemented two-pass
alignment as three stages: alignment, reindexing the genome with all discovered splice
junctions covered by at least one uniquely mapping read, and alignment to the new
genome index. The alignment process is depicted as a flowchart in Figure 3.1. Higher
thresholds for including splice junctions in reindexing may be used, trading off
sensitivity for specificity, but we opted for higher sensitivity here. On a related technical
note, splice junctions discovered in the second pass, but not the first, are likely artifacts
of the alignment process (consistent with reported high false novel splice junction
"discovery" after second-pass alignment cited in the introduction), so we stress that step
4 is for quantification, not discovery. We also considered an approach in which
unannotated alignment is followed by alignment to a pool of discovered splice
junctions and the full annotated splice junction list, but it performed similarly to De

Novo 2-pass and is uncommon in the field, so we didn't consider it further.

3.4 Results and Discussion

3.4.1 Quantification Accuracy
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To test the splice junction quantification accuracy of two-pass alignment, we designed
an experiment as follows, using the sequencing datasets described in the methods and
Table B.1. First, we treated the read depth quantification of annotated junctions
generated by Annotation 1-pass alignment as correct (a "gold standard"). Annotated 1-
pass alignment is very commonly used in projects unconcerned with junction
discovery, and should be relatively unaffected by undetected novel junctions, so it is
therefore reasonable to believe it provides good quantification of known junctions.
Then, treating those splice junctions as if they were novel, we compared the
quantification performance of single-pass alignment without annotation (De Novo 1-
pass) and two-pass alignment without annotation (De Novo 2-pass), to the "gold
standard," essentially testing their ability to recapitulate standard quantification.
Because the De Novo alignment approaches had no prior knowledge of the annotated
splice junctions, they serve as good proxies for true novel splice junctions. We also
performed two-pass alignment with annotation (Annotation 2-pass) out of interest,
though that data was not reused in other analyses. Ratios of each alignment approach to
Annotation 1-pass are portrayed superimposed for a representative sample, the A549
cell line, in Figure 3.2A, and individually for all samples in Figures B.1-B.12. Extending
this analysis, we quantified the extent to which De Novo 2-pass alighment better
approximated the gold standard than De Novo 1-pass (i.e., relative quantification
accuracy). For each sample, for each splice junction, we calculated quantification
improvement as the difference in quantification error between De Novo 1-pass and De
Novo 2-pass alignment, as described in Formulae 3.1-3.2, showing x as the

quantification level of the given junction in each approach.

‘ Annotation 1pass - x ‘

Formula 31) error (x) = -
Annotation 1pass
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improvement = error(De Novo 1pass)-
Formula 3.2) """ ( vo Ipass)
error(De Novo 2pass)

Tukey boxplots of quantification improvement across splice junctions, per sample, are
plotted in Figure 3.2B, and the percentage of splice junctions improved upon are
provided in (Table 3.1). Summary statistics per sample, including the median increase
in read depth between two De Novo alignment passes, and percentage of splice

junctions improved are depicted in (Table 3.1).

From these analyses, we observe that two-pass alignment provides much more accurate
quantification of novel splice junctions than single-pass alignment. This is depicted
qualitatively for one sample, the A549 cell line, in Figure 3.2A as the blue distribution's
deviation from 1.0, compared with the green distribution, and quantitatively as
boxplots in Figure 3.2B as deviation from zero. As an example, the median
quantification in A549 was approximately 80% of the gold standard (green distribution,
Figure 3.2A), and correspondingly, two-pass alignment improved that quantification by
about 20% (A549 boxplot center, Figure 3.2B). Across the twelve samples tested, two-
pass alignment achieved 1.12x to 1.71x higher coverage over novel splice junctions than
single-pass alignment (Table 3.1). Similarly, two-pass alignment improved the
quantification of between 94% and 99% of the splice junctions in each sample, over

single-pass alignment (Table 3.1).

Next, we ascertained the absolute quantification accuracy of De Novo 2-pass alignment,
again in comparison to Annotation 1-pass alignment. For each sample, we counted the
number of splice junctions within various accuracy thresholds: "Identical to Standard,"
meaning De Novo 2-pass alighment produced exactly the same read count as

Annotation 1-pass; "Within 1%," meaning De Novo 2-pass produced a count within 1%
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of the Annotation 1-pass count (but not identical); "Within 5%," meaning De Novo 2-
pass produced a count within 5% of the Annotation 1-pass count (but not within 1%);
"Over-quantified," meaning De Novo 2-pass exceeded Annotation 1-pass by more than
5%; "Under-quantified," meaning De Novo 2-pass was less than Annotation 1-pass by
more than 5% (but not totally missed); and "Missed," meaning De Novo 2-pass
produced zero reads for a splice junction covered by at least one read in Annotation 1-

pass. Cumulative barplots for each sample are depicted in Figure 3.2C.

From this analysis, we observe that regardless of its relative improvement over one-
pass alignment, two-pass alignment provides accurate novel splice junction
quantification. Across the twelve samples, two-pass alignment provided "correct"
quantification (identical to Annotation 1-pass) of at least 75% of splice junctions, and
provided nearly correct quantification (within 5% accuracy) of at least 88% of splice
junctions. We speculate that variability in the percentage of splice junctions quantified
identically to the standard, versus those within 5%, was mostly driven by the number of
reads per sample - samples with twice as many reads were less likely to produce exactly
identical counts (see Table 3.1 for read counts). Instead of normalizing (e.g., read
sampling) to eliminate this effect, here we present the accuracy across unadulterated

samples.

One interesting (albeit, unfortunate) result was that De Novo two-pass alignment
completely missed between 2% and 9% of splice junctions per sample (Figure 3.2C).
These splice junctions were also completely missed by De Novo one-pass alignment
(A549 example: read depth ratio 0, Figure 3.2A), meaning they were not lost in the
second alignment pass, but we were still curious what might introduce difficulty in
aligning to these splice junctions. First, we recognized that most missed splice junctions

were low expressed, covered by only a few reads in the standard quantification (see
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Figures B.1-B.12, B panels), but some missed splice junctions did have high expected
quantification. We therefore sorted the splice junctions by their standard quantification
in descending order, and found a strong enrichment of AT/AC, GC/AG, and non-
canonical splice site motifs at the top of the list (Figure B.13). In particular, annotated
AT/AC and GC/AG splice-site containing splice junctions were most likely to be missed,
followed by non-canonical splice sites. This result makes qualitative sense, given that
STAR penalizes splice junctions with non-canonical splice sites, but the magnitude of
the effect was greater than we anticipated. We further note that, in practice, non-
canonical annotated splice junctions can still be readily aligned to by use of annotation
and aren't damaged by two-pass alignment alone, as evidenced by the Annotation 2-

pass distribution in Figure 3.2A, which missed very little (read depth ratio 0).

3.4.2 Why Two-Pass Alignment Works

Since we observed quantification differences between one-pass alignment and two-pass
alignment, we next investigated what effect might convey those differences. We
hypothesized that improved quantification was enabled by improved ability to align
reads by shorter over-hanging lengths, and were particularly interested in the effective
minimum spanning length for each alignment approach, expecting to see the
parameterized values of 3nt and 8nt per read for annotated and unannotated splice
junctions (unannotated splice junctions also required a single read span by 12nt). To test
this, we extracted splice junction spanning lengths for every spliced read in two
representative samples, TCGA-50-5933_N (48nt), and A549 (101nt). Spliced read span
length distributions are plotted as histograms for the two samples (Figure 3.3), overlaid

for both single-pass and two-pass alignment.
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Consistent with parameter selection, in both samples two-pass alignment was capable
of aligning reads by at least three nucleotides (to previously discovered splice
junctions), and one-pass alignment was capable of aligning reads by at least twelve
nucleotides (to novel splice junctions), with some ability to align reads by eight to
eleven nucleotides (these reads were present on splice junctions supported by at least
one other read spanning by at least twelve nucleotides). We note that in Figure 3.3A, the
number of reads spanning splice junctions by the longest amount (24nt) is
approximately half other counts because the read length (48nt) is an even number; there
are two ways for a read to span by 23nt (23-25 and 25-23), but only one way for a read
to span by 24nt, and we did not double count them. The relatively flat distributions

demonstrate two-pass alignment possesses little bias for longer or shorter reads.

Critically, while both the 48nt and 101nt libraries demonstrated the same differences in
ability to align reads by short spanning lengths, this difference represented a much
larger fraction of all spanning lengths in the 48nt library. In other words, the additional
ability to align reads by three to eleven nucleotides enables alighment of a greater
percentage of reads when the total read length is shorter. As further exploration of this
idea, we derived a simple mathematical model to predict how many more reads can be

aligned to splice junctions once they are annotated (Formula 3.3).

_L-(Ma*2)
L-(Mx*2)

Formula 3.3) r

Where L is the read length of the sequencing library, MA and MN are the minimum
nucleotide spanning lengths required by the aligner for annotated and novel splice
junctions, respectively, and R is the expected read depth ratio. Using this formula, the

predicted ratio of alignable positions for a 48nt library, with minimum novel and
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annotated spanning lengths of 12nt and 3nt is therefore: (48 - 3*2) / (48 - 12*2) =42 / 24 =
1.75, and for a 101nt library using the same lengths is: (101 - 3*2) / (101 - 12*2) =95/ 77 =
1.23. Across the twelve samples in our analysis, these expected ratios matched the
increase in read depth provided by two-pass alignment very well (Table 3.1). We
therefore conclude that improved ability to align reads by short spanning lengths is

sufficient to explain the quantification benefit of two-pass alignment.

3.4.3 Alignment Error Mitigation

While our testing supported two-pass alignment as a sensitive means to quantify novel
splice junctions, we carefully considered an anticipated drawback of two-pass
alignment. Summarized, this concern is that misaligned reads in the first pass could
seed the second pass with false splice junctions, which in turn could distract more reads
from their correct contexts, and amplify quantification of these false splice junctions.
Because singleton misaligned reads are easily disregarded with cutoffs in downstream
analysis, our primary concern was false splice junction quantification, rather than false
splice junction discovery. While we appreciated the accuracy and relevance of this
concern, even mis-alignment requires stringent sequence matching, and were therefore

unclear on exactly how and why these errors might occur.

In place of a read simulation experiment, which would have been difficult to correctly
model read distributions for, we instead opted to profile errors within real data,
following the rationale that detecting and eliminating these errors was preferable to just
knowing they existed. We therefore investigated the mitochondrial genome, which
contains 37 known, single-transcript genes, none of which are spliced. Barring

population structural variants and relatively rare transcriptional errors, any strongly
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supported splice junctions on the mitochondrial genome must result from alignment

errors.

We began by comparing read depths between the first and second pass alignment, as
major differences likely reflect splice junction amplification errors, and paid particular
attention to splice junctions where read depth increased five-fold or more between the
tirst and second alignment, as others were likely to be eliminated by minimum read
depth thresholds in downstream analysis. Through manual investigation of read
coverage data in the Integrated Genome Browser, we identified three factors which
seemed to typify supposed splice junctions with large depth changes. These were: a
high sequence read depth of the unspliced context, a high percentage of reads spanning
the splice junction by less than the exact sequence identity between the spliced and
unspliced contexts, and finally a high percentage of spliced reads spanning the splice
junction by very short overhang lengths, typically less than or equal to twelve
nucleotides (likely because twelve delineates reads which require and do not require
annotation). A genome browser example of a representative alignment error is

provided in Figure 3.4A.

We wrote specialized code to extract these three features for every splice junction from
the raw data, and plotted per-junction statistics vs. the change in read depth between
the two alignments, using "splice junctions" on the mitochondrial genome as true
positive errors [Figures B.14-B.17]. While each attribute was positively correlated with
erroneously high quantification, unspliced read depth was neither necessary nor
sufficient for alignment errors, and sequence identity was sufficient but not necessary.
We speculate that the sequence identity check may have failed due either to
polymorphisms, or sequence identity between two spliced contexts. The percentage of

reads spanning by twelve nucleotides or less appeared to perform very well in
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identifying alignment errors, and appeared not to typify annotated splice junctions.
Encouraged by this exploratory result, we tested its utility as an alignment error

classifier on a representative sample, the A549 cell line.

As a null hypothesis for a 101nt read, on average 12*2 / 101 = 24% of reads should span
by twelve nucleotides or less, so we selected 80% as a reasonable cutoff to indicate large
deviation from the average. We then calculated sensitivity using known alignment
errors, mitochondrial splice junctions which were quantified at least five-fold higher in
the second pass than the first pass, and calculated specificity using known true splice
junctions, annotated autosomal splice junctions which were not quantified at least five-
fold higher in the second pass than the first pass. Scatterplots and histograms resulting

from this analysis are depicted in Figure 3.4B.

This simple classifier performed very well: of 271 mitochondrial splice junctions with
tive-fold higher coverage in the second pass, 253 had 80% or more of the reads span by
less than 12nt (93.4% sensitivity); and of 154,307 annotated splice junctions which had
less than five-fold higher coverage in the second pass, only 288 had 80% or more of the
reads span by less than 12nt (99.8% specificity). Individual splice junctions are shown as
scatterplots in Figure 3.4B, with mitochondrial "splice junctions" depicted in red.
Histograms in Figures 3.4B support the scatterplots in demonstrating that more
unannotated splice junctions experience alignment errors than annotated splice

junctions, and the efficacy of the classifier.

To explain the phenomenon of these alignment artifacts, we speculate that real gapped
reads, which we attribute to rare transcriptional events or ligation artifacts of sequence
library preparation, provide false positive splice junctions to the second alignment pass.

If the normal transcriptional context (unspliced or spliced) has identical sequence to the
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talse splice junction, depending on scoring parameters the aligner could assign reads to
the false splice junction with equal likelihood. Worse, if a single-nucleotide
polymorphism exists in the normal transcriptional context, i.e., that the individual's
genome does not match the human reference genome at one position, potentially all
reads could get assigned to the false splice junction. If the transcript is highly expressed
(e.g.: mitochondrial genes), many reads may be misaligned, and the expression
estimation between the first and second alignment passes increases dramatically.
However, a common facet of these misaligned reads is that they all span the splice
junction by less than the length of true sequence identity. While we found determining
the normal transcriptional context's sequence difficult, measuring the effect of

misalignment (short spanning lengths), rather than the cause, proved very effective.

3.5 Conclusion

A defining characteristic of RNA-seq is its ability to discover and quantify novel
sequences. To maximize this ability in the context of splice junction analysis, we

thoroughly investigated two-pass alignment.

Consistent with parameter selection, we found that two-pass alignment enables
sequence reads to span novel splice junctions by fewer nucleotides, which confers
greater read depth over those splice junctions, and this effect disproportionately
benefits samples with shorter reads. The expected read depth benefit from enabling
shorter spanning lengths closely matched observed read depth increases across a
variety of RNA-seq samples, and affected nearly every splice junction per sample.
Further, by aligning significantly more reads to splice junctions, two-pass alignment
provides significantly more accurate quantification of novel splice junctions than one-

pass alignment, as evidenced by its tight concordance with gene annotation-driven
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alignment. This quantification is mostly very good, but non-canonical novel splice
junctions are likely to be missed using default parameters. Finally, while we observe
splice junctions which are likely alignment errors, we demonstrate that these are simple
to identify using the distribution of reads spanning the splice junction by short lengths,
here less than or equal to twelve nucleotides. In our experience, alignment errors are
consistent between samples, underscoring both their sequence-driven nature, and their
ease of identification. A similar alignment error classification method is utilized by
FineSplice, which also works by modeling splice junction spanning length distributions,
and would likely improve on the simple classifier presented here if extended from

Tophat results to STAR results.!”

Beyond these practical benefits, in the context of cancer transcriptomics we anticipate
great value in comparing known and novel splice junctions on equal footing, which is
enabled only by two-pass alignment. While two-pass alignment particularly benefits
shorter read sequences, and technology advances continue to extend read length, much
50nt-100nt read data already exists and stands to benefit from more sensitive reanalysis.
In addition to increased sensitivity for rare and low-expressed splice variants,
applications include resolving isoform structures of novel non-coding RNAs and genes
in non-human organisms, and supplying more confident novel isoforms for
proteogenomic database searching. Successful application here to Arabidopsis RNA-
seq data bolsters our optimism that the sequence-driven nature of two-pass alignment
would benefit analysis of other organisms as well. While we used STAR here, any
sequence alignment algorithm which permits scoring differences between annotated
and unannotated splice junctions could be run in a two-pass alignment configuration,

and should expect to see similar novel splice junction performance improvements.
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In conclusion, two-pass alienment significantly improves quantification of novel splice
P
junctions, and we recommend its use in studies concerned with novel splice junction

discovery and quantification.
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Figure 3.1 Two-Pass Alignment Flowchart. Center and right, stepwise progression
of two-pass alignment. First, the genome is indexed with gene annotation, here
Gencode-Basic. Next, novel splice junctions are discovered from RNA sequencing data
at a relatively high stringency (12nt minimum spanning length). Third, these
discovered splice junctions, and expressed annotated splice junctions are used to re-
index the genome. Finally, alignment is performed a second time, quantifying novel
and annotated splice junctions using the same, relatively lower stringency (3nt
minimum spanning length), producing splice junction expression. Input files and their
associated file formats are shown on the right. Left, pictorial representation of
individual steps, for an individual novel splice junction. Exons are illustrated in gray,
indexed splice junctions in black, individual sequence reads supporting a known and a
novel splice junction in blue and red, and read counts (splice junction quantification) in
blue and red boxes. Alignment parameters are provided in the methods, and Table B.2.
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Figure 3.2  Quantification Accuracy of Two-Pass Alignment. A) For the A549 cell line, splice junction quantification
from three alignment approaches was compared to Annotation 1-pass quantification of annotated splice junctions, testing
their ability to recapitulate standard quantification (units: uniquely aligned read counts). Ratios of each approach vs. the
standard across all splice junctions are shown as overlaid histograms. B) Across twelve representative RNA-seq samples,
across all splice junctions per sample, quantification error was measured for 1-pass and 2-pass De Novo alignment. The
extent to which two-pass alignment improved on one-pass alignment is plotted as Tukey boxplots. All samples showed
statistically significant deviation from the null hypothesis of zero improvement. C) Absolute quantification accuracy of
two-pass alighment was measured by comparing it to one-pass alignment with annotation, and splice junctions within six
accuracy thresholds were counted, across twelve representative RNA-seq samples. The samples are described in detail in
Table 3.1 and Table B.1. Panels A and B used a cutoff of at least 10 reads in the Annotation 1-pass alignment, and panel C
used a cutoff of at least 1 read in the Annotation 1-pass alignment.
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Figure 3.3  Spliced Read Spanning Length Distributions. For two samples, TCGA-
50-5933_N and A549, all spliced reads were extracted from their one-pass and two-pass
De Novo alignment results, and the number of nucleotides those reads spanned splice
junctions by were counted. Histograms of the number of reads spanning by each length
are depicted overlaid for the two alignment approaches, for the two samples. No
cutoffs were used.
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Figure 3.4  Alignment Error Classification. A) A representative alignment error from
Ab549 is depicted as an Integrated Genome Viewer screenshot, showing sequence (with
identity highlighted in yellow), read depth of coverage, and individual reads. B) Across
all unannotated (left) and annotated (right) splice junctions, the percentage of reads
spanning by less than or equal to twelve nucleotides was counted. These percentages
are plotted vs. the change in read depth between one-pass and two-pass De Novo
alignment, which when large indicates possible alignment errors, as scatterplots (top),
and as histograms (bottom), with false-positive mitochondrial "splice junctions"
identified in red. Using a cutoff of 80% (vertical red lines), 93.4% sensitivity for true-
positive alignment errors was found (mitochondrial "splice junctions" with five-fold or
higher change in read depth, red boxed area), while only 0.2% of true-negative splice
junctions were flagged, yielding 99.8% specificity (annotated splice junctions with less
than five-fold change in read depth, red boxed area). Panel B used a cutoff of at least 1
read in De Novo 1-pass alignment for the scatterplots, and at least 10 reads in De Novo
2-pass alignment for the histograms (to eliminate visual distraction at small even ratios
e.g. 1/2, 2/4), while the sensitivity and specificity analysis used no read depth cutoffs.
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Table 3.1  Sample Descriptions and Summary Statistics

Splice
Read Pairs Read Junctions Median Read  Expected Read
Sample Description (millions) Length Improved Depth Ratio Depth Ratio
TCGA-50-5933_T Lung Adenocarcinoma Tissue 48 48nt 99% 1.68x 1.75x
TCGA-50-5933_N Lung Normal Tissue 52 98% 1.71x ’

UHRR_repl 83 94% 1.25x

UHRR_rep2 Reference RNA 85 75nt 97% 1.96x 1.35x
LC_S22. T Lung Adenocarcinoma Tissue 52 98% 1.20x
LC_S22_ N Lung Normal Tissue 35 96% 1.18x
A549 92 97% 1.21x
NCI-H358 . 109 97% 1.19x

NCI-H460 Lung Cancer Cell Lines 105 101Int 97% 1.19x 1.23x
NCI-H1437 76 97% 1.19x
AT _flowerbuds Arabidopsis Flower Buds 192 97% 1.12x
AT _leaves Arabidopsis Leaves 202 95% 1.12x

Twelve publicly-available RNA-seq samples selected to reflect a variety of short read
sequencing data types. "Splice Junctions Improved" indicates the percentage of all splice
junctions in each sample which were more accurately quantified by two-pass alignment
than one-pass alignment. "Median Read Depth Ratio" was calculated as the median
across splice junctions, of the fold change in read depth between De Novo 2-pass
alignment and De Novo 1-pass alignment. Finally, "Expected Read Depth Ratio" lists
the benefit to be expected solely by improved ability to align reads by shorter spanning
lengths. No cutoffs were used.
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CHAPTER 4

Cohort-scale Analysis of Transcript Variation from RNA-seq

The work presented in this chapter is not currently being pursued as a standalone manuscript.

41 Introduction

4.1.1 Cancer Research Scopes

The current generation of cancer research exercises an incredibly diverse array of
methods to study cancer biology at all levels. Epidemiological approaches study broad
trends at the population level, and are best positioned to uncover environmental
carcinogens and genetic associations, particularly genome-wide association studies.?*174
Tissue profiling approaches study molecular aberrations, usually in DNA, RNA, and
protein, but sometimes metabolites and other molecules as well, in order to identify
common drivers and molecular symptoms of cancer.’® Patient-derived xenografts, by
which human cancer tissue is grown in a host organism (usually mice), are best
positioned to study physiological effects of treatment, particularly efficacy and
toxicology.”® On a related note, a relatively new approach, 3D tissue culture
("organoids") can be used to study human cancer tissues in a laboratory setting, but
outside of a host organism."”® Also using model organisms, but very differently,
genetically engineered mice are used to study physiological disease progression,
through how mice develop cancer themselves.”” Cancer cells taken from human

patients can be immortalized using a variety of approaches, and owing to their
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availability these cell lines are extremely popular for studies of gene function in a
cellular context, be it localization, physiological impact (e.g.: growth, invasion), or
molecular impact (e.g.: gene expression).””® Finally, there is a vast armamentarium of
methods to characterize individual genes, by their chemical properties, function, and

interaction with other genes which are too numerous to list.

While these approaches all have strengths, the approach that most directly aims to
discover molecular drivers of cancer is tissue profiling. A common shortcoming of the
model-based approaches is that they do not or cannot address the heterogeneity
between human cancers, at least in part because in many cancers this heterogeneity is
still incompletely understood. This specific reasoning is a driving force behind large
tissue profiling studies, such as The Cancer Genome Atlas, which aim to better

understand cancer through its heterogeneity in many cancer patients.!”

4.1.2 Cancer Tissue Profiling Challenges

That said, tissue profiling projects have many issues which must be overcome before
they are able to arrive at biologically meaningful results. First, tissue samples and
particularly RNA degrade quickly. Moreover, to reach the numbers of samples
necessary to survey heterogeneity, projects often survey samples from many
institutions, whose sample processing pipelines frequently differ. In short, not only
must sample degradation be overcome, but variable sample degradation must be

overcome ("batch effects").

Second, tumor tissue samples are variable in the relative proportions of cell types
present, a phenomenon often referred to as "sample mixture," "sample admixture," or

simply, "tumor content." This is to say, the cell type of interest is watered down by the

61



presence of other cells in the sample. In the example of prostate cancer, cancerous
prostate luminal epithelial cells are the target; everything else, smooth muscle,
tibroblasts, non-cancerous epithelium, immune cells, etc., is the background. While
signaling from the other cell types is appreciated to contribute to cancer progression,
and that appreciation seems likely to grow in the future, currently the primary interest
is still molecular characterization of the cancer cells. Similar to sample quality, the

analyst must also appreciate that tumor content is variable between tissue samples.

On a related note, multiple different cancer cell lineages may be present in a single
tissue sample ("intratumor heterogeneity"), which is interesting and presents its own
opportunities and challenges for research, but usually in tissue profiling the researcher
focuses on the most abundant lineage and therefore this is less critical to address than

the other issues presented here.

Finally, extensive differences exist in genotype and phenotype across cancer samples,
this is to say, they are diverse in their driver and passenger aberrations ("intertumor
heterogeneity"). Intertumor heterogeneity is really the main reason to study cohorts of
tissues (see the introduction to this chapter), but regardless it poses computational

challenges, and must be specifically considered in tissue profiling projects.

4.1.3 Addressing Cancer Tissue Profiling Challenges

Genomic characterization of cancer tissues, specifically genetic aberrations like point
mutations, insertions and deletions, and copy number aberrations, is relatively
straightforward to perform around sample challenges. DNA is more stable than RNA,
and DNA degradation, while non-random, mostly manifests as loss of coverage rather

than mutated bases. Variable DNA degradation can therefore be addressed in analysis
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as missing values. Next, DNA is present in cells in an integer number of copies, mostly
two (and nearly always two in normal tissue, excepting mitotic cells), and most tumor
tissue samples are dominated by a single cancer lineage ("clone"), so establishing
zygosity is usually tractable. Further, normal cells are mostly not mutated, with the
exception of germline polymorphisms which are also present in normal tissue, which is
usually also profiled for differential analysis. Therefore, tumor content can usually be
circumvented to identify mutations present in the cancer's DNA. Last, intertumor
heterogeneity is definitely not non-trivial for genomic variants, but owing to the binary
nature of mutations (present or absent), establishing recurrence at the nucleotide, gene,
or pathway level is achievable. On the back of the strength of the solutions to these

issues, DNA has largely taken center-stage in large tissue profiling studies.

In contrast, RNA degrades quickly, and in samples which have been enriched for
messenger RNA by polyadenylation capture (most current samples), this degradation
manifests as bias toward the 3' end of the transcript. The extent of this bias varies, and
dramatically affects the ability to detect and quantify transcript variants. Also in
contrast to DNA, the number of copies of RNA varies widely from cell to cell, so
disambiguating which RNA molecules in a tissue sample came from the cancer cells is a
serious challenge. It is famously difficult to identify genes which are down-regulated by
cancer cells, because the phenomenon of down-regulation is virtually indistinguishable
from genes expressed by stromal cells which are displaced in cancer.’® Finally, because
RNA quantity is decidedly non-binary, establishing recurrence at the cohort level
requires greater sophistication than for DNA. As a result of these challenges, RNA has
largely taken a backseat to DNA in large tissue profiling studies, particularly in the
context of integrating DNA and RNA data together in single analyses. For instance, in
the TCGA prostate manuscript, RNA is handled completely separately from DNA, with

its own clustering analysis for expression.!” In the most integrative large tissue
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profiling studies, RNA splicing is not investigated at all, though there are many studies

which focus solely on RNA splicing from RNA-seq in cancer tissues.!1”181-183

4.1.4 Aims of this Analysis Pipeline

In this analysis pipeline, we set out to study RNA splicing and transcript variation from
heterogeneous cancer tissue cohorts, and address or circumvent the issues raised in the
introduction to this chapter. We were specifically interested in identifying differential
splicing between cohorts, toward biomarkers, and outlier splicing in individual

samples, driven by putative underlying genetic variants, and possibly driver events.

We made a few critical decisions in development of the analysis pipeline. First, we
decided to perform tumor / normal comparison at the cohort level rather than the
sample level, owing to the paucity of normal tissue RNA-seq data : most studies with
tumor transcriptomes do not have per-sample matched normal transcriptomes. Second,
we pursued junction expression as the primary driver of the analysis, rather than exon
expression or isoform expression. Exon expression's discovery potential suffers from
the need to define exon boundaries, as well as variable 3' bias across samples. Isoform
expression suffers extremely from 3' bias, to the point where annotated isoforms with
the same 3' UTR divide expression equally regardless of how confident the annotation
is ; despite how popular isoform expression is, it has serious problems in this regard.'*
More generally, junctions are the lowest level unit which supports transcript variants,
and require the fewest assumptions to handle. Third, we decided to agnostically detect
differential abundance of transcript variants of any kind, including alternative
transcription start sites and end sites, which are not spliceosomally mediated and
therefore not "splice variants" in the precisely correct sense of the term. A second

example of this is genomic deletion of an exon in cancer : since the exon is not present in
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the DNA, transcription of that gene faithfully reflects the loss of this exon and is not
technically a "splice variant," though exon skipping and exon deletion are
phenotypically indistinguishable at the RNA level. In essence, we focused on the effects
of transcript variation rather than the causes. Finally, we decided to address detection
of differential splicing between cohorts, and outlier splicing in individual samples, as

similar but separate analyses.

4.2 Methods

4.2.1 Junction Quantification

The pipeline begins with input of fastq-formatted sequence data for individual cancer
tissue samples, either uncompressed or compressed. Alignment is then performed in
two passes as in Chapter 3, briefly described again here. Sequence data is aligned to the
GRCh38 / hg38 revision of the human reference genome, which has been indexed with
the gene annotation database gencode-basic (version 21).1” Gencode-basic provides a
high-confidence set of transcript annotations, and excludes annotations supported by
rare or weak evidence, and in this pipeline serves mostly to guide precise identification
of splice junction boundaries. GRCh38 is then re-indexed using junctions discovered in
the first alignment pass, and alignment is performed a second time to this newly-
indexed genome. Two-pass alignment serves to facilitate alignment to novel junctions,
and therefore their quantification - it is analogous to indel realignment in exome
analysis or fusion junction realignment in gene fusion calling, and could accurately be
renamed "intron realignment.” See Chapter 3, and Figure 3.1 for further alignment
details.’** Here, "annotated" and "known" junctions refer to the set of junctions present
in the gene annotation database we used, and "unannotated" and "novel" refer to the set

of junctions absent from that database. Many novel junctions described here have likely
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been detected by researchers before, but lacked the significance to be included in gene
annotation databases, meaning they have to be "re-discovered" in subsequent analysis.
Finally, the novelty we seek is in the form of their cancer-association, which is separate

from their novelty with respect to annotation databases.

Splice junction quantification is then supplemented with unspliced read depth over
splice junction edges as follows. First, all samples in the cohort under consideration are
aggregated, and a unique list of splice junction edges is generated. Next, read
alignment data is trimmed by the number of spanning nucleotides desired, in this case
three nucleotides to match the minimum spanning nucleotides for a splice junction.
Last, read depth is calculated for all samples in the cohort for all splice junction
positions detected in any sample. The result is the ability to query the number of reads
supporting an unspliced transcript at that position, which may be caused by intron
retention, or an alternative splice site. Quantifying unspliced depth is, as far as we are
aware, a novel innovation in this project, to extend the potential of splice junction
quantification to any arbitrary type of transcript variant. See Figure 4.1 for the full
transcript variant "bestiary” detectable using these methods. The combination of splice
junctions and "unspliced junctions" is capable of detecting any transcript variant, except
for UTR extensions (characterized by a lack of coverage, which is considerably harder to
analyze around biases), and internal tandem duplications of exons (which spliced

aligners are incapable of aligning to without prior anticipation).

Finally, once splice junctions and "unspliced junctions" have been quantified, the entire
cohort of samples is merged together into a [junction] x [sample] matrix of read depths,
which is then split by chromosome to facilitate parallel computing in subsequent steps,
and sorted in forward and reverse order to facilitate calling of differential splicing in

both forward and reverse orientation on the genome without significant memory use.
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4.2.2 Alternative Splice Junction Usage Analysis

Following the merger of the sample cohort, alternative junction usage analysis is
performed. The code is supplied with four lists of samples present in the merged
cohort : "control" samples, in most cases normal tissue, which is to be used as the
denominator in the analysis ; "test" samples, in most cases tumor tissue, which is to be
used at the numerator in the analysis ; "validation" samples, in most cases cell lines,
which are not used in calling but are carried through the analysis and presented
alongside the samples used in calling ; and "secondary control" samples, so far mostly
cultured normal epithelium, which are not used in calling, but have their fractions
recorded for subsequent bioinformatic analysis. The beauty of structuring the analysis
in this way is that it allows for arbitrary comparison of test and control sample cohorts,
where tumor vs. normal is the most obvious, but other nuanced comparisons such as
non-aggressive vs. aggressive cancer are equally valid analytically, and permits calling
of variants associated with progression or other clinical variables. The gene set
enrichment analysis (GSEA) software follows the same case/control framework and
served as inspiration for this approach.’® The validation cohort aggregated for the
projects described here is mostly comprised of cell lines, from the Cancer Cell Line

Encyclopedia and from Genentech.”185

The calling code works by considering a nucleotide position in the genome, and for all
of its detected splice junction partners and the unspliced junction at that position, asks
to what extent the test samples deviate from the distribution the control samples
establish. More precisely, it considers a specific splice junction and compares that
junction's abundance to the sum of other junctions, such that a strong call means a

significant change in fractional abundance of a splice junction between the test and
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control samples (usually framed in the "up in cancer" direction for clarity). Part of the
rationale for comparing junctions in this way is that it matches a junction to junctions at
the same nucleotide position, which is either exactly the same distance from the polyA
tail of the transcript, or an exon's length away, and therefore junction based variant
fractions are relatively unaffected by 3' bias. 3' bias in this analysis manifests as a loss of
coverage rather than a directional bias, and is therefore considerably easier to handle.
Again, all chromosomes, and forward and reverse orientation of calling, are split and

processed in parallel for speed.

Most precisely, non-negative integer read depths for each splice junction, and the sum
of other junctions that share its left edge in forward orientation (and alternately right
edge in reverse orientation), are computed for each of the case and control samples, and
are stored as two two-column, [number of samples]-row tables. Then, a Pearson's chi-
squared test is performed on the read depths from the control samples, testing the null
hypothesis that the joint distribution of cell values (read depths) is the product of the
marginal distributions of the rows (samples) and columns (junctions), using the
appropriate number of degrees of freedom, and the resultant chi-squared statistic is
retained. Simply put, a value is generated, indicating how variable the control samples
are around the average variant fraction, given their individual total depth. Next,
Pearson's chi-squared tests are performed on individual test samples, against a chi-
squared distribution using the average variant fractions in control samples as
population probabilities and the chi-squared statistic described above, to generate p-
values for individual test samples. Subsequently, the p-values for all the test samples
are aggregated using Fisher's method for p-value aggregation to produce a single p-
value, signifying the significance of the change in splice variant fraction between the

test and control samples. P-values for individual test samples are then corrected for
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multiple hypothesis testing (Bonferroni correction), and those above an alpha cutoff are

retained as outlier calls. See Figure 5.1 for an illustration of this analysis in action.

In addition to this statistical significance, effect size is computed as the average variant
fraction in test samples minus the average variant fraction in normals. This effect size is
meant to complement the significance of the change with a more absolute value, and is
inspired by volcano plots which contrast significance of an expression change against

the fold-change to robustify against counts near zero.

Ditferential and outlier calling is refined by the following cutoffs. Junctions are
excluded if they are unannotated and more than 20% of samples with ten or more reads
spanning that junction are flagged as alignment errors (to eliminate alignment errors).
Junctions are excluded if no test sample has at least ten reads spanning that junction (to
eliminate low-expressed transcriptional noise). Junction sets (keyed on a nucleotide
position) are excluded unless 20% of the control samples have ten or more total reads
across those junctions (to confidently estimate baseline variant fractions). Then, for
differential calling, the test samples must average at least one spanning read, and must
meet a minimum significance threshold (to reduce low confidence calls at the end), and
the significance contribution of a single sample to the aggregated p-value for a junction
is capped at 10"-16. For outlier calling, outliers must have at least ten spanning reads,
must have a variant fraction of 5% or greater, and must meet a significance threshold
(p-value cutoff) of 0.01 (again, to reduce low confidence calls). Variant fractions for a
junction are retained for clustering, if at least half of the samples are not "NA," and the

junction meets a minimum standard deviation cutoff.

The end result of this analysis is a ranked list of significantly differentially spliced

junctions between the test and control cohorts, a ranked list of significant outlier splice
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junctions in individual samples, and a table of variant fractions used later in clustering

analysis.

4.2.3 Correlative Bias Analysis

While splicing changes might exist and be called correctly between cohorts of samples,
we considered the possibility that some of the splicing changes could be driven by
factors other than the difference between cancer cells and their corresponding normal
progenitor cell type. Specific examples are loss of normal stroma in the tumor, sample
degradation in tumor samples, and any of a number of other biases. Rather than delve
into and correct these problems individually, which would be prohibitively time-
consuming and difficult to the point of impossibility in some cases (e.g., tumor content),

we devised a simple correlative analysis to address them.

Simply, we correlated per-sample, per-junction variant fractions with quantitative
metrics of sample quality. The rationale behind this approach is if a variant call is being
driven by a dimension of sample bias, that variant should correlate with that bias across
samples. As far as the pipeline is concerned, it takes a table with samples as rows, and
an arbitrary number of quantitative quality metrics as columns, and runs Pearson

correlation on each of the splice variant calls.

In application, the per-sample biases we computed or aggregated were : 3' bias,
measured as the log-ratio of last to first splice junction read depths, across genes ;
unspliced RNA, intended to reflect incomplete polyadenylation capture, measured as
the extent of intron retention across genes ; RNA integrity number (RIN), from the
Agilent Bioanalyzer, which uses the measured ratio of ribosomal subunits to estimate

the extent of degradation, as a direct metric of RNA quality ; alignment rate, as a stand-
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in for errors in sequencing library preparation ; FPKM, to test for variants which were
passengers of high expression ; tumor content, using estimates from single nucleotide
variant fractions in matched exome data ; stromal expression, using a panel of
established stromal genes ; androgen receptor activity, using a panel of established AR
target genes ; and an additional expression signature for neuroendocrine signaling,

which performed poorly and was not considered further.

To walk through an example of this method in more depth, the stromal signature came
from a study from our group in which prostate stroma and epithelium were separated
by laser capture microdissection and analyzed in parallel.’® 35 genes which were
significantly over-expressed in stroma compared with epithelium were identified, and
we took that list from the supplement of the manuscript (Table 4.1), and calculated their
expression for all of the samples presented here. Then, per-gene expression was
inverse-normal transformed across samples, principal components analysis was
performed, and the first principal component was taken as a shared axis of stromal
signaling, resulting in a single number for "stromal-ness," per-sample. Alternate
methods of aggregating expression performed similarly, including sum of z-scores of
FPKM and sum of z-scores of log-FPKM. Figure 4.2 demonstrates the process of
generating the signature. We applied this signature to a pair of splice variants strongly
suspected to be driven by a smooth muscle contribution (in stroma), alpha actinin-1
(ACTN1) and myosin phosphatase rho-interacting protein (MPRIP), and a clear
negative correlation emerges, demonstrating that the cancer-specific splice variant is
most enriched in the samples in which the stroma is most absent (Figure 4.3). We can
conclude from this analysis that these splice variants are likely specific to epithelium
rather than epithelial cancer, or at least more likely than variants which do not correlate
with stromal expression. Once considering all transcript variants together downstream

(at the end of the analysis), the variants most strongly nominated by this correlative

71



analysis are expected to be those most likely to derive from cell lineage differences
rather than cancer specificity. This process is essentially the same for the other biases,

though their sources vary as described before.

4.2.4 Transcript Variant Annotation

After calling alternative splicing at the level of the splice junction, the junction switch is
subsequently annotated. First, the up-regulated junction is labeled as annotated or
unannotated based on its presence in a gene annotation database (gencode version 23),
and is contrasted with identical annotation for the most abundant down-regulated
junction, such that the call is clearly labeled for instance as "Annotated to Unannotated,"
such that its novelty is clear. Second, the edges of the junctions are clearly labeled by
the most parsimonious explanation for those junctions within a single gene, in the gene
annotation database. In descending order, these are : exon edge, mid-exon region,
intron, 5' of the gene (upstream), 3' of the gene (downstream), and intergenic. For
instance, an alternative transcription start site junction switch might be labeled as "exon
edge / exon edge" to "exon edge / 5' of the gene." Lastly, and most obviously, the gene
from which the junction is most likely to have originated is clearly labeled. It's worth
stressing here that the analysis, until this point, uses genomic coordinates and is entirely
agnostic of gene definitions, except through use of annotated junctions to assist in
resolving ambiguous junction edges. For instance, the analysis is completely capable of
detecting alternative splicing of unannotated intergenic transcripts, though in those

cases the impact is more difficult to determine.

Finally, the code appends expression for the gene across samples, "gene of interest"

labels for the gene (e.g.: "kinase," "splice factor"), and variant fractions in the secondary

72



control samples. Joined tables are then generated for further analysis, plotting, web

visualization, and download.

4,25 Presentation

Completed analysis results are presented as web browser tables via customized web
code, with the analysis and annotation described above, as well as per-call scatter plots
which link to genome browser data for visual inspection. In addition, download links
are provided for tabular data sheets of variant fractions in the validation cohort, to
facilitate identification of cell line models for a given variant discovered in cancer tissue.

See Figure 4.4 for a demonstration of the web and genome browser visualization.

4.3 Results

As examples of the effectiveness of this analysis, here we will highlight two examples in

which we used identical or similar analysis to identify variants of interest in cancer.

4.3.1 MET exon skipping

Citation: Dhanasekaran SM, Balbin OA, Chen G, Nadal E, Kalyana-Sundaram S, Pan J,
Veeneman B, Cao X, Malik R, Vats P, Wang R, Huang S, Zhong J, Jing X, Iyer M, Wu
YM, Harms PW, Lin ], Reddy R, Brennan C, Palanisamy N, Chang AC, Truini A, Truini
M, Robinson DR, Beer DG, Chinnaiyan AM. Transcriptome meta-analysis of lung
cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes. Nat Commun.,

5:5893 (2014).%5
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In an analysis of 753 lung cancer samples, we detected c-MET exon-14 skipping in 15
samples, 14 of which occurred in driver- unknown samples, a 3.6% (14/386) recurrence
rate in this subpopulation (Figure 4.5). Importantly, in 5 out of 15 samples, the skipping
of c-MET exon-14 is probably caused by a mutation affecting the splice donor site
adjacent to the amino acid position D1010 as previously described.’® Our RNA-seq data

also validated the reported c-MET exon-skipping event in the H596 cell line.

4.3.2 ALK alternative transcript initiation

Following exciting research published by another group in the New England Journal of
Medicine, we applied an analysis pipeline similar to the pipeline described here to the
detection of alternative transcript initiation of the anaplastic lymphoma kinase (ALK),
to clinical research samples gathered at the University of Michigan, using targeted exon
expression instead because it was more readily available than splice junction expression
in the context of that cohort.®® See Figure 4.6 for the analysis of this variant in an

example case.
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Figure4.1 Transcript Variants Detectable by Junction Usage

Here we list anticipated types of transcript variants. In order, they are : exclusion or
inclusion of one or more exons ; alternative transcription start sites ; alternative
transcription end sites ; alternative splice donor ; alternative splice acceptor ; cassette
exon switching ; intron retention or transcription termination in an intron ; various
types of 5' and 3' transcription truncation events ; and internal tandem duplication of an
exon. In the diagram blue is constitutive and red is variable. Adjacent to the exon
structures are the junctions present in each, numbered by position from left to right, and
tinally whether that junction is detectable by alternative junction usage.
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Figure 4.2  Stromal signature definition

A) Expression of 35 stromal genes in Table 4.1 was estimated for prostate cancer
samples described in Chapter 5, was inverse normal transformed, and each genes
plotted overlaid as kernel density plots in the upper left. B, C) Then, principal
components analysis was performed, and the first and second principal components are
plotted in the lower left, and the amount of variance explained by the first ten principal
components is plotted as a barplot in the upper right. The fact that the first principal
component explains most of the variance is good - it means the genes really are on a
shared regulatory axis. Individual gene contributions are plotted in red. D) Finally, a
kernel density plot is displayed of the aggregated stromal signature across samples.

76



1.0

o
O O
o
o o@o@ o
© _| 8 (©) o
o o(§% @0
® & 0
O@oo
Oo CE@
o oqb(% o
e}

o 08)%0
© | o ©
o o o

o

ACTN1 & MPRIP Splice Variant Fraction

q‘ p—
o
Al
N
o
o
o
o
o
o pearson r’2 = -0.912
o | spearman r’2 = -0.903

I I I I I
-10 -5 0 5 10

Stromal Score

Figure 4.3  Stromal signature application

The stromal signature derived in Figure 4.2 is plotted against the average variant
fraction from two junctions of two genes (four total), actinin-1 (ACTN1), and myosin
phosphatase rho-interacting protein (MPRIP), across the cancer tissue cohort described
in Chapter 5. Pearson and Spearman correlations are listed in the lower left. By
demonstrating strong negative correlation, we may hypothesize a cause : that these
variants are specific to epithelium vs. stroma, rather than cancer epithelium vs. normal
epithelium.
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Figure 44  Web Portal and Genome Browser Visualization

A) Tabular view of individual splice variant results in a web browser. A variant of the androgen receptor (AR) is shown,
plotting reads for the reference splice junction (here, exon 3 to exon 4) against the variant junction ("AR-V7"), across
primary tumor and normal samples. Primary tumors are colored red, and normal tissues are colored blue in the
scatterplot, outliers are highlighted with black outlines, and two samples have their names highlighted for demonstration
purposes. B) The two samples highlighted in panel A, one splice-variant-negative normal tissue, and one splice-variant-
positive tumor tissue, have their direct read evidence plotted in the integrated genomics viewer (IGV).1%18 Read depth of

coverage is plotted in gray, and junctions are labeled in both red and blue because the sequencing libraries were not
strand-specific.
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Right panel: an activating MET exon-14 skipping event was observed in a total of 15 tissue samples across all three
cohorts. The total reads supporting each splice variant exon13-14 (blue), exon13-15(red) and exon14-15 (green) are
represented in the bar plot on the right. In 5 out of 11 TCGA samples where DNA mutation data were available, skipping
of MET exon-14 was accompanied by a mutation affecting the splice donor site adjacent to position D1010 (illustrated
inset on the right). In addition, one sample harbored a non-sense mutation g.chr7:116412024C>Gp.Y1003*, which
accompanied exon-14 skipping. Left panel: IGV browser view of splice site deletions/mutations in the corresponding

samples.
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ALK Alternative Transcript Initiation (ALK-ATI) in a Melanoma Patient

A) Example analysis of a melanoma patient for ALK-ATI. Points are individual cancer tissue samples, the X-axis is the
expression of ALK, and the Y-axis is the imbalance between the exons 3' (downstream) of the alternative transcript
initiation site, and 5' (upstream). The samples are then color-coded by the expression of the intronic region corresponding
to the ATI variant, gray for negative, blue for positive, and red for the presence of a gene fusion to ALK instead. This
patient is highlighted with a black outline, and has high expression of ALK, exon imbalance approaching that of gene

fusion cases, and expression of the ATI region. B) Genome browser visualization of the read evidence for this variant, in
two variant libraries of RNA-seq, where the gray track is read depth of coverage, and the blue bands show splice
junctions on the reverse strand (these libraries were strand-specific). This patient is clearly positive for this transcript

variant.
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Gene Current ENSG
ATP2B4 ATP2B4 ENSG00000058668.14
FER1L3 MYOF  ENSGO00000138119.16

CLU CLU ENSG00000120885.19

GSN GSN ENSG00000148180.16

MEIS2 MEIS2  ENSG00000134138.19

SMTN SMTN ENSG00000183963.18

TPM2 TPM2 ENSG00000198467.13

PTRF PTRF ENSG00000177469.12

CNN1 CNN1 ENSG00000130176.7

FHLA1 FHLA1 ENSG00000022267.16

MYLK MYLK  ENSGO00000065534.18

PCP4 PCP4 ENSG00000183036.10

ST5 ST5 ENSG00000166444.17

@ ZNF516 ZNF516 ENSGO00000101493.10
$| TGFB111  TGFB1I1 ENSG00000140682.18
Ol PMP22 PMP22 ENSG00000109099.13
g SVIL SVIL ENSG00000197321.14
8 GAS1 GAS1 ENSG00000180447.6
U.) SEC23A  SEC23A ENSG00000100934.14
2 MEIS1 MEIS1 ENSG00000143995.19
% RBPMS RBPMS ENSG00000157110.15
F1 TACC1 TACC1 ENSGO00000147526.19
PPP1R12B PPP1R12B ENSG00000077157.20
HMGN4 HMGN4  ENSG00000182952.4
CALM1 CALM1  ENSG00000198668.10

GATM GATM  ENSG00000171766.15

BTG3 BTG3 ENSG00000154640.14
AKAP12 AKAP12 ENSGO00000131016.16

LPIN1 LPIN1 ENSG00000134324.11
LAMA4 LAMA4  ENSG00000112769.18
DAAM2 DAAM2 ENSG00000146122.16
SCRN1 SCRN1  ENSGO00000136193.16

VCL VCL ENSG00000035403.16

CYLD CYLD ENSG00000083799.17

C7 C7 ENSG00000112936.18
Table 4.1 Genes used in stromal signature

Genes described in Supplemental Figure 1 of Tomlins et. al, which were upregulated in
laser-capture-microdissected stroma compared to epithelium.® On the left is the gene
name used in the original manuscript, the middle column is the currently accepted gene
name, and on the right is the ensembl gene id used in expression estimation. "Usual
suspect” genes, such as Vinculin (VCL), Myosin light chain kinase (MYLK), and
Tropomyosin 2 (TPM2), demonstrate the smooth muscle component of the stroma in
this list.
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CHAPTER 5

The Landscape of Transcript Variation in Prostate Cancer

The work presented in this chapter is in preparation as a manuscript.

5.1 Introduction

Prostate cancer poses a significant threat to human health. In the United States in 2016,
prostate cancer is projected to be the leading cancer type diagnosed in men, and second-

leading cause of cancer-related death in men.!

Early detection of prostate cancer may significantly inform treatment decisions and
improve patient outcomes. However, current methods to detect prostate cancer early,
such as measuring serum levels of the prostate-specific antigen (PSA), are famously
poor at delineating early aggressive prostate cancer from other benign diseases like
benign prostatic hyperplasia and unaggressive prostate tumors which are ubiquitous in
aging men.20224%50 The field therefore recognizes a need for biomarkers which both
detect aggressive cancer early and are specific versus both normal tissue and benign

disease.

Regarding treatment, aggressive prostate cancer is either universally or nearly-
universally dependent on signaling of the androgen receptor for growth and survival,
and the most common treatment courses are surgical removal of the prostate, localized

radiation therapy, chemotherapy, and ultimately androgen deprivation therapy
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("castration"), from which the cancer usually recovers, usually by metastasizing to bone,
lymph node, liver, or other soft tissue. When we study prostate cancer tissue, it is from
relatively untreated "hormone-naive" primary prostate tumors ("PCa"), and metastatic

castration-resistant prostate cancer ("mCRPC").

Several molecular landscapes of prostate cancer have already been established. These
include, in both PCa and mCRPC : point mutations and short insertions and deletions in
exonic regions of known genes ; copy number variants from the level of the gene to
whole chromosomes ; DNA methylation at CpG islands ; gene fusions ; and expression
of genes and intergenic long non-coding RNA 3032414517918 These studies have
underscored the inter-tumor heterogeneity of prostate cancer, but have uncovered
common themes as well, including mutation of AR cofactors, genome-wide shifts in
DNA methylation, activation of developmental signaling, cell-cycle deregulation, DNA
repair deficiency and knockout of "usual suspect” tumor suppressors, and most

strikingly, highly recurrent gene fusions of the ETS transcription factor family.30%

Still, there is a common sentiment amongst researchers that the mechanistic cause of
prostate cancer eludes us, and higher-level functional integration of these molecular
observations still seems likely to advance our understanding of the disease. Further,
critical open questions about prostate cancer's biology remain. While we understand
that AR signaling is necessary to prostate cancer, we also know that normal prostate
tissue is dependent on AR signaling, which casts some confusion on AR's role. And,
while ETS gene fusions are extremely common, their function still seems to evade us.
Finally, even considering all of the molecular subtypes the landscaping efforts have
characterized, 26% of primary prostate tumors did not have evidence for presence of a

main molecular driver, and could be characterized as "known-driver negative," though
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many of these tumors also exhibited broad-scale copy number aberrations which may

drive or help drive cancer progression as well.

Critically, in addition to leaving open broad-scale biology questions, the previous
efforts to define molecular landscapes of PCa and mCRPC have not done two things :
they have not systematically profiled RNA splicing, and they have not fully addressed
the critical need for early detection biomarkers; further biomarkers are still likely to be
useful despite the recent development of many diagnostic and prognostic biomarkers.
Biomarkers which improve on PSA include detection of TMPRSS2:ERG and PCA3
transcripts in urine using an aggregated prostate score ("MiPS"), detection of other
cancer-specific RNA such as AMACR, detection of PSA's alternate form pro-PSA or the
ratio of PSA unassociated with serum protease inhibitors in blood (percentage free PSA)
or other aggregate PSA measures ("Prostate Health Index"), and an array of protein
(ProMark; 4K Score), gene expression (Oncotype DX; Prolaris; Decipher), epigenetic
(ConfirmMDx), metabolomic (Prostarix), and even mitochondrial genome assays
(Prostate Core Mitomic) from various institutions.’*1*2> And, while RNA splicing has
been studied in prostate cancer before, using exon microarrays in PCa, whole
transcriptome sequencing in mCRPC, polyA RNA sequencing on a Chinese patient
population in PCa, and from perspectives of junction detection and pan-cancer analysis
in PCa, these efforts neither accounted for tumor content, nor integrated known
molecular subtypes, nor integrated together normal tissue, primary tumors, and
mCRPC, hampering both the development of splicing biomarkers and their functional

contextualization.193-197

5.1.1 Summary and specific aims
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In this study, we aim to survey the landscape of transcript variation over the
progression of prostate cancer, with specific aims of characterization of novel diagnostic
biomarkers, contextualization of variants against other known molecular aberrations
and cancer subtypes, contextualization of variants against AR signaling, investigation of
novel driving transcript variants, and finally investigation of transcript variants of the
AR itself. In particular, we aim to leverage analytical efforts described in Chapter 4 to
address and circumvent technical biases which have hampered previous efforts to

study RNA splicing in cancer tissue samples.

5.2 Methods and Results

5.2.1 Prostate cancer tissue samples

We aggregated a total of 578 polyA RN A-seq datasets, from 78 normal prostate tissue
samples, 370 primary prostate tumor tissue samples (PCa), and 130 metastatic
castration-resistant prostate cancer tissue samples (mCRPC), from three sources : The
Cancer Genome Atlas (TCGA), Stand Up to Cancer (SU2C), and a previously
unpublished cohort from the University of Michigan (Michigan).**'” To arrive at these
numbers, we excluded low-quality TCGA samples that TCGA themselves excluded,
and normal tissue samples which were contaminated with tumor RNA (Figure C.1).
We split the mCRPC samples by biopsy site, and ran per-cohort pairwise splicing
analysis as described in Chapter 4, pairing cohorts as shown in Figure 5.1. Briefly,
individual samples were aligned to the genome using a method we optimized to
accurately quantify novel splice junctions (see Chapter 3), unspliced coverage over
junction edges was also calculated, samples were merged to one large table, and

junction switching was determined in aggregate between each paired tumor cohort and
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normal cohort ("differential splicing"), and for individual tumor samples ("outlier

splicing"). See Chapter 4 for a full description of the analytical pipeline.

Significant differential splicing calls were subsequently intersected for the mCRPC
biopsy sites, requiring them to be called in each biopsy site independently (albeit, at a
very low significance threshold). This approach served to avoid detecting lineage

specific splicing changes between prostate and the independent biopsy sites.
P P g & P P psy

5.2.2 Application of correlative bias analysis

Additionally, correlative bias analysis was performed as described in Chapter 4, aiming
to determine if significant junction switches were explainable by sample variations in 3'
bias, total unspliced RNA, RNA integrity, alignment rate, tumor content, aggregate
stromal expression, aggregate AR signaling, aggregate neuroendocrine signaling, or
expression of the gene the junction came from. Derivations of the per-sample scores for
these nine metrics are describe in full in Appendix C (Table C.2, Table C.3, Figures C.2-
C.7), and the sample annotation table with their numerical values are presented in Table
C.1, excepting per-sample per-gene expression, which is too large to present here. Per-
junction correlative values were tracked along with every call and are retained in

tabular presentation of the results.

By far the most important of these was the effort to disambiguate tumor content and
stromal expression from splicing changes; without having done so, variants specific to
the epithelial lineage vs. stromal lineages are impossible to distinguish from variants
specific to cancerous epithelium vs. normal epithelium. In an attempt to further refine
this approach, we additionally tracked variant fractions for all junctions in a pool of

cultured normal prostate epithelium (PrEC cells), and used a combination of the two
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methods to filter lineage-specific junction switches. Precisely, we flagged junctions as
lineage specific rather than cancer specific, per-cohort, if they were in the top 20% of
junctions correlating with stromal content and PrEC cells expressed the transcript
variant at above 25% variant fraction, then took the union of the cohorts. Figures C.8-
C.10 demonstrate this flagging process. Calls which were not identified as lineage-

specific were retained in subsequent differential splicing analysis.

5.2.3 Differential junction analysis

After filtering cell lineage-specific variants, we further filtered junctions owing to
antisense transcription and readthroughs, performed Bonferroni multiple hypothesis
correction against the total number of junctions tested to generate g-values, stringently
counting at the beginning of the pipeline, and plotted significant differential junction
calls for the three cohorts on a shared scatterplot, with significance per-cohort on the X-
axis, and effect size as the absolute average change in variant fraction on the Y-axis
(Figure 5.2.A). This analysis was inspired by volcano plots, in which statistical
significance is supplemented by fold-change to clearly distinguish between variants

near zero and those with biologically significant effects.

Next, we took the 25% most significant calls from each cohort with an average variant
fraction shift of 10% or greater across samples (dotted lines, Figure 5.2.A), and plotted
their count intersections in a Venn diagram (Figure 5.2.B). Considering the genome-
wide nature of this analysis, the two primary tumor cohorts showed very strong
overlap, but the mCRPC samples had many more unique variants. We interrogated
these, and the vast majority were unspliced calls, which upon further inspection
appeared to be driven by a pattern of intron retention in a subset of the mCRPC

samples. Still, many variants were specific to the primary tumors with respect to the
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mCRPC samples, and may reflect the actual nature of disease progression.
Distributions of bias correlations for the union of the three cohorts' differential splicing
calls are plotted in Figure C.11 and without unspliced calls in the SU2C cohort in Figure
C.12.

Unspliced calls in the SU2C cohort may reflect either a global pattern of intron
retention, a previously unknown dimension of sample degradation, or both. On one
hand, many of these calls inversely correlate with RIN (Figure C.11), which strongly
implicates sample quality. On the other hand, the nature of the unspliced calls is
inconsistent with biases we have previously observed, and frequently involves multiple
introns per gene, but critically, not all of them (Figure C.13). Further work is needed to

investigate this phenomenon.

Next, we investigated the 11 calls made by all three cohorts. Two of these were caused
by expression of overlapping genes on opposite strands (antisense expression), missed
because the overlapping region of the gene was unannotated, so we excluded them
from further characterization. We additionally noted that a single call made by the two
primary tumor cohorts was shared by 3/4s of the mCRPC biopsy site calls, and therefore
included it in this characterization. These ten calls (11 - 2 + 1) are presented in Table 5.1.
The variants are mixed with respect to prior annotation status (i.e., their presence in the
gene annotation database), and whether the variant is driven by a spliced junction or
unspliced junction, but intriguingly all ten variants are expected to reflect alternative
transcription start sites (ATSS). Furthermore, manual interrogation of AR binding in
ChIP-seq data of VCaP at these variants' TSSs uncovered strong AR binding at most of
them. We therefore hypothesized that AR mediates a broad pattern of alternative

transcription starting in prostate cancer.
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We validated the PDLIM5 ATSS variant in MDA-PCa-2b and VCaP cells, which were
respectively expected to express the ATSS (tumor form) and full length (normal form),
using the following primers : Total F, R : attctttgcccctgaatgtg, gtagggttcaccatccteca ;
ATSSF, R : ttggttggacattgcataaaa, acagggctcctttctectet ; Full length F,R :
tccacaaacaacatggcecta, tcagtgcagatggagactgg. PCR and RNA-seq agreed very well on the
variant fractions in these samples, bolstering our confidence in the estimates in tissue

data (Figure 5.3).

5.2.4 Alternative transcription start site analysis

Owing to the junction-centric nature of our nomination process, the differential calls
were not initially labeled by whether they were consistent with a TSS. We therefore
mined three gene annotation databases, Gencode (high quality merged annotations),
AceView (from cDNA), and MiTranscriptome (from cancer transcriptomes), for
previously identified first exons, and labeled our calls as TSSs if the tumor form was
associated with a known first exon.”>1”1% Of the intersection of 316 calls in Figure 5.2
(excluding unspliced junctions in SU2C), 123 (39%) were consistent with known first
exons. Deeper characterization of these variants, particularly their possible association

with AR, is an area of further research.

5.2.5 Androgen receptor transcript variants

Finally, we investigated the tissue samples for the presence of truncating transcripts of
the androgen receptor, notably AR-V7, which are of intense clinical interest and may
mediate and/or prognosticate disease recurrence and castration resistance.'”” Briefly, we
found evidence for both AR-V7 and an unspliced transcript at the locus, which were

both expected to be truncating, at a variety of relative (to full-length) and absolute
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expression levels. See Figure 5.4 for a targeted analysis of AR-V7 expression. Further,
while high relative levels of AR-V7 were randomly distributed with respect to AR
amplification, they were mutually exclusive with point mutations in the ligand binding

domain which are expected to mediate castration resistance (Figure 5.4.C).
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Figure 5.1 Transcript variant calling in prostate cancer tissue cohorts

RNA-seq data from normal prostate tissue, primary prostate tumor tissue, and
metastatic castration-resistant prostate cancer was aggregated and analyzed as shown.
Full descriptions of the bioinformatics and biostatistics analysis performed here are
presented in Chapter 4. Note that mCRPC calls were intersected between the four
biopsy sites to eliminate biopsy-site-lineage-specific variants from nomination as
cancer-specific variants.
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Figure 5.2  Differential splicing calls in three prostate cancer cohorts

A) Differential splicing analysis was performed on primary tumor tissue samples from
TCGA, primary tumor tissue samples from Michigan, and mCRPC samples from SU2C,
tiltered for variants not likely to be driven by cell lineage differences, antisense
expression, or readthrough expression, as is plotted here on a shared axis. Significance
of the splicing switch is plotted on the X-axis as log-g-values, with scale labeled per-
cohort, and the average variant fraction shift is plotted on the Y-axis. Highlighted
variants are labeled and identified by outline symbols, and show each of their
occurrences in the cohort calls. Dashed lines indicate a 10% variant fraction shift
(horizontal, in black), and the top 25% most significant calls in each cohort (vertical,
colored as the cohorts). B) Venn diagram of the upper right quadrants defined by the
dashed lines in panel A. Calls unique to the SU2C cohort were further split into spliced
calls (purple) and unspliced calls (gray) to highlight a broader pattern of unspliced
junctions in this cohort. The 11 shared calls in the center are further characterized in
Table 5.1.

92



1600

1400

1200

1000

800

600

400

Variant Read Depth, RNAseq libraries

200

Figure 5.3

MDA-PCa-2b
VCaP
800 100C

Reference Read Depth, RNAseq libraries

fraction as ATSS / (ATSS + Full Length).

0.90

0.80

0.70

0.60

0.50

0.40

0.30

Variant Fraction - RNA-seq

0.20

0.10

0.00

0.00

PCR Validation of PDLIM5 ATSS variants in MDA-PCa-2b and VCaP

A) Here we plot read depth spanning an unspliced junction consistent with an ATSS variant of PDLIM5 on the Y-axis,
and read depth spanning the normal splice junction at that locus on the X axis. Note that MDA-PCa-2b is positive for the
variant, and VCaP is negative. B) Variant fractions from panel A are plotted on the Y-axis, along with variant fractions
estimated from qRT-PCR, taken by normalizing abundance estimates from PCR to the total transcript, then taking the
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Figure 5.4

( Exon.3-Exon4 + Exon.3-Exon.v7 ) Read Depth

Androgen receptor transcript variants in mCRPC

A) RNA-seq depth of coverage over the last thousand nucleotides of full-length AR's 3' UTR, and the last thousand
nucleotides of AR-V7's 3' UTR, was computed and plotted per sample for polyA libraries. B) Similarly, RNA-seq depth of
coverage over the AR-V7-specific splice junction was computed and compared with read depth over the canonical
exon3:exon4 splice junction for capture-RNA-seq libraries. In both panels A and B, a robust linear model is fit to the
samples (shown in blue), and samples over three standard deviations away from the fit are labeled as outliers in red, and
identified by sample name. C) 18 outlier samples identified in panels A and B, which express either a relatively high level
of truncated AR (by UTR expression), or AR-V7 (by splice junction expression), are show in a Venn diagram with samples
with detected AR SNVs, and detected AR copy-number gain. Overlap of the splice variant samples and CNV samples is
statistically insignificant, and negative-overlap of the splice variant samples and SNV samples, while zero (and plausibly
biologically significant), is also statistically insignificant.
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Expression Average Variant Fraction

Gene Annotated Spliced | ATSS AR [Tumor CRPC |PrEC TCGA.N UM.N TCGA.T UM.T Su2C
ACSL5 no no yes yes 0% 2% 4% 25% 18% 15%
ACSM1 yes yes yes yes| 11 ™" - 13% 17% 82% 78% 68%
ARHGEF26* no no yes yes 1 1 0% 28% 9% 74% 46% 33%
CPNE4 no yes yes yes 0% 3% 2% 16% 14% 16%
MAD2L2 yes yes yes no 3% 5% 7% 16% 18% 20%
PDLIM5 no no yes yes| 11 1 1% 10% 20% 62% 73% 57%
PEX10 no no yes yes 0 1 24%  22% 8% 49% 25% 34%
PRKACB yes yes yes yes 6% 22% 12% 47% 37% 39%
TPM1 yes yes yes no ! ! 19% 5% 6% 22% 29% 53%
TRPM4 no no yes no 0 4% 2% 2% 34% 21% 21%

v : two-fold down, * : two-fold up, ** : five-fold up, blank : unchanged (=)

*called in 3/4 met sites in SU2C, detected in 4/4
**2/11 antisense artifacts excluded

Table 5.1 10 transcript variants called in three prostate cancer cohorts

The 11 transcript variants identified in the two PCa cohorts and mCRPC cohort in Figure 5.2.B were investigated, two
were caused by antisense expression and were excluded, and one variant did not reach statistical significance in a single
mCRPC biopsy site and was included here (ARHGEF26). The tumor-specific variant was checked for prior annotation
status, whether it was spliced or unspliced, whether the variant was consistent with an ATSS transcript, whether the TSS
had demonstrable enrichment of AR in ChIP-seq of VCaP cells, and whether expression was altered in cancer compared
to normal tissue. These columns are shown adjacent to the average variant fractions in the tissue cohorts and PrEC
samples.
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CHAPTER 6

Concluding Remarks and Future Directions

6.1 Sequence Compression

In chapter 2 of this dissertation, I presented a novel algorithm and accompanying
software to accelerate sequence alignment using the unique set of reads from a
sequence library. This work was built on (and succeeded by) two premises : first, that
sequence alignment is reproducible, in other words that two instances of the same
sequence should align to the same place in the genome, and second, that pre-processing
and post-processing sequence reads to eliminate redundancy was computationally
cheaper than performing the redundant alignments. I used exact match hashmaps
because it was the most straightforward, both because hashmaps are simple to
implement, and because it did not necessitate access to the internal engineering of the
Burroughs-Wheeler style sequence aligners (which is complex). The first immediately
obvious extension of this work could be to instead perform this kind of "alignment
caching" in the internal structure of the aligner, where for instance k-mers used to seed
alignments could instead be stored in place of sequence reads, or related variants on
this idea. On another related note, other scientists have worked to eliminate
redundancy across samples, using I believe exact sequence read matching (identical to
the approach presented in chapter 2 here), but instead engineered with the Hadoop /

MapReduce framework.#
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The much more sophisticated extension of this work, that I still strongly suspect would
greatly accelerate alignhment, is to store input sequence reads in more advanced
redundancy-eliminating data structures than a simple hashmap. Specifically, what I
would propose is that, as with the genome, the input sequence reads could be
compressed in a Burroughs-Wheeler transformed suffix trie or suffix array, and then the
reads and genome could be compared in such a way that whole branches of reads
which don't map could be eliminating from consideration (or softclipped) at once. An
even farther-reaching idea would be to collapse multiple samples together into a single
massive one of these transformed suffix tries - for instance entire cohorts, or more
grandiose, entire sequence repositories like the sequence read archive (though, that
repository also already has a search function using BLAST). By storing sample
identifiers along with the sequence it would always be possible to return to the initial
per-sample fastq files (except again for the quality scores, which would require special
handling). This idea is not so different from how Web-BLAST is set up, and would
permit querying sequences against not just the reference genome, but other samples as
well. Constraining this problem to tangible goals, and the engineering, would be the
main challenges to its completion. Storage in particular remains a major obstacle for

sequencing centers.

Two noteworthy developments have occurred in this area since our method was
published. First, both personal and cloud computing resources (generally) have access
to more memory than before, which enables less compressed storage of the genome,
and therefore faster alignment (e.g., STAR).1? I expect this method of alignment
acceleration undermines our method, owing to our more-or-less static compression and
decompression steps, but does not undermine the concept of acceleration through input
reduction - only the algebra on whether it's worth doing. Second, the binary alignment

map format (BAM), which stores alignment results, has been dramatically improved
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upon by the compressed alignment map format (CRAM).?® This format works by
storing sequence positions in the genome rather than sequences themselves. I expect
the advent of CRAM would have little bearing on accelerating alignment by means of
sequence read compression, but it does undermine a possible secondary purpose of
compressing reads, which is to reduce storage space. However, index-based storage
formats like CRAM may at the same time provide further opportunities for acceleration

as well, and should certainly be considered by scientists continuing work in this field.

6.2 Longer read sequencing and tissue profiling

Much of the methodological work presented in this dissertation concerns handling of
short sequence reads, and using those short sequence reads to interpret splicing and
transcript changes at the level of full messenger RNA molecules. However, as new
sequencing technologies continue to be developed, the length of sequence reads that
can be attained accurately and cheaply will continue to grow. Current technologies
such as the Single Molecule, Real-Time sequencing technology from Pacific Biosciences
can already attain read lengths longer than ten kilobases (and reportedly, as long as
sixty kilobases), and these methods have been used to profile mRNA in addition to
DNA .2 It seems like a matter of historical inevitability that full-transcript, full-
transcriptome profiling will eventually be both possible and cost-effective for large

sample cohorts.

That said, merely being able to sequence longer reads will have no bearing on the RNA
degradation prevalent in patient tissue samples. RNA is unstable and its degradation
(which mostly manifests as truncated molecules, rather than nucleotide changes)
dramatically complicates analysis of the transcriptome, but the insights that tissue

profiling offer force us to tackle the issue head-on rather than study cultured samples
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instead. Further, one of the necessary steps in RNA sample preparation is to enrich for
RNA species other than ribosomal RNA, which is generally regarded as less interesting
and would otherwise account for the majority of transcripts. In most tissue studies,
poly-adenylation capture is performed, by pulling down molecules with poly-adenine
stretches using complementarity to poly-thymine molecules. In the context of RNA
degradation though, this manifests as bias toward the polyadenylated end of the
transcript (the 3' end). Longer read sequencing will also not help to address this issue.
However, I do think that longer read sequencing could further improve other methods
of enriching for non-ribosomal-RNA, particularly the method of exome-capture RNA-
seq presented by our group, with possibly dramatic effects on the ability to analyze
transcript variation from those molecules.?*? In the end, the most critical component to
analyzing RNA from tissue samples is simply starting with less-degraded RNA, by

means of rapid sample processing.?®

6.3  Tissue Profiling and Cell Lineage Deconvolution

In the work presented in this dissertation, we presented some simple and novel
correlative methods to analyze around the "tumor content" problem, and showed some
success in terms of eliminating transcript variants specific to epithelium vs. stroma in
prostate. With these methods we're really only scratching the surface of this problem
though, and there are two big ways to advance the analysis on this issue. First, lineage-
specific expression signatures could be generated for more, and more-specific solid
tissue cell lineages than we performed here, akin to deconvolution efforts already
ongoing with leukocytes.?** This would push the deconvolution effort more onto the
side of bioinformatics, and it remains to be seen how successful these approaches will
be. Alternatively, deconvolution could be performed at the level of sample preparation,

using laser-capture microdissection, or possibly instead laser ablation of undesired cell
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lineages.!®® Although current research attention is squarely on the transcriptome of
cancer cells, I suspect that soon or eventually researchers will also be interested in the
transcriptional profile of other present cell lineages (notably stroma), which is likely to
perform an enabling role in cancer by means of paracrine signaling, so laser-capturing
individual lineages would be superior to ablating specific lineages (though, obviously it
would depend on the specific study). My understanding is that current methods to
perform microdissection are both intensely laborious and slow (meaning RNA
degradation as well), so further engineering developments in this direction would be
welcome. Single-cell sequencing also bears discussion in this context, however, the
necessary step of disaggregating single cells from solid tumors involves cleaving cell
surface proteins, with effects on the signaling pathways the cells express - it's unclear if

and how this could be addressed for effective transcriptome profiling.

6.4 Protein-level Analysis

As discussed in the introduction to this dissertation, our main interest in studying
splicing is really on the effects those transcript changes have on mature proteins.
However, owing to the database-search-centric nature of mass spectrometry, it's
difficult to perform de novo sequence discovery from the current generation of
proteomics tools, so our focus instead has been on RNA. To address this issue, an
exciting new field termed proteogenomics has arisen, wherein RN A-seq data is used to
predict protein sequences, in order to drive mass spectrometry database searching.!3313
I expect that routine and paired analysis of RNA and protein in this way could
dramatically advance cancer tissue profiling studies, and the National Cancer Institute
agrees in having founded the Clinical Proteomic Tumor Analysis Consortium, which
aims to perform paired transcriptome and proteome profiling of human cancer tissue

samples. It is critical to emphasize here that proteins are more stable than RNA
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molecules, particularly in archived formalin-fixed paraffin-embedded samples which
comprise the vast majority of existing cancer tissues samples, but in biofluids and
staining assays as well, and are therefore better positioned as possible biomarkers. Our
efforts in studying RNA have possible application toward characterizing their
corresponding protein biomarkers, but efforts to study proteins more directly will likely

more directly advance this biomarker effort.

As a final comment, if it could be developed, quantitative high-throughput protein
sequencing would be similarly significant to biological research as high-throughput
DNA sequencing was, and would define decades of future research. For now, directly
sequencing proteins in high-throughput, or heretically going against the central dogma
of molecular biology and reverse translating protein to nucleotides in order to sequence
those, still seems like science fiction. For as well-studied as DNA and RNA have been,

proteins remain a vast frontier.

6.5  Epitranscriptomics

While we appreciate the significance of covalent modifications to DNA in the form of
methylation and other marks, DNA's protein scaffolding (histones) also as methylation
and other marks, and other proteins in the form of post-translational modifications,
surprisingly little attention has been paid to the significance or landscape of covalent
modifications to RNA. Indeed, RNA methylation is a known phenomenon, with
apparent physiological function.?>2% I would predict that further efforts to profile
landscapes of aberrations in cancer will likely eventually also profile covalent
modifications of RNA, similar to the surge of recent interest in circular RNA molecules
in human cancer. I expect such covalent modifications could easily affect sequence

recognition and therefore binding of cofactors, in translation, formation of RNA
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secondary structures, and other pathways which use complementarity like microRNA-

mediated silencing.

6.6  Further Applications of Junction-Based Splicing Analysis

Briefly, immediate extensions of the work presented here, on alternative splicing
analysis at the level of the junction in cancer tissue cohorts and application to prostate
cancer, include application of this style of analysis to (all) other cancer types (though,
the sample mixture issue remains not completely resolved), retooling the analysis
toward application to single cancer tissue samples ("precision medicine"), defining and
applying signatures of splicing aberrations associated with dysregulation or mutation
of specific splicing factors, and finally extending biological characterization of our
results in prostate cancer and ultimately translating those results to clinical tests

(particularly, biomarkers).

6.7 Concluding Note on Cancer Landscaping

The field of cancer research continues to profile aberrations in larger and larger cancer
tissue sample cohorts, in DNA, epigenetics, RNA, RNA Splicing, proteins, metabolites,
and probably more dimensions of molecular biology in the future. It seems inevitable
to me that researchers will eventually run out of aberrations worth characterizing. At
that point, the focus of the field will have to shift to determining how cancer really
works, rather than cataloging everything that goes wrong with it. This functional work
will be an exciting challenge, because it will necessarily force us to develop deeper
understanding of human biology en route, and I expect our understanding of normal
human biology and cancer biology to advance lockstep well into the twenty-first

century and beyond.
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APPENDIX A
Supplemental Data for Chapter 2

Genome RNA-Seq Chipseq Exome
Oculus performance statistics #1 #2 #3 #1 #2 #3 #4 #5 #1 #2 #1 #2 #3
Run MDA-MB-231 (IDEA)| T-47D (IDEA)| ERR000589| Bodymap | MDA-MB-231 T-47D BT-20 BT-474 Broad - H3k4-me3| Uw - TFBS |SRR098490| SRR098492|SRR171306
SRR299316 +
Sequence read archive accession id SRR097850 SRR097852 | ERR000589 | ERS025093| SRR097790 | SRR097792| SRR097786 | SRR097787 SRR227346 SRR299313 | SRR098490 | SRR098492 | SRR171306
total # of reads (millions) 25 27 24 385 79 83 84 81 37 66 260 272 154
read length 50 50 51 100 50 50 50 50 36 36 76 76 50
SE % unique 93.6% 93.4% 95.5% 69.3% 31.7% 31.6% 32.4% 49.3% 95.9% 35.0% 81.4% 82.1% 87.0%
Y%error 0.03% 0.03% 0.03% 0.002% 0.11% 0.12% 0.11% 0.13% 0.002% 0.02% 0.01% 0.008% 0.006%
Bowtie CPU runtime (hours) 0.48 0.58 0.63 29.81 1.68 1.99 1.76 2.35 1.60 1.37 13.19 13.61 8.35
(Oculus wrapping Bowtie) CPU runtime (hours) 0.49 0.54 0.62 24.83 0.76 0.75 0.78 1.53 1.77 0.37 12.56 13.90 8.47
Yruntime 102.7% 92.8% 97.7% 83.3% 45.1% 38.0% 44.0% 64.9% 110.4% 27.0% 95.3% 102.2% 101.5%
BWA CPU runtime (hours) 2.35 297 2.61 146.65 7.03 7.43 8.03 9.63 2.09 2.81 39.66 41.81 26.49
(Oculus wrapping BWA) CPU runtime (hours) 2.28 2.75 2.56 116.39 3.03 2.88 3.32 5.73 2.07 1.23 35.22 38.29 25.06
Y%runtime 97.0% 92.5% 98.0% 79.4% 43.1% 38.8% 41.3% 59.5% 99.0% 43.9% 88.8% . 94.6%
PE % unique 98.5% 98.4% 99.7% 77.0% 74.7% 77.0% 87.0% 96.0%
Yerror 0.0004% 0.001% 0.001% 0.08% 0.08% 0.08% 0.04% 0.004%
Bowtie CPU runtime (hours) 4.00 4.36 1.74 5.25 5.1 5.16 6.28 20.51
(Oculus wrapping Bowtie) CPU runtime (hours) 376 4.11 172 3.94 4.37 4.31 5.82 20.33
Y%runtime 94.2% 94.2% 98.9% 75.1% 85.4% 83.5% 92.7% 99.2%
BWA CPU runtime (hours) 2.81 3.28 3.09 9.42 9.15 9.25 11.38 42.02
(Oculus wrapping BWA) CPU runtime (hours) 2.69 3.1 3.02 7.61 7.09 7.69 10.28 4217
Y%runtime 95.8% 94.8% 97.9% 80.8% 77.5% 83.1% 90.3% 100.4%

Table A.1  Oculus performance statistics
Detailed benchmarking data used in generating runtime figures.
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APPENDIX B
Supplemental Data for Chapter 3

sample name sample description read pairs __ read length quality scores Instrument organism _ publication repository tcga_legacy_id aliquot_id analysis_id
TCGA-50-5933_T Lung Adenocarcinoma 48,114,428 48nt llumina 1.8+ lllumina Human PMID:25079552 TCGA - CGHub ' TCGA-50-5933-01A-11R-1755-07 51eaeOde-8f16-4093-b42e-5c34c4768459 689f917d-acf9-4381-8e3b-340802913bb2
TCGA-50-5933 N Lung Normal 52,241,489 paired end ) HiSeq 2000 i ' TCGA-50-5933-11A-01R-1755-07 af24ffd8-4d43-4{7a-ae49-590814d00f39  38fc3e2d-2b7f-43fd-a73f-b97616281c3b
A549 Lung Adenocarcinoma cell line 92,208,573 CCLE-A549-RNA-08 ee57b244-8714-4e31-91bf-b60a4e931e99 994€9332-44ec-4f65-a926-b0b0360df5f5
NCI-H358 Bronchioalveolar carcinoma cell line 109,186,348 101nt llumina 1.8+ lllumina Human PMID:22460905 TCGA - CGHub CCLE-NCI-H358-RNA-08 7e674991-a125-4757-896a-04726ecbaef7 38883661-8ffa-4c54-8691-5998bf22f2e4
NCI-H460 Large cell lung carcinoma cell line 105,408,628 paired end : HiSeq 2000 ) CCLE-NCI-H460-RNA-08 5e90e8d2-08bf-4f1f-a047-b4f786b6aadf  73045153-e0f8-43a6-ae22-flecd7ce775a
NCI-H1437 Lung Adenocarcinoma cell line 76,199,681 CCLE-NCI-H1437-RNA-08 5b4a5e81-d9fb-42ca-a329-7d011e443f3e  39¢19460-909e-47df-892d-86638ddd5969
SRA id library_names
LC_S22 T Lung Adenocarcinoma 52,237,502  101nt . llumina » . ERR164604 LC_S22_Txn1
LC S22 N Adjacent Lung Normal 34871202 pairedend "MMN@ 18+ igeqoppp Human  PMID:22975805 GEO: GSE4049  [opp 64519 LC_S22_nor_Txn1
AT _flowerbuds Arabidopsis Flower buds 192,420,769 101nt _+ lllumina Arabidopsis unpublished as . SRR1061357 Flower Buds replicate 1
AT leaves Arabidopsis Leaves 202,019,334 pairedend ™M B -1l piseq 2000 Thaliana  of 513/2015  CEO  GSES3673  opri061361 Leaves replicate 1a
[Iibrary_names experiment
UHRR _rep1 83,374,339 75nt . lllumina ; . mRNA-UHRR-C1-4030028 HiSeq 2500: TruSeq Stranded
IUHRRJepz Reference RNA 84.897.013 pairedend UMM 18*  igeqaspp Human  PMID:25150838 liumina BaseSpace | o\a yHRR-C2-4030030 mRNA LT (SEQC: UHR & Brain)

Table B.1  RNA-seq sample metadata
Sample metadata for samples used in Chapter 3.
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parameter value description

#basic logistic parameters, none of which affect results

runMode alignReads #alignment mode, contrasted with indexing
runThreadN 8 #processes used

limitGenomeGenerateRAM 31000000000 #memory limit

genomeload NoSharedMemory #load the genome

outSAMmode NoQS

outSAMattributes None #reduce SAM file output size, does not affect results
outSAMreadID Number

sjdbOverhang 125 #maximum spliceable read length, used in indexing

#ENCODE parameters

outFilterType BySJout #force reported reads to meet standard reporting criteria for splice junctions
alignintronMin 20 #minimum intron size STAR can align to / discover

alignintronMax 1000000 #maximum intron size STAR can align to / discover

alignMatesGapMax 1000000 #maximum intron size STAR can align to / discover

alignSJoverhangMin 8 #minimum number of nucleotides a read is allowed to span a NOVEL splice junction by

#default - differing from ENCODE

alignSJDBoverhangMin 3 #minimum number of nucleotides a read is allowed to span a KNOWN splice junction by (ENCODE used 1)

#non-default - differing from ENCODE

scoreGenomicLengthLog2scale 0 #apply no penalty to longer introns compared with shorter introns (> 1000000 still disallowed, see above)

Table B.2  Full STAR runtime parameters
STAR runtime parameters for analysis performed in Chapter 3.
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Figures B.1-B.12  Splice Junction Quantification from Two-Pass Alignment

For each of the 12 samples described in Table 3.1 and Table B.1, we performed
alignment with and without annotation, in both one and two alignment passes, yielding
splice junction quantification estimates in the form of unique read alignment depth (De
Novo 1-pass, Gencode 1-pass, De Novo 2-pass, and Gencode 2-pass) ("Gencode" is
described previously as "Annotation" - they are equivalent). Quantification for splice
junctions present in either alignhment pass are plotted in log10-scale as scatterplots (SF1-
12, panels A-C). The Y=X line, corresponding to equal quantification, is highlighted in
red over each scatterplot. The same data presented in the scatterplots is additionally
presented as histograms of ratios (Figures B.1-B.12, panels D-F) to convey the plot
density. In panels D, the median quantification ratio of 1-pass De Novo alignment to 1-
pass Gencode alignment is highlighted with a red line, and in text at the top of the plot.
Figures B.1-B.12 used a cutoff of at least 10 reads in the Annotation 1-pass alignment for
the histograms (to eliminate visual distraction).
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Annotated Splice Junction Quantification, TCGA-50-5933_T
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Figure B.1  Splice Junction Quantification, TCGA-50-5933.T

107



De Novo 1-pass Read Depth

Junction Count

Figure B.2

102 10° 10* 10°

10

4000 6000 8000 10000

2000

De Novo 1-pass

A
©8
o
Qo0
o o
o
09 o
0.0
ooO o o
8
© o
(<} o
o L8 o
8 o o & OQJ o
Q 8 o
8 ® 0p ©
o @ ©
o o
§ o
0 O,
o o
o o
oo
T T T T T T
0 10 102 10° 10 10°
Gencode 1-pass Read Depth
De Novo 1-pass / Gencode 1-pass
D

median ratio : 56.2 %

Read Depth Ratio

De Novo 2-pass Read Depth

Junction Count

Annotated Splice Junction Quantification, TCGA-50-5933_N

De Novo 2-pass

Gencode 2-pass

B C
P P
) >
< <
S S
2 = o
o £ o
4
8
o 080 B me i o°°
o 4
) 2 3
o o © o
o &dg T o 8
ol . A PR °
~ ° o 3 = o o
8 o 08 ° o ¥ oo 8 o o
8o, o 0o & o o o °°
g 0 © 0&(%8 o& © ° ° oo ° °,
. ° O o o o | 8
- 2 8 W T o o °0(2 o
%00 o of o
g 83 o %% . o8 oo
o o ‘O 0CONDAD @ O O o @ o o 00000 oo
o o @amoo ano O o 0 000000 O (<]
= ; oo o o o O 0000 GWMM®WO O
T T T T T T T T T T T T
0 10 102 10° 10* 10° 0 10 102 10° 10* 10°
Gencode 1-pass Read Depth Gencode 1-pass Read Depth
De Novo 2-pass / Gencode 1-pass Gencode 2-pass / Gencode 1-pass
E E
2 o
< ©
o «©
= ~
S 5
o o
S 8
= = 8
S 5 ©
o
=
5
g
8 3 8|
<+ <
o o
8 8
8 s
~ N
2 T T T T 2 T T T T
>=1.2 1.0 0.8 0.6 0.4 0.2 0.0 >=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

Splice Junction Quantification, TCGA-50-5933.N

108

Read Depth Ratio



10°

-
5
E=3
£
m
[=]
o
go
5%
o
z
]
[3
g
:
D]
%
g
g
4
%
[=]
°
°
5
s
S
g
-
S
g
g
=
z 8
S ©
]
o
2
9o
©
3 5
ﬁC>
<
°
S
S
g

Figure B.3

De Novo 1-pass

A
o O
o
I3 (<]
® 80 o
e ° S8 5
oé) S g;? o
° o ° g&’om"?p ° 9
° 28 ¢ mood®
& . & B50g, ©
o W s 9000& § [
*g08°
> Lo X4
5 Besdins o So
8 a 00 [2]
o 'O COONMEIIIIDOD OMD OOMIOIDMONMO @ @O0 o
o o Qo 00 00 o
oo a@omam O
T T T T T T
0 10 102 10° 10 10°
Gencode 1-pass Read Depth
De Novo 1-pass / Gencode 1-pass
D

median ratio : 78.7 %

Read Depth Ratio

De Novo 2-pass Read Depth

Junction Count

102 10° 10 10°

10

129,291

4,000 6,000

2,000

Annotated Splice Junction Quantification, UHRR_rep1

De Novo 2-pass

Gencode 2-pass

B C
P
= 5
<
o S e i
o o
< [}
4
8
a
. T 4 o, o
o o o & g - o
° o
o %o 2 o
o © o
s o 5 &) o
o o o
o o, (*) o
18 o o 3 N.C_’ 1 ° 00
o [} 0 @ o o
3 o & 3 %o
5
8 %o §g>° Boco o] s °% ° oo
o
| go % o |° oo 3 % 00
s o e o .0
g8 S g8 s o,
o o 'O COONIRIMEROO OO0 O O 00 o o ‘00COa»O
o ‘O OOCONMRNO O OGD € CUDANNAD o © 0000 am o oo o
- oo @ 000 O o © O OOCOONKININNO 000 O 00
T T T T T T T T T T T T
0 10 102 10° 10* 10° 0 10 102 10% 10* 10°
Gencode 1-pass Read Depth Gencode 1-pass Read Depth
De Novo 2-pass / Gencode 1-pass Gencode 2-pass / Gencode 1-pass
E E
o
4 &
-
3
o
8
4 = S
R
3
o
c
5
g
i 3 8|
<
o
8
] S
o
- T T T T 2 T T T T
>=1.2 1.0 0.8 0.6 0.4 0.2 0.0 >=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

Splice Junction Quantification, UHRR_rep1l

109

Read Depth Ratio



De Novo 1-pass Read Depth

Junction Count

102 10° 10* 10°

10

4000 6000 8000 10000

2000

De Novo 1-pass

A
[}
o
Of % o
)
o
80%"0%" 5
o S &
o ® Q
[ o &0 5
o 583
o o @
o o ?@6 o
o ° © £ P %?gf )
o 2 oo 0
o [ Qc:)q, $Ro
8o
2 03% °° d”‘g o
g o8 o oo
838 °%° o ®
o o 'O OCOONEENIINNCD CEXDENNEN»ANDAED GEED O o oo
o o @00 o o
oo QEODE® O
T T T T T T
0 10 102 10% 10* 10°
Gencode 1-pass Read Depth
De Novo 1-pass / Gencode 1-pass
D

Figure B.4

median ratio : 78.2 %

Read Depth Ratio

De Novo 2-pass Read Depth

Junction Count

102 10° 10 10°

10

127,508

4,000 6,000

2,000

Annotated Splice Junction Quantification, UHRR_rep2

De Novo 2-pass

Gencode 2-pass

B C
P
4 >
<
] S
o o
< o
=1
o3
a
. ERCR o
o o ° o 4 °
o o 2
o o] g o é}o
o o o I
o o g 8 2 & P i o o
T o o = o o
o o 8o <1 °
o B 4 g o ° o
o 38 Lo 5 Q
o 80 © @° [G} ° e
-] o 0
8 8o @ o 9o
B 2 o9l 2o o o
g 88 0 03 0g o
g § o°o ()o° g § 8 000 o9
o o 'O COONNNEIINND OWNPA O O o o 00Com® @O O
o ‘O OOCOUNRIINENIND O @O0 @ O o ‘0 00000 @O O 00 O
- oo @ @®O00 O o O O OOCONRIIND GO O @
T T T T T T T T T T T
0 10 102 10° 10* 10° 0 10 102 10% 10* 10°
Gencode 1-pass Read Depth Gencode 1-pass Read Depth
De Novo 2-pass / Gencode 1-pass Gencode 2-pass / Gencode 1-pass
E E
3
3
4 @
3
o
8
4 = S
R
3
o
=
5
g
i 3 8|
<
o
8
o s
N
- T T T T 2 T T T T
>=1.2 1.0 0.8 0.6 0.4 0.2 0.0 >=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

Splice Junction Quantification, UHRR_rep2

110

Read Depth Ratio



De Novo 1-pass

A
o
>
°
@
- p
- o %o
£
5
8
% 2 & °
2 o o © )
@
§ '®%0 %%
a
. o . 578
o o ]
o o - o 00
> = o 0 oo
2 ° o o o
o o
8 08 © %, R
8°.2 ° °
9 o
240 8 8 %2580 0% %
o [ o %oo L]
o § L % o 29
o o ‘0 CCONANOINIEDENEDCRIGIMEDO o O O
o O O CCONIEIINNENINBINNND OGN O ©® G
o - oo o oamm® O
T T T T T T
0 10 102 10% 10* 10°
Gencode 1-pass Read Depth
De Novo 1-pass / Gencode 1-pass
g_D
<1
3
3
median ratio : 82.3 %
o
3
3
2
o
g 8
5 &
3
o
c
S
g
3
<
o
3
3
&
- ._J

Figure B.5

0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

De Novo 2-pass Read Depth

Junction Count

Annotated Splice Junction Quantification, LC_S22_T

De Novo 2-pass

Gencode 2-pass

B C
P P
) )
< <
S =)
£
o 3
a
2 o 3% o
[d o ?
? a °
° & o o
4
o o 6;3 & ° o @
) o ) o o ° °
= °© o 0§> °% 8 2
9 °3 o 3 2 o o© & o o
o ©o o ® o e o o'
g 8, 2 2 ® & 0 09 0
o g ° °o o o , 8 o o
o o
2 8 go o8& = ) g m:%)o ° o
o o ) o @ o
g8 o 0o g 88
o o 'O OCONNEDOED QED D o o 00000 0000 O o
o ‘O O OCONIIRIINOCEIMDEED O O o 0 000O®A O 000
= ; oo O oo O o © O OOCOURIENINAANN0 @ O o o
T T T T T T T T T T T T
0 10 102 10° 10* 10° 0 10 102 10% 10* 10°
Gencode 1-pass Read Depth Gencode 1-pass Read Depth
De Novo 2-pass / Gencode 1-pass Gencode 2-pass / Gencode 1-pass
E E
0 ~
3 &
< o
® &
o o
8 = 8
< S ©
3
o
=
5
g
g 38
<+ <
o o
8 8
8 8
N N
2 T T T T 2 T T T T
>=1.2 1.0 0.8 0.6 0.4 0.2 0.0 >=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

Splice Junction Quantification, LC_S22_T

111

Read Depth Ratio



De Novo 1-pass

A
o
>
o}
<
S A o
< 8
3
a o ©O
3 ©
g 2
o o
2 o
g °® @
I @ &
9 6 ° 0820
B o
; o ° o ° 8 o o 2
3 o o o
o ©o o oo
I PR XY
A 00X
@, o oo
8 of § 0,
o o 'O COONNIIMMENSOODAD O® @ O O
o O O CCONIEINENENNNNINO0 D D o o
o - oo [eelede] o
T T T T T T
0 10 102 10% 10* 10°
Gencode 1-pass Read Depth
De Novo 1-pass / Gencode 1-pass
g_D
8
8
8
median ratio : 83.7 %
o
8
8
8
o
g 8
S ©
3
o
c
S
g
3 g
<
o
8
8
&
= f T
»=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Figure B.6

Read Depth Ratio

De Novo 2-pass Read Depth

Junction Count

Annotated Splice Junction Quantification, LC_S22_N

De Novo 2-pass

Gencode 2-pass

B C
P P
> >
< <
S5 S
o < o
3
o g o
) o° o 2 o
e [} s 2
G 4 s ©
) § o o
o
o © ) (li‘- ° o 0o
& ° o @ o o 3 % o
o o o Q08 ° %o § ° o o o o
° o 8° & ° 7 -
o ] D % o o o o o e
o o 8 g o 800, @ o Do o
= 09D = 8 o o
o 8 ° o
§ § g O o 0o o o 8 § o, o 29
o o 'O OCONEDAID GXEOD 00 O o o o ‘000D C0 OO0
o O O OCONMRIEDOMD 00 OO o ‘0 00CO0ID@IO M WO
= ; oo 0000 o o O O 00COND@OED D oo o
T T T T T T T T T T T
0 10 102 10° 10* 10° 0 10 102 10% 10* 10°
Gencode 1-pass Read Depth Gencode 1-pass Read Depth
De Novo 2-pass / Gencode 1-pass Gencode 2-pass / Gencode 1-pass
E E
© >
2 &
- © _
5 ©
o o
S 8
= = 8
S 5 ©
o
=
5
g
s 3 8
< <
o o
8 8
8 8
N N
2 T T T T 2 T T T T
>=1.2 1.0 0.8 0.6 0.4 0.2 0.0 >=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

Splice Junction Quantification, LC_S22_N

112

Read Depth Ratio



De Novo 1-pass Read Depth

Junction Count

Figure B.7

De Novo 1-pass

A
o
27 q
o
o
N4
o 4 8°
2 + 3
o
B 0 o
®
© o° °
o8 b &,
o
o o © mged’ 800
o 0® © %R 8
G ®° 28
= 3 o o ® °" 50
° * 0805)000
) 00 8 (goo o
o | 8 g ) o & o ®
- 8o g’
8 g 0y F
o 8 a O 0 8
o o ‘O CCONNNNINENNED GO @00 O
o O O CCONIEIMINEANOOINAD O COW O O o
o - oo @O @ O 000
T T T T T T
0 10 102 10% 10* 10°
Gencode 1-pass Read Depth
De Novo 1-pass / Gencode 1-pass
g_D
8
3
median ratio : 81.8 %
o
3
3
2
o
3
3
@
o
<1
3
<
o
3
3
&
= 7 T
0.4 0.2 0.0

Read Depth Ratio

De Novo 2-pass Read Depth

Junction Count

Annotated Splice Junction Quantification, A549

De Novo 2-pass

Gencode 2-pass

B C
mO mO -
o o
o o
o
<'C> <'C> — °
o
° o o i °
o 8 o
@ o
me © oo o o {?; me _ %
o o
o o o «
o ° o0 8 °
° 09 & o © c-il- °
© o © 00 p v | o o
8 ° ° go o o 3 o o o
o Oé’% 5 o o ° o °
§§ ° o So © ° @ oo
o 8% o o o 2 20, ° o
- o e
g g g § 4 8 oo o (@ ° &
od o8 g 8 B o83
o o O OOOOOTRIINED o o  OOOOOIRIDTD
o ‘O O OCONNIEEMMNEIO 00D Q0D o o 0 O @
= ; oo @O @ O 000 o O 0O a0 O O o
T T T T T T T T T T T T
0 10 102 10° 10* 10° 0 10 102 10% 10* 10°
Gencode 1-pass Read Depth Gencode 1-pass Read Depth
De Novo 2-pass / Gencode 1-pass Gencode 2-pass / Gencode 1-pass
E E
= ~
IS 5
5 R
o s
3 L
o o
S 8
= = 8
S 5 o
3
o
=
5
g
s 3 8
< <
o o
8 8
S S
o o
2 T T T T 2 T T T T
>=1.2 1.0 0.8 0.6 0.4 0.2 0.0 >=1.2 1.0 0.8 0.6 0.4 0.2 0.0

Read Depth Ratio

Splice Junction Quantification, A549

113

Read Depth Ratio



Annotated Splice Junction Quantification, NCI-H358
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Figure B.8 Splice Junction Quantification, NCI-H358
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Annotated Splice Junction Quantification, NCI-H460
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Figure B.9  Splice Junction Quantification, NCI-H460
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Figure B.11 Splice Junction Quantification, AT_flowerbuds
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Figure B.12 Splice Junction Quantification, AT _leaves
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Splice Junctions missed by De Novo 2pass
Ranked by Annotation 1pass Read Depth
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Figure B.13 Splice Junctions missed by De Novo 2pass Ranked by Annotation 1pass
Read Depth

For splice junctions detected and quantified by 1-pass Annotation alignment of the
A549 sample, which were completely missed by 2-pass De Novo alignment, we extracted
the read depth in the Annotation 1-pass alignment and the internal splice site motif. We
then ranked splice junctions in descending order of read depth - splice junctions at the
top of the list were the most egregious to miss. Then, we computed ROC-style metrics,
where the "sensitivity" for each motif was computed as the running count of
observations over the total number, and "specificity” was the percentage of the dataset
traversed by that point. For instance, around 90% of the missed AT/AC splice junctions
(0.9 sensitivity) were detected in the top 20% of missed splice junctions (0.2 specificity).
These statistics were computed for each of the splice site motifs reported - GT/AG,
GC/AG, AT/AC, and non-canonical. Y=Xis plotted as a dashed black line. Figure B.13
used annotated splice junctions with at least 1 read in Annotation 1-pass, but zero in De
Novo 2-pass alignment.
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Figures B.14-B.17 Alignment Error Detection

For the A549 and TCGA-50-5933_N samples, we extracted splice junction read depth
from De Novo 1-pass and De Novo 2-pass alignment, the unspliced read depth
(calculated as the number of reads unspliced across the splice junction positions by
more than ten nucleotides, averaged over the two positions), the percentage of reads
spanning the splice junction by less than the length of the exact sequence identity
between the unspliced context and the spliced context (in both directions), and finally,
the percentage of reads spanning each splice junction by less than 12 nucleotides
(calculated as the number of matched bases on either side, from raw SAM data). These
data are plotted, split between samples, and split between annotated and unannotated
splice junctions, in Figures B.14-B.17 as identified in plot titles. The log10 ratio of read
depth is plotted on the Y-axis of the scatterplots (Figures B.14-B.17, panels A-C), and the
unspliced read depth, percentage of reads spanning by less than identity, and
percentage of reads spanning by less than 12nt are plotted on the X-axes as labeled.
Mitochondrial splice junctions, which we considered "true negatives," are colored in
red, and a log-ratio of read depth of zero (1:1) is drawn as a black line in each
scatterplot. Histograms depicted in (B.14-B.17, panels D-F), are re-illustrations of the
same data in panels A-C, to demonstrate density (and share the exact same X-axes).
Figures B.14-B.17 used cutoffs of at least one read in De Novo 1-pass alignment for the
scatterplots, and at least 10 reads in De Novo 2-pass alignment for the histograms.
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Figure B.14 Alignment Error Detection, A549 Unannotated Junctions.
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Figure B.15 Alignment Error Detection, A549 Annotated Junctions.
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Figure B.16 Alignment Error Detection, TCGA-50-5933_N Unannotated Junctions.
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Figure B.17 Alignment Error Detection, TCGA-50-5933_N Annotated Junctions
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APPENDIX C
Supplemental Data for Chapter 5

Table C.1  Complete Sample Annotation for Prostate RNA-seq Cohorts

Columns are as follows. Cohort : TCGA.T (primary prostate tumors from TCGA),
TCGA.N (normal prostate tissue from TCGA), Michigan.T (primary prostate tumors
from Michigan), Michigan.N (normal prostate tissue from Michigan), or SU2C (mCRPC
tissue from SU2C). sample : unique sample identifier. RIN : RNA integrity number
from the Agilent Bioanalyzer where available, on a scale of 0-10. Gleason : Gleason
grade prostate cancer de-differentiation staging as gauged by pathologists, for the
largest and section largest tumor sections analyzed ("+"), on a scale of 1 to 5, where
available. Biopsy.Site : Where the tissue was biopsied from, one of "Prostate," "Lymph
Node," "Liver," "Bone," or "Soft Tissue" for other soft tissue sites. Subtype : Main
molecular subtype following TCGA's example, one of "1.ERG," "2.ETV1," "3.ETV4,"

"4 FLI1," "5.SPOP," "6.FOXA1," "7.IDH1," "8.Other," "9.Normal." For this annotation we
aggregated published and internal mutation calls, indel calls, fusion calls, and
expression estimation. TC : Tumor Content as estimated by SNV variant fractions from
matched exome data, where available. 3' : 3' Bias as estimated by the median log-ratio
imbalance between the last and first splice junction of all unambiguous annotated
genes. Nascent : Unspliced RNA level as estimated by the median unspliced coverage
over junctions from high confidence gene annotations. Aln% : Mapping rate to the
genome. AR, Stroma, and NE : Aggregate expression scores for Androgen Receptor
signaling, Stromal genes, and Neuroendocrine signaling, as described in Figures 4.2, 4.3,
and in Appendix C.
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Table C.1

cohort sample
TCGA.T 2A-A8VL
TCGA.T 2A-A8VT
TCGA.T 2A-A8VV
TCGA.T CH-5739
TCGA.T CH-5740
TCGA.T CH-5741
TCGA.T CH-5743
TCGA.T CH-5744
TCGA.T CH-5746
TCGA.T CH-5752
TCGA.T CH-5754
TCGA.T CH-5764
TCGA.T CH-5765
TCGA.T CH-5766
TCGA.T CH-5768
TCGA.T CH-5769
TCGA.T CH-5789
TCGA.T CH-5790
TCGA.T CH-5791
TCGA.T CH-5794
TCGA.T EJ-5495
TCGA.T EJ-5496
TCGA.T EJ-5497
TCGA.T EJ-5498
TCGA.T EJ-5499
TCGA.T EJ-5502
TCGA.T EJ-5503
TCGA.T EJ-5506
TCGA.T EJ-5507
TCGA.T EJ-5508
TCGA.T EJ-5512
TCGA.T EJ-5516
TCGA.T EJ-5521
TCGA.T EJ-5522
TCGA.T EJ-5524
TCGA.T EJ-5525
TCGA.T EJ-5526
TCGA.T EJ-5527
TCGA.T EJ-5530
TCGA.T EJ-5542
TCGA.T EJ-7314
TCGA.T EJ-7315
TCGA.T EJ-7321
TCGA.T EJ-7327
TCGA.T EJ-7328
TCGA.T EJ-7783
TCGA.T EJ-7784
01/13

RIN
8.7
9
8.5
8.3
7.2
7.6
7.2
7.4
7.5
9.2
8.4
8.8
8.3
9
8.5
8.2
8.5
8.9
8.1
7.9
8.8
8.4
9
9
8.3
8.1
7.9
9.1
9.4
8.3
7.8
9.1
8.2
9.6
9.6
9
9
9.5
9.7
9.8
8.4
8.2
8.7
9.5
7.7
9.3
9.5

Gleason
343
4+3
343
443
4+4
5+4
4+3
444
343
5+4
4+4

4+3
4+3
445
343
3+4
3+4
3+4
3+4
4+5
443
4+5
3+4

443
4+4

443
4+5
4+5
4+3
3+4
3+4
4+3
4+3

4+3
4+3
4+4
4+3

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG

126

TC
0.51
0.73
0.84
0.69
0.69
0.82

NA
0.60
0.36
0.79
0.65
0.56
0.76
0.61
0.70
0.63

NA
0.81
0.67
0.58
0.41
0.49
0.46
0.24
0.48

NA

NA

NA
0.68
0.36
0.39
0.39
0.51
0.51
0.54
0.87
0.51
0.51
0.53
0.58
0.61
0.65
0.72
0.48
0.44
0.41
0.77

3
0.93
0.45
0.87
0.74
0.85
1.02
0.96
0.74
0.84
0.78
0.74
0.77
0.84
0.81
0.93
0.84
0.77
0.72
0.76
0.79
0.70
0.91
0.77
0.90
1.03
0.69
0.75
0.80
0.85
0.77
1.13
0.81
0.89
0.78
0.82
0.91
0.81
0.83
0.54
0.92
0.85
0.89
0.82
0.66
0.79
0.72
0.65

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.91
0.91
0.87
0.91
0.80
0.90
0.92
0.91
0.89
0.90
0.90
0.87
0.89
0.89
0.89
0.88
0.90
0.88
0.88
0.92
0.90
0.87
0.89
0.89
0.88
0.92
0.93
0.90
0.91
0.89
0.89
0.91
0.93
0.92
0.92
0.90
0.91
0.91
0.92
0.92
0.90
0.90
0.90
0.90
0.89
0.90
0.91

Expression Scores

AR
2.18
-0.18
1.94
1.64
141
241
-2.6
1.04
1.76
0.28
-0.31
0.88
1.47
1.06
1.83
-1.13
1.97
211
0.47
-0.27
-0.64
3.35
3.67
1.08
-0.6
1.42
231
1.5
-0.46
2.03
1.74
1.98
-0.51
2.43
1.71
0.08
2.12
1.54
2.58
2.7
1.96
-0.17
0.93
0.64
-1.71
0.75
2.28

Stroma
-0.21
-3.35
0.63
0.66
-2.56
-5.74
4.87
-3.53
-0.22
-2.25
-1.57
-0.08
-2.09
-1.73
-2.76
0.33
3.01
-3.26
-2.76
-1.88
4.85
-1.34
1.49
6.31
0.3
2.61
4.53
2.68
-1.72
1.76
3.53
1.74
-0.52
1.25
2.68
-1.07
2.67
2.12
-0.56
1.32
-2.06
1.15
-2.63
2.7
3.2
3.08
-2.68

NE
0.04
0.79
1.21
0.58

-0.66
1.97
-3.43
141
-0.11
0.45
1.11
-0.15
1.45
-0.62
11
0.94
-2.27
1.48
1.19
0.26
-3.49
0.4
-1.78
-4.51
-0.6
-2.29
-3.08
-2.19
0.2
-1.45
-1.85
-1.64
-0.18
-1.98
-0.96
1.57
-1.15
-2.12
-1.03
-1.74
0.37
-0.78
1.49
-2.02
-1.04
-1.98
0.86



Table C.1

cohort sample
TCGA.T EJ-7785
TCGA.T EJ-7793
TCGA.T EJ-7797
TCGA.T EJ-8469
TCGA.T EJ-8472
TCGA.T EJ-A46D
TCGA.T EJ-A65F
TCGA.T EJ-A7NF
TCGA.T EJ-A7NG
TCGA.T EJ-A7NK
TCGA.T FC-7708
TCGA.T G9-6329
TCGA.T G9-6336
TCGA.T G9-6342
TCGA.T G9-6351
TCGA.T G9-6353
TCGA.T G9-6356
TCGA.T G9-6361
TCGA.T G9-6363
TCGA.T G9-6364
TCGA.T G9-6365
TCGA.T G9-6377
TCGA.T G9-6384
TCGA.T G9-6385
TCGA.T G9-7522
TCGA.T HC-7077
TCGA.T HC-7081
TCGA.T HC-7209
TCGA.T HC-7211
TCGA.T HC-7212
TCGA.T HC-7213
TCGA.T HC-7230
TCGA.T HC-7231
TCGA.T HC-7232
TCGA.T HC-7744
TCGA.T HC-7747
TCGA.T HC-7748
TCGA.T HC-7818
TCGA.T HC-7820
TCGA.T HC-7821
TCGA.T HC-8213
TCGA.T HC-8257
TCGA.T HC-8260
TCGA.T HC-8262
TCGA.T HC-A48F
TCGA.T HC-A632
TCGA.T HC-A76X
02/13

RIN Gleason

9.4
7.7
8
9.3
8.9
7.2
8.1
8.6
8
7.6
9.2
8
7.7
8
8.5
7.9
8.7
7.9
8.4
8.8
7.6
8.2
9
7.4
8.7
8
9.2
9.1
9.5
9.6
9.4
9.1
8.4
9.1
8.8
7.9
9.6
8
7.8
7.5
8.3
7.7
8.1
8.7
9.2
8.4
9.1

3+3
3+4
3+4

343
3+4
3+4
4+5
3+4
3+4
343
343
4+5
343
3+4
343
3+4
443
445

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG

127

TC
0.43
0.33
0.38
0.79
0.75
0.20
0.67
0.76

NA

NA
0.43
0.29
0.26
0.53
0.34

NA
0.28
0.71
0.51
0.61
0.54
0.66
0.46

NA
0.41
0.78
0.57
0.57
0.69
0.81
0.78
0.85
0.75
0.60
0.82
0.38
0.50

NA
0.48
0.85
0.86
0.74

NA
0.57
0.91
0.71
0.70

3
0.63
0.82
0.77
0.68
1.08
0.79
0.80
0.90
0.69
0.87
0.76
1.11
1.07
1.00
1.00
0.99
0.98
1.03
1.07
1.24
1.08
0.98
0.70
1.04
0.82
0.71
0.57
0.59
0.67
0.62
0.74
0.78
0.75
0.79
0.75
0.83
0.60
0.77
0.75
0.71
1.16
0.91
0.93
0.97
0.97
0.88
0.74

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00

0.92
0.92
0.92
0.92
0.91
0.77
0.91
0.89
0.89
0.79
0.91
0.89
0.91
0.89
0.90
0.90
0.89
0.91
0.89
0.53
0.90
0.90
0.91
0.91
0.93
0.90
0.92
0.91
0.91
0.91
0.92
0.92
0.91
0.92
0.91
0.90
0.92
0.92
0.91
0.91
0.89
0.91
0.87
0.90
0.92
0.89
0.91

Expression Scores

AR
1.94
4.05
2.35
2.01
0.59
1.14
1.32
1.73
-0.6
0.26
0.91
-1.73
1.06
0.42
3.34
1.39
-1.14
0.37
-0.19
-1.02
-1.46
1.58
2.09
1.49
1.72
2.58
-0.32
1.63
2.33
2.5
0.87
2.99
0.56
0.71
1.49
1.42
2.55
1.06
3.51
1.63
1.61
0.89
2.47
0.92
0.02
0.41
2.45

Stroma
5.39
2.42
0.78
-3.1
0.57
211

-1.45
-3.66
5.96
4.1
3.56
3.71
0.43
0.59
1.14
5.08
2.71
3.65
-0.43
4.44
4.35
-2.45
2.16
3.09
2.32
-5.76
2.37
-1.66
-2.29
-3.25
-1.46
-3.45
-2.49
1.82
-3.38
-0.14
2.06
0.65
-1.02
-1.81
-5.38
-3.01
0.89
-1.76
-4.31
-0.61
-4.68

NE
-1.8
-1
-1.22
-0.31
1.18
-1.73
-0.57
2.1
-3.57
-2.91
-2.36
-2.68
-0.42
-0.78
-0.61
-2.55
-3.15
-0.13
0.5
-2.95
-2.6
0.88
-1.06
-2.32
-1.31
3.68
-1.76
-0.43
0.61
1.13
1.52
2.04
0.26
-1.24
1.54
-2.18
-1.39
-1.03
-0.65
-0.72
0.3
-0.46
-1.23
-0.61
11
0.64
1.99



Table C.1

cohort sample
TCGA.T HC-A8DO
TCGA.T HC-A8D1
TCGA.T HI-7171
TCGA.T 14-8198
TCGA.T J4-A67T
TCGA.T J4-A6G1
TCGA.T J4-A6M7
TCGA.T J4-A83I
TCGA.T J4-A83K
TCGA.T J4-A83N
TCGA.T J9-A52B
TCGA.T 19-A8CK
TCGA.T 19-A8CM
TCGA.T KC-A4BN
TCGA.T KC-A4BR
TCGA.T KC-A4BV
TCGA.T KC-A7F6
TCGA.T KK-A59Y
TCGA.T KK-A6DY
TCGA.T KK-A6E1
TCGA.T KK-A6E2
TCGA.T KK-A6E6
TCGA.T KK-A7AU
TCGA.T KK-A7B1
TCGA.T KK-A7B4
TCGA.T KK-A814
TCGA.T KK-A8I5
TCGA.T KK-A816
TCGA.T KK-A8I8
TCGA.T KK-A8IA
TCGA.T KK-A8IC
TCGA.T KK-A8IH
TCGA.T KK-A8II
TCGA.T M7-A720
TCGA.T QU-A6IP
TCGA.T V1-A8WS
TCGA.T V1-A8WW
TCGA.T VN-A88K
TCGA.T VN-A88L
TCGA.T VN-A88Q
TCGA.T VP-A872
TCGA.T VP-A875
TCGA.T VP-A876
TCGA.T VP-A879
TCGA.T VP-A87C
TCGA.T VP-A87D
TCGA.T VP-A87K
03/13

RIN
8.6
9.1
9
9.2
7.9
8.4
8.9
9.5
9.3
9.2
8.1
7.3
8.4
8.6
7.1
8.9
8.1
9.5
7.8
8.8
8.5
8.3
8.9
9.1
9.1
7.6
8
8.1
8.4
8
8.2
9.3
10
8.8
8.1
9.1
7.4
8.3
7.5
8.4
7.6
9.5
9.1
8.8
8.9
9
8.7

Gleason
4+4

4+4

443

443
4+3
4+3
444
4+4
3+4

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG

128

TC
0.44
0.42
0.88
0.68
0.51
0.45
0.81
0.82
0.60
0.62
0.64
0.56
0.64
0.32

NA
0.67
0.66
0.77
0.47
0.74
0.86
0.46
0.86
0.57
0.74
0.43
0.85
0.68
0.74
0.87
0.40
0.82
0.93

NA
0.58
0.78
0.84
0.82
0.64
0.68
0.62
0.98
0.89
0.49
0.43
0.77
0.89

3
0.79
0.69
0.97
0.80
0.99
1.00
0.79
0.66
0.72
0.94
1.07
0.85
0.64
0.94
0.56
0.81
0.86
1.08
0.87
0.82
0.71
0.97
0.82
0.79
0.77
0.66
0.82
0.74
0.83
0.82
0.62
0.80
0.74
0.73
1.07
0.70
0.79
0.73
0.85
0.74
0.98
0.64
0.90
0.51
0.70
0.72
0.69

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.90
0.90
0.90
0.90
0.91
0.89
0.91
0.90
0.90
0.86
0.91
0.87
0.81
0.91
0.88
0.91
0.88
0.91
0.91
0.91
0.90
0.91
0.91
0.92
0.91
0.91
0.88
0.88
0.88
0.91
0.92
0.86
0.92
0.92
0.90
0.90
0.90
0.85
0.85
0.87
0.86
0.90
0.90
0.89
0.86
0.91
0.91

Expression Scores

AR
-2.68
0.6
0.19
0.91
1.43
-1.46
2.59
1.03
0.94
2.36
-1.44
-0.75
-2.4
2.89
-1.19
0.18
-0.12
0.44
-0.52
131
1.63
-0.63
1.15
0.05
-0.19
-1.7
0.77
2.26
-0.62
0.4
0.93
-1.74
1.35
0.86
1.43
-0.59
-1.22
0.58
-0.28
0.82
-3.53
3.14
0.42
0.45
-1.43
1.87
2.64

Stroma
2.43
1.59

-2.78
1.8
0.3

2.95

-0.64

-2.66
3.4

-3.74

-0.55

2.81
3.05
-1.6
6.63

0.54

-0.08

-3.99

-0.54

-5.47

-4.7

0.3
-8.37
1.35
-3.67
2.94
0.37
-2.6
-3.06
-4.24
2.12

-2.47

-6.33

4.96

0

-2.83
-1.1
-1.79
1.99
-3.81
1.24
-6.5
-3.62
4.91
3.16
-3.45
-5.39

NE
-1.15
-1.08
1.94
-0.57
-0.42
-1
0.06
0.89
-0.64
1.6
-3.84
-0.94
-0.81
0.78
-2.14
-0.9
0.36
1.4
1.21
2.2
2.4
-0.15
3.45
-0.53
1.87
-0.66
0.22
0.74
1.4
3.08
-0.73
0.8
241
-2.4
-0.38
2.16
0.55
0.52
-1.18
0.65
0.2
2.83
0.85
-3.02
-2.29
0.89
1.66



Table C.1

cohort sample
TCGA.T XJ-A9DI
TCGA.T XJ-A9DK
TCGA.T XQ-A8TB
TCGA.T YL-A8HJ
TCGA.T YL-A8HK
TCGA.T YL-A8HL
TCGA.T YL-A8SA
TCGA.T YL-A8SF
TCGA.T YL-A8SL
TCGA.T YL-A8SP
TCGA.T Z2G-A8QZ
TCGA.T 2A-A8W1
TCGA.T 2A-A8W3
TCGA.T CH-5748
TCGA.T CH-5750
TCGA.T CH-5753
TCGA.T EJ-5501
TCGA.T EJ-5504
TCGA.T EJ-5510
TCGA.T EJ-5519
TCGA.T EJ-7318
TCGA.T EJ-7788
TCGA.T EJ-8474
TCGA.T EJ-A7NH
TCGA.T EJ-A8FU
TCGA.T G9-6348
TCGA.T G9-6494
TCGA.T HC-A631
TCGA.T HC-A8CY
TCGA.T J4-A83M
TCGA.T KK-A7AP
TCGA.T KK-A7B3
TCGA.T M7-A71Y
TCGA.T SU-A7E7
TCGA.T V1-A8MJ
TCGA.T VP-A87)
TCGA.T YL-A8SC
TCGA.T YL-A8S)
TCGA.T YL-A9WH
TCGA.T CH-5762
TCGA.T CH-5763
TCGA.T CH-5771
TCGA.T EJ-5511
TCGA.T EJ-A7TNM
TCGA.T G9-6371
TCGA.T HC-7749
TCGA.T HC-A76W
04/13

RIN
7.8
8.4
7.9
7.8
7.8
9.1
9.2
8.4
9.4
9.2
8
8.6
8.8
8.2
8.3
8.8
8.2
8.9
8
9.2
8.3
9.2
8.5
7.8
7.8
8
9.1
8.4
9
8.6
8.9
8.3
7.3
8.7
7.3
8.9
9.2
8.3
8.8
8.3
8.3
8.4
9.6
9.4
8.5
8.7
7.8

Gleason
5+5
4+3
3+4
4+3
4+4
444
4+3
4+3
444
4+5
3+4
4+4

4+3
4+4
343
4+5
3+4
3+4
4+4
4+3
4+3
3+4
4+5

4+3
443
443

5+4
4+3
4+3
3+3
3+4
4+3

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG

2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4

129

TC
NA
NA
0.86
0.36
0.42
0.85
0.82
0.70
0.77
0.88
0.45
0.95
0.46
0.31
0.75
0.83
0.40
0.53
0.40
0.67
0.63
0.71
0.45
0.41
NA
0.39
0.60
0.92
0.82
0.61
0.90
0.59
0.17
0.40
0.27
0.84
0.66
0.65
0.80
0.36
NA
0.42
0.80
0.66
0.27
0.69
0.63

3
0.87
0.71
0.57
0.56
0.61
0.64
0.67
0.73
0.69
0.66
0.78
0.68
0.57
0.92
0.93
0.82
0.75
0.95
0.82
0.70
1.00
0.73
0.97
0.66
0.68
1.07
0.81
0.89
0.68
0.70
0.54
0.81
0.90
0.71
0.72
0.75
0.69
0.71
0.65
0.88
0.96
0.81
0.64
0.75
1.12
0.86
0.67

Nascent Aln%

0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.91
0.89
0.91
0.88
0.92
0.89
0.90
0.89
0.89
0.90
0.88
0.91
0.87
0.88
0.89
0.87
0.92
0.90
0.92
0.92
0.91
0.91
0.90
0.90
0.89
0.91
0.91
0.89
0.85
0.90
0.90
0.90
0.91
0.90
0.91
0.90
0.92
0.87
0.90
0.86
0.86
0.92
0.92
0.90
0.88
0.91
0.89

Expression Scores

AR
-2.46
-0.43
-0.59
-0.99
-0.66
0.38
-0.67
-2.23
-0.5
1.04
-0.68
4.62
1.49
4.58
2.25
2.28
0.05
1.8
1.29
2.59
2.62
1.27
1.15
2.01
0.37
-0.24
4.57
0.56
3.2
131
0.17
-0.94
-0.37
0.08
0.26
2.3
0.8
-1.34
-1.87
0.38
1
0.13
2.13
-2.1
3.39
2.32
-0.95

Stroma
4.06
3.66
0.76

5.4
3.32
-3.64
-5.36
-0.14
-5.38
-4.61
2.88
-9.41
-0.68
-2.32
-3.06
-4.54
0.47
1.23
1.25
-1.59
-0.45
0.56
1.52

13
6.43
1.37
-0.15
-3.39
-5.65
-2.28
-6.42
-0.78
3.14
-0.13
1.45
-3.92
-2.61

3.7
-3.17
3.36
5.75
4.49
0.72
-0.95
-1.51
-1.69
1.78

NE
-2.09
-1.99
0.25
-2.48
-1.19

1.45
2.02
0.65
2.56
1.26
-1.94
3.93
1.84
14
2.33
1
-1.31
-0.79
-1.88
1.01
1.08
-1.01
0.84
-0.4
-3.43
-1.25
0.37
2.66
2.47
0.72
2.46
-0.49
-2.16
-0.75
-1.11
14
1.77
-2.53
2.65
-0.81
-3.05
-2.23
-0.08
-0.79
1.12
0.04
-1.73



Table C.1

cohort sample
TCGA.T HI-7168
TCGA.T KC-A7FD
TCGA.T M7-A725
TCGA.T V1-A8WV
TCGA.T V1-A8X3
TCGA.T XQ-A8TA
TCGA.T CH-5738
TCGA.T H9-7775
TCGA.T HC-7079
TCGA.T  V1-A8WN
TCGA.T CH-5788
TCGA.T EJ-5505
TCGA.T EJ-5509
TCGA.T EJ-5531
TCGA.T EJ-7115
TCGA.T EJ-7123
TCGA.T EJ-7330
TCGA.T EJ-7782
TCGA.T EJ-8468
TCGA.T EJ-A65E
TCGA.T EJ-A8FS
TCGA.T FC-7961
TCGA.T G9-6333
TCGA.T G9-7510
TCGA.T HC-7080
TCGA.T HC-8258.2
TCGA.T  HC-8261.2
TCGA.T J4-A6G3
TCGA.T KK-A59X
TCGA.T KK-A59Z
TCGA.T KK-A6EQ
TCGA.T KK-A8I9
TCGA.T KK-A8IF
TCGA.T KK-A8IK
TCGA.T VN-A880
TCGA.T VN-A88R
TCGA.T VP-A878
TCGA.T VP-A87B
TCGA.T VP-A87H
TCGA.T XJ-A83G
TCGA.T Y6-A8TL
TCGA.T YL-A8HM
TCGA.T YL-A8S8
TCGA.T YL-A8SH
TCGA.T YL-A8SO
TCGA.T ZG-A8QX
TCGA.T ZG-A8QY
05/13

RIN Gleason

8.5
9.3
8.5
7.8
8.6
8.3
7.8
8.7
7.8
9
9.4
8.7
8.8
9
7.5
7.6
9.3
9
8.6
9.1
8.1
8.6
8.3
8.2
9
7.9
7.7
7.3
9
7.2
8.6
8.1
8.5
8.7
7.5
8.8
8.5
8.2
8.7
8.2
8.4
9.5
8.1
7.1
7.9
7.6
7.8

4+4
343
4+3
445
3+4
4+4

4+3
3+3
4+3
445
443
3+4
445
343
4+3
445
4+4
4+3
4+4
443
4+4
4+4

444
445
4+4
4+3
3+4

4+4
4+4

4+3
343
4+4

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
4.FLI1
4.FLI1
4.FLI1
4.FLI1
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
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TC
0.58
0.80
0.78
0.52
0.68
0.96
0.44
0.80

NA
0.42
0.85
0.48
0.54
0.35
0.56
0.54
0.37
0.76
0.58
0.62
0.82
0.43
0.47
0.34
0.90

NA
0.68

NA
0.87
0.83
0.64
0.57
0.96
0.96
0.36
0.80
0.43
0.91
0.59
0.54
0.61
0.87
0.62
0.68
0.56
0.52
0.57

3
1.06
0.64
0.64
1.00
0.62
0.77
0.76
0.82
0.88
0.70
0.87
0.96
0.68
0.75
0.73
0.72
0.71
0.64
0.67
0.88
0.80
1.00
1.06
0.89
0.76
0.97
0.96
0.87
1.05
1.13
1.04
0.93
1.14
1.30
0.82
1.00
0.78
0.79
0.67
0.99
0.89
0.81
0.78
0.80
0.91
0.88
0.69

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00

0.89
0.91
0.92
0.84
0.90
0.88
0.91
0.91
0.85
0.90
0.89
0.90
0.92
0.92
0.89
0.92
0.92
0.92
0.93
0.88
0.87
0.87
0.89
0.91
0.90
0.90
0.91
0.92
0.89
0.89
0.92
0.86
0.84
0.85
0.86
0.89
0.89
0.80
0.90
0.77
0.87
0.90
0.90
0.88
0.89
0.91
0.89

Expression Scores

AR
-1.02
1.05
1.85
-3.26
3.28
-3.24
0.44
2.72
-4.31
2.81
2.02
5.8
1.68
2.15
3.03
4.25
2.22
2.61
3
4.23
2.18
1.27
3.6
1.76
3.43
3.03
2.99
-0.34
1.43
-0.78
3.39
-0.33
0.52
0.16
2.83
3.02
1.41
1.43
2.46
3.02
2.27
2.95
0.79
1.67
-0.4
1.17
1.96

Stroma
5.09
-4.84
-5.2
-0.1
2.36
-8.06
1.45
0.44
3.58
3.54
-4.64
-1.02
1.79
2.91
1.83
-2.76
3.15
0.01
13
-3.33
-5.84
3.04
0.6
2.23
-6.23
0.36
-2.24
2.01
-2.74
1.72
-3.69
0.1
-6.03
-8.27
-3.1
-3.46
2.2
-5.48
-2.31
-4.61
0.66
-5.81
-1.21
0.66
-1.47
1.38
2.07

NE
-2.85
3.29
2.53
-0.62
-0.28
1.51
-1.57
-1.82
-2.59
-1.93
31
0.03
-0.5
-1.13
-0.87
234
-2.41
-0.19
-0.7
0.36
3.48
0.66
0.4
0.17
4.03
-0.79
1.51
-1.12
3.08
-0.06
2.61
0.88
3.93
4.87
1.05
2.3
-0.39
2.28
1.28
3.15
-0.14
3.91
2.03
0.88
1.79
0.05
-1.02



cohort sample
TCGA.T CH-5737
TCGA.T EJ-5494
TCGA.T EJ-7789
TCGA.T HC-7210
TCGA.T HC-8265.1
TCGA.T J9-A8CP
TCGA.T KK-A8IB
TCGA.T KK-A8IG
TCGA.T YL-A9WI
TCGA.T CH-5772
TCGA.T EJ-7125
TCGA.T G9-7523
TCGA.T 2A-A8VO
TCGA.T CH-5751
TCGA.T CH-5761
TCGA.T CH-5767
TCGA.T CH-5792
TCGA.T EJ-5514
TCGA.T EJ-5515
TCGA.T EJ-5517
TCGA.T EJ-5518
TCGA.T EJ-5532
TCGA.T EJ-7218
TCGA.T EJ-7317
TCGA.T EJ-7331
TCGA.T EJ-7781
TCGA.T EJ-7786
TCGA.T EJ-7791
TCGA.T EJ-7792
TCGA.T EJ-7794
TCGA.T EJ-8470
TCGA.T EJ-A46G
TCGA.T EJ-A46I
TCGA.T EJ-A65G
TCGA.T EJ-A65)
TCGA.T EJ-A6RA
TCGA.T EJ-A6RC
TCGA.T EJ-A7NJ
TCGA.T EJ-A8FN
TCGA.T FC-A4JI
TCGA.T FC-A50B
TCGA.T FC-A800
TCGA.T G9-6366
TCGA.T G9-6367
TCGA.T G9-6370
TCGA.T G9-6378
TCGA.T G9-6499
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RIN
7
7.7
9.2
9.2
7.8
8.6
7.7
7.6
8.6
8.1
9.4
7.8
7.3
8.4
9.1
8.2
8
9.2
8.5
8.2
9.2
9.1
8.2
7.6
9.1
9.4
9.3
8.9
8.8
9.3
8.3
9
8.3
8.2
7.9
7.6
7.3
9
8
9.1
8.8
7.1
8.6
8.1
8
7.2
7.3

Gleason
3+4
3+4
4+5
444
3+4
3+4
444
444
444
3+4
3+3
3+4
3+3
4+4

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
6.FOXA1
6.FOXA1
6.FOXA1
6.FOXA1l
6.FOXA1
6.FOXAl
6.FOXAl
6.FOXA1l
6.FOXA1
7.IDH1
7.IDH1
7.IDH1
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
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TC
0.76
NA
0.96
0.47
0.55
0.60
0.43
0.75
0.89
0.84
0.69
0.25
0.56
0.38
0.71
0.84
0.40
0.62
NA
0.72
0.56
0.68
0.44
0.71
0.47
0.58
0.62
NA
0.40
0.36
0.47
0.74
0.27
0.51
0.85
NA
NA
0.85
0.69
0.69
0.86
NA
0.64
NA
NA
0.29
0.42

3
0.87
0.74
0.72
0.72
1.11
0.86
0.94
0.73
0.80
1.08
0.64
0.98
1.03
0.79
0.70
0.95
0.73
0.88
1.02
1.04
0.60
0.83
0.85
0.93
0.68
0.54
0.77
0.79
0.74
0.77
0.93
1.01
0.90
0.95
0.88
0.84
0.71
0.62
0.61
0.80
0.90
0.87
1.05
0.90
0.79
1.09
1.14

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.88
0.92
0.90
0.92
0.88
0.85
0.89
0.90
0.90
0.87
0.92
0.91
0.85
0.88
0.91
0.75
0.92
0.92
0.90
0.91
0.93
0.93
0.91
0.91
0.93
0.91
0.91
0.92
0.91
0.91
0.91
0.91
0.91
0.89
0.91
0.90
0.91
0.90
0.87
0.91
0.90
0.87
0.91
0.90
0.90
0.89
0.88

Expression Scores

AR
331
1.15
1.35
3.84
-0.02
2.42
-1.46
1.08
2.86
3.98
4.45
-2.07
1.19
-0.1
-0.7
4.55
-0.03
-2.02
4.32
3.63
2.47
4.81
3
4.68
2.89
2.67
4.26
2.04
0.08
2.39
191
1.81
19
4.05
4.64
1.52
0.59
3.56
1.47
0.92
3.61
-2.06
1.57
2.34
0.13
-1.19
1.98

Stroma
-3.99
-1.1
-5.13
2.04
-1.57
-0.49
-1.64
3.11
-5.18
-2.04
-0.56
7.83
-1.07
-2.44
-1.49
-2.54
3.6
0.38
4.69
1.98
1.73
-0.5
-3.63
-1.67
3.16
1.32
2.06
5.36
6.67
3.22
-2.06
-1.66
4.27
-2.79
-5.07
0.91
4.88
0.84
1.81
-8.31
-6.39
2.78
-3.54
5.63
6.35
3.58
-1

NE
1.04
-2.71
4.06
-0.71
-0.7
1.19
2.26
0.08
2.55
-0.15
0.5
-2.68
1.57
1.99
2.54
2.79
-0.83
0.06
-1.96
-1.63
0.36
-0.52
1.34
0.54
-1.06
-1.02
-0.83
-2.97
-3.58
-1.81
0.48
0.07
-1.15
1.47
2.77
-0.86
-1.59
-1.89
-0.62
5.21
3.84
-2.53
0.71
-2.45
-3.84
-2.71
0.73



Table C.1

cohort sample
TCGA.T G9-7519
TCGA.T G9-7521
TCGA.T HC-7075
TCGA.T HC-7078
TCGA.T HC-7233
TCGA.T HC-7736
TCGA.T HC-7737
TCGA.T HC-7740.1
TCGA.T HC-7742
TCGA.T HC-7750
TCGA.T HC-8216
TCGA.T HC-8256
TCGA.T HC-8264
TCGA.T HC-8266
TCGA.T HC-A4zV
TCGA.T HI-7170
TCGA.T J4-8200
TCGA.T J9-A8CL
TCGA.T J9-A8CN
TCGA.T KC-A4BL
TCGA.T KC-A7F3
TCGA.T KC-A7FA
TCGA.T KC-A7FE
TCGA.T KK-ABES
TCGA.T KK-A7AV
TCGA.T KK-A8ID
TCGA.T KK-A8lJ
TCGA.T KK-A8IL
TCGA.T M7-A721
TCGA.T TK-A80K
TCGA.T V1-A8MF
TCGA.T V1-A8MG
TCGA.T V1-A8ML
TCGA.T V1-A8MU
TCGA.T V1-A8WL
TCGA.T VN-A88I
TCGA.T VN-A88N
TCGA.T VN-A88P
TCGA.T VP-A87E
TCGAT  WW-A8Z|
TCGA.T XA-A8JR
TCGA.T XJ-A83H
TCGA.T YJ-A8SW
TCGA.T YL-A8HO
TCGA.T YL-A8S9
TCGA.T YL-A8SB
TCGA.T YL-A8SK
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RIN Gleason

7.1
9.2
8.4
8.1
9.6
9.1
7.5
7.9
8.4
7.7
9.4
9
8.2
7.2
9.3
8.3
9.3
7.7
7.8
7.6
8.4
7.7
8.3
7.3
8
7.9
8.6
7.5
8.5
7
7.8
8.1
8.1
7.4
8.5
7.3
8
8.1
7.6
7.9
7.1
8.5
9.5
7.9
8.6
7.6
7.4

343
3+4
3+4

343
3+3
343
3+4
3+3
343
3+4
4+4
343
3+4
3+4
5+4
4+4

4+3

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
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TC
0.28
0.45
0.79
0.74
0.56
0.60
0.33

NA
0.57
0.36
0.58
0.47
0.72
0.31
0.70
0.54
0.54
0.76
0.88

NA
0.51
0.75

NA
0.62
0.34
0.51
0.59
0.67
0.26
0.54
0.65
0.71
0.52
0.48
0.71
0.84
0.76
0.81

NA
0.93
0.38
0.53
0.84
0.57
0.95
0.53
0.44

3
1.18
0.87
0.84
0.98
0.62
0.55
0.75
0.73
0.86
0.93
0.88
0.87
0.89
0.90
0.95
0.79
0.87
0.64
0.86
0.86
0.80
0.93
0.77
1.07
0.91
0.73
0.66
0.87
0.71
0.68
0.87
0.82
0.94
0.80
0.89
0.85
0.77
0.85
0.78
0.80
0.85
0.82
0.53
0.67
0.76
0.82
0.73

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01

0.91
0.92
0.91
0.89
0.91
0.92
0.90
0.91
0.91
0.91
0.89
0.90
0.90
0.90
0.88
0.91
0.90
0.83
0.84
0.90
0.89
0.85
0.90
0.90
0.90
0.89
0.90
0.89
0.91
0.85
0.86
0.89
0.84
0.86
0.76
0.88
0.87
0.86
0.82
0.80
0.87
0.81
0.91
0.85
0.90
0.91
0.89

Expression Scores

AR
211
241
4.04

1
0.88
1.35
3.03
0.79

1.6
0.81
2.85
3.03
1.68
-0.12
0.75
-1.94
2.22
2.49
2.68
-1.87
0.85
-0.54
-0.2
2.56

1.9
2.07
2.69
-0.92
2.29
-3.05

0.6
1.11
191
-0.06
2.51
-3.99
2.84
0.71

0.3
0.13
1.41
3.01
3.12
-0.14
2.33
0.91
-2.02

Stroma
1.52
-1.05
-5.07
-2.45
1.95
0.82
1.27
5.21
3.37
5.25
-1.28
-3.4
5.2
3.05
-2.29
5.26
2.49
-0.55
-6.41
3.84
-0.13
-1.91
5.93
-1.58
-0.77
-6.37
-1.83
0.12
0.17
8.16
-2.32
1.3
0.02
4.26
1.02
8.74
-4.8
-0.31
3.6
-5.66
1.4
-2.44
-3.81
3.5
-10.16
2.33
5.09

NE
0.48
0.85
2.45
1.05

-0.89
0.12
0.66
-3.78
-0.59
-1.08
0.93
0.63
-0.62
-2.52
2.66
-3.13
-0.99
0.93
3.27
-2.09
1.02
0.75
-2.56
0.67
0.25
3.87

0.4
1.19
1.12

-4.16

0.9
0.14
0.59
-2.7

-1.97
-3.63
2.27
-0.13
-1.98
1.16
0
1.52
1.58
-2.46
5.31
-0.89
-3.04



cohort sample
TCGA.T YL-A8SQ
TCGA.T YL-A8SR
TCGA.T YL-ASWI
TCGA.T ZG-A8QW
TCGA.N CH-5761
TCGA.N CH-5767
TCGA.N CH-5768
TCGA.N CH-5769
TCGA.N EJ-7115
TCGA.N EJ-7123
TCGA.N EJ-7125
TCGA.N EJ-7314
TCGA.N EJ-7315
TCGA.N EJ-7317
TCGA.N EJ-7321
TCGA.N EJ-7327
TCGA.N EJ-7328
TCGA.N EJ-7330
TCGA.N EJ-7331
TCGA.N EJ-7781
TCGA.N EJ-7782
TCGA.N EJ-7783
TCGA.N EJ-7784
TCGA.N EJ-7785
TCGA.N EJ-7786
TCGA.N EJ-7789
TCGA.N EJ-7792
TCGA.N EJ-7793
TCGA.N EJ-7794
TCGA.N EJ-7797
TCGA.N EJ-A8FO
TCGA.N G9-6333
TCGA.N G9-6342
TCGA.N G9-6348
TCGA.N G9-6351
TCGA.N G9-6356
TCGA.N G9-6362
TCGA.N G9-6363
TCGA.N G9-6365
TCGA.N G9-6384
TCGA.N G9-6496
TCGA.N G9-6499
TCGA.N HC-7211
TCGA.N HC-7737
TCGA.N HC-7738
TCGA.N HC-7740
TCGA.N HC-7742
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RIN Gleason

7.8
9
8.9
8
7.3
8.9
7.5
7.1
8.8
8.7
8.3
9
9.6
9.5
8.8
9.6
8.2
8.2
9.2
8.5
8.8
8
8.8
8.5
8.6
8.6
8.8
8.7
9.1
8.5
8.4
7.4
7.4
7
7.5
7.6
7.5
7.5
7.2
7
7.5
7.6
8.2
8.1
7.4
8.1
7.3

443
443
3+3
3+4
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
8.0ther
8.0ther
8.0ther
8.0ther
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
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TC
0.68
0.68
0.42
0.41
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

3
0.78
0.75
0.61
0.87
0.76
0.95
0.89
0.81
0.75
0.70
0.78
0.64
0.67
0.64
0.70
0.81
0.68
0.64
0.74
0.75
0.67
0.77
0.70
0.67
0.66
0.69
0.76
0.78
0.61
0.84
0.63
1.10
1.19
1.21
1.05
1.04
1.57
0.90
1.14
1.02
1.12
1.14
0.86
0.81
0.84
0.88
0.82

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.88
0.91
0.88
0.88
0.91
0.92
0.88
0.89
0.91
0.91
0.90
0.92
0.92
0.93
0.92
0.90
0.91
0.92
0.91
0.92
0.90
0.92
0.92
0.91
0.88
0.90
0.91
0.92
0.91
0.92
0.90
0.90
0.89
0.89
0.90
0.89
0.87
0.89
0.89
0.90
0.90
0.88
0.91
0.91
0.89
0.91
0.91

Expression Scores

AR
3.49
3.55
211
-1.15
0.14
-1.83
0.91
-1.3
1.53
-3.69
0.57
0.73
-2.64
3.95
1.67
4.23
-2.64
-3.56
0.87
-3.11
0.93
-5.65
0.77
0.42
-0.84
1.39
-0.52
1.37
-1.97
0.73
-3.53
-3.96
1.77
-3
1.53
0.38
0.74
-0.58
-1.21
0.16
-1.7
-0.87
-5.95
-5.44
-6.05
-6.07
1.57

Stroma
-1.71
-0.88
0.56
1.45
3.01
5.03
3.66
0.41
5.88
13.32
3.8
8.98
9.33
4.65
5.76
-0.1
11.89
9.63
8.36
12.3
3.19
13.68
6.04
8.31
9.96
4.65
7.72
8.26
8.11
7.76
10.96
7.3
2.87
8.44
6.17
-2.18
-0.86
4.16
2.94
7.32
7.84
5.34
0.31
5.58
6.2
4
5.23

NE
0.46
2.24
-0.62
-0.29
-2.07
-2.12
-3.35
1.18
-2.6
-5.27
-2.41
-4.77
-5.25
-2.67
-3.94
-1.41
-5.66
-5.95
-4.63
-6.35
-2.22
-5.15
-4.97
-4.51
-5.69
-3.2
-4.96
-4.54
-5.8
-4.6
-6.08
-3.93
-1.68
-4.3
-3.36
-2.28
-0.11
-2.7
-1.63
-2.63
-3.57
-0.15
-1.04
-3.17
-3.21
-3.22
-2.21



cohort
TCGA.N
TCGA.N
TCGA.N
TCGA.N
TCGA.N
TCGA.N
TCGA.N
TCGA.N
TCGA.N
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.T
Michigan.N

Table C.1

sample
HC-7745
HC-7747
HC-7752
HC-7819
HC-8258
HC-8259
HC-8260
HC-8262
J4-A83)
UT_4001
UT_4003
UT_4006
UT_4008
UT_4016
UT_4019
UT_4022
UT_4023
UT_4025
UT_4028
UT_4028
UT_4034
UT_4002
UT_4010
UT_4030
UT_4009
UT_4017
UT_4018
UT_4018
UT_4032
UT_4005
UT_4006
uT_4007
UT_4011
UT_4012
UT_4013
UT_4014
UT_4015
UT_4015
UT_4015
UT_4020
UT_4021
UT_4024
UT_4027
UT_4029
UT_4031
UT_4035
UT_4001
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RIN Gleason

7.1
7.6
7.6
7.8
7.5
7.2
8.2
7.9
8.1
8.9
9.4
8.8
9.5
9.7
9.5
9.6
9.6
9.2
9.4
9.2
9.3
9.1
9.8
9.6
9.2
9.5
9.2
9.2
7.3
9.3
8.8
9.4
9.8
9.5
8.9
9.1
8
9.3
9.6
9.5
9.7
7.3
9.2
8.2
8.5
6.1
9.3

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal

1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
2.ETV1
4.FLI1
5.SPOP
6.FOXAl
6.FOXAl
6.FOXA1
6.FOXA1
6.FOXA1
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
9.Normal
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TC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.70
0.47
0.64
0.70
0.21
0.56
0.61
0.40

NA
0.59
0.48
0.26
0.70
0.48
0.82
0.58
0.64
0.32
0.32
0.70
0.53
0.25
0.38
0.33
0.26
0.35
0.29
0.46
0.51
0.26
0.40
0.67
0.67

NA
0.54
0.58
0.70
0.00

3
0.74
0.77
1.00
0.81
0.82
0.93
0.85
0.78
0.67
0.51
0.38
0.36
0.50
0.52
0.49
0.59
0.57
0.60
0.54
0.64
0.61
0.41
0.55
0.46
0.64
0.43
0.67
0.78
0.84
0.45
0.46
0.21
0.51
0.45
0.59
0.61
0.58
0.54
0.58
0.66
0.42
0.49
0.61
0.54
0.71
0.73
0.37

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.01
0.01
0.00
0.01
0.00
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00

0.92
0.92
0.90
0.91
0.92
0.91
0.91
0.91
0.90
0.91
0.92
0.95
0.96
0.96
0.95
0.95
0.95
0.95
0.95
0.94
0.95
0.91
0.95
0.95
0.95
0.96
0.96
0.94
0.91
0.91
0.92
0.93
0.96
0.95
0.95
0.95
0.94
0.95
0.95
0.95
0.96
0.96
0.94
0.94
0.93
0.82
0.92

Expression Scores

AR
-6.18
-6.07
-2.6
1.48
-6.11
1.83
2.96
-2.28
-0.42
-0.55
0.79
-1.59
2.48
0.26
0.22
0.61
1.6
-0.33
3.36
0.86
-0.49
2.49
1.55
3.33
1.96
2.67
1.29
1.59
1.95
1.51
-2.64
4.21
2.48
2.56
3.43
2.15
-1.63
-0.9
2.59
1.92
1.88
2.46
3.8
-0.31
-1.46
-2.74
-1.19

Stroma
8.93
3
7.63
5.36
0.61
5.54
4.62
4.41
4.37
-3.7
0.67
-4.06
-2.26
3.9
1.82
-1.29
1.74
5.14
-1.59
0.53
3.45
-3.43
0.51
-8.2
-1.1
-3.6
1.91
1.99
-4.27
-3.48
-2.23
-0.4
2.55
0.96
-4.42
2.45
2.89
7.09
1.66
-0.01
-1.23
-2.67
-3.34
7.41
4.99
-6.23
4.66

NE
-4.2
-2.3

-3.84
-3.6
-1.57
-2.75
-3.3
-3.85
-3.4
1.77
-0.68
1.28
2.05
-2.73
-0.44
0.92
0.06
-2.4
1.78
-1.06
-1.96
1.33
0.69
4.39
1.19

1.8
0.32
0.07
2.76
1.35
0.63
1.03
-0.9

-1.13
2.32
-2.25
-0.88
-3
-1.67

0.7
213
2.01

-0.31
-1.74
-1.47
141
-2.76



cohort
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N
Michigan.N

Table C.1

sample
UT_4002
UT_4003
UT_4004
UT_4005
UT_4006
UT_4007
UT_4008
UT_4008
UT_4009
UT_4009
UT_4010
UT_4010
UT_4011
UT_4011
UT_4012
UT_4013
UT_4014
UT_4015
UT_4016
uT_4017
UT_4018
UT_4019
UT_4019
UT_4020
UT_4020
UT_4021
UT_4021
UT_4022
UT_4022
UT_4023
UT_4023
UT_4024
UT_4024
UT_4025
UT_4025
UT_4026
UT_4026
uT_4027
uT_4027
UT_4028
UT_4028
UT_4029
UT_4029
UT_4030
UT_4030
UT_4031
UT_4031
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RIN Gleason

8.4
9.4
8.4
9.4
9.2
9
9.3
8.8
9.6
9.5
9.4
9.3
8.2
9.6
8.9
9.7
8.3
9.4
9.2
8
9.2
9.3
8.4
9.5
9.7
9.6
9.3
9.1
9.7
9.5
9.6
9.5
9.3
9.1
9.3
8.9
8.6
9.6
9.2
7
8.8
7.9
9
9
9
8.6
9.3

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Subtype
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
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TC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

3
0.40
0.37
0.58
0.71
0.51
0.47
0.59
0.47
0.61
0.47
0.42
0.43
0.39
0.46
0.54
0.52
0.46
0.50
0.52
0.49
0.56
0.61
0.46
0.44
0.44
0.56
0.45
0.52
0.55
0.52
0.49
0.45
0.49
0.51
0.53
0.55
0.51
0.52
0.54
0.40
0.46
0.61
0.61
0.54
0.52
0.67
0.59

Nascent Aln%

0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00

0.92
0.92
0.92
0.88
0.89
0.93
0.96
0.96
0.96
0.96
0.97
0.96
0.96
0.96
0.95
0.95
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.96
0.95
0.96
0.96
0.96
0.96
0.97
0.96
0.96
0.95
0.95
0.96
0.96
0.95
0.95
0.95
0.94
0.95
0.95
0.95
0.95
0.96

Expression Scores

AR
0.73
0.33
1.15

-3

15
1.28

-2.67
-5.53
-0.84
-1.52
-4.5
-1.11
-0.8
15
1.59
-1.72
-6.5
0.57
-0.4
0.96
1.32
-2.23
-3.71
1.21
3.09
1.73
0.84
-1.74
1.89
0.03
-0.09
231
2.52
-0.19
-0.52
-1.42
-3.22
1.71
3.23
3.69
-1.66
-2.05

2.08
-0.83
-3.26

0.75

Stroma
7.37
6.7
4.14
6.85
3.35
2.15
8.46
12.72
8.41
7.95
134
8.69
7.67
4.07
4.66
7.63
13.51
5.99
6.75
6.06
5.97
6.08
6.63
7.42
4.78
4.63
5.57
8.51
-0.05
7.14
8.73
4.13
2.04
8.79
3.64
9.22
12.3
5.94
2.71
-2.45
10
3.04
4.98
3.44
9.17
10.41
6.17

NE
-4.08
-2.62
-1.52
-3.72
-0.98
-1.37
-3.39

-4.9
-4.6
-4.99
-4.36
-3.72
-4.22
-0.61
-1.68
-2.66

-5
-2.42
-2.49

-3.3
-3.41
-2.91
-3.07
-3.18
-2.03
-2.77
-3.59
-3.85

0.1
-3.71
-3.45
-2.38
-1.73
-3.63
-2.47
-4.33
-5.09
-3.08
-0.92

2.59
-4.36
-0.97
-2.18
-1.05
-3.85
-4.17
-1.89



cohort sample
Michigan.N  UT_4032
Michigan.N  UT_4032
Michigan.N  UT_4033
Michigan.N  UT_4033
Michigan.N  UT_4034
Michigan.N  UT_4034
Michigan.N  UT_4035
Michigan.N  UT_4035
su2c MO_1015
su2c MO_1040
su2c MO_1071
su2c MO_1084
su2c MO_1095
su2C MO_1114
su2c MO_1118
su2C MO_1124
su2c MO_1161
su2c MO_1176
su2c MO_1179
su2c MO_1192
su2c MO_1202
su2c MO_1215
su2c MO_1241
su2Cc MO_1244
su2C MO_1249
su2Cc MO_1277
su2c MO_1316
su2c MO_1337
su2c SC_9009
su2c SC_9016
su2c SC_9017
su2c SC_9018
su2c SC_9022
su2C SC_9026
su2C SC_9034
su2c SC_9035
su2c SC_9037
su2c SC_9043
su2c SC_9046
su2c SC_9049
su2c SC_9050
su2c SC_9056
su2c SC_9059
su2C SC_9060
su2C SC_9061
su2c SC_9063
su2c SC_9068
Table C.1  11/13

RIN Gleason

9.4
8.9
9.6
7.3
9.1
8.9
9.1
7.9
4.9
6.8
7.4
5.7
2.5
9.8
10
9.3
9.7
8.3
5.9
9.9
9.7
9.8
9.5
9.3
10
9.8
NA
9.6
7.3
9.9
9.9
8.6
10
6.9
4.2
9.6
9.1
9.3
8
8
8.2
10
8.7
9.3
8.9
9.6
8.9

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Biopsy.Site
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate
Prostate

Lymph_Node
Lymph_Node
Prostate
Lymph_Node
Soft_Tissue
Lymph_Node
Liver
Soft_Tissue
Liver
Lymph_Node
Bone
Lymph_Node
Liver
Soft_Tissue
Liver
Liver
Lymph_Node
Bone
Lymph_Node
Liver
Lymph_Node
Lymph_Node
Liver
Bone
Soft_Tissue
Bone
Bone
Lymph_Node
Liver
Bone
Liver
Bone
Lymph_Node
Bone
Lymph_Node
Liver
Bone
Lymph_Node
Lymph_Node

Subtype
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal
9.Normal

1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
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TC
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.66
0.70
0.33
0.81
0.40
0.88
0.91
0.95
0.82
0.86
0.30
0.68
0.47
0.88
0.82
0.94
0.48
0.87
0.85
0.84
0.86
0.32
0.74
0.55
0.55
0.39
0.30
0.63
0.30
0.75
0.30
0.30
0.75
0.45
0.82
0.41
0.65
0.60
0.58

3
0.50
0.53
0.46
0.49
0.63
0.51
0.84
0.76
1.88
0.79
0.82
1.29
0.68
0.80
0.56
0.54
0.73
0.70
0.88
0.51
0.59
0.52
0.51
0.56
0.60
0.71
0.63
0.46
1.26
1.66
0.82
0.82
0.64
1.18
0.77
0.43
0.72
0.82
1.06
0.65
1.19
0.44
0.60
0.57
0.53
0.53
0.77

Nascent Aln%

0.00
0.00
0.00
0.00
0.01
0.00
0.02
0.01
0.02
0.01
0.01
0.02
0.01
0.00
0.00
0.01
0.01
0.01
0.01
0.00
0.01
0.00
0.01
0.01
0.01
0.00
0.01
0.00
0.03
0.02
0.01
0.00
0.01
0.00
0.01
0.01
0.00
0.01
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.01

0.95
0.95
0.95
0.87
0.95
0.94
0.91
0.92
0.73
0.89
0.92
0.82
0.87
0.91
0.91
0.94
0.92
0.92
0.91
0.93
0.92
0.93
0.93
0.93
0.92
0.94
0.90
0.92
0.89
0.87
0.90
0.92
0.94
0.82
0.86
0.94
0.88
0.89
0.86
0.89
0.90
0.95
0.93
0.93
0.94
0.94
0.89

Expression Scores

AR
-1.68
-1.78

1.2
-7.02

0.49
-1.99
-3.82
-3.22
-6.26

2.85
-4.38
-5.08

-5.6

0.43
-6.74
-6.17
-4.09
-1.78
-6.64

3.53
-3.37
-7.38
-3.78
-2.29

-3

0.93

0.09
-3.47
-3.22
-2.74

-6.1
-0.79
-3.98
-3.57
-5.98
-1.55
-5.67
-0.55
-1.85

-4.5
-4.49

0.23
-2.01
-6.18

0.28
-2.78
-1.79

Stroma
10.12
8.84
1.21
14.66
6.53
10.67
5.67
4.54
-4.48
-4.48
3.92
-13.83
-8.6
-6.72
-4.59
-5.95
-6.18
-6.79
-6.73
-4.25
-3.02
-2.4
-6.62
-6.97
-6.97
-6.71
-6.83
-4.04
-7.66
-6.56
-2.78
-8.66
-1.29
-7.23
-3.37
-6.37
-6.02
-5.69
-6.09
-3.53
-9.13
-8.04
-5.44
-1.21
-4.57
-4.25
-4.3

NE
-4.15
-3.55
-0.06
-3.34
-2.93
-5.73
-3.03
-2.35
1.12
1.73
-2.22
5.55
3.22
3.86
-4.92
1.51
-0.02
3.08
3.38
2.45
1.95
-5.37
212
5.44
3.46
5.15
3.36
2.95
4.11
3.06
1.64
3.54
0.74
3.03
2.28
3.53
1.42
3.67
2.62
2.72
3.62
2.45
-0.84
0.56
4.37
0.87
2.29



Table C.1

cohort sample
su2c SC_9071
su2c SC_9086
su2c SC_9092
su2c SC_9097
su2c SC_9099
su2C SC_9104
su2C SC_9107
su2c SC_9109
su2c 1115154
su2c 1115156
su2c 1115157
su2c 1115183
su2C 1115244
su2C 6115117
su2c 6115121
su2C 6115122
su2c 6115219
su2c 6115234
su2c 6115247.1
su2c TP_2001
su2c TP_2034
su2c TP_2054
su2c MO_1221
su2Cc SC_9019
su2C SC_9027
su2Cc SC_9028
su2c SC_9055
su2c SC_9057
su2c SC_9072
su2c 6115114
su2C 6115118
su2c MO_1012
su2c MO_1054
su2C MO_1232
su2C MO_1262
su2c SC_9001
su2c SC_9065
su2c SC_9093
su2c 1115153
su2c 6115115
su2C 6115224
su2C 6115237
su2c TP_2009
su2C TP_2020
su2C SC_9007
su2c MO_1074
su2c MO_1128
12/13

RIN Gleason

7.6
6.8
NA
9.6
9.6
8.8
9.7
9.8
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
8.7
7.6
9
6.6
9.4
7.9
6.3
9.6
8.5
10
NA
NA
NA
7.4
7.6
10
7
7
9.5
NA
NA
NA
NA
4.8
7.6
9.2
NA
10

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Biopsy.Site
Bone
Bone
Bone

Lymph_Node
Lymph_Node
Lymph_Node
Liver
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Bone
Bone
Soft_Tissue
Soft_Tissue
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Bone
Lymph_Node
Bone
Bone
Bone
Prostate
Lymph_Node

Soft_Tissue
Bone

Soft_Tissue

Soft_Tissue

Soft_Tissue

Prostate
Soft_Tissue
Lymph_Node
Liver
Bone

Soft_Tissue
Bone

Lymph_Node

Soft_Tissue
Liver
Bone
Bone

Lymph_Node
Bone
Lymph_Node

Subtype
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG
1.ERG

2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
2.ETV1
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
3.ETV4
4.FLI1
5.SPOP
5.SPOP
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TC
0.30
0.42
0.75
0.82
0.86
0.65
0.60
0.51
0.80
0.69
0.38
0.64
0.50
0.52
0.67
0.56
0.74
0.32
0.80
0.50
0.51
0.45
0.79
0.42
0.44
0.30
0.33
0.72
0.45
0.89
0.54
0.53
0.30
0.58
0.83
0.70
0.63
0.72
0.34
0.40
0.70
0.77
0.45
0.42
0.52
0.43
0.73

3
1.15
0.79
0.31
0.28
0.42
0.47
0.56
0.24
0.18
0.32
0.29
0.23
0.38
0.67
1.38
0.56
0.66
0.64
0.72
0.91
0.57
0.45
0.82
0.66
0.45
0.85
0.60
0.56
0.41
0.78
0.47
2.54
0.63
0.59
0.53
1.22
0.69
0.76
0.10
0.68
0.30
0.50
1.11
1.23
0.79
0.76
0.63

Nascent Aln%

0.00
0.01
0.01
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.02
0.00
0.01
0.01
0.01
0.01
0.01
0.00
0.00
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.01
0.00

0.90
0.91
0.94
0.95
0.93
0.93
0.93
0.94
0.89
0.89
0.89
0.78
0.80
0.87
0.86
0.85
0.81
0.83
0.82
0.91
0.90
0.92
0.89
0.91
0.95
0.90
0.93
0.94
0.93
0.79
0.87
0.36
0.91
0.94
0.94
0.80
0.84
0.92
0.87
0.85
0.83
0.83
0.82
0.85
0.82
0.92
0.90

Expression Scores

AR
-6.76
-2.11
-1.08
-0.42
1.68
-1.86
-3.48
2.45
0.1
1.03
-1.89
0.79
-1.37
-4.61
-4.5
-5.42
1.09
-1.11
-0.25
-0.38
-6.63
-3.05
-2.25
-2.7
-2.3
-7.59
-0.85
-2.85
0.94
-2.24
-0.68
-8.94
-2.97
-5.63
1.37
-6.58
-3.65
-2.39
-1.07
-1.97
-1.79
-6.98
-5.38
-4.21
-1.25
-4.45
-4.13

Stroma
-5.81
-3.48
-3.28
-6.02
-6.5
-6.47
-5.44
-5.18
-4.74
-1.95
-1.04
-3.16
-2.56
-3.31
-9.14
2.24
-5.45
-4.96
-4.17
-5.44
6.55
-1.5
-4.85
-2.52
-7.1
-5.47
-3.26
-4.96
-8.6
-10.39
-1.83
-3.6
-2.27
-0.83
-7.38
1.09
-9.87
-8.11
-2.24
-8.34
-6.67
-5.58
-2.14
-6.45
1.37
-0.97
-1.83

NE
3.16
3.02
2.78
5.45
3.16
3.18
3.17
35
4.03
1.03
0.9
2.98
2.07
341
4.06
0.55
2.5
4.17
2.25
2.3
-3.37
2.26
341
2.35
3.35
4.03
244
2.38
4.11
5.15
2.81
1.37
1.23
1.18
4.5
-4.2
4.79
5.19
2.93
4.65
4.38
-2.51
2.24
3.47
0.98
1.85
3.11



Table C.1

cohort sample
su2c MO_1336
su2c SC_9008
su2c SC_9094
su2c SC_9100
su2c SC_9103
su2C TP_2060
su2C SC_9029
su2c SC_9038
su2c SC_9047
su2c SC_9048
su2c SC_9058
su2c SC_9091
su2C 1115161
su2c MO_1013
su2c MO_1014
su2C MO_1020
su2c MO_1094
su2c MO_1184
su2c MO_1219
su2c MO_1339
su2c SC_9010
su2c SC_9012
su2c SC_9023
su2Cc SC_9030
su2C SC_9031
su2Cc SC_9032
su2c SC_9036
su2c SC_9054
su2c SC_9062
su2c SC_9073
su2c SC_9080
su2c SC_9081
su2c SC_9083
su2C 1115202
su2C 6115123
su2c 6115227
su2c 6115233
su2c 6115242
su2c 6115250.2
su2c 6115251
su2c TP_2010
su2c TP_2032
su2c TP_2061
su2C TP_2064
13/13

RIN Gleason

43
7.9
6.6
7
9.4
9.2
9.9
9.7
8
8
9.7
7.9
NA
6.1
NA
8
9.7
9.2
8
10
7.3
9.6
6
10
9.8
10
10
9.9
9.5
8.8
9.5
9.8
9
NA
NA
NA
NA
NA
NA
NA
7.6
9.4
4.9
9.9

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Biopsy.Site
Bone
Liver
Bone
Bone
Bone

Lymph_Node

Soft_Tissue

Lymph_Node
Bone
Bone
Lymph_Node
Bone
Lymph_Node
Lymph_Node
Lymph_Node
Liver
Bone
Liver
Bone
Lymph_Node
Lymph_Node
Liver
Bone

Soft_Tissue

Liver
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node

Bone

Soft_Tissue

Soft_Tissue

Soft_Tissue

Lymph_Node

Soft_Tissue

Lymph_Node
Lymph_Node
Lymph_Node
Lymph_Node
Soft_Tissue
Lymph_Node

Subtype
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP
5.SPOP

6.FOXAl

6.FOXA1l
6.FOXA1
6.FOXA1
6.FOXA1
6.FOXA1
6.FOXA1l
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
8.0ther
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TC
0.59
0.92
0.55
0.20
0.74
0.30
0.98
0.58
0.65
0.33
0.73
0.63
0.87
0.42
0.62
0.36
0.85
0.56
0.30
0.79
0.61
0.32
0.67
0.91
0.67
0.87
0.46
0.66
0.74
0.38
0.77
0.86
0.62
0.44
0.67
0.87
0.84
0.49
0.95
0.73
0.73
0.57
0.67
0.68

3
0.90
0.72
0.41
0.55
0.36
1.17
0.57
0.82
0.80
0.55
0.54
0.87
0.33
1.41
1.72
0.90
1.64
0.87
0.94
0.37
0.70
1.12
0.92
0.67
0.65
0.80
0.49
0.59
0.59
0.52
0.72
0.48
0.63
0.22
1.68
0.39
0.41
0.89
0.62
0.46
0.66
1.08
0.67
0.25

Nascent Aln%

0.00
0.01
0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.01
0.01
0.02
0.00
0.00
0.00
0.01
0.00
0.01
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.00

0.87
0.89
0.89
0.87
0.94
0.83
0.92
0.93
0.87
0.90
0.93
0.75
0.81
0.90
0.83
0.88
0.91
0.90
0.73
0.93
0.88
0.89
0.89
0.90
0.91
0.90
0.90
0.92
0.94
0.93
0.92
0.92
0.89
0.84
0.84
0.83
0.84
0.79
0.84
0.83
0.89
0.84
0.92
0.95

Expression Scores

AR
-1.32
0.05
-3.73
-4.43
-3.91
-3.38
0.83
-4.07
-2.24
-3.72
-1.47
-3.5
2.15
-3.66
-4.23
-6.39
-7.15
-3.36
-4.99
-1.24
-2.94
-6.7
-5.93
1.16
-6.93
-0.12
1.63
-1.12
-5.5
0.86
-2.48
-0.86
-3.1
5.55
-5.46
-1.33
-0.9
-2.9
2.93
-0.22
-4.13
-3.54
-6.08
4.8

Stroma
-5.82
-6.51
-5.91
-4.68
-6.36
-3.09

-12.11
0.11
-6.76
-3.86
-4.68
-10.9
-6.29
-3.2
-5.64
0.33
-2.33
-0.95
-11.19
-1.98
-6.12
-5.8
-6.76
-9.76
11
-11.08
-3.91
-8.12
-2.44
-4.93
-2.13
-3.37
-3.49
-5.1
-3.65
-6.75
-6.03
-4.65
-9.32
-3.58
-7.38
-2.39
0.05
-4.14

NE
3.69
5.01
3.78
4.01
4.32
2.83
6.16
2.37
4.81
2.77
2.61
5.2
4.94
3.81
4.74
-0.9
0.61
1.12
4.55
-0.44
4.13
2.48
2.92
5.56
-6.99
6.25
2.96
1.41
3.29
2.75
1.46
2.44
2.8
3.59
2.73
4.51
1.94
4.35
5.03
3.03
1.71
3.24
-0.49
4.32



Gene Current ENSG

PSA KLK3 ENSG00000142515.14
TMPRSS2 TMPRSS2 ENSG00000184012.11
NKX3-1 NKX3-1 ENSG00000167034.9
KLK2 KLK2 ENSG00000167751.12
GNMT GNMT ENSG00000124713.5
TMEPAI PMEPA1 ENSG00000124225.15
MPHOS9 MPHOSPH9 ENSG00000051825.14
ZBTB10 ZBTB10 ENSG00000205189.11
EAF2 EAF2 ENSG00000145088.8
BM039 CENPN  ENSG00000166451.13
SARG C1orf116 ENSG00000182795.12
ACSL3 ACSL3 ENSG00000123983.13
PTGER4 PTGER4 ENSG00000171522.5
ABCC4 ABCC4 ENSG00000125257.13
NNMT NNMT ENSG00000166741.7
ADAM7 ADAM7  ENSG00000069206.15
FKBP5 FKBP5 ENSG00000096060.14
ELL2 ELL2 ENSG00000118985.14
MED28 MED28 ENSG00000118579.11
HERC3 HERC3  ENSG00000138641.15

Hieronymus - AR signalling

Table C.2  Androgen Receptor Target Genes

A panel of genes whose expression is driven by activity of the Androgen receptor, taken
from the manuscript by Hieronymus et. al.*” These genes were used in our derivation of
an AR activity signature (Figure C.6), similar to the approach taken by TCGA.'”

139



Gene Current ENSG note
ASXL3 ASXL3 ENSG00000141431.9
AURKA AURKA ENSG00000087586.17
BRINP1 BRINP1 ENSG00000078725.12
CAND2 CAND2 ENSG00000144712.11
DNMT1 DNMT1 ENSG00000130816.14
ETV5 ETV5  ENSG00000244405.7
EZH2 EZH2 ENSG00000106462.10
GNAO1 GNAO1 ENSG00000087258.13
. GPX2 GPX2 ENSG00000176153.11
5 JAKMIP2 JAKMIP2 ENSG00000176049.15
© KCNB2 KCNB2 ENSG00000182674.5
2 KCND2 KCND2 ENSG00000184408.9
S LRRC16B  LRRC16B ENSG00000186648.14
2 MAP10 MAP10 ENSG00000212916.4
S MYCN MYCN ENSG00000134323.10
) NRSN1 NRSN1 ENSG00000152954.11
g PCSK1 PCSK1 ENSG00000175426.10
9 PROX1 PROX1 ENSG00000117707.15
g RGS7 RGS7 ENSG00000182901.15
o SCG3 SCG3  ENSG00000104112.8
2 SEC11C SEC11C  ENSG00000166562.8
- SEZ6 SEZ6 ENSG00000063015.19
& SOGA3 SOGA3 ENSG00000255330.8
E ST8SIA3 ST8SIA3 ENSG00000177511.5
SVOP SVOP  ENSG00000166111.9
SYT11 SYT11  ENSG00000132718.8
TRIM9 TRIM9 ENSG00000100505.13
C7orf76 C7orf76 unused, overlaps SHFM1
KIAA0408 KIAA0408 unused, overlaps SOGA3

Chromogranin A CHGA
ChromograninB  CHGB

HES6
Synaptophysin

HES6
SYP

ENSG00000100604.12
ENSG00000089199.9
ENSG00000144485.10
ENSG00000102003.10

we added these, previously
known markers absent
from Beltran list

Table C.3

Neuroendocrine prostate cancer genes
A panel of genes whose expression is expected to be up-regulated in the

neuroendocrine subtype of prostate cancer, taken from Beltran et. al.*® These genes

were used in our derivation of a neuroendocrine signature (Figure C.7).
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Figure C.1 PCa-Specific Gene Signature Analysis

In the course of analyzing normal prostate tissue RNA-seq samples, we became
concerned by the presence of known cancer-specific transcripts. We tested for the three
most-specific known biomarkers of prostate cancer : ERG, PCA3, and AMACR. Shown
here is a scatterplot of log10 expression, of PCA3 and AMACR, with ERG marked if >=
10 fpkm. Normal tissue samples were excluded if : ERG >= 10 fpkm, or PCA3 >=10
fpkm, or AMACR >= 50 fpkm.
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Per-cohort Barplots of 3' Bias
3' Bias was estimated by the median log-ratio imbalance between the last and first splice
junction of all unambiguous annotated genes.
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3' Bias Comparison for TCGA Tumor Samples

Median Log-Ratio of Splice Junctions

r—squared = 0.77
T T T T 1
0.5 1.0 1.5 2.0 25

Median Log—-Ratio of UTRs

Figure C.3 Comparison of 3' Bias Estimation with TCGA's 3' Bias Estimation
Here we compare the 3' bias estimation we generated using junction read depth
imbalance, to the 3' bias estimation TCGA generated using 3' UTR average read depth
imbalance. The two estimates generally agreed.
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Figure C.4
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Per-cohort barplots of Unspliced RNA content

Unspliced RNA level was estimated by the median unspliced coverage over junctions

from high confidence gene annotations (i.e., across all genes).
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Figure C.5 Comparison of Unspliced RNA between FFPE and Frozen Samples
Here we compared the unspliced RNA content as calculated in Figure C.4 between
FFPE and Frozen samples for the 4 TCGA primary prostate tumors where both libraries
were available, expecting to see that FFPE would have higher levels of unspliced RNA.
Points are single unspliced junctions from unambiguous gene annotations. As expected,
the unspliced RNA estimate generated here confirmed that FFPE samples have more
unspliced RNA (possibly due to quality, or because they were whole transcriptome
libraries rather than polyA).
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Figure C.6 Generation of AR activity signature

The AR activity signature was generated using the first principal component of inverse
normal transformed expression as in Figure 4.2, using the genes in Table C.2 from
Hieronymus et. al.*” Individual gene contributions are plotted in red. Samples shown
are the full cohort from Chapter 5.
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Figure C.7 Generation of Neuroendocrine expression signature

The Neuroendocrine signature was generated using the first principal component of
inverse normal transformed expression as in Figure 4.2, using the genes in Table C.3
from Beltran et. al.?®® The expression of these genes followed a binary "zero or
expressed" pattern, and were originally intended to complement each other rather than
reflect a single axis of expression, so our approach here would need to be reworked
before drawing significant conclusions from this signature. Individual gene
contributions are plotted in red : note also that they don't point in the same direction,
again indicating their complementary nature. Samples shown are the full cohort from
Chapter 5.
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Correlative bias analysis was performed on significant differential variant calls in the TCGA tumor vs. TCGA normal
analysis. Left panel) kernel density plot of variant correlation against stromal expression, with red lines indicating the
middle 80%. Middle panel) kernel density plot of variant fractions for the same variant in PrEC cells, with a red line

indicating the 25% variant fraction marker. Right panel) Scatterplot of the correlations and variant fractions shown in the
other two panels, with red lines indicating the same positions - middle 80% of correlation and 25% variant fraction in
PrEC. Points plotted in gray were identified as likely lineage-specific variants in this cohort or the other two cohorts.
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Figure C.9 Lineage-Specific Variant Filtering, Michigan cohort

Correlative bias analysis was performed on significant differential variant calls in the Michigan tumor vs. Michigan
normal analysis. Left panel) kernel density plot of variant correlation against stromal expression, with red lines indicating
the middle 80%. Middle panel) kernel density plot of variant fractions for the same variant in PrEC cells, with a red line
indicating the 25% variant fraction marker. Right panel) Scatterplot of the correlations and variant fractions shown in the

other two panels, with red lines indicating the same positions - middle 80% of correlation and 25% variant fraction in
PrEC. Points plotted in gray were identified as likely lineage-specific variants in this cohort or the other two cohorts.
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Figure C.10 Lineage-Specific Variant Filtering, SU2C cohort

Correlative bias analysis was performed on significant differential variant calls in the SU2C mCRPC vs. Michigan normal
analysis. Left panel) kernel density plot of variant correlation against stromal expression, with red lines indicating the
middle 80%. Middle panel) kernel density plot of variant fractions for the same variant in PrEC cells, with a red line
indicating the 25% variant fraction marker. Right panel) Scatterplot of the correlations and variant fractions shown in the
other two panels, with red lines indicating the same positions - middle 80% of correlation and 25% variant fraction in
PrEC. Points plotted in gray were identified as likely lineage-specific variants in this cohort or the other two cohorts.
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Figure C.11 Bias Correlation Plots for Significant Differential Splicing Calls
Significant differential splicing was called following the description in Figure 5.1 and
tiltered for significance and minimum variant fraction shift as in Figure 5.2. Plotted
here are the distributions of bias correlations for those calls, where blue is the TCGA

cohort, green is the Michigan cohort, and purple is the SU2C cohort.
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Figure C.12 Bias Correlation Plots for Significant Differential Splicing Calls,

without unspliced calls in SU2C
Significant differential splicing was called following the description in Figure 5.1 and
tiltered for significance and minimum variant fraction shift as in Figure 5.2.
Additionally, unspliced junction calls were removed from the SU2C cohort. Plotted
here are the distributions of bias correlations for those calls, where blue is the TCGA

cohort, green is the Michigan cohort, and purple is the SU2C cohort.

152



Gene _-_’_-'."vv-—.v.—_

MOV10

chr1.1.112699684.112699684 .bed I I

Control_Form;90CT

[0-883) )
tumor-TP_2034_SI_6558_D27KPACXX_8 Coverage ‘ l Ill I . ' . ‘
tumor-TP_2034_SI_6558_D27KPACXX_8 Junctions W

- 370

]
tumor-MO_1084_SI_5551_D131EACXX_1 Coverage . l
el e — el — ] s

[0 1650) .
tumor-MO_1094_SI_5594_D133TACXX_8 Coverage ‘ I ' I ' . ‘
tumor-MO_1094_SI_5594_D133TACXX_8 Junctions W

[0- 1108)

tumor-MO_1074_SI_5410_COVYRACXX_1 Coverage ‘ m ! - I . h
tumor-MO_1074_SI_5410_COVYRACXX_1 Junctions W

Figure C.13 Intron retention call example from the SU2C cohort

Plotted are depth of coverage plots in IGV for four mCRPC samples from the SU2C cohort, in which multiple retention
variants of the gene MOV10 were called (among many, many other genes). Notably, while some introns are consistently
retained, others are consistently spliced at high fidelity, casting doubt on known biases as explanation, including 3' bias,
nascent RNA contamination, or genomic DNA contamination. Further work is needed to investigate this phenomenon.
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