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Abstract 

We investigate the self-assembly of gold nanoparticles on the surface of magnesium 

functionalized with 3-(aminopropyl)trimethoxysilane or 3-(mercaptopropyl)trimethoxysilane. 

These nanoparticles served as a speckle pattern for high magnification deformation tracking via 

digital image correlation combined with scanning electron microscopy. Controlling the pH of the 

gold nanoparticle suspension to a specific basicity passivated corrosion in magnesium and in 

three of its alloys to enable proper nanoparticle bonding and self-assembly. Magnesium was used 

as a model material as it is particularly difficult to modify for self-assembly because of its 

propensity to quickly form a thick oxide, hydroxide, and carbonate layer in the presence of 

oxygen, water, and carbon dioxide, respectively. Moreover, it corrodes in acidic and slightly 

basic solutions, further complicating the self-assembly process. Due to these difficulties, the 

successful self-assembly of nanoparticles on magnesium has not previously been reported, to the 

best of the authors’ knowledge. This technique is potentially amendable to other corrosion-

susceptible materials. Gold nanoparticles were self-assembled in a uniformly dispersed random 

distribution on pure cast magnesium, cast AM60 (Mg-6Al-0.5Mn), rolled WE43 (Mg-4Y-

3Nd/Gd), and extruded ZE20 (Mg-2Zn-0.2Ce).  
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1. Introduction 

 The self-assembly of nanoparticles on a variety of surfaces is of interest for numerous 

electronic, optical, and sensor applications [1]. Nanoparticle arrays are generally used in 

applications where they are highly ordered [2-7] or non-ordered with controllable density [8-12]. 

This work reports on the self-assembly of uniformly distributed, non-ordered nanoparticles on 

magnesium and its alloys for use as a speckle pattern for high magnification digital image 

correlation. To the best of the authors’ knowledge, the successful self-assembly of nanoparticles 

on magnesium has previously not been reported. Magnesium was used as a model material as it 

is particularly difficult to modify for self-assembly because of its propensity to quickly form a 

thick oxide, hydroxide, and carbonate layer in the presence of oxygen, water, and carbon 

dioxide, respectively. Moreover, it corrodes in acidic and slightly basic solutions, complicating 

the self-assembly process. Using approaches developed for the self-assembly of nanoparticles on 

less reactive materials like glass, aluminum oxide, tin oxide, and aluminum alloys [8, 12] results 

in the gold nanoparticle suspension attacking the magnesium surface (Figure 1). The approach 

described herein is inexpensive, provides a dense coverage of particles, and can be easily scaled 

by adjusting the size of the nanoparticles. 

Gold nanoparticles have been successfully bonded to less-reactive substrates via a silane 

coupling process [1, 8, 12]. The process includes three main stages: first, the substrate is treated 

to maximize the number of hydroxyl groups on the surface, usually through oxygen plasma 

cleaning or a strong alkaline cleaning. Next, a silane with at least one hydrolysable alkoxy group 

undergoes hydrolysis when mixed with water, and the substrate is immersed in this solution to 

allow bonding between the silane molecules and the hydroxyl groups on the substrate. In the 

final step, the substrate is immersed in a citrate-stabilized gold nanoparticle solution, where the 

particles bond to a functional group on the silane molecule, which can be either an amine 

functional group for electrostatic bonding or a thiol functional group for chemical bonding. Table 

1 lists a summary of this technique for less-reactive substrates, as well as the technique for 

magnesium for comparison purposes. 
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Material Glass Aluminum 

Oxide 

Tin Oxide Aluminum Magnesium 

Reference 

Source 

[8] [8] [8] [12] this paper 

Method to 

Increase 

Hydroxyl 

Group 

Concentration 

on Substrate 

clean in 

piranha 

solution (4:1 

solution of 

H2SO4 and 

30% H2O2) 

clean in 

piranha 

solution (4:1 

solution of 

H2SO4 and 

30% H2O2) 

clean in 

piranha 

solution (4:1 

solution of 

H2SO4 and 

30% H2O2) + 

immerse in 

NaOH, 5 hr 

alkaline 

clean in 

Na3PO4 and 

Na2CO3 at 

75°C, 60 sec 

alkaline 

clean in 

NaOH at 

50°C, 1 hr 

Method for 

Silanization 

immerse in 

1:10 mixture 

of APTMS 

and methanol 

for 60 hr 

immerse in 

neat 

MPMDMS 

for 3 hr 

immerse in 

1% 

APMDES for 

10-15 min  

immerse in 

1:4 mixture 

APTMS/ 

MPMDMS 

and methanol 

for 24 hr 

immerse in 

1% APTMS 

or 3% 

MPTMS for 

5 min 

Immersion 

Time in Gold 

Nanoparticle 

Suspension 

19.5 hr 12 hr 8 hr 24 – 120 hr 16 – 120 hr 

(corrosion 

occurs if 

suspension is 

untreated) 

Table 1. Summary of nanoparticle self-assembly steps on less reactive substrates as well as 

magnesium. Definition: APTMS is 3-(aminopropyl)trimethoxysilane, MPMDMS is 3-

(mercaptopropyl)methyldimethoxysilane, APMDES is 3-

(aminopropyl)methyldiethoxysilane, MPTMS is 3-(mercaptopropyl)trimethoxysilane. 
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Self-assembly is possible on corrosion-susceptible materials if corrosion can be 

prevented. The first two steps of the process (increasing the hydroxyl group concentration and 

silanization) will be different for any material system. Coincidentally, these have already been 

established for magnesium as they were originally intended to improve the corrosion resistance 

[13-19]. A primary challenge in this work was to prevent a corrosion reaction between the 

nanoparticle suspension and magnesium during the long post-silanization soak times required for 

nanoparticle self-assembly. This soak time was typically on the order of days. It was found that 

the aforementioned silane layer was not sufficient to prevent corrosion in the gold nanoparticle 

solution, and self-assembly was therefore not successful without damaging the underlying 

surface. 

In order to prevent corrosion, the nanoparticle suspension was made highly basic by the 

addition of a strong base, chosen here as sodium hydroxide (NaOH). As indicated by the 

Pourbaix diagram for magnesium [20], corrosion is passivated under highly basic conditions. 

This passivation allowed the nanoparticles to bond to the surface without corrosion and aided in 

proper self-assembly. However, it should be noted that the gold nanoparticles degrade over the 

course of several hours under environments with a pH > 12.5. Degradation was characterized by 

color fading of the nanoparticle solution, wherein the color effect caused by the nanoparticle 

suspension diminished as the particles became unstable. This effect was not seen at a pH ≅ 12, 

which was still high enough to significantly inhibit the corrosion of magnesium. Therefore, in the 

current work, the nanoparticle solution pH was adjusted using NaOH to a pH of 12. 

Once the self-assembly was successful, high magnification deformation tracking using 

combined digital image correlation (DIC) and scanning electron microscopy (SEM) was 

possible. DIC has already been combined with SEM to quantify local strain concentrations at the 

microstructural level for other materials[12, 21-25] . By extending SEM-DIC to magnesium, it is 

possible to visualize how microstructure is related to deformation phenomena such as slip and 

twinning. An example is shown in this work. 
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2. Experimental Procedure 

2.1 Substrate Preparation 

Gold nanoparticles were randomly self-assembled on pure cast magnesium, cast AM60 

(Mg-6Al-0.5Mn), rolled WE43 (Mg-4Y-3Nd/Gd), and extruded ZE20 (Mg-2Zn-0.2Ce). All 

samples were sectioned with a slow speed saw and cold mounted in epoxy. Next, they were 

metallographically ground with 600, 800, and 1200 standard ANSI grit silicon carbide paper for 

thirty seconds at each grit, and then polished with a series of 6 μm, 3 μm, and 1 μm water-based 

diamond suspensions (LapMaster) for five minutes each on Buehler MicroCloth medium-napped 

pads. Finally, the samples were subjected to a chemo-mechanical polish with a high pH colloidal 

alumina/colloidal silica mixture from Buehler (MasterPolish) for four minutes on a Buehler 

ChemoMet synthetic micro-napped pad, after which they were immediately rinsed with soap and 

water, rinsed with ethanol, and dried quickly with air. As a final step to improve electron 

backscatter diffraction (EBSD) analysis for related work, the samples were etched by immersion 

for 2 seconds in a mixture of 60 mL ethanol + 20 mL deionized water + 15 mL acetic acid + 5 

mL nitric acid, followed by a rinse in ethanol and dried with warm air. This final step did not 

affect nanoparticle self-assembly, and was performed solely to improve EBSD data acquisition. 

The polished magnesium substrate was then treated to increase the number of hydroxyl groups 

on the surface in order for the silane to bind correctly. Mg(OH)2 is stable in highly basic 

environments; thus, a strong alkaline cleaning solution was used to increase the hydroxyl 

concentration. The samples were immersed in 1 M NaOH at 50°C for 1 hour, rinsed with water 

for 30s, and then blown dry using compressed air. 

 

2.2 Silane Hydrolysis 

3-(aminopropyl)trimethoxysilane (APTMS) or 3-(mercaptopropyl)trimethoxysilane 

(MPTMS) can be used as a silane coupling agent. These silanes undergo hydrolysis when mixed 

with water, in which alkoxy moieties are converted to hydroxyl groups that allow bonding with 

the substrate. Over time, these hydrolyzed silane molecules may self-condense and form long 
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oligomers in solution, which can lead to particle clumping during nanoparticle self-assembly. 

The ideal silane contains a maximum number of hydrolyzed molecules with minimal self-

condensation. The rates at which these reactions take place depend on a number of factors, 

including silane type, silane concentration, water concentration, and pH. Scott et al. 

characterized the hydrolysis and self-condensation of MPTMS using nuclear magnetic resonance 

(NMR) and determined that six hours after mixing an acidic 1% MPTMS solution, hydrolysis is 

nearly complete without appreciable self-condensation [13]. Ostrovky reported that aminosilanes 

such as APTMS hydrolyze within minutes in solution and that self-condensation is resisted [17]. 

An APTMS solution was mixed and allowed to sit for a day to ensure complete hydrolysis, and 

then reused for as long as 1 month without changes in the final pattern quality.  

2.2.1 Aminosilanes 

A 2.5% APTMS solution with 50 volume percent water and ethanol as the balance was 

prepared for deposition on magnesium following Ostrovsky [17]. APTMS was added into a 

mixture of the water and ethanol at an approximate rate of one pipette drop per second. Ethanol 

was used as the balance and assisted in dissolving the silane into solution; ethanol was chosen 

because it does not react with magnesium and is less toxic than methanol. 

2.2.2 Mercaptosilanes 

A 1% MPTMS solution with 3 volume percent water and ethanol as the balance was 

prepared for deposition on magnesium, with concentrations determined from Scott et al. [13].  

MPTMS was added into a continuously stirred mixture of the water and ethanol at an 

approximate rate of one pipette drop per second. No additional acid was added to accelerate 

hydrolysis rates, as it resulted in surface etching. The solution was stirred for 6 hours at a stir rate 

of 250 RPM. 

 

2.3 Silane Condensation  

Samples were immersed into a stirred hydrolyzed silane solution for five minutes at a stir 

rate of 250 RPM. After immersion, they were removed without rinsing and blown dry with air. 
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The samples were cured in a dry heat oven at 100°C for 1 hour to improve silane adhesion [26, 

27], and the inclusion of this step slightly improved particle density.  

 

2.4 Gold Nanoparticle Synthesis and Application 

Citrate-stabilized gold nanoparticles were synthesized using the Frens technique [28]. 

Nanoparticles were chosen to be 50 nm or 100 nm in diameter, but can be scaled from 15 nm to 

150 nm in diameter without significantly affecting self-assembly. The 50 nm nanoparticles were 

produced by mixing 5 mL of 1 mM hydrogen tetrachloroaurate with 160 mL DI water in a 

continuously stirred Erlenmeyer flask at 380 RPM. The solution was then brought to boiling and 

1.75 mL of 1% sodium citrate was added. The solution was kept at boiling and continuously 

stirred for 5 minutes. The solution turned blue after 30 seconds, then a deep red that faded to a 

wine-red color in approximately two minutes. The 100 nm nanoparticles were produced by 

mixing 5 mL of 1 mM hydrogen tetrachloroaurate with 200 mL DI water in a continuously 

stirred Erlenmeyer flask at 380 RPM. The solution was then brought to boiling and 1.75 mL of 

1% sodium citrate was added. The solution was kept at boiling and continuously stirred for 30 

minutes. The solution turned blue after 60 seconds, then gradually changed to a red-orange color. 

The particles were cooled to room temperature and stored in brown glassware out of light to 

prevent decomposition. 

To inhibit the corrosion of magnesium from the gold nanoparticles, 1 mL of 0.1M NaOH 

was added to 10 mL of the nanoparticle suspension. All glassware was thoroughly cleaned 

beforehand to prevent nanoparticle decomposition. If the nanoparticle suspension darkened, 

changed color, or became transparent over time, this indicated particle decomposition and the 

solution was discarded. The silanized magnesium was immersed in the nanoparticles with the 

surface upon which self-assembly was desired facing up for sixteen hours. The sample was then 

rinsed with DI water and dried with compressed air. The resulting nanoparticle array was then 

imaged using scanning electron microscopy to confirm successful self-assembly. All images 

were taking using a Tescan Mira 3 SEM with a 15 kV accelerating voltage, 20 mm working 
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distance, and 8 nm spot size.  To increase the density of self-assembly, the samples could be re-

immersed in the nanoparticle solution for an additional time of up to 120 hours total from initial 

immersion. 

 

2.5 In-Situ Mechanical Testing of WE43 

 An example of surface strain measurement is demonstrated on the as-received WE43 hot-

rolled plate. Heated treated specimen blanks were machined using wire electro-discharge 

machining (EDM) to produce flat dogbone-shaped micro-tensile specimens. The sample was 

designed so that the tensile loading direction was parallel to the RD. The gage length was 18 

mm, sample thickness was 2 mm, and gage section width was 4.5 mm. The sample was first 

polished and etched using the same method above. 

 Electron backscatter diffraction (EBSD) was used to measure grain orientation and 

identify grain boundaries. EBSD was taken using TSL OIM software on a Tescan Mira3 SEM. 

The accelerating voltage was 30 kV, the working distance was 18 mm, and the spot size was 61 

nm. 

 The tensile specimens were pulled in tension to failure along the rolling direction under 

displacement control at an approximate strain rate of 10-4 s-1. SEM micrographs were taken 

during the tensile test at various stages of plastic deformation for later correlation and 

displacement calculation. The displacement was stopped at chosen strain intervals to take 

images. 

  

3. Results 

3.1 Nanoparticle Self-Assembly 

 As discussed in the introduction, the gold nanoparticle suspension can corrode the silane-

functionalized magnesium and cause cracks and voids on the surface (Figure 1), which can affect 

the structural integrity of the magnesium. Self-assembly occurs for all pH levels, but the 

corrosion disappears at a pH of 10 or higher, in correspondence with the Pourbaix diagram for 
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magnesium. Interestingly, the self-assembly process is not significantly affected by pH, as 

evidenced in Figure 1. The driving mechanism for self-assembly on APTMS functionalized 

magnesium is an electrostatic attraction between the negatively charged citrate groups that 

stabilize the gold nanoparticles and the positively charged amine groups on the silane. Once the 

isoelectric point of the amine group is reached (~pH = 9), the charge becomes negative and 

would lead one to believe that no self-assembly would take place due to the missing driving 

force. However, self-assembly of the particles still occurs. It is unknown why the kinetics are 

seemingly unaffected by increasing the pH past the isoelectric point of the amine group. 

 

Figure 1. Incomplete self-assembly of 50 nm gold nanoparticles on APTMS functionalized WE43 
magnesium alloy after a 16 hour immersion. The pH of the gold nanoparticle suspension was 
modified by adding NaOH to A) pH = 6 (native pH of the suspension), B) pH = 8, C) pH = 10, and 
D) pH = 12. Incomplete assembly is shown here to illustrate the effect of the gold nanoparticle 
suspension on the magnesium surface, which cannot be seen under a dense nanoparticle array. 
Figures A and B exhibit corrosion pitting indicated by the white arrow, while figures C and D show 
that this corrosion is passivated while allowing for gold nanoparticle attachment.  

  

 The successful self-assembly of non-ordered nanoparticle distributions on magnesium 

and three of its alloys is shown in Figure 2. Figure 3 shows the successful self-assembly of two 
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different particle sizes. APTMS and MPTMS yielded similar results, although final soak times in 

the nanoparticle solution varied between alloy systems and between tests. In general, shorter 

soak times were needed for pure magnesium and longer soak times were needed for its alloys. 

APTMS and MPTMS were found to yield comparable results; APTMS was preferred because it 

was more convenient. The MPTMS solution must be stirred for six hours and then disposed of 

immediately after use, whereas the APTMS solution could be reused for up to one month. 

  

 

Figure 2. Uniform non-ordered distribution of 50 nm gold nanoparticles on various magnesium 
alloys. The top row includes APTMS treated samples of A) pure magnesium immersed in the basic 
gold nanoparticle solution for 16 hours, B) AM60 immersed for 120 hours, C) WE43 immersed for 
120 hours, and D) ZE20 immersed for 40 hours. The bottom row includes MPTMS treated samples 
of E) pure magnesium immersed in the basic gold nanoparticle solution for 16 hours, F) AM60 
immersed for 96 hours, G) WE43 immersed for 16 hours, and H) ZE20 immersed for 96 hours.  
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Figure 3. Self-assembly of A) 100 nm gold nanoparticles and B) 50 nm gold nanoparticles on 
APTMS functionalized WE43. 

 Nanoparticle self-assembly can exhibit noticeable variation, both sample-to-sample and 

also across the surface of a single sample. Sample to sample variation is evident in figure 2, and 

a variation across a sample surface is shown in figure 4. In figure 4, one area on the surface 

exhibited an isotropic pattern with evenly distributed nanoparticles, whereas another area 

contained significant particle clumping. It is not clear how to prevent this localized particle 

clumping. If particle clumping occurred, the sample was re-polished and the technique was 

applied again. There was approximately a 20% success rate producing samples on which particle 

clumping did not significantly occur. In figure 2, where clumping did not occur, the assembly 

kinetics varied greatly from sample to sample, even between specimens of the same alloy. Each 

surface represents the time required to achieve a similar density of particles, and these times 

were not consistent between the alloys and between tests. Sometimes, a dense nanoparticle array 

would appear after 16 hours, whereas a 120 hour soak time was needed on other samples, with 
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no trend exhibited between tests..Although the technique was successful for some specimens, 

more work is needed to improve the consistency of the self-assembly process. Previous work has 

suggested that contamination on the surface possibly caused particle clumping [12]. From this 

study, it is suspected that the problem is obtaining an even silane layer on the surface. Removal 

of the substrate from the silane solution resulted in a rainbow sheen on the surface, suggesting 

that the silane layer thickness varies. It is suspected that a variance in silane thickness may result 

in differing particle densities and particle clumping. Furthermore, it was seen that adding NaOH 

to the nanoparticles can still result in proper self-assembly, despite the fact that the charge of the 

amine group switches once the isoelectric point is reached and should lead to electrostatic 

repulsion between the nanoparticles and the substrate APTMS layer. Further understanding of 

the chemistry may be needed to improve consistency. 

 Despite the consistency issues, this technique is a promising solution for patterning 

magnesium and other corrosion susceptible materials. The key lies in controlling corrosion 

during the long soak time in the nanoparticle suspension. In theory, established corrosion 

inhibitors may be added to the nanoparticle solution for any corrosion-susceptible material 

(assuming those inhibitors do not break down the nanoparticles) and allow for nanoparticle self-

assembly on a wide range substrates. 
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Figure 4. Nanoparticle patterns across the sample surface of magnesium alloy WE43, using 
MPTMS as a silane coupling agent and immersed in basic 50nm gold nanoparticles for 16 
hours. A) An area where particle distribution is evenly dispersed and isotropic. B) A 
different area of the same sample showing significant and unwanted particle clumping. 
This particle clumping may be due to uneven silane layer deposition and occurred in ~80% 
of specimens. 

 

3.2 In-situ Mechanical Testing 

 Figure 5A shows a successful self-assembly of 100 nm nanoparticles on the magnesium 

alloy WE43 for use as a speckle pattern during scanning electron microscopy combined with 

digital image correlation. The acid etch used in this study aggressively attacks the grain 

boundaries, resulting in a deep grain boundary etch that can be seen beneath the speckle pattern 

and is ideal for demonstration purposes of this technique. In subsequent studies of the 

microstructural response to plastic deformation, a less aggressive etch that does not attack grain 

boundaries preferentially is used. The speckle pattern enables the quantification of strain at high 
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magnification using SEM-DIC, as shown in Figure 5C, where there is strong sub-grain 

heterogeneity in strain distribution with strain tending to localize at grain boundaries. This 

localization is partly due to the stress concentration at the grain boundaries from the etchant.  

 

Figure 5. SEM-DIC results for an in-situ test conducted on the Mg alloy WE43: A) 100 nm gold 
nanoparticles self-assembled on the surface, by controlling the pH basicity, to serve as a speckle 
pattern. Magnified is the subset (size 51) used for DIC, where the width of a pixel in the subset is 
33.2 nm. Each nanoparticle is roughly 3x3 pixels for ideal DIC results; B) EBSD orientation map of 
the underlying microstructure; C) Full-field strain map during global plastic deformation, showing 
strong sub-grain heterogeneity in strain distribution with strain tending to localize at grain 
boundaries. Spatial resolution of the strain calculation is approximately 0.85 microns based on the 
subset size. 

 

Summary 

 The successful self-assembly of gold nanoparticles on pure magnesium and three of its 

alloys was achieved through a passivated corrosion reaction with a gold nanoparticle suspension. 

To the best of the authors’ knowledge, this is the first self-assembly of nanoparticles on 

magnesium that has been reported. This technique is amendable to other corrosion-susceptible 

materials if corrosion can be prevented during the long immersion in the nanoparticle suspension 

via pH adjustment or the addition of other established corrosion inhibitors. The proposed 

approach is inexpensive, provides dense coverage, and can be easily scaled by adjusting the size 

of the nanoparticles.  
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