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ABSTRACT 

 

Ferroelectric materials have been utilized in a broad range of electronic, optical, 

and electromechanical applications and hold the promise for the design of future high-

density nonvolatile memories and multifunctional nanodevices. The applications of 

ferroelectric materials stem from the functional structures of domains and domain walls 

and the ability to switch them by applying an electric field. A fundamental understanding 

of the microscopic mechanism underlying the domain formation and the domain 

switching, therefore, is critical for design of practical ferroelectric devices. In this work, a 

systematic study of atomic-scale polarization structures and microscopic domain-

switching processes in ferroelectric BiFeO3 thin films is performed by using atomic-

resolution scanning transmission electron microscopy (STEM) and in situ transmission 

electron microscopy (TEM). The presented results, including structures and switching of 

strongly charged domain walls (sCDWs) and complex phenomena induced by nanoscale 

impurity defects, shed light on the interplay between ferroelectric polarization and bound 

charge, strain, or defect-induced local perturbations. This study opens up the possibility 

for developing novel ferroelectric nanodevices by control of sCDWs or through defect 

engineering.   

 



1 
 

 

 

CHAPTER 1 

Introduction 

 

1.1 Applications of ferroeletric materials 

A ferroelectric is generally defined as a material whose spontaneous polarization 

can be reversed through the application of an external electric field that is greater than the 

coercive field (Fig. 1.1), a behavior similar to the reorientation of magnetic moments 

under an applied magnetic field for ferromagnetic materials. Since the discovery of 

ferroelectricity in BaTiO3 in the mid-1940s, ferroelectrics have become a prototypical 

example of functional oxides, attracting considerable interest both in theoretical work and 

device engineering1-4. A wide spectrum of functional properties has been found in 

ferroelectric materials, including strong electromechanical coupling, high non-linear 

optical activity, pyroelectricity, and non-linear dielectric behavior3,5-8. These properties 

have made ferroelectric materials useful in a variety of electronic, optical, and 

electromechanical devices, such as ferroelectric varactors9,10, infrared detectors11,12, 

microwave phase filters13-15, and piezoelectric microsensors and micromotors16-18. Most 

importantly, due to the ability of conversion between two or more stable polarization 

states by applying an electric field, ferroelectric material can be utilized in an important 

class of high-density and nonvolatile memories6,19-23. 
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Using ferroelectric polarization state to represent binary bits has been realized in a 

number of approaches for nonvolatile storage. The first example is the now commercially 

available ferroelectric random access memories (FeRAM), in which the dielectric in a 

standard dynamic random access memory capacitor is substituted with a ferroelectric24,25. 

It has a number of advantages, such as low-power consumption, fast writing speed and 

good cyclability, which in most cases is superior to the performance of other non-volatile 

devices. The readout mechanism, however, requires the memory to be overwritten and is 

thus known as “destructive readout”. To overcome this drawback, several device 

paradigms have been developed to enable a “nondestructive” read operation. One of the 

examples is the ferroelectric field effect transistors (FeFET), which combines a 

semiconductor channel and a ferroelectric gate within a device26,27. Although the idea of 

 

Fig. 1.1 Double well potential model of the ferroelectric polarization 

The polarization (P) of ferroelectric BiFeO3 is produced by displacive distortions of the cations and 

oxygen octahedral in the crystal lattice. The ferroelectric can adopt one of eight degenerate 

polarizations along the <111>PC axis of pseudocubic (PC) unit cell to minimize it’s free energy. 

Polarizations are shown by green arrows. In principle, applying an electric field larger than a critical 

value can overcome the potential barrier and lead to ferroelectric switching. 
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FeFET and its first experimental realization was presented several decades ago8, it 

continues to attract much interest nowadays, with tremendous progress made to fabricate 

novel FeFET structure by coupling ferroelectrics with various nanostructures or organic 

materials28-32.  

Recent progress of producing high-quality oxide thin films has opened up several 

new possibilities for developing nonvolatile storage with nondestructive read operation 

on the basis of ferroelectric materials. These include switchable ferroelectric diodes 

utilizing the coupling between the polarization and interfacial Schottky junction33-35, and 

ferroelectric tunneling junctions (FTJs) based on ultrathin ferroelectric films36-43. 

Compared to traditional FeRAM and FeFET, in which a storage unit is comprised of a 

full device cell, ferroelectric diodes and FTJs can utilize each individual domain as a 

storage unit. As the critical domain size in a ferroelectric thin film can reach down to the 

scale of less than 10 nanometers44-47, these novel devices hold promise for a storage 

density larger than 10 Tb/inch2. Moreover, through a gradual change of voltage-

controlled domain configurations, memristive behavior with multilevel data storage has 

also been realized in these device structures41,48,49. 

The polarization of a ferroelectric material can also couple with other physical 

parameters, such as strain, magnetic order or optical properties. Notably, a novel mixed-

phase structure that resembles the ‘morphotropic phase boundary’ is found in 

ferroelectric BiFeO3 thin films with an epitaxial strain of ~4%50-52. These structures 

possess a large reversible electric-field-induced strain, demonstrating potential as a 

substitute for lead-based materials in future piezoelectric applications53. A coupling 

between ferroelectric and magnetic order can enable direct manipulation of magnetism by 
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applied electric field and vice versa54,55. While there are very few examples of the so 

called “multiferroic” that exhibit both ferroelectricity and ferromagnetism in a single 

material, indirect coupling between ferroelectric and magnetic properties has been 

realized through “magnetoelectric” interactions across interfaces in thin-film 

heterostructures or composite systems, opening the door to the design of practical devices 

56-61. The interaction between ferroelectric polarization and photovoltaic effect has been 

recently found to lead to a “ferroelectric photovoltaic” effect, in which the direction of 

the photocurrent can be reversibly switched along with the polarization switching33,62,63. 

Such new degree of control may find applications in novel optoelectronic devices.  

Another key aspect for future application of ferroelectric materials is the myriad 

novel properties recently discovered at ferroelectric domain walls. One of these intriguing 

properties is the enhanced conductivity of domain walls compared to the surrounding 

domains, which could be caused by a lattice distortion and the consequent band gap 

lowering at the local domain wall region64-68. Anomalous photovoltaic effect has also 

been found at domain walls, where the photovoltaic charge separation occurs at the 

nanoscale steps of the electrostatic potential at these boundaries69,70. The observed 

photovoltaic effect can produce voltages that are significantly higher than the bandgap of 

the ferroelectric material, and the electric-field control over domain structures allows the 

photocurrent to be reversed in direction or turned off 69,70.  Ferroelectric domain walls can 

also become electrically active, carrying net bound charge, as a result of “head-to-head” 

or “tail-to-tail” polarization configurations. The bound charge at such charged domain 

walls can gather compensating free charges, resulting in a local insulator-metal 

transition71-74; and can lead to an accumulation of oxygen vacancies, effectively lowering 
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the local energy bandgap and enhancing the photocurrent75. Additionally, the bound 

charge at the charged domain walls can also affect the properties of the surrounding 

material by producing a depolarization field. For example, such a depolarizing field can 

lead to increased electromechanical response and therefore improved piezoelectric 

properties76. As ferroelectric domain walls can be easily created, erased and reconfigured 

within the same physical volume by external electric fields, these novel properties and 

functionalities at local domain walls may make them form building blocks for the 

development of future nanoelectronic devices.  

 

1.2 Polarization structures and domain dynamics in ferroelectric thin films 

Since most utilities of ferroelectrics are derived from the polarization 

configuration and the domain switching, or from their coupling to other material 

functionalities, an understanding of the static and dynamic properties of ferroelectric 

domains and domain walls is critical for the control of functional properties and the 

development of new applications. Recent advances in atomic-level control of thin-film 

growth, e.g. molecular beam epitaxy (MBE) and pulsed laser deposition (PLD), have 

made it possible to epitaxially grow high-quality ferroelectric thin films, varying from 

several unit cells to a few hundreds of nanometers in thickness, onto a large variety of 

single crystal substrates with a precise control over composition, atomic arrangements 

and interfaces77-82. The availability of such high-quality ferroelectric thin films, in 

conjunction with a broad spectrum of analytical tools, allows unprecedented 

opportunities to study the properties of ferroelectrics. 
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Static polarization structures of ferroelectric thin films depend strongly on the 

boundary conditions at the two interfaces (or surfaces) and thus can often be considerably 

different from their bulk materials. First, the lattice mismatch between the film and 

substrate leads to the biaxial-strain mechanical boundary condition79,83-85. This biaxial 

strain can be altered by choosing substrates spanning a wide range of lattice parameters 

and can reach up to several percent — far beyond where they would crack in bulk50,86-89. 

Such alteration of constraints from the substrates would allow ferroelectric properties of 

the thin films to be tuned via a strong polarization-strain coupling79,85,90,91; allow 

controlled formation of ferroelastic-ferroelectric domain patterns to release the biaxial 

strain92-95; or allow new phases that do not exist in bulk to be stabilized in the thin 

films50,51,88,96,97. Second, the electrical boundary condition is dependent critically on the 

free charge compensation capability at the interfaces and can be tailored by choosing 

substrates or epitaxial buffer layers with different conductivities98,99. Such change of 

electrical boundary condition, coupled with suitable strain boundary condition, would 

dramatically influence the domain patterns in ferroelectric thin films, resulting in 

controlled formation of large mono-domains89, periodic stripe domains100-103, or arrays of 

flux-closure domain structures89,104,105. Moreover, the polarization states of ferroelectric 

thin films could also be tuned by controlling the substrate vicinality due to additional 

symmetry restriction106,107, or by altering the chemical environment at the free surfaces of 

the films as a result of local compositional changes108.  
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The dynamic process of domain switching in ferroelectric thin films generally 

occurs in three steps (Fig. 1.2a): first, the nucleation of a domain with a reversed 

polarization, which usually takes place at the interfaces or defects due to the local high 

free energy; second, fast forward propagation of domains in the direction of the electric 

field, as a result of the high energy of the forward charged domain edge; and last, the 

lateral domain growth in the direction perpendicular to the electric field, enabled by a 

sidewise motion of the nominal charge-neutral domain wall. Such sidewise domain wall 

motion, in a classic model proposed by Miller and Weinreich109, has been thought to 

occur through the formation of atomically thin nuclei on the domain wall and a 

subsequent growth of the nuclei along the domain wall (Fig. 1.2b). In real materials, 

however, the nucleation and growth of newly formed domains, and the motion of pre-

 

Fig. 1.2 Mechanisms of ferroelectric polarization switching 

(a) Three-step switching process in a planar capacitor: first, nucleation of domains with reversed 

polarization at the interfaces; second, fast forward propagation of domains in the direction of the 

electric field; and last, slow lateral domain growth in the direction perpendicular to the electric field. 

(b) The classic Miller-Weinreich model, modified with a diffuse-boundary with attenuated 

polarization, for sidewise domain wall motion: formation of atomically thin nuclei on the domain wall 

and subsequent growth of the nuclei along the domain wall. At the atomically thin nucleus on the 

domain wall, the domain boundary is diffused and the polarization is attenuated. 
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existing domain walls, usually proceed simultaneously and are strongly affected by local 

variations of free energies caused by interfaces or defects, resulting in highly 

inhomogeneous process with complex kinetics. Additionally, the interaction between 

domain switching and interfaces, defects, mechanical strains, or domain walls would 

usually cause several deleterious phenomena in ferroelectric devices, including a loss of 

switchable polarization after many switching cycles (fatigue)7,110,111, a preference of one 

polarization state over the other (imprint/aging)7,111, and a failure to retain its stored 

polarization (retention failure)112-120. 

An aspect of studies on ferroelectric switching dynamics is the correlation 

between the time of switching, ts, or the rate of switching identified by the maximum 

switching current, imax, and the applied field, E121-123. Now it is widely accepted that the 

switching kinetics basically follows the Merz’s law: 𝑡𝑠 = 𝑡0𝑒𝑎 𝐸⁄  or 𝑖𝑚𝑎𝑥 = 𝑖0𝑒−𝑎 𝐸⁄ , 

where a is the “activation field”, first introduced by Merz in his studies on single crystals 

of barium titanate in 1954121. To describe the underlying physics of the measured 

switching time and current, two main models have been developed. The Kolmogorov-

Avrami-Ishibashi (KAI) model developed by the group of Ishibashi based on the classical 

Kolmogorov–Avrami theory of crystallization enables a correct description of switching 

in systems where the switching process is mainly driven by domain wall propagation and 

domain coalescence124,125. In contrast, the nucleation-limited switching (NLS) model has 

been developed to describe the switching dynamics of systems where the switching 

process is dominated by nucleation effects126. These two models, however, are statistical 

treatments aggregating the switching behavior over large volumes; and thus are not well 
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suited to the description of the local switching phenomena occurring at nanoscale, where 

the switching depends sensitively on local microscopic structures and electrical details. 

 

1.3 Local probing of ferroelectric materials 

To explore local domain structures and switching behaviors in ferroelectric 

materials, a variety of techniques have been applied (Table 1.1), such as polarized light 

microscopy127,128, synchrotron x-ray scattering129, photoemission electron microscopy 

(PEEM)130, and piezoresponse force microscopy (PFM)2,5,131-133. The use of polarized 

light microscopy to study ferroelectric domains can be traced back to the 1950s134. Its 

limitation is the very low spatial resolution (∼micrometers) and the destructive nature of 

the method, where chemical etching is involved.  Using synchrotron x-ray scattering, 

domain switching can be detected with ultra-high time resolution (< 1 ps)129. The spatial 

resolution of this technique, however, is limited by the size of the x-ray probe (~ 50 nm). 

In PEEM, secondary electrons emitted from a sample in response to the absorption of 

synchrotron x-ray radiation are used to make an image of ferroelectric domains130. 

Consequently, a high time resolution (< 1ns) can also be achieved in time-resolved 

PEEM, and its spatial resolution is generally no less than tens of nanometers.  

 

 

 
X-ray 

scattering 
PEEM PFM In situ TEM 

Aberration-

corrected 

TEM 

Spatial 

resolution 
~50 nm ~50 nm 5 – 10 nm < 1 nm < 0.1 nm 

Time 

resolution 
< 1 ps < 1 ns seconds ~30 ms -- 

 

Table 1.1 Techniques used to study ferroelectrics  

Spatial and time resolution that are currently available for different methods used to study ferroelectric 

domain structures and polarization switching.  
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Compared to the other techniques, PFM has become the predominant method to 

study ferroelectric polarization configuration and domain switching in recent years2,5,131-

133.  As a contact-mode scanning probe microscopy (SPM) technique, PFM works by 

electrically biasing a conductive SPM tip and measuring the local surface displacements 

via the converse piezoelectric effect. It can be easily done in conjunction with other 

scanning probe microscopy, such as atomic force microscopy (AFM) and conductivity 

mapping, allowing a number of physical parameters to be explored 

complementarily37,64,135. Today a deep knowledge exists about the cantilever-ferroelectric 

surface interaction2,5, and the spatial resolution of PFM can generally reach an order of 5-

10 nm. At such scale, the static domain patterns, or any change of them upon polarization 

switching, can be unambiguously determined in most situations. However, the local 

microscopic structures of defects that commonly exist in ferroelectrics, which could be 

just 1-2 unit cells (~ 1 nm) in dimension but may be critical in controlling the polarization 

configuration and the switching dynamics, are still missing. On the other hand, the time 

resolution of PFM and other SPM based techniques has been limited by the scanning 

speed of the probe. As a result, in most cases only stable domain configuration before and 

after switching can be easily captured by PFM, and the detection of intermediate stages 

of domain evolution that occur at short time scales (less than a few seconds) remains 

impossible by now.   

The revolution in studies of the structure and switching of ferroelectric domains 

and domain walls occurred with recent advances in transmission electron microscopy 

(TEM)136. Atomic-scale high-resolution TEM (HRTEM) or scanning transmission 

electron microscopy (STEM) allow direct imaging of atomic columns with sub-angstrom 
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resolution to determine the exact polarization structures in ferroelectric crystals. In situ 

TEM enables a real-time observation of the domain evolution under an electrical bias 

with simultaneous both high spatial (< 1 nm) and temporal (30 ms) resolution, in which 

the critical role of interfaces and different types of defects can be fully accounted for. In 

addition, a wide range of advanced TEM techniques, including energy-dispersive 

spectroscopy (EDS) and electron energy-loss spectroscopy (EELS), can be employed, 

making it possible to determine chemical composition and electronic structure with 

atomic resolution. Combining all these techniques within a single TEM instrument, a 

direct correlation can be established between the properties of ferroelectrics and the 

underlying physical microstructures. This provides a fundamental understanding of 

complex phenomena in ferroelectric materials. 

 

1.4 Bismuth ferrite (BiFeO3) 

BiFeO3 is an extremely rare case of a single-phase room-temperature multiferroic, 

exhibiting coupled ferroelectric (TC ∼ 1,103 K) and antiferromagnetic (TN ∼ 650 K) 

order137,138. Its bulk crystal has a rhombohedral structure (Fig. 1.3a), which can also be 

envisioned as two pseudocubic (PC) perovskite unit cells connected along the body 

diagonal, with the two oxygen octahedra in the connected perovskite units rotated 

clockwise and counterclockwise around this axis by 13.8°138. Structures of epitaxial 

BiFeO3 films with tensile or moderate compressive (< ~4.5%) misfit strain imposed by 

underlying substrates are monoclinically distorted, but closely resemble the bulk 

rhombohedral phase, and are therefore usually referred to as “rhombohedral-like (R-

like)” structures139. In pseudocubic unit cells of the R-like structure (Fig. 1.3b left), the 
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oxygen octahedra and the central Fe cation are displaced from their respective positions 

at the face and body centers, giving rise to a large spontaneous polarization (∼100 µC 

cm-2) along the <111>PC directions. Rotations between polarization variants in the R-like 

BiFeO3 can be 71° (ferroelastic-ferroelectric), 109° (ferroelastic-ferroelectric), or 180° 

(ferroelectric), yielding three types of domain walls. Under a large compressive epitaxial 

strain exceeding ∼4.5%, BiFeO3 can also be stabilized into a monoclinic structure that is 

“tetragonal-like” (T-like)139. In the T-like structure (Fig. 1.3b right), the Fe atom is five-

coordinated, forming an oxygen square-pyramidal that is displaced from the center of the 

pseudocubic unit cell. This gives rise to a giant polarization (~150 μC/cm2) oriented 

along the [001]PC direction. 

 

The R-like and T-like BiFeO3 thin films are now being widely studied, and have 

been found to possess numerous functional properties, such as switchable ferroelectric 

conductivity33-35, photo-electricity33,62,63, large piezoelectricity50-52, and domain wall 

conductivity64,65,67,68. To understand the physics of these emergent properties, a 

microscopic study of the ferroelectric domains in BiFeO3 thin films using the state-of-

the-art TEM techniques is required. The discovered domain formation mechanism and 

 

Fig. 1.3 Atomic structure of BiFeO3 

(a) Atomic model of the rhombohedral structure of BiFeO3. (b) Atomic models of the pseudocubic 

structures of R-like and T-like BiFeO3. Polarizations are shown by green arrows. 
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domain switching dynamics in the study of BiFeO3 thin films could also be also be 

applicable to a large group of ferroelectric materials. 
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CHAPTER 2 

Transmission Electron Microscopy on Ferroelectrics 

 

2.1 Preparation and artifacts of TEM specimen 

Preparing a high-quality TEM specimen is of paramount importance for TEM 

experiment. Since the TEM specimen must be electron transparent and representative of 

the material, it should be thin, from several nanometers to a hundred nanometers in 

thickness, uniform and with little damage of the structure. The specimen of a thin-film 

heterostructure can be prepared either into a cross-sectional view, with its growth 

direction perpendicular to the incident electron beam; or into a planar view, with the 

growth direction parallel to the electron beam. Compared to planar-view TEM 

specimens, cross-sectional specimens are much more commonly used to study 

ferroelectric oxides, because it is especially advantageous to resolve polarization 

structures, interfaces, and defects buried in the bulk films, which are not easily accessible 

by conventional surface probes. 

A number of methods have been developed to prepare a high-quality TEM 

specimen and the preparation process is now becoming more and more specialized and 

sophisticated8,140-142. One of the most commonly used methods for preparing specimens 

of ferroelectric oxides, however, remains to be the very conventional one, with general 

processes consisting of cutting, mechanical polishing, and ion-beam milling. The major 

advantage of this method is that it allows preparation of high-quality sample with easy 
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operation at low cost.  In recent years, along with the development of the focused ion 

beam (FIB) microscope, various FIB based TEM-specimen preparation techniques have 

become well established141,143. These FIB-based methods enable the preparation of large, 

uniformly thick, and site-specific samples. They are especially useful for certain systems 

where the conventional TEM-specimen preparation method (cutting, mechanical thinning 

and ion-beam milling) is not applicable. These systems include, for example, samples 

that are very hard to be cut and polished, samples that are too fragile and tend to crack 

during mechanical thinning, or samples that need to be prepared to fit the dimensions of 

specially designed TEM holders.  

As the preparation of TEM specimen involves thinning the sample to electron 

transparent, this process can lead to various artificial effects. A number of studies of ion-

beam milling effect on TEM specimens point out that the ion-beam not only leads to 

material removal on the specimen surface by the sputtering process, but also in some 

cases can result in a surface layer with unwanted structural changes that may extend up to 

several tens of nanometers into the material144,145. More specifically, depending on the 

applied energy of ion milling (usually within 0.1 – 5 keV) and the physical properties of 

the specimen, the energetic ion-beam could induce artifacts such as vacancies, 

amorphization, lattice damage or transformation, re-deposition, and ion implantation. It 

may also cause thermal effects due to milling induced temperature arising or electrical 

charging effects. To minimize the artifacts induced by the ion-beam milling, general 

recipes for the milling process are developed for different materials, and for both 

conventional and FIB based methods. And specially designed low-energy, low-angle 

argon ion milling instruments, such as NanoMill, have also been recently available for 
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further removing the damaged layer and final thinning of conventionally prepared or FIB 

prepared TEM specimens. As a result of the well established procedures of the thinning 

processes, the prepared TEM specimens are in most cases with only little ion-beam-

induced artifacts and well representative of the material of interest. 

Other than ion-beam induced artifacts, TEM specimens may also undergo a 

structural relaxation during the thinning process. This relaxation can be significant in 

certain systems. Fox example, when the cross-sectional TEM specimen of a highly 

strained BiFeO3 thin film grown on LaAlO3 substrate is thinned to be ~ 50 nm thick 

along the beam direction, a transition of BiFeO3 structure from the mixed rhombohedral-

tetragonal phase that resembles the ‘morphotropic phase boundary’ to a pure stress-

relaxed rhombohedral-like phase is observed146. However, a phase transition has been 

rarely found for specimens of single-phase ferroelectric thin films with moderate or little 

strain. On the other hand, it is also well known that when the thickness of a ferroelectric 

thin film is below a critical value, its spontaneous polarization may undergo a significant 

reduction or eventually annihilate. This may also apply to the TEM specimen along its 

thinned dimension. The reported critical thicknesses of 2~5 nm for polarization 

suppression118,147-149, however, are usually far below the thickness of a TEM specimen, 

typically ranging from 20 to 100 nm. Therefore, in most TEM specimens such 

polarization relaxation effect is negligible as well.  
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2.2 Diffraction-contrast imaging of ferroelectric domains 

 

Fig. 2.1 Diffraction-contrast TEM imaging 

(a) Ray diagram of normal TEM imaging with parallel illumination, which incorporates two condenser lens 

(CL1 and CL2), objective lens (OL), and intermediate lens (IL) to image the specimen.  Colored ray traces 

follow specific diffraction angle from each region. (b) Ray diagram of diffraction-contrast TEM imaging 

whereby an aperture is inserted into the back focal plane. In this case, only the red traces are selected to 

form a dark-field diffraction-contrast image. Alternatively, the black traces can be selected to form a bright-

field diffraction-contrast image. (c) Bright-field diffraction-contrast image of a planar-view specimen of 

BiFeO3 thin film grown on TbScO3 substrate, showing striped domain patterns89. (d) PFM phase image of 

the same BiFeO3 thin film, showing similar striped domain patterns. (e) Dark-field diffraction-contrast 

image of a cross-sectional specimen of the same BiFeO3 thin film, showing not only striped domain 

structures but also arrays of small triangular domains at the BiFeO3/TbScO3 interface89. 

 

One of the most commonly used imaging modes in TEM studies of ferroelectrics 

is the diffraction-contrast imaging, which is also known as “dark-field/bright-field” 

imaging. Compared to normal TEM imaging (Fig. 2.1a), where the image contrast 

consists of signals from the transmitted beam (black traces in Fig. 2.1a) as well as the 

diffracted beams (green and red traces in Fig. 2.1a), a dark-field image is generated via 

only using selected diffracted beams by carefully tilting the TEM specimen and putting 

an appropriate aperture at the back focal plane (Fig. 2.1 b). In an oversimplified picture, 

the diffracted beams could be viewed as reflections by different crystal planes; and each 

plane carries certain structural information of orientation and symmetry. Consequently, in 

the dark-field image, only the domains with structural information corresponding to these 
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selected diffracted beams will appear bright, while the other domains remain to be dark. 

Alternatively, a bright-field image can be generated by only selecting the transmitted 

beam when the TEM specimen is tilted, and in this case the domain contrast is reversed 

compared to the dark-field image. Such bright-dark contrast of ferroelectric domains in 

the dark-field/bright-field imaging can be resolved with a spatial resolution up to ~1 nm. 

In addition, this imaging mode also leads to distinct contrast to defects such as 

dislocations, which is useful for observing their interactions with the domain structures. 

An example of a bright-field planar-view image of a BiFeO3 thin film sample is 

shown in Fig. 2.1c89. This planar-view TEM image is made in comparison with a PFM 

image (Fig. 2.1d) of the same BiFeO3 sample; and they both show stripe-like domain 

configurations, revealing the ability of TEM diffraction-contrast image to probe 

ferroelectric domains. In a dark-field cross-sectional TEM image of this sample (Fig. 

2.1e), the stripe-like domain structures are also shown; and more detailed structure 

information, i.e., small triangular domains induced by the build-in fields at the 

ferroelectric/substrate interface89, which are absent in the planar-view TEM and PFM 

images, are observed as well. This indicates that, compared to conventional surface-probe 

PFM methods, the cross-sectional diffraction-contrast TEM imaging is advantageous for 

studying the interface effect of ferroelectrics. 

 

2.3 Atomic-scale imaging and polarization mapping 

To explore the atomic-scale mechanism underlying the properties of 

ferroelectrics, advanced aberration-corrected HRTEM or STEM imaging with sub-

angstrom resolution is required. HRTEM imaging is also known as phase-contrast 
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imaging, in which the ray diagram generally adopts the normal configuration shown in 

Fig. 2.1a; and the phase change information of the electron beam wave-front, as a result 

of its interaction to local atomic potentials within the TEM specimen, is employed to 

generate the image. The recently developed “negative spherical-aberration (CS) phase-

contrast imaging” has been effectively used to resolve cation columns as well as 

oxygen150,151. In more general case of HRTEM imaging, however, due to its coherent 

nature, the phase contrast is not necessarily related to real atomic structure and the 

interpretation of such contrast is complex. Furthermore, only a slight variation of sample 

thickness or orientation, or aberrations in the objective lens, will dramatically affect the 

image contrast, making the imaging condition and specimen preparation for HRTEM 

quite demanding.  

Compared to HRTEM, STEM is much more widely used to study ferroelectric 

materials, due to its easier operation and the fact that its image contrast may be readily 

related to local atomic structures. In STEM imaging a fine electron probe is focused and 

scanned sequentially on the specimen and a detector is placed below the specimen to 

form the image (Fig. 2.2a). The contrast of the STEM image depends on the detector’s 

geometry. In most applications, dark-field and bright-field detectors are combined to 

obtain dark-field and bright-field STEM images. The dark-field STEM image, especially 

the high-angle angular dark-field (HAADF) image, is currently the most commonly used 

STEM method for quantitative studies of ferroelectric microstructures, because of its 

unsurpassed advantages. First, the intensity contrast (C) of the HAADF image is directly 

proportional to the atomic number (Z) as (C ~ Z1.7)152, and therefore the image can be 

easily interpreted as a direct mapping of atoms. Second, HAADF image is robust to slight 
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variation in sample thickness and small deviations of the sample zone axis with respect to 

the direction of the incident electron beam. However, in HAADF images a direct 

observation of light elements with low atomic numbers, e.g. hydrogen, nitrogen, carbon 

and oxygen, are quite challenging153. Another powerful STEM method developed 

recently is the annular bright-field (ABF) imaging technique154,155. Although its image 

contrast is very sensitive to the sample thickness or orientation, and may not be directly 

related to the atomic numbers, its capability of imaging both light elements and heavy 

ones simultaneously makes measurement of all ions’ positions in a ferroelectric oxide 

possible.  

In atomic-resolution HRTEM/STEM images, the position of each atomic column 

can be measured by fitting the atomic columns as two-dimensional (2D) Gaussian peaks 

with a precision up to several picometers89,156,157. Based on such measured positions, the 

strain distribution can be directly mapped by calculating the lattice parameters of each 

unit cell; and local polarization vectors may also be determined by calculating the atomic 

displacements between different ions96,163. Although the absolute polarization value is not 

directly achievable unless the positions of oxygen atoms are measured, the polarization 

direction, for a material with a structure already known, can be determined 

unambiguously from the heavy cations only. In BiFeO3, for instance, the polarization can 

be determined from HAADF imaging (Fig. 2.2b,c), where the Bi columns appear as the 

brighter dots, the Fe columns show weaker contrast, and the oxygen atoms are not 

visible. A vector in the image plane, DFB, can be defined as the atomic displacement of 

the Fe cation from the center of the unit cell formed by its four Bi neighbors89,158. This 

DFB vector, as the dominant manifestation of the ferroelectric polarization in BiFeO3, 
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points towards the center of the negative oxygen charges and is exactly opposite to the 

polarization in the image plane. Therefore, -DFB vectors can be used to estimate the 

polarization of BiFeO3 and are called “polarization vectors”. This polarization mapping 

technique based on HAADF STEM image has been used as a main approach to study the 

atomic-scale polarization structures of nanodomains and domain walls in BiFeO3 thin 

films in this work. 

 

 

 

 

Fig. 2.2 STEM imaging and quantitative mapping of polarization 

(a) Ray diagram of STEM imaging in which a convergent beam is focused by condenser lens (CL) 

system, here shown by CL1 and CL2, and scanned sequentially on the specimen. This technique 

incorporates various specialized detectors placed below the specimen to measure specific specimen-

electron interaction signals. Here a high-angle annular dark-field (HAADF) detector and a bright-field 

detector are used. (b) Polarization mapping techniques based on HAADF STEM imaging. In the 

pseudocubic unit cell of BiFeO3 (left), the polarization (marked by the green arrow) is caused by an 

offset of the oxygen octahedron and the central Fe cation from the body-center of Bi cation sub-lattices, 

and Fe is displaced relative to Bi along the same direction as the oxygen octahedron. Therefore, the 

polarization (P) can be determined by measuring the atomic displacements (DFB) between the heavy Bi 

and Fe cations in a HAADF image (right). The black vectors overlaid on the right side of the HAADF 

image mark the polarization directions. (c) Spatial distribution of polarization vectors (-DFB) overlaid 

on a HAADF STEM image of a vortex-domain structure forming at a 109° domain boundary by 

addition of a pair of 180° triangle domains right above a BiFeO3/TbScO3 interface. 
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2.4 In situ TEM on ferroelectric domain switching 

As ferroelectric domains and their evolution can be readily observed by several 

different imaging modes in a standard TEM, an in situ TEM experiment on ferroelectric 

switching only requires an electric field to be applied across the TEM specimen. 

Applying such electric field, however, usually needs the specially designed sample 

configurations and in situ TEM holders. In early in situ TEM studies of ferroelectric 

switching, the electric field can only be applied parallel to the electron-beam direction by 

using two parallel TEM copper grids (Fig. 2.3a)159-161. In this configuration the 

magnitude of the actual field applied to the imaging area of the specimen is difficult to 

estimate due to the presence of vacuum gaps between the copper grid electrodes and the 

specimen. Along with recent advances in miniaturization of the electrical system for the 

in situ TEM holder, a number of alternative approaches have been developed, allowing 

the application of an electric field perpendicular to the beam direction and the 

quantification of the actual applied electric field. For example, Tan et al. directly 

deposited gold films on the TEM specimen surface to generate an electric field (Fig. 

2.3b)162-164.  Alternatively, Sato et al. cut a small piece of specimen out from the single 

crystal of lead magnesium niobate-lead titanate and attached it between two parallel 

electrodes on a specially designed TEM grid, by using the FIB “lift-out” method (Fig. 

2.3c). The TEM grid was then loaded on an electrical biasing specimen holder and an 

electric field was applied through the sample165. 
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Fig. 2.3 Methods to apply an electric field in in situ TEM 

(a) Two parallel copper grid electrodes are used to apply an electric field parallel to the electron beam159-

161. (b) Two half-circle shaped gold electrodes are directly deposited on the surface of the TEM specimen to 

generate an electric field across the region of interest in TEM observations -- the electron transparent areas 

at the two small dark sites at the edge of the central perforation162-164. (c) A specially designed in situ TEM 

grid165. Here, a small piece of lead magnesium niobate-lead titanate (PMN-PT) specimen is cut and 

attached between the two parallel electrodes by using the FIB “lift-out” method. Top left and right panels 

show the whole view and the enlargement around the specimen part. Bottom left and right panels show the 

low-magnification image of the TEM specimen and the corresponding schematic. In the bottom left panel, 

the electric field is applied between the two electrodes along the direction indicated by the arrow, and the 

dotted square indicates the region of interest in TEM observations.  (d) A specially designed 

heterostructure sample for in situ experiments: left and right panels show a planar-view and a side-view of 

the BiFeO3 (BFO, blue) / SrTiO3 (STO, grey) heterostructure with epitaxial planar-electrodes of SrRuO3 

(SRO, green)166,167. (e) Integration of scanning probe into an in situ TEM specimen holder176. Here, the 

beam is incident to the cross-sectional specimen of PbZr0.2Ti0.8O3 (PZT) grown on DyScO3 (DSO) 

substrate, an epitaxial back electrode of SrRuO3 (SRO) is grounded, and the probe is the mobile electrode.  

 

Thanks to the advanced techniques of growing high-quality thin films with 

precisely controlled hetero-structures and interfaces, epitaxial electrodes that are in direct 

contact with ferroelectric thin films have now also been widely used to apply electric 

field inside the in situ TEM. Winkler et al. prepared samples by growing an epitaxial 
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electrode SrRuO3 layer on SrTiO3, followed by lithography and a precise ion-milling step 

to define the complex planar-electrode structure, and a second growth of an epitaxial 

BiFeO3 layer on top of the device structure (Fig. 2.3d)166,167. However, this method only 

permits the application of an in-plane electric field rather than the out-of-plane electrical 

field, which is more commonly used in practical applications involving ferroelectric thin 

film materials. The recent integration of scanning probe into a TEM specimen holder 

allows easy application of out-of-plane electrical fields to switch the ferroelectric 

film53,136,168,169. Using such an in situ holder, an electric field along the normal of the film 

can be introduced by applying a voltage between the scanning surface probe and a planar 

epitaxial bottom electrode, as is depicted schematically in Fig. 2.3e. The results of the in 

situ TEM studies presented in this work were obtained with these probe-type in situ 

holders.  
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CHAPTER 3 

Ferroelectric Charged Domain Walls in BiFeO3 

 

3.1 Background 

Enhanced conductivity observed at ferroelectric domain walls opens the door for 

the development of novel applications in logic and memory nanodevices using 

ferroelectrics64-68,71,73. Most observed domain walls are, however, nearly charge-neutral 

due to a minimization of the electrostatic energy. At such uncharged domain walls, only 

thermally activated conductivity with very low current has been shown64-68, which 

impedes the potential applications. Charged domain walls (CDWs), on the other hand, are 

electronically active due to the accumulation of bound charge, which may gather 

compensating free charges, allowing higher conductivity than uncharged domain 

walls71,73,158,170-172.   

In general, two types of CDWs can be found in proper ferroelectrics73. The first 

type forms when the equilibrium configuration of an uncharged domain wall is perturbed 

during polarization switching or domain wall bending caused by an external field. These 

CDWs are weakly charged and show transient, enhanced conductivity 10 to 103 times 

that of the bulk71. They are usually unstable and tend to relax to low-energy, uncharged 

orientations after removal of the external field170. Although defect pinning can increase 

the stability of such CDWs, this mechanism relies critically on the local defect 

microstructure, making these CDWs impractical for reliable, reconfigurable devices. In 
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contrast, the second type forms as a result of direct “head-to-head” or “tail-to-tail” 

polarization configurations and is stabilized through the compensation of accumulated 

free charge carriers without defect pinning73,158,171,172. These CDWs are therefore strongly 

charged and are referred to as strongly charged domain walls (sCDWs). Recent 

experimental investigations have demonstrated that a quasi-two-dimensional electron gas 

(q-2DEG) can form at these sCDWs, leading to steady metallic conductivity 109 times 

that of the bulk73. Consequently, the sCDWs hold more promise for device applications.  

SCDWs have so far been explored in only a few works in ferroelectric thin films 

using conventional surface probes such as PFM and conductive AFM (c-AFM)72,74. 

Contrary to the dramatically enhanced steady metallic conductivity (109 times that of the 

bulk) measured at sCDWs in bulk crystals of BaTiO3
73, the observed conductivity at the 

sCDW in the thin films is only slightly or moderately enhanced (10 to 103 times that of 

the uncharged domains)72,74. One possible cause is that the sCDWs observed by PFM 

may be in fact only present at the top surface and do not penetrate to the bottom interface 

of a film, as a result of the formation of small nanodomains associated with the sCDW 

beneath the surface. Therefore, a study of the structures and dynamic behaviors of 

sCDWs in the cross-section view is critical to understanding the film properties at the 

local region. Moreover, different types of sCDWs buried beneath the surface156,158,173,174 

have also been observed by cross-sectional TEM, but a direct manipulation of them 

remains impossible by conventional surface approaches.  

Here, with a combination of atomic-resolution STEM, in situ TEM136,175, and 

phase-field simulations, a systematic study on the atomic-scale polarization structures 

and switching dynamics of nanoscale sCDWs is performed in cross-sectional BiFeO3 thin 
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films. The results show that, while the bulk domains in BiFeO3 possesses a R-like 

structure, the sCDW is T-like; and a reversible switching of the sCDW can be induced by 

an applied electric field. During the switching process, a dramatic resistive switching is 

observed as the length of the sCDW surpasses a critical value. This leads to the highest 

resistance changes (off/on ratio ~ 105) ever reported in ferroelectric memories, including 

ferroelectric tunneling junctions37,39,40 and switchable ferroelectric diodes33,35. 

 

3.2 Experimental and theoretical methods 

Film growth: (001)PC oriented 20 nm and 5 nm thick BiFeO3 films, and 20 nm 

thick BiFeO3 films with the additional 20 nm thick epitaxial La0.7Sr0.3MnO3 bottom 

electrodes, were grown on single crystal (110)O TbScO3 surfaces by the same molecular-

beam epitaxy method described elsewhere89 (subscripts PC and O are used to indicate 

pseudocubic and orthorhombic indices, respectively).  

TEM experiments: TEM specimens were prepared by mechanical polishing 

followed by argon ion milling. The specimen was firstly polished to a thickness of ~20-

30 μm in wedge shape using a tripod polisher. Then it was further milled to electron 

transparency by Gatan Precision Ion Polishing Systems, with an ion-gun voltage of 4 kV 

and incidence angle of ±4°. At the final step of ion milling, a voltage of 0.1 kV was used 

to remove amorphous material on the surface. Diffraction-contrast imaging was 

performed using a JEOL 3011 operated at 300 kV, in which the TEM specimen was tilted 

slightly off the zone axis and aligned in the two-beam condition. Atomic-resolution 

HAADF STEM imaging was performed using the TEAM 0.5 microscope at the National 

Center for Electron Microscopy in Lawrence Berkeley National Laboratory. The 
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accelerating voltage, convergence angle of the incident electrons, and the collection angle 

for HAADF imaging are 300 kV, 29 mrad and 79-200 mrad, respectively. The HAADF 

images were further processed, following the methods described in Chapter 2.3, to get 

accurate mapping of the lattice parameters and polarization vectors (-DFB). Local domain 

switching was performed by in situ TEM using a JEOL 3011 operated at 300 kV, with a 

custom-designed Nanofactory TEM holder with a piezo-driven probe. Electrical voltage 

was applied between a biased movable tungsten tip and the conductive buffer layer 

La0.7Sr0.3MnO3 bottom electrode, which was connected to the holder ground using silver 

paint.  

PFM and scanning spreading resistance microscopy (SSRM): PFM and SSRM 

measurements were carried out on an NT-MDT Spectra scanning probe microscope using 

Budget Sensor Pt/Cr-coated tips. The PFM AC signal was applied to the sample with the 

tip held at ground, and the PFM response was collected near the tip-sample resonance to 

improve the signal to noise ratio. For switching, a fixed DC bias was applied to the tip 

during scanning. Spreading resistance was measured immediately after switching.  

Phase-field simulations: BiFeO3 thin-film domain structures were simulated using 

the phase field approach that has been described extensively in previous publications176-

178. Domain structures were modeled as continuous distributions of the three polar 

components, Pi, while the antiferromagnetic behavior of BiFeO3 was neglected179.  

Starting from an initial polarization distribution to describe an experimentally observed 

domain structure, the polarization components were evolved toward a local minimum in 

the total system free energy, F, by solving the time dependent Ginzburg-Landau 

equation: 
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where L is a constant related to the domain wall mobility that is taken to have a value of 

one in the simulations.  Here, total free energy consisted of contributions from the bulk 

free energy of BiFeO3, electrostatic energy of interactions between polarization bound 

charges, mechanical energy from long range elastic interactions and gradient energy 

associated with domain walls.  The bulk free energy of BiFeO3 (fbulk) was described by a 

fourth-order Landau polynomial with respect to the polarization  
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for the stress-free bulk material utilizing phenomenological constants from prior 

publications176,179,180.  These coefficients, in SI units, were 𝛼1 = 4.9(𝑇 − 1103)  × 105, 

𝛼11 = 6.50 × 108, and 𝛼12 = 1.0 × 108 176. The simulation used room temperature of 

𝑇 = 298 K.  

Electrostatic and mechanical energy were included through long-range electric 

and elastic stress fields in the system. Expressions for these contributions to the energy 

are described in previous publications178,181. The distribution of the electric potential in 

the system was found for a given polarization distribution by solving the Poisson 

equation using the background dielectric constant182 assumed to be 10.  This portion of 

the dielectric constant does not include the changes in electrical displacement due to the 

polarization, which was included explicitly in the model.  Only polarization bound charge 

was considered in the model and any free charges were neglected in the calculation of the 

electrical energy.  For the solution to the Poisson equation we assumed ideally 

compensating electrodes that fixed the potential at the top and bottom film surfaces, 

which were both assumed to be grounded.  These electrodes were specified through the 
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boundary condition on the Poisson equation as explained in previous publications181.   

Stress and strain fields associated with spontaneous strains in the film due to the 

ferroelectric transition183 were found by solving the equations for mechanical 

equilibrium, ij,j = 0, with boundary conditions appropriate to thin films as described in 

previous publications177,184.  For this simulation the electrostrictive constants in Voigt 

notation, Qij, leading to the spontaneous strain from the cubic parent phase were 𝑄11 =

0.032 𝐶−2 𝑚4, 𝑄12 = −0.016  𝐶−2 𝑚4 and 𝑄44 = 0.02  𝐶−2 𝑚4.  Similarly, the elastic 

constants used in the model were 𝐶11 = 300. GPa, 𝐶12 = 162 GPa and 𝐶44 = 69.1 

GPa176. These constants reflect the symmetry of the parent paraelectric phase184. 

The domain wall energy was incorporated into the model by adding an energy 

associated with gradients in the polarization.  For simplicity, an isotropic domain wall 

energy was modeled with the expression 

𝑓𝐷𝑊 =
1

2
𝐺𝑃𝑖,𝑗

2         (Eq. 3.3) 

where G is the gradient energy coefficient that is related to the Landau coefficients and 

characteristic system length177 of 1.0 nm. This constant was assumed to have a value of 

1.1×10-10 C-2 m4 N, which resulted in estimated domain wall energies in the model of 

about 110 mJ m-2, 260 mJ m-2, and 70 mJ m-2 for non-charged 71°, 109°, and 180° 

domain walls, respectively.  These results are in reasonably good agreement with 

previous theoretical estimations based on density functional theory that have estimated 

the 71°, 109° and 180° domain wall energies ranging between 128 and 360 mJ m-2, 33 

and 205 mJ m-2, and 98 and 829 mJ m-2 for the 71°, 109° and 180° domain wall energies, 

respectively94,146,185. 

The thin film was simulated on a quasi-two dimensional grid of 256× 1 × 
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80where the grid spacing, , was assumed to be 0.5 nm.  Periodic boundary conditions 

were assumed in the first two dimensions, while non-periodic boundary conditions 

described above were assumed along the third, out-of plane dimension.  A film thickness 

of 19 nm was used, with a 10 nm thick layer of substrate allowed to relax beneath the 

bottom of the film177.  The remaining points were included as padding for numerical 

stability.  In the BiFeO3/TbScO3 system lattice matching between the substrate and thin 

film results in only a small biaxial strain89 and the phase field model reflected this by 

assuming that the biaxial coherency strain imposed by the substrate was 0.0%.  This led 

to a system in which the substrate constrained the overlying thin film, but did not apply a 

compressive biaxial strain that may have led to a transition to the tetragonal phase in the 

thin film.  The solution to the model was found by iteratively solving Eq. 3.1, where the 

temporal derivative was approximated with a finite difference with a time step of t/t0 = 

0.01.  

 

3.3 Atomic-scale structure changes induced by charged domain walls 

The domain structure of a 20 nm thick BiFeO3 film grown on TbScO3 substrate is 

shown in a cross-sectional dark-field TEM image (Fig. 3.1a). The domain configuration 

is depicted schematically below the TEM image, where the polarization orientations were 

confirmed by mapping -DFB based on HAADF STEM images. As it has been shown that 

only r1/r4 ferroelastic structures exist in such films89,102 and that specific domain walls are 

constrained within specific planes95, it can be determined that the vertical boundaries are 

109° domain walls and the inclined boundaries are 180° domain walls. Typically, the 

180° domain walls appear paired with 109° ones to form triangular 109°/180° domain 
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wall junctions, located either at the BiFeO3/TbScO3 interface (Fig. 3.1b) or near the free 

surface (Fig. 3.1c).  Surprisingly, the latter junctions are usually located below the 

surface and thus create 71° sCDWs with “head-to-head” polarization arrangements. 

 

 

Fig. 3.1 Triangular 109°/180° domain wall junctions in a 20 nm BiFeO3 thin film 

(a) Cross-sectional dark-field TEM image showing the domain structure of a 20 nm thick (001)PC 

BiFeO3 film on (110)O TbScO3 substrate. A schematic of the corresponding domain configuration is 

shown below the TEM image. Schematic domain configurations of triangular 109°/180° domain wall 

junctions located (b) at the BiFeO3/TbScO3 interface without a sCDW and (c) near the free surface 

with a sCDW.   
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The atomic scale structure and polarization configuration at the 109°/180° domain 

wall junctions were examined by atomic-resolution HAADF STEM imaging.  Fig. 3.2a 

shows a HAADF image of domain walls terminating at the BiFeO3/TbScO3 interface.  A 

color map in Fig. 3.2b shows the direction distribution of -DFB.  Fig. 3.2c shows the 

corresponding spatial distribution of the -DFB vectors for the highlighted region in Fig. 

3.2b.  Fig. 3.2d shows the out-of-plane lattice parameter (𝑎⊥) / in-plane lattice parameter 

(𝑎∥) ratio 𝑎⊥/𝑎∥ mapping of the HAADF STEM image shown in Fig. 3.2a, suggesting 

that the 𝑎⊥/𝑎∥ ratio at the 180° domain walls is reduced compared with that of the bulk 

domain.  This might be caused by the fact that domain walls in R-like BiFeO3 tend to 

adopt an in-plane orientated polarization as an intermediate state185,186. In an inclined 

180° domain wall, such polarization favors a lattice distortion with an increased in-plane 

lattice parameter and a reduced out-of-plane lattice parameter, as shown in Fig. 3.2e and 

 

Fig. 3.2 Distribution of polarization and strain at a triangular domain wall junction at the 

BiFeO3/TbScO3 interface 

(a) HAADF STEM image of a triangular 109°/180° domain wall junction at the BiFeO3/TbScO3 

interface without a sCDW, similar to the highlighted region in Fig. 3.1(b), with the corresponding (b) 

color map of the direction of -DFB, and (c) the spatial distribution of the -DFB vectors for the 

rectangular highlighted part in (b), and color maps of (d) the 𝑎⊥/𝑎∥ ratio, (e) the in-plane lattice 

parameter 𝑎∥, and (f) the out-of-plane lattice parameter 𝑎⊥. 
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f, respectively.  As the 109° domain wall is orientated vertically, however, the lattice 

distortion is forbidden by the clamping effect of the surrounding domains. 

 

 

Fig. 3.3 Distribution of polarization and strain at a triangular domain wall junction near the free 

surface 

(a) HAADF STEM image of the triangular 109°/180° domain wall junction associated with a sCDW 

near the free surface, similar to the highlighted region in Fig. 3.1(c), with the corresponding (b) spatial 

distribution of the -DFB vectors and color maps of (c) the out-of-plane lattice parameter 𝑎⊥, (d) the in-

plane lattice parameter 𝑎∥, and (e) the 𝑎⊥/𝑎∥ ratio. The polarization orientation and bound charge are 

indicated schematically in (e), suggesting formation of a T-like sCDW and an unusual nano-domain.  

(f) The 𝑎⊥, 𝑎∥, and 𝑎⊥/𝑎∥ changes across the sCDW in the first three lattice layers below the surface. 
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Fig. 3.3a shows a HAADF STEM image of a 109°/180° domain wall junction 

near the free surface of the same BiFeO3 film.  The spatial distribution of the -DFB 

vectors is shown in Fig. 3.3b, revealing the formation of a sCDW above the junction of 

the 180° and 109° domain walls.  It is clearly shown that this polarization configuration 

does not result in a direct “head-to-head” boundary. In fact, the polarization rotates 

gradually from the <111>PC direction in the domains on both sides to the out-of-plane 

direction at the sCDW.  The crystal structure also changes gradually across the sCDW.  

Mapping of the lattice parameters (Fig. 3.3c-e) shows that a decrease of the in-plane 

lattice parameter and an increase of the out-of-plane lattice parameter result in a high 

𝑎⊥/𝑎∥ ratio (~1.15) in the vicinity of the sCDW. All these results suggest the formation of 

a localized T-like structure at the sCDW, while the surroundings remain in possession of 

R-like structure.  Using the data from the top three lattice layers, the change of lattice 

parameters and 𝑎⊥/𝑎∥ ratios across the sCDW is plotted in Fig. 3.3f, suggesting that the 

R-like to T-like then back to R-like structure transformation occurs over a distance of ~20 

unit cells. 

The formation of the T-like structure at the sCDW can reduce the electrostatic 

energy by avoiding the formation of the direct “head-to-head” polarization configuration 

at the sCDW.  The coexistence of the T-like and R-like structures results in not only 

positive bound charge, but also compensating negative bound charge at the sCDW, 

releasing some of the electrostatic energy, as shown schematically in Fig. 3.3e.  This is 

quite different from the well-known mixed R-T structures in strained BiFeO3 thin films 

grown on LaAlO3 substrates50,51,53,96,97,187,188, where the driving force is the highly 

compressive epitaxial strain.  Due to the different formation mechanism, the R-T mixed 
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structure observed here shows unique characteristics compared with that observed in the 

strained BiFeO3 films grown on LaAlO3.  Firstly, the R-T structure mixing in the 

BiFeO3/LaAlO3 system is limited to films thicker than 50 nm since it depends on 

relaxation of the epitaxial misfit strain. In contrast, in BiFeO3 films on TbScO3 substrates 

the dimension of the mixed R-T region is much finer, with the R-like and T-like domains 

as small as several nanometers in width. Secondly, unlike the strain driven mixed phase, 

where the in-plane lattice parameter of BiFeO3 is constrained by the substrate lattice 

parameter and only changes slightly between the two phases (less than 3%), a significant 

decrease of the in-plane lattice parameter is observed in the T-like structure at the sCDW, 

and the in-plane lattice parameters of the T-like structure at the sCDW and the 

neighboring R-like domains differ by ~8%. 

The bound charge at the T-like sCDWs also affects the polarization configuration 

in the region below the domain wall junction.  As shown in Fig. 3.3b and e, the tip region 

of the triangular domain below the sCDW is found to possess an unexpected ferroelectric 

state, as its 𝑎⊥/𝑎∥ ratio is close to 1.00, but its polarization is suppressed in magnitude and 

has rotated from the <111>PC direction to the in-plane direction.  This avoids a direct 

“tail-to-tail” configuration at the triangular tip and thus releases some of the electrostatic 

energy.  Due to the unique polarization state of this nanoregion, the rotation angle of 

polarization across the domain walls formed with the neighboring domains is no longer 

180° or 109°, although they do return to those angles in the region far below the T-like 

sCDW.  The inclined wall (on the left side) of the triangular domain near the triangular 

tip becomes charged itself, adopting an out-of-plane polarization as an intermediate state 

with respect to the two nearby domains (Fig. 3.3b), and thus has an increased 𝑎⊥/𝑎∥ ratio 
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(Fig. 3.3e), which is exactly opposite to that of the uncharged 180° domain wall shown in 

Fig. 3.2d.  Moving down to the bottom interface, the polarization of the triangular domain 

returns to the <111>PC direction.  As a result, the inclined 180° domain wall becomes 

neutral with a smaller 𝑎⊥/𝑎∥ ratio. 

For sufficiently thin films, an increased T/R ratio and sCDWs traversing the full 

thickness of the film can be achieved.  Arrays of charged and uncharged junctions of 

180° and 109° domain walls were found in 5 nm thick BiFeO3 films grown on TbScO3 

substrates (Fig. 3.4a).  The formation of the T-like sCDW is also demonstrated in the 

atomic-resolution HAADF STEM image (Fig. 3.4b) and the corresponding spatial 

distribution of the -DFB and 𝑎⊥/𝑎∥ ratio mappings in Fig. 3.4c and 3.4d, respectively.  As 

the triangular domain is much smaller in the 5 nm thick film, the whole triangular domain 

adopts a suppressed in-plane polarization, and the entire domain walls become 

unconventional, like those near the tip of the triangular domain in the 20 nm film, since 

the electrostatic driven force for these two regions is similar.  Due to the effect of 

charges, the T-like sCDWs and the unconventional sCDWs of the unusual triangular 

domains can provide conducting channels running through the whole ferroelectric film. 
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Although the formation of a T-like structure at the sCDW can provide self-

compensating bound charges, the energy of such a sCDW should still be higher than 

uncharged domain boundaries. The energetic driving force for the formation of the 

sCDW must be further considered. Whether the formation of a sCDW is favorable 

depends on the minimization of the total domain wall energy: 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸109 ∙ 𝑆109 +

𝐸180 ∙ 𝑆180 + 𝐸𝑠𝐶𝐷𝑊 ∙ 𝑆𝑠𝐶𝐷𝑊, where E109, E180, EsCDW, S109, S180, and SsCDW are the energies 

per unit area and domain wall area of the 109° and 180° domain walls and the charged 

71° domain wall (Fig. 3.1c), respectively.  When two 180° and 109° domain walls 

 

Fig. 3.4 Triangular domains and sCDWs in a 5 nm BiFeO3 thin film 

(a) Cross-sectional dark-field TEM image revealing the domain patterns of a 5 nm thick (001)PC 

BiFeO3 film on a (110)O TbScO3 substrate. Arrays of T-like sCDWs and unusual nano-domains are 

evident. (b) HAADF STEM image of the rectangular highlighted part in (a), and the corresponding (c) 

spatial distribution of the -DFB vectors and (d) color map of the 𝑎⊥/𝑎∥ ratio. The polarization 

orientation and bound charge are indicated schematically in (d), suggesting a conductive sCDW 

channel can form traversing the BiFeO3 film. 
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intersect with a junction below the free surface, adsorbed ions could provide free charge, 

compensating some of the bound charge at the sCDW89,189.  This results in a lowered 

EsCDW, comparable in energy to E109 and E180
172,190. The system will thus favor the 

formation of a sCDW to decrease Etotal by decreasing both S109 and S180.  When a sCDW 

extends deeply in the BiFeO3 film, however, EsCDW increases greatly as the free surface 

can no longer compensate the bound charge.  As a result, sCDWs are restricted to the 

near-surface region.  

 

3.4 Giant resistive switching via control of charged domain walls 

A sCDW can also be stabilized near the bottom interface of a BiFeO3 thin film 

when there is a bottom electrode, since the bound charge of the sCDW can then be 

screened by free charge carriers from the electrode. By applying a bias between such 

bottom electrode and a tungsten surface probe, the sCDW can be reversibly switched 

(Fig. 3.5a). A cross-sectional dark-field TEM image of a system with a stable sCDW in a 

BiFeO3 thin film grown on TbScO3 substrate with a La0.7Sr0.3MnO3 bottom electrode is 

shown in Fig. 3.5b. The polarization configuration was determined through mapping -

DFB vectors using HAADF STEM imaging158, as shown in Fig. 3.5d-g. As the tip of the 

triangular domain is located above the BiFeO3/La0.7Sr0.3MnO3 interface, a 71° sCDW 

with “head-to-head” polarization is created there. Similar to the phenomena observed at 

the sCDW just below top surface, the polarization at the sCDW above the BiFeO3/ 

La0.7Sr0.3MnO3 interface has also rotated into the out-of-plane direction (Fig. 3.5g), 

forming a local T-like structure; and the bulk domains remain to be R-like, with 

polarization pointing along the body diagonal of the BiFeO3 lattice (Fig. 3.5d-f). This 
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structural change is also reproduced by phase-field simulation of the sCDW configuration 

(Fig. 3.5h). On the other hand, the system can also be stable without a sCDW as shown in 

the TEM image (Fig. 3.5c) and the corresponding simulated result (Fig. 3.5i), where the 

109° and 180° domain walls are separated by sufficient distance so that their interaction 

is weak.  From these two sets of observations and simulations we conclude that the 

system is bistable and can exist either with or without a sCDW.  

 

 

 

Fig. 3.5 Bistability of the system associated with a sCDW in a BiFeO3 thin film 

(a) Schematic of experimental set-up: a BiFeO3 (BFO) thin film was grown on La0.7Sr0.3MnO3/TbScO3 

(LSMO/TSO), and a mobile tungsten tip acts as one electrode for electrical switching with the LSMO 

layer being grounded. Through the application of electrical bias, sCDW can be wrote and erased in the 

BFO film. (b) Cross-sectional dark-field TEM image showing a triangular 109°/180° domain wall 

(DW) junction with a 71° sCDW. (c) TEM image showing domain configuration of separated 109° and 

180° domain walls, without a sCDW. Note that P denotes polarization directions in the domains. For 

scale, the BFO film thickness in (b) and (c) is 20 nm. (d-g) Atomic-resolution HAADF STEM image of 

four different regions highlighted by the rectangles in (b). Vectors indicate the polarization direction 

across these regions described. (h) Phase field simulation of polarization distribution of the stable 

domain structure with a sCDW in BFO film. (i) Simulated polarization distribution of the stable 

domain structure of the system without a sCDW. The arrows mark the polarization orientations. For 

scale, the BFO film thickness in (h) and (i) is 19 nm.  
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A sCDW can be created by applying a bias, as shown in the chronological series 

of images presented in Fig. 3.6a-f. The bias was linearly increased from 0 to 6.0 V over 

50 seconds. The initial stable structure (Fig. 3.6a) contained 109° and 180° domain walls 

separated by 10 nm at the substrate interface. The onset of domain wall motion occurred 

at a critical applied bias of 1.7 V (Fig. 3.6b). As larger biases were applied, a two-stage 

switching process occurred. During the first stage, the two 109° and 180° domain walls 

moved toward each other until they intersected (Fig. 3.6c).  During the second stage, 

further shrinkage of the triangular domain led to upward motion of the triangular domain 

 

Fig. 3.6 Creation of a sCDW caused by applying a positive ramp bias using in situ TEM  

(a) The original stable state without a sCDW in BiFeO3 (BFO) film. (b) At the critical bias, the domain 

wall (DW) started to move. (c) The 109° and 180° domain walls intersect at the substrate interface as a 

result of domain wall motion. (d,e) Formation and growth of a sCDW as a result of upward motion of 

the tip of the triangular 180°/109° domain wall junction. (f) After removal of the bias, the sCDW 

relaxed to be shorter than that observed in (e). For scale, the BFO film thickness is 20 nm. (g) The 

measured length of the sCDW as function of the applied voltage. (h) In situ measured current during 

the creation of the sCDW. (i) The measured local electrical conductance of the film as function of the 

sCDW length. 
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tip and resulted in the formation and elongation of a sCDW (Fig. 3.6d,e). The measured 

length of the sCDW, which is defined as the distance from the triangular domain tip to 

the BiFeO3/La0.7Sr0.3MnO3 interface, is plotted as function of applied voltage (Fig. 3.6g). 

After the bias was removed, the system relaxed to a stable state and the length of the 

sCDW remained ~5 nm (Fig. 3.6f). 

By measuring the in situ current during the switching process (Fig. 3.6h), we are 

able to correlate the domain wall configuration and film conductivity in real time. When 

the applied voltage is lower than 3.5 V, the film showed almost no conductivity (current 

< 10 nA, which is approaching the resolution limit of the in situ apparatus), 

corresponding to domain configurations without a sCDW (Fig. 3.6a-c). When the voltage 

reaches 4.5 V, the film showed little conductivity (current ~ 50 nA), corresponding to 

domain configurations with only a relatively short sCDW (length  ~ 4nm). However, 

further increasing the bias caused the sCDW to elongate, leading to dramatically 

increased conductivity measurements. Significant conduction with strongly enhanced 

currents of 640 to 760 nA occurred at voltages higher than 5.5 V. The resistive switching 

also shows good repeatability at multiple spots where the same type of sCDW exists (Fig. 

3.7) and is absent during the switching process at local monodomain regions without a 

sCDW in the same film (Fig. 3.8).  Previous studies have shown a resistive switching in 

ferroelectric films can occur via the effect of a switchable Schottky-to-Ohmic interfacial 

contact between the electrode and the semiconducting ferroelectric film, and the 

switching occurs as the sign of polarization bound charge at the interface is reversed.35,63 

In the local region where a sCDW is present in our system, during the resistive switching 

observed at 4.5 ~ 5.5 V (Fig. 3.6d and e), the top BiFeO3/probe interface and the bottom 
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BiFeO3/La0.7Sr0.3MnO3 interface both have positive polarization bound charge and no 

change of the sign of the bound charge is observed, excluding a switching between the 

Schottky and Ohmic contacts at the interface. Since the positive bound charge would 

attract accumulated compensating electrons (free carriers in n-type BiFeO3) and lead to 

downward band bending, both the interfaces of the local film with a sCDW would be 

Ohmic contacts35,63. Therefore, the conductivity of the system is primarily dependent on 

the bulk of the semiconducting BiFeO3 film rather than the interfaces. Upon the 

elongation of the sCDW at 4.5 ~ 5.5 V (Fig. 3.6d and e), a very high charge state can be 

created at the local region, causing the observed significant change of the film 

conductivity. Combining the measured sCDW length (Fig. 3.6g) and in situ current (Fig. 

3.6h) during the switching process, a direct correlation between the electrical 

conductance of the local film and the sCDW length can be made, as shown in Fig. 3.6i. 

This correlation shows a nonlinear relation and a substantial enhancement of film 

conductivity when the sCDW penetrates more than a critical value in length (~4 nm in 

this case).  

 

 

Fig. 3.7 Repeatability of the sCDW assisted resistive switching  

(a-c) Three repetitive I-V curves showing the resistive switching measured in in situ TEM, at different 

spots of the same BiFeO3 thin film where the same type of sCDW exists.  
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To better understand the formation of the conductive state caused by the sCDW, 

phase-field modeling of the epitaxial BiFeO3 thin film was employed (Fig. 3.9).  

Polarization distributions of three characteristic domain structures, shown in Fig. 3.9a-c, 

closely resemble the experimentally observed domain configurations shown in Fig. 3.6c-

e.  In this simulation, Fig. 3.9b, a small T-like sCDW above the bottom interface was 

found to be the most stable domain configuration. Domain structures starting from either 

closely spaced 109° and 180° domain walls in which no T-like sCDW exists (Fig. 3.9a) 

or from a large sCDW state (Fig. 3.9c) were allowed to relax towards the equilibrium 

configuration (Fig. 3.9b). 

 

Fig. 3.8 Absence of resistive switching at a local region in the BiFeO3 thin film without a sCDW  

I-V curve taken in situ by applying a bias between the tungsten surface probe and the buffer 

La0.7Sr0.3MnO3 electrode in a region that is originally monodomain. For the positive branch, the 

polarization switching occurred at V = ~ 2.0 V. This switching did not cause any detectable current 

change.  
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The corresponding calculated electrical potential distributions around the domain 

walls resulting from the polarization bound charge are shown in Fig. 3.9d-f.  For the case 

of closely separated domain walls (Fig. 3.9a,d), the sharper change in the polarization at 

the nominally charge neutral 180° domain wall leads to a very small electrical potential 

there, as a result of the thin film boundary conditions.  When the sCDW forms (Fig. 

3.9b,e), the electrical potential at the boundary is increased due to the larger polarization 

bound charge.  As the sCDW further elongates (Fig. 3.9c,f), the bound charge around the 

sCDW is significantly increased leading to a distributed area of high electrical potential 

in the thin film. Although the sCDW only penetrates less than half of the film thickness, 

enhanced potential is observed within a much broader region in the film, including a 

widened region along the inclined 180° domain wall. This observed enhanced potential 

 

Fig. 3.9 Phase-field simulations of electrical state around a sCDW in the BiFeO3 thin film  

Polarization distributions for metastable domain structures with (a) two closely spaced domain walls 

with no sCDW; (b) a small separation between the triangular domain and electrode with a limited 

sCDW; and (c) a larger sCDW resulting from a large separation between the triangular domain and 

electrode. The arrows mark the polarization orientations.  (d-f) Electrical potential distribution 

calculated from the polarization bound charges in domain structures (a)-(c), respectively.  (g-i) 

Normalized thin film conductivity around domain structures (a)-(c).  (j) Total calculated normalized 

conductivity of the BiFeO3 thin film around the domain structure for a series of charged domain wall 

lengths (defined as distances between the triangular domain tip and bottom electrode).  For scale, the 

film thickness is 19 nm. 
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would attract free charge carriers at local areas, leading to enhanced conductivity not only 

at the sCDW but also along the 180° domain wall in the upper portion of the film above 

the sCDW. As a result, a significant increase of conductivity through the film is achieved 

by the creation of lower resistance paths through the film along the sCDW and 180° 

domain wall. These paths along the domain walls effectively act as short-circuit routes 

for flow of the electrical current. 

We used the simulated electrical potential to calculate the expected relative 

electrical conductivity of the BiFeO3 thin films around the sCDW.  Since the defect 

chemistry of BiFeO3 is poorly understood, it is difficult to predict the major charge 

carriers.  Previous studies, however, have shown that conductivity at CDWs is typically 

strongest at “head-to-head” domain walls with positive bound charge, suggesting that, in 

some films at least, negative charge carriers dominate conduction72.  Following this 

assumption, we estimate the negative charge carrier density around the domain walls 

using Boltzmann statistics and assume the density of positive charge carriers to be 

negligibly small.  The local conductivity is then estimated as 

𝜎 = 𝜎0 exp (−
𝑒𝜑

𝑘𝑏𝑇
)       (Eq. 3.4)  

and 

𝜎0 = 𝑁0𝑒𝜇        (Eq. 3.5) 

where e is the charge on an electron, φ is the electrical potential, kb is Boltzmann’s 

constant, T is the absolute temperature, N0 is the background carrier density and  is the 

carrier mobility.  The calculated normalized local conductivities are shown in Fig. 3.9g-i.  

These results show the sCDW is expected to have very large conductivity.  This arises 

from the high carrier concentrations, which can be 106 times larger than the background 
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carrier concentration.   

The total estimated conductivity through the film around the sCDW and the 

triangular domain structure was calculated by summing the contributions from all the 

individual grid points in the simulated film (from the top surface to the bottom interface), 

as plotted in Fig. 3.9j.  Here we calculated the relative conductivity of the film assuming 

the simulated film is placed in a capacitor arrangement with conducting electrodes 

covering the entire top and bottom of the film. Although this simulation approach 

estimates the total effect of the domain structure change on the conductivity of the film 

over a larger volume of the film rather than only under a local electrode, we only allow a 

change of the sCDW and the triangular domain structure and restrict all other domain 

structures to be constant during the simulation. Therefore, any calculated change of 

conductivity should be caused by the local switching of the sCDW. For this analysis it 

was assumed that the grid points in lines parallel to the substrate conducted in parallel 

(inverse resistances add) while grid lines along the thickness were in a serial 

configuration during conduction (resistances add).  To find the total film conductivity we 

first summed each row of grid points that conducted in parallel and then summed the 

results, which conducted in series.  While the order of this operation changed the 

magnitude of the expected conductivity, it had no effect on the trends in the normalized 

results. Total calculated normalized film conductivity as a function of the length of the 

sCDW, which is defined as the distance of the triangular domain tip from the bottom 

electrode, is plotted in Fig. 3.9j.  Initially, the conductivity of the thin film is very small 

for small separations between the electrode and triangular domain tip, corresponding to 

limited formation of the sCDW.  For larger sCDW, however, the conductivity is clearly 
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seen to increase rapidly, in good agreement with the experimental results shown in Fig. 

3.6i. 

 

In addition to the conductivity enhancing mechanism supported by the phase-field 

simulations, a possible dynamic process of polarization rotation within the triangular 

domain during the sCDW switching could further increase the conductivity of the local 

film, as demonstrated by the schematics in Fig. 3.10. In the initial stable structure without 

a sCDW (Fig. 3.10a), the nominally charge neutral 109° and 180° domain walls should 

lead to regular R-like polarization structures in the triangular domain. When the sCDW 

forms (Fig. 3.10b), however, the accumulated positive bound charge at the sCDW would 

cause the polarization at the tip region of the triangular domain to rotate into in-plane 

orientations, stabilizing a charged segment on the inclined 180° domain wall (see Fig. 

3.3, 3.4 and the corresponding discussion for details). As the sCDW further elongates 

(Fig. 3.10c), such polarization rotation phenomena could extend deep into the triangular 

domain and elongate the charged segment on the 180° domain wall. This could further 

increase the electrical potential at the domain wall, and thus enhance the conductivity at 

the local film.  

 

Fig. 3.10 Conductivity enhancing induced by polarization rotation during the sCDW switching 

(a) Domain structure without a sCDW. (b) Domain structure with a short sCDW below the triangular 

domain. The polarization at the tip region of the triangular domain has rotated into the in-plane 

orientation, and a charged segment has been stabilized on the inclined 180° domain wall. (c) Domain 

structure with a long sCDW below the triangular domain. Here, the polarization within the whole 

triangular domain has rotated into the in-plane direction. For scale, the film thickness is 20 nm. 
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The sCDW can also be erased by reversing the applied voltage (linearly 

decreasing it from 0 to -6.0 V over 50 seconds), as shown in Fig. 3.11. The critical bias to 

induce domain wall motion in this case (-1.46 V, as shown in Fig. 3.11b) was similar in 

magnitude to that in the sCDW writing process. Switching occurred by growth of the 

triangular domain (Fig. 3.11c), exactly reversing the domain shrinkage in the creation 

process. Finally, the system was returned to the original stable domain structure without a 

sCDW (Fig. 3.11d). This state remained stable after removal of the bias (Fig. 3.11e). 

  

 

Fig. 3.11 Erasure of a sCDW caused by a negative ramp bias using in situ TEM 

(a) The original stable state with a sCDW. (b) At the critical bias, the domain wall started to move. (c) 

The sCDW was annihilated as a result of the expansion of the triangular domain. (d) The system went 

back to the state without a sCDW. (e) After removal of the bias, this state remained stable. For scale, 

the film thickness is 20 nm. 
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Fig. 3.12 Conductivity comparison of the “on” and “off” states in the BiFeO3 thin film 

In situ measured readout current of the system with (“on” state) and without (“off” state) a sCDW 

when applying a positive bias ramp from 0 to 1.5 V. The insets show schematic of the domain 

configurations of the “on” and “off” states. During the measurement, domain wall motion was not 

observed. Notice that no current except noise was detected for the “off” state. 
 

 

 

Fig. 3.13 Conductivity of bulk domains and uncharged domain walls in the BiFeO3 thin film 

(a) Topography, PFM (b) amplitude and (c) phase images of a square domain written with a tip bias of 

-5 V. (d) SSRM measurement at 1.5 V tip bias, showing that the current through bulk domains and 

uncharged domain walls is lower than several picoamperes. (e) Line profiles of SSRM current over the 

dashed line in (d). For scale, the size of the scanned region is 1um×1um.  
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The high stability and the large conductivity difference of the two states examined 

above, which are interconvertible through reversible switching of the sCDW, enables 

non-destructive resistive readout with a large off/on ratio. To demonstrate this we applied 

a “readout” bias sweep, linearly increasing from 0 to 1.5 V, and measured the readout 

currents for each of the two states (Fig. 3.12).  This voltage is less than the critical 

voltage required to move the domain walls and does not change the domain structure of 

the BiFeO3 thin film. The readout I-V curve current for the “on” state with a sCDW 

shows an Ohmic behavior, further supporting the conclusion of Ohmic contacts at the 

both interfaces of the local film where a sCDW is present. While readout current for the 

“on” state reached up to ~100 nA at V = 1.50 V, the readout current for the “off” state 

without a sCDW appeared to be effectively zero, as any current was less than the noise 

level (several nanoamperes) of the in situ apparatus. As the “off” state mainly conducts 

through bulk electrical transport and uncharged domain walls, its readout currents can be 

estimated by using scanning spreading resistance microscopy (SSRM) with better current 

resolution. The measured currents of uncharged domain walls and bulk domains in the 

same film between a surface probe and the La0.7Sr0.3MnO3 bottom electrode are lower 

than a few picroamperes (Fig. 3.13), consistent with previously published results for 

BiFeO3 thin films64,65,68. Consequently, the off/on ratio of the switchable resistivity in the 

system is determined to be about 105. 

In conclusion, a local structure transition at nanoscale strongly charged domain 

walls (sCDWs), and a reversible switching of the sCDW, have been demonstrated in 

ferroelectric BiFeO3 thin films. Since the “head-to-head” sCDW in R-like BiFeO3 thin 

films observed here possess a T-like structure, the process of creating or erasing a sCDW 
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in the film would involve a dynamic transition between different lattice symmetries 

induced by an applied electric field. Significant resistive switching is observed at the 

local film as the length of the sCDW surpasses a critical value. The pronounced 

conductivity produced by the sCDW is several orders of magnitude higher than those of 

previously reported uncharged64-68 or charged71,72 domain walls. The resistive change 

enabled by the sCDW switching presents a much higher off/on ratio for the non-

destructive readout than ferroelectric memories of other types, including ferroelectric 

tunneling junctions37,39,40 and switchable ferroelectric diodes33,35. Using this effect, 

ultrahigh-density information storage based on sCDWs may be possible, as arrays of 

sCDWs with a spacing of 10 nm in films can already be produced, as shown by Fig. 3.4. 
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CHAPTER 4 

Effect of Impurity Defects on Polarization Structures  

 

4.1 Background 

Nanoscale impurity defects, with structures different from host materials, are 

known to commonly exist in functional oxides as a result of slight stoichiometry 

fluctuations that occur during material growth. Local perturbations induced by these 

defects, such as charge, strain, and atomic interaction, could have a profound effect on 

the physical properties of oxides nanomaterials. A direct correlation of the defects to the 

material functionalities, however, is often hampered by the lack of a fundamental 

understanding of the microscopic mechanisms underlying the coupling between the 

defects and the host lattice. This is partially due to the difficulty of detecting the 

nanoscale defective structures buried in the bulk materials through conventional 

approaches such as X-ray diffraction and scanning probe microscopies. Here, using 

atomic-resolution STEM, atomically-thin impurity defects in BiFeO3 thin films are 

directly resolved. In a combination of EELS, density-functional theory (DFT) and phase-

field simulations, the effects of these impurity defects on ferroelectric properties of the 

thin films are explored. The results show that these defects can not only induce 

polarization enhancement and mixed-phase structures, but also create novel polarization 

states.  
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4.2 Experimental and theoretical methods 

Film growth and TEM experiments: BiFeO3 films on TbScO3 substrates were 

grown by the same molecular-beam epitaxy method described in ref. 89. TEM specimen 

preparation and TEM imaging in different modes, including diffraction-contrast imaging, 

atomic-resolution HAADF STEM imaging, and in situ TEM, were performed using the 

same methods and the same instruments as those described in Chapter 3.2.  

EELS experiments: STEM EELS experiments were performed with 300 kV 

electron beams and the convergence angle of ~22 mrad. The collection angle and energy 

dispersion for EELS acquisitions were 36 mrad and 1 eV/channel, respectively. For each 

pixel, a dwell time of 0.1 s was used to acquire the spectra. During the acquisition, both 

the zero-loss peaks and the core-loss spectra were recorded simultaneously in Dual-EELS 

mode. The post-processing of the spectra, i.e. alignment of spectra by zero-loss peaks and 

removal of the backgrounds in core-loss spectra, was carried out in the software package 

Digital-Micrograph. 

DFT calculations: DFT calculations were carried out to study the interaction 

between surface defects and ultrathin BiFeO3 films, using Vienna Ab-initio Software 

Package (VASP)191 within the framework of PAW192 and LSDA+U193. A symmetrical 

slab consisting of 5 BiFeO3 lattice layers was built on top of 6 layers of TbScO3 (11̅0)O. 

The supercell was chosen to be (√2 ∗ √2) of the pseudocubic unit cell and the in-plane 

lattice constant was fixed to the experimental value of TbScO3 (a=5.47 Å, b=5.73 Å). 

The k-points were sampled using a 5×5×1 Monkhorst-Pack mesh194, with the plane-wave 

cut-off energy set to 500 eV and U and J parameters were chosen as Ueff = U - J = 2 

eV195. To avoid spurious electric fields due to the slab configuration, a 15 Å vacuum 
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region was used to separate the periodic slabs, and the dipole correction was turned on 

during the calculation. A larger vacuum separation of 20 Å was tested as well and the 

total energy difference was only ~1 meV. The system is first relaxed by a force criterion 

(< 0.005 eV/Å), which reproduces the rhombohedral ferroelectric phase and G-type 

antiferromagnetic ground state of BiFeO3. After the structure relaxation, a stoichiometric 

Bi2O3 monolayer defect was added on top of the relaxed BiFeO3 slab and further 

relaxations were performed until the maximum force is <0.005 eV/Å. The relaxed 

structure is insulating. The Born effective charges (BEC) were calculated by finite 

difference of Berry-phase polarizations196. The calculated BECs are +4.56, +3.3 and -

2.62 for Bi, Fe and O atoms, respectively. 

Phase-field simulations: To simulate the domain structures stabilized by the 

surface defects, two sets of order parameters are considered, namely spontaneous 

polarization Pi (i = 1, 2, 3) and spontaneous oxygen octahedral rotation θi (i =1, 2, 3). The 

evolution of order parameters is governed by the time-dependent Ginzburg-Landau 

(TDGL) equations: 

  (i =1, 2, 3)     (Eq. 4.1) 

  (i =1, 2, 3)     (Eq. 4.2) 

where r is the spatial position vector, t is the evolution time step, L1 and L2 are the kinetic 

coefficients for polarization and octahedral rotation, respectively. F is the free energy of 

the system which is the volume integration of Landau, elastic, electric and gradient 

energy densities: 
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  VffffF d gradientelectricelasticLandau      (Eq. 4.3) 

The bulk Landau energy density has the contribution from polarization and octahedral 

rotation, namely: 

fLandau = fpolarization + frotation       (Eq. 4.4) 

Detailed expressions of the energy density as well as method of solving the phase-field 

equations can be found in literatures177,181, and all the parameters are taken from 

literatures197,198. A quasi-2D simulation with system size of 64∆x × 4∆y × 25∆z is 

performed. The grid spacing is chosen as 0.4 nm, i.e., ∆x = ∆y = ∆z = 0.4 nm. The system 

consists of 10 grids of substrate layer, 5 grids of BiFeO3 and 10 grids of air from the 

bottom to the top along the thickness direction. Mixed electric boundary condition is 

used, where the dielectric displacement is zero at the bottom of the film and the electric 

potential is fixed at the film top. A bias of -1.3V is added at specific locations on top of 

the film to simulate the effective fields induced by the surface defects199, whereas the bias 

at all the other top areas are fixed to zero to account for the charge compensation from 

air. Periodic boundary condition is assumed along the in-plane dimensions, while a 

superposition spectral method is used along the out-of-plane direction (film growth 

direction)200. 

To simulate the domain structures stabilized by the charged defects, only one set 

of order parameters is considered, i.e., the spontaneous polarization Pi (i = 1, 2, 3). The 

evolution of the spatial polarization as a function of time is described by the time-

dependent Ginzburg-Landau equation shown in Eq. 4.1 and 4.3. A 2D simulation in the 

x-z plane with a system size of 51.2 nm × 50 nm was performed, where the thicknesses of 

the substrate and the film was 8 nm and 40 nm, respectively. The elastic boundary 
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condition was chosen to be traction free on the top surface of the film, and zero 

displacement at the bottom substrate (bottom of the simulation region). Open circuit 

electric boundary condition was used, in which the electric displacement was fixed at 0 at 

the film/substrate interface and film surface. For most simulations, except for those 

shown in Fig. 4.12e,f, the initial condition is set to random noise; for the simulations in 

Fig. 4.12e,f, in order to study the interaction of the bulk domain wall and the charged 

defect, the initial condition included a 109˚ domain wall (Fig. 4.12e) or a 180˚ domain 

wall (Fig. 4.12f) terminated at the defect. 

 

4.3 Defect induced polarization enhancement in ultrathin films 

The integration of ferroelectric thin films into nanoscale devices has led to an 

upsurge of interest in enhancing the functional properties of ferroelectrics at reduced 

dimensions. This development, however, has been hindered by the long-standing issue 

concerning the inevitable suppression of ferroelectric polarization in the ultrathin films 

with a thickness of a few nanometers, due to the strong depolarization effect arising from 

the incomplete screening at a surface or interface154-156. Interestingly, recent experimental 

work has suggested that a reduction in size to a scale of a few nanometers can lead to the 

emergence of weak room-temperature ferroelectricity in an otherwise non-ferroelectric 

SrTiO3 film, as a result of electrically induced alignment of polar nanoregions due to Sr 

vacancies201. Another study using atomistic simulations demonstrated a mechanism for 

producing an overall enhancement of ferroelectricity in ultrathin ferroelectric capacitors 

by controlling the chemical environments at the metal/oxide interfaces202. Nonetheless, 

direct experimental observation of increased polarization at reduced dimensions of 
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common ferroelectrics has not been deterministically identified. Here, for the first time, a 

significant enhancement of the out-of-plane polarization is observed in ultrathin (2 nm) 

BiFeO3 films. Such enhanced polarization arises from a strong coupling between the 

ultrathin film and the single-atomic-layer impurity defects on its surface. It is also 

correlated to a novel undulating mixed-phase nanodomain structure that may be useful 

for electromechanical applications.  

 

 

Fig. 4.1 Atomic structures of an ultrathin BiFeO3 film 

Cross-sectional HAADF STEM image of a 2 nm thick BiFeO3 film grown on TbScO3 viewed along the 

[100]PC zone axis, where the interface is indicated by the green dashed line. The yellow arrows indicate 

the unique monolayer defects on the surface, below which there are local lattice dilations along the out-

of-plane direction. For a better view of the surface structure, see the inset for a magnified image. 
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Fig. 4.1 shows an atomic-resolution HAADF STEM image of a 2 nm BiFeO3 film 

grown on TbScO3 substrate, in which two remarkable structural features are present. 

First, the BiFeO3 film is not homogeneous but characterized by a rumpled structure, with 

periodic out-of-plane lattice dilations at local regions indicated by the yellow arrows. 

Second, right above the film surface of each of these regions, there exist a monolayer 

impurity defect, which is several unit-cells in length along the [010]PC direction. These 

unusual structural features are also correlated to interesting domain patterns in the 

BiFeO3 film, as evident by mapping the -DFB vectors (Fig. 4.2a). Unlike the regular R-

 

Fig. 4.2 Distribution of polarization and strain in the ultrathin BiFeO3 film 

HAADF STEM image of the ultrathin BiFeO3 film overlaid with (a) -DFB map, (b) -DFB
(z) map, (c) c/a 

ratio map of the film, and plot of (d) c/a ratio, (e) |DFB|, and (f) -DFB
(z) of the c-/a-type domains as a 

function of distance from the interface. The green dashed line in (a) mark the position of the 

BiFeO3/TbScO3 interface. The green dash lines in (d)-(f) indicate the c/a ratio, |DFB| and -DFB
(z) of bulk 

BiFeO3, respectively. 
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like structure composed of 71°, 109°, or 180° domains in most other BiFeO3 films grown 

on TbScO3, the polarizations in this film are either very large in magnitude pointing in 

the out-of-plane [001]PC direction forming T-like “c-type” domains, or significantly 

attenuated with multiple directions forming “a-type” domains. And at the transition 

regions between the c-type and a-type domains, R-like structures with polarization 

pointing to the diagonal of the pseudocubic unit-cell can be observed. While the c-type 

domains are located right below the surface defects, the a-type domains exist at local 

regions without defects on the surface. This alternating c-/a-type domain structures can 

also be seen in the maps of the out-of-plane components of the -DFB vectors (-DFB
(z)) 

(Fig. 4.2b) and the c/a ratios (Fig. 4.2c), where significantly enhanced out-of-plane 

polarizations and c/a ratios are observed in the c-type domains. By averaging the 

mapping data from each lattice layer within each individual domain type, the change of 

the c/a ratio, the magnitude of -DFB (|DFB|), and -DFB
(z) in the BiFeO3 lattice can be 

plotted in Fig. 4.2d-f. In the c-type domain all these parameters increase substantially 

from the bottom interface to the top surfaces, whereas in the a-type domain they remain 

relatively constant with much smaller values. 

The polarization value (PS) can also be estimated from the measured -DFB 

parameters presented in Fig. 4.2e and f, based on an assumed linear relationship between 

the PS and the -DFB vectors89. Consequently, a giant polarization of ~136 μC/cm2 is 

obtained at the top surface of c-type domains, and the out-of-plane polarization there is 

estimated to be ~109 μC/cm2. In comparison, the estimated polarization of a-type 

domains is only about ~14-35 μC/cm2 throughout the film. While the polarization 

suppression observed in the a-type domains is commonly expected in ultrathin 
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ferroelectric films due to the presence of a strong depolarization field, an anomalous 

polarization enhancement up to ~136 μC/cm2 in the c-type domains is quite surprising. 

This value is even comparable to that of super-tetragonal BiFeO3 films, in which a 

polarization up to ~150 μC/cm2 is induced by a large compressive epitaxial strain50. The 

driving force of the as-observed enhanced polarization here, as well as the large lattice 

dilations, however, cannot be explained by the epitaxial strain applied by the substrate, 

since the lattice mismatch between BiFeO3 and TbScO3 is very small (< 0.14%). The 

one-to-one correspondence between the appearance of the c-type domains and the surface 

monolayer defects, on the other hand, may suggest a strong interaction between the 

polarization and the defects.  

 

In order to gain the chemical information of the defects, EELS line scans were 

carried out from the substrate to the surface. Six individual spectra, five for the BiFeO3 

film and one for the surface monolayer defect, are extracted from the line scan profile and 

 

Fig. 4.3 Line scan profiles of Fe-L2,3 and O-K energy-loss spectra in the ultrathin BiFeO3 film 

(a) HAADF STEM image of the ultrathin BiFeO3 film, on which the position of each point on the line 

scan is marked by the red circles, and (b) the corresponding EELS spectrum (from bottom to top). As 

indicated by the red arrow, the energy-loss peak of Fe-L2,3 (~708 eV) vanishes at the surface layer, 

while that of O-K changes much less through the film. 
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the processed spectra are displayed in Fig. 4.3. While the lower five spectra of the 

BiFeO3 film all show the elemental O-K (~530 eV) and Fe-L2,3 (~708 eV) energy-loss 

peaks, the surface defect is deficient in Fe. Meanwhile, the proportion of O changes much 

less. Direct evidence of Bi in the surface defect is difficult to be obtained 

straightforwardly from EELS due to its extremely high energy-loss (~2580 eV). But 

provided that there are no other elements introduced during the film growth and the 

HAADF image contrast of the surface defects is similar to that of the film, it is strongly 

inferred that the surface defect is primarily a compound of Bi and O atoms. The most 

probable candidate could be the nonstoichiometric Bi2O3-x (Fig. 4.4), since it has a small 

lattice mismatch (~2%) with BiFeO3
203. The formation of these surface defects is 

possibly due to certain surface reconstruction or relaxation processes204,205, or through an 

outward migration of the lower BiO planes due to the volatility of Bi atoms.  

 

The interaction of the defects and the ferroelectric polarization are explored by 

using DFT calculations, in which a single Bi2O3 layer was placed on top of a five-layer 

 

Fig. 4.4 Atomic structure of Bi2O3 

(a) Atomic model of Bi2O3 and (b) its projection view along [110] direction. 
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BiFeO3 ultrathin film. A full structural relaxation was performed in this system and in the 

relaxed structures a lattice dilation can be readily observed in the top BiFeO3 layer (Fig. 

4.5a). The measured c/a ratios and |DFB| values of this simulated structure (Fig. 4.5b) 

match the experimental values very well. Local polarization can also be calculated from 

the simulated structure, based on the modern theory of polarization196: 

Pi =
1

Wi

Zi, j
* dui, j

j

å
       (Eq. 4.5) 

where Pi and Ωi are the polarization and the volume of unit cell i , respectively; and Z*
i,j 

and δui,j are the Born effective charge tensor and relative displacement of j-th atom, 

respectively. The calculated total polarization in each layer of the BiFeO3 lattice and their 

in-plane and out-of-plane components are shown in Fig. 4.5c, in which the depicted trend 

of polarization increasing is in good agreement of the experimental observations in the c-

type domain. And at the top Bi2O3/BiFeO3 surface the values of the total polarization 

(~140 μC/cm2) and its out-of-plane component (~86 μC/cm2) also match the 

experimental results very well. The DFT simulation therefore concludes that the 

polarization enhancement in the ultrathin BiFeO3 film should be induced by the surface 

defects.   

Such strong interaction between the surface defects and the polarization can be 

attributed to the change of the ionic charge of the Bi atoms at the surface, as shown by 

the Bader charge analysis206 (Table 4.1) of Bi and O atoms for the simulated structure. 

These results show that, although the ionic charge of Bi in BiFeO3 is +1.87 (close to the 

+2 oxidation state), its value at the BiFeO3/Bi2O3 interface reduces to +1.64 and in Bi2O3 

layer it is only +1.27. The lower ionic charge of Bi atoms in Bi2O3 weakens the attraction 

between Bi and O atoms and increases their bond length. Consequently, the imbalance 
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between the weaker Bi-O bonds in the vicinity of the surface defects and the stronger 

ones in the underlying BiFeO3 layers leads a strong effective field pointing to the surface, 

which counteracts the depolarizing field and causes the enhancement in polarization. 

 

 

 

Fig. 4.5 Simulations of the interaction between the surface defects and the ultrathin BiFeO3 film 

(a) DFT simulated atomic structure after structural relaxation, and the corresponding (b) c/a ratio and 

|DFB|, and (c) ferroelectric polarization measured in this structure. The blue and red dash lines indicate 

|DFB| and total polarization of bulk BiFeO3, respectively. (d) Phase field simulation of polarization 

structures in the ultrathin film stabilized by the surface defects. The arrows show the polarizations. The 

purple circles mark the positions of the surface defects. The red and purple background color represent 

the BiFeO3 film and the TbScO3 substrate, respectively. For scale, the film thickness is 2 nm. 
 

  Bi Fe O 

surface Bi2O3 layer +1.27 - -1.14 

1st BiO layer +1.64 - -1.16 

1st FeO2 layer - +2.72 -1.18 

2nd BiO layer +1.87 - -1.20 

2nd FeO2 layer - +2.70 -1.19 

3rd BiO layer +1.87 - -1.19 

3rd FeO2 layer - +2.70 -1.19 

4th BiO layer +1.87 - -1.19 

4th FeO2 layer - +2.70 -1.19 

5th BiO layer +1.87 - -1.19 

5th FeO2 layer - +2.70 -1.19 

 

Table 4.1 Bader charge analysis results of the BiFeO3 film and the surface Bi2O3  
The Bi and O atoms at the surface have relatively lower oxidation state, while the oxidation state of Fe 

atoms is less affected. Into BiFeO3 film, the Bader charge of Bi, Fe and O atoms quickly converges to 

their bulk values. 
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The domain formation mechanism in the ultrathin BiFeO3 film was further 

studied by incorporating the effective fields induced by the surface defects into the phase-

field simulation. In this simulation an effective built-in potential of -1.3V199 is applied on 

the local surface where there should be a defect, whereas the potential at other surface 

areas are fixed to zero to account for the charge compensation from air. The simulated 

domain pattern (Fig. 4.5d) generally reproduces the experimental observation of the 

undulating c-/a-type domains with mixed-phase structures, where the polarization below 

the surface defects is T-like, the polarization at the local regions without surface defects 

is attenuated, and the polarization at the transition regions is R-like. These results 

therefore confirm that the surface defects can stabilize the underlying c-/a-type domain 

structures. 

 

 

Fig. 4.6 Distribution of polarization and strain in a 5 nm BiFeO3 thin film 

HAADF STEM image of a 5 nm BiFeO3 film grown on TbScO3 overlaid with (a) -DFB map, (b) -DFB
(z) 

map, (c) c/a ratio map of the film. The green dashed line in (a) mark the position of the BiFeO3/TbScO3 

interface. 
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As a matter of fact, the unique surface defects of Bi2O3-x monolayers could be 

ubiquitous in BiFeO3 films, and their effects can become less prominent with the increase 

of the film thickness. Fig. 4.6 displays the mapping results for a 5 nm BiFeO3 film grown 

on TbScO3. Although the same type of Bi2O3-x defects are still observed at the surface of 

this 5 nm film, the underlying domain structures are very different from the undulating 

domains observed in the 2 nm film, and they are much alike the regular stripe-patterns 

with R-like polarization in most regions. The defects are primarily located on the upward 

polarized domains and have induced enhanced polarization and c/a ratios in the top 

several lattice layers below them. In the downward polarized domains without defects on 

the surface, the polarization is suppressed throughout the thickness as a result of the 

depolarization field; increased c/a ratios, however, are still observed in the top several 

layers. Such increased c/a ratios in the downward polarized domains could be caused by 

a clamping effect of the neighboring upward polarized domains, since the upward 

domains are much wider than the downward ones. For sufficiently thick films, for 

example, a 20 nm BiFeO3 film as shown in Fig. 4.7, the effects of both the surface 

defects and the depolarization field on the bulk domains become negligible. As a result, 

the film is composed of conventional 109° stripe domains and the polarization vectors 

across the 109° domain wall are R-like and symmetric.   
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In conclusion, the combined experimental and theoretical studies demonstrate that 

the surface defects can play a critical role in controlling structures and properties of 

ferroelectric ultrathin films. The defect-introduced giant polarization in the ultrathin film 

could be utilized to enhance the functionalities of ferroelectric nanodevices, such as 

ferroelectric tunneling junctions. The defect-induced mixed-phase structures with large 

polarization gradient and strong strain variant may produce giant piezoelectricity and thus 

could be used for electromechanical applications. Furthermore, as it has been well known 

that surface relaxation and reconstruction are very common in a variety of ferroelectric 

oxides, the finding of the critical role of surface defects suggests that boundary-condition 

engineering through precise control of surface defective structures may offer a new 

dimension to tailoring properties of ferroelectric ultrathin films, which would impel the 

minimization of ferroelectric nanodevices.  

 

 

 

Fig. 4.7 Domain and polarization structures in a 20 nm BiFeO3 thin film 

(a) Dark-field TEM image of a 20 nm BiFeO3 film grown onTbScO3, in which the interface is 

indicated by the green dashed line. The red and yellow arrows indicate the polarization direction of 

each domain. (b) Cross-sectional HAADF STEM image of same film. The interface is indicated by the 

green dashed line. The yellow arrows indicate the surface monolayer defects. (c) -DFB mapping of the 

local region highlighted by the yellow rectangle in (b). 
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4.4 Defect induced hedgehog polarization states 

Topological structures in ferroics, owing to the unique properties they can 

possess, hold great promise for the development of future nanoelectronic devices207. 

Examples include ferroic domain walls, magnetic skyrmions, and magnetic/ferroelectric 

vortices. Domain walls are the most widely studied ferroic topologies due to their 

abundance in as grown materials and the fact that, they can be easily created, erased, and 

reconfigured by external electric, magnetic or strain fields. Numerous novel 

functionalities have been found at these 2D boundaries. For example, it has been 

discovered that domain boundaries in non-polar materials can be ferroelectrically 

polarized208; ferromagnetic domain walls can exist in antiferromagnetic or paramagnetic 

materials209,210; and ferroelectric domain walls can possess novel properties such as 

enhanced conductivities64 and photovoltaic effects69 (see chapter 1.1 for more details).  

 

Fig. 4.8 Spin textures of magnetic skyrmions 

(a) Vortex-like skyrmions with Bloch-type spin rotations. (b) Hedgehog-like skyrmions with Neel-type 

spin rotations211. 

 

Magnetic skyrmions are topologically protected spin configurations that can be 

stabilized by Dzyaloshinskii-Moriya interactions212. Two types of spin textures, i.e., 

vortex-like and hedgehog-like patterns, can form at magnetic skyrmions. The vortex-like 
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skyrmions have been observed in chiral magnets213,214, where the spin vectors rotate in 

the tangential planes that is perpendicular to the radial directions, forming Bloch-type 

rotations211 (Fig. 4.8a). In contrast, the hedgehog-like skyrmions can be observed in non-

chiral magnets and their spin rotations are Neel-type, restricted in the radial planes211 

(Fig. 4.8b). The gradual spin-rotation patterns of skyrmions usually occur within 

diameters of 20–90 nm and these patterns can produce emergent electromagnetic fields, 

allowing the skyrmions to be efficiently manipulated215,216. Magnetic skyrmions can also 

be highly mobile, driven by a spin-transfer torque mechanism at ultralow current 

densities217, and this makes skyrmions as promising candidates for current-driven 

memory devices. Moreover, atomic-scale 2D lattices of magnetic skyrmions have been 

stabilized in monolayer Fe films215, indicating the potential application in high-density 

magnetic memories. 

Vortex topologies occur when the magnetization or polarization continuously 

rotate about one point, forming flux-closure structures to reduce the magnetic or electric 

fields. In magnetic vortices, in-plane spin vectors circulate around the center of the core, 

where the magnetization is forced out of plane218. In ferroelectrics, however, the flux-

closure structure doesn’t necessarily involve the polarization rotation from in-plane to 

out-of-plane direction from the periphery to the core219; and it can be composed of 

quadrant domains with reversed out-of-plane polarizations89. The use of ferroelectric 

vortices as functional elements in nanodevices is particularly attractive, since they can be 

manipulated by electric fields and they are very small, only singles of nanometers in 

diameters220, as a result of the strong electrostriction in ferroelectrics (coupling between 

the polarization and the lattice). This is in contrast to magnetic vortices, which have much 



70 
 

larger dimensions (tens or hundreds of nanometers) due to relatively weak 

magnetostriction in ferromagnetics. Recent advances in the synthesis of thin-film 

heterostructures have enabled the creation of arrays of polarization vortices89,105,220 in 

ferroelectric PbTiO3 and BiFeO3 thin films. These vortex domains could be switchable 

and thus give rise to an unusually high density of bits for storage. 

Here, a new ferroic topology in addition to the well-known skyrmions and 

vortices, that is, hedgehog/antihedgehog polarization states, is observed in BiFeO3 thin 

films. These hedgehog/antihedgehog states are comprised of nanodomains that present 

exotic polarization rotation patterns and form mixed-phase structures; and they can also 

be coupled with polarization vortices. Their novel properties could be useful for 

nanoelectronic and electromechanical applications. They are stabilized by nanoscale non-

stoichiometric impurity defects inserted into the BiFeO3 matrix, indicating a potential 

new route for control of polarization topology by using defects as nano-building-blocks.  
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The domain structure of a 60 nm thick BiFeO3 film grown on TbScO3 substrate is 

shown in a cross-sectional dark-field TEM image (Fig. 4.9a), where the overlaid green 

arrows mark the polarization orientations derived from mapping the -DFB vectors based 

on HAADF STEM images. A typical structure of paired 109° and 180° domain walls is 

observed in the bulk film. Within the matrix of the bulk domains, a high-density array of 

nanodomains are also observed just above the BiFeO3/TbScO3 interface. While the 

previous study has reported arrays of flux-closure triangular nanodomains observed at the 

intersection of the 109° domain walls and the BiFeO3/TbScO3 interfaces, which are 

induced by non-uniform depolarization fields present at the boundaries89; the 

nanodomains observed here show different characteristics: they have a much higher 

density than the striped 109° or 180° domain walls in the bulk film, and can exist in the 

middle of a single domain where the depolarization field is generally uniform. Moreover, 

 

Fig. 4.9 Domain structure and defects in a BiFeO3 thin film 

(a) Cross-sectional dark-field TEM image of a BiFeO3 thin film grown on a TbScO3 substrate, showing 

a triangular 109°/180° domain wall (DW) junction in the bulk film and a high-density array of 

nanodomains (indicated by the yellow arrows) above the BiFeO3/TbScO3 interface. (b) HAADF STEM 

image of the BiFeO3/TbScO3 interfacial region, where the interface is indicated by the yellow dashed 

line and an array of defects are observed at a uniform height of 3 nm above the interface. 
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using high-resolution HAADF STEM imaging (Fig. 4.9b), an array of defects are 

observed and each defect is found to be right above the nanodomain structures. This array 

of defects may cause local variations in free energy and stabilize the observed 

nanodomains.  

 

To present the atomic-scale structures of the defects, a magnified HAADF image 

of an interfacial region containing one typical semi-circle loop defect in the BiFeO3 

matrix is shown in Fig. 4.10a. As there are no other elements introduced during film 

growth, the defect should also be composed of Bi, Fe, and O atoms, with the brighter dots 

 

Fig. 4.10 Atomic structure associated with a semicircular loop defect in the BiFeO3 thin film  

(a) HAADF STEM image of the BiFeO3/TbScO3 interfacial region containing one typical semicircular 

loop defect. The defect is composed of a vertical segment (highlighted in brown) with distorted 

pseudocubic perovskite lattices and non-stoichiometric planar (highlighted in green) and stepped 

(highlighted in yellow) structural units. (b) Magnified image of the non-stoichiometric planar unit in 

the defect (red rectangular highlighted region “b” in (a)) and a model of its corresponding atomic 

structure on the right. (c) Magnified image of the non-stoichiometric stepped unit in the defect (red 

rectangular highlighted region “c” in (a)) and a model of its corresponding atomic structure on the 

right. (d) The same HAADF STEM image filtered in Fourier space by including only the 00hPC 

diffraction frequencies. (e) The same HAADF STEM image filtered in Fourier space by including only 

the 0h0PC diffraction frequencies. (f) Geometric phase analysis (GPA) of the same HAADF STEM 

images reveals the strain in the BiFeO3 lattice surrounding the semi-circular loop defect. Note that the 

striped patterns in the GPA image of eyy are caused by scanning noise in the STEM image. 
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in the HAADF image corresponding to the heavier Bi columns and the weaker dots 

corresponding to the lighter Fe columns. This defect is generally composed of two parts: 

a short vertical segment on the right (brown highlighted) with a distorted pseudocubic 

perovskite lattice, where an apparent lattice expansion is observed along the horizontal 

direction; and a long curved/inclined segment on the left (yellow and green highlighted) 

with a non-stoichiometric structure. Furthermore, the non-stoichiometric segments are 

composed from two structural units -- planar units (green highlighted) and stepped units 

(yellow highlighted). While the planar unit is oriented on the horizontal (001)PC plane and 

adopts the structure of one pair of Bi atoms alternating with one pair of Fe atoms; the 

stepped unit has an inclined orientation and is formed from one pair of Bi atoms 

alternating with two pairs of Fe atoms. 

The same type of planar and stepped structural units have also been observed in 

previous studies of Nd and Ti doped antiferroelectric BiFeO3 by MacLaren et. al.221,222. 

Their detailed structural study suggests that the Fe atoms within the defects are 

coordinated by 6 oxygens in the form of edge-sharing oxygen octahedra, forming the 

planar and stepped structural units shown schematically in Fig. 4.10b and c, respectively. 

As a result, there is an excess of anions (more oxygen) at the defect, with a net local 

negative charge density of -1.4 C/m2 at the planar unit, and -1.1 C/m2 at the stepped unit. 

Another feature associated with the defects is an atomic shift of one half of a pseudocubic 

unit cell of the BiFeO3 lattice across the planar units in the [001]PC direction, and a shift 

of one half of a pseudocubic unit cell of the BiFeO3 lattice across the stepped units in 

both the [010]PC and [001]PC directions, as evident in the Fourier-filtered images shown 

in Fig. 4.10d,e. These shifts, however, do not induce obvious strain in the BiFeO3 matrix, 
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as shown by the quantitative analysis of the high-resolution HAADF images using 

geometric phase analysis (GPA) in Fig. 4.10f. The shift in the lattice occurs mainly 

through atomic rearrangement within the defects and the shifted lattices are separated, 

accommodating the strain and forming an isolated nanoregion enclosed by the loop 

defect. 

 

The polarization distribution in the BiFeO3 lattice adjacent to the defect was 

determined by mapping of the -DFB vectors (Fig. 4.11a). Within the region enclosed by 

the semi-circle defect (marked as region “1”), a hedgehog polarization state can be 

identified. While the polarization vectors of each unit cell in the middle of this region are 

 

Fig. 4.11 Polarization map of the nanodomains surrounding the semicircular loop defect  

(a) The same HAADF STEM image as Fig. 4.10a overlaid with the polarization vectors (-DFB). The 

white dashed lines represent the positions of domain walls. (b-d) Phase field simulation of polarization 

distribution in the image plane of the domain structure stabilized by a charged defect with 

configuration similar to the experimental observation, but with different charge distributions. The 

polarization vectors are overlaid on a color map of the charge distribution, where the red, blue, and 

gray colors represent positive (+1.1 C/m2), negative (-1.1 C/m2), and zero charge densities, 

respectively. 
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attenuated and oriented along multiple directions, the unit cells that are in contact with 

the defects at the boundary (red rectangular highlighted unit cells) show significant lattice 

distortions with enhanced polarization pointing outward towards the defect. In contrast, 

the BiFeO3 lattice outside of the defect presents a continuous rotation of polarization, 

with polarization vectors generally pointing inward towards the defect, except for the 

right-side region where the polarization vectors are pointing outward. This arrangement 

leads to the formation of six different nanodomains (marked as from “2” to “7”) with 

mixed-phase structures surrounding the defect. The “2”, “4”, and “6” domains possess 

normal R-like structures with polarizations oriented along the body diagonal directions. 

However, the “3” and “5” domains adopt polarizations on [010]PC and [001]PC directions, 

respectively, resembling horizontal or vertical T-like structures188. Within region “7”, 

significantly attenuated polarizations were observed. These observed mixed-phase 

structures are apparently more complicated than the previously reported mixed-phases 

driven by the large epitaxial strain in BiFeO3 films grown on LaAlO3 substrates, in which 

the phases are composed of alternating stripes of R-like and T-like domains50,53. 

Moreover, the BiFeO3/TbScO3 interface has very little strain due to a small lattice 

mismatch (<0.14%), and the GPA mapping (Fig. 4.10f) shows almost no difference of 

strain states between different nanodomains, excluding the possibility of strain as the 

main driving force for the formation of the observed mixed-phase structures. 

Since the polarization directions are generally pointing toward the defects and 

most segments of the defects are negatively charged, a plausible mechanism is that the 

polarization distortions of the BiFeO3 lattices are modified by the build-in fields induced 

by the charge on the defects. To gain further insight of the driving force for the formation 
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of the nanodomains, phase field simulations were employed to calculate the stable 

polarization configuration in the presence of a charged defect. In the simulated BiFeO3 

thin film, a defect was created with similar shape to what has been observed in the 

experiment, and then additional charge was applied at the defect, with no additional 

eigenstrain introduced by the defect from the lattice mismatch between the defect and the 

matrix, as the defect induced strain has a minimal effect on the polarization (see 

discussion below). For simplicity, a uniform charge density of -1.1 C/m2 was applied to 

the left curved/inclined part of the defect, which was composed of planar and stepped 

units. For the right-side vertical segment of the defect with a distorted perovskite lattice, 

although its defect chemistry cannot be directly determined by STEM imaging, the lattice 

expansion along the horizontal direction could indicate a local accumulation of oxygen 

vacancies223,224. Therefore, a positive charge density of +1.1 C/m2 was applied at the 

right-side vertical segment of the defect. For comparison, two more cases with negative (-

1.1 C/m2) and zero charge densities in this region were also considered. In each case, a 

random polarization distribution was set as the initial structure, and simulations repeated 

with different initial random polarization distribution in the system were found to be 

consistent.  

Simulations of the polarization configuration around the defect for the three cases, 

positive, negative, and zero charge densities at the right-side vertical segment of the 

defect, are shown in Fig. 4.11b-d, respectively. In all three cases, attenuated polarization 

is observed within the semi-circle region enclosed by the defect (region “1”), with the 

exception of the very large polarization of a few unit cells at the region boundary. This 

could be a result of the exclusion of the experimentally observed distorted unit cells at the 
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region boundary (red rectangular highlighted unit cells in Fig. 4.11a) from the simulation. 

Nevertheless, simulated results with a positive charge density on the right-side vertical 

segment of the defect (Fig. 4.11b) reproduced almost all of the features in the polarization 

configuration outside of the defect captured in the experiment, including the polarization 

reorientation around the defect with the formation of six different polarized regions 

(region “2” to “7”), the change of lattice symmetries into T-like structures in region “3” 

and “5”, and the attenuated polarization in region “7”. In comparison, the stabilized 

polarization surrounding the defect in the cases with negative and zero charge densities at 

the vertical segment of the defect (Fig. 4.11c, d) present perfect antihedgehog 

configurations with the polarization vectors all pointing into the defect, which is 

inconsistent with experimental observations and suggests that the positive charge case is 

the most probable situation. 
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The hedgehog/antihedgehog domains and the polarization rotation phenomena are 

ubiquitous around the defects in the BiFeO3 thin films, and can also induce polarization 

vortices, as shown by three examples in Fig. 4.12a-c. Similar to the previous case shown 

in Fig. 4.10, these defects are mainly comprised of the same type of planar units and 

stepped units, with the same excess of oxygen and thus local net negative charge. Some 

additional variations were noted, for example, within the circle defect in Fig. 4.12a, an 

inclined segment on the right-side composed of five consecutive pairs of Fe atoms but no 

Bi atoms in between was observed. Examination of the polarization shows 

hedgehog/antihedgehog domains around the defects are also accompanied by the 

formation of multiple polarized regions and mixed-phase structures. In Fig. 4.12a, a tiny 

 

Fig. 4.12 Polarization maps of nanodomains induced by three different defects in the BiFeO3 thin 

film  

(a-c) HAADF STEM images of three different defects above the BiFeO3/TbScO3 interface, where the 

polarization vectors (-DFB) are overlaid on the BiFeO3 lattice. The dashed red line marks the domain 

walls that penetrate to the top surface of the thin film. (d) Magnified map of the polarization vectors in 

the nanoregion enclosed by the loop defect in (a) and in the three different nanoregions highlighted by 

the blue rectangles in (b) and (c). (e-g) Phase field simulation of polarization distribution in the image 

plane of the domain structures stabilized by three different charged defects with configurations similar 

to the experimental observations in (a)-(c). The polarization vectors are overlaid on a color map of the 

charge distribution, where red, blue, and gray colors represent positive (+1.1 C/m2), negative (-1.1 

C/m2), and zero charge densities, respectively. 
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hedgehog polarization state with a diameter of 4 unit cells was observed in the 

nanoregion circled by the defect. In both Fig. 4.12a and b, antihedgehog polarization 

states are stabilized at the shell regions encircling the defects; and within larger ranges 

outside the defects, the overall continuous polarization rotation patterns lead to flux-

closure vortex structures. In Fig. 4.12c, a pair of polarization semi-vortex and semi-

antivortex structures at the two edges of the linear defect are produced as a result of the 

formation of a “head to head” polarization configuration above and below the defect. 

These defects can also be associated with the termination of domain walls extending to 

the surface of the film. In Fig. 4.12a, a vertical 109˚domain wall (red dashed line) that 

penetrates to the top surface of the film is terminated at the circle loop defect; in Fig. 

4.12b, an inclined 180˚ domain wall (red dashed line) is terminated at the rod-like defect. 

Phase field simulations containing similar charged defects in the BiFeO3 thin film 

matrix reproduce similar domain structures as shown in Fig. 4.12e-g, where charge 

densities of -1.1 C/m2 or +1.1 C/m2 were used. The simulated polarization structures 

surrounding the charged defects generally follow the experimental observations, forming 

antihedgehog states and vortex domains in Fig. 4.12e, f, and semi-antivortex at the left 

edge of the linear defect in Fig. 4.12g. The particular polarization rotation patterns at the 

simulated vortices, however, do not exactly match the experimental results. The 

differences could be attributed to the uniform charge density assumed in the simulation, 

as the charge distribution on the defects should be non-uniform in reality due to local 

charge compensation by the mobile carriers or oxygen vacancies at the defects. Such a 

non-uniform charge density should alter the polarization structures. 
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Fig. 4.13 Strain map of the BiFeO3 lattice surrounding the linear defect 

GPA mapping of the HAADF STEM images shows the lack of strain in the BiFeO3 lattice surrounding 

the linear defect. Note that the striped patterns in eyy and ezy are caused by scanning noises of the 

STEM image.  

 

 

Fig. 4.14 Analysis of out-of-plain strain (ezz) at the linear defect  

(a) HAADF STEM image of the BiFeO3/TbScO3 interface region containing the linear defect. (b) 

Magnified image of the planar unit of the defect (red rectangular highlighted region “b” in (a)) and the 

corresponding averaged intensity line profile on the right. The measured thickness of the defect is 1.18 

nm. (c) Magnified image of a nanoregion in the BiFeO3 matrix and the corresponding averaged 

intensity line profile on the right. The measured out-of-plane lattice constant of BiFeO3 is 0.40 nm. 

Since the defect is inserted into the BiFeO3 matrix, replacing three pseudocubic unit cells, there should 

be a small compressive strain (ezz~ -0.02) at the defect. 
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Taking the linear defect as an example, the effect of defect-induced strain on the 

polarization structures was further considered. Similar to the analysis of the case of the 

semi-circle defect shown in Fig. 4.10f, GPA mapping of the case of the linear defect in 

Fig. 4.13 also shows little strain in the BiFeO3 matrix surrounding the linear defect. 

However, since the defect and BiFeO3 have different atomic structures, GPA cannot be 

used to determine the strain at the defect or at the defect/BiFeO3 boundary. Therefore, the 

defect induced strain was estimated by directly measuring the lattice spacing of the 

 

Fig. 4.15 Analysis of the shear strain (eyz) at the linear defect  

HAADF STEM image of the linear defect shows the atomic shifts of the BiFeO3 lattice across the 

defect leads to a large shear strain (eyz ~ -0.16) between the top and the bottom boundaries of the 

defect. 
 

 

 

Fig. 4.16 Assessment of the influence of the defect-induced strain on the polarization distribution 

around the linear defect  

Phase field simulation of the polarization distribution in the image plane of the domain structure 

stabilized by a charged defect with a configuration and charge distribution identical to the case in Fig. 

4.12g, but with an added eigenstrain of (a) ezz of -0.05 or (b) eyz of -0.20. The color represents ezz in (a) 

and eyz in (b).  
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atomic structures (Fig. 4.14 and 4.15). The measurements show a low compressive strain 

(eyy ~ -2%) along the vertical direction at the defect (Fig. 4.14), and a large shear strain 

(eyz ~ -16%) along the horizontal direction (Fig. 4.15). Phase field simulations to examine 

the effect of the strain on the polarization were performed, with additional compressive 

strain (eyy ~ -5%) or shear strain (eyz ~ -20%) applied to the same defect configuration 

with identical charge conditions as the case shown in Fig. 4.12g. The corresponding 

simulated polarization patterns are shown in Fig. 4.16a and b, respectively, where the 

polarization vectors are overlaid on the color map of strain distribution. The large shear 

strain at the defect is relaxed to less than 5% in the nearby BiFeO3 lattice, consistent with 

the low strain measured in BiFeO3 by the STEM imaging. The difference in the 

polarization distribution between the strained conditions (Fig. 4.16) and the zero strain 

case (Fig. 4.12g) is almost indistinguishable; suggesting that the defect induced strain has 

a negligible effect on the polarization state. 

All these results shown above indicate that the charge on the defects should be the 

major driving force inducing the observed nanodomain structures, in which the gradient 

energy from the polarization rotation is counterbalanced by the corresponding reduction 

in overall electrostatic energy and a change of the charge states on the defects can 

produce different stable nanodomain patterns. Therefore, the observed nanodomains can 

only be stabilized after the formation of the defects, not vice versa. The formation 

mechanism of the defects, however, has not yet been fully understood. In previous 

studies, the same type of planar and stepped structural defects as those observed here are 

randomly distributed throughout the material, and rely on the excessive cation charge 

from doping as a proposed mechanism221,222. In the system observed here, however, no 
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doping procedure was performed during BiFeO3 film growth, and the observed defects 

are only located at a uniform height along the film thickness, several unit cells above the 

bottom interface of the film. These suggest the defects could be kinetically trapped due to 

surface reconstructions or dynamic rearrangement of atomic structures, where 

stoichiometry fluctuations occurred on the certain level during the layer-by-layer growth. 

The reported hedgehog/antihedgehog polarization topologies offer new 

opportunities to explore the complex interplay of spin, charge, orbital and lattice degrees 

of freedom in the strongly correlated systems. The hedgehog states can approach sizes 

down to several unit cells in diameter, which are much smaller than the previously 

discovered vortices and skyrmions. As the polarization component perpendicular to the 

hedgehog plane (image plane in this work) may be switchable, further study of the 

electrical properties and dynamics of the hedgehog states under applied fields may assist 

future development of nanoelectronic devices such as high-density memories. The 

mixed-phase structures associated with the antihedgehog states are reminiscent of the 

ferroelectric domains near a morphotropic phase boundary and therefore may exhibit 

properties such as giant piezoelectricity, making these states potentially attractive for 

electromechanical applications. 

The observation of defect-induced structure changes in the BiFeO3 thin films 

should stimulate efforts to design functional patterns of ferroelectric/multiferroic 

nanodomains or nanopolymorphs with focus on controlling the intrinsic defect structures, 

and motivate a search for similar mechanism in other functional oxides systems. While 

conventional chemical engineering methods (composition tuning) and interface 

engineering methods (boundary condition tuning) only produce structure changes 
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uniformly distributed within the whole material, defect engineering can generate 

functional structures at local nanoregions without disruption of the bulk structural 

patterns, which is desirable as the dimensions of individual elements in nanodevices 

continue to shrink. Further developments may allow the defects to be introduced in a 

controlled fashion within the host lattices during material synthesis, or allow the charge 

state of the defects to be modified by external charge injection methods, opening the door 

to fine control of nanodomain structures and the creation of new topological states 

through defect engineering.  
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CHAPTER 5 

Ferroelectric Retention Failure Induced by Impurity Defects  

 

5.1 Background 

A long-standing issue that has to be resolved in order to realize ferroelectric 

applications has been that the switched polarization is sometimes unstable, and can relax 

to its original state through a spontaneous process of polarization back-switching. Such 

process, known as “retention failure”, can lead to a loss of stored information in 

ferroelectric memories, and disable functionalities coupled with the switched polarization 

in multifunctional applications.  

The process of retention failure is generally thought to be induced by the 

thermodynamic instability of the written polarization arising from boundary conditions at 

interfaces. Electrostatic boundary conditions correlated to the properties and structures of 

the ferroelectric/electrode interfaces could be the primary cause. For instance, strong 

depolarization fields can arise at uncompensated interfaces where interfacial dead-layer 

or non-switchable layers exist225-227; and the semiconductor/metal contact at the 

ferroelectric/electrode interface can generate a Schottky build-in field7. An imbalance 

between the electrostatic boundary conditions at the two interfaces of a ferroelectric film 

can impose an asymmetric free-energy landscape between the two opposite polarization 

states, and favor one state over the other, triggering the polarization back-switching. 

Elastic boundary conditions, i.e., the substrate-induced strain, can also affect the domain 
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stability. For example, it has been suggested that the depolarization field and the Schottky 

built-in field at the ferroelectric/electrode interface could be strain-dependent228. 

Furthermore, the substrate-induced strain may be gradually released in ferroelectric films 

due to the formation of dislocations, resulting in a strain gradient. Such strain gradient 

can produce an effective build-in field through flexoelectric effects, and therefore can 

also alter the domain stability229.  

Defects, on the other hand, have been thought to play a secondary role during the 

process of polarization back-switching, acting as pinning centers hindering the domain 

wall motion. Previous experimental results have shown that domain walls can be pinned 

by vacancies186,230, dislocations231, phase boundaries232, or pre-existing ferroelastic 

domains233. In most cases, these pinning centers would increase the stability of the 

written domains and thus prevent retention failure. However, the effects of impurity 

defects on the polarization switching and domain stability have been rarely explored.  

Here, based on results of atomic-scale STEM and in situ TEM, a novel atomic-

scale mechanism of impurity-defect-induced retention failure is proposed. The results 

explicitly show strong build-in fields can be induced by arrays of planar impurity defects 

located just above the substrate interfaces of BiFeO3 thin films. This build-in field not 

only leads to head-to-head polarization configurations and polarization enhancement, but 

also can induce a polarization back-switching and destabilize written domains. The 

impurity defects therefore could play a dominant role in the control of ferroelectric 

properties. 
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5.2 Experimental methods 

Film growth and TEM experiments: BiFeO3 films on LaAlO3 substrates were 

grown by the same pulsed-laser deposition method described in ref. 139. TEM specimen 

preparation and TEM imaging in different modes, including diffraction-contrast imaging, 

atomic-resolution HAADF STEM imaging, and in situ TEM, were performed using the 

same methods and the same instruments as those been described in Chapter 3.2.  

AFM experiments: AFM was carried out on a Bruker Dimension Icon scanning 

probe microscope using platinum coated silicon cantilevers. Samples were mounted on 

standard AFM pucks using silver paint. The cantilever axis was aligned along the [010]PC 

axis of the BiFeO3 film for imaging. 

 

5.3 Atomic-scale mechanism of defect-induced retention failure  

In a 50 nm thick BiFeO3 film grown on LaAlO3 substrate with a 8 nm 

La0.7Sr0.3MnO3 buffer electrode, typical mixed-phase structures containing stripes of R-

like domains embedded into T-like matrix are induced by the large epitaxial strain 

(~4.5%) (Fig. 5.1). This work mainly focuses on local regions within the T-like matrix, 

where arrays of planar defects with a length of 5 to 30 nm have been found just above the 

interfaces (Fig. 5.2a,b). Using HAADF imaging (Fig. 5.2c), the measurements of lattice 

parameters (a⊥ and a//) show that the a⊥/a// ratio is ~ 1.06 for the majority of the films, 

which is much smaller than the value of ~ 1.25 measured by X-ray diffraction in the bulk 

film of T-like BiFeO3 grown on LaAlO3 substrate139, suggesting a possible structural 

relaxation in the TEM specimen146. Nevertheless, mapping of the polarization vectors (-

DFB) confirms that the majority phase is still T-like, since the polarization in most regions 
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is oriented along the [00-1]PC direction, with the exception of some interfacial regions 

below the defects as will be discussed later. 

 

A HAADF image of a region containing a planar defect in the BiFeO3 matrix is 

shown in Fig. 5.2d. As there are no other elements introduced during film growth, the 

defect should also be composed of Bi, Fe, and O atoms, with the brighter dots in the 

HAADF image corresponding to the heavier Bi columns, the weaker dots corresponding 

to the lighter Fe columns, while O columns are not visible. The arrangements of Bi and 

Fe atoms within the defect closely resemble those in the Aurivillius phase materials, for 

example, Bi2WO6, which is built by alternating layers of Bi2O2 and pseudo-perovskite 

blocks234. Examining the defect, a form of Bi2FeO6-x, composed of a single FeO6 

octahedron sandwiched between two Bi2O2 layers as shown in Fig. 5.2f is reasonable, 

 

Fig. 5.1 Mixed-phase structures in a BiFeO3 thin film  

AFM image of a 50nm BiFeO3 thin film grown on LaAlO3 substrate with an 8 nm La0.7Sr0.3MnO3 

buffer bottom electrode. The patterns show the stripes of R-like domains embedded into T-like matrix 

in BiFeO3. 
 



89 
 

though the exact stoichiometry of oxygen and the precise positions of oxygen atoms may 

differ. The same-type of Bi2FeO6-x impurity phase has also been observed in a previous 

study of BiFeO3 thin films grown on TbScO3 or on SrTiO3 substrates. Their observations 

show much larger regions of the impurity phase, forming nanoparticles or nanopillars 

embedded in the BiFeO3 matrix with a feature size of tens of nanometers235. In 

comparison, the impurity planar defects observed here are a few atomic layers in 

thickness and perfectly epitaxial along the film grown direction. Furthermore, the 

observations in Fig. 5.3 suggest that the impurity structures here may also adopt smaller 

dimensions, forming point defects in the thin films. 

 

 

 

Fig. 5.2 Atomic structures and defects in the BiFeO3 thin film  

(a) Cross-sectional dark-field TEM image showing an array of planar defects just above the 

BiFeO3/La0.7Sr0.3MnO3 interface. The defects are indicated by the red arrows. (b) Schematic of the 

heterostructure in (a). (c,d) Averaged HAADF STEM images of the two different regions highlighted 

by the rectangles in (a). The overlaid brown and blue balls mark the Bi and Fe atom columns, 

respectively. The black arrows in (c) indicate a uniform downward polarization. (e) Atomic model of 

the defect highlighted by the rectangle in (d). 
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Fig. 5.3 Point defects in the BiFeO3 thin film 

(a) The same cross-sectional dark-field TEM image as Fig. 5.2a. The red arrows here indicate the 

impurity point defects randomly distributed in the BiFeO3 film. (b) HAADF STEM image of the region 

highlighted by the rectangle in (a). As the contrast in the STEM image comes from the average of all 

unit cells along the beam direction, the small point defect buried in the film cannot be clearly resolved, 

but just imposes a perturbation on the image of the host lattice within the circle-highlighted region. 

This point defect should have minor effect on the ferroelectric properties of the film, as no obvious 

structure changes have been observed in the BiFeO3 lattice surrounding it. 
 

 

 

Fig. 5.4 Distribution of strain and polarization across a planar defect  

Color maps of (a) the in-plane lattice parameter a//, (b) the out-of-plane lattice parameter a⊥, (c) the 

a⊥/a// ratio, and (d) spatial distribution of the -DFB vectors overlaid on a same HAADF STEM image, in 

which one planar defect is located above the BiFeO3/La0.7Sr0.3MnO3 interface. The defect and the 

La0.7Sr0.3MnO3 substrate are overlaid with uniform green and silver colors, respectively. (e-g) Plot of 

the a//, a⊥, a⊥/a// and -DFB changes in the BiFeO3 lattice across the defect. The green dashed lines mark 

the position of the defect. In (g), dx and dy represents the magnitude of the horizontal and vertical 

components of the -DFB vector. 
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The strain and polarization distribution in the BiFeO3 lattice adjacent to the planar 

defect was determined by mapping of the lattice parameters (Fig. 5.4a-c) and the 

polarization vectors (Fig. 5.4d). By averaging the data from each lattice layer, the change 

of the lattice parameters and the magnitude of the polarization vectors in the BiFeO3 

lattice across the defect can be plotted in Fig. 5.4e-g. The strain mapping results show 

that, while a// remains almost constant in the examined region (Fig. 5.4a and e), a sharp 

increase of a⊥ occurred in the lattice layers that are in contact with the defect (Fig. 5.4b 

and e), resulting in a local high a⊥/a// ratio of ∼1.20 (Fig. 5.4c and f). Such a large change 

in the out-of-plane lattice parameter could be a result of the out-of-plane lattice mismatch 

between the defect and the BiFeO3 matrix. Since a defect with a thickness of 10.2 Å is 

inserted into the BiFeO3 lattice, replacing three pseudocubic unit cells with a thickness of 

12.1 Å in the out-of-plane direction (Fig. 5.5), there should be a large compressive strain 

(ezz ~ -0.16) at the defect; and this defect induced strain could induce the observed lattice 

expansion in the neighboring BiFeO3 lattice layers. 

 

The map of the polarization vectors surrounding the planar defect generally shows 

a “head-to-head” polarization configuration (Fig. 5.4d). An enhancement in the 

magnitude of the polarization was also observed in the BiFeO3 lattice in contact with the 

 

Fig. 5.5 Structure of the defect edge  

HAADF STEM image showing the edge of a defect embedded in the BiFeO3 lattice. This clearly 

shows the defect replaces three pseudocubic unit cells in the out-of-plane direction. 
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defect (Fig. 5.4g), which could be associated with the local increase in tetragonality, i.e. 

the enhanced a⊥/a// ratio in these layers. Furthermore, the polarization map shows an 

interesting change in the BiFeO3 lattice symmetry in the two regions separated by the 

defect (Fig. 5.4d). While the lattice above the defect possesses a T-like structure with 

polarization oriented along [00-1] direction, the lattice below the defect is R-like, with 

mostly attenuated polarization oriented along the diagonal, pointing upward in the image 

plane. Such mixed-phase structures can be associated with the defect. As a previous study 

has shown, Bi2O2 layers existing at the substrate interfaces can induce the formation of T-

like structures in moderately strained (~1.5%) BiFeO3 films grown on SrTiO3 

substrates236, the Bi2O2 layers within the defect observed here could also be the origin for 

the stabilization of the T-like phase above the local R-like structures. On the other hand, 

the upward polarization below the defect is opposed to a downward polarization enforced 

by the build-in field at the Schottky contact of the BiFeO3/La0.7Sr0.3MnO3 (n-type-

semiconductor/metal) interface136. This suggests that a strong build-in field pointing 

towards the defect exists, and this field can flip the polarization adjacent to the defect. 

The stabilized upward polarization below the defect is further suppressed by the 

downward Schottky built-in field from the back electrode, resulting in the observed R-

like structure with attenuated polarization. 
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A local domain switching event in the presence of an array of planar defects just 

above the BiFeO3/La0.7Sr0.3MnO3 interface was captured by in situ TEM (Fig. 5.6). The 

film was originally with a T-like downward polarization. A bias was applied between a 

tungsten surface probe and the La0.7Sr0.3MnO3 bottom electrode and was linearly changed 

from 0 V to -10.0 V and then to 0 V over 15 s. As shown in a chronological series of 

TEM images (Fig. 5.6a-d), although a large domain with upward polarization can be 

 

Fig. 5.6 Domain switching in presence of defects  

Chronological TEM dark-field image series and corresponding schematics depicting the evolution of 

an upward polarized domain from a downward polarized matrix: (a) the original state, (b) switched 

domain under an applied voltage, (c) metastable domain state at 15 seconds after the voltage was 

removed, and (d) final stable state at 20 minutes after the voltage was removed. An array of planar 

defects at the BiFeO3/La0.7Sr0.3MnO3interface are indicated by the yellow arrows in (b) and are shown 

by the green lines in the schematics. In (c), a horizontal tail-to-tail charged domain wall is marked by 

the red line in the schematic. (e) The measured area of the switched domain as a function of time 

(bottom axis) and applied voltage (top axis). 
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created with an applied voltage (Fig. 5.6b), the created domain shrank back to a smaller 

metastable state in 15 seconds after the voltage was removed (Fig. 5.6c). In both these 

domain states, the domain boundaries on both sides were not in the low-energy vertical 

orientation and instead presented inclined or curved configurations. This could be caused 

by domain wall pinning at various defects, such as the impurity defects or vacancies that 

commonly exist in the thin films. While the switched domain under the applied voltage 

(Fig. 5.6b) penetrated across the whole film thickness, the metastable domain after the 

removal of the applied voltage (Fig. 5.6c) only penetrated from the top surface to about 

35 nm in depth, resulting in the formation of a horizontal tail-to-tail charged domain 

walls at the middle of the film. This suggests that, at this stage, a spontaneous back-

switching only occurred at a thin sub-layer above the BiFeO3/La0.7Sr0.3MnO3 interface. A 

plot of the measured area of the switched domain as a function of time and applied 

voltage, in Fig. 5.6e, shows that the domain switching induced by the applied bias is 

affected by several pinning and field-assisted unpinning of domain walls, where the 

domain area remained constant until the applied voltage was large enough to trigger a 

sudden expansion in the area. Right before the applied voltage went to zero, partial 

spontaneous back-switching of the written domain occurred via a rapid shrinkage to the 

metastable state. After the applied voltage went to zero, this metastable state further 

relaxed to smaller sizes through slow thermodynamic processes, and eventually 

annihilated in 20 minutes (Fig. 5.6d).  
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The most likely cause for the observed retention failure phenomena in these 

BiFeO3 films is a strong build-in field pointing downward through the film. The built-in 

field here would be a combination of the Schottky field from the back contact and the 

downward build-in field induced by the planar defects above them. The planar-defect-

induced field is probably the dominant one. Firstly, it should be stronger than the 

Schottky field, as it is large enough to stabilize a polarization opposite to the Schottky 

field below the defect, forming a head-to-head polarization configuration that is usually 

considered unstable in ferroelectrics (Fig. 5.4d). Secondly, as observed in Fig. 5.6c, the 

early stage of the retention failure was accompanied by a back-switching at the interfacial 

sub-layer, suggesting the back-switching was initiated at local nanoregions adjacent to 

the planar defects. Finally, it is found at local regions in the same film where impurity 

 

Fig. 5.7 Domain switching and structures in a BiFeO3 thin film without defects  

(a-c) Chronological TEM dark-field image series depicting the creation and stabilization of an upward 

polarized domain in a local BiFeO3 film without planar impurity defects. (d) HAADF STEM image 

showing the BiFeO3/La0.7Sr0.3MnO3 interfacial region of the local film. (e) Color map of the a⊥/a// ratio 

and (f) spatial distribution of the -DFB vectors overlaid on the same HAADF STEM image. 
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defects were not observed, a switched domain can be stable after the removal of the 

applied voltage (Fig. 5.7a-c). In these regions, maps of lattice parameters and polarization 

vectors based on HAADF STEM images show uniform T-like domain structures above 

the interfaces (Fig. 5.7d-f). In regions both with and without impurity defects, the films 

show good epitaxy at the BiFeO3/La0.7Sr0.3MnO3 interfaces without dislocations, 

excluding depolarization effects caused by interfacial non-ferroelectric dead-layers225 or 

flexoelectric effects induced by strain gradients229. Therefore, the existence of the 

impurity defects should be crucial to the observed domain instability. 

As BiFeO3 film growth is very sensitive to the deposition parameters and pure-

phase BiFeO3 can only be obtained within narrow parameter combinations235, the 

impurity defects observed in these thin films could have been be induced by slight 

stoichiometry fluctuations that occurred during the growth, either due to fluctuations of 

deposition parameters or inhomogeneity of the target. This suggests that, impurity 

defects, either of the Aurivillius phase or other types of structures, may be common in 

perovskite thin films. Such defects can strongly interact with the host materials. The 

observations of defect induced domain instability may help explain past disagreements 

regarding retention failure in some ferroelectric systems. Also, although these defects 

would destabilize written domains and would be less useful for ferroelectric memory 

devices, the finding of defect induced change of polarization structures suggests potential 

new routes of tuning ferroelectric properties. For example, by intentionally creating 

impurity defects into the film matrix during material growth, a strong build-in field can 

be introduced at the local nanoregions. This may lead to the stabilization of novel 

functional domain patterns that are not easily accessible through the conventional strain 
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engineering, such as the mixed-phase head-to-head polarization structure observed here. 

Engineering defects, therefore, open new avenues for control of nanodomain structures 

and the creation of new polarization states. 
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CHAPTER 6 

Summary and Future Work 

 

In this work, by using atomic-resolution scanning transmission electron 

microscopy (STEM) and in situ transmission electron microscopy (TEM), I presented a 

microscopic study of polarization structures and switching dynamics in ferroelectric 

BiFeO3 thin films. In particular I have observed a local rhombohedral-like-to-tetragonal-

like structure transition at the strongly charged domain walls (sCDWs); and I have 

created a dramatic resistive switching in the local thin film through electrical 

manipulation of the sCDW. These findings provide novel insight on the effects of 

polarization bound charge on the ferroelectric structures, and open up the possibility for 

the development of new device paradigms through control of sCDWs. I have also 

discovered a strong interaction between the ferroelectric polarization and nanoscale 

impurity defects that commonly exist in ferroelectrics. These defects can lead to 

polarization enhancement in ultrathin BiFeO3 films, challenging the long-term 

understanding that the ferroelectric polarization is inevitably suppressed under reduced 

dimensions. They can also stabilize novel hedgehog/antihedgehog polarization topologies 

and different types of mixed-phase structures, both of which could be useful for 

nanoelectronic or nanoelectromechanical applications. In presence of these impurity 

defects, the stability of newly created domain can be dramatically altered as well. These 

results indicate that engineering impurity defects could be a new route for tuning 
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ferroelectric properties. 

In next steps, a continuation of study on domain structures or switching 

phenomena associated with the sCDWs or the impurity defects can be further performed. 

These include, for example, probing the coupling between the stress and the polarization 

bound charge, and the possible mechanical switching of sCDW; or exploring the 

interaction between the bulk domain pattern and impurity defects with larger dimensions. 

Future work can also be made into detecting ferroelectric domain switching with 

improved spatial and time resolution. Currently, the spatial resolution (~1 nm) of the in 

situ TEM is practically limited by the fact that only low-magnification imaging modes 

are available due to the difficulty in tilting the TEM specimen arbitrarily using in situ 

TEM holders; and the time resolution (~30 ms) is restricted by the capability of the TEM 

imaging system including record cameras. Along with the progress made to improve the 

performance of TEM and in situ platforms, however, the very near future will 

undoubtedly see direct atomic-scale observation or ultrafast detection of ferroelectric 

switching events. This would lead to more fundamental understanding of the microscopic 

processes of domain nucleation and domain wall motion. In addition, refinements of in-

situ methods, including new holders for application of electrical bias, force, and light, and 

even for control of liquid and atmosphere environment, open the door to examining the 

behavior of ferroelectric materials under many different conditions, all within the TEM. 

These developments provide wide opportunities for studying the properties and 

functionalities of ferroelectric materials, and facilitate development of ferroelectric-based 

devices in information and energy technologies.  
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APPENDIX 

Contributions from others 

 

For the results of charged domain walls presented in chapter 3, Alexander 

Melville and Carolina Adamo carried out the sample synthesis; Christopher Nelson, Peng 

Gao, Yi Zhang (older), and Sungjoo Kim contributed to prepare the TEM samples and 

take the TEM images. Jacob Jokisaari and Yi Zhang (younger) performed the 

experiments using the scanning probe microscopy, including PFM and SSRM. Jason 

Britson did the phase-field simulations. 

In chapter 4, for the results of ultrathin BiFeO3 films, the sample was synthesized 

by Colin Heikes; the original TEM images were taken by Christopher Nelson and Peng 

Gao; EELS experiments and DFT calculations was carried out by Lin Xie; and the phase-

field simulation was performed by Zijian Hong. For the results of hedgehog/antihedgehog 

domains, the sample was synthesized by Carolina Adamo; the original TEM images were 

taken by Jacob Jokisaari and Peng Gao; and the phase-field simulation was performed by 

Xiaoxing Cheng.  

In chapter 5, the films used in the study were grown by Christianne Beekman. The 

AFM experiment was done by Jacob Jokisaari.   
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