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Abstract 

 

Purpose:  Foreign objects, such as surgical sponges, needles, sutures and other surgical 

instruments, retained in the patient’s body can have dire consequences in terms of patient 

mortality as well as legal and financial penalties. We propose computer-aided detection 5 

(CAD) on postoperative radiographs as a potential solution to reduce the chance of retained 

foreign objects (RFOs) after surgery, thus alleviating one of the major concerns for patient 

safety in the operation room. A CAD system can function as a second pair of eyes or a pre-

screener for the surgeon and radiologist, depending on the CAD system design and the 

workflow. In this work, we focus on the detection of surgical needles on postoperative 10 

radiographs. As needles are frequently observed RFOs, a CAD system that can offer high 

sensitivity and specificity towards detecting surgical needles will be useful. 

Methods: Our CAD system incorporates techniques such as image segmentation, image 

enhancement, feature analysis and curve fitting to detect surgical needles on radiographs. A 

data set consisted of 108 cadaver images with a total of 116 needles and 100 cadaver 15 

“normal” images without needles were acquired with a portable digital x-ray system. A 

reference standard was obtained by marking the needle locations using an in-house developed 

graphical user interface. The 108 cadaver images with the needles were partitioned into 

training set containing 53 cadaver images with 59 needles and a test set containing 55 

cadaver images with 57 needles.  All of the 100 cadaver normal images were reserved as a 20 

part of the test set and used to estimate the false positive detection rate.  Two operating points 

were chosen from the CAD system such that it can be operated in two modes, one with higher 

specificity (mode I) and the other with higher sensitivity (mode II).  

Results: For the training set, the CAD system with the rule-based classifier achieved a 

sensitivity of 74.6% with 0.15 false positives per image (FPs/image) in mode I and a 25 

sensitivity of 89.8 % with 0.36 FPs/image in mode II. For the test set, the CAD system 

achieved a sensitivity of 77.2% with 0.26 FPs/image in mode I and a sensitivity of 84.2% 

with 0.6 FPs/image in mode II. For comparison, the CAD system with the neural network 

classifier achieved a sensitivity of 74.6% with 0.08 FPs/image in mode I and a sensitivity of 

88.1 % with 0.28 FPs/image in mode II for the training set, and a sensitivity of 75.4% with 30 

0.23 FPs/image in mode I and a sensitivity of 86.0% with 0.57 FPs/image in mode II for the 

test set.  

Conclusion: A novel CAD system has been developed for automated detection of needles 

inadvertently left behind in a patient’s body from post-surgery radiographs. The pilot system 
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offers reasonable performance in both the high sensitivity and high specificity modes. This 35 

preliminary study shows the promise of CAD as a low-cost and efficient aid for reducing 

retained surgical needles in patients. 

 

Keywords: computer aided detection (CAD), retained surgical needles, radiographs 

 40 

 

1. INTRODUCTION 

Foreign objects, such as surgical sponges, surgical needles, sutures and other surgical 

instruments, unintentionally left behind in a patient’s body after surgery have rare 

occurrences but can lead to serious medical problems as well as legal and financial penalties 45 

for the responsible institution. Literature suggests that a retained foreign object (RFO) is 

likely to take place at least once in every 7000 surgeries1, resulting in health concerns such as 

sepsis, fistula, visceral perforation or even death2

Currently, the typical protocols to prevent such situations, involve manually counting the 50 

surgical instruments (surgical sponges, surgical needles, sutures, etc.) before and after the 

procedure to check for discrepancies, and examining post-operative x-ray images

. Fortunately, these ominous effects can be 

largely prevented.   

1

We have previously addressed the RFO problem with two complementary technologies: a 

three-dimensional (3D) gossypiboma microtag (μTag) that is attached to and thus improves 

the visibility of sponges on radiographs and a computer-aided detection (CAD) system to 60 

detect the μTag

. However, 

both approaches are heavily dependent on the accuracy of nurses, surgeons, and/or 

radiologists in counting or identifying RFOs from radiographs which can falter in demanding 

situations and make such protocols highly susceptible to human error. Therefore, there is a 55 

need for better methods to address these issues. An automated system that can detect such 

RFOs may be a viable solution.  

3.  The CAD system achieved very high sensitivity and specificity but the 

image analysis methods were specifically designed to detect microtag-sponges.  In this study, 

we focus on designing a new CAD system for detection of needles on post-surgical 

radiographs, which is another important type of RFOs incorrectly counted most of the time1, 

making it a pressing need to develop a more reliable method to complement the currently 65 

practiced protocols for needle accounting. 
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Several studies were performed previously to develop methods for the automatic 

detection and tracking of endovascular devices such as catheters and stent-grafts4-7

There are two other previous studies

. Although 

these devices are line-like objects, the techniques used for detecting such devices cannot be 

applied to the automatic detection of retained needles in radiographs, owing to the particular 70 

(elliptical) shape of the surgical needles.  
8, 9 on computer-aided detection (CAD) of retained 

surgical items like needles and sponges. While in one of the studies8, the CAD system was 

only used for the detection of sponges, in the other study9 a pattern recognition algorithm was 

implemented using a library of images of a surgical needle in various orientations. However, 75 

the test images used for evaluating this algorithm did not seem to include any anatomical 

noise, which is not the case in clinically obtained radiographic images. Additionally, the 

dataset used for the study was not partitioned into training and test sets, thus the evaluation 

result might be optimistically biased. In our current study, we proposed a different feature-

extraction based approach, as it can be more versatile compared to the pattern recognition 80 

method used in the previous study9. We also used a training set and an independent test set of 

clinically relevant radiographs containing needles for the design and evaluation of the CAD 

system. 
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Fig. 1.  (a) A typical radiograph of a cadaver in our database with a needle. 

(b) Zoomed-in view of the radiograph from (a) showing the needle 

next to a tube.  White arrows identify the needle location. 

2. METHODS AND MATERIALS 

To develop the CAD system for detecting surgical needles in radiographs, we first 85 

generated a data set of radiographs with needles commonly used in surgery. The data set was 

divided into a training set and a test set.  We then designed image analysis methods to detect 

the needles and reduce false positives.  The CAD system was trained with the training set and 

the performance was validated with the test set. 

2.A. Data set 90 

2.A.1 Surgical needles 

Surgical needle sizes can vary in size between 6mm and 65mm depending on the 

procedures and the type of the tissue they are used for10

Table 1. Surgical Needle Types 

. Of these, the two most commonly 

used needles were used to generate a set of radiographic images for this preliminary study. 

They are shown in Fig. 2 with their respective sizes summarized in Table 1.  95 

Surgical Needle Type Size(mm) 

Type 1 22 

Type 2 24 

 

2.A.2 Data Sets 

Because RFOs are rare events, we could not collect a large enough data set of post-

surgery radiographs with needles from patient files within a reasonable time.  With the 100 

approval of the University of Michigan Anatomical Donations Program, images of cadavers, 

with needles placed on top of them, were taken to obtain radiographs with simulated RFOs in 

the patient body.  Placing the needles on the side farthest from the detector would result in the 

greatest geometric blurring and scatter degradation of the needles on the radiograph.  This 

simulated the worst-case scenario, from an imaging point of view, so that we did not need to 105 

place needles inside the cadavers. All radiographs were acquired from cadavers with needles 

placed on the chest and abdomen regions because literature2 suggests that the majority of 

needles were lost during surgery performed in the thoracoabdominal cavity. Furthermore, the 
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presence of a large number of anatomical structures in the abdominal region result in large 

contrast variations in the abdomen, which makes it a greater challenge for the CAD system to 110 

detect lost needles there than in other parts of the body. It is important to obtain an adequate 

sampling of surgical needles over a variety of anatomic backgrounds and different locations 

of the abdomen, as well as random orientation of the needles in space. Therefore, the imaging 

was performed as follows: the abdomen was divided into subregions in a 4 x 5 grid. A needle 

was stuck inside a piece of irregular-shaped foam that was rolled on the cadaver surface so 115 

that it would stop at a random orientation for each image. The cadaver was tilted and/or 

rotated relative to the x-ray incident beam to increase the variations of the projected 

anatomical background. In addition, with IRB approval, we estimated the incidence of lines, 

tubes, and other man-made objects on intraoperative radiographs.  A statistician determined 

the frequencies that the needles and other foreign objects at the estimated incidence rates 120 

should be placed in each grid cell. A Shimadzu portable x-ray machine coupled with an 8-

megapixel flat-panel Cannon detector was used to image the cadavers with needles, sponges, 

tubes, sutures and other surgical instruments placed over them. The pixel pitch of the detector 

was 125×125 μm and the output digital radiographs have 12-bit (0 to 4095) gray levels.  

     

  

 

  

(a) (b) 
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Fig. 2. Two most commonly used types of surgical needles used for the creation of 

the data set and their corresponding images on radiographic background (a) 

Needle Type 1, (b) Needle Type 2, (c) and (d) radiographic images of Type 

1 and Type 2 needles, respectively, manually marked by radiologists with a 

bounding box, to be used as reference standard for evaluation of CAD 

performance.  

 

 125 

One hundred and eight radiographs of 19 different cadavers with a total of 116 

needles placed at different locations on their surface were acquired. Of the 108 cadaver 

radiographs, 53 radiographs with 59 needles were selected randomly for a training set and the 

remaining 55 radiographs with 57 needles were used for the test set. One hundred 

radiographs of cadavers without needles were also acquired and all were used as a part of the 130 

test set for the estimation of the false positive rate of the CAD system. 

The location of the needles in each radiograph was manually marked by a radiologist 

with a bounding box, as shown in Fig. 2(c) and 2(d), using an in-house developed graphical 

user interface. The needles’ true locations were used as a reference standard for the 

evaluation of the CAD system detection accuracy for both the training and test sets.  135 

2.B. CAD system design 

The CAD system is designed to identify the location of a needle on the radiograph. 

The flowchart of the needle detection algorithm is shown in Fig 3. The parameters (the 

thresholds for the various decision rules) were selected empirically to achieve the best 

performance on the training set. Similarly, the weights of the feature classifiers were 140 

estimated with the training samples alone. The CAD system consists of the following image 

processing steps: 

2.B.1 Image Enhancement 

The purpose of image enhancement is to improve the contrast for the object of interest 

(in this case, needle) relative to its background. For the current application, it is achieved by a 145 

combination of three linear boxcar filters3, namely, F1, F2 and F3� (�,�) =  �3 (�,�) − {�1(�,�) − �2(�,�)}                                                                         (1) 

:  

With proper selection of these boxcar filters, the difference between F1 and F2 can 

estimate the background intensity and F3 can enhance the needle. The resulting 

filter, � (�, �), is a band-pass filter that enhances the needle while removing the background 150 
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structures, thereby enhancing the contrast-to-noise ratio (CNR) of the needles. The relation 

between the kernel sizes of the filter, M1, M2 and M3, is as follows: �1  >  �2  ≥ �3.  For 

this needle detection system, the filters were experimentally chosen by using the training set 

to be boxcar filters with kernel sizes: M1 = 13 pixels (1.625 mm), M2 = 9 pixels (1.125 mm) 

and M3 

After band-pass filtering, the mean gray level of the filtered image is 0.  A constant gray level 

of 2048 was added to all pixels of the image to avoid cut-off of pixel values below 0.  

= 5 pixels (0.625 mm).  155 

2.B.2 Image Segmentation 

Segmentation allows distinction between the objects of interest and the background. 

Global thresholding and region growing techniques were implemented to segment the objects 160 

of interest, which are the needle candidates in this study.  The identified candidates can then 

be analyzed in the subsequent processing steps.  

Gray level thresholding is first carried out to divide the filtered image into a 

“background” and a “foreground”11.  By analysis of the histograms of the background-

corrected images in the training set, we found that the majority of the needle pixels had gray 165 

levels greater than 135 above the mean of the filtered image.  We therefore chose a global 

gray level threshold Ths of 2183 (=2048+135) for pre-screening of the needle candidates, i.e., 

if a pixel has a value above Ths, it is considered a candidate (foreground) pixel.  The 

background pixels are assigned a gray level of 0, while the foreground pixels are set to 4095. 

The foreground pixels are then subjected to region growing. 170 
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Fig. 4. Dependence of sensitivity and false positive rate (FPs/Image) on the 

minimum Area value Amin for objects at the pre-screening stage in 

the training set. The dashed vertical line on the plot indicates the 

chosen decision value for Amin

 

.  

The region growing technique11 used here is initialized with a seed pixel. The 

algorithm determines if a neighboring pixel belongs to the same object by 8-connectivity and 

whether the pixel gray level satisfies a given criterion, i.e. having a gray level of 4095 in this 

case. After the region growing step, a number of needle candidate objects are obtained. Then 175 

the area (Area) of every candidate object is determined as the total number of connected 

pixels within the object. Because of the presence of higher contrast structures in human body 

and noisy background, many false positives (FPs) are included in the pool of needle 

candidates. Some of the FPs can be excluded by their size as follows.  Based on the training 

set, we estimated the possible maximum and minimum area of the needles on the 180 

radiographs, and set the upper and lower bounds of Area to be Amax and Amin, respectively, 

on the object area.  The objects with the area within the range Amin <Area < Amax are kept as 

needle candidates and the rest are removed as false positives. Amax is set at 6500 pixels 

(101.56 mm2) to reject any object with an unusually large area, as compared to a needle. To 
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determine the value for Amin, we analyzed the tradeoffs between the sensitivity and the 185 

number of FPs per image, i.e., the FP rate, in our training set for a range of Area as shown in 

Fig. 4. It can be seen that the FPs increased sharply at small Amin values and the sensitivity 

fell rapidly at large Amin values.  The value of Amin = 1300 pixels (20.31 mm2

 

) where the 

sensitivity was relatively stable at over 90% with a moderate FP rate of about 12 FPs/image 

was selected as a compromise for this pre-screening stage.  Further FP reduction is performed 190 

in the following step.  

2.B.3. Feature Analysis  

In order to further decide whether a particular candidate is a true needle, several 

features such as object density, CNR and geometric dimensions are calculated and analyzed. 195 

  

Object Density (�) is defined as follows:  

 � =  
∑ �(�)
���=0��             �� �(�) > ����                                               (2) 

where i(n) is the gray level of pixel n in the CNR-enhanced image (see Section 2.B.1) and NO 200 

is the total number of pixels in the object. The selected ���� threshold value of 2185 is very 

close to the gray level threshold Ths

If a selected candidate has a density � between a chosen range  � ≥ ����   , it is 

considered a needle. ����   is determined by analyzing the trade-offs between sensitivity and 205 

the FP rate for a range of  ����  values, as shown in Fig. 5. At ����   = 2250, we can reduce 

the FP rate from the previous stage (12.1 FPs/image) to 7.9 FPs/image, while keeping the 

sensitivity at over 90%. Note that the object density is calculated by using the enhanced 

image from Section 2.B.1.    

 of 2183 (Section 2.B.2) used for object segmentation, 

but slightly adjusted to better distinguish the object pixels from the background pixels. 
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Fig. 5. Dependence of sensitivity and false positive rate (FPs/Image) on the 

minimum object density value ����   for objects at the pre-screening 

stage in the training set.  The dashed vertical line on the plot indicates 

the selected decision value for ����  .  

 210 

Since needles are radiopaque, the candidates that actually are needles would have 

higher pixel intensities than other candidates. Hence this would be a good way to judge the 

presence of a needle. However, this technique, when used by itself for processing cadaver 

images was found to create an unacceptably high number of false positives due to the large 

number of tissues, organs and surgical objects with high contrast appearance in the cadaver 215 

images. Therefore, additional techniques (described below) had to be implemented to identify 

the needles more accurately and reduce the false positives.  

 

CNR is calculated next, which is defined by the following equation: ��� =  
����������    ,                                                                     (3) 220 

where 
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        ���� =  �� −  ��                                   (4) 

          �� =  
∑ �(�)
���=0��                             �� �(�) > ����                                                                 (5) 

        �� =  
∑ �(�)
���=0��                             �� �(�) ≤ ����,                                                                 (6) 

where i(n) is the intensity of pixel n, NO is the total number of pixels in the object  ��, NB is 225 

the total number of pixels in the background region �� , and ���� is the difference between the 

mean pixel values of the object �� and its background �� . ������ R 

       ������ =  �� 
∑ (�(�)−��)
���=0 2�� �                                                                                   (7)  

is the standard deviation of 

the background noise, which is calculated as follows: 

The needles or other metallic objects would have higher CNR values, as compared to 230 

tissues and muscles in the background. Therefore, if we impose a constraint on the CNR as a 

decision rule CNR > CNRth, where CNRth is a CNR threshold, this decision rule will function 

as a second filter, eliminating FP objects, such as those from bones and muscles.  Fig. 6 

shows the dependence of the true and false positives as a function of CNR values for the 

training set. It can be seen that, when CNRth is set to 3.45, the FP rate can be reduced to 2.9. 235 

This is 63.3% ((7.9-2.9)/7.9) lower than the FP rate obtained after previous stage while the 

sensitivity is 89.8%. 
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To further reduce the number of FPs, the geometric parameters of the chosen 

candidate was taken into consideration. The geometric parameters are denoted by the height 240 

(HT) and width (WT) of a virtual box, as shown in Fig. 7, enclosing the entire needle 

candidate. Constraining these geometric parameters within a range defined as 

HTmin<HT<HTmax and WTmin<WT<WTmax, will result in elimination of a substantial number 

of false positive bone-containing objects of sizes different from needles but having CNR and 

object density values comparable to that of the needles. Based on the training set, the values 245 

for HTmin and WTmin were chosen to be 70 pixels (8.75 mm) to remove very small objects as 

compared to needles.  The values of HTmax and WTmax were chosen by examining the 

dependence of the sensitivity and FP rate on their values, as shown in Fig. 8.  The optimal 

values for HTmax and WTmax were chosen to be both 260 pixels (32.50 mm). With these 

HTmin, HTmax , WTmin, and WTmax 

 

values, the FP rate was reduced from 2.9 (after the CNR 250 

stage) to 0.6, at a sensitivity of 89.8% for the training set. 
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Fig. 6. Dependence of sensitivity and false positive rate (FPs/Image) on the 

CNR threshold for objects in the training set.  The dashed vertical line 

on the plot indicates the chosen decision threshold CNRth. 
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(a) (b) 

Fig. 7. Examples of how the CAD system estimates the HT and WT 

values of the needle by defining a rectangular box to enclose 

the needle. 
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(b) 

Fig. 8. Dependence of sensitivity and false positive rate (FPs/Image) on (a) 

HTmax and (b) WTmax values for objects in the training set. The 

dashed vertical lines on the plots indicate the chosen decision 

thresholds for HTmax and WTmax

 

.  

After the three different types of features and decision rules based on the object size 255 

and shape, the FP rate was reduced substantially by about 96% (FP rate decreased from 12.1 

to 0.6 FPs/image in the training set) compared to the pre-screening stage.  However, some 

other FP objects in the radiographs still remained because they met all the conditions imposed 

by the decision rules described above. We designed another FP reduction method to exploit 

the rather distinctive shape of the needle. The various projections of the needles could be 260 

thought of as parts of an ellipse or hyperbola. Thus, by fitting an ellipse or a hyperbola to the 

object, one can determine whether the detected object is a needle by estimating its goodness 

of fit to an ellipse or a hyperbola. 

2.B.4. Curve Fitting Algorithm  

While applying the curve fitting algorithm, it is unknown whether the needle 265 

conforms better to a hyperbola, ellipse or parabola. However, for simplicity, our aim is to 
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force an ellipse to fit to the candidate object shape. Therefore, the algorithm fits the general 

equation for a conic section12 

 �  (�, �) = ��2 + ��� + ��2 + �� +  �� + � = 0,                                               (8) 270 

to the pixels of the binary segmented object obtained in Section 

2.B.2: 

where A, B, C, D, E, and F are coefficients of the conic section.  

This equation describes a hyperbola if the determinant, �2 − 4�� is positive, an 

ellipse if it is negative, and a parabola if it is 0. We used two techniques the least squares 

curve fitting12 and the nonlinear simplex optimization13

 

 based fitting to determine the values 

of the coefficients A, B, C, D, E, and F for the conic section with the best fit to a set of data 275 

points (object pixels on the image) as follows. 

Least Squares Ellipse Fitting: 

In the case of least squares ellipse fitting, it is necessary first to select an appropriate 

error function, and then to estimate an aggregate error. The error function should be such that 280 

it is 0 for object pixels with coordinates lying on the curve and non-zero for those located 

away from the curve. Eq. (8) is used as an error function. Without loss of generality, we can 

set the coefficient F to 1.   

Error Function: �(�,�) =  ��2 + ��� + �y2 + �� +  �� + 1                                (9)          

Based on G(x,y) the pointwise error and the aggregate error are defined as:   285 

Pointwise Error: �� = �(�� ,��) = ���2 + ����� + ���2 + ��� + ��� + 1               (10) 

Aggregate Error: Ε =  ∑ ��2���=0                                                                                   (11) 

where, NO

In order to minimize the aggregate error with the least squares minimization, first the 

partial derivatives of Eq. (11) with respect to A, B, C, D and E are obtained and are equated to 290 

zero. The following equations are derived as a result:   

 is the total number of pixels in the object.  

�∑��4 + �∑��3 �� + � ∑��2 ��2 + �∑��3 + � ∑��2 �� +  ∑��2 = 0                       (12)          �∑��3 �� + �∑��2 ��2 + � ∑�� ��3 + �∑��2 �� + � ∑�� ��2 +  ∑�� �� =  0           (13)    �∑��2��2 + �∑�� ��3 + � ∑��4 + �∑�� ��2 + � ∑��3 + ∑��2 = 0                        (14) �∑��3 + �∑��2 �� + � ∑�� ��2 + �∑��2 + � ∑���� +  ∑�� = 0                           (15) 295 �∑��2 �� +  �∑�� ��2 + � ∑��3 + �∑�� �� + � ∑��2 +  ∑�� = 0                         (16) 

The solution to these five equations yields a conic which will minimize the error 

function. Since there are five linear equations with five unknowns, they can be solved using 

the matrix method, as shown below:     
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⎣⎢⎢
⎢⎢⎡ ∑ ��4 ∑��3 �� ∑��2 ��2 ∑��3 ∑��2 ��∑��3 �� ∑��2 ��2 ∑�� ��3 ∑��2 �� ∑�� ��2∑��2��2 ∑�� ��3 ∑��4 ∑�� ��2 ∑��3∑��3 ∑��2 �� ∑�� ��2 ∑��2 ∑����∑��2 �� ∑�� ��2 ∑��3 ∑���� ∑��2 ⎦⎥⎥

⎥⎥⎤  ⎣⎢⎢⎢
⎡�����⎦⎥⎥
⎥⎤

=  ⎣⎢⎢⎢
⎢⎡ ∑ ��2∑�� ��∑��2

 ∑��∑�� ⎦⎥⎥
⎥⎥⎤                         (17) 300 

                      Matrix X                                  Matrix M Matrix Y 

Matrices X and Y in Eq. (17) can be obtained by using the coordinates of every pixel 

within the candidate object being fit. Thus by solving Eq. (17), the coefficients A, B, C, D 

and E can be estimated as follows to satisfy Eq. (9) : 

  � =  �−1  ×  �                                                                                                        (18) 305 

 

Nonlinear Simplex Optimization 

This optimization method, authored by Nedler and Mead

Ellipse Fitting: 
13, allows the minimization 

of a function of k variables. It begins with a simplex14 characterized by k +1 vertices in an k-

dimensional space of the variables, which are associated with the function values calculated 310 

at those vertices and estimation of the corresponding errors in these vertices.  With every 

iteration, a new simplex is formed such that the estimated errors at its vertices, slowly 

descend to the minimum14

In our application, once the new simplex with the corresponding new set of 

coefficients A, B, C, D and E was generated for a given iteration, the determinant, �2 − 4��  315 

was calculated to estimate whether the candidate conic in question conformed to an ellipse. If 

the determinant was positive or equal to zero i.e. the conic was a hyperbola or a parabola, this 

specific simplex solution was penalized by assignment of a large error and excluded from the 

set that could generate simplexes. Therefore, by constraining the simplex procedure with this 

additional condition it was possible to force an ellipse to fit the segmented object candidate 320 

data points. 

.       

2.B.5. Goodness of fit features  

The next step is to estimate how well the conic curve fit the object in question. The 

goodness of fit was determined by two functions. 

Overlap function:  325 

This function basically calculates α that describes what percentage of the fitted ellipse 

coincides with the object pixels. This allows separation of needles from other foreign objects 

such as sutures and pacemakers placed on the cadavers. As we can see from Fig. 9(d), for 

pacemakers, the segmented pacemaker object (Fig. 9(b)) almost completely overlaps with the 
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fitted ellipse. Hence, the overlap percentage, α, would be close to 100% for these false 330 

positives, while for needles (Fig. 9(a)), the overlap percentage is typically in the range of 10-

65%, as shown in Fig. 9(c). Fig. 9(a) is the filtered, thresholded and cropped section of the 

image in Fig. 7(b). We set the criterion that, if  ����  ≤  � ≤  ���� , the candidate is 

considered a needle.  The thresholds for ����  and ���� are determined by analysis of the 

false positive and true positive rate for different α values for all objects after the feature 335 

analysis step in the training set, as shown in Fig. 10(a).  The plot shows that the peak in the 

graph corresponds to the objects with α values in the range of 7-65%, which basically 

represents all the needles. Therefore, ����  and ���� were set at 7% and 65%, respectively. 

By imposing the lower and upper bounds of the overlap function as described above, the 

number of FPs per image was reduced from 0.6 (after the width stage) to. 0.35 (FPs/Image 340 

(����) - FPs/Image (����) = 0.52-0.17) 

 

 

 

 

 

(a) (b) 

 

 

 

 

(c) (d) 

Fig. 9. Candidates representing a needle (the needle from Fig. 8b) (a), and a 

pacemaker (b) after enhancement and segmentation. (c) Ellipse fitted (in blue) to the 

needle (in white) (� = 49.4%).  (d) Ellipse fitted to the pacemaker candidate 

(� = 99.6%). 

 
 

 

Normal Distance function:  
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The normal distance function12

  λ= ∑ (
�(�,�)

|∇G|
)2���=0     ,                                                                                      (19) 

 computes the perpendicular distance λ, from every 

pixel location in the candidate to the fitted ellipse. It is calculated as the ratio of G(x, y) (Eq. 

(9)) to the magnitude of the gradient of  G(x, y): 345 

where  

  |∇G|= ��∂G(x,y)

∂x
�� +�∂G(x,y)

∂y
��                                                                                   (20)                                                     
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 If the calculated λ is such that λ ≤  ���� , the selected candidate is labelled as a 350 

detected needle, otherwise the candidate is dismissed. The dependence of sensitivity and FP 

rate on ���� in the training set is plotted in Fig. 10(b).  At a value of  ���� = 8.0 pixels (0.16 

mm2

 

), the FP rate was reduced from 0.35 (after applying the overlap function) to 0.17 with a 

sensitivity of 86.4%. Furthermore, the choice of threshold for � can be used to adjust the 

operating point of the CAD system to achieve different sensitivity and specificity values. The 355 

specific values for this threshold are discussed in Section 3.  

2.B.6. Neural network, linear discriminant analysis (LDA) and random forest classifiers 
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(b) 

Fig. 10. (a) Dependence of the sensitivity and FP rate (FPs/Image) on α,  ����  = 7% and  ���� 

= 65% were the values chosen from the training set. (b) Dependence of the sensitivity and 

FP rate on λmax from the training set. The dashed vertical line indicates the corresponding 

selected thresholds.   
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In addition to the rule-based classifier described above, we evaluated the performance of 360 

three other classifiers, neural network, random forest and linear discriminant analysis (LDA), 

to merge the extracted features and reduce false positives. For these classifiers, we first used 

the rule-based method with the fixed threshold values (as described in the previous section) 

up to the CNR stage to reduce some of the false positives. We then trained the classifiers with 

the five extracted features, CNR, HT, WT, α and λ, as input predictor variables using the 365 

training set. 

For the neural network, we used a multilayer perceptron with 5 input neurons, two 

hidden layers (with 5 hidden nodes in the first layer and 2 hidden nodes in the second layer) 

and one output neuron. It was trained with back-propagation for 1000 iterations. We selected 

the smallest neural network that could reach training AUC of 0.99.  370 

For the random forest classifier the best training result (highest sensitivity with the 

lowest false positive rate) was obtained for 200 decision trees with a minimum leaf size of 2 

and therefore we chose this configuration. We experimentally determined these parameters 

using the training set and then applied the selected parameters to the test set. 

2.C.  Evaluation of the CAD system 375 

 

The bounding box of a needle is used as reference standard to determine whether an object 

labelled by the CAD system is a true positive (TP) or an FP using a scoring program3

 

. For the 

rule-based classifier, λ was used as a decision variable.  For the random forest, LDA and 

neural network classifiers, the output score from the classifier was used as a decision variable 380 

to obtain the FROC curves as well as the operating points for mode I and II. At a given 

  

(a) (b) (c) 

Fig. 11. Needles of various shapes and orientations with different background   

that were detected by the CAD system. 
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decision threshold value, each detected object is first enclosed by a bounding box. If the 

centroid of the bounding box of a CAD detected object fell within a reference standard box, 

then the detected object is a TP, otherwise an FP. The entire CAD system was developed 

using the training set.  385 

After all parameters are fixed, the performance of the CAD system was evaluated on the 

test set. Free response receiver operating characteristic (FROC) analysis was used to evaluate 

the performance of the CAD system on both the training and test sets over a range of decision 

thresholds.  The sensitivity for the training and test sets were estimated by using the 53 

training and the 55 test cadaver images with needles, respectively. The corresponding FP 390 

rates for the test curve were estimated by using the 100 normal images without needles.   

 

 

3. RESULTS 

Examples of the detected needles with different orientations, locations and with different 395 

levels of visibility are shown in Figs. 1, 7 and 11. The FROC curves using the rule-based 

classifier for the training and the test sets are shown in Fig. 12. Two hypothetical operating 

points are marked along the FROC curves for the rule-based classifier, mode I with higher 

specificity and mode II with higher sensitivity. The decision thresholds for the two modes 

were selected using the training set:  400 

1. Mode I: λmax =  2.74 pixels (0.0428 mm2

2. Mode II: λ

) 

max = 15.9 pixels (0.2484 mm2

The detection results for both modes are summarized in Table 2.   

) 
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Fig. 12. FROC curves for training and test sets for rule based classifier. 

 

   The operating points for mode I with higher specificity and for mode II with higher 405 

sensitivity for the neural network classifier are shown in Fig. 13. The operating points were 

selected in the same way as for the rule-based classifier. The detection results for both modes, 

together with the results for the random forest and LDA classifiers are summarized in Table 

2. 
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Fig. 13. FROC curves for training and test sets for neural network classifier. 
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Fig. 14. Comparison of the FROC curves for the different classifiers  

 

 

  The FROC curves for the different classifiers: rule-based, random forest, LDA, and 

neural network are compared in Fig. 14. The FROC curve for the random forest training 

set is not shown in this figure, as no false positives were produced for the training set 

and all needles at that stage were detected with an overall sensitivity of 89.8%. The 415 

neural network classifier had the best performance, with a higher sensitivity of 86.0% 

with the test set and a slightly lower FP rate of 0.57 FPs/Image with the normal set. 

 

 

 420 

 

 

 

Table 2. Results for needle detection on cadaver radiographs. 

Classifier  

Training Set Test Set 

Sensitivity 
False positives/ 

Image 
 Sensitivity 

False positives/ 

Image 

Rule Based 
Mode I 74.6 0.15  77.2 0.26 

Mode II 89.8 0.36  84.2 0.60 

Random 

Forest 

Mode I 89.8 0.0  75.4 0.21 

Mode II 89.8 0.0  75.4 0.21 

LDA 
Mode I 79.7 0.22  71.9 0.48 

Mode II 86.4 0.83  86.0 1.28 

Neural 

Networks 

Mode I 74.6 0.08  75.4 0.23 

Mode II 88.1 0.28  86.0 0.57 

 425 

4. DISCUSSION 

Although there have been previous studies4-7 to detect line-like objects, those techniques 

could not be directly applied for the automatic detection of needles. For example, for the 

detection of lasso catheters5 , a similar idea of ellipse fitting was used, but the ellipse fitting 
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was done by first detecting the electrodes as ‘blobs’ and then checking whether these ‘blobs’ 430 

could fit an ellipse. However, we could not apply the same ‘blob’ detection technique directly 

to surgical needles. Moreover, the higher radio-opacity of the needles as compared to these 

devices, prompted us to investigate other features like contrast-to-noise ratio, object density 

etc. as we discussed in previous sections of this study.  This type of feature analysis reduced 

some of the false positives. 435 

The cadaver images with the needles and the additional surgical instruments, sponges and 

medical tubes on the cadaver simulated a challenging data set.  The preliminary results 

indicated that the CAD system performed well in both modes I and II. The system was able to 

detect most of the surgical needles with relatively low FP rates. The CAD systems with the 

rule-based or the neural network classifier performed similarly and slightly better than the 440 

CAD systems with the random forest or LDA classifier. 

 

  

(a) (b) 

 

Fig. 15. Example of needle missed by both the rule based and the neural network 

based CAD systems.  

 

The two operating points of the CAD system are selected to illustrate the potential 

application of the CAD system in different clinical situations. Mode I with higher specificity 

can be used by the surgeon in the operating room, while mode II with higher sensitivity can 445 

be used by the radiologist. For example, the CAD system with the neural network classifier 

operated in mode I offers 75.4% sensitivity with 0.23 FPs/image on the test set, or 

approximately only 1 FP in every 4 to 5 cases. This will allow the surgeon to close the patient 

in about 75% of the time for whom no needle (or false positive) on the radiographs is 

detected.  For the 23% of the radiographs with a CAD mark, the surgeon can take a quick 450 

look at the radiograph to determine if the marked object is a real needle or not. The surgeon 
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can easily rule out FPs such as bones, sutures or tube which may be mistakenly recognized by 

the system as needles. In an occasional doubtful situation, where the surgeon is unable to 

distinguish between a needle and a false positive from the objects marked on the radiographs 

by the CAD system, the surgeon will have the opportunity to verify his conclusions by 455 

inspecting the patient before closing the patient. With the CAD sensitivity at about 75%, the 

surgeon will be able to remove about 75% RFO needles from the patients before closing. 

Therefore, the CAD system can function as a first reader in the OR with surgeon spending 

minimal time checking the CAD marks only. In mode II the CAD system will operate at 

86.0% sensitivity with 0.57 FPs/image.  It may be used by the radiologist as a second reader 460 

that will complement their own reading. The combined sensitivity of radiologist and the CAD 

system will be most likely higher than the radiologist alone15-18

One of the most challenging problems faced by the CAD system was caused by the 

presence of other objects in the radiograph, such as pacemakers, tubes, sutures etc. In fact 465 

when the curve fitting algorithm was applied to these objects, it was found that they conform 

to the shape of an ellipse with very small error. However, it was observed that the needle 

overlapped with the ellipse by only 10-65%, while the sutures and pacemakers overlapped 

more than 90%. Thus, a decision based on the overlap function helped eliminate several such 

false positives, improving the specificity of the CAD system even in these challenging 470 

situations.  

. A radiologist can easily rule 

out FPs such as bones, sutures or tubes that are identified by the CAD system as needles.  

In this preliminary study, we used two types of needles, which are frequently used in 

clinical practice and have similar sizes (22 mm and 24 mm). While this is a current limitation 

of the system, in the future, we plan to increase the data set to include radiographs of needles 

with a wide range of sizes, which will allow us to identify any deficiencies or limitations the 475 

current system may have and design new methods to improve its performance. 

Fig. 15 shows examples of needles missed by the CAD system with the neural 

networks as well as with the rule based system. Due to the presence of other overlapping 

structures like bones and medical instruments, the shapes of the segmented objects are 

distorted and the fitting of these shapes to an ellipse was poor with large errors. In the future 480 

when we generate additional training samples, we may try to include additional shape 

analysis to differentiate the different types of high-contrast objects. Another possible strategy 

is to separate the overlapping objects before fitting the ellipse.   

Fig. 16 shows some of the false positives detected by the rule based but omitted by 

the neural network based CAD system. They satisfied all the conditions that were designed to 485 
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detect the needles. Nevertheless, most of these false positives can be easily recognized and 

ignored by the physicians. 

 

 

 
  

(a) (b) (c) 

Fig. 16. Examples of false positives detected by the rule based but omitted by the neural 

network based CAD system 

 490 

 This study has several limitations.  First, the data set is relatively small and includes 

only two types of needles so that it does not cover all possible scenarios that may occur in the 

operating room.  Second, we could only use cadavers to generate the training and test 

radiographs, rather than collecting real human subject images, although the cadaver may be 

more challenging because of the various procedures that might have been performed near and 495 

after the end of the life and the various objects left behind in the cadaver body.   Third, there 

are other possible types of RFOs and this study only focused on surgical needles.  Fourth, the 

sensitivity and specificity are still relatively low, including the potential operating points for 

mode I and mode II, and further improvement is needed when a larger data set can be 

generated. 500 

5. CONCLUSION 

To the best of our knowledge, this was the first time a CAD system is developed to detect 

needles from post-operative radiographs with realistic anatomical background structures8, 9. 

We demonstrated that the CAD system can be operated in different modes by properly 

selecting the operating points; for example, a high specificity mode as a first reader for the 505 

surgeon in the operating room and a high sensitivity mode for the radiologist later as a second 

reader. With such a computer-assisted approach, it is possible to substantially reduce the 

number of RFOs unintentionally left behind in a patient’s body, thereby reducing the 

morbidity and mortality as well as the patient care costs associated with RFOs.  
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