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Purpose: Foreign objects, such as surgical sponges, needles, sutures, and other surgical instruments,
retained in the patient’s body can have dire consequences in terms of patient mortality as well as legal
and financial penalties. We propose computer-aided detection (CAD) on postoperative radiographs
as a potential solution to reduce the chance of retained foreign objects (RFOs) after surgery, thus alle-
viating one of the major concerns for patient safety in the operation room. A CAD system can func-
tion as a second pair of eyes or a prescreener for the surgeon and radiologist, depending on the CAD
system design and the workflow. In this work, we focus on the detection of surgical needles on post-
operative radiographs. As needles are frequently observed RFOs, a CAD system that can offer high
sensitivity and specificity toward detecting surgical needles will be useful.
Methods: Our CAD system incorporates techniques such as image segmentation, image enhance-
ment, feature analysis, and curve fitting to detect surgical needles on radiographs. A dataset consist-
ing of 108 cadaver images with a total of 116 needles and 100 cadaver “normal” images without
needles was acquired with a portable digital x-ray system. A reference standard was obtained by
marking the needle locations using an in-house developed graphical user interface. The 108 cadaver
images with the needles were partitioned into a training set containing 53 cadaver images with 59
needles and a test set containing 55 cadaver images with 57 needles. All of the 100 cadaver normal
images were reserved as a part of the test set and used to estimate the false-positive detection rate.
Two operating points were chosen from the CAD system such that it can be operated in two modes,
one with higher specificity (mode I) and the other with higher sensitivity (mode II).
Results: For the training set, the CAD system with the rule-based classifier achieved a sensitivity of
74.6% with 0.15 false positives per image (FPs/image) in mode I and a sensitivity of 89.8% with 0.36
FPs/image in mode II. For the test set, the CAD system achieved a sensitivity of 77.2% with 0.26
FPs/image in mode I and a sensitivity of 84.2% with 0.6 FPs/image in mode II. For comparison, the
CAD system with the neural network classifier achieved a sensitivity of 74.6% with 0.08 FPs/image
in mode I and a sensitivity of 88.1% with 0.28 FPs/image in mode II for the training set, and a sensi-
tivity of 75.4% with 0.23 FPs/image in mode I and a sensitivity of 86.0% with 0.57 FPs/image in
mode II for the test set.
Conclusion: A novel CAD system has been developed for automated detection of needles inadver-
tently left behind in a patient’s body from postsurgery radiographs. The pilot system offers reasonable
performance in both the high sensitivity and high specificity modes. This preliminary study shows
the promise of CAD as a low-cost and efficient aid for reducing retained surgical needles in patients.
© 2016 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.12011]
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1. INTRODUCTION

Foreign objects, such as surgical sponges, surgical needles,
sutures, and other surgical instruments, unintentionally left
behind in a patient’s body after surgery have rare occurrences
but can lead to serious medical problems as well as legal and
financial penalties for the responsible institution. Literature
suggests that a retained foreign object (RFO) is likely to take
place at least once in every 7000 surgeries,1 resulting in

health concerns such as sepsis, fistula, visceral perforation, or
even death.2 Fortunately, these ominous effects can be largely
prevented.

Currently, the typical protocols to prevent such situations,
involve manually counting the surgical instruments (surgical
sponges, surgical needles, sutures, etc.) before and after the
procedure to check for discrepancies, and examining postop-
erative x-ray images.1 However, both approaches are heavily
dependent on the accuracy of nurses, surgeons, and/or
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radiologists in counting or identifying RFOs from radio-
graphs which can falter in demanding situations and make
such protocols highly susceptible to human error. Therefore,
there is a need for better methods to address these issues. An
automated system that can detect such RFOs may be a viable
solution.

We have previously addressed the RFO problem with
two complementary technologies: a three-dimensional (3D)
gossypiboma microtag (lTag) that is attached to and thus
improves the visibility of sponges on radiographs and a
computer-aided detection (CAD) system to detect the
lTag.3 The CAD system achieved very high sensitivity and
specificity but the image analysis methods were specifically
designed to detect microtag-sponges. In this study, we
focus on designing a new CAD system for detection of
needles on postsurgical radiographs, which is another
important type of RFOs incorrectly counted most of the
time,1 making it a pressing need to develop a more reliable
method to complement the currently practiced protocols for
needle accounting.

Several studies were performed previously to develop
methods for the automatic detection and tracking of
endovascular devices such as catheters and stent-grafts.4–7

Although these devices are line-like objects, the techniques
used for detecting such devices cannot be applied to the
automatic detection of retained needles in radiographs,
owing to the particular (elliptical) shape of the surgical
needles.

There are two other previous studies8,9 on computer-
aided detection (CAD) of retained surgical items like nee-
dles and sponges. While in one of the studies,8 the CAD
system was only used for the detection of sponges, in the
other study,9 a pattern recognition algorithm was imple-
mented using a library of images of a surgical needle in
various orientations. However, the test images used for
evaluating this algorithm did not seem to include any
anatomical noise, which is not the case in clinically
obtained radiographic images. Additionally, the dataset
used for the study was not partitioned into training and
test sets, thus the evaluation result might be optimistically
biased. In our current study, we proposed a different fea-
ture-extraction-based approach, as it can be more versatile
compared to the pattern recognition method used in the
previous study.9 We also used a training set and an inde-
pendent test set of clinically relevant radiographs contain-
ing needles for the design and evaluation of the CAD
system.

2. METHODS AND MATERIALS

To develop the CAD system for detecting surgical needles
in radiographs, we first generated a dataset of radiographs
with needles commonly used in surgery. An example of a
typical radiograph of a cadaver with a needle is shown in
Fig. 1. The dataset was divided into a training set and a test
set. We then designed image analysis methods to detect the
needles and reduce false positives. The CAD system was

trained with the training set and the performance was vali-
dated with the test set.

2.A. Data set

2.A.1. Surgical needles

Surgical needle sizes can vary in size between 6 mm and
65 mm depending on the procedures and the type of the tis-
sue they are used for.10 Of these, the two most commonly
used needles were used to generate a set of radiographic
images for this preliminary study. They are shown in Fig. 2
with their respective sizes summarized in Table I.

(a) (b)

FIG. 1. (a) A typical radiograph of a cadaver in our database with a needle.
(b) Zoomed-in view of the radiograph from (a) showing the needle next to a
tube. White arrows identify the needle location.

(a) (b)

(c) (d)

FIG. 2. Two most commonly used types of surgical needles used for the cre-
ation of the dataset and their corresponding images on radiographic back-
ground (a) Needle Type 1, (b) Needle Type 2, (c) and (d) radiographic images
of Type 1 and Type 2 needles, respectively, manually marked by radiologists
with a bounding box, to be used as reference standard for evaluation of CAD
performance. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Surgical needle types.

Surgical needle type Size (mm)

Type 1 22

Type 2 24
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2.A.2. Data sets

Because RFOs are rare events, we could not collect a
large enough dataset of postsurgery radiographs with nee-
dles from patient files within a reasonable time. With the
approval of the University of Michigan Anatomical Dona-
tions Program, images of cadavers, with needles placed on
top of them, were taken to obtain radiographs with simu-
lated RFOs in the patient body. Placing the needles on the
side farthest from the detector would result in the greatest
geometric blurring and scatter degradation of the needles
on the radiograph. This simulated the worst-case scenario,
from an imaging point of view, so that we did not need to
place needles inside the cadavers. All radiographs were
acquired from cadavers with needles placed on the chest
and abdomen regions because literature2 suggests that the
majority of needles were lost during surgery performed in
the thoracoabdominal cavity. Furthermore, the presence of
a large number of anatomical structures in the abdominal
region result in large contrast variations in the abdomen,
which makes it a greater challenge for the CAD system to
detect lost needles there than in other parts of the body. It
is important to obtain an adequate sampling of surgical
needles over a variety of anatomic backgrounds and differ-
ent locations of the abdomen, as well as random orienta-
tion of the needles in space. Therefore, the imaging was
performed as follows: the abdomen was divided into subre-
gions in a 4 9 5 grid. A needle was stuck inside a piece
of irregular-shaped foam that was rolled on the cadaver
surface so that it would stop at a random orientation for
each image. The cadaver was tilted and/or rotated relative
to the x-ray incident beam to increase the variations of the
projected anatomical background. In addition, with IRB
approval, we estimated the incidence of lines, tubes, and
other man-made objects on intraoperative radiographs. A
statistician determined the frequencies that the needles and
other foreign objects at the estimated incidence rates
should be placed in each grid cell. A Shimadzu portable
x-ray machine coupled with an 8-megapixel flat-panel
Cannon detector was used to image the cadavers with nee-
dles, sponges, tubes, sutures, and other surgical instru-
ments placed over them. The pixel pitch of the detector
was 125 9 125 lm and the output digital radiographs
have 12-bit (0 to 4095) gray levels.

One hundred and eight radiographs of 19 different cadav-
ers with a total of 116 needles placed at different locations on
their surface were acquired. Of the 108 cadaver radiographs,
53 radiographs with 59 needles were selected randomly for a
training set and the remaining 55 radiographs with 57 needles
were used for the test set. One hundred radiographs of cadav-
ers without needles were also acquired and all were used as a
part of the test set for the estimation of the false-positive rate
of the CAD system.

The location of the needles in each radiograph was manu-
ally marked by a radiologist with a bounding box, as shown
in Figs. 2(c) and 2(d), using an in-house developed graphical
user interface. The needles’ true locations were used as a

reference standard for the evaluation of the CAD system
detection accuracy for both the training and test sets.

2.B. CAD system design

The CAD system is designed to identify the location of a
needle on the radiograph. The flowchart of the needle detec-
tion algorithm is shown in Fig 3. The parameters (the thresh-
olds for the various decision rules) were selected empirically
to achieve the best performance on the training set. Similarly,
the weights of the feature classifiers were estimated with the
training samples alone. The CAD system consists of the fol-
lowing image processing steps:

2.B.1. Image enhancement

The purpose of image enhancement is to improve the con-
trast for the object of interest (in this case, needle) relative to
its background. For the current application, it is achieved by a
combination of three linear boxcar filters,3 namely, F1, F2,
and F3:

F x; yð Þ ¼ F3 x; yð Þ � fF1 x; yð Þ � F2 x; yð Þg (1)

With proper selection of these boxcar filters, the difference
between F1 and F2 can estimate the background intensity and
F3 can enhance the needle. The resulting filter, F(x, y), is a
band-pass filter that enhances the needle while removing the
background structures, thereby enhancing the contrast-to-
noise ratio (CNR) of the needles. The relation between the
kernel sizes of the filter, M1, M2, and M3, is as follows:
M1 > M2 ≥ M3. For this needle detection system, the filters
were experimentally chosen by using the training set to be
boxcar filters with kernel sizes: M1 = 13 pixels (1.625 mm),
M2 = 9 pixels (1.125 mm), and M3 = 5 pixels (0.625 mm).

After band-pass filtering, the mean gray level of the
filtered image is 0. A constant gray level of 2048 was added
to all pixels of the image to avoid cut-off of pixel values
below 0.

2.B.2. Image segmentation

Segmentation allows distinction between the objects of
interest and the background. Global thresholding and region
growing techniques were implemented to segment the objects
of interest, which are the needle candidates in this study. The
identified candidates can then be analyzed in the subsequent
processing steps.

Gray level thresholding is first carried out to divide the fil-
tered image into a “background” and a “foreground”.11 By
analysis of the histograms of the background-corrected
images in the training set, we found that the majority of the
needle pixels had gray levels greater than 135 above the mean
of the filtered image. We therefore chose a global gray level
threshold Ths of 2183 (=2048+135) for prescreening of the
needle candidates, i.e., if a pixel has a value above Ths, it is
considered a candidate (foreground) pixel. The background
pixels are assigned a gray level of 0, while the foreground
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pixels are set to 4095. The foreground pixels are then sub-
jected to region growing.

The region growing technique11 used here is initialized
with a seed pixel. The algorithm determines if a neighboring
pixel belongs to the same object by 8-connectivity and
whether the pixel gray level satisfies a given criterion, i.e.,
having a gray level of 4095 in this case. After the region
growing step, a number of needle candidate objects are
obtained. Then the area (Area) of every candidate object is
determined as the total number of connected pixels within the
object. Because of the presence of higher contrast structures
in human body and noisy background, many false positives
(FPs) are included in the pool of needle candidates. Some of

the FPs can be excluded by their size as follows. Based on the
training set, we estimated the possible maximum and mini-
mum area of the needles on the radiographs, and set the
upper and lower bounds of area to be Amax and Amin, respec-
tively, on the object area. The objects with the area within the
range Amin <Area < Amax are kept as needle candidates and
the rest are removed as false positives. Amax is set at 6500
pixels (101.56 mm2) to reject any object with an unusually
large area, as compared to a needle. To determine the value
for Amin, we analyzed the trade-offs between the sensitivity
and the number of FPs per image, i.e., the FP rate, in our
training set for a range of Area as shown in Fig. 4. It can be
seen that the FPs increased sharply at small Amin values and

I.IMAGE SEGMENTATION

CALCULATE AREA and OF nth OBJECT

CALCULATE CNR, HT AND WT

APPLY CURVE FITTING ALGORITHM

≥

IF
Amin < AREA < Amax

YES

NO

INPUT IMAGE

YES

NO

CALCULATE α AND λ

IF
≤ ≤

≤

YES

NO

OBJECT n IS A NEEDLE

MORE OBJECTS?

YES

n=n+1

NO

IMAGE ENHANCEMENT

END 

REJECT OBJECT

REJECT OBJECT

REJECT OBJECT

>

≤ ≤

≤ ≤

IF

FIG. 3. Flowchart of the CAD algorithm for detection of surgical needles in cadavers. The part within the dotted box represents a rule-based classifier, which can
be replaced by an alternative classifier such as neural networks, LDA, or random forest classifier.
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the sensitivity fell rapidly at large Amin values. The value of
Amin = 1300 pixels (20.31 mm2) where the sensitivity was
relatively stable at over 90% with a moderate FP rate of about
12 FPs/image was selected as a compromise for this pre-
screening stage. Further FP reduction is performed in the fol-
lowing step.

2.B.3. Feature analysis

In order to further decide whether a particular candidate is
a true needle, several features such as object density, CNR,
and geometric dimensions are calculated and analyzed.

Object Density (q) is defined as follows:

q ¼
PN0

n¼0 iðnÞ
N0

if iðnÞ[ Tcnr (2)

where i(n) is the gray level of pixel n in the CNR-enhanced
image (see Section 2.B.1) and NO is the total number of pix-
els in the object. The selected Tcnr threshold value of 2185 is
very close to the gray level threshold Ths of 2183 (Sec-
tion 2.B.2) used for object segmentation, but slightly adjusted
to better distinguish the object pixels from the background
pixels.

If a selected candidate has a density q between a chosen
range q ≥ qmin, it is considered a needle. qmin is determined
by analyzing the trade-offs between sensitivity and the FP
rate for a range of qmin values, as shown in Fig. 5. At qmin =
2250, we can reduce the FP rate from the previous stage (12.1
FPs/image) to 7.9 FPs/image, while keeping the sensitivity at
over 90%. Note that the object density is calculated by using
the enhanced image from Section 2.B.1.

As needles are radiopaque, the candidates that actually
are needles would have higher pixel intensities than other
candidates. Hence, this would be a good way to judge the
presence of a needle. However, this technique, when used
by itself for processing cadaver images was found to create
an unacceptably high number of false positives due to the
large number of tissues, organs, and surgical objects with

high-contrast appearance in the cadaver images. Therefore,
additional techniques (described below) had to be imple-
mented to identify the needles more accurately and reduce
the false positives.

CNR is calculated next, which is defined by the following
equation:

CNR ¼ lsig
rNoise

; (3)

where

lsig ¼ �O� �B (4)

�O ¼
PN0

n¼0 iðnÞ
NO

if iðnÞ[ Tcnr (5)

�B ¼
PN0

n¼0 iðnÞ
NB

if iðnÞ� Tcnr (6)

where i(n) is the intensity of pixel n, NO is the total number
of pixels in the object �O, NB is the total number of pixels in
the background region �B, and lsig is the difference between
the mean pixel values of the object �O and its background �B.
rNoise is the standard deviation of the background noise,
which is calculated as follows:

rNoise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNB

n¼0ðiðnÞ � �BÞ
NB

2 !vuut (7)

The needles or other metallic objects would have higher
CNR values, as compared to tissues and muscles in the back-
ground. Therefore, if we impose a constraint on the CNR as a
decision rule CNR > CNRth, where CNRth is a CNR thresh-
old, this decision rule will function as a second filter, elimi-
nating FP objects, such as those from bones and muscles.
Figure 6 shows the dependence of the true and false positives
as a function of CNR values for the training set. It can be
seen that, when CNRth is set to 3.45, the FP rate can be
reduced to 2.9. This is 63.3% ((7.9–2.9)/7.9) lower than the
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FP rate obtained after previous stage while the sensitivity is
89.8%.

To further reduce the number of FPs, the geometric param-
eters of the chosen candidate was taken into consideration.
The geometric parameters are denoted by the height (HT) and
width (WT) of a virtual box, as shown in Fig. 7, enclosing the
entire needle candidate. Constraining these geometric param-
eters within a range defined as HTmin<HT<HTmax and
WTmin<WT<WTmax, will result in elimination of a substan-
tial number of false-positive bone-containing objects of sizes
different from needles but having CNR and object density
values comparable to that of the needles. Based on the train-
ing set, the values for HTmin and WTmin were chosen to be 70
pixels (8.75 mm) to remove very small objects as compared
to needles. The values of HTmax and WTmax were chosen by
examining the dependence of the sensitivity and FP rate on
their values, as shown in Fig. 8. The optimal values for
HTmax and WTmax were chosen to be both 260 pixels
(32.50 mm). With these HTmin, HTmax, WTmin, and WTmax

values, the FP rate was reduced from 2.9 (after the CNR
stage) to 0.6, at a sensitivity of 89.8% for the training set.

After the three different types of features and decision
rules based on the object size and shape, the FP rate was
reduced substantially by about 96% (FP rate decreased from
12.1 to 0.6 FPs/image in the training set) compared to the

prescreening stage. However, some other FP objects in the
radiographs still remained because they met all the conditions
imposed by the decision rules described above. We designed
another FP reduction method to exploit the rather distinctive
shape of the needle. The various projections of the needles
could be thought of as parts of an ellipse or hyperbola. Thus,
by fitting an ellipse or a hyperbola to the object, one can
determine whether the detected object is a needle by estimat-
ing its goodness of fit to an ellipse or a hyperbola.

2.B.4. Curve fitting algorithm

While applying the curve fitting algorithm, it is unknown
whether the needle conforms better to a hyperbola, ellipse, or
parabola. However, for simplicity, our aim was to force an
ellipse to fit to the candidate object shape. Therefore, the
algorithm fits the general equation for a conic section12 to the
pixels of the binary segmented object obtained in
Section 2.B.2:

Gðx; yÞ ¼ Ax2 þ Bxyþ Cy2 þ Dxþ Eyþ F ¼ 0; (8)

where A, B, C, D, E, and F are coefficients of the conic sec-
tion.
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(a) (b)

FIG. 7. Examples of how the CAD system estimates the HT and WT values
of the needle by defining a rectangular box to enclose the needle. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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This equation describes a hyperbola, if the determinant,
B2 � 4AC is positive; an ellipse, if it is negative; and a para-
bola, if it is 0. We used two techniques, the least squares
curve fitting12 and the nonlinear simplex optimization13-
based fitting, to determine the values of the coefficients A, B,
C, D, E, and F for the conic section with the best fit to a set
of data points (object pixels on the image) as follows.

Least squares ellipse fitting: In the case of least squares
ellipse fitting, it is necessary first to select an appropriate
error function, and then to estimate an aggregate error. The
error function should be such that it is 0 for object pixels with
coordinates lying on the curve and non-zero for those located
away from the curve. Eq. (8) is used as an error function.
Without loss of generality, we can set the coefficient F to 1.

Error Function:

Gðx; yÞ ¼ Ax2 þ Bxyþ Cy2 þ Dxþ Eyþ 1 (9)

Based on G(x,y), the pointwise error and the aggregate
error are defined as:

Pointwise Error:

ni ¼ Gðxi; yiÞ ¼ Ax2i þ Bxiyi þ Cy2i þ Dxi þ Eyi þ 1

(10)

Aggregate Error:

E ¼
XN0

i¼0
n2i (11)

where, NO is the total number of pixels in the object.
In order to minimize the aggregate error with the least

squares minimization, first the partial derivatives of Eq. (11)
with respect to A, B, C, D, and E are obtained and are equated
to zero. The following equations are derived as a result:

A
X

x4i þ B
X

x3i yi þ C
X

x2i y
2
i þ D

X
x3i

þ E
X

x2i yi þ
X

x2i
¼ 0 (12)

A
X

x3i yi þ B
X

x2i y
2
i þ C

X
xiy

3
i þ D

X
x2i yi

þ E
X

xiy
2
i þ

X
xiyi

¼ 0 (13)
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X
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3
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X
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i

þ E
X
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A
X
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X
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X

xiy
2
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X
x2i þ E

X
xiyi

þ
X
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¼ 0

(15)

A
X

x2i yi þ B
X

xiy
2
i þ C

X
y3i þ D

X
xiyi þ E

X
y2i

þ
X

yi
¼ 0

(16)

The solution to these five equations yields a conic which
will minimize the error function. As there are five linear
equations with five unknowns, they can be solved using the
matrix method, as shown below:
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Matrix X Matrix M Matrix Y
Matrices X and Y in Eq. (17) can be obtained by using the

coordinates of every pixel within the candidate object being
fit. Thus by solving Eq. (17), the coefficients A, B, C, D, and
E can be estimated as follows to satisfy Eq. (9) :

M ¼ X�1 � Y (18)

Nonlinear simplex optimization ellipse fitting: This opti-
mization method, authored by Nedler and Mead,13 allows the
minimization of a function of k variables. It begins with a
simplex14 characterized by k +1 vertices in an k-dimensional
space of the variables, which are associated with the function
values calculated at those vertices and estimation of the corre-
sponding errors in these vertices. With every iteration, a new
simplex is formed such that the estimated errors at its vertices
slowly descend to the minimum.14

In our application, once the new simplex with the corre-
sponding new set of coefficients A, B, C, D, and E was gener-
ated for a given iteration, the determinant, B2 � 4AC was
calculated to estimate whether the candidate conic in question
conformed to an ellipse. If the determinant was positive or
equal to zero, i.e., the conic was a hyperbola or a parabola,
this specific simplex solution was penalized by assignment of
a large error and excluded from the set that could generate
simplexes. Therefore, by constraining the simplex procedure
with this additional condition, it was possible to force an
ellipse to fit the segmented object candidate data points.

2.B.5. Goodness of fit features

The next step is to estimate how well the conic curve fit
the object in question. The goodness of fit was determined by
two functions.
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Overlap function: This function basically calculates a
that describes what percentage of the fitted ellipse coincides
with the object pixels. This allows separation of needles from
other foreign objects such as sutures and pacemakers placed
on the cadavers. As we can see from Fig. 9(d), for pacemak-
ers, the segmented pacemaker object (Fig. 9(b)) almost com-
pletely overlaps with the fitted ellipse. Hence, the overlap
percentage, a, would be close to 100% for these false posi-
tives, while for needles (Fig. 9(a)), the overlap percentage is
typically in the range of 10–65%, as shown in Fig. 9(c). Fig-
ure 9(a) is the filtered, thresholded, and cropped section of
the image in Fig. 7(b). We set the criterion that, if
amin ≤ a ≤ amax, the candidate is considered a needle. The
thresholds for amin and amax are determined by analysis
of the false-positive and true-positive rate for different a
values for all objects after the feature analysis step in the
training set, as shown in Fig. 10(a). The plot shows that
the peak in the graph corresponds to the objects with a
values in the range of 7–65%, which basically represents
all the needles. Therefore, amin and amax were set at 7%
and 65%, respectively. By imposing the lower and upper
bounds of the overlap function as described above, the
number of FPs per image was reduced from 0.6 (after
the width stage) to 0.35 (FPs/Image (amax) – FPs/Image
(amin) = 0.52–0.17)

Normal distance function: The normal distance func-
tion12 computes the perpendicular distance k, from every
pixel location in the candidate to the fitted ellipse. It is calcu-
lated as the ratio of G(x, y) Eq. (9) to the magnitude of the
gradient of G(x, y):

k ¼
XNO

n¼0
ðGðx; yÞjrGj Þ

2

; (19)

where

jrGj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Gðx; yÞ

@X

� �2

þ @Gðx; yÞ
@Y

� �2
s

(20)

If the calculated k is such that k ≤ kmax, the selected can-
didate is labeled as a detected needle, otherwise the candidate
is dismissed. The dependence of sensitivity and FP rate on
kmax in the training set is plotted in Fig. 10(b). At a value of
kmax = 8.0 pixels (0.16 mm2), the FP rate was reduced from
0.35 (after applying the overlap function) to 0.17 with a sensi-
tivity of 86.4%. Furthermore, the choice of threshold for k
can be used to adjust the operating point of the CAD system
to achieve different sensitivity and specificity values. The
specific values for this threshold are discussed in Section 3.

2.B.6. Neural network, linear discriminant analysis
(LDA), and random forest classifiers

In addition to the rule-based classifier described above, we
evaluated the performance of three other classifiers, neural
network, random forest, and linear discriminant analysis

(a) (b)

(c) (d)

FIG. 9. Candidates representing a needle (the needle from Fig. 8(b)) (a), and
a pacemaker (b) after enhancement and segmentation. (c) Ellipse fitted (in
blue) to the needle (in white) (a = 49.45. (d) Ellipse fitted to the pacemaker
candidate ða ¼ 99:6%). [Color figure can be viewed at wileyonlinelibrary.
com]
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FIG. 10. (a) Dependence of the sensitivity and FP rate (FPs/image) on a,
amin ¼ 7% and amax = 65% were the values chosen from the training set. (b)
Dependence of the sensitivity and FP rate on kmax from the training set. The
dashed vertical line indicates the corresponding selected thresholds. [Color
figure can be viewed at wileyonlinelibrary.com]
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(LDA), to merge the extracted features and reduce false posi-
tives. For these classifiers, we first used the rule-based
method with the fixed threshold values (as described in the
previous section) up to the CNR stage to reduce some of the
false positives. We then trained the classifiers with the five
extracted features, CNR, HT, WT, a, and k, as input predictor
variables using the training set.

For the neural network, we used a multilayer perceptron
with five input neurons, two hidden layers (with five hidden
nodes in the first layer and two hidden nodes in the second
layer), and one output neuron. It was trained with back-propa-
gation for 1000 iterations. We selected the smallest neural
network that could reach training AUC of 0.99.

For the random forest classifier, the best training result
(highest sensitivity with the lowest false-positive rate) was
obtained for 200 decision trees with a minimum leaf size of 2
and therefore we chose this configuration. We experimentally
determined these parameters using the training set and then
applied the selected parameters to the test set.

2.C. Evaluation of the CAD system

The bounding box of a needle is used as reference standard
to determine whether an object labeled by the CAD system is
a true positive (TP) or an FP using a scoring program.3 For
the rule-based classifier, k was used as a decision variable.
For the random forest, LDA and neural network classifiers,
the output score from the classifier was used as a decision
variable to obtain the FROC curves as well as the operating
points for mode I and II. At a given decision threshold value,
each detected object is first enclosed by a bounding box. If
the centroid of the bounding box of a CAD detected object
fell within a reference standard box, then the detected object
is a TP, otherwise an FP. The entire CAD system was devel-
oped using the training set.

After all parameters are fixed, the performance of the
CAD system was evaluated on the test set. Free response
receiver operating characteristic (FROC) analysis was used to
evaluate the performance of the CAD system on both the
training and test sets over a range of decision thresholds. The
sensitivity for the training and test sets were estimated by
using the 53 training and the 55 test cadaver images with nee-
dles, respectively. The corresponding FP rates for the test
curve were estimated by using the 100 normal images without
needles.

3. RESULTS

Examples of the detected needles with different orienta-
tions, locations, and with different levels of visibility are
shown in Figs. 1, 7, and 11. The FROC curves using the rule-
based classifier for the training and the test sets are shown in
Fig. 12. Two hypothetical operating points are marked along
the FROC curves for the rule-based classifier, mode I with
higher specificity and mode II with higher sensitivity. The
decision thresholds for the two modes were selected using
the training set:

1. Mode I: kmax = 2.74 pixels (0.0428 mm2)
2. Mode II: kmax = 15.9 pixels (0.2484 mm2)

The detection results for both modes are summarized in
Table II.

The operating points for mode I with higher specificity and
for mode II with higher sensitivity for the neural network clas-
sifier are shown in Fig. 13. The operating points were selected
in the same way as for the rule-based classifier. The detection
results for both modes, together with the results for the ran-
dom forest and LDA classifiers are summarized in Table II.

The FROC curves for the different classifiers: rule-based,
random forest, LDA, and neural network are compared in
Fig. 14. The FROC curve for the random forest training set is
not shown in this figure, as no false positives were produced

(a) (b) (c)

FIG. 11. Needles of various shapes and orientations with different background that were detected by the CAD system. [Color figure can be viewed at wileyonline
library.com]
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FIG. 12. FROC curves for training and test sets for rule-based classifier.
[Color figure can be viewed at wileyonlinelibrary.com]
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for the training set and all needles at that stage were detected
with an overall sensitivity of 89.8%. The neural network clas-
sifier had the best performance, with a higher sensitivity of
86.0% with the test set and a slightly lower FP rate of 0.57
FPs/Image with the normal set.

4. DISCUSSION

Although there have been previous studies4–7 to detect
line-like objects, those techniques could not be directly
applied for the automatic detection of needles. For example,
for the detection of lasso catheters5, a similar idea of ellipse
fitting was used, but the ellipse fitting was done by first
detecting the electrodes as ‘blobs’ and then checking whether
these ‘blobs’ could fit an ellipse. However, we could not
apply the same ‘blob’ detection technique directly to surgical
needles. Moreover, the higher radio-opacity of the needles as
compared to these devices, prompted us to investigate other
features like contrast-to-noise ratio, object density, etc. as we
discussed in previous sections of this study. This type of fea-
ture analysis reduced some of the false positives.

The cadaver images with the needles and the additional
surgical instruments, sponges, and medical tubes on the cada-
ver simulated a challenging dataset. The preliminary results
indicated that the CAD system performed well in both modes
I and II. The system was able to detect most of the surgical
needles with relatively low FP rates. The CAD systems with
the rule-based or the neural network classifier performed sim-
ilarly and slightly better than the CAD systems with the ran-
dom forest or LDA classifier.

The two operating points of the CAD system are selected
to illustrate the potential application of the CAD system in
different clinical situations. Mode I with higher specificity
can be used by the surgeon in the operating room, while
mode II with higher sensitivity can be used by the radiologist.
For example, the CAD system with the neural network classi-
fier operated in mode I offers 75.4% sensitivity with 0.23
FPs/image on the test set, or approximately only 1 FP in every
4 to 5 cases. This will allow the surgeon to close the patient
in about 75% of the time for whom no needle (or false posi-
tive) on the radiographs is detected. For the 23% of the radio-
graphs with a CAD mark, the surgeon can take a quick look
at the radiograph to determine if the marked object is a real

TABLE II. Results for needle detection on cadaver radiographs.

Classifier

Training set Test set

Sensitivity
False

positives/image Sensitivity
False

positives/image

Rule-Based

Mode I 74.6 0.15 77.2 0.26

Mode II 89.8 0.36 84.2 0.60

Random Forest

Mode I 89.8 0.0 75.4 0.21

Mode II 89.8 0.0 75.4 0.21

LDA

Mode I 79.7 0.22 71.9 0.48

Mode II 86.4 0.83 86.0 1.28

Neural Networks

Mode I 74.6 0.08 75.4 0.23

Mode II 88.1 0.28 86.0 0.57
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FIG. 13. FROC curves for training and test sets for neural network classifier.
[Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 14. Comparison of the FROC curves for the different classifiers. [Color
figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIG. 15. Example of needle missed by both the rule-based and the neural net-
work based CAD systems. [Color figure can be viewed at wileyonlinelibrary.
com]
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needle or not. The surgeon can easily rule out FPs such as
bones, sutures, or tube which may be mistakenly recognized
by the system as needles. In an occasional doubtful situation,
where the surgeon is unable to distinguish between a needle
and a false positive from the objects marked on the radio-
graphs by the CAD system, the surgeon will have the oppor-
tunity to verify his conclusions by inspecting the patient
before closing the patient. With the CAD sensitivity at about
75%, the surgeon will be able to remove about 75% RFO nee-
dles from the patients before closing. Therefore, the CAD
system can function as a first reader in the OR with surgeon
spending minimal time checking the CAD marks only. In
mode II, the CAD system will operate at 86.0% sensitivity
with 0.57 FPs/image. It may be used by the radiologist as a
second reader that will complement their own reading. The
combined sensitivity of radiologist and the CAD system will
be most likely higher than the radiologist alone.15–18 A radiol-
ogist can easily rule out FPs such as bones, sutures, or tubes
that are identified by the CAD system as needles.

One of the most challenging problems faced by the CAD
system was caused by the presence of other objects in the
radiograph, such as pacemakers, tubes, sutures, etc. In fact
when the curve fitting algorithm was applied to these objects,
it was found that they conform to the shape of an ellipse with
very small error. However, it was observed that the needle
overlapped with the ellipse by only 10–65%, while the
sutures and pacemakers overlapped more than 90%. Thus, a
decision based on the overlap function helped eliminate sev-
eral such false positives, improving the specificity of the
CAD system even in these challenging situations.

In this preliminary study, we used two types of needles,
which are frequently used in clinical practice and have similar
sizes (22 mm and 24 mm). While this is a current limitation
of the system, in the future, we plan to increase the dataset to
include radiographs of needles with a wide range of sizes,
which will allow us to identify any deficiencies or limitations,
the current system may have and design new methods to
improve its performance.

Figure 15 shows examples of needles missed by the CAD
system with the neural networks as well as with the rule-
based system. Due to the presence of other overlapping struc-
tures like bones and medical instruments, the shapes of the
segmented objects are distorted and the fitting of these
shapes to an ellipse was poor with large errors. In the future,

when we generate additional training samples, we may try to
include additional shape analysis to differentiate the different
types of high-contrast objects. Another possible strategy is to
separate the overlapping objects before fitting the ellipse.

Figure 16 shows some of the false positives detected by
the rule-based but omitted by the neural network-based CAD
system. They satisfied all the conditions that were designed
to detect the needles. Nevertheless, most of these false posi-
tives can be easily recognized and ignored by the physicians.

This study has several limitations. First, the dataset is rela-
tively small and includes only two types of needles so that it
does not cover all possible scenarios that may occur in the
operating room. Second, we could only use cadavers to gen-
erate the training and test radiographs, rather than collecting
real human subject images, although the cadaver may be
more challenging because of the various procedures that
might have been performed near and after the end of the life
and the various objects left behind in the cadaver body. Third,
there are other possible types of RFOs and this study only
focused on surgical needles. Fourth, the sensitivity and speci-
ficity are still relatively low, including the potential operating
points for mode I and mode II, and further improvement is
needed when a larger dataset can be generated.

5. CONCLUSION

To the best of our knowledge, this was the first time a
CAD system is developed to detect needles from postopera-
tive radiographs with realistic anatomical background struc-
tures.8,9 We demonstrated that the CAD system can be
operated in different modes by properly selecting the operat-
ing points; for example, a high specificity mode as a first
reader for the surgeon in the operating room and a high sensi-
tivity mode for the radiologist later as a second reader. With
such a computer-assisted approach, it is possible to substan-
tially reduce the number of RFOs unintentionally left behind
in a patient’s body, thereby reducing the morbidity and mor-
tality as well as the patient care costs associated with RFOs.
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