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ABSTRACT
The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated

for many years and the existing evidence has been mainly accumulated from model organisms. In model

organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic val-

ues between loci in a population and confirmed through examining the number of offspring produced in

two-locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans

owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis

by testing the correlation between local ancestries on different chromosomes in an admixed population.

We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically

examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis

revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation

(P-value = 4.01 × 10−8) that can be potentially attributed to fitness epistasis. However, we also observed

substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our

knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human

genome.
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1 INTRODUCTION

Epistasis between alleles in unlinked loci has been consid-

ered to play an important role in shaping genetic variation,

and the empirical evidence is mainly restricted to model

organisms (Corbett-Detig, Zhou, Clark, Hartl, & Ayroles,

2013; Cutter 2012; Presgraves, 2010). In inbreeding studies

of mice, functionally related unlinked genes under selection

exhibited greater gametic phase disequilibrium (GPD) than

did unrelated genes (Petkov et al., 2005). A recent experiment

using Drosophila melanogaster recombinant inbred lines

demonstrated that genetic incompatibilities are widespread

within the species, and that the Dobzhansky-Muller model

of reproductive incompatibilities, often used to explain

reproductive isolation between species, did not need to be

invoked to account for this observation (Rohlfs, Swanson, &

Weir, 2010). In humans, epistasis is frequently suggested as

a potential explanation for the missing heritability observed

in genome-wide association studies, although this hypoth-

esis still has a very limited evidentiary basis (Manolio

et al., 2009; Zuk, Hechter, Sunyaev, & Lander, 2012).

Recently, many cis interactions of two Single Nucleotide

Polymorphisms (SNPs) on gene expression levels have been

reported in humans (Hemani et al., 2014). However, these

interactions are likely to be explained by single variants

in GPD in each of the interacting SNPs (Dudbridge &

Fletcher, 2014), suggesting the challenge in detecting true

interactions.

Only a few studies have investigated fitness epistasis in

human subjects, also known as coevolution (Raj et al., 2012;
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T A B L E 1 Definition of parameters used in theoretical model

𝜆 The average proportion of African ancestry

𝑝𝐴𝑖 The Ai allele frequency at the ith locus in the African population

𝑝𝐸𝑖 The Ai allele frequency at the ith locus in the European population

𝜆𝑝𝐴𝑖 The 𝐴𝑖 allele frequency at the ith locus in the African American population before selection

𝜆(1 − 𝑝𝐴𝑖) The 𝑎𝑖 allele frequency at the ith locus in the African American population before selection

(1 − 𝜆)𝑝𝐸𝑖 The 𝐴𝑖 allele frequency at the ith locus in the African American population before selection

(1 − 𝜆)(1 − 𝑝𝐸𝑖) The 𝑎𝑖 allele frequency at the ith locus in the African American population before selection

𝑝𝑚𝑖
= 𝜆𝑝𝐴𝑖

+ (1 − 𝜆)𝑝𝐸𝑖
The Ai allele frequency at the ith locus in the African American population before selection

Rohlfs et al., 2010; Single et al., 2007). Based on the

assumption that a functional interactive coevolution could

be maintained through complementary mutations over evo-

lutionary history (Jothi, Cherukuri, Tasneem, & Przytycka,

2006; Rohlfs et al., 2010), a protein-protein network study

reported that by using polygenetic distance metrics of the

large-scale high-throughput protein-protein interaction data

the Alzheimer’s disease (AD) associated genes PICALM,
BIN1, CD2AP, and EPHA1 present coevolution evidence (Raj

et al., 2012). The killer immunoglobulin receptor (KIR) and

HLA loci have shown a signature of coevolution, with strong

negative correlation, between the gene frequencies of KIR and

the corresponding HLA ligand (Single et al., 2007). Combi-

nations of KIR and HLA variants have different degrees of

resistance to infectious diseases that affect human survival

during epidemics (Parham, 2005). Rohlfs et al. developed

a method using composite linkage disequilibrium (LD) and

genotype association scores to detect GPD between the can-

didate coevolved gamete-recognition genes ZP3 and ZP3R
(Rohlfs et al., 2010). However, a recent experiment showed

that ZP3R is not involved in sperm-zona pellucida binding

in mouse fertilization and suggested that there is no coevo-

lution evidence between ZP3 and ZP3R (Muro et al., 2012).

Crucially, no study has convincingly reported an interaction

between two unlinked loci on fitness epistasis in humans,

largely because of the scarcity of available data and inade-

quate statistical power. Thus, how epistasis, through its effect

on fitness, shapes genetic variation at the population level is

largely unknown in humans.

The European population is estimated to have migrated

from Africa 90–120 thousand years ago (Tishkoff &

Williams, 2002). The regional subpopulations evolved inde-

pendently to adapt to a range of environments before contem-

porary gene flow occurred as a result of geographic cohabita-

tion in the Western Hemisphere. African Americans inherit

their genome from both African and European ancestors.

Fitness epistasis can result in ancestry correlations between

different chromosome regions. Genotyping technologies and

analysis algorithms now make it possible to distinguish Euro-

pean from African ancestry sequences at a high resolution

across the genome (Baran et al., 2012; Price et al., 2009; Tang,

Coram, Wang, Zhu, & Risch, 2006). As a consequence, we

hypothesized that the dense SNPs genotyped in large African

American genome-wide association studies should make it

possible to test fitness epistasis in humans by testing ances-

try correlations across the genomic regions. In this study, we

propose to develop a new approach to detect fitness epistasis

in an admixed population.

2 METHODS

2.1 Theoretical model of fitness epistasis on different
chromosomes in an admixed population

We assumed that the African and European populations have

been exposed to different environments. Besides genetic ran-

dom drift, adaptation will also contribute to the variation

of genotype frequencies in each population. It is reason-

able to assume that some alleles with selective advantage in

one population may have selective disadvantage or be neu-

tral in another population because of different environments

(e.g., the thrifty gene hypothesis; Neel, 1962). Under this

assumption, we expect substantial allele frequency differ-

ence between African and European populations at loci under

selection pressure. In particular, the African and European

genomes may carry different variants that have either a selec-

tive advantage or a selective disadvantage in North America.

Theoretically, we demonstrated that the presence of a two-

locus fitness epistasis, defined as a two-locus fitness not equal

to the product of the corresponding marginal fitnesses, can

create correlations between local ancestries at unlinked loci.

We use African Americans as an example to demonstrate

our model. We assume that the ith and jth loci are located on

two different chromosomes and there is no linkage between

them during transmission from one generation to the next gen-

eration. Both the ith and jth loci have two alleles, Ai and ai,

and Aj and aj. We use superscript A and E to respectively rep-

resent an African and a European allele, that is, 𝐴𝐴
𝑖

and 𝐴𝐸
𝑖

represent an African and a European Ai allele, respectively.

The parameters used in this section are described in Table 1.

The genotype frequencies before selection are the products

of allele frequencies as presented in Table 2. We assume a

general fitness model for two-locus genotypes as well as the
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T A B L E 2 Genotype frequencies at ith locus in African Americans

before selection

Genotype at A locus Genotype frequency

Ai
AAi

A 𝜆2𝑝𝐴𝑖
2

Ai
Aai

A 2𝜆2𝑝𝐴𝑖
(1 − 𝑝𝐴𝑖

)

Ai
AAi

E 2𝜆(1 − 𝜆)𝑝𝐴𝑖
𝑝𝐸𝑖

Ai
Aai

E 2𝜆(1 − 𝜆)𝑝𝐴𝑖
(1 − 𝑝𝐸𝑖

)

ai
Aai

A 𝜆2(1 − 𝑝𝐴𝑖
)2

ai
AAi

E 2𝜆(1 − 𝜆)(1 − 𝑝𝐴𝑖
)𝑝𝐸𝑖

ai
Aai

E 2𝜆(1 − 𝜆)(1 − 𝑝𝐴𝑖
)(1 − 𝑝𝐸𝑖

)

Ai
EAi

E (1 − 𝜆)2𝑝2
𝐸𝑖

Ai
Eai

E 2(1 − 𝜆)2𝑝𝐸𝑖
(1 − 𝑝𝐸𝑖

)

ai
Eai

E (1 − 𝜆)2(1 − 𝑝𝐸𝑖
)2

marginal fitnesses that are displayed in Table 3. The two-locus

genotype frequencies after selection can be calculated using

the above tables, assuming independence between the ith and

jth locus. For a two-locus genotype, we count the number of

alleles inherited from African ancestral population as an indi-

vidual’s local ancestry at a locus.

Let Xi and Xj be random variables representing the number

of African ancestry alleles at the ith and jth loci in an indi-

vidual, respectively. The covariance between Xi and Xj after

selection can be written as, after some algebra,

cov
(
𝑋𝑖,𝑋𝑗

)
= 𝐸

(
𝑋𝑖𝑋𝑗

)
− 𝐸

(
𝑋𝑖

)
𝐸
(
𝑋𝑗

)
= 4𝜆2𝑐2

(
𝑝𝑚𝑖

− 𝑝𝐴𝑖

)(
𝑝𝑚𝑗

− 𝑝𝐴𝑗

)
×
{
𝑝2
𝑚𝑖

𝑝2
𝑚𝑗

(
𝑠22𝑠11 − 𝑠21𝑠12

)
+ 𝑝2

𝑚𝑖
𝑝𝑚𝑗

(
1 − 𝑝𝑚𝑗

)(
𝑠22𝑠01 − 𝑠21𝑠02

)
+ 𝑝𝑚𝑖

(
1 − 𝑝𝑚𝑖

)
𝑝2
𝑚𝑗

(
𝑠22𝑠10 − 𝑠20𝑠12

)
+ 𝑝𝑚𝑖

(
1 − 𝑝𝑚𝑖

)
𝑝𝑚𝑗

(
1 − 𝑝𝑚𝑗

)(
𝑠22𝑠00 − 𝑠20𝑠02

)
+
(
1 − 𝑝𝑚𝑖

)2
𝑝2
𝑚𝑗

(
𝑠21𝑠10 − 𝑠20𝑠11

)
+
(
1 − 𝑝𝑚𝑖

)2
𝑝𝑚𝑗

(
1 − 𝑝𝑚𝑗

)(
𝑠21𝑠00 − 𝑠20𝑠01

)
+ 𝑝2

𝑚𝑖

(
1 − 𝑝𝑚𝑗

)2(
𝑠01𝑠12 − 𝑠11𝑠02

)
+ 𝑝𝑚𝑖

(
1 − 𝑝𝑚𝑖

)(
1 − 𝑝𝑚𝑗

)2(
𝑠12𝑠00 − 𝑠10𝑠02

)
+
(
1 − 𝑝𝑚𝑖

)2(1 − 𝑝𝑚𝑗

)2(
𝑠11𝑠00 − 𝑠10𝑠01

)}
,

where c is the inverse of the average fitness:

1
𝑐
= 𝑝2

𝑚𝑗

[
𝑝2
𝑚𝑖

𝑠22 + 2𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑠21 + (1 − 𝑝𝑚𝑖
)2𝑠20

]
+2𝑝𝑚𝑗

(1 − 𝑝𝑚𝑗
)
[
𝑝2
𝑚𝑖

𝑠12 + 2𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑠11
+ (1 − 𝑝𝑚𝑖

)2𝑠10
]
+ (1 − 𝑝𝑚𝑗

)2

×
[
𝑝2
𝑚𝑖

𝑠02 + 2𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑠01 + (1 − 𝑝𝑚𝑖
)2𝑠00

]
.

When only the ith locus contributes the fitness variation,

we have 𝑠22 = 𝑠21 = 𝑠20, 𝑠12 = 𝑠11 = 𝑠10 and 𝑠02 = 𝑠01 =
𝑠00. In this case, it is easy to check that cov (𝑋𝑖,𝑋𝑗) = 0.

In the case of the multiplicative model, two-locus fitness is

the product of corresponding marginal fitness, that is, 𝑠𝑘𝑙 =
𝑢𝑘 𝑣𝑙 for k = 0, 1, or 2 and l = 0, 1, or 2. In this case,

cov (𝑋𝑖,𝑋𝑗) = 0. The other special cases of two-locus fit-

ness will not lead to covariance of 0 (Appendix). The above

theoretical calculation suggests that all the fitness models

except the multiplicative fitness model will create correlations

between unlinked local ancestries.

A combination of an African allele at one locus and a

European allele at the other locus may have fitness advan-

tage, resulting in a negative local ancestry correlation. A pos-

itive correlation suggests that alleles from the same ancestral

population at unlinked loci are more likely to be transmit-

ted together. In this case, two alleles from the same ances-

tral population have a fitness advantage. Our model assumes

local ancestry does not contribute to fitness in a two-locus

genotype. Because the local ancestry frequency has smaller

variation across the genome than the frequency of a genetic

variant in the African American population, testing the corre-

lation between local ancestries is more powerful than testing

the correlation between SNPs. Furthermore, admixture LD

extends much further than background LD; therefore, test-

ing correlations between local ancestries has less statistical

penalty because of multiple comparisons than testing the cor-

relation between SNPs.

2.2 Statistical model

Because of high correlation between adjacent local ancestries,

we divided the genome into bins with average length 400 kb.

The local ancestry at the middle marker was used to repre-

sent the local ancestry of a bin. To estimate the correlations

between the bins, we propose to use a linear regression model

between pairs of bins on different chromosomes, described by

𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑗 + 𝛽2�̄�−𝑖 + 𝜀, (1)

where 𝑋𝑖 is the local African ancestry in the ith bin, 𝑋𝑗 is the

local African ancestry in the jth bin, and �̄�−𝑖 is the average

ancestry calculated by excluding the chromosome where the

ith bin is located. We did not perform this analysis for bins

falling on the same chromosomes, because of the high local

ancestry correlation within a chromosome.

Using �̄�−𝑖 instead of the average of the local ancestries

across the whole genome, denoted as �̄�, to control the effect

of population admixture or population structure, results in

unbiased estimates. To see this, it is reasonable to assume

that the background correlations between bins on different

chromosomes are created by common population admix-

ture history; therefore, the background correlation between

different chromosomes is the same. In this model, 𝑋𝑖 and

𝑋𝑗 are not on the same chromosome, nor are 𝑋𝑖 and �̄�−𝑖.

Thus, cov (𝑋𝑖,𝑋𝑗 − �̄�−𝑖) = cov(𝑋𝑖,𝑋𝑗) − cov (𝑋𝑖, �̄�−𝑖) =
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T A B L E 3 Relative fitness corresponding to two-locus genotypes and corresponding marginal fitness in a general two-locus model

Genotype Aj
AAj

A Aj
AAj

E Aj
EAj

E Aj
Aaj

A Aj
Aaj

E Aj
Eaj

E Aj
Eaj

A aj
Aaj

A aj
Aaj

E aj
Eaj

E
Marginal fitness

at locus i

Ai
AAi

A s22 s22 s22 s21 s21 s21 s21 s20 s20 s20 u2

Ai
AAi

E s22 s22 s22 s21 s21 s21 s21 s20 s20 s20 u2

Ai
EAi

E s22 s22 s22 s21 s21 s21 s21 s20 s20 s20 u2

Ai
Aai

A s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1

Ai
Aai

E s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1

Ai
Eai

E s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1

Ai
Eai

A s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1

ai
Aai

A s02 s02 s02 s01 s01 s01 s01 s00 s00 s00 u0

ai
Aai

E s02 s02 s02 s01 s01 s01 s01 s00 s00 s00 u0

ai
Eai

E s02 s02 s02 s01 s01 s01 s01 s00 s00 s00 u0

Marginal fitness at locus j v2 v2 v2 v1 v1 v1 v1 v0 v0 v0

Note: 0 ≤ 𝑢𝑘, 𝑢𝑙, 𝑠𝑘𝑙 ≤ 1, k = 0, 1, 2 and l = 0, 1, 2.

0. Because model (1) is equivalent to 𝑋𝑖 = 𝛽0 + 𝛽1(𝑋𝑗 −
�̄�−𝑖) + 𝛽2�̄�−𝑖 + 𝜀, under the null hypothesis,

𝛽1 =
Cov

(
𝑋𝑖,𝑋𝑗 − �̄�−𝑖

)
Var

(
𝑋𝑗 − �̄�−𝑖

) = 0.

On the other hand, using �̄� to control the effect of

population admixture results in a negative bias because �̄�

includes local ancestries on the chromosome that 𝑋𝑖 is

located on and these are highly positively correlated with

𝑋𝑖. Thus, cov (𝑋𝑖,𝑋𝑗 − �̄� ) = cov(𝑋𝑖,𝑋𝑗) − cov(𝑋𝑖, �̄�) <
0 under the null hypothesis. We also compared regression

model (1) with the following two regression models:

𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑗 + 𝛽2�̄� + 𝜀 (2)

and

𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑗 + 𝛽2𝑃𝐶1 +⋯ + 𝛽11𝑃𝐶10 + 𝜀, (3)

where 𝑃𝐶1,… , 𝑃𝐶10 are the first 10 principal components

calculated using LD-pruned genome-wide markers.

2.3 Samples and local ancestry inferences

We applied the statistical models to the African Ameri-

can samples with available genome-wide genotypes from

three large datasets: (1) the Candidate Gene Association

Resources (CARe) study initiated by the National Heart,

Lung, and Blood Institute (NHLBI), which includes 8,367

African American subjects collected from five cohorts, the

Atherosclerosis Risk in Communities study (ARIC), the

Jackson Heart Study (JHS), the Coronary Artery Risk Devel-

opment in Young Adults study (CARDIA), the Cleveland

Family Study (CFS), and the Multi-Ethnic Study of

Atherosclerosis (MESA) (Zhu et al., 2011)—the Affymetrix

6.0 platform was used for genotyping. These genotype

data were downloaded from the dbGAP database; (2) the

Family Blood Pressure Program (FBPP), also initiated

by the NHLBI, which collected 3,636 African American

subjects from three center networks, GenNet, GENOA, and

HyperGEN (2002)—the genotyping platforms used were

Affymetrix 6.0 and Illumina 1M; (3) the Women’s Health

Initiative (WHI), with 8,150 African American subjects who

were genotyped with the Affymetrix 6.0 platform. Standard

quality controls for SNPs were performed.

We inferred local ancestries (the probabilities of an allele

being inherited from parental populations) at each genetic

locus across the genome for the three datasets using the

software HAPMIX (Price et al., 2009) and SABER+ (Tang

et al., 2006). Both HAPMIX and SABER+ can be applied

to dense genetic markers allowing for GPD between mark-

ers. HAPMIX was applied to the CARe for inferring local

ancestries, while SABER+ was applied to the CARe, FBPP,

and WHI. SABER+ has been substantially improved since

the first version, which results in similar performance com-

pared to other software (correlation with HAPMIX is 0.97

± 0.01 in the CARe). It has been demonstrated that both

SABER+ and HAPMIX can reliably make local ances-

try inference for African American subjects. We eliminated

related samples and samples with extremely low (≤5%) or

high (≥98%) African proportions (supplementary Fig. S1).

After that, 16,252 samples were used in the downstream

analysis.

Because of high correlation between adjacent local ances-

tries, we divided the genome into 7,389 bins with average

length of 400 kb. The local ancestry at the middle marker

was used to represent the local ancestry of a bin. There are

213 bins located within 2 Mb of the chromosome boundaries

or centromeres, and these bins were excluded in the analy-

sis, as suggested by Bhatia et al. (2014) because of potential

larger inference errors. We also conducted inverse-variance

weighted meta-analysis to combine the results of the three
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datasets using the METAL software (Willer, Li, & Abecasis,

2010).

2.4 Simulation of African Americans under
no selection

We also simulated three cohorts of African Americans using

the method described in HAPMIX (Price et al., 2009). The

sample sizes are 6,238, 1,864, and 8,150, which equal the

sample sizes of the CARe, FBPP, and WHI after applying

sample quality control. In order to save computation time, we

chose one out of every three markers in the HapMap phase 3

data, resulting in 461,005 markers. We applied the HapMap

YRI and CEU phased haplotypes as ancestral haplotypes to

construct the haploid genome of an admixed individual. We

randomly sampled YRI and CEU haplotypes with 80%/20%

probabilities. Beginning with the first marker of a chromo-

some, we randomly sampled a haplotype based on haplo-

type frequencies in the sampled ancestry population. When

a recombination event occurred, a new sampling was drawn

from the reference haplotypes with the same probability. A

recombination event between two adjacent markers was sam-

pled with probability (1 − 𝑒−𝑑𝑡), where d is the genetic dis-

tance (in Morgans) and t is the number of generations since

admixture for an individual. We added variability to the local

ancestries by generating an integer t from the normal distri-

bution 𝑁(6, 1) to make the distribution more similar to the

real data (supplementary Fig. S2). We recorded genotypes and

true local ancestries and inferred the local ancestries using

SABER+ (Tang et al., 2006). HapMap YRI and CEU popu-

lations were used as reference ancestral panels. We selected

the same 7,176 bins after excluding the 213 bins as used in

the real data and applied the statistical models. The perfor-

mance of the different methods was evaluated using both true

and inferred ancestries. We expect no epistasis effect because

the different chromosomes were simulated independently. We

also performed meta-analysis to combine the results of the

three simulated datasets.

3 RESULTS

3.1 Testing fitness epistasis on different chromosomes

3.1.1 Simulation

We compared the performance of the three statistical models

(1)–(3) in the simulated 6,238 African Americans. The distri-

butions of true and estimated global ancestry are similar and

are shown in supplementary Figure S3. The inference accu-

racy between inferred and true local ancestries over the 7176

bins is 99.2%. The estimated coefficients of 𝑋𝑗 using both

true local ancestry and estimated local ancestry are presented

in supplementary Figures S3–S5. In model (1), under the null

hypothesis 𝛽1 = 0, we would expect the mean of estimated 𝛽1

between two local ancestries on two different chromosomes

to be 𝛽1 = 0. Among the three regression models, model (1)

results in the smallest mean (−9.72 × 10−5 ± 0.0126 for true

ancestry, −9.55 × 10−5 ± 0.0127 for inferred local ances-

try), followed by model (3) (−0.0003 ± 0.0236, −0.00035

± 0.0238) and model (2) (−0.0103 ± 0.0132, −0.0104 ±
0.0132), respectively. As we expected, both models (2) and

(3) resulted in negative 𝛽1. We also observed that regression

model (1) resulted in a uniform distribution of P-values as

well as an uninflated QQ plot, but neither model (2) nor model

(3) do (supplementary Figs. S3–S5). The other two simu-

lated datasets with sample sizes 1,864 and 8,150 had sim-

ilar results (supplementary Table S1). We performed meta-

analysis of the results from model (1) of the three simulated

datasets. We did not observe any inflation for testing 𝛽1 = 0
(𝜆𝐺𝐶 = 0.976).

3.1.2 Real data

We applied model (1) to the CARe, FBPP, and WHI. The

average African ancestry distributions for the three cohorts

were similar (supplementary Fig. S1). The total number of

pairwise correlations between the bins on different chromo-

somes is 24,314,538. The distributions of estimated 𝛽1 and

the corresponding P-values, and the QQ plots for the CARe,

FBPP, and WHI are presented in supplementary Figure S6.

The genomic control parameters 𝜆𝐺𝐶 are 1.206, 1.203, and

1.251 in the CARe, FBPP, and WHI, respectively. Adjusting

for either the global ancestry or 10 principal components leads

to negative biased mean 𝛽1 and large genomic control param-

eters (supplementary Figs. S7 and S8), which is consistent

with our simulation. Thus, we used the results from regres-

sion model (1) for the following analysis.

We combined the results from the CARe, FBPP, and WHI

using genomic control corrected inverse-variance weighted

meta-analysis in METAL (Willer et al., 2010). Figure 1

presents the distributions of the estimated 𝛽1 and P-values,

and the QQ plot for testing 𝛽1 = 0. The average of estimated

𝛽1 is 0.0007 ± 0.009, which is comparable to the means of

individual cohort analysis. Although we applied the genomic

control procedure before the meta-analysis, the QQ plot still

shows a substantial departure from the diagonal line (𝜆𝐺𝐶 =
1.097), indicating that true signals drive this departure. We

examined the mutual consistency of the signals in the three

cohorts by examining how many of the top independent pair-

wise correlations (P-value < 10−5) in one cohort were repli-

cated in another cohort. We observed that 11–20% of the

pairwise correlations in one cohort could be replicated (sup-

plementary Table S2), which is substantially larger than the

expectation of 5% under the null.

We are concerned about the inflated 𝜆𝐺𝐶 value of the

meta-analysis. Because there was no inflation in the meta-

analysis of simulated data (𝜆𝐺𝐶 = 0.976), the observed

inflated 𝜆𝐺𝐶 value in real data might be driven by true epista-

sis. We applied a Bonferroni multiple comparison method to
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F I G U R E 1 Correlations of local ancestries and the corresponding statistical evidence. (A) Distribution of estimated local ancestry correlations in the

genomic control corrected meta-analysis. (B) Distribution of corresponding P-values in the genomic control corrected meta-analysis. (C) QQ-plot of P-values

in the genomic control corrected meta-analysis.

F I G U R E 2 Correlation features and recent selection evidence of significant pairwise regions on chromosome 4 and chromosome 6. (A) –log10 (P-value)

for testing the local ancestry correlations between chromosomes 4 and 6 in meta-analysis. (B) The recent selection signals (|iHS| > 2.5) on chromosome 4:

55.4–56.6 Mb and chromosome 6: 83.8–85.0 Mb, detected using HapMap Phase II YRI (blue), CEU (red), and CARe (black).

determine the genome-wide significance level for the pairwise

correlation tests. The number of independent bins 𝑁chr𝑖 for

each chromosome was estimated using the method of Li and

Ji (2005). We estimated 1,232, 1,272, and 1,160 independent

bins across the genome in the CARe, FBPP, and WHI, respec-

tively. The total number of independent tests in our analysis

was calculated as 𝑁 =
∑21

𝑖=1 𝑁chr𝑖 (
∑22

𝑗=𝑖+1 𝑁chr𝑗 ) . We cal-

culated this number for the CARe, FBPP, and WHI sepa-

rately. The maximum of the three values is 765,342, from

FBPP, corresponding to a genome-wide significance level

P-value = 6.5 × 10−8. Using this threshold, we observed

one pair of bins, at chromosome 4: 56.04 Mb and chromo-

some 6: 84.41 Mb, to be significantly correlated (P-value

= 4.01 × 10−8). The three dimensional plot of –log10 (P-

value) between the chromosome 4 and chromosome 6 is

shown in Figure 2A. We next examined whether the chromo-

somes 4 and 6 regions demonstrate any selection evidence

individually. We calculated the integrated haplotype score

(iHS) (Voight, Kudaravalli, Wen, & Pritchard, 2006) statistic

scanning for evidence of recent positive selection in the

regions of chromosome 4: 55.4–56.6 Mb and chromosome 6:

83.8–85.0 Mb using HapMap YRI, CEU, and CARe samples

(Fig. 2B). The selection signals with |iHS| > 2.5 correspond

to the extreme 1% of |iHS| values across the genome (Voight

et al., 2006). We observed multiple loci with positive selec-

tion evidence in Africans, Europeans, and African Ameri-

cans in the correlated regions. Additionally, we observed 36

independent pairwise regions with suggestive correlation evi-

dence (P-value < 10−5; Table 4). Similar selection patterns

were also observed for these regions by iHS statistic scan-

ning (regions with P-value < 10−6 are shown in supplemen-

tary Fig. S9).

To investigate whether the significant correlation between

the regions on chromosomes 4 and 6 is due to the inferred

local ancestry error, we analyzed the Mendelian incon-

sistency of inferred local ancestry in 50 nuclear families

sampled from the Cleveland Family Study from CARe. The

number of offspring varies from 1 to 6. We calculated the

Mendelian inconsistency using PLINK software (Purcell

et al., 2007) and observed 6.8% Mendelian inconsistency per

bin per family. However, the Mendelian inconsistencies are

1.8% and 3.9% in the two genomic regions with significant

local ancestry correlation. Note the Mendelian inconsistency

rate is not the same as the real local ancestry error rate.
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T A B L E 4 Top pairwise local ancestry correlated regions in the meta-analysis of the CARe, FBPP, and WHI (P-value < 10−5)

Region 1 (Mb) Genea Region 2 (Mb) Genea P-valueb Betac

chr1:20.61–21.45 chr3:21.09–25.52 1.46 × 10−6 −0.0418

chr1:44.52–44.92 chr6:77.65–78.05 5.09 × 10−6 −0.0408

chr1:155.29–156.13 chr10:3–3.4 3.42 × 10−6 0.0401

chr1:91.19–101.08 chr11:2.79–7.57 HBB 3.88 × 10−6 0.0405

chr1:228.03–239.48 chr17:3.64–5.87 1.92 × 10−6 0.0419

chr2:50.59–50.99 chr6:17.59–17.99 6.96 × 10−6 0.0401

chr2:235.61–236.01 chr3:58.44–58.84 7.51 × 10−6 0.0395

chr3:39.94–42.54 chr5:178.47–178.87 1.36 × 10−6 0.0426

chr3:125.6–126.18 chr19:37.05–44.57 1.51 × 10−6 0.0421

chr4:10.29–10.69 chr6:16.04–16.97 8.61 × 10−6 −0.0391

chr4:34.58–37.21 chr18:73.35–74.01 4.84 × 10−6 0.0403

chr4:47.19–72.67 chr6:52.66–88.81 4.01 × 10−8 −0.0488

chr4:86.88–87.28 chr9:137.46–138.31 7.58 × 10−6 0.039

chr4:187.04–187.44 chr20:2.37–3.17 4.06 × 10−6 0.0404

chr5:14.89–18.73 chr11:123.69–131.24 5.60 × 10−7 0.0445

chr5:150.56–150.96 chr18:70.09–70.49 4.90 × 10−6 0.0409

chr6:24.35–24.75 chr12:130.09–130.49 8.48 × 10−6 0.0397

chr6:39.76–40.16 chr21:43.03–43.73 3.71 × 10−6 0.0409

chr6:149.25–151.82 chr11:95.41–106.44 MMP3 2.53 × 10−6 −0.0416

chr7:13.85–16.57 chr16:48.36–49.29 3.77 × 10−6 0.0407

chr7:41.88–42.92 chr9:35.05–37.11 4.17 × 10−6 −0.0407

chr7:80.48–90.76 MDR1 chr12:128.44–130.49 1.41 × 10−7 0.0475

chr9:20.07–24.49 chr21:38.79–41.35 1.82 × 10−6 0.0421

chr10:113.9–114.3 chr21:37.82–38.22 9.92 × 10−6 0.0389

chr11:24.63–25.03 chr17:74.69–75.09 7.35 × 10−6 0.0395

chr11:26.43–34.23 CD59 chr22:16.7–21.26 3.74 × 10−7 0.0449

chr11:34.57–35.74 chr17:72.51–75.09 4.06 × 10−6 0.041

chr12:115.24–115.64 chr13:21.16–21.56 8.39 × 10−6 0.0378

chr12:129.3–130.49 chr21:42.45–45.05 1.88 × 10−6 0.0414

chr13:38.44–38.84 chr16:81.87–82.41 5.72 × 10−6 0.0391

chr13:79.41–79.81 chr19:12.82–13.22 9.72 × 10−6 0.038

chr13:86.01–93.96 chr22:35.91–43.32 APOBEC3G 2.37 × 10−6 0.0408

chr13:106.5–109.28 chr21:16.09–20.73 4.38 × 10−6 0.0411

chr14:65.07–65.47 chr17:76.16–76.56 6.93 × 10−6 0.0393

chr17:28.1–29.03 chr20:10.97–12.92 8.54 × 10−7 0.0438

chr18:46.33–54.84 chr19:50.42–50.82 5.18 × 10−6 0.0397

chr20:58–58.81 chr21:27.67–28.07 2.65 × 10−6 0.041

aPrevious reported genes with selection evidence in the corresponding regions.
bMinimum P-value in each region.
c𝛽 value corresponding to the minimum P-value.

In our simulation, the correlation between the errors of

local ancestry inference among different chromosomes is

0.046 ± 0.018 with a variance of error estimated to be

0.0007. Notably, the local ancestry estimation accuracy could

decrease if the ancestral panel was misspecified. The CEU

and YRI reference samples from HapMap are reasonable

ancestral panels for African Americans and we do not

expect a substantial increment of error rate (Brisbin et al.,

2012).

3.1.3 Impact of biases introduced by systematic errors
We next examined how much bias could be induced by the
local ancestry inference error. Assuming that an observed
local ancestry is the sum of a true ancestry and an inference

error, that is, 𝑋𝑖 = 𝑋𝑇
𝑖

+ 𝜀𝑖 at locus i, where 𝑋𝑇
𝑖

is the true
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T A B L E 5 Correlations between ancestral markers in candidate genes

Gene1 Gene2 pa 𝜷b

HLA KIR 0.7836 −0.0025

BIN1 CD2AP 0.2981 −0.0093

BIN1 EPHA1 0.2475 0.0104

BIN1 PICALM 0.242 −0.0105

CD2AP EPHA1 0.7385 −0.003

CD2AP PICALM 0.3006 −0.0092

EPHA1 PICALM 0.0077 −0.0234

ZP3R ZP3 0.9292 0.0008

aP-value in meta-analysis of CARe, FBPP, and WHI.
b𝛽 value in meta-analysis.

ancestry and 𝜀𝑖 is the error at locus i, then the correlation
between the ith and jth loci is

𝜌 = Corr
(
𝑋𝑖,𝑋𝑗

)
=
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where 𝜌𝑋𝑇 is the true local ancestry correlation between the

ith and jth loci, 𝜌𝜀 is the correlation between 𝜀𝑖 and 𝜀𝑗 , 𝜌𝑋𝜀1
is the correlation between the true local ancestry and the error

at the same locus, and 𝜌𝑋𝜀2 is the correlation between the

true local ancestry at the ith locus and the error at the jth
locus. The second term in equation (4) is the bias. Because

Var(𝜀𝑖) is negligible compared to Var(𝑋𝑇
𝑖
), the bias can be

approximated by
2
√

Var(𝑋𝑇
𝑖
)Var(𝜀𝑖)(𝜌𝑋𝜀2−𝜌𝑋𝜀1𝜌𝑋𝑇 )

Var(𝑋𝑇
𝑖
)+2𝜌𝑋𝜀1

√
Var(𝑋𝑇

𝑖
)Var(𝜀𝑖)

. Using simu-

lated data, we estimated that 𝜌𝑋𝜀1 is between −0.2 and 0.1,

𝜌𝑋𝜀2 is between −0.04 and 0.05, and |𝜌𝑋𝑇 | is less than 0.1.

We estimated that the bias is less than 0.003, which does not

explain the observed local ancestry correlations.

3.1 4 Candidate genes

Only a few genes have previously been reported to have a phy-

logenetic history consistent with coevolution or coadaptation

(Raj et al., 2012; Rohlfs et al., 2010; Single et al., 2007) in

humans. We tested the local ancestry correlations between a

set of these genes in our combined CARe, FBPP, and WHI

data and were able to verify coevolution between EPHA1 and

PICALM (P-value = 0.0077, Table 5). We did not observe

coevolution between ZP3 and ZP3R, which is consistent with

the report by Muro et al. (2012).

3.2 Testing natural selection by examining excess
of local ancestry

There is a debate that testing excess of local ancestry may

not be a powerful method to detect positive selection because

of the biases introduced by random genetic drift, sampling

error, and local ancestry inference error (Bhatia et al., 2014;

Jin et al., 2012). Briefly, a statistic = 𝑋𝑖−�̄�√
𝑉𝑡𝑜𝑡

is used to test

for natural selection at the ith locus, where 𝑋𝑖 and �̄� are

defined as before, and 𝑉𝑡𝑜𝑡 is the variance of 𝑋𝑖 calculated

across the genome. S follows a standard normal distribution

if there is no natural selection. We tested the excess of local

ancestry in the CARe, FBPP, and WHI separately, as well as in

the pooled data using the inverse-variance weighted method.

Although we observed a few regions whose local ancestries

were 3 standard deviations away from the mean in individual

cohorts (Fig. 3A), the excesses disappeared after pooling the

three cohorts. We did not observe any significant regions after

correcting for multiple comparisons. Similar to the previous

report (Bhatia et al., 2014), we observed high pairwise corre-

lations of local ancestries among the three cohorts (Fig. 3B),

which can be attributed to genetic random drift and historical

recombination.

We investigated why we were unable to identify any selec-

tion evidence by examining the excess of local ancestry when

we increased the sample size. It is possible that our combined

sample size still does not have good power to detect any selec-

tion evidence. However, we noted that 𝑉𝑡𝑜𝑡 is the squared stan-

dard deviation instead of the standard error, and it does not

approach 0 as the sample size increases. To verify this, 𝑉𝑡𝑜𝑡

consists of two components: variance due to sampling error

(𝑉𝑠𝑎𝑚𝑝𝑙𝑒) and variance due to random genetic drift (𝑉𝑑𝑟𝑖𝑓 𝑡).
According to the Wright-Fisher’s random genetic drift model

(Hartl & Clark, 2007), the variance of an allele with an initial

frequency p, after t generation is:

𝑉𝑑𝑟𝑖𝑓 𝑡 = 𝑝 (1 − 𝑝) −
(
1 − 1

2𝑁

)𝑡

𝑝 (1 − 𝑝) , (5)

where N is the effective population size. The sampling vari-

ance is 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑝(1−𝑝)
2𝑛 , where n is the sample size. Here we

considered African ancestry as an allele. Then p is the average

African ancestry that can be estimated for each cohort. After

knowing both 𝑉𝑡𝑜𝑡 and 𝑉𝑠𝑎𝑚𝑝𝑙𝑒, 𝑉𝑑𝑟𝑖𝑓 𝑡 = 𝑉𝑡𝑜𝑡 − 𝑉𝑠𝑎𝑚𝑝𝑙𝑒. We

estimated the variance components 𝑉𝑡𝑜𝑡, 𝑉𝑠𝑎𝑚𝑝𝑙𝑒, and 𝑉𝑑𝑟𝑖𝑓 𝑡 for

the CARe, FBPP, and WHI, as well as the large cohort stud-

ied in Bhatia et al. (2014) (Table 6). We observed that 𝑉𝑑𝑟𝑖𝑓 𝑡

is consistent in all four cohorts and is less dependent on the

sample size than 𝑉𝑠𝑎𝑚𝑝𝑙𝑒. When the sample size increases, the

proportion of variance due to genetic drift increases. Thus,

the power of test statistic S will be determined by sampling
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F I G U R E 3 Average local ancestries across the genome in the CARe, FBPP, and WHI. (A) Differences between average local ancestries and their means

across the genome in the CARe, FBPP, and WHI. Red lines highlight the boundary of ±3 standard deviation departure from the mean. (B) Scatter plots and

correlations of local ancestries among the CARe, FBPP, and WHI.

T A B L E 6 Variance components in the CARe, FBPP, WHI, and a larger African American data from five cohorts

Data n p 𝑽𝒕𝒐𝒕 𝑽𝒔𝒂𝒎𝒑𝒍𝒆 𝑽𝒅𝒓𝒊𝒇𝒕

Percentage of variance due to
genetic random drift

FBPP 1,864 0.833 6.08 × 10−5 3.72 × 10−5 2.36 × 10−5 0.39

CARe 6,238 0.804 2.61 × 10−5 1.26 × 10−5 1.35 × 10−5 0.52

WHI 8,150 0.773 3.53 × 10−5 1.08 × 10−5 2.45 × 10−5 0.69

Cohorts in Bhatia et al. (2014) 29,141 0.796 1.30 × 10−5 0.29 × 10−5 1.01 × 10−5 0.78

error when the sample size is small and by the variance due

to genetic drift when the sample size is large. In other words,

the statistic S does not have adequate power, even when the

sample size is increased, unless the excess of local ancestry

is substantial and largely caused by selection pressure, such

as observed by Tang et al. (2007). This observation is also

consistent with Bhatia et al., who did not identify directional

selection evidence since admixture (Bhatia et al., 2014). In

this analysis, the estimated sample variance assumes all the

individuals are independent because we eliminated related

subjects in our quality control. However, we estimated pair-

wise kinship coefficients using GCTA software (Yang et al.,

2010) and using them estimated the effective sample sizes

for both the CARe and FBPP. The effective sample sizes

for the CARe and FBPP are 5,886 and 1,783, respectively.

Using these effective sample sizes, the estimated 𝑉𝑑𝑟𝑖𝑓 𝑡 is

similar. Given the estimated variance due to random genetic

drift in Table 6, we can estimate the effective population size

by applying equation (5). Assuming African Americans have

been admixed for eight to 12 generations, the effective popu-

lation size is estimated to be between 32,000 and 48,000.

4 DISCUSSION

Although fitness epistasis has been a widely accepted guiding

principle in studying the genetic basis of intrinsic, postzygotic

reproductive isolation (Orr & Turelli, 2001), few attempts

have been made to test this question in humans. Because of

recent admixture, the African American population makes

fitness epistasis detectable. We developed a new method to

detect fitness epistasis by testing the correlation between

local ancestries on different chromosomes in an admixed

population after separating out the background correlation.

A negative correlation indicates two alleles from different

ancestral populations have fitness advantage, while a positive

correlation indicates two alleles from the same ancestral
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population have fitness advantage. Simulation data suggest

that our method (equation (1)) is unbiased (supplementary

Fig. S3). Alternative methods that adjust for either global

ancestry or principal components result in biased correlation

estimates (supplementary Figs. S4 and S5). Applying this

method to three large African American cohorts, the CARe,

FBPP, and WHI, allowed us to observe a pair of significantly

correlated genomic regions: chromosome 4: 56.04 Mb and

chromosome 6: 84.41 Mb (P-value = 4.01 × 10−8). Multiple

loci in both regions show selection evidence by iHS statistical

scanning (Voight et al., 2006) in Africans, Europeans, and

African Americans (Fig. 2B).

We reported an additional 36 pairs of regions with sug-

gestive correlation signals (Table 4; P-value < 10−5). These

regions harbor multiple genes whose selection evidence has

been reported in the literature. The hemoglobin beta (HBB)

gene (11p25.5) protecting against sickle cell anemia has been

detected with selection signals of high population differenti-

ation frequencies and long haplotype signals (Ohashi et al.,

2004; Pagnier et al., 1984). The matrix metallopeptidase 3

(MMP3) protein (11q22.3) is involved in multiple physiolog-

ical processes, such as embryo development, reproduction,

and disease processes. It has been suggested to show positive

selection evidence of low nucleotide diversity and population

differentiation (Fst) (Rockman et al., 2004). The MDR1 mul-

tidrug transporter (7q21.12) has been detected with the selec-

tion signal of a long haplotype (Tang, Wong, Lee, Chong, &

Lee, 2004). The CD59 molecule complement regulatory pro-

tein (11p13) associating with hemolytic anemia and throm-

bosis (Osada et al., 2002), and the broad antiviral enzyme

APOBEC3G (Zhang & Webb, 2004) (22q13.1-q13.2) encod-

ing an inhibitor of HIV, have been reported to show strong

positive selection by comparing the function-altering muta-

tions between species. Besides these genes reported to be

under selective pressure in the literature, all the detected

genome regions in this study demonstrate evidence of selec-

tion on using the iHS statistic (Voight et al., 2006), although

the iHS signals may not directly contribute to epistasis sig-

nals. Thus, our results add a new aspect of interactions among

genes that were already reported to undergo natural selection.

However, replication studies are warranted to further confirm

or refute the epistasis in these pairwise genomic regions.

Because selection is often associated with phenotypes, it is

possible that our detected regions with selection signals may

harbor variants or genes associated with phenotypes. Con-

sequently, any regions showing association evidence to phe-

notypes will further strengthen our findings. However, our

three cohorts are population-based samples; therefore, we are

unable to conclude that our detected potential epitasis evi-

dence reflects any specific disease associations.

We applied multiple methods to separate the local ancestry

correlation from the confounding of global ancestry, includ-

ing either controlling the global ancestry or adjusting for

principal components of genotype data across the genome.

Our simulations suggest that the best approach is to adjust for

the global ancestry by excluding one of the two chromosomes

where a locus is located (supplementary Figs. S3–S5). This

approach also has the smallest bias in estimating local ances-

try correlations in real data (supplementary Figs. S6–S8).

However, we also observed an inflated 𝜆𝐺𝐶 value (1.097),

which may be driven by either some systemic biases, such

as inaccurate local ancestry inference and the confounding

of global ancestry, or true genome-wide distributed weak

fitness epistasis, which requires a large sample size to detect.

Because we applied the genomic control procedure when

combining the three cohorts, it is less likely that the observed

inflated 𝜆𝐺𝐶 value is driven by the former. In our simulations,

we did not observe an inflated 𝜆𝐺𝐶 when fitness epistasis

was absent. As observed in the simulated data, the use of

estimated local ancestries generates similar genomic control

values as those from true local ancestries (supplementary

Table S1). Our simulations thus suggest that local ancestry

inference error cannot explain the ancestry correlation we

observed. Because admixture LD may expand to over a

20 cM region (Patterson et al., 2004; Zhu, Zhang, Tang,

& Cooper, 2006), a small number of epistasis loci would

lead to a large departure of the QQ plot from the diagonal

line, resulting in an inflated 𝜆𝐺𝐶 value. This phenomenon

is similar to admixture mapping analysis by examining the

excess of local ancestry. We simulated marginal admixture

mapping signals to understand the inflation of P-values due

to admixture LD. We randomly selected one of the 7,176 bins

as the causal bin in the 6,238 simulated African Americans

with effect size b = 0.3. We then generated a binary trait from

a binomial distribution with 𝑝 = 1
1+exp(−𝑏𝑋) , where X is the

local ancestry of the causal bin. We performed association

tests between the generated trait and the 7,176 bins and

calculated the 𝜆𝐺𝐶 . This simulation was repeated 100 times,

and we observed that one associated bin can cause the 𝜆𝐺𝐶

value to be1.04 ± 0.12. Twenty-six percent of the 𝜆𝐺𝐶 values

were larger than 1.1. Therefore, we expect a small number of

fitness epistasis loci will lead to a large departure of the QQ

plot from the diagonal line, or an inflated 𝜆𝐺𝐶 value.

We focused on examining the correlation of local ancestry

only on different chromosomes. Because the random genetic

drift on different chromosomes is independent because of

independent segregations, it less likely affects the observed

correlations between two different chromosome regions. In

fact, this is one of the advantages of examining the correla-

tion of local ancestry on different chromosomes for testing

epistasis.

In our analysis, we divided chromosomes into bins with

average size 400 kb in order to reduce the computational bur-

den. It is well known that the local ancestry in neighbor-

ing bins are highly correlated because the admixture LD can

extend to 20 cM (Patterson et al., 2004; Zhu et al., 2006).
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Thus, the 24,314,538 pairwise tests are not independent. We

therefore applied the widely used method of Li and Ji to

calculate the number of independent tests (Li & Ji, 2005).

We calculated the number of independent tests in the three

cohorts separately, resulting in 1,232, 1,272, and 1,160 tests

in the CARe, FBPP, and WHI, which falls into the range

between 1,000 and 1,500 estimated by Bhatia et al. (2014). We

further performed genomic control corrected meta-analysis

for reducing the potential bias. Hence, our analysis method

could still be conservative. It is a concern that random genetic

drift, sampling error, and local ancestry inference error may

introduce bias in estimating local ancestry correlation (Bhatia

et al., 2014). However, this bias cannot explain the observed

local ancestry correlation.

We noted that the replication rates among the CARe, FBPP,

and WHI are relatively low (supplementary Table S2). Given

the weak correlation between local ancestries, we expect the

power of our study to be still low. Because of the winner’s

curse, we may have overestimated the effect sizes. We used the

median of absolute effect sizes that have P-value < 0.05. The

median is 0.02 and the power for sample sizes 6,238, 1,864,

8,150 is 0.352, 0.139, and 0.439, respectively, at the signifi-

cance level 0.05. Because the correlations of local ancestries

we tested fall on two different chromosomes, the independent

segregation of different chromosomes will reduce the corre-

lation created by fitness interaction in each generation, which

leads to even more challenges in detecting epistasis. It should

also be noted that our method is only applicable to detect

fitness interactions in recently admixed populations such as

African Americans or Hispanics. However, the fitness inter-

actions detected in this study may also exist in other popula-

tions if similar environmental adaptation processes occur.

Our analysis only replicated previously reported coevolu-

tion between EPHA1 and PICALM (P-value = 0.0077, Table

5). We did not observe coevolution between ZP3 and ZP3R,

which is consistent with the report by Muro et al., who sug-

gested a lack of experimental support (Muro et al., 2012).

The fitness epistasis between HLA and KIR was identified

through examining the correlations between the frequencies

of functionally relevant receptor-ligand pairs in these two

genes across 30 geographically distinct world populations

(Single et al., 2007). This current study examines local ances-

try correlation in the African American population, a popula-

tion with a short history. Thus, the power of the current study

is still limited.

The problem of epistasis in nonmodel organism systems

is challenging. Future analyses are needed to further con-

firm the fitness epistasis signals detected in this study. The

current regression model in equation (1) may be affected by

the potential confounders such as local ancestry inference

error. Improving the accuracy of local ancestry inference will

improve the statistical model of detecting fitness epistasis.

With the technological improvement and cost reduction of

next-generation sequencing, we would expect new statistical

methods will be emerged for local ancestry inference. In par-

ticularly, such new statistical methods using whole genome

sequencing data will increase the accuracy of local ances-

try inference. However, improving local ancestry inference

using whole genome sequencing data is our future direction

to extend the current work.

Our work demonstrates that local genomic correlation can

be induced by fitness epistasis and does not necessarily par-

allel global population structure, which is largely attributable

to migration and population admixture. It is also challenged

in controlling local ancestry correlation between different

genomic regions, owing to the confounding global ancestry

in admixed populations. Current genetic association analysis

either applies genomic control (Devlin, Roeder, & Wasser-

man, 2001) or principal components approaches (Price et al.,

2006; Zhang et al., 2010; Zhu et al., 2008; Zhu, Zhang, Zhao,

& Cooper, 2002) to control the effect of cryptic relatedness

or population structure. These approaches may work well for

population structure that can be inferred using whole genome

data, but may be less effective when local population structure

exists, such as the correlated local genomic regions on differ-

ent chromosomes arising from natural selection. In particular,

conditioning on local ancestry, fine mapping is possible, as

suggested by Qin et al. (Qin et al., 2010; Wang et al., 2011).

We demonstrated that paired correlated genomic regions on

different chromosomes exist. Because these paired genomic

regions are located on different chromosomes, recombination

presumably weakens the correlation created by natural selec-

tion in each generation. Thus, the observed local ancestry cor-

relations may reflect a compromise between natural selection

and recombination. It is therefore unlikely to observe high

correlation induced by fitness epistasis.

ACKNOWLEDGMENTS

We are gratefully indebted to Robert C. Elston for his

carefully read of the entire manuscript, valuable discussions,

and suggestions that greatly improved the manuscript. We

are also indebted to Neil Risch for valuable discussions and

suggestions. We thank Karen He for carefully reading the

manuscript. We also thank the three reviewers’ comments

and suggestions, which substantially improve the manuscript.

The work was supported by the National Institutes of Health,

grants HL086718 and HL053353 from the National Heart,

Lung, Blood Institute, and HG003054 from the National

Human Genome Research Institute. CARe: The authors

wish to acknowledge the support of the National Heart,

Lung, and Blood Institute and the contributions of the

research institutions, study investigators, field staff, and

study participants in creating this resource for biomedical

research. The following nine parent studies have contributed

parent study data, ancillary study data, and DNA samples

through the Broad Institute (N01-HC-65226) to create this

genotype/phenotype database for wide dissemination to



WANG ET AL. 133

the biomedical research community. This work was also

funded by the Center of Excellence in Personalized Medicine

(CEPMED), the Canada Research Chair program, the “Fonds

de recherche du Québec en Santé (FRQS),” and the “Fon-

dation de l’Institut de Cardiologie de Montréal” (to GL).

Atherosclerotic Risk in Communities (ARIC): University

of North Carolina at Chapel Hill (N01-HC-55015), Baylor

Medical College (N01-HC-55016), University of Mississippi

Medical Center (N01-HC-55021), University of Minnesota

(N01-HC-55019), Johns Hopkins University (N01-HC-

55020), University of Texas, Houston (N01-HC-55017),

University of North Carolina, Forsyth County (N01-HC-

55018). Cardiovascular Health Study (CHS): University of

Washington (N01-HC-85079), Wake Forest University (N01-

HC-85080), Johns Hopkins University (N01-HC-85081),

University of Pittsburgh (N01-HC-85082), University of

California, Davis (N01-HC-85083), University of California,

Irvine (N01-HC-85084), New England Medical Center

(N01-HC-85085), University of Vermont (N01-HC-85086),

Georgetown University (N01-HC-35129), Johns Hopkins

University (N01 HC-15103), University of Wisconsin (N01-

HC-75150), Geisinger Clinic (N01-HC-45133), University

of Washington (N01 HC-55222, U01 HL080295). Cleveland

Family Study (CFS): Case Western Reserve University

(RO1 HL46380-01-16). Coronary Artery Risk in Young

Adults (CARDIA): University of Alabama at Birmingham

(N01-HC-48047), University of Minnesota (N01-HC-

48048), Northwestern University (N01-HC-48049), Kaiser

Foundation Research Institute (N01-HC-48050), University

of Alabama at Birmingham (N01-HC-95095), Tufts-New

England Medical Center (N01-HC-45204), Wake Forest

University (N01-HC-45205), Harbor-UCLA Research and

Education Institute (N01-HC-05187), University of Califor-

nia, Irvine (N01-HC-45134, N01-HC-95100). Multi-Ethnic

Study of Atherosclerosis (MESA): MESA is conducted

and supported by the National Heart, Lung, and Blood

Institute (NHLBI) in collaboration with MESA investigators.

Support for MESA is provided by contracts N01-HC-95159

through N01-HC-95169 and UL1-RR-024156. Funding

for genotyping was provided by NHLBI Contract N02-

HL-6-4278 and N01-HC-65226. FBPP-Axiom study is

supported by the National Institutes of Health, grant number

HL086718 from National Heart, Lung, Blood Institute.

GENOA: Genetic Epidemiology Network of Arteriopathy

(GENOA) study is supported by the National Institutes

of Health, grant numbers HL087660 and HL100245 from

the National Heart, Lung, Blood Institute. HyperGEN:

The hypertension network is funded by cooperative agree-

ments (U10) with NHLBI: HL54471, HL54472, HL54473,

HL54495, HL54496, HL54497, HL54509, HL54515, and

2 R01 HL55673-12. The study involves University of

Utah (Network Coordinating Center, Field Center, and

Molecular Genetics Lab); Univ. of Alabama at Birmingham

(Field Center and Echo Coordinating and Analysis Center);

Medical College of Wisconsin (Echo Genotyping Lab);

Boston University (Field Center); University of Minnesota

(Field Center and Biochemistry Lab); University of North

Carolina (Field Center); Washington University (Data

Coordinating Center); Weil Cornell Medical College (Echo

Reading Center); National Heart, Lung, & Blood Institute.

For a complete list of HyperGEN Investigators please see:

www.biostat.wustl.edu/hypergen/Acknowledge.html WHI:

The WHI program is funded by the National Heart, Lung,

and Blood Institute, National Institutes of Health, U.S.

Department of Health and Human Services through contracts

N01WH22110, 24152, 32100–2, 32105–6, 32108–9, 32111–

13, 32115, 32118–32119, 32122, 42107–26, 42129–32, and

44221.

The authors declare no competing financial interests.

R E F E R E N C E S
The FBPP Investigators. (2002). Multi-center genetic study of hypertension: The

Family Blood Pressure Program (FBPP). Hypertension, 39(1), 3–9.

Baran, Y., Pasaniuc, B., Sankararaman, S., Torgerson, D. G., Gignoux, C., Eng, C.,

… Avila, P. C. (2012). Fast and accurate inference of local ancestry in Latino

populations. Bioinformatics, 28(10), 1359–1367.

Bhatia, G., Tandon, A., Patterson, N., Aldrich, M. C., Ambrosone, C. B., Amos,

C., … Blot, W. J. (2014). Genome-wide scan of 29,141 African Americans

finds no evidence of directional selection since admixture. American Journal
of Human Genetics, 95(4), 437–444.

Brisbin, A., Bryc, K., Byrnes, J., Zakharia, F., Omberg, L., Degenhardt, J., …
Bustamante, C. D. (2012). PCAdmix: Principal components-based assignment

of ancestry along each chromosome in individuals with admixed ancestry from

two or more populations. Human Biology, 84(4), 343–364.

Corbett-Detig, R. B., Zhou, J., Clark, A. G., Hartl, D. L., & Ayroles, J. F. (2013).

Genetic incompatibilities are widespread within species. Nature, 504(7478),

135–137.

Cutter, A. D. (2012). The polymorphic prelude to Bateson-Dobzhansky-Muller

incompatibilities. Trends in Ecology & Evolution, 27(4), 209–218.

Devlin, B., Roeder, K., & Wasserman, L. (2001). Genomic control, a new approach

to genetic-based association studies. Theoretical Population Biology, 60(3),

155–166.

Dudbridge, F., & Fletcher, O. (2014). Gene-environment dependence creates spu-

rious gene-environment interaction. American Journal of Human Genetics,

95(3), 301–307.

Hartl, D. L., & Clark, A. G. (2007). Principles of population genetics. Sunderland,

MA: Sinauer Associates.

Hemani, G., Shakhbazov, K., Westra, H. J., Esko, T., Henders, A. K., McRae, A.

F., … Metspalu, A. (2014). Detection and replication of epistasis influencing

transcription in humans. Nature, 508(7495), 249–253.

Jin, W., Xu, S., Wang, H., Yu, Y., Shen, Y., Wu, B., & Jin, L. (2012). Genome-wide

detection of natural selection in African Americans pre- and post-admixture.

Genome Research, 22(3), 519–527.

Jothi, R., Cherukuri, P. F., Tasneem, A., & Przytycka, T. M. (2006). Co-

evolutionary analysis of domains in interacting proteins reveals insights into

domain-domain interactions mediating protein-protein interactions. Journal
of Molecular Biology, 362(4), 861–875.

Li, J., & Ji, L. (2005). Adjusting multiple testing in multilocus analyses using the

eigenvalues of a correlation matrix. Heredity (Edinburg), 95(3), 221–227.

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter,

D. J., … Chakravarti, A. (2009). Finding the missing heritability of complex

diseases. Nature, 461(7265), 747–753.



134 WANG ET AL.

Muro, Y., Buffone, M. G., Okabe, M., & Gerton, G. L. (2012). Function of the

acrosomal matrix: zona pellucida 3 receptor (ZP3R/sp56) is not essential for

mouse fertilization. Biology of Reproduction, 86(1), 1–6.

Neel, J. V. (1962). Diabetes mellitus: A “thrifty” genotype rendered detri-

mental by “progress”? American Journal of Human Genetics, 14, 353–

362.

Ohashi, J., Naka, I., Patarapotikul, J., Hananantachai, H., Brittenham,

G., Looareesuwan, S., … Tokunaga, K. (2004). Extended linkage

disequilibrium surrounding the hemoglobin E variant due to malar-

ial selection. American Journal of Human Genetics, 74(6), 1198–

1208.

Orr, H. A., & Turelli, M. (2001). The evolution of postzygotic isolation:

Accumulating Dobzhansky-Muller incompatibilities. Evolution, 55(6), 1085–

1094.

Osada, N., Kusuda, J., Hirata, M., Tanuma, R., Hida, M., Sugano, S., …
Hashimoto, K. (2002). Search for genes positively selected during primate

evolution by 5’-end-sequence screening of cynomolgus monkey cDNAs.

Genomics, 79(5), 657–662.

Pagnier, J., Mears, J. G., Dunda-Belkhodja, O., Schaefer-Rego, K. E., Beld-

jord, C., Nagel, R. L., & Labie, D. (1984). Evidence for the multicentric

origin of the sickle cell hemoglobin gene in Africa. Proceedings of the
National Academy of Sciences of the United States of America, 81(6), 1771–

1773.

Parham, P. (2005). MHC class I molecules and KIRs in human history, health and

survival. Nature Reviews Immunology, 5(3), 201–214.

Patterson, N., Hattangadi, N., Lane, B., Lohmueller, K. E., Hafler, D. A., Oksen-

berg, J. R., … Altshuler, D.. (2004).Methods for high-density admixture map-

ping of disease genes. American Journal of Human Genetics, 74(5), 979–

1000.

Petkov, P. M., Graber, J. H., Churchill, G. A., DiPetrillo, K., King, B. L., & Paigen,

K. (2005). Evidence of a large-scale functional organization of mammalian

chromosomes. PLoS Genetics, 1(3), e33.

Presgraves, D. C. (2010). The molecular evolutionary basis of species formation.

Nature Reviews Genetics, 11(3), 175–180.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N.

A., & Reich, D. (2006). Principal components analysis corrects for strati-

fication in genome-wide association studies. Nature Genetics, 38(8), 904–

909.

Price, A. L., Tandon, A., Patterson, N., Barnes, K. C., Rafaels, N., Ruczinski, I.,

& Myers, S. (2009. Sensitive detection of chromosomal segments of distinct

ancestry in admixed populations. PLoS Genetics, 5(6), e1000519.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender,

D., … Daly, M. J.. (2007). PLINK: A tool set for whole-genome association

and population-based linkage analyses. American Journal of Human Genetics,

81(3), 559–575.

Qin, H., Morris, N., Kang, S. J., Li, M., Tayo, B., Lyon, H., … Zhu, X. (2010).

Interrogating local population structure for fine mapping in genome-wide

association studies. Bioinformatics, 26(23), 2961–2968.

Raj, T., Shulman, J. M., Keenan, B. T., Chibnik, L. B., Evans, D. A., Bennett, D.

A., … De Jager, P. L. (2012). Alzheimer disease susceptibility loci: Evidence

for a protein network under natural selection. American Journal of Human
Genetics, 90(4), 720–726.

Rockman, M. V., Hahn, M. W., Soranzo, N., Loisel, D. A., Goldstein, D. B., &

Wray, G. A. (2004). Positive selection on MMP3 regulation has shaped heart

disease risk. Current Biology, 14(17), 1531–1539.

Rohlfs, R. V., Swanson, W. J., & Weir, B. S. (2010). Detecting coevolution through

allelic association between physically unlinked loci. American Journal of
Human Genetics, 86(5), 674–685.

Single, R. M., Martin, M. P., Gao, X., Meyer, D., Yeager, M., Kidd, J. R., …
Carrington, M. (2007). Global diversity and evidence for coevolution of KIR

and HLA. Nature Genetics, 39(9), 1114–1119.

Tang, H., Choudhry, S., Mei, R., Morgan, M., Rodriguez-Cintron, W., Bur-

chard, E. G., & Risch, N. J. (2007). Recent genetic selection in the ances-

tral admixture of Puerto Ricans. American Journal of Human Genetics, 81(3),

626–633.

Tang, H., Coram, M., Wang, P., Zhu, X., & Risch, N. (2006). Reconstructing

genetic ancestry blocks in admixed individuals. American Journal of Human
Genetics, 79(1), 1–12.

Tang, K., Wong, L. P., Lee, E. J., Chong, S. S., & Lee, C. G. (2004). Genomic

evidence for recent positive selection at the human MDR1 gene locus. Human
Molecular Genetics, 13(8), 783–797.

Tishkoff, S. A., & Williams, S. M. (2002). Genetic analysis of African populations:

Human evolution and complex disease. Nature Reviews Genetics, 3(8), 611–

621.

Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent

positive selection in the human genome. PLoS Biology, 4(3), e72.

Wang, X., Zhu, X., Qin, H., Cooper, R. S., Ewens, W. J., Li, C., & Li, M. (2011).

Adjustment for local ancestry in genetic association analysis of admixed pop-

ulations. Bioinformatics, 27(5), 670–677.

Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL: Fast and efficient meta-

analysis of genomewide association scans. Bioinformatics, 26(17), 2190–

2191.

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D.

R., … Montgomery, G. W. (2010). Common SNPs explain a large proportion

of the heritability for human height. Nature Genetics, 42(7), 565–569.

Zhang, J., & Webb, D. M. 2004. Rapid evolution of primate antiviral enzyme

APOBEC3G. Human Molecular Genetics, 13(16), 1785–1791.

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., …
Ordovas, J. M. (2010). Mixed linear model approach adapted for genome-wide

association studies. Nature Genetics, 42(4), 355–360.

Zhu, X., Li, S., Cooper, R. S., & Elston, R. C. (2008). A unified association anal-

ysis approach for family and unrelated samples correcting for stratification.

American Journal of Human Genetics, 82(2), 352–365.

Zhu, X., Young, J. H., Fox, E., Keating, B. J., Franceschini, N., Kang, S., … Li,

Y. (2011). Combined admixture mapping and association analysis identifies

a novel blood pressure genetic locus on 5p13: Contributions from the CARe

consortium. Human Molecular Genetics, 20(11), 2285–2295.

Zhu, X., Zhang, S., Tang, H., & Cooper, R. (2006). A classical likelihood based

approach for admixture mapping using EM algorithm. Human Genetics,

120(3), 431–445.

Zhu, X., Zhang, S., Zhao, H., & Cooper, R. S. (2002). Association mapping, using

a mixture model for complex traits. Genetic Epidemiology, 23(2), 181–196.

Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of miss-

ing heritability: Genetic interactions create phantom heritability. Proceedings

of the National Academy of Sciences of the United States of America, 109(4),

1193–1198.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in

the supporting information tab for this article.

APPENDIX

SPECIAL CASES OF TWO-LOCUS FITNESS MODEL

The notations and definitions are the same as described in

Section 2.

In an additive model, 𝑠𝑘𝑙 = 𝑢𝑘 + 𝑣𝑙, by applying the for-

mula in main text,
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cov (𝑋𝑖,𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

)(𝑝𝑚𝑗
− 𝑝𝐴𝑗

)
[
𝑝2
𝑚𝑖
(𝑣2 − 𝑣1) + 𝑝𝑚𝑖

(1 − 𝑝𝑚𝑖
)(𝑣2 − 𝑣0)

+(1 − 𝑝𝑚𝑖
)2(𝑣1 − 𝑣0)

]
×
[
𝑝2
𝑚𝑗
(𝑢2 − 𝑢1) + 𝑝𝑚𝑗

(1 − 𝑝𝑚𝑗
)(𝑢2 − 𝑢0)

+(1 − 𝑝𝑚𝑗
)2(𝑢1 − 𝑢0)

]
.

In this case, cov(𝑋𝑖,𝑋𝑗) ≠ 0.

Here we show two special cases in the additive model:

1. When both marginal fitnesses are additive, we have

𝑢2 − 𝑢1 = 𝑢1 − 𝑢0
Δ
= 𝑎𝑢, 𝑢2 − 𝑢0 = 2𝑎𝑢

and

𝑣2 − 𝑣1 = 𝑣1 − 𝑣0
Δ
= 𝑎𝑣, 𝑣2 − 𝑣0 = 2𝑎𝑣,

then

cov (𝑋𝑖,𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

)(𝑝𝑚𝑗
− 𝑝𝐴𝑗

)𝑎𝑢𝑎𝑣.

2. When both marginal fitnesses are dominant, we have

𝑢2 − 𝑢0 = 𝑢1 − 𝑢0
Δ
= 𝑑𝑢, 𝑢2 − 𝑢1 = 0

and

𝑣2 − 𝑣0 = 𝑣1 − 𝑣0
Δ
= 𝑑𝑣, 𝑣2 − 𝑣1 = 0,

then

cov (𝑋𝑖,𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

)(𝑝𝑚𝑗
− 𝑝𝐴𝑗

)𝑑𝑢𝑑𝑣

×(1 − 𝑝𝑚𝑖
)(1 − 𝑝𝑚𝑗

).

In a heterogeneity model, 𝑠𝑘𝑙 = 𝑢𝑘 + 𝑣𝑙 − 𝑢𝑘𝑣𝑙, we have

exactly the same expression as the additive model

cov (𝑋𝑖,𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

)(𝑝𝑚𝑗
− 𝑝𝐴𝑗

)
×
[
𝑝2
𝑚𝑖
(𝑣2 − 𝑣1) + 𝑝𝑚𝑖

(1 − 𝑝𝑚𝑖
)(𝑣2 − 𝑣0)

+(1 − 𝑝𝑚𝑖
)2(𝑣1 − 𝑣0)

]
×
[
𝑝2
𝑚𝑗
(𝑢2 − 𝑢1) + 𝑝𝑚𝑗

(1 − 𝑝𝑚𝑗
)(𝑢2 − 𝑢0)

+(1 − 𝑝𝑚𝑗
)2(𝑢1 − 𝑢0)

]
≠ 0.

In the special case of heterogeneity when 𝑠22 = 𝑠21 =
𝑠20 = 𝑠12 = 𝑠02 = 1 and 𝑠11 = 𝑠10 = 𝑠01 = 𝑠00 = 0,

Fitnesses under heterogeneity model

AjAj Ajaj ajaj

1 0 0

AiAi 1 1 1 1

Aiai 0 1 0 0

aiai 0 1 0 0

we have cov (𝑋𝑖,𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

)(𝑝𝑚𝑗
− 𝑝𝐴𝑗

)𝑝𝑚𝑖
𝑝𝑚𝑗

.

In the case 𝑠22 = 1 and 𝑠𝑘𝑙 = 𝑠 for all other k and l, which

assumes selection advantage only occurs to individuals car-

rying both AiAi and AjAj genotypes, we have

Cov (𝑋𝑖,𝑋𝑗) =
4𝜆2𝑠(1 − 𝑠)𝑝𝑚𝑖

𝑝𝑚𝑗
(𝑝𝑚𝑖

− 𝑝𝐴𝑖
)(𝑝𝑚𝑗

− 𝑝𝐴𝑗
)

[
𝑝2
𝑚𝑖

𝑝2
𝑚𝑗

+ 𝑠(1 − 𝑝2
𝑚𝑖

𝑝2
𝑚𝑗
)
]2

and

Var (𝑋𝑖) =
4𝜆2𝑠(1 − 𝑠)𝑝2

𝑚𝑗
(𝑝𝑚𝑖

− 𝑝𝐴𝑖
)2

[
𝑝2
𝑚𝑖

𝑝2
𝑚𝑗

+ 𝑠(1 − 𝑝2
𝑚𝑖

𝑝2
𝑚𝑗
)
]2

×
[
1 + 𝑓 (𝑝𝐴𝑖

, 𝑝𝑚𝑖
, 𝑝𝑚𝑗

)
]
.

where

𝑓 (𝑝𝐴𝑖
, 𝑝𝑚𝑖

, 𝑝𝑚𝑗
) =

(1 − 𝜆)𝑝2
𝑚𝑖

2𝜆(𝑝𝑚𝑖
− 𝑝𝐴𝑖

)2

+
𝑝𝐴𝑖

(1 − 𝜆𝑝𝐴𝑖
)(𝑠 + (1 − 𝑠)𝑝2

𝑚𝑖
𝑝2
𝑚𝑗
)

2𝜆𝑠𝑝2
𝑚𝑖

+ (1 − 𝜆)𝑠
2𝜆(1 − 𝑠)𝑝2

𝑚𝑗
(𝑝𝑚𝑗

− 𝑝𝐴𝑖
)2

.

Noticeably, 𝑝𝑚𝑖
falls in the range between 𝑝𝐴𝑖 and 𝑝𝐸𝑖

, and

𝑝𝑚𝑗
is between 𝑝𝐴𝑗 and 𝑝𝐸𝑗

. When positive selection at the ith
locus occurs mainly in one ancestral population, for exam-

ple, the African population, and selection at the jth locus

mainly occurs in the other ancestral population, for exam-

ple, the European population, we would expect 𝑝𝑚𝑖
< 𝑝𝐴𝑖

and𝑝𝑚𝑗
> 𝑝𝐴𝑗

, which results incov(𝑋𝑖,𝑋𝑗) < 0. Furthermore,

we can write out the correlation between the local ancestries

as

𝜌 =
sign(𝑝𝑚𝑖

− 𝑝𝐴𝑖
)sign(𝑝𝑚𝑗

− 𝑝𝐴𝑗
)√[

1 + 𝑓 (𝑝𝐴𝑖
, 𝑝𝑚𝑖

, 𝑝𝑚𝑗
)
][
1 + 𝑓 (𝑝𝐴𝑗

, 𝑝𝑚𝑗
, 𝑝𝑚𝑖

)
] .

The above fitness models will create correlations between

unlinked local ancestries.


