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Abstract 

Individual auto market share is always one of the major concerns of any auto 

manufacturing company. It indicates a lot of things about the company such as profitability, 

competitiveness, short term and long term development and so on. The focus of this paper is to 

construct a quantitative model that can precisely formulate the social welfare function of the auto 

market by relating the auto market share with the utilities of the significant vehicle-purchasing 

criteria (e.g. reliability, safety, etc.) that concern vehicle buyers.  Social welfare function is defined 

as the additive form of the utility of each criterion considered, it’s a good estimation of the 

customer preferences. The assessment methods used in this research include random utility theory 

and B-spline fitted logistic regression model. G-test is applied to select the criteria that is 

significant to the vehicle market social welfare, pseudo R-squareds are used as the model 

goodness-of-fit measures and Kendall rank correlation coefficient and Matthews correlation 

coefficient are applied to validate the assessment model. A case study using the U.S. auto market 

and vehicles related data collected in years of 2013 and 2014 are conducted to illustrate the 

assessment process of the social welfare function, and the data from 2015 are used to validate the 

assessment model. 

Keywords: Market share prediction, Social welfare function, Random utility theory, B-

spline fitted logistic regression, G-test, Pseudo R-squared, Kendall rank correlation coefficient, 

Matthews correlation coefficient.  
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Chapter 1. Introduction 

The past decades have witnessed a steady decline in market share for the Big Three – GM, 

Ford, and Chrysler – which lost their dominance from 86% in 1970 to 45% in 2014 (Automotive-

News (2014)). Meanwhile, other brands have expanded lineups and marketing. During the years 

2002 – 2014 shown in Figure 1.1, GM slipped from 28.61% to 17.75%, Ford from 20.20% to 

14.95%, Chrysler from 13.09% to 12.65%m, while Toyota, Nissan, and Hyundai all gained more 

than 4%. Train and Winston (2007) criticized the non-ideal performance of American brands for 

price, fuel economy, power, etc. Klier (2009) ascribed the losses of the Big Three to the emergence 

of government regulation for vehicle safety and emissions, together with the entry of foreign auto 

part and vehicle manufacturers since mid-1950s. Similarly, Consumer Report and J.D. Power 

Report gave the highest ratings to Asian and European vehicles for low-cost, high-quality and low 

fuel consumption (Auto-News (2014)). For example, Toyota Camry is the best seller of the 

passenger cars in North America in past few years, according to our data (shown in Figure 3.1), it 

has a dominance advantage over other vehicles on maintain and repair fee and comfort rating. 

Meanwhile, its advantages on price, acceleration ability, and yearly depreciation rate are also 

pretty obvious. Besides, Camry performs very well on fuel consumption and wheel base, which 

will be proved to be a representative of safety. 

In this paper, we investigated the key attributes of well-sold vehicle brands, and assessed 

the social preference in the U.S. automotive market.  In economics, a consumer’s preference is 

characterized by an individual utility function (e.g. Akerlof and Kranton (2000); Akerlof and 
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Figure 1.1 Historical Market Share for Top 10 Brands from 2002 to 2014 

 

Kranton (2002); Johansson-Stenman and Martinsson (2006)). A social welfare function, 

aggregating each consumers’ individual choices, represents a public preference (Arrow (1950); 

Goodman and Markowitz (1952); Kaneko and Nakamura (1979); Mitchell et al. (2015)). Indeed, 

the market share is a qualitative and quantitative outcome of the social preference. On the other 

hand, a social welfare function, if correctly elicited, provides an instructive explanation of the trend 

of market share changes.  

Our research has three contributions. First, we specify the connection of the market share 

with the social preference. A statistical analysis based on the multi-attribute utility theory (MAUT) 

to assesses the effect of cost, vehicle performance, reliability, after-sales service and safety, and 

quantifies the relative importance among jointed attributes. Next, we develop a generalized 

multinomial logit regression method combining with the B-spline interpolation. As the results, this 

method generates a smooth utility curve for each key attribute, which virtualizes the level of 
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sensitivity and significance of this attribute. Besides, based on the social welfare function in two 

consecutive years, we could predict the trend of the consumer preference on each vehicle. It means 

a lot for auto manufacturers, like get a better understanding of why they and their competitors sell 

more/less than last year, how could they improve their market share with less money, what 

attributes are consumers looking for etc.  

This paper is organized as follows. First, we will review the literatures that are related to 

our research in the next chapter, including ideas, methods, and their contributions and drawbacks. 

Then, we give a description of the problem that we intended to solve and specify the attributes that 

will be considered in our research in Chapter 3. Next, we come up with a social welfare function, 

and based on random utility theory and B-spline fitted logistic regression model, together with the 

real market share to estimate the parameters raised in the B-spline model in Chapter 4. In this 

chapter, we also introduce some methods that used to assess and validate our model, like maximum 

likelihood estimation, G-test, pseudo R-squared, Kendall rank correlation coefficient and 

Matthews correlation coefficient. After that, we analyze the results of a real case based on the data 

we collected in terms of the passenger car sold in North America in 2013 and 2014 in Chapter 5. 

Based on the parameters estimated in our model, the data collected for 2015 are used to validate 

our model by applying the Kendall rank correlation coefficient and Matthews correlation 

coefficient statistics. Last, discussion of the results and contributions as well as the further 

researches and applications are introduced in the last chapter.
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Chapter 2. Literature Review 

Various studies have discussed about the changes of the market share of the “Big Three” in 

North America. Klier (2009) discussed how the Detroit automakers lost their dominance of the 

U.S. auto market. By analyzing the decline taking place in three distinct phases, the author 

concluded that the presence of foreign automakers, the price of gasoline, and the emergence of 

light trucks played major roles in this transition. Train and Winston (2007) found that the U.S. 

industry’s loss in share during the past decade could be explained almost entirely by relative 

changes in the most basic attributes of new vehicles, namely, price, size, power, operating cost, 

transmission type, reliability, and body type. Actually, all these changes influenced the consumers’ 

purchasing behaviors, which directly decided the market share. In addition, Aghdaie and Yousefi 

(2011) argued that the most important decision criteria for vehicle purchasers, include the technical 

performance, economic aspect, after sale services as well as its safety.

On the other hand, Agrawal and Schorling (1997) stated that in the traditional econometric 

modeling area, one technique which has emerged quite robust is the multinomial logit model 

(MNL) for the multi-choice problems. The MNL model has been shown to be more appropriate 

for modeling consumer’s probability of choice as a mix of continuous and discrete predictor 

variables compared to its rivals such as log liner, multiple regression, multiple discriminant models 

(Green et al. (1977); Gensch and Recker (1979); Malhotra (1984); Maddala (1986)). One widely 

recognized advantage of MNL is its ability to provide closed form solution for the choice 

probabilities in a competitive setting where marketing activities of all players are taken into 
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consideration. The choice probability can be aggregated to yield estimates of brand shares for a 

particular marketing mix environment. The MNL model has been applied to many other researches 

areas related to the market share (Neagu and Hoerl (2005); Kleijnen et al. (2004); Barone et al. 

(2007); Sallis and Deo Sharma (2009); and Kirkos et al. (2010)). 

One research that need to be specifically stressed here is the research on vehicle choice 

behavior and the declining market share of U.S. automakers conducted by Train and Winston 

(2007). In their research, they developed a consumer-level model of vehicle choice to shed light 

on the erosion of the US automobile manufacturers' market share during the past decades. The 

MNL was used to estimate the probability of an individual consumer to buy a particular vehicle. 

However, including this research, all the mentioned and other traditional researches using MNLs 

just modeled a linear combination of each predictor variable, which means the assessment is 

appropriate only if the contribution of the predictor variable is linear within the relevant range 

(Winkler and Murphy (1970)). Unfortunately, this is often not the case. Instead, the contribution 

of each predictor variable is often regarded as nonlinear (Berry (1994); Berry et al. (1995), Walker 

and Ben-Akiva (2002)), where linear contribution is only a special case of the nonlinear.  

In addition, all the research efforts so far were based only on the individual customer 

behavior. In our research, we are trying to study the customer behavior as a whole in the 

perspective of social choice instead of individual choice. For social choice, the model given by Lu 

and Boutilier (2011) aimed computing the outcomes of different commonly studied voting rules. 

The model proposed by Soufiani et al. (2013) aimed at computing the MAP (Maximum a-

posteriori) of GRUMs (general random utility model) that was developed from principles in 

Bayesian experimental design. In comparison, the model we proposed aims at computing the MLE 

(Maximum Likelihood Estimator) to obtain the social preference curve for each attribute. 



 

6 

 

 A SWF is defined as a measure of group preferences (Arrow (1950); Goodman and 

Markowitz (1952); Kaneko and Nakamura (1979); Mitchell et al. (2015)). It holds the same 

property as utility: the higher the social welfare is, the more likely that the consumer will choose 

the corresponding products. Sanayei et al. (2008) provided an integrated approach of weighted 

utility additive method for rating and choosing the best supplier. Thus, we can define SWF as an 

additive form of all the utility function for each attribute. 

In terms of how to simulate the utility function for each variable, Karande and Chakraborty 

(2015) provided a weighted utility additive method, an extension of utility additive approach, that 

was based on ordinal regression and consisted of a piecewise linear additive decision model from 

a preference structure using linear programming. However, this piecewise linear fitted utility 

function is not differentiable, which is a base requirement for social welfare function, especially 

when we want to look into the marginal social welfare in the future. A second order differentiable 

curve fitting method was proposed by Park and Lee (2007) by using a new approach of B-spline 

curve fitting to a set of ordered points. 

Based on pros and cons of the research in the above reviewed literature, we intended to 

construct a general social welfare function for passenger cars, which is an additive form of the B-

spline fitted utility function of each criterion we selected. In order to estimate the parameters 

defined in our B-spline fitted model, in our study we followed what Conitzer and Sandholm (2012), 

Procaccia et al. (2012), Roos et al. (2011), Xia and Conitzer (2011), Xia et al. (2010), and Conitzer 

et al. (2009) have done in their researches which was applying the Maximum Likelihood 

Estimation (MLE). In addition, the likelihood ratio test is applied for testing the significance of 

the overall model with selected criteria. (Hosmer Jr et al. (2013); Fienberg (2007)), which is known 
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as G-test. Via G-test, only the criteria have significant influence on the likelihood ratio will be 

selected into the final model. 

In traditional linear regression model, the coefficient of determination, 𝑅2, is a statistical 

measure of how well the regression line approximates the real data points (Rao (2009)).  However, 

for a generalized regression model besides linear model, it is not possible to compute a single 𝑅2 

statistic that functions as the regular 𝑅2 in the linear model. Usually, pseudo R-squareds are used 

to measure the coefficient of determination. Among all the pseudo R-squareds, Cox and Snell’s 

𝑅2  (Cox and Snell (1989)), Nagelkerke’s 𝑅2  (Nagelkerke (1991)), and McFadden’s 𝑅2 

(McFadden (1973)) are the most commonly used as measures of coefficient of determination. In 

our research, all these three pseudo R-squareds are discussed and applied to test the significance 

of our model.  

In terms of the trend of the market share changes, it is a summarize of the consumer 

preferences regarding to different attributes. According to our model, social welfare is a measure 

of consumer preferences, we can use the social welfare of two consecutive years to predict the 

market share change direction. In traditional pattern recognition with binary classification, 

precision and recall are used to evaluate the measurement. Recall (called Sensitivity in Psychology) 

reflects how many of the relevant cases your classification rule picks up, while Precision (called 

Confidence in Data Mining) donates the proportion of predicted positive cases that are correctly 

real positive (Matthews (1975)).  However, both of them focus only on the positive predictions 

and neither of them captures any information about the negative cases.  Although there is no perfect 

way of describing the confusion matrix by a single number, the Matthews correlation coefficient 

(MCC) is generally regarded as being one of the best such measures (Powers (2011)). Therefore, 

Matthews correlation coefficient is applied as another measurement of our model validations. 
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Considering the positive relationship between market share and social welfare, as long as we 

getting the social welfare and estimated market share (EMS), we could get the ranks for both 

market share changed and EMS changed for each vehicle. The Kendall rank correlation coefficient, 

known as Kendall’s tau, is first introduced by Kendall (1948) to evaluate the degree of similarity 

between two sets of ranks given the same set of objective. It is used to measure the ordinal 

association between two observed quantities. Intuitively, the Kendall’s tau will high when the 

observations have similar rank between two variables, and low when the observations have a 

dissimilar rank between two variables. Thus, we could use Kendall’s tau to validate the goodness 

of our model regarding to the assessment of social welfare.
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Chapter 3. Problem Description 

The automobile market share reflects the social preference of vehicle choices, which 

represents customer attitudes toward capital expenditure, vehicle performance, safety 

consideration, reliability reputation, and after-sales service. In economics, the social preference is 

characterized by a social welfare function, which ranks social states as less desirable, more 

desirable, or indifferent for every possible pair of social states. In our research. our primary 

motivation is to formulate a social welfare function that can rank the consumers’ preference for all 

the passenger vehicles in the U.S. auto market. Furthermore, as long as the social welfare function 

is obtained, the simulation of the market share change tendency could be fulfilled by analyzing the 

consumers’ preference in two consecutive years. 

3.1 Attributes Definition 

In order to construct one precise and appropriate model, the attributes selection is of great 

importance. The attributes considered in the model should have certain significant influence on 

the decision of consumer buying behavior, like capital expenditure, vehicle performance, safety 

consideration and so on. As our model is based on the social level instead of individual consumer 

level, all the attributes of individual consumer are not considered in our research. Taking the 

previous research results (Aghdaie and Yousefi (2011); Vrkljan and Anaby (2011); Train and 

Winston (2007)) and data availability into consideration, we defined 11 attributes that covering 

cost, performance, reliability, consumer service level and safety, which will be discussed in the 

following paragraphs
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3.1.1 Cost 

Sale price, estimated insurance fees in five years, fuel economy (MPG: miles travelled per 

gallon), yearly depreciation rate (DR), and estimated maintain and repair fees in five years are all 

have the property of cost. Sales price is very intuitively and the primary consideration of most 

consumers because a large part of their cost is due to how much they paying for purchasing. 

Insurance fees is the estimated amount a consumer paying for insurance in the first 5 years after 

purchasing. Fuel economy not only have the property of cost but also can be viewed as a measure 

of performance. At some occasions, it is refereed as a measure of how much the consumer would 

pay to travel a specific distance when talking about cost. However, on the other hand, it is also a 

measure of the performance regarding to the relationship between the distance traveled and the 

amount of fuel consumed by the vehicle to some degree. Assumed that a vehicle is still under good 

condition after 10 years of using with a mileage of 110 thousand miles, DR is defined as yearly 

depreciation rate based on the sales price and trade-in price. DR has the property of cost, 

performance and reliability. Usually, when talking about cost and performance, it indicates the 

potential remaining value of a vehicle in the future and how the vehicle is performed, the lower 

the depreciation rate is, the higher the resale value and better performance will be. Actually, it can 

also be considered as one of the indications of the reliability reputation of a vehicle to some degree, 

only if your vehicle brand and model is reliable reputed, the depreciation rate of your vehicle could 

remain a low value. That is why the second hand vehicles from Asian and Europe could be sold at 

a better price than American vehicles when the vehicle condition is the same. Maintain and repair 

fees is a measure of the anticipated cost on maintain and repair in the first five years after 

purchasing. It belongs to cost, reliability and consumer service level at the same time, because if 

the manufacturer thought their products are reliable enough, they would like to offer more warranty 
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for their products after selling, thus a better experience of consumer service and less expense on 

maintain and repair are very likely to be happened. 

3.1.2 Performance 

Besides fuel economy and DR, acceleration ability, comfort rating and storage are part of 

performance as well. Acceleration ability is measured by the time a vehicle consumed from 0 to 

60 miles, it represents the horsepower of a vehicle, an attribute which almost all consumer will 

consider about. Comfort rating is a 5-scale rate of the driver and passenger experience on comfort, 

it is a measure of the vehicle design regarding to space and materials. Storage is the space of the 

trunk in cubic feet, it is related to the size of the vehicle sometimes, it measures the capability of 

carrying luggage of a vehicle. 

3.1.3 Reliability 

Reliability only have two components in our research, DR and maintain and repair fees. Both 

of them could be at a relatively low level if the corresponding vehicle is reliable enough. 

3.1.4 Consumer Service Level 

 Besides maintain and repair fees, dealership is another measure of consumer service level. 

Dealership is represented by the number of dealers in North America, it directly influences the 

consumer satisfaction and consumer experience. When you have more dealers, it means your 

consumers are much easier and more convenient to get serviced, furthermore more time and money 

would like to be saved, thus a better service level is achieved. 

3.1.5 Safety 

Wheelbase and weight are measuring the safety of a vehicle. In terms of wheelbase, 

Subramanian (2006), a staff from National Highway Traffic Safety Administration (NHTSA), 
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examined the occupant fatality rates by vehicle type and size and found that in all fatal crashes, 

when broken down by size, compact scars have the highest occupant fatality rate while the “large 

vans” category has the lowest occupant fatality rate. The standard he used to classify the size of 

the passenger cars is wheelbase. On the other hand, based on the physics of car crashes results, 

Insurance Institute for Highway Safety (IIHS) argued that most of the very small cars generally 

can't protect people in crashes as how bigger and heavier models do (IIHS (2009)). Thus, in our 

research, wheelbase and weight are used as indications of the safety of a passenger car. 

All these attributes and categories could be summarized in a table as shown in Table 3.1. As 

long as the attributes are selected, constructing an appropriate model that could connect these 

attributes and consumer purchasing behavior is a desiderate task at present. Train and Winston 

(2007) in their research used the logit function to estimate the probability of an individual 

consumer to buy a particular vehicle. Together with the social welfare function developed for the 

U.S. auto market, in this paper NML is used to estimate the probability of the whole society buying 

a particular vehicle. This estimated probability is defined as the estimated market share (EMS) of 

that particular vehicle in this paper. With the collected real market share data for each vehicle 

brand and model, we then applied maximum likelihood to estimate the parameters in the social 

welfare function we defined. 

3.2 Data Collection 

Based on our extensive literature review, we identify the 11 attributes that were considered 

to be significant factors for vehicle purchasing in other researches which has been discussed above. 

Along with the years of market share data (2002 - 2014), we collected the 12 attributes relevant 

data for 2013, 2014 and 2015 via different kinds of sources. These data are mainly collected from 

following websites, www.consumerreports.org, www.kbb.com, www.goodcarbadcar.net,  

http://www.consumerreports.org/
http://www.kbb.com/
http://www.goodcarbadcar.net/
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Table 3.1 Summary of Attributes Properties 

Attributes Cost Performance Reliability 
Consumer Service 

Level 
Safety 

Price Y     

Insurance Fees Y     

Fuel Economy Y Y    

Yearly Depreciation 

Rate 
Y Y Y   

Maintain & Repair 

Fees 
Y  Y Y  

Acceleration Ability  Y    

Comfort Rating  Y    

Storage  Y    

Dealership    Y  

Wheelbase     Y 

Weight     Y 

 

www.nada.com, www.fueleconomy.gov and www.edmunds.com. 

3.3 Attributes Selection and Analysis 

Previous research and experience showed that a lot of criteria could influence vehicle sales 

and further the market shares in the auto market. However, in our model, just part of them will be 

selected. In this research, we first come up with a generalized multinomial logistic regression 

model to assess the social welfare function of each vehicle by utilizing the knowledge of B-spline, 

discrete choice model and maximum likelihood, based on this model, G-test is applied as the model 

of goodness-of-fit to select the significant attributes. The criteria proved to be significantly 

important by the G-test are wheelbase, dealership, acceleration ability, comfort rating, fuel 

economy, sale price, yearly depreciation rate, and maintenance and repair fees. 

It is obvious that sales price, fuel economy, acceleration ability, comfort rating, and number 

of dealerships are the core roles in influencing the cost, performance and consumer service level, 

as what has been mentioned in previous researches (Aghdaie and Yousefi (2011); Vrkljan and 

Anaby (2011); Train and Winston (2007)). The rest three criteria, wheelbase, DR and maintenance 
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and repair fees are also of the great importance in influencing consumers' purchasing behaviors, 

although they have seldom been mentioned in previous research. Wheelbase is the representative 

of safety, DR and maintain and repair fees have the property of cost and reliability at the same 

time. Besides, DR is also a measure of performance. 

Figure 3.1 shows how the proportions are distributed with these important criteria that are 

incorporated in our model, and how the three sample vehicles (Ford Fusion, Chevrolet Malibu, 

and Toyota Camry) are located in the criteria span together with the attribute mean level in 2013 

and 2014. With regards to the detailed attributes proportion distribution, the detailed analysis is 

discussed below: 

Figure 3.1 (a) indicates that the prices of most vehicles are located between 18,000 and 

40,000 dollars and all the three sample vehicles are located in this range. However, around 5% of 

the consumers show higher interest for vehicles whose price range from 40,000 dollars to 60,000 

dollars than those whose price lower than 40,000 dollars. Actually, most of the vehicles whose 

price located in this range are luxury passenger cars, like Audi A6, Lexus GS, Lincoln MKS, 

Cadillac CTS and so on. Thus the bulge between 40,000 and 60,000 dollars could be explained by 

the fact that price is not the primary consideration for consumers who are intended to buy a luxury 

car with price less than 60,000 dollars. 

Wheelbase as a measure of safety, Figure 3.1 (b) shows that the proportion distribution of 

wheelbase is centralized between 100 inches and 115 inches. Over 95% of the vehicles sold 

including the three sample cars are compact or larger cars (wheelbase greater than 100 inches), 

there are only less than 5% of the vehicles sold are subcompact cars, which has been proved to be 

the riskiest group by Subramanian (2006) when broken down by size. This phenomenon also  
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(d) Acceleration  

 

(e) Comfort  

 

(f) Dealership  
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(g) Yearly Depreciation Rate 

 

(h) Maintain and Repair Fee 

 

Figure 3.1 Proportion Distribution for 2013 and 2014 and Samples Comparison 

 

implies that consumers are more cautious when choosing subcompact vehicles comparing to 
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engineers would pay more attention to the fuel consumption part and higher MPG vehicles are 

very likely to be designed. However, the increasing for those over 34 is mainly attributed by the 

mature of hybrid technology, because most of the vehicles who have such a high MPG are Hybrid 

vehicles. 

The proportion distribution induced by acceleration time is shown in Figure 3.1 (d, compared 

to 2013, more vehicles could accelerate to 60 miles between 9 and 10 seconds and less vehicles 

between 6 and 9 seconds in 2014. Actually, the changes of acceleration ability and MPG are related. 

This is because higher MPG usually are based on the sacrificing of horsepower and acceleration 

time, this explains why acceleration time increased when more vehicles sold due to better 

performance in fuel economy.  

Figure 3.1 (e) shows that there were more vehicles located at higher comfort rating (i.e. 4 

and 5) and a lot of vehicles located at 4 in 2013 increased its rating to 5 in 2014. This indicates 

that consumers and manufacturers are paying more attention to comfort experiences.  

In terms of number of dealerships, Figure 3.1 (f) shows that most vehicle sold have around 

1000 dealerships but some vehicle sold have dealerships around 3000. The large difference is due 

to differences of the nationality of the vehicle brand, domestic brands with no doubt have a 

relatively larger number of dealers, like Ford, Chevrolet. However, for foreign brands, like Toyota, 

Honda, they usually have a dealership around 1000.  

Figure 3.1 (g) shows how that there are slightly more vehicles with DR below 20% in 2013. 

This could be explained by the improvement of the average income of potential buyers in 2014. 

When the economy is improved, consumers will prefer a new vehicle to a used one. Less demand 

for used vehicles will further harm the resale price of used vehicles, which will directly increase 

the DR of a vehicle. An interesting phenomenon is that the vehicles with DR less than 0.15 are 
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mainly from Japan, this is in accordance with our common sense that Japanese cars are more 

reliable and second-hand vehicles could be sold at a better price. 

As shown in Figure 3.1 (h), over 85% of the vehicles sold including the three sample vehicles 

have a maintain and repair fees less than 6,000 dollars. 

Among the three samples, Toyota Camry is the best seller of the passenger cars in 2013 and 

2014. From the perspective of cost, Camry has a lower price than average, its maintenance and 

repair fee is even the lowest of all. In terms of performance, its acceleration ability and comfort 

rating are much better than the average, its fuel consumption is also around the mean level when 

a lot of hybrid vehicles are considered. As to safety, wheelbase is referred as an important criterion 

to represent safety factors, Camry is still performing better than average level. With regard to 

reliability, Camry holds a pretty low yearly depreciation rate which is much lower than most of 

the passenger vehicles. As Toyota is a Japanese brand, it has a relatively fewer dealer in America, 

but it still very close to the average numbers. All in all, though Toyota Camry somehow has some 

disadvantages in consumer service part, it performs very well in cost, performance, safety and 

reliability perspectives, it inevitably turned out that Toyota Camry is the best seller in both 2013 

and 2014. 

On the other hand, as for Fort Fusion and Chevrolet Malibu, another two vehicles we selected 

as samples to demonstrate our model, based on their performance in these criteria, it is not hard to 

infer that which is the best seller and which is the worst seller of the three. For cost, both of them 

are higher than Camry, Malibu performs better than Fusion in price but worse in maintain and 

repair fee. In terms of performance, Camry still performs the best of three, Malibu is better than 

Fusion in acceleration ability however Fusion does a better job in comfort rating and fuel 

consumption part. In safety part, Fusion is the best of the three and Malibu performs the worst. In 
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the perspective of yearly depreciation rate, Fusion does better than Malibu but not as well as Camry. 

Of course, both Fusion and Malibu are better in dealer numbers because they domestic brand, but 

Fusion is even better than Malibu. According to these comparison, we could come the conclusion 

that Fusion would definitely sell better than Malibu but not as well as Camry in 2013 and 2014, 

and the reality turned out to be the same.
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Chapter 4. Methodology 

4.1 Glossary 

𝑰 = {1,2, … , 𝐼}   the index vector of attributes 

𝑴 = {1,2, … , 𝑀}   the index vector of year 

𝑱𝒎 = {1𝑚, 2𝑚 … , 𝐽𝑚}   the index vector of alternative vehicles in year 𝑚 

𝑥𝑖
𝑗,𝑚

   the 𝑖𝑡ℎ attribute of the 𝑗𝑡ℎ vehicle in year 𝑚  

𝑿𝒋,𝒎 = {𝑥1
𝑗,𝑚

, 𝑥2
𝑗,𝑚

, … , 𝑥𝐼
𝑗,𝑚

}   the vector of all the attributes of the 𝑗𝑡ℎ vehicle in year 𝑚 

𝑢𝑖(𝑥𝑖
𝑗,𝑚

)   the utility of the 𝑖𝑡ℎ attribute of the 𝑗𝑡ℎ vehicle in year 𝑚 

𝑈𝑗,𝑚(𝑿𝒋,𝒎)   the adaptive utility of the 𝑗𝑡ℎ vehicle in year 𝑚   

𝑆𝑗,𝑚 (𝑿𝒋,𝒎)   the social welfare function of the 𝑗𝑡ℎ vehicle in year 𝑚 

𝑎𝑖   the scale parameter of the 𝑖𝑡ℎ attribute 

𝛽𝑖   the weight of the 𝑖𝑡ℎ attribute 

𝑆𝑗,𝑚   the social welfare of the 𝑗𝑡ℎ vehicle in year 𝑚   

𝜖𝑗,𝑚   unobserved component of 𝑆𝑗,𝑚 

𝑈𝑟𝑒𝑠𝑡,𝑚   the estimation of the social welfare for all the rest vehicles in year 𝑚 that are not 

included in the 𝐽𝑚 vehicle

𝑆𝑟𝑒𝑠𝑡,𝑚   the social welfare of the rest vehicles 

𝜖𝑟𝑒𝑠𝑡,𝑚  unobserved component of 𝑆𝑟𝑒𝑠𝑡,𝑚  

𝑃𝑙,𝑚   the probability of choosing vehicle 𝑙 in year 𝑚 
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𝑪𝒊 = {𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑛}   the index vector of the control points in terms of the 𝑖𝑡ℎ attribute 

𝑅𝑗,𝑚   the market share of the 𝑗𝑡ℎ vehicle in year 𝑚 

𝑅𝑟𝑒𝑠𝑡,𝑚   the market share of the rest vehicles in year 𝑚 

4.2 Introduction 

This section introduces all the methodologies applied in our model and it is organized as 

follows. We firstly state the definition of social welfare function (SWF) we adopt in this study. 

Then we introduce how B-spline is used to construct the utility function of each attribute and to 

define the parameters in the utility functions. After that we define the relationship between SWF 

and real market share. In addition, this section also provides the solution to work out the parameters 

defined in B-spline. Last we introduce the method used to test the goodness of fit for the SWF 

model and provide two methods to validate the SWF model. 

4.3 Social Welfare Function (SWF) 

Social welfare is defined as a measure of group preferences (Arrow (1950); Goodman and 

Markowitz (1952); Kaneko and Nakamura (1979); Mitchell et al. (2015)). A SWF can be 

constructed to measure the preferences of consumers in North America market for different types 

of vehicles. In addition, an integrated approach of weighted utility additive method was applied to 

rate and choose the best supplier by Sanayei et al. (2008). Thus, we can define SWF as an additive 

form of all the social welfare induced by each attribute. 

In year 𝑚, 𝐽𝑚 is the number of vehicles to be considered, the SWF of the 𝑗𝑡ℎ vehicle in year 

𝑚 can be defined as 

𝑆𝑗,𝑚 (𝑿𝒋,𝒎) = 𝑈𝑗,𝑚 (𝑿𝒋,𝒎) + 𝜖𝑗,𝑚                                         (1) 
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where 𝜖𝑗,𝑚, a random variable, is an error terms, which includes the impact of all the unobserved 

attributes on the social welfare of 𝑆𝑗,𝑚. As 𝑈𝑗,𝑚 is the additive utility of each attributes, thus 

𝑆𝑗,𝑚 (𝑿𝒋,𝒎) = ∑ 𝑎𝑖 𝛽𝑖 𝑢𝑖  (𝑥𝑖
𝑗,𝑚

)𝑖∈𝑰 + 𝜖𝑗,𝑚                                 (2) 

where 𝑎𝑖 > 1, 𝛽𝑖 ∈ [0,1] , ∑ 𝛽𝑖𝑖∈𝐼 = 1 , and 𝑢𝑖 (𝑥𝑖
𝑗,𝑚

) ∈ [0,1] . As both 𝑎𝑖  and 𝛽𝑖  are used to 

differentiate the importance of each attribute, in order to simplify our model, we assume that all 

the 𝑎𝑖 are equal to each other. Thus, (1) can be written as 

𝑆𝑗,𝑚 (𝑿𝒋,𝒎) = 𝑎 ∑ 𝛽𝑖 𝑢𝑖  (𝑥𝑖
𝑗,𝑚

)𝑖∈𝑰 + 𝜖𝑗,𝑚                                 (3) 

Due to the availability of data collection, we cannot consider all the passenger vehicles in 

each year. We use 𝑆𝑟𝑒𝑠𝑡,𝑚 = 𝑈𝑟𝑒𝑠𝑡,𝑚 + 𝜖𝑟𝑒𝑠𝑡,𝑚 to represent the social welfare of the rest vehicles 

that do not included in the 𝐽𝑚 vehicles. 

Taking all the vehicles in year 𝑚 into consideration, vehicle 𝑙 will be chosen if and only if 

∀𝑗 ≠ 𝑙, 𝑆𝑙,𝑚 > 𝑆𝑗,𝑚  and 𝑆𝑙,𝑚 > 𝑆𝑟𝑒𝑠𝑡,𝑚 . The general expression of the probability of choosing 

vehicle 𝑙 in year 𝑚 is then 

𝑃𝑙,𝑚 = 𝑃(𝑆𝑙,𝑚 > 𝑆1,𝑚, … , 𝑆𝑙,𝑚 > 𝑆𝐽,𝑚, 𝑆𝑙,𝑚 > 𝑆𝑟𝑒𝑠𝑡,𝑚)                    (4) 

To simplify matters more, researchers often use the following assumption for the distribution 

of the error terms: error terms are assumed to be independently and identically distributed (IID) 

following the double exponential (Gumbel Type II extreme value) distribution (DDWiki (2010)). 

Based on the theory of MNL, the logit probability of purchasing vehicle 𝑙 in year 𝑚 is given by 

𝑃𝑙,𝑚 =
𝑒𝑈𝑙,𝑚

∑ 𝑒𝑈𝑗,𝑚
𝑗 +𝑒𝑈𝑟𝑒𝑠𝑡,𝑚 =

𝑒
𝑎 ∑ 𝛽𝑖 𝑢𝑖 (𝑥𝑖

𝑙,𝑚
)𝑖∈𝐼

∑ 𝑒
𝑎 ∑ 𝛽𝑖 𝑢𝑖 (𝑥

𝑖
𝑗,𝑚

)𝑖∈𝐼
𝑗 +𝑒𝑈𝑟𝑒𝑠𝑡,𝑚

                          (5) 

According to (5), the ratio of the probability of choosing any two vehicles is 

𝑅𝑎𝑡𝑖𝑜 =
𝑃𝑣𝑒ℎ𝑖𝑐𝑙𝑒1,𝑚

𝑃𝑣𝑒ℎ𝑖𝑐𝑒𝑙2,𝑚 =
𝑒

𝑎 ∑ 𝛽𝑖 𝑢𝑖 (𝑥𝑣𝑒ℎ𝑖𝑐𝑙𝑒1,𝑚)𝑖∈𝐼

𝑒𝑎 ∑ 𝛽𝑖 𝑢𝑖 (𝑥𝑣𝑒ℎ𝑖𝑐𝑙𝑒2,𝑚)𝑖∈𝐼
                                   (6) 
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and the range of the ratio is (𝑒−𝑎, 𝑒𝑎). If we do not introduce the scale parameter 𝑎 in (3), in other 

words, 𝑎 = 1, the range of the ratio will be (𝑒−1, 𝑒1) = (0.37,2.72) . In reality, the range of the 

ratio is much larger than (0.37,2.72), theoretically, the range of the ration should be (−∞, +∞). 

Thus, it is reasonable and necessary to include a scale parameter 𝑎 > 1 in our model. 

4.4 B-spline 

Based on (3), a better estimation of 𝑎, 𝛽𝑖 and 𝑢𝑖(𝑥𝑖
𝑗,𝑚

)  are critical if a more accurate SWF 

is desired. In order to give better estimations of scale parameter, individual social welfare and its 

weight of each attribute, an adequate model is required to approximate the real individual social 

welfare. However, in terms of how to simulate the individual social welfare for each variable, it is 

not an easy job. The traditional simple linear regression model is not enough anymore. Karande 

and Chakraborty (2015) provided a weighted utility additive method, an extension of utility 

additive approach, based on ordinal regression and it consists of building a piecewise linear 

additive decision model from a preference structure using linear programming. 

However, the piecewise linear fitted function is not differentiable. It misses some properties 

of the individual social welfare, like the marginal social welfare for each attribute. A second order 

differentiable curve fitting method was proposed by Park and Lee (2007) by using a new approach 

of B-spline curve fitting to a set of ordered points. Taking the non-decreasing (or non-increasing) 

and differentiable properties of social welfare into consideration, a B-spline curve fitting model 

could be a better estimator. 

Let's take 𝑢𝑖(𝑥𝑖
𝑗,𝑚

), the utility function of the 𝑖𝑡ℎ attribute of the 𝑗𝑡ℎ vehicle in year 𝑚, as an 

example to illustrate this model. Suppose we have 𝑛  control points for the 𝑖𝑡ℎ  attribute, 𝑪𝒊 =

{𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑛}. Considering the property of individual social welfare, the set of control points 

must be non-decreasing or non-increasing. For some attributes, like MPG, comfort rating, 
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wheelbase and number of dealerships, the bigger the measurement is, the higher the individual 

social welfare is. The control points for these attributes should be non-decreasing. On the other 

hand, other attributes like price, acceleration time, depreciation rate and maintain and repair fee, 

the control points should be non-increasing. In addition, considering the normalization, the 

maximum control point for each attribute, 𝑐𝑖,𝑚𝑎𝑥 = 𝑀𝑎𝑥{𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑛}, must be equal to 1. 

With a degree of 𝑑 , suppose we have 𝑛 + 𝑑 + 1  non-decreasing knots, 𝑿𝒊 =

{𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑛+𝑑+1} , for the 𝑖𝑡ℎ attribute, base on the theory of B-spline, the utility of 𝑥𝑖
𝑗,𝑚

 is 

given by 

𝑢𝑖(𝑥𝑖
𝑗,𝑚

) = ∑ 𝑐𝑖,𝑘𝐵𝑘,𝑑(𝑥𝑖
𝑗,𝑚

)𝑛
𝑘=1                                         (7) 

where 𝐵𝑘,𝑑(𝑥𝑖
𝑗,𝑚

) is given by the recurrence relation 

𝐵𝑘,𝑑(𝑥𝑖
𝑗,𝑚

) =
𝑥𝑖

𝑗,𝑚
−𝑥𝑖,𝑘

𝑥𝑖,𝑘+𝑑−𝑥𝑖,𝑘
𝐵𝑘,𝑑−1(𝑥𝑖

𝑗,𝑚
) +

𝑥𝑖,𝑘+1+𝑑−𝑥𝑖
𝑗,𝑚

𝑥𝑖,𝑘+1+𝑑−𝑥𝑖,𝑘+1
𝐵𝑘+1,𝑑−1(𝑥𝑖

𝑗,𝑚
)             (8) 

and the function 𝐵𝑘,0(𝑥𝑖
𝑗,𝑚

)  is given by 

𝐵𝑘,0(𝑥𝑖
𝑗,𝑚

) = {
1, 𝑥𝑖,𝑘 ≤ 𝑥𝑖

𝑗,𝑚
≤ 𝑥𝑖,𝑘+1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                       (9) 

According to (8) and (9), once we know the 𝑛 + 𝑑 + 1 non-decreasing knots 𝑿𝒊, the only 

variable in (7) is 𝑐𝑖,𝑘. That is to say, we could estimate the SWF of year 𝑚, as long as we find the 

control points 𝑪𝒊  and the corresponding weight parameters 𝛽𝑖 for all 𝑰. Thus, (5) can be simplified 

as 

𝑃𝑙,𝑚 =
𝑒

∑ ∑ 𝛼𝑖,𝑘𝐵𝑘,𝑑 (𝑥
𝑖
𝑙,𝑚

)𝑛
𝑘=1𝑖∈𝐼

∑ 𝑒
∑ ∑ 𝛼𝑖,𝑘𝐵𝑘,𝑑 (𝑥

𝑖
𝑗,𝑚

)𝑛
𝑘=1𝑖∈𝐼

𝑗 +𝑒𝑈𝑟𝑒𝑠𝑡,𝑚
                                      (10) 

where 𝛼𝑖,𝑘 = 𝑎𝛽𝑖𝑐𝑖,𝑘 for all 𝑰. 

Of course, the probability of purchasing any vehicle that is not included in the   vehicles in 

year 𝑚 can be calculated by 
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𝑃𝑟𝑒𝑠𝑡,𝑚 =
𝑒𝑈𝑟𝑒𝑠𝑡,𝑚

∑ 𝑒
∑ ∑ 𝛼𝑖,𝑘𝐵𝑘,𝑑 (𝑥

𝑖
𝑗,𝑚

)𝑛
𝑘=1𝑖∈𝐼

𝑗 +𝑒𝑈𝑟𝑒𝑠𝑡,𝑚
                                   (11) 

4.5 Model Assessment 

4.5.1 Parameters Estimation  

To estimate model parameters ( 𝛼𝑖,𝑘  and 𝑈𝑟𝑒𝑠𝑡,𝑚) that would help the predictions of the 

consumers preference that best match observed data (real market share), we collected data of  real 

market share that is donated by 𝑅𝑗,𝑚 for all 𝑱𝒎 and all 𝑴 and 𝑅𝑟𝑒𝑠𝑡,𝑚, the total market share of the 

rest vehicles in year 𝑚. Based on the maximum log likelihood theory (Hosmer Jr et al. (2013)), 

the parameters, 𝛼𝑖,𝑘 and 𝑈𝑟𝑒𝑠𝑡,𝑚, are therefore given by 

�̂�𝑖,𝑘 , �̂�𝑟𝑒𝑠𝑡,𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥(∑ 𝑅𝑗,𝑚𝑙𝑜𝑔𝑃𝑗,𝑚
𝑗 + 𝑅𝑟𝑒𝑠𝑡,𝑚𝑙𝑜𝑔𝑃𝑟𝑒𝑠𝑡,𝑚)             (12) 

According to �̂�𝑖,𝑘 obtained from (12) , the social welfare for each vehicle in each year could 

be estimated by (10). 

4.5.2 G-Test  

Likelihood ratio test was used by Hosmer Jr et al. (2013) and Fienberg (2007) to test the 

overall significance of the parameters for the independent variables in their models. The test was 

based on the statistic "G", and the null hypothesis of their test was that the coefficients for the 

covariates in the model were equal to zero. The G statistic is given by 

𝐺 = −2ln [
�̂�(𝑀−𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

�̂�(𝑀𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
]                                               (13) 

where�̂�(𝑀−𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) stands for estimated likelihood without the variable and �̂�(𝑀𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) stands 

for estimated likelihood with the variable. The distribution of “G” is a chi-square with 𝑞 degree of 

freedom, where 𝑞 is the number of variables in the logistic regression equation. 
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In our model, for each attribute, there are more than one variables related to it. Actually, the 

number of variables of each attribute is equal to the number of control points related to the attribute. 

Thus, we cannot directly eliminate one variable from the model each time. Instead, we should 

eliminate all the variables related to the attribute that we are interested in. Therefore, the test 

statistic "G" is modified to 

𝐺 = −2ln [
�̂�(𝑀−𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)

�̂�(𝑀𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)
]                                                (14) 

where �̂�(𝑀−𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) stands for estimated likelihood without the attribute related coefficients and 

�̂�(𝑀𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) stands for estimated likelihood with the attribute related coefficients. Here, the null 

hypothesis is that all the coefficients for the attribute in the model are equal to zero. If the test 

statistic “G” is significant, it indicates that the attribute is helpful in measuring the SWF. Otherwise, 

we can ignore this attribute without influencing our model accuracy too much. 

4.5.3 Pseudo R-squareds 

Cox and Snell’s 𝑅2 is a comparison of  the log likelihood for the full model with the log 

likelihood for a baseline model (Cox and Snell (1989)). The ratio of the likelihood reflects the 

improvement of the full model over the baseline model. The Cox and Snell’s 𝑅2  is given by 

formula, 

𝑅2 = 1 − [
�̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

�̂�(𝑀𝐹𝑢𝑙𝑙)
]

2/𝑁

                                              (15) 

where �̂�(𝑀𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) is the estimated likelihood for the model without predictors, �̂�(𝑀𝐹𝑢𝑙𝑙) is the 

estimated likelihood for the model with predictors and N is the number of observations in the 

model. However, with categorical outcomes, it has a theoretical maximum value of less than 1, 

even for a "perfect" model with 𝑅2 = 1 − �̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
2/𝑁

.  
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Nagelkerke's 𝑅2 is an adjusted version of the Cox & Snell 𝑅2 that adjusts the scale of the 

statistic to cover the full range from 0 to 1 (Nagelkerke (1991)). It is given by the formula, 

𝑅2 =
1−[

�̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)

�̂�(𝑀𝐹𝑢𝑙𝑙)
]

2/𝑁

1−�̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
2/𝑁                                                 (16) 

McFadden's 𝑅2 is another version, the likelihood of the intercept model is treated as a total 

sum of squares and the likelihood of the full model is treated as the sum of squared errors 

(McFadden (1973)). Thus, formula for McFadden's 𝑅2 is very similar to traditional 𝑅2, 

𝑅2 = 1 −
ln �̂�(𝑀𝐹𝑢𝑙𝑙)

ln �̂�(𝑀𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡)
                                              (17) 

For both Cox and Snell’s 𝑅2  and Nagelkerke's 𝑅2 , a value close to 1 is expected to 

demonstrate the strength of association. However, for McFadden's 𝑅2 , this value tends to be 

smaller than traditional 𝑅2 and values between 0.2 and 0.4 are enough to be considered as highly 

satisfactory. 

4.5.4 Matthews Correlation Coefficient (MCC) 

MCC is introduced by Matthews (1975), it is calculated based on the confusion matrix using 

formula 

𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                     (18) 

where 𝑇𝑃 is the number of true positives, 𝑇𝑁 the number of true negatives, 𝐹𝑃 the number of false 

positives and 𝐹𝑁 the number of false negatives. As a correlation coefficient, the MCC is the 

geometric mean of the regression coefficients of the problem and its dual. 
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4.5.5 Kendall Rank Correlation Coefficient 

Assumed that (𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎𝑛, 𝑏𝑛) are a set of observations joint from two rules, 𝒂 

and 𝒃. ∀𝑖 ≠ 𝑗, if both 𝑎𝑖 > 𝑎𝑗 and 𝑏𝑖 > 𝑏𝑗, or if both 𝑎𝑖 < 𝑎𝑗 and 𝑏𝑖 < 𝑏𝑗, the pair of observations  

(𝑎𝑖, 𝑏𝑖) and (𝑎𝑗 , 𝑏𝑗2) is defined as concordant. If 𝑎𝑖 > 𝑎𝑗  and 𝑏𝑖 < 𝑏𝑗 , or if 𝑎𝑖 < 𝑎𝑗  and 𝑏𝑖 > 𝑏𝑗, 

the pair is defined as discordant. Otherwise, the pair is neither concordant nor discordant (Kendall 

(1948)). The Kendall’s tau is defined as 

𝜏 =
𝑛𝑐−𝑛𝑑

𝑛(𝑛−1)/2
                                                  (19) 

where 𝑛𝑐  stands for the number of concordant pairs  and 𝑛𝑑  stands for number of 

discordant pairs. The range of the coefficient is between -1 and 1, where 1 means the two 

ranks are the same and -1 means one rank is the reverse of the other one. If 𝒂 and 𝒃 are 

independent, the coefficient would be approximately 0. 

Significant test can also be applied to this data sets to test whether the value of 𝜏 is obtained 

by chance, it is given by the formula 

𝑍 =
3(𝑛𝑐−𝑛𝑑)

√𝑛(𝑛−1)(2𝑛+5)/2
                                                  (20)
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Chapter 5. Results of Case Study 

In this section we address the results of our model, including the G-test results and social 

welfare function we obtained. In order to make simplify our calculation, we set the number of 

control points 𝑛 = 5, and degree 𝑑 = 2. The results of G-test decide the attributes that will be 

considered in our final model. Based on the selected attributes, we construct a SWF for each 

vehicle and discuss the social welfare plot of each attribute. In addition, the three sample vehicles, 

Ford Fusion, Toyota Camry and Chevrolet Malibu, will be used to discuss the changes of their 

market share from 2013 to 2014 based on the social welfare we obtained. Furthermore, the data of 

2015 is used to validate our model by applying MCC and Kendall’s tau statistics.

5.1 Model Assessment 

The −2log (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) for the constant only model obtain by fitting the constant only 

model was 1172.459; and the −2log (𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) for the overall model was 912.989. Thus the 

value of the likelihood ratio test is 

𝐺 = 1172.459 − 912.989 = 259.470 

And the p-value for the test is 𝑃[𝜒2(55) > 259.470] ≅ 0.000, which is highly significant 

at 𝛼 = 0.1 level. Thus we can conclude that at least one attribute should be included in our model. 

The likelihood ratio tests for all attributes and for each attribute are given in Table 5.1. From Table 

5.1 we note that the G-tests relate to attributes of price, fuel consumption, wheelbase, acceleration, 

dealership, depreciation rate and maintain and repair fee are statistically significant. While the G-

tests relate to attributes of weight, storage and insurance fee are not statistically significant at
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Table 5.1 G-test Results 

Model -2log(likelihood) G q P-value 

Model with all attributes (full model) 912.989    

Model with constant only 1172.459 259.470 55 <0.001 

Model without price 961.890 48.901 5 <0.001 

Model without fuel consumption 1029.612 116.623 5 <0.001 

Model without weight 917.173 4.184 5 0.523 

Model without wheelbase 968.275 55.286 5 <0.001 

Model without acceleration 956.973 43.984 5 <0.001 

Model without comfort 923.179 10.190 5 0.070 

Model without storage 918.240 5.251 5 0.386 

Model without dealership 928.220 15.231 5 0.009 

Model without depreciation rate 931.616 18.627 5 0.002 

Model without insurance fee 914.078 1.089 5 0.955 

Model without maintenance and repair fee 929.672 16.683 5 0.005 

 

𝛼 = 0.1 level. In addition, the p-value of G statistic for comfort is 0.070, which is also significant 

at 𝛼 = 0.1 level. Thus, there are eight attributes that will be included in our final social welfare 

function model. They are price, fuel consumption, wheelbase, acceleration, dealership, 

depreciation rate, comfort and maintain and repair fee. 

Include all these eight attributes into our model, we could get another log likelihood,  

−2 log(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) = 919.475, which is the maximized likelihood of our final model. Thus, the 

results of the pseudo R-squareds could be calculated, which are given in Table 5.2. As we 

mentioned before, for Cox and Snell 𝑅2 and Nagelkerke 𝑅2, a value close to 1 is better. On the 

other hand, for McFadden 𝑅2, a value between 0.2 and 0.4 are large enough to be regarded as 

highly satisfied. Actually, we can find out that all the pseudo R-squareds are large enough to 

demonstrate that our model is a good measurement of the social welfare. 

Table 5.2 Results for Pseudo R-squared 

Cox and Snell 0.979 

Nagelkerke 0.980 

McFadden 0.216 
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Table 5.3 Results for 𝜶𝒊,𝒌 

Attributes 
     

Price 1.0821 1.0821 1.2939 2.2696 2.2696 

Fuel consumption 0.4813 1.2190 1.6504 1.6504 1.6504 

Wheelbase 1.6710 1.7812 1.7812 1.7812 1.7812 

Acceleration 0.6449 0.9440 1.1335 1.3221 1.5279 

Comfort 0 0 0.5084 0.6693 0.7376 

Dealership 0.3064 0.5891 0.5891 0.5891 0.5891 

Depreciation rate 0.2640 0.4092 0.4092 0.4092 1.6122 

Maintenance and repair fee 0 0 0 0.1229 0.1229 

 

Table 5.4 Weight and Control Points 

Scale Parameter 𝐴 = 10.2909 

Attributes 
      

Price 0.2205 0.4768 0.4768 0.5701 1.0000 1.0000 

Fuel consumption 0.1604 0.2916 0.7386 1.0000 1.0000 1.0000 

Wheelbase 0.1731 0.9381 1.0000 1.0000 1.0000 1.0000 

Acceleration 0.1485 0.4221 0.6178 0.7419 0.8653 1.0000 

Comfort 0.0717 0.0000 0.0000 0.6893 0.9074 1.0000 

Dealership 0.0572 0.5201 1.0000 1.0000 1.0000 1.0000 

Depreciation rate 0.1567 0.1638 0.2538 0.2538 0.2538 1.0000 

Maintenance and repair fee 0.0119 0.0000 0.0000 0.0000 1.0000 1.0000 

5.2 Utility Plots 

According to the attributes selected in Model Assessment, we could get the results of the 

estimator 𝛼𝑖,𝑘 for all the attributes, which is given in Table 5.3. Meanwhile, the total social welfare 

of the vehicles not included in our model in 2013 and 2014 are 9.6601 and 8.4951 respectively. 

Based on the estimator 𝛼𝑖,𝑘 given in Table 5.3, the scale parameter, weight and control points for 

each attribute could be worked out, which are given in Table 5.4. We could easily learn that the 

biggest concern of a consumer when purchasing a vehicle is the price of the vehicle, because 

weight of price is the largest. The next three attributes the consumers will focus on are vehicle size, 

fuel consumption and acceleration. Besides price, safety, fuel economy and acceleration ability are 

the next three major concerns. The rest four attributes included in our model are average 

,1i ,2i ,3i ,4i ,5i

i ,1ic ,2ic ,3ic ,4ic ,5ic
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depreciation rate, comfort rating, dealership and maintain and repair fee, from most important to 

least important. With the significance of our model, we believe that this is always how most 

consumers are considering when purchasing a new vehicle. In other words, our model does explain 

the common sense of our real life. 

The social welfare of each attribute could be worked out by applying the scale parameter, 

weights and control points to the formula given in (7). The social welfare plots for each attribute 

are given in Figure 5.1. 

As shown in Figure 5.1(a), the social welfare of price is a decreasing function, the lower the price 

is, the higher the social welfare is contributed. When the price is lower than 20,000 dollars, the 

social welfare can remain a relatively high level. However, the contribution of price to social 

welfare is nearly zero when the vehicle price is higher than 70,000 dollars. In addition, the social 

welfare of price decreases dramatically when the price is increasing from 20,000 to 40,000 dollars 

and increasing from 55,000 to 70,000 dollars, which indicate that the vehicles located in these two 

ranges can improve their social welfare dramatically by decreasing their sale price slightly. 

However, when price increases from 40,000 dollars to 55,000 dollars, the social welfare of price 

is relatively stable. This verifies our deduction that price is not the primary consideration when a 

consumer is considering buying a luxury passenger car with price less than 55,000 dollars, like 

Audi A6, Lincoln MKS etc. But if the price of the vehicle is higher than 55,000 dollars, like Audi 

A8, BMW 7-Series, Lexus LS and so on, price is still a big concern. 

According to Figure 5.1(b), the relationship between the social welfare induced by 

wheelbase and wheelbase is positive. As we mentioned before, the wheelbase is a measure of 

safety, and it is reasonable to assume that everybody wants a vehicle with higher safety measure. 



 

34 

 

 

(a) Price                         (b) Vehicle size 

 

(c) Fuel Consumption  (d) Acceleration 

 

(e) Comfort (f) Dealership  
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(g) Average depreciation rate (h) Maintain and repair fee 

 

Figure 5.1 Social Welfare for Attributes 

 

Thus, the relationship between them should be positive, which is shown in the plot. In the plot, the 

most sensitive area is when the wheelbase is less than 100 inches, which represents the vehicles 

that are smaller than compact vehicles. In other words, the changes from subcompact to compact 

can bring a huge increase in social welfare. Another thing worth to mention is that when the 

vehicles are large enough, the social welfare comes from different vehicle sizes are not much 

different. 

Fuel consumption plays a critical role when consumers make purchasing decisions. Figure 

5.1(c) is the utility function of fuel economy (MPG). The influence of fuel consumption on social 

welfare is positive, and nearly constant when MPG changes from 20 to 31. However, when the 

MPG is large enough (greater than 32), the social welfare keeps the same. This is because vehicles 

located in this area usually are hybrid vehicles, if a consumer is considering buying a hybrid 

vehicle, he/she has paid enough attention to fuel consumption, his /her focus would be some other 

attributes, like price, acceleration time and so on, instead of fuel consumption. If the manufacturers 
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want to increase the social welfare by changing MPG, the only way is to improve their MPG for 

these vehicles that have the MPG less than 32. For those vehicles whose MPG is greater than 32, 

the improvement on MPG could only contribute little on its social welfare. 

Acceleration ability is the fourth consideration of vehicle purchasing behavior. The social 

welfare induced by acceleration time from 0 to 60 miles is given in Figure 5.1(d). Intuitively, 

greater acceleration time contributes less on its social welfare. When the acceleration time is longer 

than 12 seconds, it contributes nothing on its social. Thus, as long as the acceleration time is no 

longer than 12 seconds, any decrease in acceleration time would lead a dramatically improvement 

on its social welfare. 

Social welfare for comfort rating is given by Figure 5.1(e). The plot shows that when the 

rating of comfort is less than 3, the contribution of comfort is zero. This indicates that it is crucial 

for those vehicles to improve their comfort ratings if the automakers want to improve their 

competitiveness. Besides, the contribution of comfort to the social welfare for the vehicles with 

rating 5 is nearly double of that of the vehicles with rating 4. Thus, it is worth considering 

improving the comfort rating of the vehicles from 4 to 5. 

Figure 5.1(f) is the social welfare induced by the number of dealerships, which has a great 

relationship with the consumer satisfaction. When the number of dealerships increases from 0 to 

1,800, the contribution to social welfare is increasing. However, after that, the utility keeps the 

same, which implies that when the number of dealerships is large enough, like domestic brands, 

the dealership is no longer the major concern for vehicle purchasing. Of course, those vehicles 

with dealership number less than 1,800 could still improve its social welfare by setting up more 

dealerships. 
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Figure 5.1(g) depicts the social welfare induced by DR, which is a measure of attrition of 

vehicle value. A vehicle with lower DR could be sold at a relatively higher price comparing to its 

purchasing price, and thus higher social welfare it brings. When the DR increases from 0.09 to 

0.11, the social welfare induced by DR decreases dramatically. Improvement made on this range 

could make a big contribution to its social welfare. When the DR is between 0.11 and 0.15, where 

most Japanese vehicles located, the utility is relatively stable, this implies Japanese brands have 

built a quite good reputation on their reliabilities. When the DR increases from 0.15 to 0.23, where 

most American vehicles located, the social welfare it contributes changes from 0.3 to zero, which 

explains the big differences of reliability among different American vehicles. An interesting thing 

is that when the DR is moving to 0, the social welfare it brings is moving toward to infinite. In 

other word, if a vehicle has no depreciation, the social welfare it brings is infinite. 

Figure 5.1(h) depicts the social welfare induced by maintenance and repair costs. As shown, 

only when the total cost is less than 6,000 dollars, the social welfare is greater than zero. The less 

the fee is, the more this attribute contributes to the social welfare. It is obvious that the only 

sensitive part is between 3,000 and 6,000 dollars. Thus improvement can be made in this range.  

5.3 Social Welfare for Sample Cars 

Based on the results shown in Table 5.4, the social welfare of any vehicle given in 2013 and 2014 

can be calculated. The social welfare of the three sample vehicles we introduced before is given in 

Table 5.5. According to Table 5.5, within each year, the higher the social welfare is, the higher the 

real market share is. This rule is even true when the comparison is between the vehicles in different 

years. In addition, the estimation of the market share for all the three vehicles in both years are 

very close to their real market share. All these prove that we have constructed an efficient and 

appropriate model to assess the social welfare of these vehicles. Furthermore, the social welfare is  
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a good estimator of the market share, which could be applied to lots of researches related to market 

in the future. 

In 2013, the social welfare of Toyota Camry was the highest among the three sample vehicles. 

This was because most of the individual attribute social welfares of Camry were the highest except 

price and number of dealerships. Although the number of dealerships of Camry was the lowest, as 

dealership only weights 5.72%, it did not influence significantly on its total social welfare. 

Meanwhile, the social welfare due to price was very close to the highest of the three. Thus, it is 

not strange that the Camry could hold the 1st place. On the other hand, for Chevrolet Malibu, 

except the number of dealerships was better than the other two vehicles, the social welfares induced 

by most of its attributes were the lowest. So, it is reasonable to see that the sale of Malibu was the 

worst of the three vehicles. 

In 2014, though the social welfare induced by fuel consumption (MPG) for Camry was no 

longer the highest any more, the social welfare from price ranked 1st, which counted most among 

the eight attributes. Besides, the social welfare from comfort rating increased, too. Thus, Camry 

could still hold the first place. However, for Malibu, the market share of it was still the lowest of 

the three. Although the social welfare of its price ranked 2nd, the social welfare due to comfort 

kept the same as the year before when the other two vehicles improved their social welfares in this 

field. 

From 2013 to 2014, Fusion and Camry increased their social welfare to certain degrees while 

the social welfare of Malibu decreased a lot. Thus, it is not hard to explain why the market share 

of Malibu decreased from 2013 to 2014 when the other two increased. In detail, from 2013 to 2014, 

for Malibu, the social welfare from price decreased while others kept the same; for Fusion, though 

it lessened its social welfare from price as well, the social welfare due to wheelbase, acceleration 
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and comfort increased much more; for Camry, the increased social welfare from comfort rating 

increased was much more than the decreased social welfare from price.  

5.4 Model Validation 

Besides 2013 and 2014, the date in 2015 are also collated. In order to validate our assessment 

model, two different validation methods are applied here to test whether our model could identify 

the change of consumer preferences from 2014 to 2015. First we use the Matthews correlation 

coefficient to validate whether the change direction of the EMS based on social welfare is 

concordant with the change direction of market share.  After that, Kendall’s tau is applied to 

validate whether our model could tell the order of the quantity of market share changed based on 

the order of the EMS changed. Finally, two pairs of sample vehicles are used to illustrate the 

influence of the weight for different attributes on the trend of market share change. 

5.4.1 Matthews Correlation Coefficient 

There are 85 passenger vehicles in 2015 being used as input of the SWF, according to the 

coefficients we got, the social welfare and EMS (estimated market share) of each vehicle in 2015 

could be calculated. The EMS of these vehicles in 2014 can also be obtained from the previous 

data, thus the change of EMS for each vehicle and corresponding market share change could be 

generated and it is shown in Figure 5.2. 

From Figure 5.2, we can see that our model could predict the market share change direction pretty 

well for most of the vehicles although most of time it is more likely to predict a bigger change than 

it actually does. Of course, we still have some vehicles located in the second quadrant and the 

fourth quadrant, which means our model either predicted a decreasing of market share when it 
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Figure 5.2 Comparison of Changes in Market Share with EMS 

 

Table 5.6 Confusion Matrix for Validation Date Sets 

  EMS Change Direction 

  + - 

Market Share Change Direction 
+ 35 2 

- 9 39 

 

actually increased or predicted an increasing trend when it actually decreased. According to our 

review, MMC is a good method to measure how well our model is performing regarding to the 

prediction of market share change direction. Based on the change direction of both market share 

and EMS for each vehicle, the confusion matrix of these points in Figure 5.2 could be summarized 

in Table 5.6. Based on this table, we could calculate the MCC using formula 
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𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

=
35 × 39 − 9 × 2

√(35 + 9)(35 + 2)(39 + 9)(39 + 2)
= 0.753 

In additional, the predict accuracy (ACC) of our model is 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
=

33 + 39

35 + 9 + 2 + 39
= 0.871 

A coefficient value of 0.753 means the predicted directions obtained from our model is 

highly correlated to the actual market share change directions. Besides, 0.871 accuracy indicates 

that our model identified over 87% of the market share change directions. Both of these two 

measures demonstrate that our model performs very well on predicting the change directions of 

market share. That is to say, in terms of consumer preferences, our model could tell whether 

consumers would prefer a specific vehicle more or less based on their social welfare in two 

consecutive years.  

5.4.2 Kendall Rank Correlation Coefficient 

Actually, besides comparing consumer preferences to a particular vehicle form last year to 

this year, we want to also identify consumer preferences regarding two different vehicles in two 

consecutive years. For example, if the real market share changes for both vehicle A and vehicle B 

are positive and increase for vehicle A is greater than vehicle B, we would like to see whether our 

model could detect the same changes. For these kinds of ordinary data, Kendall rank correlation 

coefficient is a good measurement to quantify the correlation between two observations. For any 

two pairs of our 85 vehicles, 3335 of these pairs are concordant and 235 of them are discordant, 

thus 
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𝜏 =
𝑛𝑐 − 𝑛𝑑

𝑛(𝑛 − 1)/2
=

3335 − 235

85(85 − 1)/2
≈ 0.868 

This large value of 𝜏  indicates that our model is strongly agree with the reality on the 

evaluation of the orders of market share changes. The corresponding 𝑍 value is 

𝑍 =
3(𝑛𝑐 − 𝑛𝑑)

√𝑛(𝑛 − 1)(2𝑛 + 5)/2
=

3(3335 − 235)

√85(85 − 1)(2 × 85 + 5)/2
≈ 11.77 

This value of 𝑍 = 11.77 is large enough to reject the null hypothesis even at the 𝛼 = 0.001 

level, and therefore we could come to the conclusion that our model has shown a significant 

agreement with the reality regarding to the prediction of the consumer preferences changing order 

for all the vehicles. 

5.4.3 Validation Cases 

In traditional time series method, if we have multiple years of data, we might could predict 

the trend of the market share change, and this prediction usually has a lag compared to elastic. 

What if we only have the market share of one year? Traditional time series is not applicable any 

more. In this part, we select two pairs of sample vehicles to validate our model on the ability of 

predicting market share change trend, i.e. consumer preferences, even if we only have one-year 

data for market share. Both pairs of vehicles have a common feature, one vehicle sells better before 

2014 and another sells better in 2015. That is to say, from 2014 to 2015, the market shares of the 

vehicles within each pair have exchanged their ranks. We want to use our model to demonstrate 

why this happened.  

The first case is Toyota Corolla and Honda Accord, the related data is listed in Table 5.7. 

Actually, from 2013 to 2014, both vehicles have an increasing trend on their market share. 

However, from 2014 to 2015, Corolla continues increasing its market share while Accord has a 

decrease in its market share.  If we compare the changes of the attributes for the two vehicles from  
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Table 5.7 Comparison Table for Toyota Corolla and Honda Accord 

  Toyota Corolla Honda Accord 

  2014 2015 Difference 2014 2015 Difference 

Attributes Weights 4.28% 4.67% 0.39% 4.89% 4.57% -0.32% 

Price 0.2205 16300 17625 1325 20675 22440 1765 

Fuel 

consumption 
0.1604 32 32 0 30 30 0 

Wheelbase 0.1731 106.3 106.3 0 109.3 109.3 0 

Acceleration 0.1485 9.9 9.9 0 6.3 7.7 1.4 

Comfort 0.0717 5 5 0 4 5 1 

Dealership 0.0572 1234 1234 0 1042 1042 0 

Depreciation 

rate 
0.1567 0.1288 0.1426 0.0138 0.1546 0.1546 0 

Maintenance 

and repair fee 
0.0119 3922 3836 -86 4348 4187 -161 

 

2014 to 2015, we could identify that three of the eight attributes did not changes, which has no 

effect on the market share change. However, the rest attributes, like price, acceleration, comfort, 

depreciation rate, and maintain and repair fee, changed for at least one of the two vehicles. For 

price, both of them increased but Accord increased more. Besides, the price of Accord is located 

at higher marginal utility position in price utility plot shown in Figure 5.1(a), which means Accord 

would have a larger loss on its social welfare than Corolla in terms of increasing price. For 

acceleration, it is obvious that Accord would lead a greater loss on its social welfare. Regarding to 

comfort and maintain and repair fee, Accord did better than Corolla. As for depreciation rate, 

because Corolla increased its rate within the 0 marginal utility range (can be found in Figure 5.1(g)), 

both of them had no effect on their social welfare. However, if you look at the weight of each 

attribute, you could figure out that although Accord did better than Corolla on comfort and 

maintain and repair fee, on other two attributes with higher weight, Accord did much worse, it 

inevitable lead a loss of market share and overtaken by Corolla. In fact, based on our prediction, 

Corolla would increase its market share by 0.43% and Accord would have a decrease of its market 

share by 0.06%. Though it is not accurate, it predicts the trend very well. 
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Table 5.8 Comparison Table for Hyundai Elantra and Chevrolet Cruze 

  Hyundai Elantra Chevrolet Cruze 

  2014 2015 Difference 2014 2015 Difference 

Attributes Weights 2.80% 3.11% 0.31% 3.44% 2.91% -0.53% 

Price 0.2205 14825 15950 1125 14975 16525 1550 

Fuel 

consumption 
0.1604 27 33 6 33 33 0 

Wheelbase 0.1731 106.3 106.3 0 105.7 105.7 0 

Acceleration 0.1485 9.8 9.8 0 9.7 9.7 0 

Comfort 0.0717 3 4 1 4 4 0 

Dealership 0.0572 825 825 0 3035 3035 0 

Depreciation 

rate 
0.1567 0.2045 0.2045 0 0.1908 0.1908 0 

Maintenance 

and repair fee 
0.0119 3753 3693 -60 4227 4289 62 

 

Another case is Hyundai Elantra and Chevrolet Cruze. It is interesting that from 2013 to 

2014, Elantra has a decreasing trend on its market share and Cruze shows an increasing trend on 

its market share, however, from 2014 to 2015, Elantra shows an increasing trend on its market  

share and Cruze has a decreasing trend on its market share. With traditional time series model, it 

cannot explain these kinds of variation precisely and timely. But our model performs very well on 

predicting these changes.  Based on the related date given in Table 5.8, four of the eight attributes 

keep the same from 2014 to 2015 for both vehicles.  For the other four attributes, Elantra changes 

all and Cruze changes two of them. It is obvious that, for fuel consumption, comfort, and maintain 

and repair fee, Elantra is getting better and Cruze is either getting worse or not change, which will 

definitely increase the social welfare of Elantra and decrease the social welfare of Cruze. On the 

other hand, both of them have a higher price in 2015 but Cruze changes more even they are 

changing with similar marginal utility. All these four attributes indicate that Cruze would lead a 

drop on its market share while Elantra would lead a jump. Actually, our model predicts 0.05% of 

market share increase for Elantra and 0.54% of market share decrease for Cruze. Both cases 

indicate that our model has the capability of predicting consumer preferences precisely and timely.
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Chapter 6. Conclusion 

This paper develops an automotive market social preference assessment method based on a 

generalized multinomial logistic regression model using multi-attributes data of multiple vehicles 

in multiple years. The concept of social preference is defined as social welfare using the additive 

form of each individual attribute. The social welfare of each vehicle can be further used to estimate 

its market share. The individual attribute social welfare is assumed to be a second order 

differentiable concave curve. The attributes that included in our final model are selected by 

applying the G-test to the significance of each attribute. In addition, the scale parameter of the 

SWF, together with the weight of each attribute, are given by our model. 

Finally, there are eight attributes proved to be important by our model when the purchasing 

behavior is regarding as a social behavior. They are price, wheelbase, fuel consumption, average 

depreciation rate, acceleration, comfort rating, dealership, and maintenance and repair costs, from 

the most significant one to the least significant one. Among them, price and maintenance and repair 

costs are concerning about the cost the consumer will pay. Acceleration, comfort rating and fuel 

consumption belong to the performance of the vehicle, which give great influence on the driving 

experiences. Wheelbase and average depreciation rate are representing the safety and reliability 

measurement of a vehicle. The dealership is a measurement of the consumer service level, which 

indicates a strong association with the consumer satisfaction. In other words, cost, performance, 

safety and reliability, and consumer service level, are usually the consumers’ four major concerns 

when they are making the purchasing decisions. Thus, our model performs well with the reality 

and common purchasing experiences.
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The social welfare plot for each attribute is given in Figure 5.1. Based on these figures and 

their corresponding weights, automakers could figure out what the most sensitive attribute is when 

a specific vehicle is chosen. After knowing the unit cost of changing each attribute, the automaker 

could find a way to increase its social welfare most by a fixed budget. According to the validation 

analysis, it proved that our model could not only predict the consumer preferences on particular 

vehicle from year to year, i.e. the market share change direction, but also identify how much the 

consumer like or dislike a particular vehicle, i.e. the rank of the changes on market share for each 

vehicle.  Besides, the trend line in Figure 5.2 indicates that our model is real sensitive to the 

changes on attributes from year to year, which is a great advantage over traditional time series 

methods on evaluating the trend of the changes, especially when the measurement is fluctuating 

over time. 

Furthermore, this generalized multinomial logistic regression model could be applied in 

many other fields other than automotive market to identify the consumer preferences on various 

of goods.    
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