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Consensus and Disturbance Attenuation in Multi-Agent Chains
with Nonlinear Control and Time Delays
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SUMMARY

In this paper, we investigate consensus and disturbance attenuation in a chain of mobile agents, which include
non-autonomous agents, semi-autonomous agents, and autonomous agents. In particular, the nonlinear
dynamics of non-autonomous agents is given and cannot be designed, while the dynamics of semi-
autonomous and autonomous agents can be partially and fully designed, respectively. To improve the
robustness of multi-agent chains against disturbances, we propose a nonlinear control framework for semi-
autonomous and autonomous agents such that they mimic the behavior of non-autonomous agents for
compatibility while also exploiting long-range connections with distant agents. This framework ensures
the existence of a unique consensus equilibrium, which is independent of the network size, connectivity
topologies, control gains, and information delays. Robustness of multi-agent chains against disturbances
is investigated by evaluating the frequency response at the nonlinear level. For infinitely long multi-agent
chains with recurrent patterns, we also derive a condition that ensures the disturbance attenuation but only
requires the analysis of the linearized model. A case study is conducted for a connected vehicle system
where numerical simulations are used to validate the analytical results. Copyright c© 2015 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: multi-agent chains; nonlinear systems; time delays; consensus; disturbance attenuation.

1. INTRODUCTION

Distributed control for cooperation in multi-agent networks has been attracting an increasing
attention in recent years. This is due to its broad range of applications such as systems biology [1],
distributed sensor networks [2], and connected vehicle systems [3–5]. One fundamental design
objective of multi-agent networks is to achieve consensus, which requires all agents to maintain
desired relative states with respect to their neighbors [6]. In [7], consensus in directed networks
with switching topologies and time delays was investigated. In [8], the authors developed a linear
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2 L. ZHANG AND G. OROSZ

iteration that yields distributed averaging consensus over a network. Network consensus with state
constraints was investigated in [9], while [10] focused on the input-output property of a linear
networked system with communication delays. For directed networks with nonlinear dynamics,
consensus was studied in [11] by local consensus manifold approach and by Lyapunov methods.
In [12], the effects of nonlinear dynamics and sampling delays on consensus was investigated. The
event-triggered sampled-data consensus problem was studied in [13].

When studying network consensus, external disturbances are typically neglected. However,
disturbances are inevitable in physical systems, and they may propagate through the network
and jeopardize the consensus by causing oscillations or even divergence. For instance, a slight
deceleration of a vehicle in traffic may lead to stop-and-go motion of vehicles further upstream when
the disturbance is amplified while propagating along the chain of vehicles [14, 15]. Disturbance
attenuation in undirected networks of agents with identical linear dynamics was investigated in
[16], while a distributed H∞ control for network consensus was presented in [17]. For chains of
connected and automated vehicles (CAVs), disturbance attenuation is often called “string stability”
and has been widely studied [18–25].

The aforementioned studies on disturbance attenuation in networks assumed that the dynamics
of all agents can be designed. However, in practice there may exist non-autonomous agents that
follow certain rules based on their own perception so that their dynamics cannot be designed.
On the other hand, the dynamics of semi-autonomous and autonomous agents may be partially
and fully designed, respectively, while they may also exploit long-range interactions with distant
agents. For example, this occurs in connected vehicle systems where human-driven vehicles are
mixed with vehicles of higher levels of autonomy that can exploit wireless vehicle-to-vehicle
communication [3]. Similar phenomena can be found when attaching controller genes to gene
regulatory networks [26] and when controlling neural ensembles using brain-machine interfaces
[27]. In nature, the dynamics of non-autonomous agents is often nonlinear. For compatibility, it
is crucial to ensure that the semi-autonomous and autonomous agents follow similar rules as the
non-autonomous agents. Thus, their controllers need to be nonlinear as well. Moreover, time delays
often arise in the information exchange between agents. Distributed nonlinear control for consensus
and disturbance attenuation in time-delayed networks that include non-autonomous agents is still
an open problem.

In this paper, we focus on a class of multi-agent chains where non-autonomous agents only
respond to the motion of the nearest agent while semi-autonomous and autonomous agents may
also respond to the motion of multiple distant agents. We propose a nonlinear control framework
for semi-autonomous and autonomous agents, which ensures the existence of a unique consensus
equilibrium independent of the network size, connectivity topologies, control gains, and information
delays. Then, we provide a condition which ensures that each semi-autonomous and autonomous
agent can approach the consensus equilibrium when no disturbances arise from other agents.
Robustness of multi-agent chains against disturbances is studied by evaluating the frequency
response at the nonlinear level. In particular, the steady state is analytically approximated for
nonlinear time-delayed chains and such closed-form solution remains scalable for large networks.
For infinitely long chains with recurrent patterns, we also provide a condition that ensures
disturbance attenuation by only requiring the analysis of the corresponding linearized model. This
significantly reduces the complexity of design and analysis.
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Figure 1. A multi-agent chain where an agent monitors the motion of multiple agents ahead. The short-range
link (blue) can be realized by range sensors (e.g., human perception, radar, lidar) or wireless communication,
while the long-range links (red) can only be realized by wireless communication as distant agents are beyond
the line of sight. Symbols sj , lj and vj denote the position, length, and velocity of agent j, respectively. The

information delays between agents i and j are denoted by ξi,j for j = i− 1, . . . , pi.

The rest of this paper is organized as follows. In Section 2, we present the nonlinear control
framework for the semi-autonomous and autonomous agents, and we also provide the definitions for
consensus and disturbance attenuation. In Sections 3 and 4, we present conditions for consensus and
disturbance attenuation in multi-agent chains, respectively. A case study is conducted in Section 5
by applying the presented theorems to connected vehicle systems. In Section 6, we conclude our
results and discuss the future research directions.

2. PROBLEM FORMULATION

In this section, we introduce a framework for the dynamics of multi-agent chains that include
non-autonomous agents, semi-autonomous agents, and autonomous agents. Then, consensus and
disturbance attenuation in such systems are defined.

2.1. Multi-Agent Chains

Here, we consider a chain of mobile agents in 1 spatial dimension where each agent may monitor
the motion of multiple agents ahead. For example, in Figure 1, agent i monitors the positions sj
and the velocities vj of agents j for j = i− 1, . . . , pi, where pi represents the furthest agent within
the communication range of agent i. The length of agent j is denoted by lj while the symbol ξi,j
denotes the time delay for information exchange between agents i and j. Note that some agents may
not broadcast information; see agent i− 2 in Figure 1.

We define the state and the output of agent i as

xi(t) =

[
si(t)

vi(t)

]
, yi(t) = vi(t) , (1)

and assume that the acceleration of agent i is directly given by the control input ui(t) so that its
dynamics is governed by a second order integrator

ẋi(t) =

[
0 1

0 0

]
xi(t) +

[
0

1

]
ui(t) ,

yi(t) =
[
0 1

]
xi(t) .

(2)
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4 L. ZHANG AND G. OROSZ

Although the dynamic model (2) is linear, the closed-loop dynamics becomes nonlinear when the
control input ui is a nonlinear function of the state xi. Moreover, the control input ui may bring
information delays into the system.

Considering that a multi-agent chain may contain agents of different levels of autonomy, we
define three types of agents as follows.

• Non-autonomous agent (NAA) only monitors the motion of the agent immediately ahead. Its
controller is predetermined and cannot be designed.

• Semi-autonomous agent (SAA) responds to the agent immediately ahead with predetermined
dynamics but also responds to distant agents using a controller that can be designed to exploit
long-range interactions.

• Autonomous agent (AA) responds to multiple agents ahead and the corresponding controller
can be fully designed.

In connected vehicle systems, these three types of agents represent human-driven vehicles, vehicles
with advanced driver assistance systems, and fully automated vehicles, respectively. In human-
robot interactive systems, NAAs and AAs represent human and robots, respectively, while SAAs
represent humans equipped with assistance devices (e.g., exoskeletons). The first agent in the chain
may follow a given trajectory instead of responding to other agents. Thus, it can be any of these
three types of agents.

We assume that each NAA determines its acceleration based on its distance and relative speed
to the agent immediately ahead, aiming to maintain the desired distance and speed. To achieve this
goal, we assume the control law of a non-autonomous agent k in the form

uk(t) = αk,k−1
(
V
(
hk,k−1(t− ξk,k−1)

)
− vk(t− ξk,k−1)

)
+ βk,k−1

(
vk−1(t− ξk,k−1)− vk(t− ξk,k−1)

)
,

(3)

where αk,k−1 and βk,k−1 are constant gains while the distance between agents k and k − 1 is

hk,k−1(t) = sk−1(t)− sk(t)− lk−1 , (4)

cf. Figure 1. The function V (h) is used to determine the desired velocity based on the distance and
can be written in the form

V (h) =


0 , if h ≤ hst ,

F (h) , if hst < h < hgo ,

vmax , if h ≥ hgo ,

(5)

where hst, hgo, and vmax are positive constants. This means that the agent tends to stop for small
distances h ≤ hst while aiming to maintain the preset maximum speed vmax for large distances
h ≥ hgo. For hst < h < hgo, the desired velocity is determined by the monotonically increasing
nonlinear function F (h) such that V (h) is continuously differentiable at h = hst and h = hgo, which
cannot be achieved by linear functions. For the subsequent control design, we assume that for NAAs
the control law (3) and the control gains αk,k−1, βk,k−1 are known but cannot be modified. In
practice, these parameters may be estimated by using system identification.
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CONSENSUS AND DISTURBANCE ATTENUATION IN NONLINEAR TIME-DELAYED CHAINS 5

For compatibility, it is desired that SAAs and AAs can mimic the behavior of NAAs. Thus,
considering the NAAs’ control strategy (3), we present a control framework for semi-autonomous
and autonomous agents. For the controller of agent i, we propose

ui(t) =

i−1∑
j=pi

[
αi,j
(
V
(
hi,j(t− ξi,j)

)
− vi(t− ξi,j)

)
+ βi,j

(
vj(t− ξi,j)− vi(t− ξi,j)

)]
, (6)

for i = 1, . . . , n, where the function V (h) is given in (5), and the quantity

hi,j(t) =
sj(t)− si(t)−

∑i−1
k=j lk

i− j
(7)

denotes the average distance between agents i and j for j = pi, . . . , i− 1. Such averaging is used to
make the desired velocity V (hi,j) comparable for different j’s. In (6), the constants

αi,j = γi,jαi,j , βi,j = γi,jβi,j (8)

denote the effective control gains along the link from agent j to agent i, where αi,j , βi,j are the
actual control gains while γi,j is determined by the connectivity topology such that

γi,j =

1 , if agent i uses the data of agent j ,

0 , otherwise .
(9)

Note that, in multi-agent chains, every agent must respond to the agent immediately ahead for safety
reasons. Thus, γi,i−1 = 1 always holds. We also remark that, for semi-autonomous agent i, the gains
αi,i−1 and βi,i−1 are known but cannot be modified while the gains αi,j and βi,j for j < i− 1 can
be designed. For autonomous agents, all gains can be designed.

2.2. Consensus and Disturbance Attenuation

Consensus and disturbance attenuation are two crucial properties of multi-agent networks. For a
chain of mobile agents, consensus implies that each pair of consecutive agents maintain a constant
distance while moving at the same speed. For simplicity, we assume identical distance h∗, that is,

xj−1(t)− xj(t) ≡

[
h∗

0

]
, (10)

for all j = 1, 2, . . .; cf. (1). Thus, when the leading agent moves at a constant speed v∗, the
equilibrium for consensus (10) can be described by

x∗j (t) =

[
s∗j (t)

v∗

]
, (11)

where s∗j (t) = v∗t+ sj and sj−1 − sj − lj−1 = h∗.
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6 L. ZHANG AND G. OROSZ

Definition 1. A multi-agent chain is said to approach consensus if and only if

xj(t)→ x∗j (t) , as t→∞ for j = 1, 2, . . . (12)

cf. (1) and (11).

For NAAs (2,3), at consensus the desired distance h∗ and the desired speed v∗ satisfies the range
policy (5)

v∗ = V (h∗) . (13)

Typically, consensus (12) may be achieved in absence of external disturbances. However, in
practice, disturbances may arise from some agents and propagate to other agents. This may
jeopardize consensus if disturbances are amplified when propagating along the chain. We define
the perturbation about the consensus equilibrium (11) as

x̃i(t) = xi(t)− x∗i (t) , ỹi(t) = yi(t)− y∗i (t) , (14)

where y∗i (t) ≡ v∗; cf. (1) and (11). In an (n+ 1)-agent chain, the perturbation arising from the head
agent 0 propagates along all other agents and eventually reaches the tail agent n.

Definition 2. Considering the output of the head agent y0(t) as the input for the chain and the output
of the tail agent yn(t) as the output for the chain, we say that the chain is capable of input-output
disturbance attenuation in the Lp norm if and only if

‖ỹ(s)n ‖Lp
< ‖ỹ(s)0 ‖Lp

, (15)

where the superscript (s) represents the steady state and p = 1, 2, . . ..

Here, we use the steady state to evaluate the disturbance attenuation to make the results
independent of the initial conditions. Note that (15) depends on the choice of norms and thus,
one may obtain different conclusions about disturbance attenuation for the same network by using
different norms. To bypass this problem, one may construct an infinitely long chain by cascading
the original network such that the tail agent of a block becomes the leading agent of another
block; see Figure 2 in Section 5 where agents 0–4 form the original network. In the cascading
chain, the tail agent of the k-th block is indexed by kn. For such cascade, (15) may not imply
‖ỹ(s)kn‖Lp

< ‖ỹ(s)(k−1)n‖Lp
for all k = 1, 2, . . . due to the nonlinear dynamics.

Definition 3. A multi-agent chain is said to be capable of eventual disturbance attenuation if and
only if the disturbances decay to zero in the corresponding cascade, that is,

x̃kn(t)→ 0 , as t→∞ , k →∞ . (16)

Note that Definitions 2 and 3 both allow disturbances to be amplified by some agents in the
network. Such flexibility is useful for networks containing NAAs, for which the dynamics cannot
be designed. Indeed, Definitions 2 and 3 are independent of each other and describe the disturbance
attenuation from different aspects. The input-output disturbance attenuation (15) evaluates whether
the disturbance imposed on the head agent can be attenuated when reaching the tail agent in a given
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network, while the eventual disturbance attenuation (16) evaluates whether the disturbance can be
eliminated in an infinitely long chain with recurrent connectivity topology.

3. CONSENSUS IN MULTI-AGENT CHAINS

In this section, we study the consensus of multi-agent chains (2) with the distributed controller (6).
First, we provide a sufficient condition that ensures the existence of a unique consensus equilibrium.

Theorem 1. If the control gains αi,j are positive for i, j = 1, . . . , n in (8) and v0(t) ≡ v∗ with 0 <

v∗ < vmax, the control framework (6) guarantees the existence of a unique consensus equilibrium
(11) that satisfies (10,13) and is independent of the network size, connectivity topologies, control
gains, and information delays.

The proof is presented in Appendix A. The control framework (6) ensures the uniqueness and
the independence of the consensus equilibrium since we use the average distance (7) while also
exploiting the identical range policy V (h) for each link. Theorem 1 is crucial for ensuring the
desired performance of multi-agent chains with complex connectivity topologies and information
delays. Now, we further investigate how to design the control gains αi,j and βi,j such that each
agent can reach the consensus equilibrium.

Substituting (6,11,13) into (2) and subtracting the corresponding model at consensus, we obtain

˙̃si(t) = ṽi(t) ,

˙̃vi(t) =

i−1∑
j=pi

[
αi,j
(
V
(
hi,j(t− ξi,j)

)
− V (h∗)− ṽi(t− ξi,j)

)
+ βi,j

(
ṽj(t− ξi,j)− ṽi(t− ξi,j)

))]
,

(17)

where hi,j is given in (7); cf. (1) and (14). In practice, it is often desired to maintain the distance
and the velocity in invariant domains, that is,

hk,k−1(t) ∈ Dh , {h : h ≤ h ≤ h} , and vk(t) ∈ Dv , {v : v ≤ v ≤ v} , (18)

for all t ≥ 0 and k = 1, . . . , n, where positive constants h, h, v, and v are given bounds. In terms
of the range policy (5), we assume hst < h < h < hgo and 0 < v < v < vmax. It follows that
hi,j(t), h

∗ ∈ Dh for i, j = 1, . . . , n and v∗ ∈ Dv; cf. (7). Since V (h) is continuously differentiable,
based on the mean value theorem [28], there exist variables ψi,j ∈ Dh such that

V (hi,j(t))− V (h∗) = V ′(ψi,j)
(
hi,j(t)− h∗

)
=
V ′(ψi,j)

i− j
(
s̃j(t)− s̃i(t)

)
, (19)

cf. (7). We remark that the expression of ψi,j is unique if V ′(h) is invertible for ∀h ∈ Dh while
the value of ψi,j exists but may be not unique if V ′(h) is not invertible. Note that ψi,j = h∗ when
hi,j(t) = h∗. In the subsequent analysis, we only need the existence of ψi,j .
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8 L. ZHANG AND G. OROSZ

Substituting (19) into (17) and writing the result in the matrix form, we obtain

˙̃xi(t) = Ai,0 x̃i(t) +

i−1∑
j=pi

(
Ai,j(ψi,j) x̃i(t− ξi,j) +Bi,j(ψi,j) x̃j(t− ξi,j)

)
, (20)

where x̃i(t) is given in (14) and the matrices are defined as

Ai,0 =

[
0 1

0 0

]
, Ai,j(ψi,j) =

[
0 0

−ϕi,j(ψi,j) −κi,j

]
, Bi,j(ψi,j) =

[
0 0

ϕi,j(ψi,j) βi,j

]
,

(21)
for j = pi, . . . , i− 1, where

ϕi,j(ψi,j) =
αi,jV

′(ψi,j)

i− j
, κi,j = αi,j + βi,j . (22)

Note that the model (20) is indeed nonlinear since the matrices Ai,j(ψi,j) and Bi,j(ψi,j) depend on
the states hi,j nonlinearly; cf. (19).

One common method to ensure consensus in nonlinear time-delayed networks is to construct
a Lyapunov functional for the whole network, which is challenging especially when the network
contains a large number of agents. Here, we simplify the analysis by exploiting the property of the
chain topology, that is, adding an agent at the tail does not affect the dynamics of agents ahead.
This allows one to achieve chain consensus sequentially by ensuring that the newly added agent
can approach the consensus equilibrium. That is, when studying agent i, we assume that all agents
ahead have reached the consensus equilibrium, i.e., x̃j(t) ≡ 0 for j = pi, . . . , i− 1. Considering this
in (20) yields

˙̃xi(t) = Ai,0 x̃i(t) +

i−1∑
j=pi

Ai,j(ψi,j) x̃i(t− ξi,j) . (23)

Note that in (23) the delays between different pairs of agents may have the same value. To eliminate
such redundancy, we define an ordered set that only contains different values of delays

σi , {σi,0, σi,1, . . . , σi,mi} , (24)

where σi,0 = 0, mi ≤ i− pi, and σi,k < σi,` for k < ` such that the set σi is equivalent to the set
{0, ξi,pi , . . . , ξi,i−1}. Here, we include element 0 in σi to make the subsequent expressions more
compact. Then, one can collect the terms with the same delay values and obtain

˙̃xi(t) =

mi∑
k=0

Âi,k(Ψi) x̃i(t− σi,k) , (25)

where Ψi = [ψi,i−1, . . . , ψi,pi ] ∈ D
i−pi
h and the superscript i− pi refers to the direct product of

Dh by i− pi times. Note that equations (23) and (25) are equivalent but describe the system
from different aspects: (23) highlights the connectivity topology while (25) emphasizes different
information delays.
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CONSENSUS AND DISTURBANCE ATTENUATION IN NONLINEAR TIME-DELAYED CHAINS 9

Based on the Newton-Leibniz formula, we have the identity

x̃i(t− σi,k) = x̃i(t)−
∫ t

t−σi,k

˙̃xi(τ) dτ = x̃i(t)−
k∑
`=1

∫ t−σi,`−1

t−σi,`

˙̃xi(τ) dτ . (26)

Substituting (26) into (25) results in

˙̃xi(t) = Ai,0(Ψi) x̃i(t)−
mi∑
q=1

Ai,q(Ψi)

∫ t−σi,q−1

t−σi,q

˙̃xi(τ) dτ , (27)

where

Ai,q(Ψi) =

mi∑
k=q

Âi,k(Ψi) , q = 0, . . . ,mi . (28)

To save space, we will not spell out the argument Ψi in Âi,k(Ψi) and Ai,q(Ψi) for k, q = 0, . . . ,mi

in the rest of this paper. Then, based on (25) and (27), we provide a sufficient condition for chain
consensus in the following theorem.

Theorem 2. Suppose that the head agent 0 moves at a constant speed v∗ ∈ Dv with h∗ = V −1(v∗) ∈
Dh; cf. (13) and (18). Then, the chain can reach consensus if, for each agent i (2,6), there exist
positive definite matrices Pi, Qi,1, . . . , Qi,mi

, Ri,2, . . . , Ri,mi
,Wi,1, . . .Wi,mi

such that

Ξi,1 =



Zi Yi,0,1 · · · Yi,0,mi −PiAi,1
Yi,1,0 Yi,1,1 −Qi,1/σi,1 · · · Yi,1,mi

02×2
...

...
. . .

...
...

Yi,mi,0 Yi,mi,1 · · · Yi,mi,mi −Qi,mi/σi,1 02×2

−AT

i,1Pi 02×2 · · · 02×2 −Wi,1


,

Ξi,q =

[
−Ri,q −PiAi,q
−AT

i,qPi −Wi,q

]
,

(29)

are negative definite over the domain Di−pih for q = 2, . . . ,mi, where 02×2 denotes the 2-
dimensional zero matrix and

Yi,j,k =
1

σi,1

( mi∑
q=1

(σi,q − σi,q−1)ÂT
i,jWi,q Âi,k

)
, j, k = 0, . . . ,mi ,

Zi =
1

σi,1

(
PiAi,0 +A

T

i,0 Pi +

mi∑
q=1

Qi,q +

mi∑
`=2

(σi,` − σi,`−1)Ri,` + σi,1 Yi,0,0

)
.

(30)

Note that Ξi,k in (29) depends on Ψi for k = 1, . . . ,mi; cf. (25) and (28), while the domain Di−pih

contains all possible values of Ψi. The proof of Theorem 2 is given in Appendix B. When applying
this theorem, we begin by discretizing the domain Di−pih , and then solve the corresponding linear
matrix inequalities (LMIs) numerically for Pi, Qi,1, . . . , Qi,mi

, Ri,2, . . . , Ri,mi
,Wi,1, . . . ,Wi,mi

by
using LMI numerical solvers. Note that the obtained solutions must ensure that the LMIs hold for
all values in the domain Di−pih . We remark that there may exist multiple solutions but we stop the
calculation when a solution is found.
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10 L. ZHANG AND G. OROSZ

Theorem 2 ensures that agent i approaches the consensus equilibrium if its distance and velocity
always stay inside the operating domain (18), i.e., zi(t) , [hi,i−1(t) , vi(t)]

T ∈ Dh ×Dv for all
t ≥ 0. Thus, it is also important to find an invariant region inside the operating domain. Here, we
name this region as the feasible region and define it as follows.

Definition 4. Given a time-delayed system ż(t) = f
(
z(t), z(t− σ1), . . . , z(t− σm)

)
, where z(t) ∈

Rn is the state while σ1, . . . , σm denote time delays with σm being the maximum time delay. Let
D ⊂ Rn be the operating domain. The feasible regionRF ⊆ D is defined such that, if z(θ) ∈ RF for
∀θ ∈ [−σm, 0], then z(t) ∈ D for ∀t ≥ 0 and limt→∞ z(t) = z∗, where z∗ denotes the equilibrium.

Compared with the region of attraction

RA =
{
z(θ) ∈ C

(
[−σm, 0],Rn

)
: z
(
t; z(θ)

)
is defined for ∀t ≥ 0 and lim

t→∞
z
(
t; z(θ)

)
= z∗

}
,

(31)
defined for time delay systems [29], the feasible region is more applicable in our problem due to the
following two reasons:

• Feasible region is defined in the finite-dimensional space Rn while region of attraction is
defined in infinite-dimensional space C

(
[−σm, 0],Rn

)
.

• Feasible region takes into account the constraint of operating domain while region of
attraction does not.

How to analytically estimate the feasible region is a challenging problem and left for future research.
Assuming constant initial velocity, we can approximate the feasible region numerically, as will be
demonstrated in Section 5.

4. DISTURBANCE ATTENUATION

In a network, disturbances arising from an agent affect the behaviors of other agents, which may
eventually jeopardize the network consensus. For temporary disturbances, the network consensus
may be recovered after transients. Thus, here we consider persistent disturbances and investigate
their impact on the network performance. Input-output disturbance attenuation (15) in L2 norm can
be guaranteed by applying the Hamilton-Jacobi inequality [30]. However, to apply this method to
nonlinear time delay systems, one needs to construct a Lyapunov functional for the whole network,
which is challenging especially when the network contains a large number of agents. Moreover,
the result of the Hamilton-Jacobi inequality is typically quite conservative and may not lead to
a solution for large networks. Furthermore, the Hamilton-Jacobi inequality may not guarantee
network performance in other Lp norms such as the L∞ norm, which is used to evaluate the largest
deviation from the consensus equilibrium. In this section, for input-output disturbance attenuation
(15) and eventual disturbance attenuation (16), we seek for simple conditions that can be used in
general norms and also remain scalable for large networks.

4.1. Input-Output Disturbance Attenuation

Here, we evaluate the disturbance attenuation by investigating the steady-state response. Since
general disturbance signals may not lead to steady-state response, we consider a periodic
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CONSENSUS AND DISTURBANCE ATTENUATION IN NONLINEAR TIME-DELAYED CHAINS 11

disturbances imposed on the head agent. We begin by providing a sufficient condition which ensures
that a periodic input to the nonlinear time-delayed chain (2,6) leads to periodic steady states with
the same period, as stated in the following theorem.

Theorem 3. Consider the multi-agent chain (2,6) and assume that the disturbance arising from
head agent 0 is T -periodic. If Theorem 2 holds, then the steady-state motion of agents k = 1, . . . , n

is unique and T -periodic, that is,

x̃
(s)
k (t+ T ) = x̃

(s)
k (t) , k = 1, . . . , n , (32)

where the superscript (s) denotes the steady state.

The proof of Theorem 3 is given in Appendix C. We remark that, for general nonlinear time-
delayed chains, periodic disturbances from the head agent do not necessarily lead to periodic
motion of the following agents. By applying the controller (6) to the multi-agent chain (2),
Theorem 3 can ensure a periodic steady state of the whole chain when a periodic disturbance is
imposed on the head agent. This property allows one to investigate the disturbance attenuation by
evaluating the frequency response. In order to investigate the input-output disturbance attenuation
(15), we consider sinusoidal disturbances and study the frequency response at the nonlinear level.
In particular, for the head agent 0 we assume

x̃0(t) =

[
s̃0(t)

ṽ0(t)

]
=

[
vamp sin(ωt)/ω

vamp cos(ωt)

]
, (33)

where vamp > 0 and ω > 0 denote the amplitude and the frequency of the disturbance, respectively.
Since x̃0(t) is periodic with period T = 2π/ω, Theorem 3 ensures that the steady states of all
following agents are unique and T -periodic. However, due to the nonlinear dynamics, the steady
states are not sinusoidal but may be expressed by Fourier series.

To evaluate the frequency response, we define the amplification ratio function

Φn,0(ω, vamp) , ‖ṽns‖Lp
/‖ṽ0‖Lp

, (34)

which describes how the velocity disturbance arising from the head agent 0 is amplified or attenuated
when reaching the tail agent n. Different norms can be used to characterize the magnitude of
signals. Here, we use the L∞ norm defined by ‖ṽ‖∞ = supt>0 |ṽ(t)|, which accounts for the largest
perturbations from the equilibrium. Note that the amplification ratio of nonlinear networks (34)
depends on both the input frequency and the input amplitude. This is different from the amplification
ratio of linear systems, which is determined only by the input frequency. Then, we present a
condition for input-output disturbance attenuation in presence of sinusoidal disturbances, as stated
in the following theorem.

Theorem 4. Suppose that Theorem 2 holds and the disturbance imposed on the head agent 0 is
sinusoidal with a given amplitude vamp; see (33). Then, the input-output disturbance attenuation
(15) can be achieved if and only if

sup
ω>0

Φn,0(ω, vamp) < 1 . (35)
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12 L. ZHANG AND G. OROSZ

The proof can be given by combining Theorem 3 with definitions (15) and (34). To apply Theorem 4,
an expression of the steady state of the tail agent n is needed, which may not be obtained in the
closed form for general nonlinearities. Here, we approximate the steady-state response by applying
Taylor expansion for the nonlinearities. To improve readability, the results are given in Appendix D.
Compared with the harmonic balance approach [31], our results provide analytical approximation
of the steady states, which simplifies the analysis and remains scalable for large complex networks.
Note that Theorem 4 provides guidelines for choosing control gains but may not guarantee input-
output disturbance attenuation for other types of periodic disturbances.

4.2. Eventual Disturbance Attenuation

Here, we study the eventual disturbance attenuation (16) for the multi-agent chain (2,6), and we
derive a condition that only requires the analysis of the corresponding linearized model.

Linearizing the model (2,6) about the consensus equilibrium (11) yields

˙̃xi(t) = Ai,0 x̃i(t) +

i−1∑
j=pi

Ai,j(h
∗) x̃i(t− ξi,j) +

i−1∑
j=pi

Bi,j(h
∗) x̃j(t− ξi,j) , (36)

cf. (20), where the matrices Ai,0, Ai,j(h∗), and Bi,j(h∗) are given in (21). Note that these matrices
depend on the equilibrium distance h∗ that varies with the equilibrium speed v∗; cf. (13).

Considering the output ṽj(t) = [0 1]x̃j(t) for j = 0, 1, . . . while transforming (36) to the
Laplace domain with zero initial condition, we obtain

Ṽi(s) =

i−1∑
j=pi

Ti,j(s, h
∗)Ṽj(s) , (37)

where s ∈ C, Ṽi(s) denotes the Laplace transform of ṽi(t). The link transfer function

Ti,j(s, h
∗) = e−sξi,jC

(
sI2 −Ai,0 −

i−1∑
q=pi

e−sξi,qAi,q(h
∗)

)−1
Bi,j(h

∗)E(s)

=

(
βi,js+ ϕ∗i,j

)
e−sξi,j

s2 +
∑i−1

q=pi

(
κi,qs+ ϕ∗i,q

)
e−sξi,q

(38)

describes how the motion of vehicle j affects the motion of vehicle i, where C = [0 1], I2 denotes
the 2-dimensional identity matrix, and

E(s) = [s−1 1]T (39)

links the state and the output of agents such that X̃j(s) = E(s)Ṽj(s). The constants ϕ∗i,j = ϕi,j(h
∗)

and κi,j are defined in (22).
Using link transfer functions (38), one can obtain the head-to-tail transfer function Gn,0(s, h∗)

that describes the dynamic relationship between the head agent 0 and the tail agent n:

Ṽn(s) = Gn,0(s, h∗)Ṽ0(s) . (40)
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CONSENSUS AND DISTURBANCE ATTENUATION IN NONLINEAR TIME-DELAYED CHAINS 13

To systematically calculate the head-to-tail transfer function for complex networks in an efficient
way, one can apply the “determinant-like” approach presented in [3] that contains the following
three steps:

1) Construct the coupling matrix T (s, h∗) = [Ti,j(s, h
∗)] ∈ C(n+1)×(n+1) for i, j = 0, 1, . . . , n,

where Ti,j(s, h∗) is given in (38).

2) Modify the coupling matrix as

T̂ (s, h∗) = R
(
T (s, h∗) + In+1

)
RT , (41)

where R = [0n×1 In] ∈ Rn×(n+1) and In denotes the n-dimensional identity matrix while
0n×1 is an n-by-1 zero vector. Indeed, T̂ (s, h∗) can be obtained by deleting the first row and
the last column of the matrix T (s, h∗) + In+1.

3) Calculate the head-to-tail transfer function by using the “determinant-like” formula

Gn,0(s, h∗) =
∑
µi∈Sn

n∏
i=1

T̂i,µi
(s, h∗) , (42)

where the sum is computed over all permutations of the set Sn = {1, 2, . . . , n}. Note that the
formula (42) is similar to the determinant of T̂ (s) but does not include the sign changes.

Readers interested in this approach may refer to [3] for more details and examples. Note that the
explicit expression of link transfer functions (38) and the formula (42) provide an efficient way
to calculate the head-to-tail transfer function for large networks with complex topologies. Now, we
provide a sufficient condition for the eventual disturbance attenuation (16) in the following theorem.

Theorem 5. For the multi-agent chain (2,6), the disturbance arising from the head agent 0 can be
attenuated in the sense of (16) if all the following conditions hold:

• Theorem 2 holds.
• The range policy function V (h) in (6) satisfies∣∣∣∣dk+1V (h)

dhk+1

∣∣∣∣ < ∣∣∣∣dkV (h)

dhk

∣∣∣∣ < 1 and lim
n→∞

∣∣∣∣dnV (h)

dhn

∣∣∣∣ = 0 , (43)

for all k > 1 and for all hst < h < hgo.
• The magnitude of the head-to-tail transfer function (40) is always smaller than 1, that is,

sup
ω>0 ,h∗∈Dh

∣∣Gn,0(jω, h∗)
∣∣ < 1, (44)

where j2 = −1.

The proof is given in Appendix E. We remark that in practice empirical traffic data show that
the range policies of human drivers may satisfy (43); see [14]. Theorem 5 reduces the analysis
complexity in two aspects. On one hand, it allows one to analyze disturbance attenuation in
nonlinear chains by only studying the linearized model. On the other hand, it allows one to ensure
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14 L. ZHANG AND G. OROSZ

012

. . .

345678

Figure 2. A connected vehicle system with recurrent connectivity topology; compare agents 0–4 and 4–8.

the performance of cascading chains by only analyzing the dynamics of a single block. Note that in
Theorem 5, one must ensure that condition (44) holds for all possible values of h∗ in the domain Dh
defined in (18). This is different from the analysis of the linearized dynamics, which only needs to
satisfy (44) for certain value of h∗ ∈ Dh.

5. CASE STUDY AND SIMULATIONS

In this section, we apply the theorems presented in Sections 3 and 4 to a connected vehicle network
shown in Fig. 2. Neglecting the effects of air drag and rolling resistance in the physics-based vehicle
model [32,33] leads to the simplified longitudinal model in the form (2). We assume that all vehicles
are driven by human drivers with reaction time ξk,k−1 = 0.5 [s] and fixed control gains αk,k−1 = 0.3

[1/s] and βk,k−1 = 0.5 [1/s] for k = 1, 2, . . .. Moreover, we assume that every (2k − 1)-st vehicle is
non-autonomous while every 2k-th vehicle is semi-autonomous. We consider communication delay
to be ξk,j = 0.2 [s] for j < k − 1, k = 1, 2, . . .. We use

F (h) =
vmax

2

(
1− cos

(
π
h− hst
hgo − hst

))
(45)

in the range policy (5) such that the function V (h) is continuously differentiable at h = hst and
h = hgo, which can improve the ride comfort. According to traffic data given in [14], we set hst = 5

[m], hgo = 35 [m], and vmax = 30 [m/s]. Moreover, we assume the desired operating domain

Dh = {h : 15 ≤ h ≤ 25 [m]} , Dv = {v : 0 ≤ v ≤ 30 [m/s]} . (46)

For such vehicle network, a study based on linearized dynamics has been presented in [3]. In
the following part, we compare those results with the results obtained by the nonlinear analysis
presented in this paper.

In particular, we consider the vehicle network in Figure 2 with 41 vehicles and design control
gains αk,k−m, βk,k−m (m = 2, 3) by applying Theorems 2, 4, and 5, in order to exploit the
information received via wireless communication. Fixing αk,k−2 = 0 [1/s] and βk,k−2 = 1 [1/s], we
derive conditions for choosing control gains αk,k−3, βk,k−3 and display the results using stability
diagrams as shown in Fig. 3(a,b). Here, the control gains inside the gray-shaded domain can ensure
chain consensus (12). Besides consensus, the control gains from the “\”-shaded and the “/”-shaded
areas can also achieve input-output disturbance attenuation (2) and eventual disturbance attenuation
(3), respectively. The solid red curve, the solid black curve, and the solid blue curve mark the
boundaries resulting from Theorems 2, 4, and 5, respectively. The dashed red and the dashed
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CONSENSUS AND DISTURBANCE ATTENUATION IN NONLINEAR TIME-DELAYED CHAINS 15

Figure 3. (a): Stability diagram in (βk,k−3, αk,k−3)-plane for consensus and disturbance attenuation.
Gray-shaded, “\”-shaded, and “/”-shaded highlight the domains for consensus, input-output disturbance
attenuation, eventual disturbance attenuation, respectively. Solid red, solid black, and solid blue curves are
obtained by using Theorems 2, 4 and 5, respectively. The dashed red and the dashed blue curves enclose
domains for consensus and disturbance attenuation that are obtained using linearized models [3]. (b): A
zoomed-in view of panel (a). (c) and (d): Feasible regions (shaded) for cases A and B, respectively. The red

dashed-dotted lines bound the operating domain Dh ×Dv .
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Figure 4. Simulations results for consensus. The top row shows the distance between vehicles 39 and
40 while the bottom row shows the velocity of vehicle 40, respectively. Dashed-dotted lines indicate the

consensus equilibrium.

blue curves are derived by using the linearized model for consensus and disturbance attenuation,
respectively; see [3].

To evaluate the effects of the long-range communication on the network performance, we first
consider the network without communication as a benchmark, which corresponds to αk,k−2 =
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Figure 5. Simulation results for disturbance attenuation. In the top row, the red points show the amplification
ratios between the perturbation of each following vehicle and that of the leading vehicle in terms of L∞

norm, while the bottom row displays the velocities of vehicles 0 and 40, respectively.

βk,k−2 = αk,k−3 = βk,k−3 = 0 for all k; see Figure 2 without red links. Then, we exploit the
communication and choose two sets of control gains corresponding to the points marked by A and B
in Figure 3(b). To test the robustness, we consider an extreme case where the consensus equilibrium
is at the boundary of the operating domain (46). In particular, we consider the equilibrium distance
h∗ = 25 [m] that leads to the equilibrium speed v∗ = 22.5 [m/s]; cf. (5,13,45). Assuming constant
initial velocities, i.e., vi(θ) ≡ vi,0 and si(θ) = si,0 + vi,0(θ + 0.5) for ∀θ ∈ [−0.5, 0], we obtain the
feasible regions for cases A and B numerically, as displayed in Figure 3(c) and (d), respectively. To
simulate consensus, we let vehicle 0 move at a constant speed v0(t) ≡ v∗ = 22.5 [m/s] with initial
position s0,0 = 0 [m]. The initial conditions for following agents are given by vi,0 = 25 [m/s] and
si,0 = −21i [m] for i = 1, . . . , 40. The corresponding simulation results for the benchmark and for
cases A and B are shown in Figure 4, where the top row displays the distance between vehicles 39
and 40 while the bottom row shows the speed of vehicle 40. Although the benchmark case can
eventually achieve consensus, the settling time is long and there exist undesired transient oscillations
that push states outside the operating domain (46); see Figure 4(a,d). For case A, such undesired
transients are avoided while there is a small overshoot around t = 40 [s] where the distance is
outside the operating domain; see the zoomed-in panel in Figure 4(b). The gains corresponding to
point B are chosen to ensure both input-output and eventual disturbance attenuation. Now, consensus
is achieved without overshoot; see Figure 4(c,f). Comparison between cases A and B implies that,
although our results for disturbance attenuation are obtained by analyzing the steady-state response,
they may also improve the transient behavior.

To test disturbance attenuation, we consider a sinusoidal velocity disturbance v0(t) = v∗ +

vamp cos(ωt) for vehicle 0, where vamp = 6 [m/s] and ω = 0.18 [rad/s]. Using the same initial
conditions as used for consensus, we conduct simulations for the benchmark and for cases A and B.
The results are displayed in Figure 5 where the top row demonstrates how the disturbance evolves
when propagating along the network while the bottom row shows the velocities of vehicles 0 and 40.
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numerical simulation (blue). (a) Amplification ratio curves. (b) Velocity of the tail vehicle 40.

In the benchmark where the communication is not exploited, the disturbance arising from vehicle 0
is amplified when propagating to following vehicles and leads to stop-and-go motion for vehicle 40;
see Fig. 5(a,d). The saturations at v = 0 [m/s] and v = 30 [m/s] are caused by the saturation of
the function (5) with vmax = 30 [m/s]. Figure 3(b) shows that point A is inside the region for
disturbance attenuation obtained by linear analysis but outside the corresponding regions obtained
by nonlinear analysis. Simulation results in Fig. 5(b,e) demonstrate that the disturbance is indeed
amplified as it propagates along the chain. This implies that the results obtained from linearized
dynamics may be not valid when perturbations are large. The control gains at point B are chosen
inside the region for input-output & eventual disturbance attenuation. Simulations in Fig. 5(c,f)
show that the disturbance is attenuated along the chain although not uniformly since it is amplified
by non-autonomous (human-driven) vehicles.

For case A, we also investigate the frequency response by comparing the result obtained by
linear analysis (see [3]) with that obtained by nonlinear approximation derived in this paper.
Figure 6(a) displays the amplification curves obtained via linear approximation (green), nonlinear
approximation (red), and numerical simulation (blue). It shows that the nonlinear analysis is
more accurate than the linear analysis. In particular, the nonlinear analysis reveals the disturbance
amplification, which cannot be achieved by the linear analysis. Choosing ω = 0.18, [rad/s], we
also compare the approximation and the numerical simulation as shown in Fig. 6(b), which shows
that the nonlinear approximation captures the largest perturbation better and hence characterize the
input-output disturbance attenuation; see the zoomed-in panel in Fig. 6(b).

6. CONCLUSION

In this paper, we investigated consensus and disturbance attenuation in multi-agent chains that
included non-autonomous agents, semi-autonomous agents, and autonomous agents. Resembling
the predetermined dynamics of non-autonomous agents, we presented a nonlinear control
framework that included information delays and allowed a large variety of connectivity topologies.
This framework can guarantee the existence of a unique consensus equilibrium that is independent of
the network size, connectivity topologies, control gains, and information delays. For consensus and
disturbance attenuation, we presented conditions that remain scalable for large complex networks.
Numerical simulation was used to validate the analytical results and demonstrate the necessity for
ensuring disturbance attenuation in consensus networks.
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Although disturbance attenuation has positive impacts for avoiding collisions, it does not
necessarily guarantee collision avoidance in practice. In future, we will extend the current work
by incorporating explicit safety considerations into design. Moreover, the agents in this paper are
described by the point mass model. Extending the results to physics-based models is also left for
future research.
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A. PROOF OF THEOREM 1

Considering (2), (6) and (7), we have

ḣi,i−1(t) = vi−1(t)− vi(t) ,

v̇i(t) =

i−1∑
j=pi

[
αi,j
(
V
(
hi,j(t− ξi,j)

)
− vi(t− ξi,j)

)
+ βi,j

(
vj(t− ξi,j)− vi(t− ξi,j)

)]
.

(47)

To determine the equilibrium of agent i, we assume that all agents ahead have reached the
consensus equilibrium, that is, h∗j,j−1(t) ≡ h∗ and v∗j (t) ≡ v∗ = V (h∗) for j = 1, . . . , i− 1. Then,
at equilibrium agent i satisfies

0 = v∗ − v∗i (t) ,

0 =

i−1∑
j=pi

[
αi,j
(
V
(
h∗i,j(t− ξi,j)

)
− v∗i (t− ξi,j)

)
+ βi,j

(
v∗ − v∗i (t− ξi,j)

)]
.

(48)

The first equation in (48) yields v∗i (t) ≡ v∗. Substituting this into the second equation in (48) yields

0 =

i−1∑
j=pi

αi,j
(
V
(
h∗i,j(t− ξi,j)

)
− v∗

)
. (49)

Then, we will prove
h∗i,i−1(t) ≡ h∗ = V −1(v∗) (50)

for all i = 1, . . . , n by induction. When i = 1, (49) becomes

0 = α1,0

(
V
(
h∗1,0(t− ξ1,0)

)
− v∗

)
. (51)
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According to (5), 0 < v∗ < vmax implies that hst < h∗1,0(t) < hgo. In this region, V (h) is continuous
and strictly monotonically increasing so that the inverse of V (h) exists. As α1,0 > 0, the equation
(51) has a unique solution

h∗1,0(t) ≡ V −1(v∗) = h∗ . (52)

For induction, we assume
h∗i,i−1(t) ≡ V −1(v∗) = h∗ , (53)

for i = 1, . . . , k where k ≥ 1. Then, one needs to prove that

h∗k+1,k(t) ≡ V −1(v∗) = h∗ (54)

is also the unique solution of (49).
Based on (53), one trivial solution of (49) for i = k + 1 is given by (54). Then, we show that this

solution is unique. The equation (49) for i = k + 1 can be rewritten as

k∑
j=pk+1

αk+1,jV
(
h∗k+1,j(t− ξk+1,j)

)
=

k∑
j=pk+1

αk+1,jv
∗ . (55)

Since αk+1,j ≥ 0 for j = pk+1, . . . , k − 1, αk+1,k > 0, and h∗k+1,j(t) only depends on h∗k+1,k(t),
the left hand side of (55) is a strictly monotonically increasing function of h∗k+1,k(t). As the right
hand side of (55) is a constant, the solution is unique if there exists one. Therefore, (54) is the unique
equilibrium of agent k + 1. This completes the proof.

B. PROOF OF THEOREM 2

The asymptotic stability of the consensus equilibrium is proved by using the Lyapunov-Krasovskii
theorem. Here, we use the positive definite functional

L = x̃Ti (t)Pi x̃i(t) +

mi∑
j=1

∫ t

t−σi,j

x̃Ti (τ)Qi,j x̃i(τ) dτ +

mi∑
j=1

∫ −σi,j−1

−σi,j

∫ t

t+θ

˙̃xTi (τ)Wi,j
˙̃xi(τ) dτdθ ,

(56)
where matrices Pi, Qi,j , and Wi,j are all positive definite for j = 1, . . . ,mi. Substituting (25) and
(27) into the time derivative of (56) and adding

0 =

mi∑
`=2

(σi,q − σi,q−1)x̃Ti (t)Ri,q x̃i(t)−
mi∑
`=2

∫ t−σi,q−1

t−σi,q

x̃Ti (t)Ri,q x̃i(t) dτ (57)

yields

L̇ = ∆i(t)−
mi∑
j=1

2x̃Ti (t)PiAi,j

∫ t−σi,j−1

t−σi,j

˙̃xi(τ) dτ −
mi∑
j=1

∫ t−σi,j−1

t−σi,j

˙̃xTi (τ)Wi,j
˙̃x(τ) dτ

−
mi∑
q=2

∫ t−σi,q−1

t−σi,q

x̃Ti (t)Ri,qx̃i(t) dτ ,

(58)
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where

∆i(t) = σi,1x̃
T
i (t)(Zi − Yi,0,0)x̃i(t)−

mi∑
j=1

x̃Ti (t− σi,j)Qi,j x̃i(t− σi,j)

+

( mi∑
k=0

Âi,kx̃i(t− σi,k)

)T( mi∑
q=1

(σi,q − σi,q−1)Wi,q

)( mi∑
k=0

Âi,kx̃i(t− σi,k)

)
,

(59)

and Yi,0,0 and Zi are given in (30). Then, substituting the identity

∆i(t) =
1

σi,1

∫ t

t−σi,1

∆i(t) dτ (60)

into (58) and writing the results in matrix form results in

L̇ =

∫ t

t−σi,1

χ̃T
i (t, τ)Ξi,1(Ψi)χ̃i(t, τ) dτ +

mi∑
q=2

∫ t−σi,q−1

t−σi,q

X̃T
i (t, τ)Ξi,q(Ψi)X̃i(t, τ) dτ , (61)

where χ̃T
i (t, τ) = [x̃Ti (t− σi,0), . . . , x̃Ti (t− σi,mi

), ˙̃xTi (τ)] and X̃T
i (t, τ) = [x̃Ti (t), ˙̃xTi (τ)] while

Ξi,1(Ψi) and Ξi,q(Ψi) for q = 2, . . . ,mi are given in (29).
Suppose that the eigenvalues and the corresponding normalized eigenvectors of Ξi,j(Ψi) are

given by λj,k(Ψi) and ηj,k(Ψi), respectively, for j = 1, . . . ,mi and k = 1, . . . , nj , where n1 =

2mi + 4 and nj = 4 for j = 2, . . . ,mi; cf. (29). Since Ξi,j(Ψi) is symmetric, the eigenvectors
ηj,1(Ψi), . . . , ηj,nj

(Ψi) are orthogonal to each other for ∀Ψi ∈ Di−pih and for j = 1, . . . ,mi. Then,
the matrices

Λj(Ψi) = diag
{
λj,1(Ψi) , . . . , λj,nj

(Ψi)
}
,

Tj(Ψi) =
[
ηj,1(Ψi) , . . . , ηj,nj

(Ψi)
] (62)

have the following properties

Tj(Ψi)T
T
j (Ψi) = I , and TT

j (Ψi) Ξi,j(Ψi)Tj(Ψi) = Λj(Ψi) , (63)

for j = 1, . . . ,mi. Indeed, Λj(Ψi) is negative definite for ∀Ψi ∈ Di−pih since Ξi,j(Ψi) is negative
definite for ∀Ψi ∈ Di−pih .

Let

Θ1(Ψi, t, τ) =
[
θ1,k(Ψi, t, τ)

]
= TT

1 (Ψi) χ̃i(t, τ) ,

Θj(Ψi, t, τ) =
[
θj,k(Ψi, t, τ)

]
= TT

j (Ψi) X̃i(t, τ) ,
(64)

cf. (61). Then, it follows that

χ̃T
i (t, τ) Ξi,1(Ψi) χ̃i(t, τ) = ΘT

1 (Ψi, t, τ) Λ1(Ψi) Θ1(Ψi, t, τ) =

n1∑
k=1

λ1,k(Ψi) θ
2
1,k(Ψi, t, τ) ,

X̃T
i (t, τ) Ξi,j(Ψi) X̃i(t, τ) = ΘT

j (Ψi, t, τ) Λj(Ψi) Θj(Ψi, t, τ) =

nj∑
k=1

λj,k(Ψi) θ
2
j,k(Ψi, t, τ)

(65)
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are negative definite for ∀Ψi ∈ Di−pih and j = 2, . . . ,mi. Considering this in (61), L̇ becomes
negative definite since the integration does not change the negative sign. The only solution for L̇ = 0

is Θj(Ψi, t, τ) = 0 for j = 1, . . . ,mi. It follows that χ̃i(t, τ) = 0 and X̃i(t, τ) = 0 is the unique
solution for L̇ = 0, implying that x̃i(t)→ 0 as t→∞.

C. PROOF OF THEOREM 3

First, we study the steady states of agent i by assuming that states of agents j = 0, 1, . . . , i− 1 are
T -periodic such that

ej(t) =

[
ej,s(t)

ej,v(t)

]
,

[
sj(t+ T )− sj(t)
vj(t+ T )− vj(t)

]
≡ 0 . (66)

Substituting t = t+ T into the closed-loop system (2,6), subtracting the result by (2,6) while
considering the definition (66) for j = i, we obtain

ėi(t) =

[
ei,v(t)∑i−1

j=pi
αi,j

(
V
(
hi,j(t+ T − ξi,j)

)
− V

(
hi,j(t− ξi,j)

))
− κi,jei,v(t− ξi,j)

]
. (67)

When hi,j(t) ∈ Dh, according to the mean value theorem, there exists µi,j ∈ Dh such that

V
(
hi,j(t+ T )

)
− V

(
hi,j(t)

)
= −V

′(µi,j)

i− j
ei,s(t) . (68)

Substituting (68) into (67) yields

ėi(t) = A0 ei(t) +

i−1∑
j=pi

Ai,j(µi,j) ei(t− ξi,j) , (69)

Similar to (23)–(25), we collect terms according to distinct delays σi,k for k = 0, . . . ,mi and obtain

ėi(t) =

mi∑
k=0

Âi,k(Ui) ei(t− σi,k) , (70)

where Ui = [µi,pi , . . . , µi,i−1]. Note that (70) is equivalent to (25) since Âi,k(Ui) and Âi,k(Ψi) have
the same bound for all Ui,Ψi ∈ Di−pih . Therefore, ei(t) = 0 is asymptotically stable for (70) if
x̃i(t) = 0 if asymptotically stable for (25), which implies that limt→∞ ei(t) = 0 if Theorem 2 holds
and ej(t) = 0 for j = pi, . . . , i− 1.

Since agent 1 only responds to agent 0, when the disturbance imposed on agent 0 is T -periodic
(i.e., e0(t) ≡ 0), it follows that limt→∞ e1(t) = 0. Repeating this process to agents j = 2, . . . , n, one
can show that the steady states of all agents in the network are T -periodic.

Then, we prove the uniqueness of the periodic steady states by contradiction. We assume that
the steady states of agents j = 0, 1, . . . , i− 1 are unique but agent i has two distinct steady-
state trajectories corresponding to different initial conditions. We denote these two steady-state
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trajectories by s(1)i (t), v(1)i (t) and s(2)i (t), v(2)i (t), of which the dynamics is governed by

ṡ
(k)
i (t) = v

(k)
i (t) ,

v̇
(k)
i (t) =

i−1∑
j=pi

αi,j
(
V
(
h
(k)
i,j (t− ξi,j)

)
− v(k)i (t− ξi,j)

)
+ βi,j

(
vj(t− ξi,j)− v(k)i (t− ξi,j)

)
,

(71)

for k = 1, 2, where h(k)i,j (t) =
(
sj(t)− s(k)i (t)−

∑i−1
q=j lq

)
/(i− j); cf. (2)–(7). Subtracting (71) with

k = 1 from (71) with k = 2 yields

ζ̇i(t) = νi(t) ,

ν̇i(t) =

i−1∑
j=pi

αi,j

(
V
(
h
(1)
i,j (t− ξi,j)

)
− V

(
h
(2)
i,j (t− ξi,j)

))
− κi,jνi(t− ξi,j) ,

(72)

where ζi(t) = s
(1)
i (t)− s(2)i (t) and νi(t) = v

(1)
i (t)− v(2)i (t). When h(1)i,j (t), h

(2)
i,j (t) ∈ Dh holds for

all t ≥ 0 , one can apply the mean value theorem and obtain variables ϑi,j ∈ Dh such that

V
(
h
(1)
i,j (t)

)
− V

(
h
(2)
i,j (t)

)
= −V

′(ϑi,j)

i− j
ζi(t) . (73)

Defining φi(t) = [ζi(t), νi(t)]
T and plugging (73) into (72) leads to

φ̇i(t) = Ai,0 φi(t) +

i−1∑
j=pi

Ai,j(ϑi,j)φi(t− ξi,j) . (74)

Similar to (23)–(25), we collect terms according to distinct delays σi,k for k = 0, . . . ,mi and obtain

φ̇i(t) =

mi∑
k=0

Âi,k(ϑi)φi(t− σi,k) , (75)

where ϑi = [ϑi,pi , . . . , ϑi,i−1]. This system is equivalent to (25), since Âi,k(ϑi) and Âi,k(Ψi) have
the same bound for all ϑi,Ψi ∈ Di−pih . Therefore, if Theorem 2 holds, we have limt→∞ φi(t) = 0,
implying that s(1)i (t) = s

(2)
i (t) and v

(1)
i (t) = v

(2)
i (t) at the steady state, which contradicts our

original assumption. Hence the periodic steady state is unique.

D. APPROXIMATION OF THE STEADY STATE

Applying Taylor expansion to the system (2,6) about the consensus equilibrium (11,13) yields

˙̃xi(t) = Ai,0 x̃i(t) +

i−1∑
j=pi

[
A∗i,j x̃i(t− ξi,j) +B∗i,j x̃j(t− ξi,j)

]
+ Fi ,

ỹi(t) = Cx̃i(t) ,

(76)
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where Ai,0, A∗i,j = Ai,j(h
∗), B∗i,j = Bi,j(h

∗) are given in (21), C = [0 1],

Fi =

[
0∑i−1

j=pi
αi,j

∑M
m=2 εm

(
s̃j(t−ξi,j)−s̃i(t−ξi,j)

i−j

)m] , (77)

and M denotes the order of Taylor expansion, and εm = 1
m!

dmV (h∗)
dhm . Defining ε = [ε2, . . . , εM ],

one can express the solution of (76) as x̃i(t, ε) and ỹi(t, ε). To make the following expressions more
compact, we also define a vector r = [r2, . . . , rM ] such that

εr ,
M∏
m=2

εrmm . (78)

Moreover, we define |r| ,
∑M

m=2 rm. Then, we apply Taylor expansion to x̃i(t, ε) and ỹi(t, ε) about
ε = 0 up to the order R, which leads to

x̃i(t, ε) =

R∑
|r|=0

εrx̃i,r(t) , ỹi(t, ε) =

R∑
|r|=0

εrỹi,r(t) . (79)

Substituting (79) into (76,77) while matching coefficients of εr yields

˙̃xi,r(t) = Ai,0x̃i,r(t) +

i−1∑
j=pi

[
A∗i,j x̃i,r(t− ξi,j) +B∗i,j x̃j,r(t− ξi,j)

]
+ fi,r

(
Xi,r̂(t)

)
,

ỹi,r(t) = Cx̃i,r(t) ,

(80)

where Xi,r̂(t) is comprised of components with the order lower than |r|, that is,

Xi,r̂(t) =
[
x̃Tpi,r̂(t− ξi,pi), . . . , x̃

T
i−1,r̂(t− ξi,i−1), x̃Ti,r̂(t− ξi,pi), . . . , x̃Ti,r̂(t− ξi,i−1)

]T
(81)

for all possible r̂-s that satisfy |r̂| < |r|, while fi,r(Xi,r̂(t)) can be obtained from (77) and satisfies

fi,0
(
Xi,r̂(t)

)
≡ 0 , fi,r

(
0
)

= 0 , (82)

for all r-s. Note that the functions fi,r(X) vary for different r-s and may not have a general
expression. Here, we only use its property (82).

To make the subsequent expression more compact, we define o as a zero vector that has the same
dimension with r; cf. (78). Typically, larger M and R in (78,79) can improve the approximation
accuracy but they also increase the computation complexity. Here, we consider M = 3 and R = 1

such that (79) becomes

x̃i(t, ε) = x̃i,o(t) + ε2x̃i,[1,0](t) + ε3x̃i,[0,1](t) , (83)

for i = 0, 1, . . . , n. For agent 0, considering (33) we have

x̃0,o(t) =

[
vamp sin(ωt)

/
ω

vamp cos(ωt)

]
, x̃0,[1,0](t) = x̃0,[0,1](t) ≡

[
0

0

]
. (84)
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Substituting (84) into (76,77) yields

fi,[1,0]
(
Xi,o(t)

)
=

i−1∑
j=pi

αi,j

(
s̃j,o(t− ξi,j)− s̃i,o(t− ξi,j)

i− j

)2

,

fi,[0,1]
(
Xi,o(t)

)
=

i−1∑
j=pi

αi,j

(
s̃j,o(t− ξi,j)− s̃i,o(t− ξi,j)

i− j

)3

,

(85)

for i = 1, . . . , n, where

Xi,o(t) =
[
x̃Tpi,o(t− ξi,pi), . . . , x̃

T
i−1,o(t− ξi,i−1), x̃Ti,o(t− ξi,pi), . . . , x̃Ti,o(t− ξi,i−1)

]T
, (86)

cf. (81,82).
For r = o, the network (80) becomes a linear time invariant (LTI) system with excitations that

arise from the head agent, i.e., x̃0,o(t) in (84), and propagate through all agents to the tail agent n.
Thus, the corresponding steady state are in the form

x̃
(s)
i,o =

[
ai,o

ci,o

]
cos(ωt) +

[
bi,o

di,o

]
sin(ωt) , (87)

where the superscript (s) indicates the steady state while ai,o, bi,o, ci,o, di,o are constant coefficients
to be determined. For compactness, we define a coefficient vector

zi,o =
[
ai,o, bi,o, ci,o, di,o

]T
. (88)

Substituting (87) into (80) with r = [0, 0] and matching coefficients of cos(ωt) and sin(ωt),
respectively, we obtain

zi,o =
(
D(ω)

)−1
Ei,o , (89)

where

D(ω) =

[
ωF −I2∑i−1

j=pi
ϕ∗i,jG(ωξi,j) ωF +

∑i−1
j=pi

κi,jG(ωξi,j)

]
,

Ei,o =

i−1∑
j=pi

B∗i,j ⊗G(ωξi,j)zj,o ,

(90)

while ϕ∗i,j = ϕi,j(h
∗) is given in (22), and

F =

[
0 1

−1 0

]
, G(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. (91)

Since x̃0,[1,0](t) = x̃0,[0,1](t) ≡ 0, the networks (80) with r = [1, 0] and r = [0, 1] become LTI
systems with excitations only arising from fi,[1,0] and fi,[0,1] in (85), respectively. Note that x̃2j,o(t)
contains frequency 2ω while x̃3j,o(t) contains frequencies ω and 3ω; cf. (87). Thus, the steady states
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of (80) for r = [1, 0] and r = [0, 1] take the form

x̃
(s)
i,[1,0] =

[
ai,[1,0]

ci,[1,0]

]
cos(2ωt) +

[
bi,[1,0]

di,[1,0]

]
sin(2ωt) ,

x̃
(s)
i,[0,1] =

[
ai,[0,1],1

ci,[0,1],1

]
cos(ωt) +

[
bi,[0,1],1

di,[0,1],1

]
sin(ωt) +

[
ai,[0,1],3

ci,[0,1],3

]
cos(3ωt) +

[
bi,[0,1],3

di,[0,1],3

]
sin(3ωt) .

(92)

We define the coefficient vectors as

zi,[1,0] =
[
ai,[1,0], bi,[1,0], ci,[1,0], di,[1,0]

]T
,

zi,[0,1],1 =
[
ai,[0,1],1, bi,[0,1],1, ci,[0,1],1, di,[0,1],1

]T
,

zi,[0,1],3 =
[
ai,[0,1],3, bi,[0,1],3, ci,[0,1],3, di,[0,1],3

]T
.

(93)

Substituting (92) into (80,85) with r = [1, 0] and r = [0, 1], respectively, we obtain

zi,[1,0] =
(
D(2ω)

)−1
Ei,[1,0] ,

zi,[0,1],1 =
(
D(ω)

)−1
Ei,[0,1],1 ,

zi,[0,1],3 =
(
D(3ω)

)−1
Ei,[0,1],3 ,

(94)

where the matrix D is given in (90) and

Ei,[1,0] =

i−1∑
j=pi

B∗i,j ⊗G(2ωξi,j)zj,[1,0] +
αi,j

(i− j)2
I∗ ⊗G(2ωξi,j)Jj ,

Ei,[0,1],1 =

i−1∑
j=pi

B∗i,j ⊗G(ωξi,j)zj,[0,1],1 +
αi,j

(i− j)3
I∗ ⊗G(ωξi,j)Kj ,

Ei,[0,1],3 =

i−1∑
j=pi

B∗i,j ⊗G(3ωξi,j)zj,[0,1],3 +
αi,j

(i− j)3
I∗ ⊗G(3ωξi,j)Lj ,

(95)
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where

I∗ =

[
0 0

0 1

]
,

Jj =


0

0(
(aj,o − ai,o)2 − (bj,o − bi,o)2

)
/2

(aj,o − ai,o)(bj,o − bi,o)

 ,

Kj =


0

0(
3(aj,o − ai,o)3 + 3(aj,o − ai,o)(bj,o − bi,o)2

)
/4(

3(aj,o − ai,o)2(bj,o − bi,o) + 3(bj,o − bi,o)3
)
/4

 ,

Lj =


0

0(
(aj,o − ai,o)3 − 3(aj,o − ai,o)(bj,o − bi,o)2

)
/4(

3(aj,o − ai,o)2(bj,o − bi,o)− (bj,o − bi,o)3
)
/4

 .

(96)

Then, one can use (83,87,92) to approximate the steady states of all agents sequentially from 1 to n.

E. PROOF OF THEOREM 5

Here, we still use the model (80). If the eventual disturbance attenuation (16) can be achieved in
(80) for M →∞ and R→∞, then the nonlinear chain is capable of attenuating disturbances as the
chain size increases to infinity.

As defined in Appendix D, the zero vector o has the same dimension with r. When r = o, the
Laplace transform of (80) with zero initial condition becomes

Ỹi,o(s) =

i−1∑
j=pi

Ti,j(s, h
∗)Ỹj,o(s) , (97)

cf. (82), where Ỹi,o(s) is the Laplace transform of ỹi,o(t) and Ti,j(s, h∗) is the link transfer function
given in (38). Using the “determinant-like” method presented in Section 4.2, one can calculate the
head-to-tail transfer function between the steady-state outputs of agent 0 and agent n, which is given
by Ỹn,o(s) = Gn,0(s, h∗)Ỹ0,o(s). Then, we cascade the network by k blocks, where agent kn is at
the tail. It follows that the transfer function between the head agent 0 and the tail agent kn becomes

Ỹkn,o(s) = Gkn,0(s, h∗)Ỹ0,o(s) . (98)

If the condition (44) holds, at the limit k →∞, we have |Gn,0(jω, h∗)|k = 0 and thus
|Ykn,o(jω)| = 0 for all ω > 0. Considering X̃kn,o(s) = E(s)Ỹkn,o(s) where E(s) is defined in (39),
we have ∥∥X̃kn,o(jω)

∥∥ =
∥∥E(jω)Ỹkn,o(jω)

∥∥ ≤ ∥∥E(jω)
∥∥∣∣Ỹkn,o(jω)

∣∣ = 0 , (99)
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for all ω > 0, which implies that the steady state is zero, i.e., x̃(s)kn,o(t) ≡ 0 with the superscript
(s) denoting the steady state. Then, for agent kn, we assume the components of the steady state
x̃
(s)
kn,r̂(t) ≡ 0 for all |r̂| < |r| and investigate x̃(s)kn,r(t). At the order |r|, substituting x̃(s)kn,r̂(t) ≡ 0 in

(80) while considering (82) also leads to an LTI system, which is the same as the system (80)
with r = o. Based on the analysis above for the components of order r = o, one can show that
x̃
(s)
kn,r(t) ≡ 0.
So far, we have shown that, at the limit k →∞, x̃(s)kn,o(t) ≡ 0 and x̃(s)kn,r(t) ≡ 0 if x̃(s)kn,r̂(t) ≡ 0

for all |r̂| < |r|. By induction, it follows that x(s)kn,r(t) ≡ 0 for all r-s. Substituting this into (79)
implies x̃kn(t)→ 0 as t→∞ and k →∞. Since this result is independent of the order of Taylor
expansion, it holds when M →∞ and R→∞ in (78,79). Considering the property (43), we have
that the values of εm are upper bounded for m = 2, 3, . . . and εm → 0 for m→∞. Therefore, if the
components x̃(s)kn,r(t) ≡ 0 for all r-s, it follows that the steady state is x̃(s)kn ≡ 0; cf. (79).
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