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Summary
1. Phyteplankton communities can experience non-linear responses to changing nutrient
concentrations, but the nature of species shifts within phytoplamkinot well
understood antkw studieshaveexplored responses pelagic assemblagéaslarge
lakes.
2. Usingpelagic phytoplankton data from the Great Lakes, we assess phytoplankton
assemblage changmint responses to nutrients and invagiveissena, characterizing
community responses in a mustiressor environment, and determine whether species

responses tn situ nutrients can be approximated from nutrient loading.
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3. We demonstrate assemblage shifts in phytoplankton communities along maguorstre
gradients, particularly prominent in spring assemblages, providing insight into
community thresholds at the lower end of the phosphorus gradient and spexsesr
responses in a mulstressor environment. We show that responses to water nutrient
concentrations could not be estimated from lacge nutrientoadingdatalikely due to
lake-specific retention time and lortgrm accumulation of nutrients.

4. Thesefindings highlight the potential for significant accumulation of nitratakra-
oligotrophic systems, nolinear responsesf phytoplanktorat nutrient concentrations
relevant to current water quality standards, and sysfeific(e.g. lake or ecozone)
differemees in phytoplankton responses likely due to differences in nutriéintitadion

andeffects of dreissenids.

Introduction

Cycling of nitrogen and phosphorus, the two most limiting nutrients for primary
productionyhas been greatly altered by human activities (Falkowski et al. G8lG8yay et al.
2008,Canfield-et al2010, Bouwman et al. 2013). Primary producers are strongly affected by
nutrient limitation(e.g. Tilman 1982 Wetzel 2001)and changes in their assemblages in
response.te nutrients propagate up the food web through a multitude of pathways including
decreased diversity, increased biomass-twer, and overwhelming contribution of bloom taxa
to the overall energy flow (McCann and Rooney 2009the pelagic zones of lakes,
phytoplankternrdirectly respond to many stressors associated with human development such as
excess atrients, and can therefore be onehaf earlywarning signals for ecosysterhange in
response to stress (McCormick and Cairns 1994).

There is evidence that alggdmmunities can experience nlimear changes in response
to increasing Autrient concentrations (Smucker et al. 2018a)abrupt transitiofrom
macrophyte-dominateth analgaltdominated state isneof the classic examples of alternative
stable stategScheffer and Jeppesen 1998); however, the natwgecfeshifts within the
phytoplankén.assemblage is not as well documenireddditionto nutrientloading,
proliferation of invasive filter feeders has been linked to major shifts irapyiproducer
community composition due to grazing and the resulting broader changes in food web structure
and nutrient cycling across aquatic ecosystems such as thieshifhostly pelagido benthic—
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littoral energy pathways (Higgins and Vander Zanden 2010, Karatayev et al. @allaado et
al. 2016). Understanding the degree of non-linearity in phytoplankton assemblage shifts and
identifying key species respondingtheseanthropogenic stressassnecessary to relate changes
in water quality, nutrient cycling and precipitatipatterns to the rest of the food web. This
approach can,contribute strong ecology-based evidence for developing nutrieat (Sitarcker
et al. 2013pand is particularly important since there are Botic indicators available for the
pelagic'zonesflarge lakes, makg it difficult to monitor assemblage responses to such{arge
scale stressors‘as invasive species and nulniaing.

The Laurentian Great Lakéswvea long history of anthropogenic stress affecting
phytoplanktopnoften resulting in uesirable effects such as cultural eutrophication (Stoermer

1978). Excessphosphorus loading has most commonly been cited as the major causal agent in

water quality and algal problems (Conley et al. 200&yoljenconcentrationgn the Great
Lakes regiorhas also increased greatly over the past cerfiday and Allan 20123nd is likely
implicated in changes throughout #eosystenfe.g.Elseret al. 2010. Effects of nitrogen
loading onspelagic phytoplankton dynamics received less attention than effects of phosphorus
(but see Reavie et al. 2014kt there is evidence of nitrogen limitation andioataiton of
coastal algal biofilmsGooperet al. 201§. More recently, the extensive invasiorzebra and
guagganussels Dreissena polymorpha andD. bugensis: Dreissenidagthroughout most of the
basinhasgreatly impacted primary production in the lakes by shunting energy flow from the
pelagic to'the benthic food web (Hecky et al. 2004, Bunnell et al. ZDA)has further altered
phytoplanktereemmunities, particularly in Lake Michigan and Lake Huron (Reavie et al.
2014, butithemechanistic processes thaive these phytoplankton changae still under
discussion (e.g. Kerfoot et al. 201This dreissenidnvasion was ranked as the top
environmental threat out of thmomprehensive list of 5§tressor variablas the Great Lakes
according,to.a recent expert sur{®mith et al. 2015), and is probably the most important
stressor relevant to pelagic autotropleng withatmospheric nutrierdeposition.

We examined responsetphytoplanktorcommunitieso Dreissena abundance and
nitrogen (N)loadingas well asn situ waternitrate and total phosphorus concentrations, known
to berelevant inwater predictors for phytoplankton assemblages based on previous studies
(Reavie et al. 2014a). Some of the predictors examined istwdy are not necessarily stressors
from the perspective of phytoplanktdmowever, these predictors are ofteferred to as
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stressors for consistency with other studies and to reflect the genesgtpm of nutrient

loading. Our major goals were tb) test whether there is a relationship between nitrogen loading
and water nitrate concentrations, {&termne whether there is evidence of Horear changes

in phytoplankton assemblage composition in responsedtu nutrient concentrations and
estimates of.effshore environmental stress (nitrogen loadin@esissena abundance), and (3
examine key speciessponses along the stresgmadients characterizassemblage responses in

a multistressor-environment, anelst whether largscale estimates of nutrieloadingcan be

related tosimilar assemblage responsesrestu water nutrient concentrations.

Materials andM ethods
Data collectionrand processing

The pelagic zoreof the Laurentiatsreat Lakes, which encompass lakes Erie, Ontario,
Huron, Michigan and Superiaiange from ultreoligotrophic in the northern GL to eutrophic-
mesotrophic in the south. The standard operating procedure for phytoplankton collection and
analysis issdescribed in detail in the published procedures (USEPA, 2010)@ngraltensive
summary is provided by Reavie et al. (2014a). Briefly, water samglesscollected during
biannual'synoptic sampling (“spring’April, “summer” - August) from 7Xtandard pelagic
stations throughout the Great Lakes (Fig.wli}h each station sampled each year imilfand
August for a total of 8amples per statiq2007-2010)Integratedvater samples were collected
from the rosette sampler onboard Ri¥ Lake Guardian. In the laboratory, water samples were
digested byaeid persulfate and measured by a Lachat QuikChem AE autoatédgher (
Company, keveland, CQJSA) for total phosphorus (Barbiero et al. 2006). Nitratdtrite
(NOy) concentrations, hereafter referred to as nitrate due to much lower nitrite concentrations in
open waterweredetermined by diazotizing with sulfanilamide dihydrochloride after nitrate was
reduced by.copper-coated cadmium (GLNPO, 200M@usedNOy because organic N and
ammonia were/@a very minor component of the TN budget (<0.2%) and were no longer being
measuredit;the pelagic stations during the years of this stdyusedr'P, because most of
phosphorusiis.bound in seston, the inorganic compartment is ggnerglsmall (<1%, Wetzel
2001) and the overall productivity is determined by TP and the rate of cycling between the

inorganic and particulate P compartmeBiscause mean values of water quality parameters can
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be skewed by extreme values (Helsel and Hirsch, 2002), we used median water quality from
2007 to 2010 in all analyses.

Phytoplankton samples were composites of water sampled at discrete depths from the
euphotic pne of the water column (tlemtirewater column during isothermal spring conditions
and the epilimnion during summer). Samples were analyzed for the whole phytoplankton
assemblage. Analysis of soft algae used the quantitative Uterméhl methoddiuierds8)
while aciddigestions were used to isolate diatom valves which were thesh greséides and
counted using oil immersion (1000X or higher; valve counts: at least 500 per sampligiasoft a
at least 250 "entities'tplonies, filaments, cellgjer sample). Deaddiatoms(empty frustules)
were not included in final counté\s with water quality, each station was sampled twice each
year in AprilFand August. Only 2003310 data were used because previous studies demonstrated
strong changesiin assemblagenposition prior to this period (Reavie and Barbiero 2013).

We used environmental stressor data from the Great Lakes Environmental Assessment
and Mapping project (GLEAM), which overall aimed to synthesize the cumulatpect of 34
stressors across thedat Lakes (Allan et al. 2013). For nitrogen loading, 2003-2007
atmospheric deposition of nitrate was compiled from the National Atmospherisibepo
Program(NADP) for wet nitrate depositi¢via rain, fog and snow) and Clean Air Status and
Trends Netwdt (CASTNET) for dry deposition; dry:wet deposition ratios were used to estimate
5-year averages of total deposition of nitrate (dry + wet) across the surfaces of the lakes (Han
and Allan2012, Allan et al. 2013). Nitrogen loading also included estimates of tribeadigds
in additionste"N,atmospheric deposition; however, for most off-shore pelagic stabiahs
inputs weresdominated by depositibecauséributary loading rapidly declined away from the
coastline,(to 10% of initial levels at 15 kmitiough water nitrate concentrations were
determined contemporaneously with phytoplankton assessment (2007-10), whereas N loading
was estimated.from earlier data (2008, largescale Nloadingis unlikely to have changed
greatly during.this time periodlinlike N loading, it was not possible to compare assemblage
responses.twater TP vsP loadingbecauséributary loading datavere highly skewediftle
tributary P'was detectable offshore) atthospheric deposition was minor and not well-
guantified(Allan et al. 2013. For invasive mussels, point observations (22006 time range)
in numbers per m(e.g., Lozano et al. 2001, Dermott and Geminiuc 2003, Nalepa et al. 2007,
Watkins et al. 2007, Nalepa et al. 2014; unpublished data) were kriged to produce continuous
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maps of zebra and quagga mussel densities across the surfaces of the lakes (Allan et al. 2013).
Both raster layers were transformed with a cumulative distribution function to express the data as
percentiles relative tall other pixels in théive Great Lakes.

Multi-year data onrevironmental variableand phytoplankton assemblage composition
were averaged by station to avoid pseudoreplication afutreentloadingdata; averaging was
done separately for each season to reflect distinct seasonal dynamics of these assemblages (e.g.,
Reavie'etal"2014aj.o link GLEAM stress variables with phytoplankton data, we created a 5
km buffer (diameter = 10 km) around each phytoplankton samstaimgn, and averaged the N
loading andDreissena abundance values within the bufféhis buffer distance was chosen for
its water quality/biological relevance (P. Yurista, pers. comm.) and to account for the fact that
the actual pixel/cell that a sampling site falls on can be slightly misaligned from projection
conwersions The stressor layers are estimated via propagation from point data, sorayersgi

a larger area reduces the risk that an individual pixel might be an outlier.

Analytical appreaches

Community responses were analyzed using Thresholds IndicatarAnalysigTITAN;
King and*Baker, 2010). This approach combines Indicator Species Analysis (Dufrene and
Legendres1997) and changeint analysis to determine indicator values for each candidate
changepoint along the stressor gradient and then uses bootstrapping to identify reliable indicator
taxa. Community threshold is identified by the synchronous change in abundance of many taxa,
an approackhat.ismore sensitivéhanmethods considering composite metrics (richness,
diversity) omeombimg sensitive and tolerant taX¥aecause it does not aggregate taxa responses
prior to analysigBaker and King, 2010; King and Baker, 201@Q)e8es present in fewer than
four stations (~10% of observed speciesje removed from the analysis. Species data were
log(x+1)-transformed prior to analysis. The following criteria were used to juddersa for
community.thresholds: synchronous shifts in many spatidstrong responses of individual
species (large standardized change in abundance, narrow bootstrapped quawnéls)irtes
acknowledged.that changmint identification is inherently subjectiasd may depend on
frequency of observations across the stressor gradient, sample sistahndmber of taxa
(Dally et al. 2012, Kovalenko et al. 2014). The degree of changeofe)valuesof significant
and reliable indicatons response to each stressor were lmioed in a heatmap visualization
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(NMF package in R, Gaujoux and Seoighe 20a0} cluster analysis was ugechighlighttaxa
with similar responses andentify overlaps among assemblages responding to different
stressorskor instance, if spring and samer assemblage responses to dreissenids were similar,
we would expect these two seasonal assemblage responses to cluster close together. Analyses
were based.on density ddtells/mL), which isappropriate for analyses community
composition usingheseapproaches. All analyses were done in R (version 3.0.2; R Development
Core Team,Vienna, Austria).

Human activityacross large scaés unavoidably confounded with geography, and in the
Great Lakesnost of the agricultural activity and settlement hageurred in the southern part of
the basinDanzet al2007).Due to the resulting differences in stressor distribution as well as
differencessin phytoplankton assemblage composition, we conducted separate analyses for the
northernGreat LakegNGL: Superior, Huron, Michig® and southerreat Lake¢SGL.: Erie,
Ontario). Linear regressions were used to check the relationships among stressors within each
ecoregion..Becauswverallnutrientbudgetseflect nutrienfoadingand water retention time, we
usedANCOWVAuto relate nitrate dynamics to lake retention timeaddition, we tested lake-
specificity ‘of the key species responding to stressor gradients to ensure community changes were
not drivensby biogeographic limitations in species distributions by determining the proportion of
species within each ecoregion which were confined to a single lake

Results

Relationships between the stressors, particulatlyaNing, water nitrate concentrations
andDreissena-abundance, were dependent on ecoregion, seastakandgater retention time
(SI Table 3. In NGL (Superior, Huron, Michigan)here was a significamegative relationship
between water nitrate and largeale estimates of Mading (Fig. 2y =-0.83 and -0.78 in spring
and summer, respectively, p < 0.001). This relationship was mostly due to high water nitrate
concentrationsbut low N loading rates in Lake Superior, althauthiout this lake, itvas still
marginally.significaneand negativér =-0.38, p = 0.060 in spring and r = -0.41, p = 0.040 in
summer). ANCOVA demonstrated that this relationship between water aogdienic-
deposited nitrate was hightprrelated witHake retention time in spring (p < 0.001), but only
marginally so ithe summer (retention time effect.11, see Sl Table 1 for model details).

Dreissena wereabsent irpelagicLake Superior, but even without this lake, there was still a
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215 significant relationship between largeale estimates @reissena abundance andater nitrate

216 concentrations, particularly in the summer @041, p = 0.044 in spring, r =-0.94, p < 0.001 in
217 summer)as well aspring TP (Fig3, r = 0.76, p < 0.001 spring, p = 0.48 summer).Gh S

218 (Erie, Ontario), patterns were quite differenerdawas a positive relationship betweeloaling
219 and spring.but.not summer water nitrate concentrations (r = 0.63, p < 0.001 spring, p = 0.19
220 summer)and a‘positive relationship betweleneissena and water nitrate (Spearman’s D = 1436
221 p=0.002%n"spring, and D = 1778, p = 0.007 in summer). The effect of water residence time was
222 not tested"dueto relatively negligible differences in residence time between Erie and Ontario (2.7
223 and 6 years, compared with 173, 62 and 21 years for Superior, Michigan and Huron,

224  respectively)sStations with the highest nitrate Bnelssena densities were primarily in the

225 Western Basiwf Lake Erie Water TP was not related to any other stressatsiSGL (Fig. 3,

226 Sl Table 2).

227 Despite these distinct stressor profiles ewghin ecoregions, indicator lakspecificity

228 analyses demonstrated that only 8 of 88 (9%) indicator species responsible fos¢hange

229 assemblageswere confined to a single lakbeNGL (S| Table 3. Nearly half of the species

230 were presentat 60% of the sampling statidn the SGL, 30% df15 indicator species were

231 lakespecific. It is therefore likely that observed species responses were in fact driven by

232 stressors.and not biogeographic limitations as many of the sensitive and tolerant species had
233 broad geographic distributions. Overall, phytoplankton species richness had variable

234 relationships with the stressors depending on regiors@asbnThe strongest trends were the
235 declinein richness with increasirgreissena and TP in spring NGL assemblages, and increase
236 with increasing TP and nitrate concentrations in spring SGL assemblages (Fifable2b).

237 There wereehangepoint shiftsin phytoplankton assemblages in response to major

238 nutrients (water, TP and water nitrate) &weissena abundance (gs. 5-7).In general, responses
239 consistentwith the threshold model can be characterized by a large number of individual
240 indicator species and narrow quantile intervals around their change-pomnycases,

241 evidence forssemblag¢hreshold response was not very strong, particularly for sensitive taxa.
242  Stronger evidence of thresholds was observed for ngaiag NGL-sensitive and tolerant,

243 Dreissena-springNGL-sensitive and tolerant, amit eissena-summefNGL-sensitive (Fig. 5, Sl.
244  Fig. 1a;Sl Table4 for change-point locations)trBnger assemblage responses to the above
245 mentioned stressors were observed in spring réthersummer, as indicated by the more
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pronounced assemblage thresholds (more synchronous responses of a greater numbes, of specie
Fig. 5-6) in the NGL, whereas in the SGL this trend was not obvious. Many taxa with
preferences for higher nutrient concetitnas increaseth response to TP and nitrate, but
particularly with TP this change was more gradual.

Assemblages in the NGL responded more stronglyatier nitrateandDreissena in
terms of the number of sensitive and tolerant species changing in abundance eatsingcr
levels of stress. Highest levels of these stressors were associated with distinct assemblages (see
below). Many'more tolerant taxacreasedt higher nutrient concentrations, particularly TP,
than declinedt the sensitive species thheld this wasmost clearly visible witlihe greater
number ofdolerant (red) than sensitive (green) blocks within each TP column)(Fig. 7

Based on cluster analysi§ speciesstressoresponsegFig. 7, top), responses to
nutrients in the southern basire a distinct property of the Great Lakes phytoplankton
assemblage@deftmost 4 variables in cluster analysis). Nitreggponses in the northern basin
(right-most.2 variables) also stand dBased on cluster analysis of the spesiescific
responseotmultiple variables (Figz, clustering on the left) @characterizedO distinctgroups
of taxa with unique combinations of responses along the various gradients of pelagarstre
and waterguality data. We briefly present and discuss these groups below, ackmuptteatyi
smaller taxenomic groupsithin these groups are possible. We provide the details of the
clustering resultsHig. 7) so that readers may further characterize autecological data for taxa, if
desired.

1. Ntolerant (NGL, spring and summer), dreissenid sensitive (NGL, summer). This group of
taxaisstolerant of higher N concentrations in the water. These taxa also tend to occur in
areas that have been less influenced by the dreissenid inv@ssomarium phaseolus,
Monoraphidiumirregulare, Crucigenia quadrata andSynedra filiformis var. exiliswere
among.the species with the strongest stressor responses in this group.

2. Dreissenid sensitive (NGL, spring). Unlike the group above, these taxa are more
spegifically sensitive to dreisseninfsthe spring, includinglephyrion cupuliformae and
Sephanodi scus conspicuepor us.

3. NandP tolerant (SGL, spring). This group of nutrientelerant taxa includes species that
are weltknown indicators of nutrient pollution, such@gclotella meneghiniana (e.g.
Kwandrans et al. 1998) ari@bmphonema olivaceum (Kelly and Whitton 199h
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Cyclotella operculata andCymbella minuta var. silesiaca responédthe strongest along
the nutrient gradient.

. Dreissenid tolerant (NGL), P tolerant (NGL, spring), N sensitive (NGL). This small

group of taxancludesCyclotella michiganiana, Fragilaria crotonensis, Rhodomonas

lens andDiatoma tenue var. elongatum. Based on recent phytoplankton data from Lake
Michigan (the lake with the greatest dreissenid abundaRbedlomonaslens (a
cryptophyte) andFragilaria crotonensis (a pennate diatom), for instance, comprise a
relatively large proportion of the summer assembldgspite losses due to the dreissenid

advance the decade prior (Reavie et al. 2DR14b

. Diverseresponses but generally P and dreissenid tolerant (spring) and N sensitive (NGL,

spring). These taxa apparently have multiple, simultaneesgonsealong the
environmental gradients tested, but a number of known nutoksrant taxa are

included such astephanodiscus alpinus andS. binderanus (Reavie et al. 2013a

. Dreissenid tolerant and N sensitive (NGL, summer). This is another group thaéens

limited-hy waternitrateconcentrationsyhich includes taxa that are known to occur in
the dreissenidtheavy Lake Michigan in the summer (eéRgeudokephyrion millerense;
Reavie et al. 2014a).

. Sressor-specific. While individual taxa havstressoispecific responses, for the most part

these taxa had few responses or did not adequately fit within other grbegs.taxa

may. hold promise for stressor-specific monitoring.

. P tolerant (SGL, summer). This group was largely defined by a unique tolerance to higher

summer phosphorus in the scerth GL Several taxa in this list (e.4ulacoseira
granulata, Cyclostephanos dubius, Microcystis aeruginosa andAphanizomenon flos-
aquae) are weltknown indicators ophosphorus-enriched summer conditions in Lake
Erie (Reavie et al. 2014h)litzschia subacicularis, N. inconspicua andScenedesmus

opaliensis were among the most strongly responding species.

. Dreissenid tolerant and N sensitive (NGL, spring). These taxaincludingStephanodiscus

hantzschii f. hantzschii andRhodomonas minuta, were intolerant of higher N
concentrations. However, these tend to be spring taxa that occur in areald Gf théth

many dreissenids.
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10.N and P tolerant (SGL). These taxa are broadly tolerant to higher nutrients 5@l
including the known eutrophication indicatoyclostephanos invisitatus (Mortensen
2013; Reavie et al. 201Ya

Discussion

Using spatial relationships between phytoplankton assemblage composition and
environmentalvariables, thisudy demonstrates assemblage shifts in phytoplankton
communities‘along major stresgpadientsand identifesspecies which are most responsive on
large scalesvlany nutrienttolerantalgalspeciesabruptly and concurrentincreasd in
abundancewhile oligotrophicspecies declirgg near thechange-points in nutrient gradients and
Dreissena abundance; however, in some cases evidence of community thresholds was not very
strong, andesponses to watautrient concentrationsould notbe estimated frorfarge scale
nutrientloadingdata.Similar change-points in community composition have been previously
observed Iseveralgroups of aquatic organisms in response to urbanization in the surrounding
watersheds+and eutrophicatiddaker and King 2010, Hilderbrand et al. 2010, King et al. 2011,
Smucker et al»2013b, Kovalenko et al. 2014

The.most distinct clusteringas associated with NG[Superior, Huron, Michiganys.
SGL (EriegOntario)partition with manymorespecies respoimay to stressor gradients tine
NGL than in theSGL, likely reflecting the unique characteristicsritrient dynamics and co-
limitation in. the northern and southern regiqdstails below)Stronger assemblage responses in
spring thanrinithe summer could be due to spring nutrients being a better predictor of algal
assemblage-dynamiesirly in the iceéree seasarBy summer, the uptake afailable nutrients
by algae minimizes this signal by having responses limited to a smaller subset of taxa that are
tolerant of nutrient limitation (e.g. cyanophytes in Lake Erie). In addition, summer
phytoplankton.assemblages may be more affected by zooplankton gEaisgena are also
known to elicit.the greatest responses in spring phytoplankatmenstiel et a010,Rowe et
al. 2015).

Nitrogen loading, nitrate concentrations and Dreissenabundance

Water nitrate concentrations were negatively correlatedN\vitadingin the more
oligotrophic northern ecoregioithis may not be surprising becausgateloadingin NGL has
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increased over the past century (Han and Allan 2012) and this is on thefsgater retention

time in these lake€L00+ years in Superior). Indeed, @amcillaryanalysis shows that the
relationship between nitrateadingfrom the atmosphere and nitrate concentrations in the water
are dependent on water retention time. In additieny low phosphorus availability and lower
primary production in NGL (Evans et al. 2011), particularly in Lake Superior, could resul
lower nitrate assimilation and reductjagesulting in highem situ nitrate concentrations despite
the lower loathg rates, Bhough this was not tested directly in this study. This highlights the
potential forsignificant accumulation of nitrates in ulbtagotrophic systems with long water
residence timg even under conditions of low atmospheric inputs. The complex relationship
between Noading and pelagic N dynamics underscores previously discussed difficulty in
predicting ‘nitragen budgeter large lakes due to uneven historic trends in the major input
compartments (Han and Allan 201Zhe NGL are experiencing increasing nitrate
concentrations, particularly prominent in Lake Superior with documenteld Hicreases in the
past century, due to nitrate loadiag)well agn situ nitrification (Sterner et al. 2007) and a long
residenceimey(Sniadt al. 2014); therefore, it is critical to understand phytoplankton responses
along the nitregen gradient in the context of other nutrient limitations.

Ourresults demonstrate that distinct phytoplankton assemblages are associated with low
and high.endsf the nitrogen gradienT.he regative relationshipetweenn situ nitrateand
Dreissena densitiedn the north couldndicate thatheN cycle is affectedby invasivefilter-
feeding musseld hese invasive musseasesignificant playesin nitrogen remineralization as
well as sequestration and biodeposition (Mellina et al. 1995, Bruesewit2608|0zersky et
al. 2015), yet:the balance among those processes is likely dependent on mussel denstties, grow
ratesand lake morphometry. Highelssenid densities in areas with greater N loadtogéd
result in higher N sequestration and lower availabilitgieolved inorganic nitrogen, but our
study was. not. designed to investigate this connection in more @etagsena also has direct
effects on phytoplankton communities, particularly noticeable in reduction afyspri
phytoplankten blooms (Rowe et al. 2015) and shifting assemblage composition. Changes in
assemblage'eomposition ocalure to direct filtering of algae from the water coluand mussel
preferences focertain types of algae (e @yclotella), whereas others are rejected
pseudofecege.g.Microcystis, Lavrentyev et al1995,Makarewicz et al1999). Algal sinking
rates could also be important (Bramburger and Reavie) 2Rié/ious studies demonstrated
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spring decline in diatom taxékely as aresult of reduceg@elagic nutrients and selective
consumption (Reavie et al. 2014B} dreissenid densities (and filtering rates) increase above a
certain threshold, pelagic phytoplankton could be shifting to more buagdrfdr more tolerant

of lower pelagic nutrients (e.ghrysolykos planktonicus). Overall,differentphytoplankton
communityresponses tevaternitrate concentrations indicate potenigstemspecific
differences,inN<Cycling, nutriento-limitation andeffects of dreissenids, and it would be

important todisentangle independent effect®i@i ssena and nitrates in future studies.

Phosphorus

Observed community responses to TP concentrations are interesting because tdey provi
insight intopotential change-points at the lower end of the phosphorus gradagrlinearalgal
responses to phosphorus have been previously observed in sydteimgher nutrient
concentrations such as small lakegy( Scheffer et al. 1997, Smith 2014, Giblin et al. 2014,
Wang et al. 2014) and streams (Smucker et al. 2013b). However, many of the traditional
alternativerstable states studikg not closely examine species shifts within the phytoplankton
assemblage, armbnsideringndividual species changmints may be helpful for anticipating
communitysvide shifts.lt is interesting thabur community change-points, although not very
prominenjparticularly for sasitive species, were below the proposed target values based on the
GL Water Quality Agreemen8 ug/L TP for spring phytoplankton i®GL vs.10 ug/L proposed
as the target for Ontarend Eastern and Central Ef[2ePinto et al. 2006). We also note that the
dominant ggmmunity change-points along the phosphorus gradient vary between spring and
summer, whieh'is not surprising given the substantial differences betweeasbase terms of
assemblage composition and water condition. While mechanisms $ergsbasonal differences
in change:-points are probably quite complex, this finding emphasizes that one must account f
temporal variation when characterizing assemblage responses based on synoptic data.

Phospheruss a welkknown driver of phytoplankton abundance and composition in the
Great Lakesi(e.g. Makarewicz 1993, Shaw Chraibi et al. 2014). Our results inuhtaket
abundance of,several taisclearly correlated with variables other than (or in addition to)
phosphorus (e.@yclotella ocellata is tolerant of high P, but is apparently sensitive to higher
dreissenid abundance). Future developments may use such information to refine inthdaier
by accounting for or eliminating species with no apparent response along the gradiemesf int
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(e.g. Racca et al. 2003) or better yet, considering the context of multipkostradsat
simultaneously determine patterns in the observed phytoplankton assemblages.

Indicator species

Despite.the lakspecificity ofwater qualityand GLEAM stressors, some general species
responses\were observed across large areas of the basin. In N&pdeite differences in
assemblages'were not the primary driving force behind assemblage shifts alonggsbe stres
gradients,"as‘indicated by a low proportion of lageesfic indicators. This comparison is more
complicated in the SGL because the number of stations in the more nlitmiegd-Lake Ontario
was smaller than in Lake Erie, the latter also being known for its unique specipssition
(among the“Glss) and community dynamics, such as dense spring diatom blooms (central basin)
and summer cyanobacterial blooms (western b@Rieqvie et al. 2014b). In addition, Lake Erie
experienced complex dynamics of zebra and quagga mussel populations over the passfew year
(Karatayev.et al. 2015b).

Wedidentifiedclusters of species that could be related to particular streasdtbgere is
potential touserthis information to better understand driving factors behind recent shifts in
phytoplankton assemblages. Consider&oent rise in the relative abundance of the centric
diatomsCyelotella sensu lato in the Great Lakes (Shaw Chraibi et al. 2014) and stheifying
northern lakes worldwide (Ruhland et al. 2008). This phenomenon has been repeatedly
associated with receatmospheric and water warming, but additicarad often relatethctors
such as atmespheric nutrient deposition, water clarity and water columitystdbd need to be
considered«(Saros et al. 2013). As noted in nearby lakes (e.g. Siskiwit Lake on Isle Rakale, L
Superior; Saros et al. 2012), the role of N in determi@ygotella abundance in the Great
Lakes is complexThe simple correlation between warming &ydlotella has been recognized,
but given concurrent increases in N loading in many regions (Holtgrieve et al. 2@%ijgte
apart driving,stressors is difficult. From our dat#s clear thatumping allCyclotella as
preferring_higher N would be erroneous as some taxa are tolerant of higher comeentead).

Cyclotella oeellata) while others are sensitive (e@yclotella comensis).

Summary
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We show that pelagic Great Lak@sytoplankton communities exhibit change-point
responses tm situ nutrient concentratiorend abundance of invasive mussels across large
geographic areas as taxa adapted terlawient conditiongrereplacedalong the nutrient
gradientby species with higher nutrient optima. The relationship between water nitrate
concentrations and nutrient loadiwgsdependent on ecoregion, season and lake water retention
time, indicating limited ability to forecast smalitale nutrient dynamics. Potential management
applications'of'this approach and the present findings include development of blylogica
relevant nutrient criteria and more complete understanding of assemblage responses-in a multi
stressor environment. This approach can be adaptédtdioe impacts of stressors such as
nutrient loadsyinvasive species and anthropogenic climate change, as well as more precise
characterization of assemblage responses during state shifts.
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Figurelegends

Fig. 1. Mapof pelagic sampling stations in the Great Lakes superimposed on estimates of nitrate
loading(percentile/quintiles) across the bastee main text and Allan et al. (2013) for more

details on nitregen deposition and USEPA (2010) and Reavie et al. (2014a) for moseotetail

the sampling stations

Fig. 2.Relationship between water nitrate ahébading andDreissena densitiesn Northern

(SU - Superior;"HU- Huron, Ml —Michigan)andSouthern Great Laké&R — Erie, ON—

Ontario) Transformedreissena and N loadingestimatesre presented as unitless measures

Fig. 3. Relationship between total phosphorusraissena and N loading in KL (SU-—

Superior; HU =Huron, M| Michigan)and $L (ER- Erie, ON— Ontario) Note the large
differences in scale in the two regions. Lake Superior was excluded from statistical testing of TP
vs. Dreissena relationship. TransformeBreissena and N loadingestimates are presented as
unitless measures.

Fig. 4. Relationships between phytoplankton species richness and Dreissena, TP aral nitrate
NGL (SU—"Superior; HU — Huron, Ml Michigan)and $L (ER— Erie, ON— Ontario)

Fig. 5. Phytoplankton community threshold$\NGL(Superior, Huron, Michiganh response to
Dreissena.densitieswater nitrateand TP in @) spring and b) summer. Change-points (0.05-0.95
bootstrap quantile intervalaye showrfor significant sesitive (filled, left sidg and tolerant

(open) taxa. Indicator value p-value cut-off = 0.05; purity and reliability cut-oi8=
(consisteney'with which indicator taxa are assigned to each indicator grdupmsistency of
significant'indVal scores acrobsotstrap replicatesgee Sl Tabl® for species codes and
authoritiesNote that xaxis is adjusted to display the entire range of observed stressor values for
each scenario.

Fig. 6. Phytoplankton community thresholdsSGL (Erie, Ontario)n response t®reissena,
waternitrateand TP in a) spring and b) summer. Change-points (0.05-0.95 bootstrap quantile
intervals) are'shown for significant sensitiilgd, left side) and toleranbper) taxa.

Fig. 7. Heatmap of species response to stressaiuding TP nitrate N loading andDreissena,

by NGL and SGLColor values reflect relative change in abundgstandardized indicator

values, or zscoresYor each species and stressor, ranging from strongly responding sensitive or

declining (greenjo tolerant (red) species. Species overlaps across stressors areisimgwn
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cluster analyis, which highlightggroups of species with similar responses, e.g.-ngbgt four
columns are a cluster of species declining in response to nitrate/increagisgadnse to
Dreissenadluster numbers match those referred to in theg.tEach column is a result of a
separate TITAN analysis. Note that standardization is widsh (withircolumn), so

comparison,ef slight variations in color intensity (i.e. strarajtand specificity of response) is
meaningful within each column but less so across colugess Figs. % for change-point

locations forindividual taxd-dorizontal axes stressor abbreviations are a combination of stressor
(NOy —waternitrate concentrations, NloadN loading, TP -+n situ total phosphorus, Dreis —
Dreissena densities), season (spispring, sum — summer) and region (NGL, S—SGL).
Zoomableversion is available as Sl Fig. 2.

Supplemental I nfor mation

Sl Fig. 1. Retref communitylevel sums of taxospecific chang@oints along nitrate, TP and
Dreissena gradients.

Sl Fig. 2.*Zeomabledatmap of speciggsponsg to stressors.

Sl Table 1. Details of ANCOVA model

Sl Table 2Summary of statistical comparisofor TP and species richness

S| Table3. Jistof lakespecific species

Sl Tabled4."Summary of phytoplankton changeint locations with respect to all stressors
S| Table 5Species codes, Latin names and reference sources

Fig. 1
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