BOYS, EARLY RISK FACTORS FOR ALCOHOL PROBLEMS, AND THE DEVELOPMENT OF THE SELF: AN INTERCONNECTED MATRIX

LEON I. PUTTLER

Michigan Longitudinal Study and University of Michigan

HIRAM E. FITZGERALD

Michigan State University

MARY M. HEITZEG AND ROBERT A. ZUCKER

University of Michigan

ABSTRACT: Alcohol-use disorders are a major public health issue worldwide. Although drinking and problematic alcohol use usually begins during adolescence, developmental origins of the disorder can be traced back to infancy and early childhood. Identification of early risk factors is essential to understanding developmental origins. Using data from the Michigan Longitudinal Study, an ongoing, prospective, high-risk family study, this article summarizes findings of family context and functioning of both children and parents. We draw attention to the development of the self, an understudied aspect of very young children being reared in alcoholic families that exacerbates exposure to high childhood adverse experiences. We also provide evidence demonstrating that young boys are embedded in a dynamic system of genes, epigenetic processes, brain organization, family dynamics, peers, community, and culture that strengthens risky developmental pathways if nothing is done to intervene during infancy and early childhood.

Keywords: alcohol-use disorders, risk, developmental pathways, externalizing behavior, intersubjective self

RESUMEN: Los Trastornos por el Uso de Alcohol (AUD) son un asunto de salud pública de extrema importancia en todo el mundo. A pesar de que el consumo y uso problemático del alcohol usualmente comienza durante la adolescencia, los orígenes de desarrollo del trastorno pueden ser rastreados en la infancia y la temprana niñez. La identificación de tempranos factores de riesgo es esencial para comprender los orígenes del desarrollo. Usando información del Estudio Longitudinal de Michigan, un estudio de familia de alto riesgo, en proceso y de prospecto, este artículo resume los resultados del contexto familiar y funcionamiento tanto de los niños como los progenitores. Llamamos la atención al desarrollo del yo interno, un aspecto poco estudiado de niños muy pequeños que son criados en familias de alcohólicos lo cual agrava el estar expuesto a altamente adversas experiencias de niñez. También proveemos evidencia que demuestra que los pequeños varones se encuentran metidos en un sistema dinámico de genes, procesos epigenéticos, organización cerebral, dinámicas de familia, compañeros, comunidad y cultura que refuerza las rutas riesgosas de desarrollo si no se hace nada para intervenir durante la infancia y la temprana niñez.

Palabras claves: trastornos de uso del alcohol, rutas de desarrollo, conducta externalizada, yo intersubjetivo

RÉSUMÉ: Les Troubles de l'Usage d'Alcool (TUAL) constituent un problème majeur de santé public dans le monde entier. Bien que le fait de boire et l'utilisation problématique de l'alcool commence d'habitude durant l'adolescence, les origines développementales de ce trouble peuvent être retracées à la petite enfance et au bas âge. L'identification de facteurs de risque précoce est essentielle à la compréhension des origines développementales. Utilisant des données de l'Etude Longitudinale du Michigan, une étude prospective et continue sur les familles à haut risque, cet article résume les résultats de contexte familial et du fonctionnement d'à la fois les enfants et les parents. Nous attirons l'attention sur le développement du self, un aspect peu étudié de très jeunes enfants grandissant dans des familles alcooliques qui exacerbe l'exposition à des expériences adverses durant la haute enfance. Nous présentons également des preuves démontrant que les jeunes garçons sont ancrés dans un système dynamique de gènes, de processus

This research is currently being supported by Grants R01 AA07065 and R01 AA12217 from the National Institute on Alcohol Abuse and Alcoholism and Grant R01 DA039112 from the National Institute on Drug Abuse, with previous support also from the National Institute on Drug Abuse (R01 DA027261). We have no conflicts of interest.

Direct correspondence to: Leon I. Puttler, Michigan Longitudinal Study, 4660 S. Hagadorn Road, Suite 620, East Lansing, MI 48823 and Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109; e-mail: puttlerl@umich.edu.

INFANT MENTAL HEALTH JOURNAL, Vol. 38(1), 83–96 (2017)

© 2017 Michigan Association for Infant Mental Health View this article online at wileyonlinelibrary.com.

DOI: 10.1002/imhj.21618

épigénétiques, d'organisation du cerveau, de dynamiques familiales, pairs, communauté et culture qui renforce les chemins développementaux risqués si rien n'est fait pour intervenir durant la très petite enfance et la petite enfance.

Mots clés: troubles d'utilisation de l'alcool, chemins développementaux, comportement d'externalisation, self intersubjectif

ZUSAMMENFASSUNG: Alkoholgebrauchsstörungen (Alcohol Use Disorders, AUDs) sind ein zentrales weltweites öffentliches Gesundheitsproblem. Obwohl das Trinken und der problematische Alkoholkonsum gewöhnlich während der Adoleszenz beginnen, können die Entwicklungsursprünge der Erkrankung bis in die frühe Kindheit und das Säuglingsalter zurückverfolgt werden. Die Identifizierung früher Risikofaktoren ist für das Verständnis der Entwicklungsursprünge entscheidend. Unter der Verwendung von Daten aus der "Michigan Longitudinal Study", einer laufenden, prospektiven Studie mit Hochrisiko-Familien, fasst dieser Artikel die Ergebnisse des Familienkontextes und des Funktionierens der Kinder und Eltern zusammen. Wir lenken die Aufmerksamkeit auf die Entwicklung des Selbst, einen von der Wissenschaft vernachlässigten Aspekt bei Kleinkindern, die in Familien mit Alkoholproblematik aufgezogen und nachteiligen Erfahrungen in der Kindheit verstärkt ausgesetzt werden. Wir zeigen auch, dass Jungen im Kleinkindalter in ein dynamisches System von Genen, epigenetischen Prozessen, Hirnorganisation, Familiendynamik, Gleichaltrigen, Gemeinschaft und Kultur eingebettet sind, die risikoreiche Entwicklungspfade stärken, wenn nichts unternommen wird, um im Kleinkindalter und in der frühen Kindheit zu intervenieren.

Stichwörter: Alkoholgebrauchsstörungen, Risiko, Entwicklungspfade, externalisierendes Verhalten, intersubjektives Selbst

抄録: アルコール使用障害 Alcohol Use Disorders (AUDs) は、世界中で主要な公衆衛生の論点である。飲酒と問題あるアルコールの使用は思春期に始まるとはいえ、障害の発達的起源は乳児期と早期児童期までさかのぼることができる。早期のリスク要因の同定は、発達的起源を理解する上で必須である。現在進行中の、前向きの、ハイリスク家族研究であるミシガン縦断研究のデータを用いて、この論文では、子どもと親両者の家族のコンテクストと機能についての所見を要約する。私たちは、子ども時代の高度に有害な経験への暴露を悪化させる、アルコール家族の中で育てられた非常に幼い子どもについて、今まであまり研究されてこなかった側面である、自己の発達に注意を向ける。私たちはまた、幼い男児が、遺伝子、エピジェネティックな過程、脳の組織化、家族力動、同胞、コミュニティ、そして文化に組み込まれていることを示す根拠も提供する。それは、もし乳児期と早期児童期に介入が何もなされなければ、リスクのある発達経路を強化する。

キーワード: アルコール使用障害,リスク,発達経路,外在化行動,間主観的自己

摘要: 酒精使用障礙 (Alcohol Use Disorders, AUD) 是全球主要的公共衛生問題。雖然飲酒和有問題的酒精使用通常在青春期開始,但是疾病的發展起源可以追溯到嬰兒期和兒童早期。識別早期風險因素對理解發展起源尤其重要。本文使用密歇根州縱向研究的數據,一個持續的、前瞻性的、高風險的家庭研究,概述親子家庭環境和功能。我們提請注意自我的發展,在酒精問題家庭養育非常年輕的孩子,會加劇兒童暴露於不良經歷。我們還提供證據表明,如果沒有在嬰兒期和幼兒期做任何干預,年輕男孩將嵌入基因、表觀遺傳過程、大腦組織、家庭動力學、同輩、社區及文化的動態系統,加強風險發展途徑。

關鍵詞: 酒精使用障礙,風險,發展途徑,外化行為,主體間自我

ملخص: اضطرابات استخدام الكحول (AUD) تعتبر مشكلة كبيرة من مشاكل الصحة العامة على مستوى العالم. بالرغم من أن مشاكل شرب الكحوليات عادة ما تبدأ أثناء المراهقة فإن أصول ظهورها وتطورها قد يعود أثره إلى فترة الرضاعة والطفولة المبكرة. التعرف على عوامل المخاطرة المبكرة مسألة ضرورية لفهم هذه الأسباب التطورية. استخدم في البحث بيانات من دراسة ميشيغان الطولية ودراسة استطلاعية لعائلات ذوي درجة مخاطرة عالية. وتلخص النتائج تفاعل وأداء الأطفال والوالدين في سياق العائلات. كما تركز الدراسة على تطور الذات عند صغار الأطفال الذين يتربون في عائلات تتناول الكحول مما يضاعف من فرصة تعرضهم لتجارب سلبية أثناء الطفولة. ونقدم دلائل توضح أن الأولاد الصغار ينشأون في نظام ديناميكي من الجينات والعمليات الأسرة والأقران والمجتمع والثقافة. هذا النظام يقوى المسارات المحفوفة بالمخاطر أثناء النمو إذا لم يتم التدل وقت الرضاعة والطفولة المبكرة.

كلمات مفتاحية: اضطرابات استخدام الكحول - المخاطرة - المسارات التطورية - سلوك التخريج - النفس الذاتية

* * *

Harmful use of alcohol results in disease as well as significant social and economic burden worldwide (World Health Organization, 2014). In fact, the 2014 World Health Organization Global Status Report estimated that there were 3.3 million deaths (5.9% of all global deaths) attributable to alcohol consumption in 2012, and the overall global burden of disease and injury from alcohol use was 5.1%. Historically, the study of alcohol use disorders (AUDs) focused on adults, with emphasis on the origins of AUDs

as emergent in adolescence. Beginning in the latter part of the 20th century, numerous longitudinal studies with origins in infancy and early childhood began to provide empirical evidence that the etiology of antisocial behavior (Moffitt, Caspi, Rutter, & Silva, 2001), aggression and violence (Shaw & Gilliam, this issue), conduct disorder (Conduct Problems Prevention Research Group, 2013), borderline personality disorder (Fonagy, Luyten, & Strathearn, 2011), alcohol-use disorders (Eiden, Edwards, & Leonard, 2007), and

attachment disorders (Sroufe, Egeland, Carlson, & Collins, 2005) may be grounded in organizational dynamics that first show up in infancy and early childhood. Regarding AUDs, research from the past several decades also has focused attention on developmental origins that can be traced to the period of infancy and early childhood (Zucker, 2014; Zucker et al., 2006), with actual drinking onset starting during the transitional years from childhood to adolescence (Donovan et al., 2004; Zucker et al., 2006).

In this article, we draw upon mostly previously published data from the Michigan Longitudinal Study (MLS; Zucker et al., 2000) to provide insights into risk factors for boys, particularly those who are exposed to adverse childhood experiences (ACEs) in relation to parental drinking and comorbid psychopathology (Loukas, Fitzgerald, Zucker, & von Eye, 2001; Poon, Ellis, Fitzgerald, & Zucker, 2000), and family dynamics (Ellis, Zucker, & Fitzgerald, 1997). We first provide a brief overview of AUD as an introduction to the MLS. We then summarize findings from the MLS within the context of family dynamics and child functioning, with a larger discussion of the development of the self and cognitive schema because they are understudied components in the alcohol literature. While exposure to ACEs affects both boys and girls (e.g., Fitzgerald, Zucker, Puttler, Caplan, & Mun, 2000), our focus in this article is on boys at risk for AUDs and comorbid psychopathology because the problems are still about twice as likely in boys and, perhaps more important, because the dynamics of these relationships appear to be less complex and are somewhat better understood than they are for girls (Nolen-Hoeksema, 2004). Nolen-Hoeksema (2004) suggested that there appears to be an absence of many of the risk factors for alcohol use and abuse for girls, as well as a greater sensitivity to the negative consequences for females.

As defined in the of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association, 2013), AUD is the current nomenclature for misuse of alcohol. The disorder involves a problematic pattern of alcohol use leading to significant distress and requiring two of a possible 11 symptoms co-occurring within a 12-month period to meet diagnostic criteria (see Table 1). In the United States, using data from the National Epidemiologic Survey on Alcohol and Related Conditions-III (Grant et al., 2014), national estimates of the prevalence of AUDs for adults 18 years and older during 2012 and 2013 was 13.9% for the past 12 months, and 29.1% for a lifetime diagnosis (Grant et al., 2015). The prevalence of AUDs is highest during the emerging adult years (18-29), and important to this special issue regarding "boys at risk," AUDs are still more common among men than among women, with adjusted odds ratios of approximately 2:1 (Grant et al., 2015).

It was not until the 1980s that a paradigm shift began, with investigators positing that AUDs emerged from developmental pathways beginning, or at least identifiable, as early as infancy rather than when they might be expressed during early adolescence (Zucker, 2014). Toward the end of this decade, several longitudinal studies began of children at risk for alcohol and substance-use

TABLE 1. Eleven Symptoms of Alcohol-Use Disorder (AUD); Mild AUD (presence of 2–3 symptoms), Moderate (4–5 symptoms), Severe (6 or more symptoms)

- Alcohol is consumed in larger amounts or over a longer period than was intended.
- There is a persistent desire or unsuccessful effort to reduce or control alcohol use.
- 3. Significant time is spent trying to obtain alcohol, use it, recover from its effects.
- 4. Individual craves or has a strong desire or urge to use alcohol.
- Alcohol use results in a failure to meet obligations at work, school, or home.
- Continued alcohol use despite having persistent or recurrent social or interpersonal problems caused or exacerbated by the effects of alcohol.
- 7. Important social, occupational, or recreational activities are given up or reduced because of alcohol use.
- Individual continues to use alcohol in situations that are physically hazardous.
- Alcohol use is continued despite knowledge of having a
 persistent or recurrent physical or psychological problem that
 is likely to have been caused or exacerbated by alcohol.
- 10. Tolerance:
 - A need for markedly increased amounts of alcohol to achieve desired effect.
 - A markedly diminished effect with continued use of the same amount of alcohol.
- 11. Withdrawal syndrome is experienced.

Adapted from the American Psychiatric Association (2013), *Diagnostic and Statistical Manual of Mental Disorders* (5th ed.). Arlington, VA: American Psychiatric.

disorders due to a positive family history of alcohol problems; a significant risk factor for adult AUDs (e.g., see Chassin, Rogosch, & Barrera, 1991; Sher & Rutledge, 2007; Zucker et al., 2000). This developmental perspective stimulated exploration of the pathways of risk for early antecedents and intervening mechanisms of AUDs (Hussong et al., 2007), including pathways that included equifinal as well as multifinal outcomes. Equifinality refers to different pathways leading to the same endpoint (in this case, AUD), and multifinality refers to the same pathway resulting in different expressed outcomes (e.g., AUD, delinquency, antisocial behavior, or combinations of comorbid psychopathologies). Our current understanding of these pathways suggests that facing many individuals who go on to develop AUDs is a complex and dynamic system of genes, epigenetic processes, brain, family, peers, community, and culture. This system undergoes change as development proceeds and enhances the risk for future problems in these individuals if nothing is done to disrupt the risky pathways. Thus, both equifinal and multifinal pathways are operative.

THE MLS

The MLS (Zucker et al., 2000) is a prospective, high risk for AUD, other substance-use disorders (SUDs), and comorbid psychopathology family study that began in the mid-1980s and is still ongoing. The MLS was originally conceived as an opportunity to

longitudinally follow children and their parents even before birth, but was for logistical and epidemiological reasons later changed to start with a focus on preschool-aged boys. The early specific aims were to map the evolution of risk and protective factors involved in the development of AUDs, to identify the evolution of alcohol-specific learning in young children, to explore the development of risk among alcoholic subtypes, and to specify the determinants of diverse pathways over the life span. It was expected that as we gained such understanding, policy making would be influenced, and new prevention and intervention programs would be established.

To achieve these goals, risk level of the offspring in the MLS was varied through recruitment of a population-based sample that differed in level of AUD among the fathers (Zucker et al., 2000). The highest risk group of the 466 families recruited into the study had a father who was a drunk driver at initial recruitment, with at least a 0.15% blood alcohol level, recruited from all district courts blanketing four counties within mid-Michigan. Other inclusionary criteria were that the parents be currently coupled and have a 3to 5-year-old son who was the biological child of both parents. The medium risk group was uncovered during neighborhood canvassing for control families and included fathers meeting AUD criteria, with both parents again coupled and having a 3- to 5-yearold biological son. In both the court- and the community-recruited alcoholic groups, the mother's history of having a substance-use disorder was free to vary. The lowest risk group was an ecologically comparable set of control families accessed via door-to-door canvassing in the same neighborhoods where the court alcoholics lived. However, for this group, neither parent met criteria for an AUD or SUD as an adult. Again, the parents needed to be coupled and have a 3- to 5-year-old biological son. Subsequently, all full biological male and female children of the two parents from all three groups who were within 8 years of age of the original targeted preschool-aged son were enrolled.

The MLS involves repeated measurement for all family members of behavioral and psychological functioning, environment, substance use and problems of use, and psychiatric symptoms. Full-wave assessments take place every 3 years. To shorten an otherwise 3-year retrospective report, an annual assessment on just the youth occurs between the ages of 11 and 23 for a subset of important variables. The comprehensive measurement model was designed to evaluate multiple content areas for all study participants, at multiple time points, that would allow for comparisons of continuities and discontinuities over time and that could take into account normative developmental progression. In addition to psychosocial data, as the study continued, additional data collection began probing neuropsychological functioning (primarily executive functioning), brain functioning through the use of fMRI (to understand the neural systems underlying risk), genetic markers of risk (assessed via blood or saliva assays), and a small study of sleep functioning in a subset of the children. Currently, the majority of the original targeted sons are now aged 27 to 35, although many are still younger along with many of the later recruited siblings.

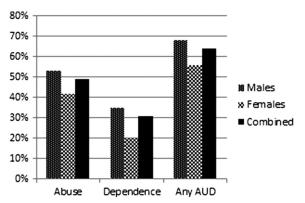


FIGURE 1. Rates of *DSM-IV* alcohol-use disorders in the Michigan Longitudinal Study young adults ages 18–23.

Before moving into the findings from the earlier years of the MLS, it is worth taking a quick look at the level of AUDs in the MLS child sample as they enter into early adulthood. Figure 1 shows the rates of a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (American Psychiatric Association, 1994) diagnosis at ages 18 to 23 years for study participants who have reached at least age 23 to date. At these ages, 49% of the sample (53% for males, 42% for females) make a positive diagnosis for Alcohol Abuse, 31% (35% for males, 20% for females) make a diagnosis of Alcohol Dependence, and 64% of the sample (68%) for males, 56% for females) make a positive diagnosis for an AUD (either Abuse and/or Dependence during that age range). These data are from 534 current participants (380 males, 154 females), about one fourth of the child sample. Not surprisingly, due to the high-risk design of the MLS, the AUD among MLS participants is much higher than the national rates of 18- to 29-year-olds from the general U.S. population in the early 2000s, where about 7% met abuse criteria and 9% met dependence criteria (Grant et al., 2006). Also the higher male-to-female ratio usually found in population studies is not as large in the MLS sample.

To expose the reader to the complexity of what can take place developmentally to reach these levels of AUDs, Figure 2 shows a heuristic model involving multiple levels of influence at each stage and across time (Zucker, Hicks, & Heitzeg, 2016). The model involves genes, brain response/reactivity systems, intermediate alcohol nonspecific phenotypes (encompassing personality/temperament and behavior), and environmental influences leading first to the initiation of alcohol use and culminating in the occurrence of an AUD (depicted as SUD since AUD is but one of the SUDs). Taking a step back, however, we turn next to examine data that helped contribute to the development of the model depicted in Figure 2.

FAMILY-CONTEXT IMPACT DURING THE CHILD'S PRESCHOOL YEARS

It is well-known that the impact of living in a stressful family environment has the potential to negatively impact child development

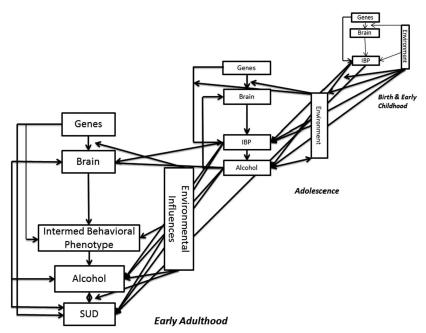


FIGURE 2. Developmental systems framework for the development of alcohol use disorder: A heuristic model of the flow over time. SUD = substance-use disorder; IBP = intermediate behavioral phenotype.

Source: Zucker, Hicks, & Heitzig (2016).

TABLE 2. Parent Psychopathology as Indicators of Family Psychosocial Adaptation During the Early Child-Rearing Years among the Michigan Longitudinal Study Participants (boys at ages 3–5)

	Court Recruited $(n = 158)$ $M (SD)$	Community Recruited $(n = 60)$ $M(SD)$	Controls $(n = 90)$ $M(SD)$	F
Father Psychopathology				
Beck Depression	3.04 (3.19)	2.47 (2.60)	1.85 (2.11)	4.95**a
Hamilton Depression	15.54 (10.22)	13.37 (12.89)	7.82 (7.11)	16.32***ac
Child Antisociality	11.69 (7.78)	8.53 (4.74)	6.49 (4.51)	18.32***abc
Adult Antisociality	12.18(7.97)	7.71 (4.11)	5.35 (3.46)	33.73***abc
LAPS	11.24 (2.00)	10.19 (1.68)	7.70 (2.01)	89.94***abc
GAF	53.64 (10.05)	63.39 (8.62)	67.38 (10.27)	57.33***abc
Mother Psychopathology				
Beck Depression	3.60 (3.54)	2.57 (2.22)	2.97 (3.33)	2.29*b
Hamilton Depression	17.54 (10.82)	16.67 (14.27)	12.95 (10.81)	4.46*ac
Child Antisociality	8.17 (6.60)	6.10 (4.17)	4.65 (3.41)	11.98***abc
Adult Antisociality	6.56 (4.94)	4.96 (3.27)	4.34 (3.71)	12.09***a
LAPS	10.43 (1.88)	10.23 (1.30)	9.11 (1.25)	8.83***ac
GAF	57.67 (11.28)	63.35 (7.45)	66.13 (9.85)	19.78***ab

LAPS = Lifetime Alcohol Problem Score; GAF = Global Adaptive Functioning (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Axis V). *p < .05. **p < .01. ***p < .001.

(Fitzgerald, Puttler, Refior, & Zucker, 2007; Fitzgerald, Wong, & Zucker, 2013; Weatherston & Fitzgerald, 2010). One factor often contributing to this is parent psychopathology (Zucker, 1986). As can be seen from Table 2, the MLS recruitment strategy resulted in a sample of families with different levels of parent psychopathology in the homes in which these young boys were being raised (Zucker et al., 2000). Generally, parents in the alcoholic families

were functioning at lower levels than were control families on various psychopathology indicators, with the lowest functioning most often seen in the highest risk families (i.e., those recruited from the courts). This was seen among fathers in terms of their antisocial behavior both as children and adolescents, the life-severity of their depression, their history of lifetime alcohol problems, and their overall low global adaptive functioning. Among mothers,

^aCourt > Control. ^bCourt > Community. ^cCommunity > Control.

those from court-recruited families had lower functioning in these areas as well, although the contrast between those from the community-recruited alcoholic families and control families was not as stark. Although recruitment was not based on mother's alcohol problems, other than that mothers in control families could not have substance problems, the fact that mothers' functioning also was poorer in the alcoholic families indicated assortative mating, or was the result of living with a more damaged partner (Nolen-Hoeksema, Wong, Fitzgerald, & Zucker, 2006; Zucker et al., 2000). Such family-level indicators add to the ecological risk environment for young children growing up in these homes, in effect creating high levels of ACE.

Other environmental stress factors that likely influenced both distal and proximal outcomes for the offspring also were found early on in the MLS families. The alcoholic families had more troubles in job-related, financial, and legal matters, and also were lower in socioeconomic status (Fitzgerald & Zucker, 1995). Negative marital interactions (Floyd, Cranford, Klotz-Daugherty, Fitzgerald, & Zucker, 2006; Cranford, Floyd, Schulenberg, Fitzgerald, & Zucker, 2011), father–son conflict (Loukas et al., 2001), poorer quality parent–child interactions (Whipple, Fitzgerald, & Zucker, 1995), high family residential mobility (Buu et al., 2007), and neighborhood stress (Buu et al., 2009) also characterized families who were of higher risk for AUD and comorbid outcomes.

CHILD FUNCTIONING AND EARLY RISK INDICATORS

Although the family, both in terms of environmental and genetic influences, provides initial risk components for the development of AUDs, even early on child personality, temperament, and behavioral factors are pertinent. Importantly, these are not just the consequences of parental risk, but contribute to risk levels themselves as development ensues over the life span. In addition to results from the MLS, in this section we also use results from the Buffalo Longitudinal Study (BLS), which followed a sample of alcoholic and nonalcoholic families beginning when the children were 10 months old (Eiden, Chavez, & Leonard, 1999; Eiden, Edwards, & Leonard, 2002), to help demonstrate other child characteristics which are likely distal factors along the pathways to an eventual AUD outcome. Results from the BLS showed that infants from alcoholic homes generally had more insecure attachments than did children from nonalcoholic homes, and in homes where both parents had drinking problems and antisocial behavior and depression, the incidence of disorganized attachment was 30% (Eiden et al., 2002).

Regarding children's temperament, both the BLS and the MLS showed differences between children reared in an alcoholic environment and children not reared in such situations. The BLS results showed that infants of alcoholic fathers were more likely to be impulsive and have difficult temperaments than were children of nonalcoholic fathers (Eiden et al., 1999; Fitzgerald & Eiden, 2007). The MLS results showed more impulsiveness in young boys of alcoholics and also higher activity, shorter attention spans, and higher reactivity in these boys, which later predicted higher

levels of externalizing behavior (Fitzgerald & Eiden, 2007; Loukas et al., 2001). In addition, boys with parents with two or more lifetime psychiatric diagnoses, tended to have higher externalizing behavior problems and activity levels, shorter attention spans, and higher reactivity (Mun, Fitzgerald, von Eye, Puttler, & Zucker, 2001). Similarly, in the BLS, boys with alcoholic fathers showed lower levels of effortful control than did boys with nonalcoholic fathers (Eiden, Edwards, & Leonard, 2004, 2007).

In terms of what actual brain mechanisms might be involved that impact the occurrence of this behavior, recent fMRI studies from the MLS have suggested that an attenuated deactivation of the left ventral striatum may lead to inappropriate motivational responding and thus may be a preexisting risk factor of familial risk of alcohol through the externalizing pathway (Heitzeg, Nigg, Yau, Zucker, & Zubieta, 2010), that activation of the nucleus accumbens increased as a function of externalizing problems among children of alcoholics (COAs; Yau et al., 2012), and that maturational trajectories that are inconsistent with normal response inhibition development, particularly in the right hemisphere, may be a contributing factor for subsequent problem substance use (Hardee et al., 2014).

An advantage, as well as a disadvantage, of doing longitudinal research is that the field changes, with new knowledge in the measurement of constructs, the analytic possibilities, and theory as a function of paradigm shifts. Early MLS analyses, when the children were between the ages of 3 to 5 years, mostly used COA status as the primary grouping variable. Focusing on risk in this manner, and consistent with other extant literature, we noted that early findings from the MLS showed significant differences between 3- to 5-year-olds who were COAs and those who were not; the COAs had higher levels of externalizing and internalizing behavior, lower intellectual functioning, and higher levels of difficult temperament (Fitzgerald et al., 1993; Puttler, Zucker, Fitzgerald, & Bingham, 1998).

Although COAs are at higher risk for subsequent problems both as children and adults, not all COAs develop such problems (West & Prinz, 1987). There is a long history of looking at alcoholism as a heterogeneous disorder (Zucker, Heitzeg, & Nigg, 2011). Thus, as the MLS children grew older, analyses of their functioning used groupings based on one of the most common subtypes, antisocial comorbidity with alcoholism. Using fathers' developmental history of antisocial behavior and their AUD diagnosis as a categorizing variable, the MLS families were divided into groups of antisocial alcoholic families (AALs), nonantisocial alcoholic families (NAALs), and controls. Results showed that children ages 3 through 8 years from AAL families had greater levels of behavior problems (both externalizing and internalizing) than did those children from NAAL families and controls (Puttler et al., 1998; Zucker et al., 2000). Boys from AAL families also had higher scores on a hyperactivity index, more risky temperament, and displayed the worst IQ and academic achievement as compared with children of nonantisocial alcoholics (NAALs) and controls. In addition, children of AALs displayed relatively poorer abstract planning and attentional capability as compared with children from

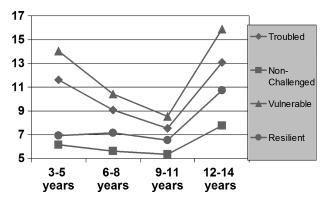


FIGURE 3. Stability and change in externalizing symptoms through early adolescence.

Source: Copied with permission from Zucker, Wong, Puttler, & Fitzgerald (2003),

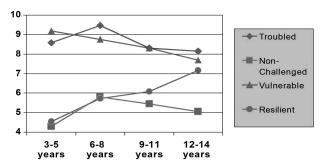


FIGURE 4. Stability and change in internalizing symptoms through early adolescence.

Source: Copied with permission from Zucker, Wong, Puttler, & Fitzgerald (2003).

control families (Poon et al., 2000; Zucker et al., 2000). For externalizing behavior, children from NAAL families were at an intermediate risk level; they had greater problems than did children from control families, but fewer than did children from AAL families (Puttler et al., 1998). For the other outcomes, the risk burden was seen only in the children from AAL families; children from NAAL families were statistically indistinguishable from children from control families. In addition, even using T-scores normed for gender, overall, boys had higher levels of total behavior problems and externalizing and internalizing behavior, as compared to girls (Puttler et al., 1998).

Adding in the child's own early behavioral functioning into the mix of risk for later problems, Zucker, Wong, Fitzgerald, and Puttler (2003) created four groups based on parental risk (presence of AUD and antisociality) and early child behavior problems (above or below the 80th percentile for total behavior problems) when the children were between 3 through 5 years of age. The four groups of children were labeled: *Vulnerable* (children with high parental and child adversity, *Resilient* (children with high parent and low child adversity), *Non-Challenged* (children with low parent and low child adversity), and *Troubled* (children with low parent and high child adversity).

Figures 3 and 4 show the results for externalizing and internalizing behavior from early childhood through early adolescence. As can be seen in Figure 3, at all ages the Vulnerable group had the most externalizing behavior symptoms, followed by the Troubled, Resilient, and Non-Challenged groups. The pattern also has a normative developmental decrease in such behavior during middle childhood, which then increases again during adolescence (Achenbach, 1991). Resilient children are similar to Non-Challenged children at early ages, but showed an increase in externalizing problems during adolescence, bringing them closer to those children with higher adversity early in life.

Figure 4 shows a somewhat differing pattern for internalizing behavior problems. The Vulnerable and Troubled groups were highest in symptoms while the Resilient and Non-Challenged were lowest. Interestingly, although relatively low in symptoms during early childhood and looking like the Non-Challenged group, the Resilient group's internalizing symptoms increased during adolescence to the point that they resembled the higher two risk groups, showing how exposure to sustained adversity can lead to a shift from more normative to more troubled behavior (Zucker et al., 2016).

Regarding alcohol-specific risk factors in the development of AUD, the initiation of drinking at an early age is now understood to be a common risk factor for a variety of negative outcomes (Dewit, Adlaf, Offord, & Ogborne, 2000; Hingson, Heeren, & Winter, 2006). In the MLS, Mayzer, Fitzgerald, and Zucker (2009) showed that higher levels of early externalizing and internalizing behavior were predictive of both early onset of drinking, as well as higher levels of externalizing and internalizing behavior and delinquent activity in adolescence.

Thus far, we have focused on the identification of problem behaviors in preschool-aged boys—behaviors that are elevated in families that generate high ACEs due to alcohol and other drug abuse, comorbid psychopathology, and marital conflict. We have mirrored the majority of the AUD literature (i.e., focusing on the observable behaviors that often predict transition into problem behaviors of childhood through emergent adulthood). However, behavioral manifestations, along with their underlying neurobiology and neuroendocrinology (see Schore, this issue), are not the only aspects of the organization of risk or its cascade to pathology over the life course. Equally important, though rarely studied in the AUD literature, are the subjective internalized aspects of the intersubjective self that affect personality development.

DEVELOPMENT OF ALCOHOL EXPECTANCIES, THE SELF AND MENTAL REPRESENTATIONS

During the years from birth to 5, children exposed to high degrees of parent conflict, paternal and maternal psychopathology, and poor family and neighborhood resources are more likely to develop pathological mental representations of self, other, and self–other relationships than are children who are not exposed to such rearing environments (Gaensbauer, 2016). There is strong evidence that during the preschool years, children begin to form working models, schemas, or autobiographical memories about familiar events (Karlen, 1996; Mennella & Garcia, 2000; Schneider & Bjorklund,

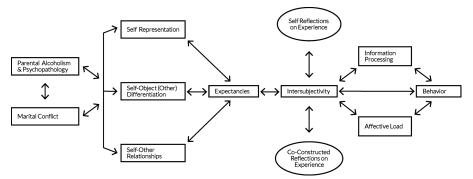


FIGURE 5. Mental representations and priming for alcoholism and coactive psychopathology.

1998). In most instances, these memories are positive and provide the basis for normative developmental pathways to adulthood; but this is not always the case. Gaensbauer (2016) noted that

Children's needs to recreate unhealthy, but affectively meaningful, moments with their caregivers can lead to ingrained, automatically operating pathological patterns of social behavior and affective expression that can take on a life of their own and strongly shape the child's subsequent socioemotional functioning. (p. 172)

Underlying the organization of such negative "automatically operating pathological patterns" are core issues related to the development of the self and the meaning-making that occurs during self-other relationships that become internalized as mental representations. Few studies of children at high risk for AUD have attempted to ascertain how mental representations are organized, and how they scaffold into more complex representations primarily by incorporating socioemotional or affective aspects of development. The field also has not spent much time assessing how exposure to highly adverse rearing environments affects the organization of such representations or the neural networks that mediate connectivity between such neural structures and behavior (Fitzgerald, Puttler, Mun, & Zucker, 2000; Fitzgerald & Zucker, 2000). That said, as a way to help the reader understand what follows, Figure 5 shows a heuristic model of how early mental representations in the context of parental psychopathology and marital conflict may unconsciously impact the behavior of the developing child with respect to the etiology of AUD and comorbid psychopathology (Fitzgerald et al., 2013). This model is an expansion of our original model (Fitzgerald & Zucker, 2000; Fitzgerald et al., 2000).

Self and Mental Representations

The study of the development of the self draws upon numerous concepts (empathy, meaning-making, mind reading, mental and representational models). In addition, it is guided by an equally broad set of theories (simulation theory, embodied simulation theory, theory of mind, theory—theory, interaction theory, and systems theory) (Ammaniti & Gallese, 2014; Fitzgerald et al., 2013). The infant enters the world, in essence, not knowing anything in the

sense of conscious awareness of self (Trevarthan, 1980). While infants might not "know" anything at birth, they are biologically prepared to quickly learn. By the preschool years, a child can converse, think, solve problems, manipulate objects, show affection, tease, recall and verbalize experiences, and otherwise relate to others in ways not imaginable from observation of the newborn's functional abilities. This rapid transition starts with the development of a self, which fuels self—other differentiation, self-awareness, and the emergence of self—other relationships. This developmental transition is facilitated, in part, by the development of mental representations of the events and relationships that form during the first 5 years.

Mental representations, or schemas, involve the encoding of experiences into long-term memory. They begin very early in life, but are influenced by rehearsal and reminders from adults (Fitzgerald & Zucker, 2006) as well as observation (Ammaniti & Gallese, 2014; Howe & Courage, 1997). In terms of alcohol, findings from the MLS have suggested that as early as preschool age, children are developing mental models or schema that include context, motivation, affect, and norms about alcohol use (Zucker & Fitzgerald, 1991; Zucker, Kincaid, Fitzgerald, & Bingham, 1995). These schemas are based primarily on child sensory and perceptual experiences related to their exposure to the use of alcohol beverages in the home, the individuals who are using them, and the contexts of their use. Within that frame, we found that sons of male alcoholics are more able to identify specific alcoholic beverages, to identify a greater number of alcoholic beverages, and to demonstrate the contextual understanding that often the role of father includes drinking (Zucker et al., 1995).

As development continues, both positive and negative expectancies for alcohol use also are created. Over the years, these expectancies can have a strong impact on adolescent alcohol involvement in other studies, even after controlling for other variables (M.S. Goldman, Del Boca, & Darkes, 1999). In the MLS sample, adolescent boys' negative and positive alcohol expectancies were longitudinally associated with higher odds of any intoxication 3 years later, and positive alcohol expectancies further predicted frequency of drunkenness, independently of parental alcohol involvement (Cranford, Zucker, Jester, Fitzgerald, & Puttler, 2010).

Self and Intersubjectivity

Observations of events are only part of the mental representations that are aspects of the emergent self. Over 100 years ago, William James (1890) drew attention to two aspects of the self, the empirical self (me) and the existential self (I). Lewis and Brooks-Gunn (1979) expanded on James' views with their distinction between the categorical self (empirical, what am I), and the subjective (existential, who am I) self. Categorical features of the self are anchored to external contexts, observable events; those characteristics that give observable definition to what I am, such as gender, height, skin color, eye color, physical activity, a COA, and so on. These are the group memberships one can identify based upon both self and other observations. Thus, I am a boy because I look like my father, and others affirm that I am a boy. They are linked to sensorimotor and perceptual experiences related to observable events. The alcohol schema that we described previously is directly related to the alcohol smells and containers present in the child's home, to the individuals who use them, and to their behavior as a result of use. On the other hand, subjective features of the self are internalized, and relate to who I am. They are the narratives of shared experience that parents construct and become the scripts or knowledge structures (conscious and unconscious) that children use to create their initial autobiographical memories. The subjective facet of the self is phenomenological, formed via intersubjective relationships, and the meaning-making that flows from language and communication with caregivers and others.

Intersubjectivity refers to the development of shared meaning between the self and others. It is an aspect of procedural or unconscious knowledge that gives rise to the development of the moral self during infancy and early childhood (Emde, Biringen, Clyman, & Oppenheim, 1991). While the processes involved in developing procedural knowledge of rules may be biologically based, as Emde et al. (1991) contended, the content of what is and is not moral behavior is not. It emerges from self-other interactions, which during infancy are intensely affective, motherinfant centered, and involve the social construction of meaning about what is right and wrong and who is right or wrong. In the context of children reared in highly adverse environments, including alcoholic families with high comorbid psychopathology, it is important to note findings such as those reported by Radke-Yarrow, Belmont, Nottelmann, and Bottomly (1990) that "children's selfreferences are consistent with an interpretation that mothers' negatively toned comments influence children's negative-self references (p. 359)." In addition, children who are maltreated not only have poor attachment relationships with their mothers but also have poorly internalized mental models of relationships and self (Cicchetti, Beeghley, Carlson, & Toth, 1990).

Emde et al. (1991) procedural rules (unconscious representations) are what Bürgin (2011) referred to as "intrapsychic entities" (p.106), which give symbolic meaning to observed events and which are unconsciously evoked during subsequent self–other interactions. Fraiberg, Adelson, and Shapiro's (1975) concept of

"ghosts in the nursey" metaphorically refers to the intrapsychic entities or procedural rules generated during a mother's own upbringing; rules or memories that interfere with her ability to form positive, nurturing relationships with her own infant. Barrows (2004) viewed fathers' ghosts primarily within the context of the fathermother relationship and noted that in the final analysis, it is the father-mother relationship that plays a key role in shaping the child's intersubjectivity. What "ghosts in the nursery" are acquired by infant and toddler COAs that interfere not only with their relationships with others but also with their own reflective awareness of self? The work by Mennella and Beauchamp (1998), showing that infants nursing with mothers who drink are more likely to choose toys scented with the smell of alcohol, provides one concrete example of the very early beginnings of an awareness of self and others that in this instance includes alcohol in actively alcoholic families. Thus, a toy smelling of alcohol (sensory-perceptual schema about objects) is preferred because it is not only recognized via the senses but also may be consistent with the child's emergent awareness of the existential I.

Stern (1985) asserted that intersubjective relatedness organizes during Postnatal Months 7 to 15, and includes the time when infants become aware that they have a mind and that others do as well. The infant becomes consciously aware that intersubjective experiences can be shared through interattentionality (joint attention), interaffectivity (affect attunement), and interintentionality (mutual sharing of intention and motives). It is the same time when infants begin to organize self-regulation and self-other relationships within the context of contingencies between self and others that brings procedural knowledge of self-other relationships to conscious awareness (Trevarthen, 1980). Note that in the BLS, 30% of the infants exposed to dual-parent psychopathology were classified as having disorganized attachment relationships (Eiden et al., 2002). It is not surprising, therefore, that very young children of alcoholic fathers also were more likely to have difficult temperaments, negative moods, and problems with impulsivity than were the infants and toddlers of nonalcoholic fathers, as also was the case for the MLS children both when they were preschool age (Fitzgerald et al., 1993) and older (Loukas et al., 2001). Thus, there is increasing synchrony between the child's behavior and feedback systems that strengthen the child's intersubjective sense of self, and not always with a positive

Contemporary neuroscientists and philosophers have linked the categorical and subjective aspects of self to the specialization of the left and right hemispheres of the brain (McGilchrist, 2016; Schore, 2001, this issue), and the neural networks that organize and integrate social, emotional, and cognitive aspects of self and self—other relationships. The left-hemisphere (LH) mediated self is viewed as categorical. It is objective, external, certain, and event-or action-oriented. It involves left motor cortex, speech centers, and logic. The right-hemisphere (RH) mediated self, in contrast, is social, empathic, dynamic, uncertain, and relationship-oriented. It

involves the right frontal and right cingulate cortex. As McGilchrist (2016) characterized it,

The RH, with its understanding of possibility, change, and flow, is far better than the LH at incorporating new information into a schema, without having necessarily to abandon it, while the LH, with its attachment to the fixed and certain, sticks stubbornly to what I 'knows' at all costs, in the teeth of evidence to the contrary. (pp. 205–206)

The schema we described for COAs in the MLS is perceptual, sensory, event-based, concrete, and left-hemisphere oriented. Ammaniti and Gallese (2014) posited that intersubjectivity has its origins in sensorimotor processing of events that get coded by mirror neurons and become scaffolded into complex socioemotional and cognitive relationship dynamics. Scaffolding, largely a right-hemisphere-mediated process, affects the organization of the self, self-object differentiation, attachment relationships, and the emergence of cognitive representational memories, in part, from meaning-making conversations with parents and significant others.

As mentioned earlier, the literature on mental representations encompasses concepts of meaning-making, mind reading, and mental and representational models while embracing simulation theory, embodied simulation theory, theory of mind, theory-theory, interactive theory, and systems theory (Ammaniti & Gallese, 2014; Bowlby, 1969; Carruthers, 2013; A.I. Goldman, 2006; Howe & Courage, 1997; Sameroff, 2000; Tronick & Beeghly, 2011). The key parameter cutting across all of these literatures and theoretical approaches is that through the process of parent-child relationship development, parents play a key role in constructing current, past, and future experiences (meaning-making) whereas children simultaneously organize their memories of lived experiences and subsequent self-referenced understandings of meaning both categorically and existentially. The dynamic interpersonal relationship experiences of infancy and early childhood contribute to the very young child's understanding of both the objective and subjective aspects of self, others, and self-other relationships (Fitzgerald et al., 2013), and we posit that they also create mental representations that guide choice behaviors later in childhood with respect to peer selection, drinking and smoking onset, and antisocial and relationship-based behaviors (see Figure 5).

Interestingly, many studies have documented the relationship between early relationship disorders (right-hemisphere-mediated) and early exposure to trauma, and children's narratives. Such narratives often take the form of behavior that may originate from mirror neurons located in the brain's ventral premotor cortex, the inferior parietal lobe, or the inferior frontal gyrus (Fox et al., 2016). For example, analyses from the MLS indicate that preschool-age children who are exposed to parental use of aggression and conflict display high levels of aggression, externalizing, and antisocial behavior (Muller, Fitzgerald, Sullivan, & Zucker, 1994). It would be easy to attribute these behavioral parallels between sons and their fathers to the domain of the categorical self (Caruthers, 2013), but there is a deeper explanation as well, one that may prime the very young child to integrate the categorical self (fathers' observed acts of aggression) with the right-hemisphere-mediated subjective or

existential self. Is it possible that during the earliest years of development, children exposed to very high ACEs embody far more into their emergent sense of self than the simple observed actions of adults in their environments? Children's observations of parental conflict and violence within the context of drinking provide opportunities to code such dynamics into procedural or nondeclarative memory, or what we refer to as scripts or mental representations. Clearly, such events lead to high rates of disorganized attachment (Zeanah et al., 1999) and fear in very young children (Main & Hesse, 1990). Figure 5 shows a visual representation of how early experiences may maintain, increase, or decrease cumulative risk affecting the organization of the self, priming the toddler to embark on a pathway of normative development, or one that leads to the organization and eventual expression of psychopathology, including AUD, antisocial behavior, and poor interpersonal relationships. Our model suggests that parents, particularly mothers during infancy and toddlerhood (Fitzgerald, Zucker, Maguin, & Reider, 1994), play a critical role in helping their children construct meaning with their experiences, layering relational meaning onto observed acts that are encoded into neurobiological networks that mediate mental representations and contribute to the development of the child's subjective self, an unconscious awareness of the I.

CONTINUITY AND DISCONTINUITY PATHWAYS TOWARD DEVELOPMENT OF AUD

One way to sum up the information provided in this article is to emphasize the importance of understanding the continuity and discontinuity of risk over the developmental span. A potential continuity pathway involves the early emergence of problems sustained by familial, neighborhood, and peer influences that impact biobehavioral dysregulation over time (Fitzgerald & Eiden, 2007). The early problems include difficult temperament, insecure attachment, poor self-regulation, externalizing behavior, and lower cognitive abilities that emerge before or during the elementary school years, then often transition into substance use, sexual behavior, poor school performance, and involvement with the criminal justice system during adolescence. Often, these problems continue in even more severe forms when the individuals become adults. This pathway is hypothesized to be more common among families with alcoholism and other comorbidities such as the AALs (described previously).

Fitzgerald and Eiden (2007) also suggested two potential discontinuity pathways that show more individual differences and greater diversity in both risk and protective factors. During early years, these children show little signs of problems or the impact of risk, but stressors such as family disorganization, conflict, parent marital problems, and peer-group influences impact the push away from more normative development to more risky behavior during adolescence. The two proposed pathways diverge in that one involves the expression of both internalizing and externalizing behavior. The discontinuity pathways are proposed to be more common in NAAL families and those in which the mother is relatively free

of psychopathology (Fitzgerald & Eiden, 2007). Regardless of pathway variation, it is clear that in research with children, little attention is given to the subjective or intersubjective experiences of the child with respect to his or her internalization of lived experiences apropos of etiologic contributions to AUD and comorbid psychopathology.

We now know a great deal about the development of AUDs from research done over the past few decades. This disorder is developmental in its nature and places children, boys in particular, at risk for many problems if the pathways to the disorder are not interrupted. Fortunately, research is having an impact on the creation of new prevention and intervention programs. Although it is beyond the scope of this article to provide details of this work here, the reader is referred to a very recent publication from the National Institute of Drug Abuse (2016) as one example for further discussion of such programs.

REFERENCES

- Achenbach T. (1991). Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington: University of Vermont, Department of Psychiatry.
- American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author.
- Ammaniti, M., & Gallese, V. (2014). The birth of intersubjectivity: Psychodynamics, neurobiology and the self. New York: W.W. Norton.
- Barrows, P. (2004). Fathers and families: Locating the ghost in the nursery. Infant Mental Health Journal, 25, 408–423.
- Bowlby, J. (1969). Attachment and loss: Vol.1: Attachment. New York: Basic Books.
- Bürgin, D. (2011). From outside to inside to outside: Comments on intrapsychic representations and interpersonal interactions. Infant Mental Health Journal, 32, 94–114.
- Buu, A., DiPiazza, C., Wang, J., Puttler, L.I., Fitzgerald, H.E., & Zucker, R.A. (2009). Parent, family and neighborhood effects on the development of child substance use and other psychopathology from preschool to the start of adulthood. Journal of Studies on Alcohol and Drugs, 70, 489–498.
- Buu, A., Mansour, M.A., Wang, J., Refior, S.K., Fitzgerald, H.E., & Zucker, R.A. (2007). Alcoholism effects on social migration over the course of 12 years. Alcoholism: Clinical and Experimental Research, 31, 1–7.
- Carruthers, P. (2013). Mindreading in infancy. Mind & Language, 28, 141–172.
- Chassin, L., Rogosch, F., & Barrera, M. (1991). Substance use and symptomatology among adolescent children of alcoholics. Journal of Abnormal Psychology, 100(4), 449–463.
- Cicchetti, D., Beeghly, M., Carlson, V., & Toth, S.L. (1990). The emergence of the self in atypical populations. In D. Cicchetti & M. Beeghly (Eds.), The self in transition: Infancy to childhood (pp. 309–344). Chicago: University of Chicago Press.

- Conduct Problems Prevention Research Group. (2013). School outcomes of aggressive disruptive children: Prediction from kindergarten risk factors and impact of the Fast Track prevention program. Aggressive Behavior, 39, 114–130.
- Cranford, J.A., Floyd, F.J., Schulenberg, J.E., Fitzgerald, H.E., & Zucker, R.E. (2011). Husbands' and wives' alcohol use disorders and marital interactions as longitudinal predictors of marital adjustment. Journal of Abnormal Psychology, 120, 210–222.
- Cranford, J.A., Zucker, R.A., Jester, J.M., Fitzgerald, H.E., & Puttler, L.I. (2010). Parental alcohol involvement and adolescent alcohol expectancies predict alcohol involvement in male adolescents. Psychology of Addictive Behaviors, 24(3), 386–396.
- Dewit, D.J., Adlaf, E.M., Offord, D.R., & Ogborne, A.C. (2000). Age at first alcohol use: A risk factor for the development of alcohol disorders. American Journal of Psychiatry, 157, 745–750.
- Donovan, J.E., Leech, S.L., Zucker, R.A., Loveland-Cherry, C.J., Jester, J.M., Fitzgerald, H.E. et al. (2004). Really underage drinkers: Alcohol use among elementary students. Alcoholism: Clinical and Experimental Research, 28(2), 341–349.
- Eiden, R.D., Chavez, F., & Edwards, E.P. (1999). Parent-infant interactions among families with alcoholic fathers. Development and Psychopathology, 11(4), 745–762.
- Eiden, R.D., Edwards, E.P., & Leonard, K.E. (2002). Mother-infant and father-infant attachment among alcoholic families. Development and Psychopathology, 14(2), 253–276.
- Eiden, R.D., Edwards, E.P., & Leonard, K.E. (2004). Predictors of effortful control among children of alcoholic and nonalcoholic fathers. Journal of Studies on Alcohol, 65(3), 309–319.
- Eiden, R.D., Edwards, E.P., & Leonard, K.E. (2007). A conceptual model for the development of externalizing behavior problems among kindergarten children of alcoholic families: Role of parenting and children's self-regulation. Development Psychology, 43(5), 1187–1201
- Ellis, D.A., Zucker, R.A., & Fitzgerald, H.E. (1997). Children of alcoholics: The role of family influences on development and risk. Alcohol, Health & Research World, 21, 218–226.
- Emde, R.N., Biringen, Z., Clyman, R.B., & Oppenheim, D. (1991). The moral self of infancy: Affective core and procedural knowledge. Developmental Review, 11, 251–270.
- Fitzgerald, H.E., & Eiden, R.D. (2007). Paternal alcoholism, family functioning, and infant mental health. ZERO TO THREE Journal, 27, 11–18.
- Fitzgerald, H.E., Puttler, L.I., Mun, E.-Y., & Zucker, R.A. (2000). Prenatal and postnatal exposure to parental alcohol use and abuse. In J.D. Osofsky & H.E. Fitzgerald (Eds.), WAIMH Handbook of Infant Mental Health (Vol 4): Infant mental health in groups at high risk (pp. 123–159). New York: Wiley.
- Fitzgerald, H.E., Puttler, L.I., Refior, S., & Zucker, R.A. (2007). Family responses to children and alcohol. Alcoholism Treatment Quarterly: Families and Alcoholism, 25, 11–25.
- Fitzgerald, H.E., Sullivan, L.A., Ham, H.P., Zucker, R.A., Bruckel, S., Schneider, A.M., & Noll, R.B. (1993). Predictors of behavioral problems in three-year-old sons of alcoholics: Early evidence for the onset of risk. Child Development, 64(1), 110–123.

- Fitzgerald, H.E., Wong, M.M., & Zucker, R.A. (2013). Early origins of alcohol use and abuse: Mental representations, relationships, and the challenge of assessing the risk-resilience continuum very early in the life of the child. In N.E. Suchman, M. Pajulo, & L.C. Mayes (Eds.), Parenting and substance abuse: Developmental approaches to intervention (chap. 7, pp. 126–155). New York: Oxford University Press.
- Fitzgerald, H.E., & Zucker, R.A. (1995). Socioeconomic status and alcoholism: The contextual structure of developmental pathways to addiction. In H.E. Fitzgerald, B.M. Lester, & B. Zuckerman (Eds.), Children of poverty: Research, health, and policy issues (chap. 5, pp. 125–148). New York: Garland Press.
- Fitzgerald, H.E., & Zucker, R.A. (2000). Effets á court et á long terme de l'alcoolism parental sure les enfants (Short and long term effects of parental alcohol use on children). PRISME, 33, 28–42.
- Fitzgerald, H.E., & Zucker, R.A. (2006). Pathways of risk aggregation for alcohol use disorders. In K. Freeark & W.S. Davidson, III (Eds.), The crisis in youth mental health: Vol 3, Issues for families, schools, and communities (chap. 11, pp. 249–271). Westport, CT: Praeger Press.
- Fitzgerald, H.E., Zucker, R.A., Maguin, E.T., & Reider, E.E. (1994). Time spent with child and parental agreement about ratings of child behavior. Perceptual and Motor Skills, 79, 336–338.
- Fitzgerald, H.E., Zucker, R.A., Puttler, L.I., Caplan, H.M., & Mun, E.-Y. (2000). Alcohol abuse/dependence in women and girls: Etiology, course, and subtype variations. Alcoscope: International Review of Alcoholism Management, 3(1), 6–10.
- Floyd, F.J., Cranford, J.A., Klotz-Daugherty, M., Fitzgerald, H.E., & Zucker, R.A. (2006). Marital interaction in alcoholic and nonalcoholic couples: Alcoholic subtype variations and wives' alcoholism status. Journal of Abnormal Psychology, 115(1), 121–130.
- Fonagy, P., Luyton, P., & Strathearn, L. (2011). Borderline personality disorder, mentalization, and the neurobiology of attachment. Infant Mental Health Journal, 32, 47–69.
- Fox, N.A., Bakermans-Kranenburg, M.J., Yoo, K.H., Bowman, L.C., Cannon, E.N., Vanderwert, R.E. et al. (2016). Assessing human mirror activity with EEG Mu rhythm: A meta analysis. Psychological Bulletin, 142, 291–313.
- Fraiberg, S., Adelson, E., & Shapiro, V. (1975). Ghosts in the nursery: A psychoanalytic approach to the problems of impaired infant-mother relationships. Journal of the American Academy of Child & Adolescent Psychiatry, 14, 387–421.
- Gaensbauer, T.J. (2016). Moments of meeting: The relevance of Lou Sander's and Dan Stern's conceptual framework for understanding the development of pathological social relatedness. Infant Mental Health Journal, 37, 172–188.
- Goldman, A.I. (2006). Simulating minds. New York: Knopf.
- Goldman, M.S., Del Boca, F.K., & Darkes, J. (1999). Alcohol expectancy theory: The application of cognitive neuroscience. In K.E. Leonard & H.T. Blane (Eds.), Psychological theories of drinking and alcoholism (2nd ed., pp. 203–246). New York: Guilford Press.
- Grant, B.F., Chu, A., Sigman, R., Amsbary, M., Kali, J., Sugawara, Y. et al. (2014). Source and Accuracy Statement: National Epidemio-

- logic Survey on Alcohol and Related Conditions-III (NESARC-III). Rockville, MD: National Institute on Alcohol Abuse and Alcoholism.
- Grant, B.F., Dawson, D.A., Stinson, F.S., Chou, S P., Dufour, M.C., & Pickering, R.P. (2006). The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991–1992 and 2001–2002. Alcohol Research & Health, 29(2), 79–91.
- Grant, B.F., Goldstein, R.B., Saha, T.D., Chou, S.P., Jung, J., Zhang, H. et al. (2015). Epidemiology of DSM-5 alcohol use disorder results from the National Epidemiologic Survey on Alcohol and Related Conditions III. Journal of the American Medical Association Psychiatry, 72(8), 757–766.
- Hardee, J.E., Weiland, B.J., Nichols, T.E., Welsh, R.C., Soules, M.E., Steinberg, D.B. et al. (2014). Development of impulse control circuitry in children of alcoholics. Biological Psychiatry, 76(9), 708– 716.
- Heitzeg, M.M., Nigg, J.T., Yau, W.Y., Zucker, R.A., & Zubieta, J.K. (2010). Striatal dysfunction marks preexisting risk and medial prefrontal dysfunction is related to problem drinking in children of alcoholics. Biological Psychiatry, 68(3), 287–295.
- Hingson, R.W., Heeren, T., & Winter, M.R. (2006). Age at drinking onset and alcohol dependence: Age at onset, duration, and severity. Archives of Pediatric Adolescent Medicine, 160, 739–746.
- Howe, M.L., & Courage, M.L. (1997). The emergence and early development of autobiographical memory. Psychological Review, 104(3), 499–523.
- Hussong, A.M., Wirth, R.J., Edwards, M.C., Curran, P.J., Chassin, L.A., & Zucker, R.A. (2007). Externalizing symptoms among children of alcoholic parents: Entry points for an antisocial pathway to alcoholism. Journal of Abnormal Psychology, 116(3), 529–542.
- James, W. (1890). The principles of psychology. New York: Holt.
- Karlen, L.-R. (1996). Attachment relationships among children with aggressive behavior problems: The role of disorganized early attachment patterns. Journal of Consulting and Clinical Psychology, 64, 64–73.
- Lewis, M., & Brooks-Gunn, J. (1979). Social cognition and the acquisition of self. New York: Plenum Press.
- Loukas, A., Fitzgerald, H.E., Zucker, R.A., & von Eye, A. (2001). Alcohol problems and antisocial behavior: Relations to externalizing problems among young sons. Journal of Abnormal Child Psychology, 29(2), 91–106.
- Main, M., & Hesse, E. (1990). Parents' unresolved traumatic experiences are related to infant disorganized attachment status: Is frightened and/or frightening parental behavior the linking mechanism? In M. Greenberg, D. Cicchetti, & E.M. Cummings (Eds), Attachment in the preschool years: Theory, research and intervention (pp. 161–184). Chicago: University of Chicago Press.
- Mayzer, R., Fitzgerald, H.E., & Zucker, R.A. (2009). Anticipating problem drinking risk from preschoolers' antisocial behavior: Evidence for a common delinquency-related diathesis model. Journal of the American Academy of Child & Adolescent Psychiatry, 48(8), 820–827.
- McGilchrist, I. (2016). 'Selving' and union. Journal of Consciousness Studies, 23, 196–213.

- Mennella, J.A., & Beauchamp, G.K. (1998). The infant's response to scented toys: Effects of exposure. Chemical Senses, 23, 11–17.
- Mennella, J.A., & Garcia, P.L. (2000). Children's hedonic response to the smell of alcohol: Effects of parental drinking habits. Alcoholism: Clinical and Experimental Research, 24, 1167–1171.
- Moffitt, T.E., Caspi, A., Rutter, M., & Silva, P.A. (2001). Sex differences in antisocial behavior, conduct disorder, delinquency, and violence in the Dunedin longitudinal study. Cambridge, United Kingdom: Cambridge University Press.
- Muller, R.T., Fitzgerald, H.E., Sullivan, L.A., & Zucker, R.A. (1994). Social support and stress factors in child maltreatment among alcoholic families. Canadian Journal of Behavioural Science, 26, 438–461.
- Mun, E.Y., Fitzgerald, H.E., von Eye, A., Puttler, L.I., & Zucker, R.A. (2001). Temperamental characteristics as predictors of externalizing and internalizing behavior problems in the contexts of high and low parental psychopathology. Infant Mental Health Journal, 22, 393–415.
- National Institute on Drug Abuse. (2016). A child's first eight years critical for substance abuse prevention. Retrieved March 14, 2016, from https://www.drugabuse.gov/news-events/news-releases/2016/03/childs-first-eight-years-critical-substance-abuse-prevention
- Nolen-Hoeksema, S. (2004). Gender differences in risk factors and consequences for alcohol use and problems. Clinical Psychology Review, 24(8), 981–1010.
- Nolen-Hoeksema, S., Wong, M.M., Fitzgerald, H.E., & Zucker, R.A. (2006). Depressive symptoms over time in women partners of men with and without alcohol problems. Journal of Abnormal Psychology, 115(3), 601–609.
- Poon, E., Ellis, D.A., Fitzgerald, H.E., & Zucker, R.A. (2000). Cognitive functioning of sons of alcoholics during the early elementary years: Differences related to subtypes of familial alcoholism. Alcoholism: Clinical and Experimental Research, 24(7), 1020–1027.
- Puttler, L.I., Zucker, R.A., Fitzgerald, H.E., & Bingham, C.R. (1998). Behavioral outcomes among children of alcoholics during the early and middle childhood years: Familial subtype variations. Alcoholism: Clinical and Experimental Research, 22(9), 1962– 1972.
- Radke-Yarrow, M., Belmont, B., Nottelmann, E., & Bottomly, L. (1990).
 Young children's self-conceptions: Origins in the national discourse of depressed and normal mothers and their children. In D. Cicchetti & M. Beegley (Eds.), The self in transition: Infancy to childhood (pp. 345–361), Chicago: University of Chicago Press.
- Sameroff, A.J. (2000). Developmental systems and psychopathology. Development and Psychopathology, 12, 297–312.
- Schneider, W., & Bjorklund, D.F. (1998). Memory. In D. Khun & R.S. Siegler (Eds.), Handbook of child psychology: Vol. 2. Cognition, perception, and language (pp. 467–521). New York: Wiley.
- Schore, A.N. (2001). The effects of secure attachment relationship on right brain development, affect regulation, and infant mental health. Infant Mental Health Journal, 22, 7–66.
- Schore, A.N. (2017). All our sons: The developmental neurobiology and neuroendocrinology of boys at risk. Infant Mental Health Journal, 38, 15–52.

- Shaw, D.S., & Gilliam, M. (2017). Early Childhood Predictors of Low-Income Boys' Pathways to Antisocial Behavior in Childhood, Adolescence, and Early Adulthood. Infant Mental Health Journal, 38, 68–82.
- Sher, K.J., & Rutledge, P.C. (2007). Heavy drinking across the transition to college: Predicting first-semester heavy drinking from precollege variables. Addictive Behaviors, 32(4), 819–835.
- Sroufe, L.A., Egeland, B., Carlson, E., & Collins, W.A. (2005). The development of the person: The Minnesota study of risk and adaptation from birth to adulthood. New York: Guilford Press.
- Stern, D. (1985). The interpersonal world of the infant: A view from psychoanalysis and developmental psychology. New York: Basic Books.
- Trevarthen, C. (1980). The foundations of intersubjectivity: Development of interpersonal and cooperative understanding in infants. In D. Olson (Ed.), The social foundations of language and thought (pp. 216–242). New York: W.W. Norton.
- Tronick, E., & Beeghly, M. (2011). Infants meaning making and the development of mental health problems. American Psychologist, 66, 107–119.
- Weatherston, D., & Fitzgerald, H.E. (2010). Role of parenting in the development of the infant's interpersonal abilities. In S. Tyano, M. Keren, H. Herman, & J. Cox (Eds.), Parenthood and mental health: A bridge between infant and adult psychiatry (pp. 197–210). New York: Wiley.
- West, M.O., & Prinz, R.J. (1987). Parental alcoholism and childhood psychopathology. Psychological Bulletin, 102(2), 204–218.
- Whipple, E.E., Fitzgerald, H.E., & Zucker, R.A. (1995). Parent-child interactions in alcoholic and nonalcoholic families. American Journal of Orthopsychiatry, 65(1), 153–159.
- World Health Organization. (2014). Global Status Report on noncommunicable diseases. Geneva, Switzerland: Author.
- Yau, W.Y., Zubieta, J.K., Weiland, B.J., Samudra, P.G., Zucker, R.A., & Heitzeg, M.M. (2012). Nucleus accumbens response to incentive stimuli anticipation in children of alcoholics: Relationships with precursive behavioral risk and lifetime alcohol use. Journal of Neuroscience, 32(7), 2544–2551.
- Zeanah, C.H., Danis, B., Hirshberg, L., Benoit, D., Miller, D., & Heller, S.S. (1999). Disorganized attachment associated with partner violence: A research note. Infant Mental Health Journal, 20, 77–86.
- Zucker, R.A. (1986). The four alcoholisms: A developmental account of the etiologic process. In P.C. Rivers (Ed.), Alcohol and addictive behaviors, 34th Nebraska Symposium on Motivation (chap. 2, pp. 27–83). Lincoln: University of Nebraska Press.
- Zucker, R.A. (2014). Genes, brain, behavior and context: The developmental matrix of addictive behavior. In S.F. Stoltenberg (Ed.), Genes and the motivation to use substances, Nebraska Symposium on Motivation, Vol. 61 (chap. 4, pp. 51–69). New York: Springer.
- Zucker, R.A., & Fitzgerald, H.E. (1991). Early developmental factors and risk for alcohol problems. Alcohol Health and Research World, 15, 18–24.
- Zucker, R.A., Fitzgerald, H.E., Refior, S., Puttler, L.I., Pallas, D.M., & Ellis, D.A. (2000). The clinical and social ecology of childhood

- for children of alcoholics: Description of a study and implications for a differentiated social policy. In H.E. Fitzgerald, B.M. Lester, & B.S. Zuckerman (Eds.), Children of addiction: Research, health, and policy issues (chap. 4, pp. 109–141). New York: Routledge-Falmer.
- Zucker, R.A., Heitzeg, M.M., & Nigg, J.T. (2011). Parsing the undercontrol-disinhibition pathway to substance use disorders: A multilevel developmental problem. Child Development Perspectives, 5(4), 248–255.
- Zucker, R.A., Hicks, B.M., & Heitzeg, M.M. (2016). Alcohol use and the alcohol use disorders over the life course: A cross-level developmental review. In D. Cicchetti (Ed.), Developmental psychopathology: Vol. 3, Maladaptation and psychopathology (3rd ed.) (chap. 18, pp. 793–832). New York: Wiley.
- Zucker, R.A., Kincaid, S.B., Fitzgerald, H.E., & Bingham, C.R. (1995).
 Alcohol schema acquisition in preschoolers: Differences between children of alcoholics and children of nonalcoholics. Alcoholism: Clinical and Experimental Research, 19(4), 1011–1017.
- Zucker, R.A., Wong, M.M., Clark, D.B., Leonard, K.E., Schulenberg, J.E., Cornelius et al. (2006). Predicting risky drinking outcomes longitudinally: What kind of advance notice can we get? Alcoholism: Clinical and Experimental Research, 30(2), 243–252.
- Zucker, R.A., Wong, M.M., Puttler, L.I., & Fitzgerald, H.E. (2003). Resilience and vulnerability among sons of alcoholics: Relationship to developmental outcomes between early childhood and adolescence. In S. Luthar (Ed.), Resilience and vulnerability: Adaptation in the context of childhood adversities (pp. 76–103). New York: Cambridge University Press.