
Stem Cell–Derived Models to Improve
Mechanistic Understanding and
Prediction of Human Drug-Induced
Liver Injury
Christopher Goldring,1 Daniel J. Antoine,1 Frank Bonner,2 Jonathan Crozier,3 Chris Denning,4 Robert J. Fontana,5

Neil A. Hanley,6 David C. Hay,7 Magnus Ingelman-Sundberg,8 Satu Juhila,9 Neil Kitteringham,1 Beatriz Silva-Lima,10

Alan Norris,1 Chris Pridgeon,1 James A. Ross,7 Rowena Sison Young,1 Danilo Tagle,11 Belen Tornesi,12 Bob van de Water,13

Richard J. Weaver,14 Fang Zhang,1 and B. Kevin Park1

Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving

predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for

screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimate-

ly be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. How-

ever, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary

liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during

human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of

a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a rel-

evant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like

cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we

convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry,

academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and

to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmark-

ing stem cell–derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping,

to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells

are introduced into chemical safety assessment. (HEPATOLOGY 2017;65:710-721).

Abbreviations: CYP, cytochrome P450; DILI, drug-induced liver injury; SC-HLC, stem cell–derived hepatocyte-like cell.
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Prediction of Adverse Drug
Reactions in the Liver: Why
It Is Important, Limitations
of Current In Vitro Models,
and How Stem Cells May
Prove Useful in Drug
Screening
Adverse drug reactions are a significant clinical

problem, resulting in considerable patient morbidity
and mortality,(1) and thus represent a major financial
burden on health care systems. Adverse drug reactions
also represent a major challenge for the pharmaceutical
industry, leading to attrition of drugs in development
and the withdrawal of drugs postlicensing.(2) Among
different forms of adverse drug reactions, the liver is
particularly susceptible to drug toxicity; drug-induced
liver injury (DILI) is the second highest cause of attri-
tion and accounts for >50% of cases of acute liver
failure.(3)

The principal cause of these high attrition rates is
the failure of current preclinical drug testing proce-
dures to effectively predict idiosyncratic DILI in
patients.(2) This is true for in vitro models and even for
in vivo models; a recent study that related the preclini-
cal assessment of drugs with the occurrence of DILI in
the clinic showed that between 38% (Medline data-
base: 269 out of 710 compounds) and 51% (European

Medicines Agency database: 70 out of 137 com-
pounds) of drugs that subsequently caused liver injury
in patients were not predicted from animal studies.(4)

Concerted worldwide efforts are therefore required to
improve the assessment of hepatotoxic risk for new
compounds. In Europe the SEURAT (http://www.
seurat-1.eu/pages/cluster-projects/scrtox.php) and
MIP-DILI (http://www.mip-dili.eu/) consortia and in
the United States the DILI Network (http://www.
dilin.org/) and the International Serious Adverse
Event Consortium (http://www.saeconsortium.org/)
are attempting to address this issue. The clinical mani-
festation of DILI indicates that it is a multidimension-
al and multifaceted disease.(5) Indeed, the diagnosis of
DILI is largely based upon exclusion criteria.(5)

Although the use of currently available cell lines and
primary human hepatocyte models has been able to
correctly classify a number of DILI compounds as hep-
atoxins,(6-9) idiosyncratic DILI is inherently difficult to
model in the laboratory and therefore highly unlikely
to be predicted by simplistic screening strategies, often
based on single-cell models involving cell lines. Many
approaches use liver-derived cancer cell lines, e.g.,
HepG2 and HepaRG, which may have value for iden-
tifying drugs lacking a propensity to cause idiosyncratic
DILI (90%-95% predictability) but perform less well
for positive predictions (50%-89%).(9-11) Metabolically
competent, freshly isolated, or cryopreserved human
primary adult hepatocytes are still considered to be the
gold-standard single-cell model of DILI. Nevertheless,
human hepatocytes are difficult to source, they are
costly and functionally variable (reflecting variation in
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the human population), they undergo severe stress dur-
ing the isolation process, and, critically, they rapidly
lose key functions when cultured in vitro. Moreover, it
is important to note that hepatocyte toxicity per se is
not the sole cause of hepatotoxicity, which in the intact
liver may involve multiple different cell types including
lymphocytes and macrophages. Yet it is reasonable to
assume from the work of several groups, over many
years, that a metabolically competent hepatocyte will
be an essential component of any model of hepatotox-
icity in vitro. Thus, a robust and reproducible, meta-
bolically competent hepatocyte-like cell derived from
directly reprogrammed cells or from pluripotent stem
cells would represent a major step forward for the
development of a new generation of in vitro models.
The imperatives of industry and academia are driven

by different model requirements. The priority for indus-
try is a cost-effective and scalable high-throughput
screening model that has direct input into “go/no go”
decision making during drug development, while aca-
demic scientists are driven by the need to understand
hepatic physiology and the mechanistic basis of DILI.
Hepatocytes derived from stem cells can, however, be
central to both of these objectives. While significant
progress toward a functional hepatic phenotype has
been made, it is clear that stem cell–derived hepatocyte-
like cells (SC-HLCs) still fall well short of recapitulat-
ing the full mature hepatocellular phenotype.(12-15)

Because of the importance and likely impact of
developments in this field, scientists with expertise in
preclinical and clinical hepatotoxicity and complex
and novel forms of in vitro cell culture, representing
industry, academia, and regulatory bodies, assembled
at a workshop at the University of Liverpool, under
the auspices of the European Partnership for Alterna-
tive Approaches to Animal Testing (http://ec.europa.
eu/growth/sectors/chemicals/epaa/index_en.htm) and
the MRC Centre for Drug Safety Science (https://
www.liverpool.ac.uk/drug-safety/). The purpose of
the workshop was to specifically explore the applica-
tion of stem cells in hepatotoxicity safety assessment
and to make recommendations for the way forward.
This workshop follows the European Partnership for
Alternative Approaches to Animal Testing/National
Centre for the Replacement, Refinement and Reduc-
tion of Animals in Research (https://www.nc3rs.org.
uk/) Stem Cells in Safety Testing Forum workshop
that took place in 2013, with a mandate to provide a
platform for permanent dialogue between research
groups and to share experiences, problems, successes,
and opportunities.

Current Challenges in the
Use of Stem Cell–Derived
Hepatocytes in the Safety
Assessment of New
Chemical Entities
It is clear from a large number of studies(13,14,16-47)

(see Table 1) that hepatocytes generated from stem
cells are not currently sufficiently mature to emulate an
adult primary human hepatocyte and that these cells
are probably closer in phenotype to a fetal hepato-
cyte.(12) Many studies using SC-HLCs purport to
demonstrate a hepatocyte-like phenotype but do not
actually incorporate a physiologically relevant bench-
mark (e.g., freshly isolated human hepatocytes) and a
non–physiologically relevant benchmark (e.g., HepG2
cells); in addition, often very few markers of the hepat-
ic phenotype are used, and studies do not always
employ quantitatively relevant assays (e.g., mass spec-
trometry). Thus, inadequate benchmarking has ham-
pered the field, and there is likely significant value in
identifying a common framework that might allow end
users to readily interpret cell phenotype.
Despite the challenges in generating mature hepato-

cytes, SC-HLCs have recently been shown to retain
the cytochrome P450 (CYP) expression profile (specif-
ically CYP2C9 and CYP2D6) of the donor hepato-
cyte,(48,49) yielding metabolism-specific toxicity for
CYP2C9 (benzbromarone) and CYP2D6 (tamoxifen).
This is highly relevant as the CYPs are key enzymes of
phase 1 drug metabolism, which play a key role in the
chemical functionalization and eventual elimination of
drugs from the body but also can yield significant
intracellular concentrations of chemically reactive
metabolites, leading to cellular and tissue damage of
the liver and, therefore, DILI (for a review of this area,
see Park et al.(50)).
The recent studies outlined above(48,49) are particu-

larly important as they suggest that modeling some
forms of DILI (such as that elicited by benzbromar-
one or tamoxifen) using stem cell–derived hepatocytes
may be possible and that ultimately the challenges to
generating a fully mature HLC will not always be
insurmountable.
We consider that there are at least three major

challenges to producing mature, physiologically and
pharmacologically relevant hepatocytes from stem
cells:
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� Stem cell–derived hepatocytes must mimic several
years of development in vivo.

� Like primary hepatocytes, the stem cell–derived
hepatocyte phenotype is unstable currently in
culture.(51)

� At the moment, it is difficult to emulate the
complexity of the liver, with its unique blood
supply and exposure to relevant concentrations
of intestinal products and nutrients in vitro.
Development of three-dimensional culture sys-
tems that employ cocultivation of all cell types
found in the liver acinus is likely to be required
if we are to recapitulate the liver in vitro.(51,52)

Following on from this, it is important to
remember that a hepatocyte is not a single enti-
ty but varies functionally according to the hepat-
ic zone in which it is located. The consequence
of this is that some hepatotoxins induce hepato-
cellular damage in a zone-specific manner, and
this has not yet begun to be addressed meaning-
fully in the stem cell field as we focus our
attempts on improving basic functional maturity
of the SC-derived cells; but it will need to be
considered.

Despite these challenges, there are many promising
leads in development, e.g., the discovery of several
small molecule inducers of the hepatic phenotype(53)

and the finding that microbially derived secondary
metabolites to which immature hepatocytes are likely
to be exposed postpartum may induce a significant
increase in maturity. A further paradigm comes from
the exploitation of SC-HLCs for demonstration of
efficacy, specifically for the reversal of the hepatic
alpha1-antitrypsin-deficient phenotype, shown by
Yusa et al.(54) This study demonstrated that restora-
tion of alpha1-antitrypsin activity was possible on a
“sufficiently” mature background, rather than one that
was necessarily fully mature and identical to a freshly
isolated adult hepatocyte. Furthermore, a recent study
by Ware et al.(55) suggests that DILI detection is pos-
sible using SC-HLCs in micropatterned cocultures,
in which cells mature to significant levels. It is worth
remembering that the hepatocyte exhibits more indi-
vidual functions (>500) than any of the other �200
terminally differentiated cell types in the human
body. Therefore, it is perhaps not surprising that this
cell is among the most challenging to mature, and we
should continue to explore the utility of hepatocyte-
like cells as prototypes rather than await the final
“product.”

Lessons Learned From the
Use of Stem Cell–Derived
Cardiomyocytes in
Detecting Cardiotoxicity
A parallel example, from which lessons can be

learned, comes from the use of stem cells in the
assessment of drug-induced cardiotoxicity, a primary
cause of drug attrition. Cardiotoxicity, specifically
QT prolongation, has already been successfully mod-
eled using such cells.(56-58) In comparison, there is
only very recent evidence that SC-HLCs are able to
recapitulate hepatotoxic events.(49,55) The difference
between successful application of cardiac models
compared with hepatic models may reflect the relative
specificity of some forms of drug-induced cardiotox-
icity, in contrast with the rather pleiotropic and
diverse manifestations of hepatotoxicity, at the
molecular, cellular, and tissular levels.(59) Cardiotox-
icity often arises due to drug-induced electrical per-
turbation of the cell interfering with its contractile
function.(60) Here, the stem cell–cardiomyocyte mod-
el provides advantages over recombinant tumor mod-
els. Thus, the impact of drugs that cause simple
single–ion channel or complex multichannel pertur-
bation can be related to cardiomyocyte arrhythmias
and abnormalities in contractility.(61) In hepatotoxici-
ty, however, there are myriad factors required to reca-
pitulate toxicity, especially idiosyncratic toxicity
where the immune system is also implicated. This is
compounded by interindividual variation in expres-
sion of xenobiotic metabolism and transporter pro-
teins in addition to the chemistry of each drug.
While protocols to differentiate stem cells toward

cardiomyocytes generate cells that are not fully
mature,(61) these cells can recapitulate some facets of
the cell phenotype required to produce specific forms
of cardiotoxicity. This has prompted major interna-
tional efforts to search for methods to further mature
stem cell cardiomyocytes. Each incremental improve-
ment made toward progressing the complement of ion
channels, regulatory pathways, and structural proteins
to the complete sets found in adult cells will dramati-
cally increase the utility of stem cell cardiomyocytes.
The demonstration that specific toxicological pheno-
types can be mimicked by stem cell–derived cardio-
myocytes allows the cell model to be considered “fit-
for-purpose.” This raises the notion of using stem cell–
derived hepatocytes that may be sufficiently mature for
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a specific toxicological assessment even though the cells
may lack the full hepatic functionality with respect to
drug metabolism, transporter expression, etc. For exam-
ple, where one or two CYPs, some relevant phase 2
enzymes (such as the glutathione transferases and uridine
diphosphoglucuronate-glucuronyl transferases), and
some phase 3 proteins (influx and efflux transport-
ers) are expressed at a set and reproducible percent-
age of a “typical” human hepatocyte, this cell may in
some cases represent a significant and useful model

in understanding specifically drug metabolism and
possible metabolism-dependent toxicity.

The Importance of
Phenotypic Characterization
For the field to continue to move forward and devel-

op liver cell models that are useful in prediction and

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

FIG. 1. Roadmap for producing stem cell-derived models to improve mechanistic understanding and prediction of human DILI. The
physiological, pharmacological, and toxicological characterization of stem cell-derived hepatocytes is necessary before the cells can be
fully utilized. This will include the use of toxicity/stress reporters and a small panel of well-defined chemicals, thereby defining the
toxicological purpose for which each line is suitable. This will position the new cells within a screening toolbox that could be validated
for drug/chemical safety evaluation. The use of iPSC lines with drug toxicity-relevant mutations and the use of CRISPR technology
to edit genes involved in drug metabolism may also be important in this regard. Abbreviations: AOP, adverse outcome pathway; ESC,
embryonic stem cell; iPSC, induced pluripotent stem cell; Keap1, Kelch-like ECH-associated protein 1; Nrf2, nuclear factor
(erythroid-derived 2)-like 2.
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mechanistic understanding of DILI, it is essential that
the SC-HLCs are properly benchmarked against cur-
rently used and relevant human cells, especially fresh
primary human hepatocytes and HepG2 cells (see Table
1 and Fig. 1). Moreover, the phenotype of the HLCs
must be as reproducible as possible, and they should be
fully characterized, particularly with reference to the
pharmacological phenotype (using a defined panel of
training compounds). It is also important that the cell
model can provide a static point of reference that can be
used to ascertain if real progress is being made. When
assessing novel models of hepatotoxicity it is important
to use functional assays employing quantitative mass
spectrometry whenever possible as this is now being
routinely employed(48,62,63) in order to determine the
true phenotype of the model. A global proteomic analy-
sis, however, may be the most appropriate way to char-
acterize the cells as this would represent a broad
visualization of the physiological phenotype of the cells.
Similarity to freshly isolated hepatocytes/tissue can be
established through proteomics and targeted multiple
reaction monitoring–based mass spectrometric analysis
of key proteins, such as CYPs, transporters, and intra-
cellular signaling molecules, as well as determination of
metabolic and cellular uptake profiles. Developments in
mass spectrometric technologies mean that it is now
possible to analyze small panels of proteins (for example,
10-20 transporters or P450s) using multiple reaction
monitoring in order to quantify proteins per cell at an
absolute level.(64) This would ensure valid comparisons
between currently used models and cells, as well as cells
that are developed in the future. Given the inherent
deficiencies in a transcriptomic-only approach, which
are well-illustrated in a recent landmark article reporting
only a 39% correlation between messenger RNA and
protein at a global level,(65) measuring messenger RNA
levels is not recommended for cell characterization
purposes.
As part of a comprehensive assessment of HLC phe-

notype, recent developments in the field of hepatocyte-
selective translatable biomarkers (e.g., microRNA 122(66))
might allow us to translate the response to chemicals
between humans, model organisms, and cells including
SC-HLCs; and it is likely that additional novel and selec-
tive biomarkers will be identified in the future using mod-
els such as SC-HLCs. This is an important area for
industry which requires selective and translatable bio-
markers of liver injury to monitor potentially hepatotoxic
compounds in the clinic.
The recently developed concepts of adverse outcome

pathways and points of departure(67) in the field of

systems toxicology should also be considered in the
context of phenotyping the response to chemical expo-
sure of hepatocyte-like cells that express relevant pro-
teins and pathways. To this end, cells expressing
genetic reporters for key adaptive pathways such as
nuclear erythroid 2 p45-related factor 2, pregnane X
receptor, and nuclear factor kappa B will be useful as a
means for understanding the earliest events in the bio-
logical response to a drug.(68-70) However, it is impera-
tive that we develop ways to bridge our findings from
these molecular investigations to what actually occurs in
DILI in humans—the development of novel bridging
biomarkers that allow extrapolation from in vitro test
systems to humans will be invaluable in this endeavor.
Another important development in relation to hepato-
cyte genotype and phenotype in DILI is the derivation
of SC-HLCs with specific polymorphisms relevant to
drug toxicology. Of particular interest in this regard is
the developing use of clustered regularly interspaced
short palindromic repeats technology in SC-HLCs to
edit, for example, genes relevant to drug metabolism
and toxicity, thereby providing a wild-type cell and an
almost identical cell with an alteration in drug metabo-
lism and toxicological responses, respectively.
Finally, phenotypic characterization may be assisted

by a better understanding of the mechanisms contribut-
ing to dedifferentiation or loss of phenotype. Consider-
ation of the cellular complexity of the liver and the
functional sophistication of a hepatocyte makes it
unsurprising that the maintenance of a fully functional
hepatocyte in culture is difficult to achieve.(71) The cells
have been removed from their neighboring hepatocytes,
disrupting their gap junctions and tight junctions,
which are important for their phenotype, as well as their
juxtaposed nonparenchymal cells, which may also be
responsible for the differentiated hepatocyte pheno-
type.(72,73) Dedifferentiation is not a unique process to
the liver; when cardiomyocytes are cultured, they also
lose some of their in vivo phenotype—e.g., the t-
tubules are lost, glycogen is accumulated, and chromatin
becomes dispersed in vitro.(74) However, the key differ-
ence between hepatocytes and myocytes is the impor-
tance of the metabolic phenotype with respect to drug
toxicity, and it is this function—particularly the phase 1
CYP capacity—that is most rapidly and profoundly
depleted(71,75); it is also this function, at a defined pro-
portion of the activity present in human liver, that is
essential in any in vitromodel of a hepatocyte.
One area of research that could have a significant

impact on attempts to reestablish a functional hepato-
cyte from stem cells is the investigation of the precise
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cellular mechanisms underlying the dedifferentiation
process that occurs in hepatocytes once they have been
removed from the liver. While the factors driving
dedifferentiation may not be identical to those that
drive differentiation, it is likely that one or more path-
ways and processes uncovered through research into
dedifferentiation will be amenable for testing in differ-
entiation experiments. If it is not understood how to
maintain the dynamic and sophisticated machinery of
a fully mature hepatocyte in vitro, it is likely to be diffi-
cult to capture the same phenotype in a stem cell–
derived cell grown under similar conditions.

Summary and
Recommendations

� DILI is a complex, multidimensional disease,
with variable phenotype between individuals, even
for a single drug. There is essentially no ideal in
vitro or in vivo model that recapitulates all of the
potential features of this injury.

� The aspiration of the field is a “perfect” mature
hepatocyte as it exists in a liver—this has not yet
been achieved. Until it is, hepatocyte-like cells
with known, quantifiable, and reproducible pro-
portions of the function of two widely used
standards, i.e., primary fresh human hepatocytes
and HepG2 cells, will be valuable biological
models to explore the physiological, pharmaco-
logical, and toxicological responses of hepatocytes
to drug exposure.

� These “immature” cells should be explored as
models of chemical perturbation using genetic
reporters and biomarkers, with continual effort to
relate findings to human DILI.

� Global proteomic analysis aligned with biological
pathway analysis may be the most appropriate
way to characterize HLCs—a small targeted pan-
el of proteins will also help to compare cells for
key proteins and functions using absolute quanti-
tation by mass spectrometry. Crucially, this will
advance the field by avoiding overreliance on a
small panel of liver proteins, such as albumin,
that may not be representative of a fully mature
and functioning liver cell.

� It is likely that niche creation in vitro, deploying
enhanced matrices(13) and even three-dimensional
bioprinting(76) and incorporating other cell types
such as endothelial cells(76,77) and Kupffer cells(78)

inter alia, will mature and support hepatocyte
function.

� A small panel of chemical benchmarks will be
needed to probe the physiological, pharmacologi-
cal, and toxicological functions of the cells, only
once they have been properly phenotyped. There
is little point in exposing HLCs to chemicals
chosen as hepatotoxins in humans unless we fully
characterize the cells.
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