

LinkWiper – A System For Data Quality in Linked Open Data

by

Srivalli Gade

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

(Computer and Information Science)

in the University of Michigan-Dearborn

2016

Master’s Thesis Committee:

Associate Professor Brahim Medjahed, Chair

Associate Professor Marouane Kessentini

Associate Professor Qiang Zhu

ii

Acknowledgements
It is a pleasure to thank profusely all people to make this thesis possible.

At the outset, I would like to express my sincere gratitude to my preceptor and advisor Dr.

Brahim Medjahed for his continuous support in completing my research paper with patience.

His enthusiasm and immense knowledge and motivation helped me in guiding all the time during

my research and writing of this thesis. I thank wholeheartedly for reposing confidence in me and

giving me the opportunity to work with him and learn from him. Without his precious guidance I

would not have completed this thesis. I express my deep sense of appreciation for sharing the

pearls of wisdom with me during the course of this research work.

Besides my advisor, I would like to thank the rest of members of my thesis committee: Prof.

Dr.Marouane Kessentini, Prof. Dr. Qiang Zhu for not only their insightful comments and en-

couragement, but also exposing me to very hard question which incented me to widen scope of

my research from various perspectives time to time.

 Last but not the least, I would like to thank my family, my parents, my brother and sister for

supporting me and helping me morally throughout writing this thesis in particular and also my

life in general

iii

Table of Contents

Acknowledgements ... ii

List of Figures ... v

List of Tables ... vi

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Quality Issues in Linked Open Data ... 3

1.3 Problem Statement .. 5

1.4 Contributions... 6

1.5 Organization of Thesis .. 7

Chapter 2 Background .. 9

2.1 Linked Data Concepts ... 9

2.1.1 Metadata Information ... 12

2.1.2 Linked Data Publishing Tools .. 12

2.1.3 Linked Data RDF editors ... 12

2.2 Classification of Data Quality issues in terms of Semantic Web and Linked Data 13

2.2.1 Quality of Data Sources ... 13

2.2.2 Quality of the raw data ... 14

2.2.3 Quality of the Semantic conversion ... 15

2.2.4 Quality of the Linkage ... 15

2.3 Related Work .. 16

Chapter 3 Architecture of LinkWiper System .. 19

3.1 Search Techniques .. 20

3.1.1 Semantic text matching .. 22

3.1.2 Domain Algorithm ... 24

3.1.3 Page Ranking Technique ... 26

3.1.4 Percentage of relevancy ... 28

3.5 Algorithm - Percentage of relevancy .. 28

iv

3.2 Crowd Sourcing Techniques ... 29

3.6 Algorithm - Initial Credibility Calculation Algorithm .. 29

3.7 Algorithm - Random Algorithm ... 30

3.8 Algorithm - Workers Selection Algorithm ... 32

3.9 Algorithm - Update Credibility Algorithm ... 33

Chapter 4 Implementation & Validation .. 34

4.1 Implementation Details of System .. 34

4.1.1 System Tiers ... 34

4.1.2 Configuration ... 35

4.1.3 Directory Structure ... 37

4.1.4 Error Logging ... 37

4.2 Validation of System ... 38

4.3 Experiments .. 44

Chapter 5 Conclusion ... 52

References ... 53

v

List of Figures

Figure 1.1 - Linked Open Data Cloud diagram .. 1

Figure 1.2 – RDF Parser ... 2

Figure 1.3 – RDF Parser Results .. 2

Figure 1.4 - High level diagram .. 5

Figure 1.5 - High Level Diagram of System... 7

Figure 3.1 - Component Diagram ... 20

Figure 3.2 - Example for Levenshtein Algorithm ... 23

Figure 3.3 - Example for Page ranking Algorithm ... 27

Figure 4.1 - System Tiers .. 33

Figure 4.2 - Main Screen .. 39

Figure 4.3 - Display Results Screen .. 40

Figure 4.4 - Display Results Screen (Cont'd) ... 40

Figure 4.5 - User Recommendation Screen .. 41

Figure 4.6 - User Recommendation Screen (Cont'd) .. 41

Figure 4.7 - popup message .. 43

Figure 4.8 - Page relevancy percentage Screen .. 42

Figure 4.9 - Peer Review Screen... 43

Figure 4.10 - Peer Review Response Screen .. 44

Figure 4.11 - Precision Graph ... 46

Figure 4.12 - Recall Graph.. 46

Figure 4.13 - Performance Graph for 100% correct results .. 47

Figure 4.14 -Performance Graph for 75% correct results ... 48

Figure 4.15 - Performance Graph for 50% correct results .. 48

Figure 4.16 - Performance Graph for 25% correct results .. 49

Figure 4.17 - Random Algorithm Performance Graph ... 50

Figure 4.18 - Workers Algorithm Performance Graph ... 50

vi

List of Tables
Table 2.1 - Data Quality Principles 13

vii

Abstract

Linked Open Data (LOD) provides access to large amounts of data on Web. These data sets

range from high quality curated data sets to low quality sets. LOD sources often need strategies

to clean up data and provide methodology for quality assessment in linked data. They allow in-

terlinking and integrating any kind of data on the web. Links between various data sources ena-

ble software applications to operate over the aggregated data space as if it is a unique local data-

base. However, such links may be broken, leading to data quality problems. In this thesis we

present LinkWiper, an automated system for cleaning data in LOD. While this thesis focuses on

problems related to dereferenced links, LinkWiper can be used to tackle any other data quality

problem such as duplication and consistency. The proposed system includes two major phases.

The first phase uses information retrieval-like search techniques to recommend sets of alternative

links. The second phase adopts crowdsourcing mechanisms to involve workers (or users) in im-

proving the quality of the LOD sources. We provide an implementation of LinkWiper over

DBPedia, a community effort to extract structured information from Wikipedia and make this

information using LOD principles. We also conduct extensive experiments to illustrate the effi-

ciency and high precision of the proposed approach

1

Chapter 1 Introduction

1.1 Motivation

Linked open Data (LOD) [1] comprises an unprecedented volume of structured data present in

the Web. However, these data sets are of varying quality ranging from extensive curated data

sets to low quality data. So there are numerous amounts of data quality problems in Web. First of

all structured data is referenced through links as shown in Figure-1.1. These links can be derefer-

enced, or there is possibility that these links can be broken for any cause. There are numerous

methodologies or frameworks to find out the reasons for the breakdown of links.

Figure 1.1 – Example of Linked Open Data Cloud diagram

2

Figure 1.2 - RDF PARSER

Figure 1.3 - RDF PARSER Results

There are related works in literature. Automatic Link Exploration System (ALEX) is one system

that aims at improving the quality of links between RDF data sets by using feedback provided by

users on the answers to the linked data queries. ROOMBA is a system that demonstrates the gen-

eral state of various datasets and groups, including the LOD cloud group, need more attention as

most of the datasets suffer from bad quality metadata and lack some informative metrics that are

required to facilitate dataset search. In a lightening talk session at the First workshop on the

Linked Data Quality, many challenges are discussed. The proposal to tackle different problems is

also discussed. There is lot of research in literature regarding data quality assessment and meth-

3

odology for the Linked Data. We have gone a step ahead and provided solution of some data

quality issues and define an automated tool/framework which can be used to any other data qual-

ity problem and can implement the strategy of solution.

In this thesis, we develop an automated tool/framework, called LinkWiper, for the specific solu-

tion of dereferencing the bad URLS or broken URLs. The automated tool/framework developed

is so effective in bringing the most accurate domain specific URLs to that of bad URL. As part

of implementing the solution we have made use of domain specific and semantic text matching

algorithms. To get effective and more accurate answers for the tool generated questions we make

use of crowd sourcing concepts and developed algorithms. This has helped in getting better re-

sults and filter out low quality links that got generated which are irrelevant to the search.

1.2 Quality Issues in Linked Open Data

After mentioning about the goal of linked data, we can look into data quality issues and decide

what issues we consider to render solution using our automated tool/framework. The Semantic

Web has gained popularity after structured data getting published as Resource Description

Framework (RDF) [2]. The era of advanced development of data has thrown a lot of challenges

to Web experts. The Linked Data paradigm has gained enormous momentum to create transition

from document oriented Web to Web of data called ultimately Semantic Web [3]. The term

Linked Data refers to as set of best practices for publishing structured data on the Web. Many

data providers have adopted these best principles over the years leading to the creation of global

data space that contains billions of assertions – the Web of Linked Data [1].

The main goal of Linked Data is to publish structured data by interlinking relative documents in

Web of data. The huge amount of data has created enormous challenges with regards to data

quality. Since data is extracted via crowd sourcing of semi-structured data sources there are

many challenges with quality of data sets published. One of the better strategies is to assess data

quality issues and avoid them. There are five classifications of principles for data quality assess-

ment in semantic Web [5]. These principles are:

4

The principle Quality of Data Source is availability of data and credibility of the data Source.

Whether an access method, protocols perform properly and also data sources credibility is veri-

fied. Incoming and outgoing links of URI s are de-referenceable. We faced this challenge to

overcome solution in our system. URI dereferencing problem are taken care of this challenge and

solution is proposed. The principle Quality of Raw Data is mainly related to the absence of du-

plicates, entry mistakes and noise in the data. Even part of this principle is covered in the first

data quality issue in URI referencing. In the absence of availability of duplicate URI s and mis-

takes in referencing are taken care of. The principle Quality of the semantic conversion is re-

lated to the transformation of raw data into rich data by making use of vocabularies. The princi-

ple Quality of the linking process is related to the quality of links between two datasets. The

principle Global quality is cross-cutting of the other principles and covers the source, raw data,

semantic conversion, reasoning and links quality.

The principle (Quality of data Source) is taken and the metrics considered are detection of dead

links, broken links, and non-dereferenced bad links, forward and backward links. As part of im-

plementing the solution we make use of domain specific and semantic text matching algorithms.

To get effective and more accurate answers for the tool generated questions we have made use of

crowd sourcing concepts and developed algorithms. This has enabled to get better results and

filter out low quality links that got generated which are irrelevant to the search. The high level

diagram is shown in Figure- 1.4.

5

Figure 1.4 - High level diagram

1.3 Problem Statement

The aim is to develop system that will do data quality in Linked Open Data and primary focus is

to take one data quality issue and provide solution in an automated tool/framework. Out of many

data quality issues we focus mainly on quality of data source. In that principle primary metric is

quality of links and if link is dereferenced, forward or backward links may be broken and our

goal is to find the URLs recommended for those bad URLs. For this to achieve implemented

domain specific and semantic text matching algorithms are to get the URLs matching close to the

bad URL. And these algorithms and the approach also need crowd sourcing concepts to inculcate

less cost and achieve more productivity and efficiency in System. For that those concepts are

added and built in the system. The system is so unique and can be used as solution to other prob-

lems as well. We have given example system (see section 1.4 Contributions) that can be built for

making use of this system and concepts.

HTML PAGES

CROWD SOURCING

DBPEDIA

INPUT

SEARCH TECHNIQUES

CROWD SOURCING TECHNIQUES

BAD URLS

PROCESSING

THROUGH

SEARCH

ENGINES

SEMANTIC TEXT

MATCHING AND

DOMAIN

MATCHING FOR

THE OUTPUT

BAD URLS

BROKEN LINKS

AS INPUT TO

SEARCH

TECHNIQUES

INPUT

PAGE RANKING

AND

CALCULATION OF

% OF

CREDIBILITY TO

WORKER

INPUT

SELECTION OF

WORKERS

UPDATE THE

CREDIBILITY %

OF WORKERS

SELECTED

WORKER

DATABASE

UPDATED % TO

DATABASE

STORE INITIAL

CREDIBILITY %

TASK FLOW AND

WORKERS SELECTION

ATTRIBUTES STORE

& FETCH

LINKWIPER SYSTEM

HTML + RDF PAGES

OUTPUT

6

1.4 Contributions

LinkWiper aims at solving the data quality issue “Quality of data Source”. The dimensions in

this principle are accessibility of Server, checking whether query responds to data, detection of

dead links, detection of all forward links, de-referencability issues such as an URI returns an

error 4x/5x, response code for broken links, detection of all local in or back links, misreported

content types, Whether the content is suitable for consumption, or the content be accessed. In our

automated tool/framework user searches the data in the Web of data of DBPedia, there is possi-

bility of having dereferenced or inaccessible or bad URLS of any type to be part of set of result

URLs. Our goal is to find the recommended URLs for bad URLs when user searches for re-

source or page in DBPedia. We have followed different concepts and algorithms and techniques

such as Semantic text matching, domain matching techniques and Crowd Sourcing techniques to

build this automated tool/framework. And also this project is unique in its own way as lot of re-

search projects similar to this are there but no other project contribute like this project by rec-

ommending good and perfect URLs to the bad URLs.

1.3.1 System that can be built using this automated tool/framework

Data Quality issue that is addressed and solved using LinkWiper automated tool is Availability

in Quality Data Source. This principle states that accessibility of SPARQL endpoint & server

and checking whether query responds to the query, detection of dead links, de referenceable is-

sues and misreported content types i.e. detection of whether the content is suitable for consump-

tion, and the content be accessed.

Now let’s take Versatility and apply the same principles of our automated tool/framework. This

principle belongs to metric “Quality of Raw data”. This states the absence of duplicates, entry

mistakes, and noise in the data. Versatility means that the data provided be represented by using

alternative representations. This can be achieved by conversion into various formats or by the

data source enables content negotiation.

The aim of the system proposed is to remove duplicates in data store and provide different repre-

sentation names for the same article. Solution proposed for this issue is for the different article

names for the same representation and as step one we have to use search engines (Google Schol-

7

ar, ISI Web of Science, ACM digital library, IEEE Digital Explore Library etc.) are for getting

different types of representations for the same article name. The data is stored in data store. Us-

ing semantic text matching algorithms article names are sorted and duplicate names are removed.

After analysis and review shortlist of names are obtained. And using crowdsourcing concepts,

workers in the pool will select the correct representation of article. And in the Figure shown be-

low shows the steps involved in Figure-1.5 diagram.

Google Scholar

ISI Web Of Science

ACM Digital Library

IEEE Digital Explore Library

Springer Link

Semantic Web Journal

Journal of Web Semantics

Journal of Data and

Information Quality

Journal of Data and

knowledge Engineering

STEP 1

Get the

alternative

representation

s

STEP 2

Import to

DataStore and

remove

Duplicates

STEP 3

Review,

Retrieve and

analyze papers

based on

representation

names

STEP 4

Compare

representations

& short list

based on names

Using Semantic

Search

algorithms

STEP5

Using Crowd

sourcing

methodology

select the

relevant

representations

and articles by

crowd sourcing

Workers

Figure 1.5 - High Level Diagram of System

1.5 Organization of Thesis

The Organization of Thesis is as follows:

8

Chapter 2 covers Background of thesis. Section 2.1 covers the Introduction of this chapter. Sec-

tion 2.2 covers the different classifications of data quality issues of semantic Web and linked

data. In that there are sub sections Sub-Section 2.2.1 covers the principle quality of data Sources.

Sub-Section 2.2.2 covers the principle quality of raw data. Sub-section 2.2.3 covers the principle

Quality of the Semantic conversion. Sub-Section 2.2.4 covers the quality of linkage principle.

Section 2.3 covers the related work and methodologies.

Chapter 3 covers the Architecture of LinkWiper System. Section 3.1 covers the different archi-

tectural components in system such as Search Engines, Semantic text matching, Domain Algo-

rithm, Page ranking Technique, Percentage of relevancy. Section 3.2 covers the Crowd Sourcing

techniques. Section 3.3 covers the Security of System. Section 3.4 covers how the system should

recover from inconsistent states. Section 3.5 covers the model system that can be built using this

automated tool/framework concepts.

Chapter 4 Covers the Implementation and Validation of System. Section 4.1 covers the imple-

mentation details of system. This Section will cover subsections of System tiers, configuration,

directory structure, error logging, validation of System, Experiments conducted for validating

tool/framework algorithms performance.

 Chapter 5 covers the conclusion and Future Work part.

9

Chapter 2 Background

This chapter presents the background of the concepts used in this thesis. Section 2.1 presents

Linked data concepts. Section 2.2 presents data quality issues and principles. Section 2.3 pre-

sents related work and methodologies. Section 2.4 presents contributions of this thesis and last

section 2.6 presents organization of the thesis.

2.1 Linked Data Concepts

World Wide Web (WWW) [6] has radically altered the way information is processed, retrieved

and published. Hypertext links helps to achieve in browsing the documents and traversing all the

way from one document to another document and analyze the query results of workers search

capabilities. This functionality has enabled enormous growth of linking lot of documents in Web

of data.

Despite the many benefits that Web of data offers, there is lot of challenges in data quality and

principles that are not applied correctly created lot of adhoc in the Web of data causing lot of

data quality issues. Traditionally data is stored in csv, raw dumps or HTML tables sacrificing

much semantics and structure. However HTML is not enough to store all kinds of structured data

in Web. Data era has improved a lot such that documents can be interconnected from one data

space to another data space. The evolution of structured data best practices and published data

principles has led to structured data interconnecting with one another and is known as Linked

Data. These adoptions of principles led into different domains such as people, books, movies,

music, genres, government sectors, health media etc. This Web of data enables linking one doc-

ument from one another and from one space of sector to another. There are Linked Data Search

Engines also enables to crawl the Web of data by following links and provides extensive capabil

10

ities of aggregating data as if we are working in local database now. There are numerous number

of benefits from Linked Data and the remainder of the sections enables key features of Linked

Data and next section following that will explain what the data quality issues in Linked Data are.

Linked Data [1] is about using the Web to connect related data that wasn't previously linked, or

using the Web to lower the barriers to linking data currently linked using other methods. More

specifically, Wikipedia defines Linked Data as "a term used to describe a recommended best

practice for exposing, sharing, and connecting pieces of data, information, and knowledge on the

Semantic Web using URIs and RDF”.

According to Tim-Berners Lee [7], to understand the concept and value of linked data it is im-

portant to understand the mechanisms of sharing and reusing the data on Web. The principles are

use URIs as names for things, use HTTP URIs so that people can look up those names, when

someone looks up a URI, provide useful information, using the standards (Resource Description

Framework [2] *, SPARQL [9] and include links to other URIs so that they can discover more

things.

Semantic Web has evolved as a platform of increasing importance of data interchange and inte-

gration through the growing community implementing data sharing using international semantic

Web standards called Linked Data. Linked Data is evolved to share valuable structured infor-

mation in flexible and extensible manner across the Web. It is a publishing paradigm for making

data and not just human readable documents fully accessible and inter linkable anywhere on the

internet.

When publishing data on Web, information is represented using Resource Description Frame-

work (RDF) [2]. In RDF data is represented as triplets. Three parts of triples are the Subject, the

Predicate and the Object. Triplets are subject is the URI identifying the described resource, pred-

icate is the relationship exists between the subject and the Object and Object is the URI of anoth-

er resource that is related to the Subject.

Basically RDF triples are of two types. They are Literal Triples have an RDF literal used to de-

scribe the properties of resources. e.g.: name and date of birth of a person and RDF Links- repre-

sent typed links between RDF links and resources. The benefits of using RDF Model in Linked

Data Context are clients can look up URI in an RDF graph over the Web to retrieve additional

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/URI
http://en.wikipedia.org/wiki/Resource_Description_Framework

11

information, information from different sources merge naturally, the data model enables you to

set RDF links between data from different data sources, the data model allows you to represent

information that is expressed using different schemata in a single model and combined with dif-

ferent Schema languages such as RDF-S and OWL, the data model allows you to use as much as

little structure as you need, meaning that you can represent tightly structured data as well as semi

structured data.

RDF Features best avoided in Linked Data Context are use of Blank Nodes. (Impossible to set

RDF links to a blank node and merging data from different Sources would be more difficult.),

use of RDF reification. (Semantics of Reification are unclear and as reified statements are cum-

bersome to query the SPARQL.) And use of RDF Collections or Containers. (They do not work

together with SPARQL. Please check whether application needs Collections or Containers.).

In Choosing URI names the following principles observed are choose good names that other

publishers can confidently link to your resources, you will have to put technical infrastructure in

place to make them dereference able, use HTTP URIs for everything, do not define URIs in

some ones namespace, try to keep URIs stable and persistent or else it will break established

links. Vocabulary to represent information are do not define new vocabulary from scratch, pro-

vide for both humans and machines, make term URI de referenceable and make use of other

people’s terms. So RDF links allow users to navigate from one data source to other data sources

and to discover additional data. In order to be part of Web data, data sources should set RDF

links to related entities in other data sources. As data sources often provide information about

large number of entities, it is common practice to use automated or semi-automated approaches

to generate RDF links. In various domains there are generally accepted schemata. For instance in

the publication domain ISBN and ISSN are common domains and in financial domains there are

ISIN identifiers, EAN and EPC codes are widely used to identify products. If the link data source

and data targets are already both support of these identification schema RDF links can be made

easily. This approach has been used in LOD cloud in various domains.

If no shared naming schema exist, RDF links are often generated using similarity of entities in

both data sets. Such similarity is computed based on record linkage and duplicate detection with-

in the database community. Various RDF generation link algorithms are available. For example,

SILK is the open source framework for integrating heterogeneous data sources. SILK is based on

12

the Linked data paradigm, which is built on two simple ideas. First, RDF provides an expressive

data model for representing structured information. Second, RDF links are set between entities in

different data sources.

2.1.1 Metadata Information

Linked data should be published along with the creation of Meta data in order for the clients to

assess the quality of published data, data should be accompanied with creator date, creator time,

as well as creator method. Meta information for example can use the standards of Semantic Web

Publishing Vocabulary.

In order to support clients in choosing the most efficient way to access Web data for the specific

task they have to perform, data publishers can provide additional technical metadata information

about their data set and its inter-linkage relationships with other data sets. The Semantic Web

Crawling Sitemap extension allows data publishers to state which alternative means of access are

provided besides de referenceable URIs. The vocabulary of interlinked data sets defines terms

and best practices to categorize and provide statistical Meta information about data sets as well

as the linked data sets connecting them.

2.1.2 Linked Data Publishing Tools

A variety of Linked data publishing tools have been developed. Some of the examples are

D2RServer is a tool for publishing relational data bases as linked data, Talis Platform is platform

provides Linked data complaint hosting for content and RDF data, Pubby is a linked data

frontend for SPARQL End points, Paget is a framework for building Linked Data applications,

Linked Media Framework is a linked data server with updates and semantic search. Publish-

MyData is a linked data publishing platform run by Swirrl. RDF data-hosting, linked data API,

SPARQL end point and customizable visualizations.

2.1.3 Linked Data RDF editors

13

There are two basic type of editors available. They are (a) Hyena: RDF Editor (b) Vapor: Linked

data Validator.

The most visible example of application of Linked Data is Linked Open Data (LOD) [10] pro-

ject and the main aim of this project is to make use of principles of Linked Data and publish data

on the Web.

2.2 Classification of Data Quality issues in terms of Semantic Web and Linked Data

Despite its importance, data quality has only recently being receiving attention from the Seman-

tic Web community. Most of the related works in the data quality assessment of LOD investigate

the quality problems of published data sets. In this section we describe the lot of data quality

principles and different metrics related to that principle as shown in Table-2.1.

Table 2.1 - Data Quality Principles

Data Quality Principle Attribute

Quality of Data Sources Accessibility, Authority & Sustainability,

License, Trustworthiness & Verifiability,

Quality of Raw Data Accuracy, Referential Correspondence,

Cleanness, Consistency, Comprehensibility,

Completeness, Typing, Provenance, Versatili-

ty, Traceability

Quality of the Semantic Conversion Correctness, granularity, Consistency

Quality of the linking Process Connectedness, Isomorphism, Directionality

2.2.1 Quality of Data Sources

This principle is related to the availability of the data and the credibility of the data source. Ac-

cessibility metric checks whether access methods and protocols perform properly and is all the

URIs de-referenceable and the in-going and out-going links operate correctly. Authority & Sus-

tainability metric checks whether the data source provider a known credible source or is he spon-

sored by well-known associations and providers and are there credible basis for believing the

14

data source will be maintained and available in the future. License metric checks whether the

data source license clearly defined. Trustworthiness & Verifiability metric checks whether the

data consumer examine the correctness and accuracy of the data source. The consumer should

also be sure that the data he receives is the same data he has vouched for and from the same re-

source. This can be ensured using digital signatures thus verifying all possible serialization of

that data.

Performance metric checks whether the data source capable of coping with increasing requests in

low latency response time and high throughput.

2.2.2 Quality of the raw data

This principle is mainly related to the absence of duplicates, entry mistakes, and noise in the da-

ta. Accuracy metric checks whether the nodes referring to factually and lexically correct infor-

mation. Referential correspondence metric checks whether the data described using accurate la-

bels without duplications and the goal is to have one-to-one references between data and real

world. Cleanness metric checks whether the data clean and not polluted with irrelevant or out-

dated data and are there duplicates and the data formatted in a consistent way (i.e., are the dates

all formatted yyyy/mm/dd) and tools such as Google Refine or Data Wrangler provide already a

good answer to these issues by allowing the cleaning of complex data sets.

Consistency metric checks whether the data contradict it. For example, is the population of Eu-

rope the same as the sum of the population of the European countries? To achieve that we need

to validate the underlying vocabulary and syntax of the document with other resources.

Comprehensibility metric checks whether the data concepts understandable to humans? Do they

convey logical meaning of the described entity and allow easy consumption and utilization of the

data? If a concept is described using multiple labels (a set of concepts in a owl: same AS rela-

tionship), which one should be consumed? How can we specify which label is canonical? Com-

pleteness metric checks whether we have all the data needed to represent all the information re-

lated to a real world entity? Moreover, is the data related or linked to this set complete as well,

e.g., all European countries, all French cities, all street addresses, all postal codes…? Typing

checks whether the data properly typed as a concept from a vocabulary or just as a string literal?

Having the data properly typed allows users to go a step further in the business analysis and de-

15

cision process. Provenance checks whether provenance in the Semantic Web is considered as one

of the most important indicators of "quality." And the data sets can be used or rejected depending

on the availability of sufficient and/or relevant metadata attached. Versatility checks whether the

data provided be presented using alternative representations. This can be achieved by conversion

into various formats or if the data source enables content negotiation.

Traceability metric checks whether all the elements of my data traceable (including data itself

but also queries, formulae) and Can I know from what data sources they come.

2.2.3 Quality of the Semantic conversion

Semantic conversion is the process of transforming “normal” raw data into “rich” data, i.e. input:

[tabular data] output: [RDF using x Vocabulary]. The use of high quality vocabularies and the

efficiency of data discovery process are major factors in increasing the quality of data. However,

one of the most important aspects that affect the quality of the semantic conversion is the quality

and suitability of its data model with the intended usage. The quality of a data model strongly

depends on the following aspects:

 Correctness: Is the data structure properly modeled and presented for future conversion?

 Granularity: does the model capture enough information to be useful? Are all the ex-

pected data present?

 Consistency: Is the direction of relations consistently done?

2.2.4 Quality of the Linkage

This principle is related to the quality of links between two datasets.

Connectedness: Is the combination of datasets done at the correct resources? Frameworks like

Silk ease the linking process but don’t tackle per se the quality of the links that are generated.

The quality depends on the link generation configuration. The quality is however improved if

your data is linked to some reference dataset.

 Isomorphism: Are the combined datasets modeled in a compatible way? Are the com-

bined models reconciled?

16

 Directionality: After the linkage, is the knowledge represented in the resulting graph of

resources still consistent?

2.3 Related Work

Semantic Web is widely accepted topic and lot of research is getting done in this area especially

in the area of data quality issues and especially in finding correct and accurate links in between

the data sets. There are numerous amounts of dimensions in data quality issues to pursue. One of

the dimensions is regarding the quality of data Source. Checking how query responds to the que-

ry, detection of dead links in Web, no dereferenced forward links, detection of available links,

when an URI returns an error such as 4x/5x error, response code for broken links, and misreport-

ed content types after clinking the links. This dimension is pursued as part of this thesis and gen-

erated automated tool/framework to find the good and bad links when URI is searched. All bad

links are taken into account and saw what are the response code coming and the reason for fail-

ing and recommended the correct URLs for bad URLs. Some of the algorithms related to quality

of links and data quality issues are discussed below.

In the article "Repairing broken links in the web of data” [29], they introduced a method for fix-

ing broken links source. Broken links which is based on the source point of links and discover

the new address of the broken entity. To this end, they introduced two datasets called superior

and inferior. Through these datasets, their method creates a graph structure for each entity that

needs to be observed over time. This graph is used to identify and discover the new address of

the detached entity. The proposed model is evaluated only with domain of person entities.

ALEX (Automatic Link Exploration System) [15] is a system that uses PARIS (PARIS is a

probabilistic holistic automatic linking algorithm that is fully automatic and does not require any

prior information. It also produces better quality links than other approaches.) to produce the

candidate links which is starting point for this system. ALEX starts with a set of automatically

generated links that can be produced using any automatic linking algorithm referred to as candi-

date links. ALEX removes incorrect links rejected by the user but the main focus of ALEX is to

find new links that are similar to the links approved by user. The way ALEX finds similar links

as follows: An entity in the RDF data set is represented by the URI. Each entity has a set of at-

17

tributes. System represents a link between two entities from different data sets by a set of fea-

tures made up of the attributes of the two entities. A feature is a pair of attributes where the first

attribute comes from the first entity and the second comes from the second entity. Each feature

has a value which is the similarity score of the value of the two attributes. When a user approves

a link by approving a query answer based on this link, ALEX chooses one feature and finds new

candidate links for which the value of this feature is within a narrow range around the value of

the feature of the approved link. The goal of this system is to refine new links in DBPedia by

removing incorrect links to external pages or resources. The distinct feature of ALEX is that it

not only removes incorrect links from the set of candidate links but also discovers new links that

are not part of this set.

In the review of Quality Assessment for linked open data article [10], systematic approaches for

assessing the quality of LOD are presented. They gathered existing approaches and compared

and group them under a common classification scheme. In particular unified and formalized

commonly used terminologies across papers related to data quality and provide a comprehensive

list of the dimensions and metrics. Additionally qualitatively analyzed the approaches and tools

using a set of attributes. Mainly aim of the article is to provide researchers and data curators a

comprehensive understanding of existing work, thereby encouraging further experimentation and

development of new approaches focused towards data quality specifically for LOD. This paper in

detail compared commonly used technologies related to data quality, 23 different dimensions and

their formalized definitions, metrics for each of the dimensions along with a distinction between

them being subjective or objective and comparison of tools used to assess data quality. In order

to justify the need of systematic review they first conducted a search for related surveys and lit-

erature reviews. The study compares the frameworks and identifies 20 dimensions common be-

tween them. Additionally they did a comprehensive review which surveys 13 methodologies for

assessing the data quality of data sets available on the Web, in structured or semi structured for-

mats. This survey focuses only on structured data and on approaches that aim at assessing the

quality of LOD. They not only identified existing dimensions but also introduced new dimen-

sions relevant for assessing the quality of LOD. Furthermore described quality assessment met-

rics corresponding to each of dimensions and identified whether they are objectively or subjec-

tively measured.

18

Some projects have proposed solutions to finding bad URLs simplifying greatly the task of iden-

tifying bad URLs. Project Online Checker: This checks your Websites and blogs for dead links

and can validate both internal and external URLs. And also reports standard error codes like 404

(Page not Found etc.) for all bad URLs. This can reference stale and dead links. Alpha Software:

This also checks for bad URLs and can find dead links and also identifies what kind of error

code page is giving after clicking it. Even lot of projects like Wilders Security Forms checks bad

URLS and finds dead URLs. Dead Link Checker: This project crawls through the Website and

identifies bad URLs to correct them. Xenu Link Sleuth is the project after installing the Xenu

Software and opened the tool, checks URL and makes you enter Website’s domain. After identi-

fying broken links it creates an excel sheet to track link redirect processes. Xenu gives us a list of

broken links. The Xenu report has the advantage of not displaying URLs that are recorded in

your analytics because of a typing error. All the links shown in Xenu are actually existing

links that live on the site. But these URLs may still contain character errors. For example,

links #4 and #5 are caused the by the same problem: “#” is replaced by “%2523.” When we

identify these instances, we need to determine the cause and fix the same problem across all

instances. This step will be complete once you’ve located the links that need to be redirected

and documented them all in your Broken Link Redirect Report.

19

Chapter 3 Architecture of LinkWiper System

This chapter presents the architecture of LinkWiper System. Section 3.2 presents the crowd

sourcing concepts used in this automated tool. Section 3.3 presents the security involved in sys-

tem and section 3.4 reports about inconsistent state recovery.

Linked open data allow interlinking and integrating any kind of data on the web. Links between

various data sources play a key role insofar as they allow software applications (e.g., browsers,

search engines) to operate over the aggregated data space as if it was a unique local database. In

this new data space, where DBPedia, a data set including structured information from Wikipedia,

seems to be the central hub, we analyze and highlight outgoing links from this hub in an effort to

discover broken links [30].The paper reports on an experiment to examine the causes of broken

links and proposes some treatments for solving this problem. This architecture is valid for any

LOD Source. We use DBPedia and LOD interchangeably in the rest of the thesis.

In this section we present the architectural details of system tool/framework and how a user in-

teracts with the system and how the system processes a user’s request. From the Figure-4 we can

see that there are five major components in the system tool/framework.

Let us elaborate the operations in the components one by one and how the system behaves inter-

nally. There are many operations that will be performed in the system according to the user’s

input. We will go into more details on critical techniques later step by step on this thesis. There is

user interface which is more user friendly showing user friendly messages to user at ever point.

The user can enter the URL to search for the content in DBPedia. When user types the URL to

search for that URL in DBPedia, search results contains set of URLs which can contain some

bad URLs. These bad URLs are given as input to Component1.

20

3.1 Search Techniques

Input to this component is set of bad URLs generated after searching the URL entered in DBPe-

dia. Output to this component is set of URLs sorted out after consolidating the URLs coming

from the Search Engines. Starting point to this operation is crowd sourcing worker searches URL

in DBPedia and gets the list of good and bad URLS. When this set of bad URLS are used as in-

put to this component, output is obtained as set of URLs relative to the set of bad URLS which re

21

processed through other components.

User types URL to search

in DBPedia

COMPONENT-1

Search engines to get

set of URLS relative to

the bad URL

COMPONENT-2

Semantical sorting of

URLS using user

selected algoithm

COMPONENT-3

Sort the URLS using

Domain algorithms and

get the set of sorted

URLS

COMPONENT-4

Use Page Ranking to

get set of URLS

Worker selected URLS

WorkerWorker

COMPONENT-5

Calculate % of

relevance
Database

Display on

SCreen output

Input bad URLS to Search Engines

Set of URLS

Sorted URLS based on algorithm

Sorted URLS based on domain and semantic algorithms
Set of Sorted URLS

Input Sorted URLS to PR Algorithm

Display % and selected URLS on Screen

Update % to databaseInput worker selected URLs
Worker selects URL

Figure 3.1 - Component Diagram

The algorithm below is used for making use of search engines Google Search Engine API [14].

3.1 Algorithm - Google Search Engine API

22

String google = "http://ajax.googleapis.com/ajax/services/search/Web?v=1.0&q=";

String search = "stackoverflow";

String charset = "UTF-8";

URL url = new URL(google + URLEncoder.encode(search, charset));

Reader reader = new InputStreamReader(url.openStream(), charset);

GoogleResults results = new Gson().fromJson(reader, GoogleResults.class);

The figure shows the java snippet of code which fetches the results using the RESTFUL Services

Ajax Google API. Further Google Results will be processed and fed as input to the Component2.

Query to test this code is bad URL www. redff.com. Google offers a public search Webservice

Which returns JSON. Java Offers java.net.URL and java.net.URLConnection to fire and handle

HTTP requests. JSON in java can be converted into java bean output.

String google = http://ajax.googleapis.com/ajax/services/search/Web?v=1.0&q=www.redff.com

Google Results will bring the query format search data which will be processed by further algo-

rithms.

3.1.1 Semantic text matching

Input to this algorithm below is URLs for comparison and Output is the sorted URLs based on

the distance calculated by the algorithm. There are different algorithms to calculate distance be-

tween URLs, those are given as option to user to select in the User Interface. One of the algo-

rithms is stated below and explained.

3.2 Algorithm - Levenshtein Distance Calculation method

Input : Two Strings for comparison

Output: Sorted Strings based on algorithm.

1 public class LevenshteinDistance {

2 private static int minimum (int a, int b, int c) {

3 return Math.min (Math.min (a, b), c);

http://ajax.googleapis.com/ajax/services/search/web?v=1.0&q=www.redff.com

23

4 }

5

6 public static int computeLevenshteinDistance(CharSequence lhs,

7 CharSequence rhs) {

8

9 int[][] distance = new int[lhs.length() + 1][rhs.length() + 1];

10

11 for (int i = 0; i <= lhs.length (); i++)

12 distance[i][0] = i;

13 for (int j = 1; j <= rhs.length (); j++)

14 distance [0][j] = j;

15

16 for (int i = 1; i <= lhs.length(); i++)

17 for (int j = 1; j <= rhs.length(); j++)

18 distance[i][j] = minimum(

19 distance [i - 1][j] + 1,

20 distance[i][j - 1] + 1,

21 distance [i - 1][j - 1] + ((lhs.charAt(i - 1) ==

22 rhs.charAt(j - 1)) ? 0 : 1));

23

24 return distance[lhs.length()][rhs.length()];

25 }

26 }

Two examples of the resulting matrix as shown in Figure-3.2 (hovering over a number reveals

the operation performed to get that number):

k i t t e n

0 1 2 3 4 5 6

s 1 1 2 3 4 5 6

i 2 2 1 2 3 4 5

t 3 3 2 1 2 3 4

S a t u r d a y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

u 2 1 1 2 2 3 4 5 6

n 3 2 2 2 3 3 4 5 6

24

t 4 4 3 2 1 2 3

i 5 5 4 3 2 2 3

n 6 6 5 4 3 3 2

g 7 7 6 5 4 4 3

d 4 3 3 3 3 4 3 4 5

a 5 4 3 4 4 4 4 3 4

y 6 5 4 4 5 5 5 4 3

Figure 3.2 - Example for Levenshtein Algorithm

3.1.2 Domain Algorithm

Input to this component is the sorted URLs after applying semantic text matching and output is

the sorted list of URLs after applying domain algorithms [16]. In this phase first all the domain

names of the input URLs are fetched and if any two URLs have same domain name they are

sorted based on the semantic text matching algorithm (see 3.1.2 Component, how it works) and

finds least distance URL and final sorted list according to domains is displayed as output.

3.3 Algorithm - Domain Algorithm

Input: List of URLs to compare for domain names of URLs.

Output: Sorted List of URLS by domain algorithm.

1 Get the list of URLS to compare for domains

2 Get the domain names of all the URLS and store in domainNames List of

3 Strings.

4 Call getDomainName (String URL)

5 Begin

6 Check the URL what is it Starting with?

7 If it is starting with http or https then save the url as is.

8 Else if URL is not starting with http or https then prefix the URL

9 With “http://”

10 End If

11 Pass the URL to URL class.

12 Get the host out of that URL and store it in host variable.

13 If host starts with www then

25

14 Get the sub string (“www”.length () +1) from the host String

15 End If

16 Return host

17 End Method

18 Initialize matched Strings List as new Array List<String> ()

19 If there are badURLS then

20 Begin

21 Loop through Bad URLS

22 Get the matched Domains out of badURL

23 Call compareDomainsWithBadURL (domain names, badURL)

24 Begin

25 Initialize domain Strings and matched Strings as empty list

26 Of Strings.

27 If lists are not empty then begin

28 Loop through domains

29 Compare with badURL domain name

30 Do necessary logic and processing

31 For strings to match.

32 If match Store it in matched Strings

33 End If

34 End loop

35 End IF

36 End

37 Now similar domains URLS Compare and get the distance between them

38 And sort it out and display.

39 End

A URI (Uniform Resource Identifier) is a representation of a resource available to your applica-

tion on the network. You can retrieve host of a URL by using Request Object or URI.

Using our code, let’s take example of URLs as follows to retrieve domain names.

http://www.rediff.com,

http://www.rediff.com/login.php

http://www.yahoo.com

Line1 gets the URLs to fetch domain names. Line2 calls fetching domain names function to fetch

all the domain names of the URLS and store it in domain name list. Line 4 to 17 will work on

fetching domain names. In our case, we get the domain names as rediff.com, rediff.com, ya-

http://www.rediff.com/
http://www.rediff.com/login.php
http://www.yahoo.com/

26

hoo.com. Line 18 declares one empty array list to store matching domain names with the domain

name of bad URL and rest of the lines loop through all the domain names and matching domain

names will be stored in the matchedStrings list. In our case, bad URL is www. redff.com and

domain name for this URL is rediff.com and matched strings could be rediff.com not yahoo.com

.

3.1.3 Page Ranking Technique

Input to this algorithm stated below is the list of URLs coming as output from the algorithm stat-

ed above in 3.2.3 section. In this phase URLs will be sorted out based on Page Ranking Algo-

rithm [17].

3.4 Algorithm - Page Ranking

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

import java.util.*;

import java.io.*;

public class PageRank {

public int path[][] = new int[10][10];

public double pagerank[] = new double[10];

public void calc(double n)

{

 double init;

 double c=0;

 double temp[] = new double[10];

 int i,j,u=1,k=1;

 init = 1/n;

 System.out.printf(" n value:"+n+"\t init value :"+init+"\n");

 for(i=1;i<=n;i++)

 this.pagerank[i]=init;

 System.out.printf("\n Initial PageRank Values , 0th Step \n");

 for(i=1;i<=n;i++)

 System.out.printf(" Page Rank of "+i+" is :\t"+this.pagerank[i]+"\n");

 while(u<=2)

 {

 for(i=1;i<=n;i++)

 { temp[i]=this.pagerank[i];

 this.pagerank[i]=0;

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

 }

 for(j=1;j<=n;j++)

 for(i=1;i<=n;i++)

 if(this.path[i][j] == 1)

 { k=1;c=0;

 while(k<=n)

 {

 if(this.path[i][k] == 1)

 c=c+1;

 k=k+1;

 }

 this.pagerank[j]=this.pagerank[j]+temp[i]*(1/c);

 }

 System.out.printf("\n After "+u+"th Step \n");

 for(i=1;i<=n;i++)

 System.out.printf(" Page Rank of "+i+" is :\t"+this.pagerank[i]+"\n");

 u=u+1;

 }

 }

 public static void main(String args[])

{

 int nodes,i,j,cost;

 Scanner in = new Scanner(System.in);

 System.out.println("Enter the Number of WebPages \n");

 nodes = in.nextInt();

 PageRank p = new PageRank();

 System.out.println("Enter the Adjacency Matrix with 1->PATH & 0->NO PATH

 Between two WebPages: \n");

 for(i=1;i<=nodes;i++)

 for(j=1;j<=nodes;j++)

61 {

62 p.path[i][j]=in.nextInt();

63 if(j==i) p.path[i][j]=0; } p.calc(nodes); } }

There are 5 Web pages represented by Nodes a, b, c, d, e. The hyperlink from each Webpage to

the other is represented by the arrow head as shown in Figure-3.3 nodes.

28

Figure 3.3 - Example for Page ranking Algorithm

As shown in Figure 3.3 data, at 0th Step we have all Webpages PageRank values 0.2 that is 1/5

(1/n). To get PageRank of Webpage A, consider all the incoming links to A. So we have half the

Page Rank of D is pointed to A and Full Rank of E is pointed to A. So it will be (1/5)*(1/2) +

(1/5)*(1/1) which is (3/10) or 0.3 the Page Rank of A. Similarly the Page Rank of B will be

(1/5)*(1/2) which is (1/10) or 0.1 because A's PageRank value is 1/5 or 0.2 from Step 0. Even

though we got 0.3 of A's PageRank in Step 1 we are considering 0.3 when we are Calculating

Page Rank of B in Step 2. The general rule is, we consider (N-1) step values when we are calcu-

lating the Page Rank values for Nth Step. In Similar way we calculate all the Page Rank Values

and Sort them to get the most important Webpage to be displayed in the Search Results.

3.1.4 Percentage of relevancy

Set of recommended URLS selected by worker is taken as input to algorithm stated below. Per-

centage of relevancy of crowd sourcing worker selected URLs is the output of this component.

This component makes use of component4 (3.1.4 section) output of sorted list of URLS based on

page relevancy. Based on this list if worker selects apt to that selection, then they will be given

high percentage of ranking to that crowd source worker. And the same way the percentages will

be calculated based on the order of list of page ranked URLs. And if there are two set of bad

URLs then average of percentage is taken and updated to the crowd source worker profile to

make use for next selections relevancy of particular worker. And these credibility algorithms are

discussed in next section 3.2.

3.5 Algorithm - Percentage of relevancy

Input: Set of recommended URLs selected by worker.

Output: calculated Percentage of Relevancy

http://4.bp.blogspot.com/-WmFLq19ed7c/Vm6Q0NR3i-I/AAAAAAAAAKk/q9jiaMr2Y-M/s1600/PageRank+Values.png

29

1: If worker selects highly possible URL then assign 100%, if second possible URL then 75%, or

 50% or 25%.

2: u(x) Average of two selected URLs percentage.

3: Output is u(x).

Page ranking list: www.rediff.com – 1, www.rediff.com/index.php - 2, www.rediff.com/sports –

3, www.rediff.com/news - 4

If the worker selects the same URL as 1 then 100% is assigned or 75% or 50% or 25% are as-

signed as in line 1 of algorithm. After calculating all the URLs percentage average is taken as in

line2 and that is percentage of relevancy (output as in line3).

3.2 Crowd Sourcing Techniques

Crowd Selection is essential to crowd sourcing [18] applications, since choosing the right work-

ers with particular expertise to carry out specific crowd sourcing tasks is extremely important.

The central problem is simple but tricky: given a crowd sourcing task who is the right worker to

ask? Currently, most existing work has mainly studied the problem of crowd-selection for simple

crowd sourced tasks such as decision making and sentiment analysis. Their crowd selection pro-

cedures are based on the trustworthiness of workers. However for complex tasks such as docu-

ment review and question answering, selecting workers based on the latent category of tasks is a

better solution.

For every new worker added in system is created with attributes of certain density of percentage.

Each user will be assigned attributes highest education degree, number of publications, profes-

sion so on. While entering their profile every worker will be put to personal questionnaire and

based on their answers and attributes described above density attributes are initialized. There will

be questions generated by system, based on the answers generated by questionnaire estimated

reliabilities will be generated. D[i] is the sum of all density attributes. R[i] is the sum of all relia-

bilities. P[i] is the percentage generated by adding all the attributes. M is the mean calculated for

all percentages and N is the mean calculated for all reliabilities R[n]. M and N are calculated for

100%. Average of M and N is the output. These steps are stated below in the Initial Credibility

Calculation Algorithm

3.6 Algorithm - Initial Credibility Calculation Algorithm

http://www.rediff.com/
http://www.rediff.com/index.php%20-%202
http://www.rediff.com/sports
http://www.rediff.com/news

30

1: Input: Worker Profile density attributes D[i] = {d [1], d [2], d[i] } and estimated reliabilities R

 from n control questions {R[n] ={r[1]…r[n]}.
 Output: Initial Credible Percentage calculated from this algorithm

2: Each density attribute’s d[i] calculated percentage is p[i].
3: P[i] is added for all attributes.

4: Mean M is calculated for all percentages P[i] -> {p[1],…p[m]} i.e. M =

 {p[1]+p[2]+…p[m]}/m

5: M is calculated for 100% M = M*100

6: Percentage based on p[i] is calculated for r[i].

7: Mean N is calculated and taken percentages p[j] -> {p[1]..p[w]}i.e. N={p[1]+p[2]+…p[w]}/w

8: N is calculated for 100%, N=N*100

9: Average of M and N is calculated and % is assigned as initial credibility to Worker.

10: Output is Average of M and N. i.e., Output = (M+N)/2

There are three kinds of groups in the crowd source workers. One with high percentage of credi-

bility, one with medium percentage of credibility and one with less percentage of credibility. In

this paper for answering queries generated by system i.e. to select the correct URL out of rec-

ommended URLs also we followed two different algorithms to select workers out of all workers.

Selection of workers from crowd of workers is done by using the below two algorithms:

1. Random Algorithm selects three workers randomly from three groups of workers (high credi-

ble group, medium credible group, low credible group) and randomly selects one worker from

the selected three workers. Thus the selection.

The minimum number of workers in the high credible group is considered as Min [workers (i)]

and maximum number of workers in this high credible group is considered as Max [workers(i)].

Random number is generated within maximum and minimum of numbers and value 1 is added to

the random number generated as in line1 in the algorithm. Similarly one user form medium cred-

ible group and one user from low credible group are selected. Out of these persons one random

person is selected using the random number generated using the above same logic as in line 39.

That user is the selected person using this Random Algorithm.

3.7 Algorithm - Random Algorithm:

Input: Set of three group of Workers w[i], y[i], z[i] where i ranges from 1..x

Output: Worker selected from this algorithm

1 Select random worker from first group.

31

2 Begin

3 Minimum number of workers in the group is

4 assigned as Min [w (i)].

5 Maximum number of workers in the group is

6 assigned as Max [w (i)].

7 Random is generated within Max and Min of

8 Numbers and value 1 is

9 added to the random number assigned.

10 End.

11 Select random worker from second group.

12 Begin

13 Minimum number of workers in the group is

14 assigned as Min[y(i)].

15 Maximum number of workers in the group is

16 assigned as Max[y(i)].

17 Random is generated within Max and Min of

18 Numbers and value 1 is

19 added to the random number assigned.

20 End.

21 Select random worker from third group.

22 Begin

23 Minimum number of workers in the group is

24 assigned as Min[z(i)].

25 Maximum number of workers in the group is

26 assigned as Max[z(i)].

27 Random is generated within Max and Min of

28 Numbers and value 1 is added to the random number assigned.

29 End.

30 Select random worker p(i) from x(i),y(i),z(i) these selected three workers.

31 Begin

32 Minimum number of workers in the group is

33 assigned as Min[p(i)].

34 Maximum number of workers in the group is

35 assigned as Max[p(i)].

36 Random is generated within Max and Min of

37 Numbers and value 1 is added to the random number assigned.

38 End.

39 Output is p(i), random worker from the three workers.

40 End.

2. Worker’s Algorithm selects three workers from all groups randomly and assigns random num-

ber to each worker (from 1 to 10 value to them) and will take logarithmic values of those num-

bers and sort them and smallest value person is selected as worker.

32

As input three groups of workers(high credible group, medium credible group and low credible

group) w[i], y[i] and z[i] where I ranges from 1 to x. Minimum number of workers in this group

is assigned as Min [w(i) + y(i) + z(i)] and Max [w(i) + y(i) + z(i)]. Three random workers are

selected out of this group as in step1. And selected workers is assigned random number as tag

and let these workers be R(w), R(y), R(z). Take logarithmic value of these assigned tag numbers.

Let these be Log[R(w)] , Log[R(y)], Log[R(z)] as calculated below in the algorithm at line 3.

Sort these values as in line 4 and Smallest number is taken as output as in line 6. The algorithm

below states the below steps.

3.8 Algorithm - Workers Selection Algorithm:

Input: Set of three groups of Workers w[i], y[i], z[i] where i ranges from 1...x

Output: One Worker selected from this algorithm.

1: Select three random workers from all groups.

Begin

Minimum number of workers in the group is assigned as Min [w (i) + y (i) + z (i)].

Maximum number of workers in the group is assigned as Max [w (i) + y (i) + z (i)].

Random is generated within Max and Min of Numbers three times and value 1 is added

to the random number assigned.

End.

2: Assign random number from 1 to 10 to these selected workers R(w), R(y),

R(z).

3: Take logarithmic value of these assigned numbers. Log(R(w)), Log(R(y)),

Log(R(z)).

4: Sort these values of numbers Log(R(w)), Log(R(y)), Log(R(z)).

5: Pick the Smallest number out of the three sorted values of(Log(R(w)),

Log(R(y)), Log(R(z))).

6: Output: Smallest of (Sorted Order (Log(R(w)), Log(R(y)), Log(R(z)))).

After answering the questions/URLs generated by system, every worker has option to provide

feedback about their favorite worker in the system. That percentage of credibility assigned by the

worker along with the previous history of credibility based on the update credibility algorithm,

new percentage will be calculated and update the worker’s percentage as their current credibility.

Input to this algorithm is peer review percentage pr(x) of worker x, initial credibility percentage

i(x) and based on the group percentage will be assigned as in line1 and let that be y(x). Output

33

u(x) is average of three values pr(x), i(x) and y(x). Algorithm for Update Credibility is shown

below:

3.9 Algorithm - Update Credibility Algorithm:

Input: Peer review percentage of worker x is pr(x), initial credibility of worker x is i(x), three

groups g1,g2,g3 where g1 is the high credible group, g2 is the medium credible group and g3 is

the low credible group.

Output: Update Credibility Percentage

1: If worker belongs to high credible group then worker will be assigned 100%, medium credible

group will be assigned 70% and low credible user will be assigned 30%. This percentage is col-

lected and assigned to variable y(x).

2: u(x) (pr(x)+i(x)+y(x))/3

3: Output is u(x).

34

Chapter 4 Implementation & Validation

This chapter presents implementation and validation details of system. And also reports different

experiments results. Section 4.1 presents implementation details of system. Section 4.2 presents

Validation of example issue with the system. Section 4.3 reports experimental results.

4.1 Implementation Details of System

Our recommendation System is developed as a Web application built using distributed multi-

tiered application model (as shown in Figure-4.1.1.1) for enterprise applications that interfaces

with a relational database management system. We used J2EE along with Struts JSP as the main

application framework interfacing with MySQL database and Tomcat as the server. Java pro-

gramming enables secure and high performance software development on multiple platforms.

Java also supports multiple features which we can go into details in the following sections.

4.1.1 System Tiers

Figure 4.1- System Tiers

Our J2ee application system includes the following tiers. See Figure-4.1. Client tier components

that run on client machines. Web tier components that run on the J2ee Server. Enterprise

35

Information System (EIS) that runs on the EIS Server. A Client tier is composed of the following

components. A Web Client which consists of two parts: (1) dynamic Web pages that contain

multiple types of markup languages such as HTML, XML etc. which are generated by compo-

nents running in the Web-tier and (2) a Web browser. The Web tier is composed of the following

component. JSP pages which are text based documents that are translated to servlets at run time.

They execute as servlets but allow a more natural approach to creating static content. This is

used in our system to display the Web pages to the user. The Enterprise Tier is composed of the

following components. A Database system that employs MYSQL. In our case, the J2ee applica-

tion needs access to enterprise information system for database connectivity.

The advantage of using J2ee is that it runs using the Java Virtual machine (JVM) such as

Tomcat, WebSphere, and JBOSS etc. Every J2ee Program can be executed on any system plat-

form as long as there is a JVM. This provides flexibility and system-platform independence. JSP

is a java based application framework intended to simplify development integration of Web

based user interfaces. It is a server side request driven Model-View-Controller framework used

to construct user interfaces using components.

This architecture offers a clear separation between presentation and behavior. JSP ensures that

applications are well designed with greater maintainability by integrating the MVC design pat-

tern into its architecture. User Interface (UI) components represent View (typically in JSP), man-

aged beans represent Model and Servlets is the controller. All requests are handled by this con-

troller. Every request passes through and is examined by Servlet that calls various actions on the

model (managed beans). The application is not restricted to MySQL database. We chose it as a

default database. It can be linked to any relational database by modifying the Java database Con-

nector (JDBC) driver. JDBC is the software component enabling the java application to interact

with a database. It converts JDBC calls directly into a MySQL-specific protocol. We used the

Apache Jena Java framework for interacting with the Ontology. Jena provides a collection of

tools and java libraries to help semantic Web and linked data applications, tools and servers.

4.1.2 Configuration

36

One of the main important aspects of using J2ee is the ability to separate the Web interface from

the business logic of the application. We start off by creating the Enterprise application module

that will add automatically two different projects specific to it. The first project is known as Java

Web handles the user interaction and the display of information (Web Application Archive) and

the second project known as EJB module handles all business logic and any interaction with the

database (Enterprise Java Bean). The link between these two projects is the actual Enterprise

Application that coordinates the communication between them. The Web Application Archive

(WAR) is used to distribute a collection of Java Server Pages, Java Servlets, Java Classes, XML

files, tag libraries, static Web pages (HTML and related files) and other resources that together

constitute a Web application. The EJB classes and the deployment descriptor should be bundled

up in a JAR file. The WAR and JAR are the only necessary files to be deployed on the applica-

tion Server. In this way, we have the ability and flexibility to deploy the projects on different

servers.

In order to implement a J2EE Application, it needs to run on application Server. When creating

the enterprise application, the appropriate Java EE version should be picked (Java EE6 in our

case) as well as the application server (Glass Fish, JBoss, and WebSphere). Since we will be also

using JSP, tiles in the framework, it should be also added as the main framework for the Java

Web project. Otherwise tags and libraries will not be recognized in the application. After defin-

ing all the previous steps, we need to start with the configuration of the application server file

(Web.xml). Fig 4.2 displays a sample configuration file for the application Server. In our case,

since the application is integrated with JSP and MySQL, it also requires configuration of the

server’s global data source and its underlying JDBC Connection pool (resources.xml). Figure 4.3

displays a sample configuration file for the data source of the application server.

Establishing the connectivity between the MySQL database and the enterprise application is

done through the Tomcat Server to which it deployed. This communication is made possible

with the JDBC API. We start by creating a connection pool on Tomcat server. JDBC driver is

required in order for the server to communicate directly with the MySQL database. A Connec-

tion pool contains a group of reusable connections for a database. Creating a new physical con-

nection is time consuming, that is why the application server maintains a pool of available con-

nections. In this way the performance of database connections is improved. Connection pools use

37

a JDBC driver to create physical connections to database. In order to enable our enterprise appli-

cation access to the MySQL Database, a JDBC source that uses the connection pool should also

be created. JDBC resource will provide the application with the means of connecting to the data-

base. All external libraries used in this application such as MySQL, log4j etc. should be added to

the appropriate folder as a JAR file so that the application can use their classes and methods.

4.1.3 Directory Structure

As we previously mentioned, the enterprise application has Web project that contains the user

interface and interaction, and the java project containing the business logic and the communica-

tion with the database.

The root directory of the Web application is called the document root. It contains a private direc-

tory named WEB-INF. Any files that reside under the WEB-INF directory are private otherwise

they are public. Since Web.xml and struts-config.xml are two important configuration files for

the application, they reside under the WEB-INF directory so that they cannot be accessed direct-

ly from browser by specifying the URLS to their paths. The JSP pages reside in the Web folder

that is under the root folder. They are the main interface files to the application. All the styling

and client side manipulation files (CSS/JavaScript) reside in a separate folder also under the Web

folder. We also separated the back office files from the rest of the interface files to distinguish

between them. The source packages are in the src directory. They contain backing beans or man-

aged beans that are UI Components used in a particular page. A typical JSP with tiles application

contains one or more managed beans. Our managed beans typically handle login/logout services,

registration forms, calls to the session beans and basic services that are required from a UI inter-

face. The Test packages reside in a separate folder under the root directory. All the test files and

test suites are handled here.

4.1.4 Error Logging

Logging is an important and pretty useful mechanism for every application. It can help develop-

ers debug and improve their code or test its functionality. Every application has a tendency to

crash or throw an error at any point in time. This can be result of many factors such as lack of

38

memory allocation, poor exception handling or even hardware problems affecting and preventing

the application from running efficiently. Therefore it is very important to figure out the reason

behind all these errors. We used log4j library to log all the information and errors that result in

the application. Every method implemented has its own logger information that feeds it from

start to finish. As long as the application is running, the log file will continue to save the infor-

mation about the method on call. The log file is very useful when the developer wants to debug a

certain problem or crash in the system. It is a good starting point if the built in debugger is of no

use. The log file can be used to determine the reason behind the error and save time.

4.2 Validation of System

This section describes the validation of real world system problem and its solution using the sys-

tem. This experiment shows the performance and accuracy of the techniques used in the system

and shows the improvement over the traditional techniques used and the latest algorithm tech-

niques and data structures like hash maps.

When user types “http://dbpedia.org/resource/Cambridge“ in the URL tab user will get set of

good URLs related to Cambridge and if there are any bad URLs in DBPedia the system will list

out the bad URLs in the page results of Cambridge. Our system will take the list of bad URLs

and finds the recommended URLs to the user. Suppose www.redff.com is the bad URL outcome

from the list of URLs. Figure 4.2shows the main screen where user can type the URL and Figure

4.3 shows the list of good and bad URLs listed out by system. Figure 4.4 shows the links (possi-

ble URLs generated by search engines and refined list coming from the search engines) that

works for dead URLs. In Figure 4.4 it shows the domain names of the refined search URLs and

domain names are listed. And also figure displays the domain names that match with bad URLs,

after domain names are fetched, semantic text matching algorithm is applied and domain names

that are filtered out with same domain name that match with bad URL are applied with semantic

text matching.

Example: www.rediff.com, www.rediff.com/index.php

http://www.rediff.com/
http://www.rediff.com/index.php

39

For both the URLs domain name will be matching with bad domain URL rediff.com. So seman-

tic text matching algorithm is applied and less distance URL is filtered.

After all these results fetching there is link on Figure 4.5 top-left, “Go to User Recommenda-

tions Page”. When user clicks on that link it navigates to User recommendations page as shown

in Figure 4.5. There the results of recommendation URLs after applying all the algorithms will

be displayed in the order of semantic text algorithm selected in first page as shown in Figure 4.2.

In our case it is “Block Distance” Algorithm. Then two workers who are in session will be

picked using Randomizing algorithm and Workers Selection Algorithm. These workers will pick

the URL which they think is close to the answer. As soon as they submit the “Submit” button,

alerts of whatever they are selected as shown in Figure-4.7 will be displayed to user. After select-

ing the URL the accuracy of selected URL in terms of percentage is calculated using page rank-

ing algorithm and is displayed as per the Figure-4.8. And in the same screen there is “Peer Re-

view” link that takes to the page as shown in Figure-4.9. There the same worker can give peer

review rating to other worker in system, which calculates the update credibility percentage and

updates in the system. This ends the use case.

40

Figure 4.2 - Main Screen

41

Figure 4.3 - Display Results Screen

Figure 2 - Display Results Screen (Cont'd)

42

Figure 4.5 - User Recommendation Screen

Figure 4.6 - User Recommendation Screen (Cont'd)

43

Figure 3 - popup message

Figure 4.8 - Page relevancy percentage Screen

Figure 4 - Peer Review Screen

44

Figure 5 - Peer Review Response Screen

4.3 Experiments

To evaluate the performance of our recommended techniques and algorithms, we performed sev-

eral test cases and experiments. Experiment programs are implemented in Junit with Intel quad

core (2.2 GHz) CPU and 4GB memory running on Windows Operating System. We simulated

experiments to generate tables, queries and test data. The simulated meta-data and information

are used to analyze the output and the recommendation system. We generated 600 bad URLs in

our experiments. We analyzed different scenarios in algorithms and the results generated in the

system.

We used JUnit as the unit testing framework that has been designed for the purpose of writing

and running tests. Unit testing is very important and critical in developing any application to

monitor how the application is behaving and whether the results of experiments are expected.

The framework used creates a relationship between development and testing. We start coding

according to the specifications and use the test runners to verify how much the output deviates

from the intended goal. Therefore while developing the application; we performed test cases on

specific functionalities to verify the outcome. A test case is a code fragment that checks another

45

code unit (method) works as expected. Using this approach, we are capable of easily correcting

bugs as they are found and changing requirements as we proceeded with the system. We con-

ducted several experiments to test the effectiveness of our recommendation system. Some of

which are evaluation of the recommendation technique using Junit for the algorithms, comparing

the efficiency of algorithms using matrix vs not using matrix and using the search algorithm vs

estimated outputs generated by system to determine how efficiently system is working.

Using the unit testing process will make sure that all the modifications in the code will not break

the system since all the alterations and test methods do not interfere with the code. In the exper-

iments below, we measure the precision and recall [21] of the recommendation system for a dif-

ferent number of generated test data sets. Precision is also called positive predictive value and is

the fraction of retrieved instances that are relevant. Precision is based on understanding and

measure of relevance. Suppose a computer program for recognizing dogs in scenes from a video

identifies 7 dogs in a scene containing 9 dogs and some cats. If 4 of the identifications are cor-

rect, but 3 are actually cats, the program's precision is 4/7 while its recall is 4/9. When a search

engine returns 30 pages only 20 of which are relevant while failing to return 40 additional rele-

vant pages, its precision is 20/30 = 2/3. Aim of the graph is to measure the precision percentage

and plot graph between 4-correct URL (System generated 4 URLs and predicted output 4 URLs

– 4/4), 3 correct URLs (System generated 4 URLs and predicted output 4 URLs – 3/4), 2 correct

URL (System generated 4 URLs and predicted output 4 URLs – 2/4), and 1 Correct URL (Sys-

tem generated 4 URLs and predicted output 4 URLs – 1/4).

Percentage of Precision is 0.75 for the system generated outputs vs predicted outputs and calcu-

lated percentages of precision as shown in Figure 4.11.

46

Figure 4.11 - Precision Graph

Recall is also called Sensitivity. Recall is based on understanding and measure of relevance.

Suppose a computer program for recognizing dogs in scenes from a video identifies 7 dogs in a

scene containing 9 dogs and some cats. If 4 of the identifications are correct, but 3 are actually

cats, the program's precision is 4/7 while its recall is 4/9. When a search engine returns 30 pages

only 20 of which are relevant while failing to return 40 additional relevant pages, its recall is

20/60 = 1/3.

Aim of the graph is to measure the recall percentage and plot graph between 4-correct URL (Sys-

tem generated 4 URLs and predicted output 4 URLs – 4/4), 3 correct URLs (System generated 4

URLs and predicted output 4 URLs – 3/4), 2 correct URL (System generated 4 URLs and pre-

dicted output 4 URLs – 2/4), and 1 Correct URL (System generated 4 URLs and predicted output

4 URLs – 1/4).

Percentage of Recall is 0.75 for the system generated outputs vs predicted outputs and calculated

percentages of recall as shown in Figure 4.12.

0

50

100

150

0 0.2 0.4 0.6 0.8 1 1.2

P
re

ci
si

o
n
 P

er
ce

n
ta

g
e

No.of correct URLS

Precision Graph

4-URL 3-URL 2-URL 1-URL

47

Figure 4.12 - Recall Graph

The following set of experiments display the results of the recommendation system for different

set of bad URLs. Each of the figures shows the curves along with the results. These curves are

the comparison of system generated results vs estimated output results.

Example:

Suppose bad URL is www. Yhoo.com the following are the system and estimated outputs. The

following is the generated data (i.e., estimated output of system)

www.yahoo.com

www.sports.yahoo.com

www.news.yahoo.com

www.mail.yahoo.com

And system generated output are:

www.yahoo.com

www.sports.yahoo.com

www.news.yahoo.com

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2

R
ec

al
l

P
er

ce
n
ta

g
e

No.of correct URLS

Recall Graph

4-URL 3-URL 2-URL 1-URL

http://www.yahoo.com/
http://www.sports.yahoo.com/
http://www.news.yahoo.com/
http://www.mail.yahoo.com/
http://www.yahoo.com/
http://www.sports.yahoo.com/
http://www.news.yahoo.com/

48

www.mail.yahoo.com

Now system generated output matches for 4 URLs. That means output is 100% as shown in Fig-

ure 4.13.

In this way we generated outputs for 600 bad URLs and generated graphs for 4 set of correct

URLs (i.e., 4 URLs generated by system and 4 predicted URLs matches), 3 set of correct URLs

(i.e., out of 4 URLs generated by system and 4 predicted URLs matches if 3 set matches) as

shown in Figure 4.14, 2 set of correct URLs as shown in Figure 4.15 and 1 set of correct URLs

as shown in Figure 4.16

Figure 4.13 - Performance Graph for 100% correct results

0

1

2

3

4

5

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

2
8

6

3
0

1

3
1

6

3
3

1

3
4

6

3
6

1

3
7

6

3
9

1

4
0

6

4
2

1

4
3

6

4
5

1

4
6

6

4
8

1

4
9

6

5
1

1

5
2

6

5
4

1

S
y
st

em
 g

en
er

at
ed

 O
u
tp

u
t

Total number of URLS taken for test run

Performance graph for 100% correct results

vs expected results

http://www.mail.yahoo.com/

49

Figure 4.14 -Performance Graph for 75% correct results

Figure 4.15 - Performance Graph for 50% correct results

0

0.5

1

1.5

2

2.5

3

3.5

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

2
9

0

3
0

7

3
2

4

3
4

1

3
5

8

3
7

5

3
9

2

4
0

9

4
2

6

4
4

3

4
6

0

4
7

7

4
9

4

5
1

1

5
2

8

5
4

5

5
6

2

5
7

9

S
y

st
e

m
 g

e
n

e
ra

te
d

 O
u

tp
u

t

Number of URLS taken for measuring performance of system

Performance graph for 75% correct results vs

expected results

0

0.5

1

1.5

2

2.5

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

2
9

0

3
0

7

3
2

4

3
4

1

3
5

8

3
7

5

3
9

2

4
0

9

4
2

6

4
4

3

4
6

0

4
7

7

4
9

4

5
1

1

5
2

8

5
4

5

5
6

2

5
7

9

S
y
st

em
 g

en
er

at
ed

 O
u
tp

u
t

Number of URLS taken for measuring performance of system

Performance graph for 50% correct results vs

expected results

50

Figure 4.16 - Performance Graph for 25% correct results

And we conducted Junit test cases for crowd sourcing algorithms also. These test cases will

measure the performance of algorithms (like time taken, number of times same worker is repeat-

ed as output) and all the data attributes are considered to analyze the test results. And for both the

algorithms (Randomizing and Workers selection algorithm) results came out so well and perfor-

mance is so high and major outcome observed is there is no repetition of workers coming as out-

put. The graphs plotted are against 100 workers and 100 times experiment is conducted and

number of times same worker is repeatedly picked as output from the algorithm. Graphs show

that they are picked maximum 2 times but not many times. Below are the graphs (as shown in

Figure 4.17 and Figure 4.18) plotted based on our experiments.

0

0.2

0.4

0.6

0.8

1

1.2

1

1
9

3
7

5
5

7
3

9
1

1
0

9

1
2

7

1
4

5

1
6

3

1
8

1

1
9

9

2
1

7

2
3

5

2
5

3

2
7

1

2
8

9

3
0

7

3
2

5

3
4

3

3
6

1

3
7

9

3
9

7

4
1

5

4
3

3

4
5

1

4
6

9

4
8

7

5
0

5

5
2

3

5
4

1

5
5

9

5
7

7

5
9

5S
y
st

em
 g

en
er

at
ed

 o
u
tp

u
t

Number of URLS taken for measuring the performance

Performance graph for 25% correct results vs

expected results

System Output Estimated Output

51

Figure 4.17 - Random Algorithm Performance Graph

Figure 4.18 - Workers Algorithm Performance Graph

After analyzing all the experiments results, our recommended techniques are proved to be rea-

sonably precise. It also proved to be much faster and more efficient. The results are returned

fastest to user. One of the reasons is data structures are implemented as linked hash maps. The

main advantage of using hash maps over other data structures is speed especially when the data

is large. That alone is very important factor to minimize the time of the search process.

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

R
ep

et
it

io
n
 o

f
w

o
rk

er
s

b
y
 a

lg
o

ri
th

m

Number of Workers

Randomizing algorithm for 100 set of workers

Datenreihen1

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

R
ep

et
it

io
n
 o

f
sa

m
e

w
o

rk
er

 b
y
 a

lg
o

ri
th

m

Number of workers

Workers Algorithm Performance for 100 Workers

Datenreihen1

52

Chapter 5 Conclusion

There is an increasing demand to find the recommendation of good set of URLs that matches

closely for bad URLs. With such an increase in demand, there should be a way to help the users

minimize the amount of work that they need to do with specific recommendations to bad URLs

in a system. Some recommendations are very accurate and some are around 75% accurate. No

existing work has been addressed in this issue and also has not been reported in the literature.

In this thesis, we have presented recommendations that are useful for the users to further traverse

if they are looking for the same URL. Recommendation of URLs is a complicated problem. It

involves techniques such as domain matching, semantic text matching as well as search algo-

rithms which are based on search engine results.

We have presented a set of rules that assign from multiple algorithms whenever they are applica-

ble. Each approach we have made use of, is discussed. To achieve the accuracy at every step we

have ensured our developed code and also unit tested so that no issues will encounter at a later

point. Our experiment with lot of test data shows the effectiveness and performance of system.

Basically the goal of the research is proposing a metric-driven framework for predicting the qual-

ity of linked open data sets from an inherent point of view. To achieve this goal, we have fol-

lowed an approach which is started by analysis of well-known frameworks. To put the proposed

algorithms and metrics in place, an automated tool is developed to ensure good links recommen-

dation for bad URLs.

An important direction for future work is confirming the effectiveness of LinkWiper System

through user studies making use of real world applications on the Linked Data Open Cloud. In

such studies, users are likely to generate some incorrect feedback, which would enable us to val-

idate the robustness of LinkWiper System beyond our current set of experiment.

53

References

[1]- S. Embury, B. Jin, S. Sampaio, and I. Eleftheriou. On the feasibility of crawling linked data

sets for reusable defect corrections. In Proceedings of the 1st Workshop on Linked Data Quality

(LDQ2014), volume 1215. CEUR Workshop Proceedings, 2014.

[2] RDF - Z. Abedjan, T. Gruetze, A. Jentzsch, and F. Naumann. Profiling and mining RDF data

with ProLOD++. In 30th IEEE International Conference on Data Engineering (ICDE), pages

1198–1201, 2014.

[3]Semantic web: S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpe-

dia: A nucleus for a web of open data. In Proc. Int. Semantic Web Conf. (ISWC). 2007.

[5]Data quality principles- [1] C. Batini and M. Scannapieco. Data Quality: Concepts, Method-

ologies and Techniques (Data-Centric Systems and Applications). Springer-Verlag New York,

Inc., Secaucus, NJ, USA,2006.

[6]wwwC. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked data on the web. In Proc. Int.

World Wide Web Conf. (WWW), 2008.

[7]Tim Berners Lee C. Bizer, T. Heath, and T. Berners-Lee. Linkeddata-the story so far. Int.

Journal on Semantic Web and Information Systems, 5(3), 2009.

[9]SPARQL - B. Quilitz and U. Leser. Querying distributed RDF data sources with SPARQL. In

The Semantic Web: Research and Applications. Springer, 2008.

[10] – Quality assessment for linked data – Anisa Rula, Amrapali Zaveri,,published in semantic

web journal.net

[11]ALEX –Ahmed El-Roby, Ashraf Aboulnaga, Automatic Link exploration in linked data,

published in SIGMOD’15, ACM international conference of management of data.

[12] .Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Communications of the

ACM 45, 211-218 (2002)

[13]. Lee, Y.W., Strong, D.M., Kahn, B.K., Wang, R.Y.: AIMQ: a methodology for information

quality assessment. Information & management 40, 133-146 (2002)

[14]. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality

assessment and improvement. ACM Computing Surveys (CSUR), vol. 41, pp. 16 (2009)

54

[15]. Naumann, F., Rolker, C.: Assessment methods for information quality criteria. In: 5'th Con-

ference on Information Quality pp. 148-162. (2000)

[16]. Batini, C., Scannapieca, M.: Data quality: concepts, methodologies and techniques. Spring-

er (2006)

[17]. Behkamal, B., Kahani, M., Paydar, S., Dadkhah, M., Sekhavaty, E.: Publishing Persian

linked data; challenges and lessons learned. In: 5th International Symposium on Telecommunica-

tions (IST), pp. 732-737. IEEE, (2010)

[18]. Helfert, M.: Managing and measuring data quality in data warehousing. In: WorldMulticon-

ference on Systemics, Cybernetics and Informatics, pp. 55-65. (2001)

[19]. ISO: ISO/IEC 25012- Software engineering - Software product Quality Requirements and

Evaluation (SQuaRE). Data quality model, (2008)

[20]. A. Aboulnaga and K. El Gebaly. μbe: User guided source selection and schema mediation
for internet scale data integration. In IEEE Int. Conf. on Data Engineering (ICDE), 2007.

[21]..M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann. Crowdsourc-

ing linked data quality assessment. In Proc. Int. Semantic Web Conf. (ISWC). 2013.

[22]. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A nucle-

us for a web of open data. In Proc. Int. Semantic Web Conf. (ISWC). 2007.

[23]. D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm.Schema and ontology matching with

OMA++. InProc. ACM SIGMOD Int. Conf. on Management of Data, 2005.

[24]. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 2001.

[25]. I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. ACM Trans.

On Knowledge Discovery from Data (TKDD), 2007.

[26]. C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. Int. Journal on Seman-

tic Web and Information Systems, 5(3), 2009.

[27]. C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee.Linked data on the web. In Proc. Int.

World Wide Web Conf. (WWW), 2008.

[28]. Roomba - Automatic Validation, Correction and Generation of Dataset Metadata, by Ah-

med Assaf, Aline Senart, and Raphael Troncy, published in International World Wide Web Con-

ference, (WWW), 2015.

[29]. Repairing broken RDF links in the web of data by Mohammad Pourzaferani, Mohammad

Ali Nematbakhsh , published in International Journal of Web Engineering and Technology

8(4):395-411 · February 2013

[30]. Analyzing broken links on the web of data: An experiment with DBpedia by Enayat Rajabi,

Salvador Sanchez-Alonso, Miguel –Angel Sicilia , published in April 08/2014.

	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Quality Issues in Linked Open Data
	1.3 Problem Statement
	1.4 Contributions
	1.5 Organization of Thesis

	Chapter 2 Background
	2.1 Linked Data Concepts
	2.1.1 Metadata Information
	2.1.2 Linked Data Publishing Tools
	2.1.3 Linked Data RDF editors

	2.2 Classification of Data Quality issues in terms of Semantic Web and Linked Data
	2.2.1 Quality of Data Sources
	2.2.2 Quality of the raw data
	2.2.3 Quality of the Semantic conversion
	2.2.4 Quality of the Linkage

	2.3 Related Work

	Chapter 3 Architecture of LinkWiper System
	3.1 Search Techniques
	3.1.1 Semantic text matching
	3.1.2 Domain Algorithm
	3.1.3 Page Ranking Technique
	3.1.4 Percentage of relevancy

	3.2 Crowd Sourcing Techniques

	Chapter 4 Implementation & Validation
	4.1 Implementation Details of System
	4.1.1 System Tiers
	4.1.2 Configuration
	4.1.3 Directory Structure
	4.1.4 Error Logging

	Chapter 5 Conclusion
	References

