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ABSTRACT 
Maintaining a high-level code quality can be extremely expensive since time and monetary 

pressures force programmers to neglect improving the quality of their source code. Refactoring is 

an extremely important solution to reduce and manage the growing complexity of software 

systems. Developers often need to make trade-offs between code quality, available resources and 

delivering a product on time, and such management support is beyond the scope and capability 

of existing refactoring engines.  

The problem of finding the optimal sequence in which the refactoring opportunities, such as bad 

smells, should be ordered is rarely studied. Due to the large number of possible scheduling 

solutions to explore, software engineers cannot manually find an optimal sequence of refactoring 

opportunities that may reduce the effort and time required to efficiently improve the quality of 

software systems. In this paper, we use bi-level multi-objective optimization to the refactoring 

opportunities management problem. The upper level generates a population of solutions where 

each solution is defined as an ordered list of code smells to fix which maximize the benefits in 

terms of quality improvements and minimize the cost in terms of number of refactorings to 

apply. The lower level finds the best sequence of refactorings that fixes the maximum number of 

code smells with a minimum number of refactorings for each solution (code smells sequence) in 

the upper level.  
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The statistical analysis of our experiments over 30 runs on 6 open source systems and 1 

industrial project shows a significant reduction in effort and better improvements of quality when 

compared to state-of-art bad smells prioritization techniques. The manual evaluation performed 

by software engineers also confirms the relevance of our refactoring opportunities scheduling 

solutions. 

Keywords— code smell; refactoring; optimization; bi-level; SBSE, scheduling. 
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CHAPTER 1: INTRODUCTION 

Code-Smells, Design flaws, design defects, bad smells, or anomalies are altered aliases to signs 

of potential problems in source code of existing software systems. They are not bugs but they 

make a system difficult to change that may cause bugs [3]. Therefore, detecting and resolving 

code smells are critical steps to improve the quality of the system. However, in our project we 

will not focus on the detection phase. We assume that a series of code-smells have already been 

detected and need to be resolved.  

 In the context of code-smells resolution, refactoring has been used to resolve and clean up bad-

smells in the source code by performing small restructuring changes without affecting its 

external behavior.  XP-style and batch model are the two possible refactoring ways. In the first 

way, XP-style, small changes on few files are performed. On the other hand, a large system is 

thoroughly refactoring in on attempt in the other refactoring type, the batch model [3]. In this 

project, we aim to focus on the second type only.   

In Batch model, different kinds of code-smells are targeted to be resolved. Moreover, multiple 

instances of each kind of code-smell are targeted as well. In what is known as instance and kind 

levels. Therefore, in a refactoring process, all code-smells detected a system at a specific state 

form a set. Each resolution sequence of this set of bad-smells may require different efforts 

because resolution of one kind may affect the resolution of other code-smells [3]. This is 

reflected on required code changes and their sequence. Research shows the significant role of 
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these code changes sequence on the cost and the quality of the refactoring process [2][3]. This 

strong correlation between code smells sequence and code changes needed inspired us to tackle 

ordering code-smell resolution as a bi-level problem. 

The project aims to find the optimal sequence of code-smells resolution that minimizes the 

required refactoring code changes by solving it as Bi-level optimization problem. 

The remainder of this thesis is as follows: Chapter 2 presents the relevant background, a 

motivating example for the presented work and an overview of the related work; Chapter 3 

describes the search algorithm; an evaluation of the algorithm is explained and its results are 

discussed in Chapter 4. Finally, concluding remarks and future work are provided in Chapter 5 
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CHAPTER 2: RELATED WORK 

We first detail some required background information to understand the problem addressed in 

this work, then we present a motivating example to illustrate the limitations of existing studies. 

Finally, we present an overview of existing work. 

2.1 Problem statement  

It has reported that software maintenance and evolution activities cost are more than 80% of total 

software cost [3]. Therefore, software refactoring has been used to improve readability and 

maintainability of software systems by correcting its detected code smells.   

The sequence of addressing the detected code-smells reflects on the possible sequence of 

refactoring code changes. It may increase the number of code changes in the refactoring solution 

or decease it. Thu, there’s a need to find the best order of the code-smells set of any system to be 

corrected. 

Fig 1. Bi-level optimization ilustration 
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Given that minimizing code changes when suggesting refactorings is important to reduce the 

effort and help developers understand the modified/improved design [3], the optimal sequence of 

code-smells correcting is the one that is corresponding to the most optimized refactoring 

solution. 

In Other words, to find the optimal code-smell sequence we need to find the optimized 

refactorings for each possible solution. This nested nature of the proposed optimization problem 

goes along with the characteristics of bi-level optimization problem.  

In this kind of problems, we find a nested optimization problem within the constraints of the 

outer optimization problem [1]. The outer optimization task is referred to as the upper level 

problem (or the leader) and the inner optimization task as the Lower level problem (or the 

follower).  

To address the above mentioned optimization problem as bi-level problem, we consider finding 

optimized sequence of code-smells in upper level and finding the optimized refactorings in the 

lower level. 

2.2 Motivating Example 

The sequence of resolving the code smells carries important value in terms of how much effort 

will be spent overall on applying refactorings and how much regression issues will be newly 

introduced to the system due the fact that resolving one affects the detection or resolving the 

other one. Fixing one code smell before the other one may favor in maximizing the number of 

fixed code smells and minimizing the effort during applying the refactorings.  We present a 

motivating example to demonstrate the importance of scheduling which code smells should be 
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fixed first and how our approach brings the optimized way to get benefit from changing the 

sequence of code smells. We used open source projects to validate our approach and one of the 

project among the 6 other projects is Gantt project. Applying our approach on Gantt project 

proved how effective it is to manage the sequence of code smells to be fixed. After the detection 

of code smells step, we randomly created a sequence of code smells to run our approach on. In 

Gantt project there is a duplication code in two different classes, TaskManagerImpl and 

GPTimeUnitStack. TaskManagerImpl implements the same logic in createLength function while 

GPTimeUnitStack has the logic in parseDuration function. These two functions are also 

suffering from long method code smell, there are some duplication code with in the function. 

These classes are picked specifically to demonstrate our motivating example. The point we want 

to prove is how effective it will be to change the sequence of in terms of effort to put for 

refactorings to be applied. One possible approach is to extract those functions from 

TaskManagerImpl and GPTimeUnitStack to another class where both classes will be calling the 

same function called “parseTime” and then fixing long method code smell in “parseTime” 

function by extracting the duplication code segment to another method and call the new method 

at the places where it is needed. On the other hand, if this was not the case, we would end up 

putting more effort in fixing two code smells, by fixing long method twice in parseDuration and 

createLength methods and then extract them to another class. 

Hence the goal of our approach is to find a sequence which will prioritize the code smells in such 

a way that we will minimize the effort while maximizing the number of fixed code smells. 
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Fig 2. Motivating Example. parseDuration (duplicated) method in GPTimeUnitStack class 

 

Fig 3. Motivating Example. createLength (duplicated) method in TaskManagerImpl class 
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Fig 4. Duplication code with the function itself. This part will be extracted to fix long method 

 

Fig 5. timeUnitFunction is the extraction of the duplicated code 

 

Fig 6. Extracted function, timeUnitFunction 

 

2.3  Background and Related Work 

Search-based techniques has been employed to solve Software engineering optimization 

problems [5]. By modeling a software engineering problem as a search problem, numerous 

approaches can be used to solving that problem. By browsing SBSE contributions in literature, 
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we find significant studies in the area of software maintenance and software refactoring 

[1][2]applying varieties of search techniques. However, to the best of our knowledge, Bi-level 

optimization have never been used to schedule code smell resolution [5]. The only SBSE usage 

of this search approach was by Sahin et al to contribute in code smell detection.  

Fowler and Beck [4] have defined a list of code smell types that may be detected in the program 

source code with particular refactorings for each type. Several studies tried to prioritize code 

smell types based on different aspect. Ouni et al [6] automated code-smells prioritization 

considering importance, risk, severity, preferences of developers. However, their prioritization 

approach did take into consideration the complied refactoring. Whereas, Liu et al. [2] proposed 

an informal resolution sequence of nine kinds of bad smells based on their resolution effort. 

Though, we need a sequence that includes all detected code smells of any system (kind and 

instance levels) and leads to a minimal code changes refactoring solution. The main advantage of 

our bi-level optimization approach that it is not limited to some tested examples or some kinds of 

code smells.   

Several researchers tried to schedule refactorings separately from code smells under different 

goals. We find scheduling refactorings to maximize refactoring effect [7] or to preserve the 

semantics of the design and its consistency with refactoring history [3]. Nevertheless, no 

previous work tried to use schedule of refactorings to guide the search of the optimized code 

smells resolution schedule. 

Several SBSE researchers also studied the optimal schedule for next release planning under the 

umbrella of requirement management. Variety search techniques has been applied to prioritize 

requirements in regards of the problem of next release management [5]. Li et al. 2007 developed 
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an optimization tool integrating the requirements selection and scheduling for the release 

planning to find the optimal set of requirements with the maximum revenue to cater for 

budgetary constraints [8]. Next release problem was in subject in Zhang et. al. study to search for 

optimal/near optimal solutions for the allocation of the requirements in order to balance 

competing stake holder objectives in the next release.  

Decision on which features to be included in the next release of the product is another example 

where next release approach has been taken place. Minimizing the cost as well as satisfying the 

customer was the two main objectives while deciding which features to add to the next release of 

the product. For this study, Durillo et.al. used NSGA-II as the reference algorithm with the 

comparison study of NSGA-II with other algorithms, MOCell, PAES and showed that NSGA-II 

outperformed other algorithms with the highest number of optimal solutions.  

Another area where scheduling algorithms is highly used is bug-fixing. Bug-fixing is a very 

costly operation which is the largest contributor of software maintenance activities which takes 

almost 80% of all the costs.  Most of the researchers are trying to develop optimal bug-fixing 

strategies considered as resource constrained scheduling problem with the help of scheduling 

algorithms. The main problem is finding the optimum way of assigning the bug-fixing activities 

to the developers based on their work load and skill sets. Xiao et al. proposing a multi-objective 

search-based resource scheduling method for optimum bug-fixing efforts. Their algorithm is able 

to suggest different efficient bug-fixing strategies based on three scenarios, having a 

strict/flexible deadline, having assigned different weights to severity and priority and the ability 

to foresee the resource requirements by adding virtual resources to meet the deadline. Anvik et 

al. [12] focuses on finding efficient way of bug-assignment efforts by considering the availability 

of resources and bug requirements. In their approach, support vector machine algorithm was 
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applied to suggest an assignment of a new bug report to a small number of developers. Defect 

effort schedule is proposed by Mockus et al. [11]. In their paper, they predict an optimum defect 

effort which is close to reality based on new feature changes by using a probability model for 11 

software releases of large-scale real-time software system. Naïve Bayes classifier is applied to 

automatically assign bug reports to developers with 30% classification accuracy in [10].  

Apart from above mentioned categories where scheduling algorithms are applied, there are some 

other cases where this approach is used due to its advantages to find the optimum sequence of 

solutions. For instance, scheduling/prioritization/sequencing approaches have been used in 

sequencing of requirements implementations, prioritization of work packages in project planning 

or sequencing of test cases for regression test case prioritization. 

 



 

11 
 

CHAPTER 3: SCHEDULING REFACTORING OPPERTUNITIES AS A BI-

LEVEL OPTIMIZATION PROBLEM 
 

In this chapter, we present an overview of our approach and then we provide the details of our 

problem formulation and the solution approach. 

3.1 Approach Overview 

Existing methods to solve bi- level optimization problems are classified into two families: (1) 

Classical methods and (2) evolutionary methods that are mainly Evolutionary Algorithms (EA) 

and simulated annealing (SA) [1]. The second type, which we adopted in our formulation, 

showed strong ability to solve similar bi-level problem in the phase of detecting code smells 

[1].We formulated our optimization problems in the upper and the lower levels as a Search 

Based Software Engineering SBSE problems. 

Fig 7. Bi-level optimization ilustration(detailed). 
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In order to perform the search for the optimal schedule for the code smells resolution, we 

formulated the multi objective optimization algorithm of the upper level. In this algorithm, the 

solution is the generated schedule, the evaluation of each solution is the output of running the 

lower level optimization problem for this specific schedule. The main objectives of the fitness 

function of this level are minimizing code changes and maximizing fixed code smells.  

Similarly in the lower level, in order to perform the search for the optimal refactorings for a 

specific schedule as an input from the upper level, we solve it as a multi objective optimization 

algorithm. In this algorithm, the solution is the generated refactorings, the evaluation of each 

solution is the number of fixed code smells and the number of needed refeactorings. The main 

objectives of this level are minimizing code changes and maximizing fixed code smells under the 

constraint of the input schedule.  

Fig 8 shows the algorithms of the upper level (a) and the lower level (b) and demonstrates the 

interaction between them. 
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Upper level algorithm: GAScheduleGeneration 
Input: Detected code smells C Upper population size N1, Lower population size N2, Upper number of 

generations G1, Upper number of generations G2, Mutation factor M 

Output: the best resolution sequence of code smells BSS 

Begin  

P0←  initialization(N1,C); /* random initialization */ 

For each CSS in P0 do     /* CSS is code smell sequence */ 

         BRS0←GARefactoringGeneration (CSS0, M, N2, G2); /*Call lower level*/ 

         CSS0 ← Evaluation (BRS0,) 

End For 

t ← 1; 

While (t < G1) do 

         Sort (Pt-1) 

         i ←0; 

         While (i<N1/0.25) do 

               Pt← CSSi in Pt- 1; 

               i←i+1; 

          End While 

          While (i<N1/0.5) do 

               Pt← Variation (CSSi in Pt-1); /*mutate solution*/ 

               i←i+1; 

          End While 

          While (i<N1) do 

               Pt← initialization(C); /*random solution generation*/ 

               i←i+1; 

          End While 

          i←N1/0.25; 

          While (i<N1) do /*Evaluation for the new solutions in Pt*/ 

               BRSi ← GARefactoringGeneration (CSSi, M, N2, G2); /*Call lower level*/ 

                CSSi ← Evaluation (BRSi,); /* update solution fitness function based on lower level*/ 

          End While 

End While 

t ←t-1; 

BSS ← FittestSelection (Pt); /*set the output of the algtithm*/ 

End 

(a) 
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Upper level algorithm: GARefactoringGeneration 

Input: Upper Level generated sequence ULS, Lower population size N, Lower number of generations 

G, Mutation factor M 

Output: the best refactoring sequence for the upper level code smell sequence BRS 

Begin  

P0← initialization (N,ULS); /* random initialization */ 

P0← Evaluation(P0,ULS); 

t ← 1; 

While (t < G) do 

         Sort (Pt-1) 

         i ←0; 

         While (i<N/0.25) do 

               Pt← RSi in Pt- 1;  /*copy Refactoring Sequence RS*/ 

               i←i+1; 

          End While 

          While (i<N/0.5) do 

               Pt← Variation (RSi in Pt-1); /*mutate refactoring sequence*/ 

               i←i+1; 

          End While 

          While (i<N) do 

               Pt← initialization(ULS); /*random solution generation */ 

               i←i+1; 

          End While 

          i←N/0.25; 

          While (i<N) do /*Evaluation for the new solutions in Pt*/ 

                RSi ← Evaluation (RSi); /* update solution fitness function */ 

t ←t+1; 

          End While 

End While 

BRS ← FittestSelection (Pt); 

End 

(b) 

Fig 8. Pseudocode of the bil-level scheduling code smell resolution 
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CHAPTER 4: VALIDATION 

In order to evaluate our approach for scheduling code-smells resolution using the proposed bi-

level optimization approach, we conducted a set of experiments based on different open source 

systems: GanttProject, Xerces-J and JHotDraw. For each experiment, we analyzing the obtained 

results of our bi-level proposal by comparing them with an existing code-smells scheduling 

approach proposed by Liu et al [2] and with a random scheduling. In this section, we start by 

presenting our research questions and then show and discuss the obtained results. 

4.1 Research Questions and Evaluation Metrics 

We defined three research questions that address the applicability, performance in comparison to 

existing code smells scheduling  approaches, and the usefulness of bi-level optimization 

approach. The three research questions are as follows. 

RQ1: How does the bi-level scheduling approach perform to give a possible order of 

code smells resolution? 

RQ2: How does the bi-level scheduling approach perform   comparing to the existing 

code-smells scheduling approach proposed by Liu et al? 

RQ3: How does the bi-level scheduling approach perform   comparing to a random 

scheduling of code smells resolution?  
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4.2 Experimental Setting 

The chosen systems were medium sized system (LOC 70,000 to 200,000) their quality deficit 

index is from 1.9 to 11.6 as the number of infections or code smells is ranged between 44 and 

393. Table 1 presents the characteristics of each system. 

System Release #Smells KLOC 

GanttProject  1.10.2 79 91,331 

JhotDraw 6.1 46 71,708 

XercessJ 2.7.0 393 200,458 
Table 1. Experiments Systems 

 

4.3 Results 

This section describes and discusses the results obtained for the different research questions. 

By feeding part of the detected code smells lists to our system and got its proposed optimized 

order with its percentage ability of fixing code smells and the required effort or refactorings to 

the code.  

 

Table 2. Experiments Results 
 

Subject System: 
XercessJ 
(35 Code Smells) 

Ganttproject  
(44 Code Smells) 

JHotDraw  
(32 Code Smells) 

Bi-level 
Scheduling 

Refactoring  52  

Fixed (62%) 

Refactoring  62  

Fixed (60%) 

Refactoring  37 

Fixed (71%) 

Random 
Resolution 

Refactoring  90 
Fixed (34%) 

Refactoring  125 
Fixed (15%) 

Refactoring  87  
Fixed (15%) 

Ordered 

Resolution 

Refactoring  89  

Fixed 11 (31%) 

Refactoring 124 

Fixed 8 (18%) 

Refactoring 89  

Fixed6 (18%) 
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Table 2 shows the results proposed by our algorithm for each subject system as long as the 

results of a random or resolution order. In addition, it shows the evaluation of the order proposed 

by [2]. 

As Fig. 9 demonstrate, it’s noticeable that our algorithm showed a significant improvement in the 

total fixed code smells and the required refactorings. To discuss our results further, we present 

the answers for our research question:  

1. Results for RQ1:  
The schedules proposed by out bi-level optimization algorithm in all conducted 

experiments showed high fixing code smells impact (60-71% ) with minimum effort.    

2. Results for RQ2:  
In comparison with a random resolution order, we reached a 50% increase in the number 

of fixed code smells with a 60% decrease in required refactorings 

3. Results for RQ3:  
In comparison with the schema order proposed by Lui et al [2], our approach’s results in 

the conducted experiments showed  42-51%increase in the number of fixed code smells 

with a 50-70% decrease in required refactorings. 

 

 

Fig 9. Experiments Results 
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20%
40%
60%
80%
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Schedule
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Schedule
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Schedule

Code Smells Schedule Impact

XercessJ Ganttproject JHotDraw
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CHAPTER 5: CONCLUSION 

Cleaning large systems from all its defects is challenging and error provoking. Considering 

numerous detected defects, there are hundreds of possible schedules. Each order leads to a better 

or worse impact. The optimal order that leads to maximum fixed code smells with the minimum 

code changes, refactoring.  

In this Project, we aimed to approach the scheduling of detected code smells before correcting 

them as a bi-level optimization problem. In other words, we attempted to find the optimal order 

of code smells as the main optimization problem depending on the nested follower optimization 

problem, finding the optimal refactorings.  

The main advantage of bi-level optimization approach that it is not limited to some tested 

examples analysis or some kinds of code smells. It is general and can be applied to order any 

software system code-smells to resolve them.  

Our approach, showed significant efficiency by proposing resolution schedules that led to 

increase fixing code smells percentage and decrease required refactorings. 
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