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1. INTRODUCTION

In recent years, there has been increasing con-

There is increasing concern over deep uncertainty in the risk analysis field as probabilistic
models of uncertainty cannot always be confidently determined or agreed upon for many of
our most pressing contemporary risk challenges. This is particularly true in the climate change
adaptation field, and has prompted the development of a number of frameworks aiming to
characterize system vulnerabilities and identify robust alternatives. One such methodology is
robust decision making (RDM), which uses simulation models to assess how strategies per-
form over many plausible conditions and then identifies and characterizes those where the
strategy fails in a process termed scenario discovery. While many of the problems to which
RDM has been applied are characterized by multiple objectives, research to date has pro-
vided little insight into how treatment of multiple criteria impacts the failure scenarios identi-
fied. In this research, we compare different methods for incorporating multiple objectives into
the scenario discovery process to evaluate how they impact the resulting failure scenarios. We
use the Lake Tana basin in Ethiopia as a case study, where climatic and environmental un-
certainties could impact multiple planned water infrastructure projects, and find that failure
scenarios may vary depending on the method used to aggregate multiple criteria. Common
methods used to convert multiple attributes into a single utility score can obscure connections
between failure scenarios and system performance, limiting the information provided to sup-
port decision making. Applying scenario discovery over each performance metric separately
provides more nuanced information regarding the relative sensitivity of the objectives to dif-
ferent uncertain parameters, leading to clearer insights on measures that could be taken to
improve system robustness and areas where additional research might prove useful.
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commonly used to refer to situations where proba-
bilistic models of uncertainty cannot be confidently
determined or agreed upon" or where frequentist

cern and discussion over deep uncertainty in the
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probabilities based on repeatable events cannot be
developed.® Concerns over deep uncertainty have
been particularly strong in the climate change adap-
tation field, with some arguing that traditional ap-
proaches to risk management, such as maximization
of expected utility, are poorly suited to climate pol-
icy and adaptation problems.® This has led to inter-
est in robust decision frameworks,® which include
methods such as robust decision making (RDM),"®)
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decision scaling,® and info-gap decision theory.(”)
These methods are commonly contrasted with so-
called predict-then-act frameworks by focusing on
the identification of robust rather than optimal so-
lutions, and by using analytics to first identify condi-
tions where plans or strategies may fail, rather than
first predicting what an uncertain future will look
like.® These frameworks can be particularly use-
ful in situations characterized by poorly understood
nonlinear or threshold responses® or many stake-
holders with conflicting values and beliefs about the
future.(”)

RDM is one such framework that has been
applied to a number of climate adaptation pro-
blems.(11) It is a multistep, iterative approach that
includes both analytical and deliberative compo-
nents.®) The analytical components of the process
simulate how a system or policy alternatives will per-
form in many plausible future states of the world,
and then use the results of these simulations to (1)
identify robust alternatives (those that perform rel-
atively well in many states of the world) and to (2)
identify the conditions under which a preferred al-
ternative will perform poorly.®) This second objec-
tive has been referred to as scenario discovery, as it
identifies the conditions that represent vulnerabilities
for a proposed policy and thus the conditions under
which an alternative solution would be preferred.(!*)
Scenario discovery uses the patient rule induction
method (PRIM)" to identify regions of a multidi-
mensional input variable space that result in undesir-
able values of the output variable. These regions are
defined by quantitative logical conditions involving
individual input variables. For instance, in one study
aregional water plan was found to result in unaccept-
ably high costs when precipitation declined by more
than 10%, groundwater recharge decreased by over
3%, and a water recycling program failed to meet its
goals.(1%19) By identifying these conditions, the sce-
nario discovery process can identify which uncertain-
ties are most important for a given decision problem
(and thus potentially inform research activities) and
specify the vulnerable conditions for which decision-
makers may want to prepare.

The PRIM algorithm was developed for prob-
lems where multiple input variables influence the
value of a single response variable, and does not
contain a mechanism for incorporating multiple re-
sponse variables or outcome criteria. Because of this,
existing RDM literature incorporates multiple crite-
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ria in a number of different ways. Some studies have
conducted scenario discovery over a single outcome
metric, such as cost,(1%19) system reliability,(!”) ex-
pected utility,™ or a single aggregated performance
score.® A number of evaluations that do consider
multiple criteria apply scenario discovery over each
criterion separately.12171920) By identifying the
conditions that are likely to cause failure for each
individual objective, this process can be highly infor-
mative but may be impractical for problems with a
large number of performance metrics. Finally, some
studies apply scenario discovery across multiple
criteria where failure on any single criterion is equiv-
alent to failure overall.(!'?'-23) Collectively, these
studies demonstrate that there are multiple methods
that can be incorporated to conduct scenario discov-
ery in a problem characterized by more than one
performance metric. However, they provide little
insight into how the choice of method used to incor-
porate multiple criteria might impact the scenarios
identified by the PRIM algorithm and what methods
may be the most informative for decisionmakers.

In this study, we compare different methods for
incorporating multiple objectives into the scenario
discovery process to evaluate how the treatment of
multiple criteria can impact the vulnerable scenarios
identified within the RDM framework. We use the
Lake Tana basin in Ethiopia as a case study, where
multiple long-lived water infrastructure projects are
planned for construction but whose effectiveness
could be impacted by climatic and environmental
uncertainties. The scenario discovery process is used
to identify the conditions that are likely to cause
unacceptable performance of this infrastructure with
regard to multiple criteria, including provision of
water to different economic sectors and downstream
environmental conditions. We first identify failure
scenarios by assessing each performance metric in-
dividually, and the implications that these scenarios
have for the design of system improvements and re-
search efforts focused on key uncertainties. We then
compare these to failure scenarios identified using
different methods for aggregating the metrics into a
single performance score. By evaluating the sensitiv-
ity of the scenario discovery process to the treatment
of multiple criteria, this works aims to support more
effective application of robust decision frameworks
in contexts where performance across multiple
economic and environmental metrics must be
balanced.
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Fig. 1. Map of Lake Tana, the surrounding watershed, and plan-
ned infrastructure developments.

2. METHODS

2.1. Study Area

Lake Tana is the source of the Blue Nile River,
located in the highlands of northwest Ethiopia at an
elevation of approximately 1,790 m. The lake has
a surface area of approximately 3,000 square kilo-
meters, and the catchment draining to the lake en-
compasses approximately 12,000 square kilometers
(Fig. 1). The four main tributaries providing water
to the lake are the Gilgel Abbay, Ribb, Gumara, and
Megech Rivers, which collectively account for 93%
of the inflow to the lake.* The basin’s climate is
characterized by distinct wet and dry seasons, with
approximately 90% of rainfall and steamflow occur-
ring during the wet period from May until Octo-
ber. Rainfall in the basin exhibits significant interan-
nual variability, ranging from below 1,000 mm/year
to over 1,800 mm/year.> The basin’s population of
2.6 million is largely located in rural areas and reliant
on rainfed subsistence agriculture, making the region
quite vulnerable to climate variability and change.
Population growth and expansion of agricultural and
pastoral land use in the region have resulted in sub-
stantial deforestation and land degradation.(¢2%)

The basin has seen extensive investment in plan-
ning and construction of water resources infrastruc-
ture in recent years. The Tana-Beles hydropower
tunnel was completed in 2012, and is currently the
largest hydropower facility in the country with a ca-
pacity of 460 MW. The 12-km tunnel collects water
from Lake Tana and transfers it to the adjacent Beles
River basin, taking advantage of a 350-m difference
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in elevation. A reservoir with 83 million cubic meters
(MCM) of capacity was also constructed on the Koga
River in 2010 to provide irrigation to a command
area of approximately 7,000 hectares. There are five
other reservoirs being planned for construction in the
basin, ranging in volume from 80 to 220 MCM.?*
These reservoirs are generally designed to store wa-
ter from the rainy season to support a second growing
period during the dry season. Finally, there are three
projects under consideration that would pump water
directly from the lake to provide irrigation to sur-
rounding areas. A summary of existing and planned
water infrastructure is shown in Table I.

While these projects have the potential to gener-
ate important economic growth for the region, there
are a number of uncertainties that could impact their
performance in the future. Climate change could dra-
matically impact the amount of water available in
the basin, particularly considering the long life-span
of the proposed infrastructure. However, projected
changes in climate for Ethiopia are highly uncertain,
with climate models disagreeing on even the direc-
tion of precipitation change.?” Land cover in the
basin has been dramatically altered over the past few
decades, and could change further due to increasing
agricultural development or expansion of conserva-
tion efforts. This impacts the amount and timing of
runoff in the basin’s rivers, as well as amount of sed-
iment that will be introduced to them. Finally, there
are few data available in the basin with which to es-
timate certain operational parameters of this infras-
tructure even under current conditions. These data
limitations make it difficult to predict future rates of
reservoir sedimentation and evaporative losses with
any degree of confidence.

2.2. Simulation Models

A two-component simulation model was devel-
oped to assess how changes in climatic and envi-
ronmental conditions would impact water resources
in the basin. The first component consisted of em-
pirical rainfall-runoff models that predicted monthly
streamflow in each of the five rivers with proposed
reservoirs (Gilgel Abbay, Gumara, Koga, Megech,
and Ribb) based on monthly temperature, rain-
fall, rainfall intensity, and agricultural land cover.
The models were each fit by regressing a 40-year
monthly time series of streamflow in that river
against historic climate data taken from Climate Re-
search Unit (CRU) gridded data sets®”) and agri-
cultural land cover as reported by data taken from
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Table I. Existing and Proposed Water Resources Infrastructure in the Lake Tana Basin

Annual Demand

(MCM) Reservoir Average Annual Catchment Irrigable
- Capacity Flow into Dam Area Area
Project Name Type Min Max (MCM) Site (MCM) (km?2) (km?)
Existing Projects
Koga Irrigation reservoir 62 86 83 114 185 70
Tana-Beles Hydropower tunnel 2681 2681 NA NA NA NA
Planned Projects
Gumara Irrigation reservoir 115 161 60 236 385 140
Megech Irrigation reservoir 63 98 182 172 424 73
Ribb Irrigation reservoir 172 220 234 210 677 199
NE Lake Pumped irrigation 50 50 NA NA NA 57
NW Lake Pumped irrigation 54 54 NA NA NA 67
Gilgel Abbay Irrigation reservoir 104 142 563 1883 2044 103
Jema Irrigation reservoir 57 80 200 128 218 78
SW Lake Pumped irrigation 42 42 NA NA NA 51

Rientjes et al.,?® Gebrehiwot et al.,*”) and Garede
and Minale.?® Multiple regression and machine-
learning algorithms were compared in their pre-
dictive ability through random hold-out cross-
validation. The highest performing models based
on out-of-sample mean absolute error were used to
generate streamflow predictions using climate and
land cover data. These included a linear model,
M5 model,®V artificial neural network,®? general-
ized additive model,®® and random forest model.G¥
Each basin’s model was compared to a climatol-
ogy model that predicted streamflow in each month
as simply the mean historic streamflow for that
month. The models were able to achieve statisti-
cally significant reductions in predictive error based
on Bonferroni-corrected Wilcoxan signed rank tests.
Additional details on model development are dis-
cussed by Shortridge et al.*>

The second component of the simulation model
was a water evaluation and planning (WEAPG®)
water allocation model developed for the basin by
Alemayehu et al.*» This model simulates natural
hydrologic processes such as streamflow and evapo-
ration, as well as human extraction and use of water.
In each month, the model performs a mass balance
to account for both extraction and inflows, allocat-
ing water to different demand nodes in order of
user-defined priorities.*® The monthly streamflow
sequences derived from the empirical rainfall-runoff
model for each river, as well as time series of evapo-
ration from the lake and each reservoir, were used as
model inputs. The model then calculated the amount
of water allocated and coverage (percent of demand

delivered) for different demand nodes, as well as lake
elevation and downstream flows. Additional infor-
mation on WEAP model development, calibration,
and validation is discussed by Alemayehu et al.*%

2.3. RDM Evaluation

In the first step of the RDM evaluation, a range
of feasible values was identified for each of the un-
certain parameters that could impact infrastructure
performance in the future (Table II). Because the
objective of the scenario discovery process is to find
conditions that result in unsatisfactory performance
of the infrastructure, we used wide ranges of values
to better identify the thresholds and tipping points
that would result in poor performance.

Possible impacts of climate change were repre-
sented by a change in temperature ranging from 0.5
to 5.5°C and a change in annual precipitation ranging
from —20% to positive 35%. These values were taken
from IPCC multimodel ensemble projections for the
East Africa region for the period 2081-2100 under all
representative concentration pathways.*”) Addition-
ally, there is concern that climate change could result
in an intensification of precipitation, even when over-
all amounts of precipitation decrease.?’3? For this
reason, we also considered increases in rainfall inten-
sity (defined as the total amount of rainfall in a month
divided by the days where rainfall occurs) from 0%
to 20%. Specific sediment yield is the amount of
sediment deposited in the reservoir normalized by
the upstream area contributing sediment. A range of
values for specific sediment yield were taken from
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Table II. Uncertain Parameters

Uncertain Parameter Symbol Range of Values
Change in temperature AT 0.5t05.5°C

Change in rainfall AP —20% to +35%

Change in rainfall intensity Alnt 0% to +20%

Specific sediment loads SedRate 80 to 2400 tons/km? annually
Agricultural land cover AgLC 50% to 90%

Evaporation coefficient EtC 0.8to 1.2

sampling results from various rivers in the basin,“%4)
while future agricultural land cover was assumed to
range from 50% to 90% based on values experienced
over the past 50 years.?°?®) Finally, evaporation es-
timates were multiplied by a factor ranging from 0.8
to 1.2 to account for uncertainty arising from the lim-
ited meteorological data available to estimate evap-
oration from the reservoirs and lake. This parame-
ter represents the degree to which actual evapora-
tion differs from our estimates, with any value over
1.0 implying underestimation of evaporation.

To assess how the proposed projects would per-
form in various possible future states of the world,
5,000 random combinations of the six uncertain pa-
rameters were generated to be used as inputs for
the simulation model described above. Samples were
generated using Latin hypercube sampling across a
uniform distribution for the range of possible values
for change in temperature, sedimentation rate, agri-
cultural land cover, and the evaporation coefficient.
While Latin hypercube sampling is often used to gen-
erate multivariate probabilistic distributions, here it
is only used as a mechanism for generating a diverse
sample of future conditions that could feasibly oc-
cur. These samples are used as input for exploratory
modeling?) that evaluates how the system responds
to different multivariate conditions while making no
inference regarding the likelihood of those states.
Other methods for sample generation, including full
combinatorial sampling across discrete uncertain pa-
rameters and GCM ensemble projections,(!>*>) have
been used in RDM evaluations and the application
of further sample generation methods could be a
valuable area for future research. Changes in rain-
fall and rainfall intensity are likely to be correlated
with changes in temperature, as greater climate forc-
ing is expected to result in more extreme changes to
both temperature and precipitation. To account for
this, a correlation was induced between temperature
and the rainfall and rainfall intensity parameters. For
each of the 5,000 samples, the change in precipitation

was randomly selected to be either positive or nega-
tive with an equal probability. For the nth sample, a
parameter A P, was calculated as in Equation (1) and
a parameter Alnt,was calculated as in Equation (2).
The change in rainfall and rainfall intensity for sam-
ple n were then randomly sampled from normal dis-
tributions with means equal to AP, and Alnt,, and a
coefficient of variation equal to 0.5.

AP % X APnax if AP >0 (1)
o AR APpn it AP <0
Alnt, = (AT;q - ATmin) % Alnt (2)
"7 (AThax — AToin) max

Each of the 5,000 samples could be thought of
as a possible future state of the world under which
the infrastructure might have to operate. The simu-
lation model was then used to assess how well the
infrastructure would be able to meet the multiple ob-
jectives required of it under each of the 5,000 pos-
sible futures. For each possible future, the change
in temperature, rainfall, and rainfall intensity was
used to adjust the 40-year historic climate record in
each basin using the delta-change method.**) These
adjusted climate scenarios were then used, along
with estimates of agricultural land cover, to gener-
ate streamflow sequences for each river. Evapora-
tion from Lake Tana and each reservoir was calcu-
lated using Penman’s equation.*>) These estimates
used the adjusted temperature values reflective of
climate change and historic monthly average values
for wind speed, relative humidity, and solar radia-
tion from the Bahir Dar meteorological station as re-
ported by Kebede et al.“®) These evaporation esti-
mates were then multiplied by the EtC parameter to
account for uncertainty stemming from the use of his-
toric average values for calculating evaporation rates
under future climates. The capacity of each reservoir
diminished annually based on the specific sediment
loading rate assumed for that possible future.



Scenario Discovery with Multiple Criteria

2303

Table III. Performance Metrics

Baseline Acceptable
Objective Metric Units Results Performance Threshold
Maximize irrigation water reliability Percentage of years when minimum % 98% 90%
demand is met
Maximize hydropower water delivered Average water delivered annually MCM 2699 2681
Minimize percent of time where lake elevation Percent of months where lake is % 100% 90%
is below minimum acceptable level above 1784.75 amsl
Maximize flows over Tis Issat waterfall Average flow requirement met for % 33% 30%
Tis Issat
Maximize environmental flows Average flow requirement met for % 78% 70%
all rivers

This resulted in 40-year sequences of monthly
streamflow, evaporation, and reservoir capacity
for each possible future. These sequences were
then used as inputs to the WEAP model of the
basin, which allocated water to agricultural and hy-
dropower demand nodes and calculated the resulting
downstream flows and lake levels. Five performance
metrics identified based on stakeholder discussions
were calculated to assess how well the infrastruc-
ture performed in each possible future (Table III).
Previous studies have identified 1,784.75 m as the
minimum elevation that Lake Tana can reach before
negative impacts to the navigation and fishing indus-
tries begin to occur.4”> Alemayhu et al. ¥ calculated
flow requirements needed to support tourism at the
Tis Issat waterfall downstream of the lake, as well
as environmental flow requirements for each of the
tributaries to the lake. These were used to calculate
the average percentage of flow requirement met as
a measurement of impacts on tourism and environ-
mental conditions. Table III shows baseline results
for each metric, assuming that the infrastructure was
operated under historic climate conditions, an annual
specific sediment yield of 1000 tons/km?, 50% agri-
cultural land cover, and an evaporation coefficient
of 1.0. For each metric, an acceptable performance
threshold was identified based on the project design
documents (in the case of irrigation water delivery
and reliability and hydropower delivery) or baseline
performance levels (in the case of lake levels, Tis
Issat flows, and environmental flows). These thresh-
olds represent the minimum performance level for
each metric that can be considered acceptable.

2.4. Scenario Discovery

The RDM framework is a multistep, iterative
approach to decision support under uncertainty that

contains both quantitative analysis and deliberation.
The process includes two analytical components
based on simulation model results. When multiple
alternatives or policy options are available for a
given system, the first analytical component of the
approach identifies the most robust alternatives
based on regret minimization or satisficing criteria.’®)
The second analytical component, termed “scenario
discovery,” aims to identify the conditions that cause
unsatisfactory performance in a preferred alterna-
tive. In this work, we use the scenario discovery
process to identify the conditions that cause unsatis-
factory performance for the proposed infrastructure
described in Table I.

The scenario discovery process uses the results of
the 5,000 simulations described above to identify spe-
cific combinations of uncertain input parameters that
are likely to result in poor performance. It is based
on the patient rule induction method (PRIM) bump-
hunting algorithm.(® The objective of the PRIM al-
gorithm is to find a region of the input variable space
X that results in particularly low values of the output
variable Y = f(X). This region is made up of one or
more “boxes” B that can be defined by simple log-
ical conditions involving the value of individual in-
put variables. To identify these boxes, the algorithm
uses a process of top-down successive refinement, re-
ferred to as “peeling,” followed by bottom-up succes-
sive expansion (“pasting”). The peeling phase begins
with a box B containing all of the data. At each it-
eration, a small subbox b* is removed, resulting in
a smaller box equal to B-b*. The subbox b* chosen
for removal is selected from a set of n candidate sub-
boxes C(b), each of which is defined by a single input
variable x;, to minimize the mean value of y within
the resulting box.(® This process is continued until
the size of the box falls below a prespecified value.
The pasting process then readjusts the boundaries
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of this box by essentially reversing the peeling algo-
rithm. In this stage, a small box b* is added to the
existing box B from a set of candidate subboxes to
minimize the mean in the new larger box B+b*. This
process continues until the mean of the larger boxes
starts to increase. This algorithm can be repeated on
remaining subsets of the data to obtain a set of boxes
that collectively include a sufficiently high portion of
the input space where the output f(x) assumes low
values.(™)

The PRIM algorithm was implemented using the
SD toolkit package in R.*®) This package provides
an interactive implementation of the PRIM algo-
rithm on a binary output variable, thus identifying
scenarios that result in performance y below some
user-defined threshold. The package generates a
trade-off curve showing the sequence of boxes iden-
tified during the peeling process. Boxes are scored on
the basis of (1) box density, which describes the per-
centage of points within the box where y is below the
threshold, (2) box coverage, which describes the per-
centage of points where y is below the threshold that
are described by the box, and (3) restricted variables,
which describes the number of input variables x; used
to define the box.*”) Ideally, a box would have cov-
erage and density equal to 1 while being described by
only a small number of variables, but this will rarely
be the case when applying the algorithm to complex,
real-world systems. Generally, as the density of the
boxes increases, the coverage decreases and the
numbers of variables needed to describe the box go
up. By presenting a trade-off curve showing these
three parameters, the user can compare and select
boxes that have sufficiently high coverage and den-
sity for their purposes while remaining interpretable.

The PRIM algorithm does not include a method
for considering multiple output variables, and re-
quires that multiple outcomes be either separately
evaluated, or aggregated into an overall perfor-
mance score. In this work, we first apply the PRIM
algorithm to each of the five performance metrics
separately. This identifies the specific scenarios that
are likely to result in unsatisfactory performance for
each individual performance metric. We then use
five different methods to aggregate the performance
metrics into a single overall performance score,
and apply the PRIM algorithm to these aggregated
results. The aggregation methods are shown in
Table IV. In the first method, if the infrastructure
fails to meet any of the six performance criteria in
a given possible future, that is considered a failure
overall. This approach is similar to a multiplicative
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multiattribute utility function applied to binary
performance scores, as a score of zero for any single
attribute results in a score of zero overall. This is
the approach used previously by Kasprzyk et al.,>>)
Herman et al,**? and Lempert et alV This
method is demonstrated in Equation (3), where y;,
is the binary performance score (1 for acceptable
performance and 0 for unacceptable performance)
for individual metric i in possible future n, and Y, is
the overall performance score for possible future 7.
In the other four methods, an additive performance
score is calculated, with the weights between differ-
ent attributes varied to reflect different priorities. In
this approach, the scores for each metric are normal-
ized across the range of outcomes experienced in the
5,000 possible futures and a weighted sum is calcu-
lated as in Equation (4), where u;, is the normalized
performance score on attribute i in possible future i,
and w; is the weight assigned to attribute .

1
Y, = 1_[ Yin (3)

i=1

i
Y= ) witti, 4)
i=1

Normalized weights were calculated using the
rank sum weighting procedure based on four differ-
ent possible rankings of attribute importance.®? A
summary of the four weighting schemes evaluated is
presented in Table IV. For the additive aggregation
schemes, an aggregated minimum acceptable perfor-
mance threshold is calculated using Equation (4) and
the performance thresholds presented in Table III.

3. RESULTS

A summary of the simulation results for each in-
dividual performance metric is presented in Table V.
It is apparent that accounting for uncertainty in the
parameters listed in Table II has the potential to re-
sult in dramatic ranges in performance, particularly
with regard to irrigation reliability, the amount of
water provided for hydropower, and the elevation of
Lake Tana. The performance thresholds are not met
in 36-66% of the simulated futures, depending on
the metric assessed. It is important to note that these
percentages should not be interpreted as a state-
ment regarding the likelihood of failure, since that
would implicitly assume that each simulated possi-
ble future was equally likely. However, it can provide
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Table IV. Weighting Schemes Used to Calculate Aggregate Performance Scores

Additive—Equal Additive—Agricultural Additive—Hydropower Additive—Environmental

Multiplicative Weighting Priority Priority Priority
Irrigation water NA 0.2 0.33 0.05
reliability
Hydropower NA 0.2 0.33 0.5 0.05
water delivery
Lake levels NA 0.2 0.06 0.06 0.4
Tis Issat falls NA 0.2 0.06 0.06 0.2
coverage
Environmental NA 0.2 0.06 0.06 0.3
flow coverage
Acceptable 1.0 0.75 0.87 0.88 0.69
performance
threshold
Table V. Simulation Results
Metric Acceptable Performance Level Minimum Maximum Futures Where Threshold is Unmet
Irrigation reliability 0.90 0.02 1.00 57%
Hydropower water delivered 2681 271 2855 66 %
Lake Tana elevation 0.95 0.10 1.00 36%
Tis Issat Falls coverage 0.30 0.26 0.39 46%
Environmental flow coverage 0.76 0.64 0.83 48%

information about the relative sensitivity of the dif-
ferent metrics to the uncertain parameters listed in
Table II. For instance, the Lake Tana elevation met-
ric appears relatively robust to this uncertainty (fail-
ing in only 36% of futures) whereas the hydropower
delivery metric fails in 66% of them.

The scenario discovery process was used to iden-
tify combinations of uncertain input parameters that
best described the simulations where performance
thresholds were not met. These combinations can be
interpreted as scenarios to which the proposed in-
frastructure is vulnerable (termed “failure scenarios”
from here forward). Table VI shows the results of the
scenario discovery process when it was run on each
metric separately. Two failure scenarios were identi-
fied for each metric, and the box coverage and den-
sity are described for each individual scenario, as well
as the ensemble as a whole, for each metric. When
multiple conditions are listed on a single line, this
describes conditions that must simultaneously occur
for performance to drop below the threshold. Con-
versely, when conditions are listed in separate failure
scenarios for a given metric, this implies that either
of those conditions will cause failure. For instance,
irrigation reliability can fail if the change in precip-

itation is less than -3.8% or if EtC is greater than
1.09, whereas coverage for the Tis Issat Falls tends to
fail if both EtC is greater than 1.08 and the change
in precipitation is less than +16.4%. These scenarios
are shown graphically in Fig. 2.

Unsurprisingly, precipitation plays a role in the
failure scenarios for each metric, but the way in
which it combines with other uncertain parameters
differs. While a decrease in precipitation must be
combined with certain conditions regarding tem-
perature and evaporation estimates to cause failure
for the lake elevation metric, it is enough to cause
failure for the irrigation, hydropower, Tis Issat, and
environmental metrics on its own. Additionally, the
relative sensitivity of the different metrics to changes
in precipitation is apparent, with the Tis Issat metric
vulnerable to any decrease beyond approximately
2% while environmental flow coverage is only
vulnerable to decreases beyond approximately
8%. Another important insight is that both irriga-
tion reliability and hydropower are vulnerable to
underestimation of evaporation, even if climate con-
ditions are favorable. Interestingly, the only metrics
that appeared sensitive to changes in temperature
were lake elevation and environmental flows. This
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Table VI. Failure Scenarios for Individual Performance Metrics
Percent Failure Box Box Ensemble Ensemble
Metric Failures Scenarios Density  Coverage Density Coverage
Irrigation reliability 57% 1. AP < -3.8% 0.86 0.56 0.83 0.79
2. EtC > 1.09 0.77 0.25
Hydropower water delivery 66% 1. EtC > 0.99 0.91 0.73 0.91 0.93
2. AP < —5.5% 0.91 0.93
Lake elevation 36% 1. AP < 1.4%, EtC > 0.94, AT >1.16° 0.85 0.68 0.82 0.77
2. AT > 4.1°, AP < 6.6% 0.65 0.1
Tis Issat Falls coverage 46% 1. AP < =22% 0.8 0.71 0.82 0.9
2. EtC > 1.08, AP < 16.4% 0.9 0.19
Environmental flow coverage 48% 1. AP < —7.8% 0.7 0.38 0.61 0.78
2. AT > 2.6° 0.55 0.40
Irrigation Reliability
Hydropower Water
Delivery
Lake Elevation //
Tis Issat Falls W/
Coverage T
Environmental
coverage
T T T T I T T T T T T T T T
08 09 1.0 11 12 20 10 0 10 20 30 1 2 3 4 5
EtC Prec. change (%) Temp. change (deg C)

Fig. 2. Failure scenarios for individual performance metrics. Diagonal lines indicate a condition that has to occur in conjunction with specific
conditions regarding the other parameters identified by diagonal lines. Boxes with hash marks indicate conditions that are sufficient to cause
failure on their own, regardless of the values taken on by other parameters.

could be due to the large role that evaporation off
of Lake Tana plays in the basin’s water balance,
which would be expected to increase with higher
temperatures.

Table VII and Fig. 3 show the failure scenarios
identified for the aggregated multiattribute perfor-
mance measures. From looking at the percentage
of simulations classified as failures based on each
aggregation scheme, it is apparent that they give
different pictures of overall system robustness. The
multiplicative aggregation scheme is very strict when
implemented in a binary fashion, since unsatisfactory
performance on any single metric will result in
failure overall. This results in a high percentage
of simulations that were classified as failures when
compared to the additive approaches, where poor
performance on one metric can be compensated

for by good performance on another. Because the
additive aggregation methods are less strict than
the multiplicative method, they provide a more
optimistic view of system performance, with failure
occurring in a smaller percentage of simulations.
However, they do not provide any insight into which
individual performance thresholds are being satisfied
and which are not. While this method ensures that
at least one performance threshold will be satisfied
for the multicriteria performance threshold to be
met, it cannot ensure that any single metric (e.g.,
hydropower provision) is achieved.

The failure scenarios for the multiplicative
scheme closely mirror those for the hydropower wa-
ter delivery, which was the most sensitive individual
metric. This indicates that when such an aggregation
scheme is used, it is possible for the resulting failure
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Table VII. Failure Scenarios for Aggregated Performance Scores

Box Box Ensemble  Ensemble
Aggregation Scheme Percent Failures Failure Scenarios Density ~ Coverage Density Coverage
Multiplicative 77% 1. EtC > 0.96 0.91 0.7 0.91 0.86
2. AP <-5.5% 0.92 0.15
Additive—equal weighting 52% 1. AP < -4.6% 0.87 0.57 0.84 0.79
2.EtC>1.11 0.77 0.22
Additive—irrigation priority 59% 1. AP <-3.7% 0.88 0.55 0.87 0.78
2.EtC > 1.10 0.86 0.23
Additive—hydropower priority 60% 1. EtC > 1.03 0.85 0.61 0.86 0.86
2. AT >2.8° AP <7.0% 0.92 0.25
Additive—environmental priority 46% 1. AP <-0.34%, AT > 1.96° 0.85 0.64 0.84 0.83
2.EtC> 1.1, AP < 16.9% 0.81 0.19
Multiplicative —_—
Additive - equal
weighting
Additive - irrigation B
priority *
Additive - /
environmental priority /
Additive -
hydropower priority /'
T T T T T T T T T T T T T T T
0.8 0.9 1.0 11 12 20 -10 0 10 20 30 1 2 3 4 5

EtC

Prec. change (%) Temp. change (deg C)

Fig. 3. Failure scenarios for aggregated performance scores. Diagonal lines and hash marks are as in Fig. 2.

scenarios to be dominated by a single metric. When
the additive method with a priority on hydropower
delivery is used, the failure scenarios still indicate
a vulnerability to evaporation overestimates, but do
not indicate a vulnerability to decreases in precipi-
tation unless combined with an increase in temper-
ature. While three aggregation schemes (multiplica-
tive, additive with equal weights, and additive with
a priority on irrigation) result in relatively consis-
tent failure scenarios, the threshold values identi-
fied for the EtC and AP parameters differ between
them. For instance, the additive method with an ir-
rigation priority appears the most sensitive to even
small decreases in precipitation, while the multiplica-
tive scheme is most sensitive to evaporation underes-
timates.

Additional investigation into the conditions that
cause failure for a given metric demonstrate how
some insights and nuances about system perfor-
mance can be lost when performance metrics are

combined into a single score. The left-hand side of
Fig. 4 shows a scatterplot demonstrating how chang-
ing precipitation and evaporation estimates impact
hydropower performance. Filled-in dots represent
simulations where the threshold for hydropower
water delivery was not met, and hollow dots repre-
sent those simulations where it was. A fairly distinct
linear divide is apparent, demonstrating how the
system’s tolerance for higher rates of evaporation re-
lates to the level of precipitation experienced. While
the hyper-rectangles identified by the PRIM algo-
rithm are unable to capture this sort of relationship
precisely (although orthogonal transformations have
been used to address this issue®!), the identification
of precipitation and EtC as the key uncertainties
driving performance, combined with a simple vi-
sualization, makes it apparent. However, when the
same scatterplot is generated using the multiplicative
performance metric, this relationship is no longer
discernable.
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Multiplicative score

Change in annual prec. (%)

Fig. 4. Scatterplots showing simulations with hydropower performance and multiplicative aggregated performance above their respective
thresholds. Filled-in circles represent simulations where the threshold was not met, and empty circles indicate simulations where it was.
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Fig. 5. Total annual precipitation (Gilgel Abbay). Horizontal lines indicate the thresholds for annual average precipitation identified by the

PRIM algorithm.

4. DISCUSSION

To understand the potential implications of these
results, it is important to consider the different ways
in which such scenarios might be used to support de-
cision making. One useful outcome of the scenario
discovery process is that it can identify the uncertain
parameters that have the greatest impact on system
response and thus the areas where a reduction in un-
certainty could be the most valuable. It also may pro-
vide useful insights by identifying the parameters that
are not as influential over system performance and
thus don’t warrant as much concern.”) In our analy-

sis the parameters identified as important were gen-
erally consistent over different metrics and aggrega-
tion methods, with precipitation and evaporation un-
certainty being the strongest drivers of vulnerability
while precipitation intensity, future land cover, and
sedimentation rates were not identified as influential.
However, there were some notable differences. One
interesting result was that uncertainty in evaporation
estimates could result in unacceptable levels of ir-
rigation reliability and hydropower water delivered
even in favorable climate conditions. This indicates
that even without the impacts of climate change, the
proposed infrastructure might be unable to meet its
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goals if current estimates of evaporation prove to
be too low. While uncertainty surrounding future
projections of climate change is unlikely to be re-
duced in the coming years,?®) additional meteoro-
logical monitoring, combined with the development
of remote sensing products, could be used to re-
fine evaporation estimates and gain a better sense of
likely system performance. However, this sensitivity
to evaporation alone is not apparent when the envi-
ronmental priority additive weighting scheme is used,
indicating that this insight could be lost if individual
metrics aren’t separately assessed.

Another useful aspect of the scenario discov-
ery approach is that it not only identifies which
uncertain parameters are most influential, but can
also determine threshold levels beyond which per-
formance levels are unacceptable. This is one of the
main advantages of the approach when compared to
variance-based methods for global sensitivity analy-
sis such as Sobol indices, which identify variables to
which an outcome is most sensitive but not neces-
sarily thresholds within that variable space.*? These
thresholds can highlight the relative sensitivity of dif-
ferent performance metrics; for instance, Tis Issat
flow coverage is more sensitive to decreases in pre-
cipitation than environmental coverage. These pre-
cipitation thresholds can also be informative when
considering interannual variability in performance,
even under current climate conditions. For example,
during the 20-year period from 1977 to 1996 the basin
experienced lower than average rainfall (Fig. 5), and
these decadal-scale dry periods would be expected to
occasionally occur even without the impact of climate
change. The average annual precipitation during this
period was 1,360 mm, which is approximately 8% less
than the long-term average of 1,470 mm and thus be-
low the threshold for hydropower performance. The
amount of water provided for hydropower thus ap-
pears sensitive not only to long-term climate change,
but also to interannual variability experienced cur-
rently. However, if one were to assess performance
using the additive weighting scheme with a priority
on hydropower, this vulnerability would not be ap-
parent. Finally, these thresholds could be used in ad-
ditional probabilistic analysis to determine the rela-
tive likelihood of the different scenarios identified,
as has been done by Lempert et al.(!®) Because the
probability of these scenarios is contingent on their
quantitative definition, this could in turn impact the
expected value and probability of failure.

A third way in which the scenario discovery pro-
cess can help inform decision making is by highlight-
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ing the vulnerabilities that decisionmakers may want
to address to make their system more robust. For in-
stance, after recognizing that water supply costs were
vulnerable to a decrease in the amount of groundwa-
ter recharge, Lempert and Groves!'”) proposed addi-
tional investment in stormwater capture and ground-
water replenishment facilities to help address this
vulnerability. In this regard, the scenarios identified
for the aggregated performance scores are much less
informative than those identified for the individual
metrics. In our example, the two metrics that are
most sensitive to climatic and environmental uncer-
tainty based on the number of possible futures result-
ing in failure are the irrigation and hydropower met-
rics. This is despite the fact that these are the two ob-
jectives driving the large infrastructure investments
in the region. Thus, decisionmakers may see this in-
formation and try to adopt policies or adapt the pro-
posed infrastructure to make its performance with re-
gard to those metrics more robust, particularly given
their economic importance. For instance, the irriga-
tion drainage systems could be adjusted to improve
irrigation efficiency, or water allocation rules could
be adapted to provide more water for hydropower.
When the aggregated performance scores are used,
these avenues for system improvement are not ap-
parent.

Based on these results, the insights that can be
obtained through a process like scenario discovery
appear to be compromised when multiple perfor-
mance objectives are combined into a single score.
While the uncertain parameters driving vulnerability
were relatively consistent across the scenarios iden-
tified for different metrics and aggregation schemes,
the more subtle ways in which uncertain parameters
interact with each other to impact different objec-
tives were not always apparent when the aggregated
scores were used. It is also important to note that per-
formance across the objectives in our example was
relatively correlated, since a low availability of wa-
ter impacts all of the objectives negatively. It is quite
possible that the discrepancies in failure scenarios for
aggregated metrics would be larger if other objec-
tives were included that were impacted in the oppo-
site direction, such as flood risk. Regardless of the
aggregation method used, the information provided
to decisionmakers using aggregated criteria cannot
match the information provided through assessment
of criteria individually. While we specifically eval-
uated the impact of aggregating objectives through
multiplicative and additive utility functions, this re-
sult is likely to also occur when other methods, such
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as conversion of metrics to monetary flows through
cost-benefit analysis, are used. Admittedly, perform-
ing a separate scenario discovery on each of our met-
rics was made easier in our example problem due
to the relatively small number of performance met-
rics assessed, and repeating this process may become
increasingly impractical as the number of objectives
under consideration increases, as may be the case
in participatory processes involving many stakehold-
ers. One potentially promising way to address this is-
sue could be by identifying groups of objectives that
are vulnerable to similar conditions and grouping
them together so that failures for performance objec-
tives are described by the same scenarios. This would
likely reduce the coverage and density of the failure
scenarios for some objectives, but would make the
evaluation’s results more interpretable and avoid the
need to weigh and aggregate the objectives of com-
peting groups early in the analysis.

5. CONCLUSIONS

Robust decision frameworks are becoming in-
creasingly popular in both research and practice, par-
ticularly in the climate adaptation field. By identify-
ing the conditions to which a given system or policy is
vulnerable, these tools can provide valuable insights
in situations with multiple deeply uncertain param-
eters that could impact the system of interest. These
methods are increasingly being applied in sectors
that have to balance performance across multiple
criteria, such as water resource management, infras-
tructure protection, and energy policy. This research
demonstrates that common methods used to aggre-
gate multiple criteria into a single utility score can
lead to inconsistent failure scenarios and obscure the
relationship between key uncertainties and system
performance. Applying scenario discovery over each
performance metric separately provides more nu-
anced information regarding the relative sensitivity
of the performance objectives and the ways in which
they are impacted by different uncertain parameters.
This in turn can provide insights on measures that
could be taken to improve system robustness, as
well as areas where additional research might prove
useful. Because the RDM framework was designed
to provide quantitative decision support in contexts
where there may be conflicting beliefs about what
the future will look like and contentious disagree-
ments about the best course of action, it is important
that the steps of the process remain as transparent as
possible. To this end, the additional effort required

Shortridge and Guikema

to apply scenario discovery to each metric separately
provides valuable benefits by identifying failure
scenarios that inform a more complete picture of
system performance and provide more detailed
guidance for vulnerability-reduction efforts.
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