

Handling High-Level Model Changes Using Search Based Software Engineering

by

Usman Mansoor

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Information Systems Engineering)

in the University of Michigan Dearborn

 2017

Doctoral Committee:

Assistant Professor Marouane Kessentini, Chair

Professor William Grosky

Professor Ghassan Kridli

Associate Professor Bruce Maxim

Professor Qiang Zhu

© Usman Mansoor 2017

ii

DEDICATION

I dedicate this thesis to my beautiful wife, Kholla. None of this would have been possible

without her by my side.

I also dedicate this to my parents, Naeema Mansoor and Mansoor Ahmed Tariq for their constant

encouragement and support. Their love and sacrifices have made me the man I am today.

And to all my immediate and extended family, the completion of this PhD is owed greatly to

your continued prayers. Thank you.

iii

ACKNOWLEDGEMENTS

Completing this PhD would not have been possible without the guidance of Professor Kessentini.

He has been an extraordinary advisor and it was because of his assistance, time, and energy that I

have been able to complete this thesis.

I would also like to thank all the committee members, Professor William Grosky, Professor

Ghassan Kridli, Professor Bruce Maxim, and Professor Qiang Zhu, for their additional guidance

and mentorship throughout the different stages of completing this degree.

I want to especially thank Emily Wang and Don Barbarci for always being there for us

international students. They have not only provided support throughout any obstacle, but have

created a family of friends that has been invaluable during times of homesickness.

And finally, I would like to thank all the SBSE lab members, particularly Mohamed Wiem

Mkaouer, Josselin Dea, and Dilan Sahin. As well as all my other friends who have helped me

along the way.

iv

PREFACE

The research that led to this thesis was performed at Search-Based Software Engineering

Laboratory at the Department of Computer and Information Science, University of Michigan-

Dearborn, with Prof. Marouane Kessentini as the main advisor.

v

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGMENTS iii

PREFACE iv

LIST OF TABLES ix

LIST OF FIGURES x

ABSTRACT xii

Chapter 1: Introduction ... 1

1.1 Model Driven Engineering ... 1

1.2 Detection of Changes at Model Level .. 2

1.3 Merging Models .. 3

1.4 Detection and Correction of Design Defects .. 4

1.5 Contributions... 6

1.5.1 Contribution 1: Detection of Composite Changes at Model Level........................... 10

1.5.2 Contribution 2: Model Merging .. 11

1.5.3 Contribution 3: Design Defect Detection ... 11

1.5.4 Contribution 4: Design Defect Correction .. 12

Chapter 2: Related Work .. 13

2.1 Detecting Changes at the Model Level ... 13

2.2 Model Merging Approaches ... 17

2.3 Detection of Design Defects ... 20

2.4 Correction of Design Defects .. 23

2.4.1 Model Level Refactoring .. 24

2.4.2 Multi View Refactoring .. 26

vi

Chapter 3: Search Based Problem Solving ... 27

3.1 Search Based Optimization Algorithm – NSGA-II .. 27

3.1.1 NSGA-II Definitions ... 27

3.1.2 Overview of NSGA-II... 28

3.2 Quality Metrics for Search Based Optimization ... 30

Chapter 4: Changes Detection at Model Level ... 32

4.1 Introduction ... 32

4.1.1 Model Comparison : A Motivating Example.. 33

4.1.2 Quality of Detected Operations Sequence .. 36

4.2 Approach Overview .. 39

4.2.1 Detection Scheme ... 39

4.2.2 Solution Coding .. 41

4.2.3 Solution Search ... 44

4.2.4 Correctness Function .. 46

4.3 Validation .. 48

4.3.1 Research Questions ... 48

4.3.2 Experimental Setup ... 50

4.3.3 Results and Discussion ... 52

Chapter 5: Model Merging ... 60

5.1 Introduction ... 60

5.1.1 Model Merging: A Motivating Example .. 62

5.1.2 Challenges of Model Merging Problem .. 65

5.2 Approach Overview .. 66

5.2.1 Detection Scheme ... 66

5.2.2 Solution Coding .. 69

5.3 Validation .. 72

vii

5.3.1 Research Questions ... 72

5.3.2 Experimental Setup ... 74

5.3.3 Results and Discussion ... 76

Chapter 6: Defects Detection at the Model Level .. 88

6.1 Introduction ... 88

6.2 Approach Overview .. 91

6.2.1 Detection Scheme ... 91

6.2.2 Solution Coding .. 92

6.3 Validation .. 96

6.3.1 Research Questions ... 96

6.3.2 Experimental Setup ... 97

6.3.3 Result and Discussion ... 100

Chapter 7: Refactoring Recommendation at the Model Level ... 106

7.1 Introduction ... 106

7.1.1 Multi View Refactoring : A Motivating Example .. 107

7.1.2 Challenges in Refactoring at Model Level ... 110

7.2 Approach Overview .. 117

7.2.1 Detection Scheme ... 117

7.2.2 Solution Coding .. 121

7.3 Validation .. 127

7.3.1 Research Questions ... 127

7.3.2 Experimental Setup ... 130

7.3.3 Result and Discussion ... 133

viii

Chapter 8: Conclusion .. 139

8.1 Discussions on Change Detection in Model ... 140

8.2 Discussions on Model Merging .. 141

8.3 Discussions on Defect Detection .. 142

8.4 Discussions on Defect Correction ... 143

8.5 Future Work .. 144

References ... 147

ix

LIST OF TABLES

Table 1: Comparison of Selected Approaches for Programs, Models, and Ontologies 17

Table 2: Structural Metrics, their relevance and desirable value ranges. 21

Table 3 Open Source Systems used for study ... 51

Table 4: NSGA-II Detection Correctness for change detection in Evolving Models. 54

Table 5 : The significantly best algorithm among random search. ... 55

Table 6 : NSGA-II Detection and Correctness. .. 56

Table 7 : Systems studied in Model Merging experiments... 75

Table 8 : The significantly best algorithm among random search : NSGA-II and MOPSO. 77

Table 9 : Median number of disabled refactorings on 51 independent runs.. 78

Table 10 : Median importance scores of enabled refactoring on 51 independent runs.. 79

Table 11: List of Software Metrics. .. 89

Table 12 : Software projects features.. 98

Table 13: The significantly best algorithm among random search.. ... 101

Table 14: Recall and precision median values of MOGP, MOAIS, GP.. 104

Table 15 : The list of refactorings and corresponding co-refactorings 113

Table 16 : QMOOD metrics for design properties ... 125

Table 17 : Computation of Quality Attribute using QMOOD Metrics 125

Table 18: Activity diagrams metrics ... 126

Table 19 : The systems studied for Model Refactoring .. 132

Table 20: Statistical test results when comparing NSGA-II to the mono-objective approach .. 132

x

LIST OF FIGURES

Figure 1: The four main componenents of Model Driven Software Development : (1) Change

Detection (2) Model Merging (3) Defect Detection, and (4) Defect Correction 6

Figure 2 : Detailed Model for Change Detection in Evolving Models.. ... 7

Figure 3 : Model Merging using search based merging techniques. .. 8

Figure 4: Defect Detection in Merged Model. .. 9

Figure 5: Defect Correction in the identified Model. ... 10

Figure 6 : NSGA-II replacement scheme.. 30

Figure 7 : A Demonstration of Nadir Point in a Pareto Front. .. 31

Figure 8 : A base model comparison with an evolved model using SBSE................................... 33

Figure 9: Example of atomic refactoring between evolving models .. 34

Figure 10: Change list in terms of atomic refactoring operations between V1 and V2 models.. . 35

Figure 11 Alternate Operations Sequences ... 38

Figure 12 : Possible atomic and composite operations for an evolved model. 39

Figure 13 : Input and output of the multi-objective model change detection approach 40

Figure 14 : Size of search space in SBSE. .. 41

Figure 15 :Solution Coding Example ... 42

Figure 16 : Example of Cross Over and Mutation Operations ... 46

Figure 17 : Comparison between the generated model and the expected model 47

Figure 18 : Boxplots using the quality measures (a) HV, (b) IGD, and (c) IC 58

Figure 19 : Pareto fronts for NSGA-II . .. 59

Figure 20 : Multi-objective model merging: overview ... 61

Figure 21: Parallel Evolution of a Class Diagram. ... 62

Figure 22 : Population of operation sequences ... 70

Figure 23 : Illustrating the conflict between disabled and enabled refactoring with IMP scores..72

Figure 24 : Automatic correctness median values on 51 independent runs for the case studies .. 80

xi

Figure 25 : Manual correctness median values on 51 independent runs for the case studies 81

Figure 26 : Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD.on NSGA-II....... 82

Figure 27: Performance comparison of NSGA-II with other Search Algorithms 85

Figure 28: Pareto fronts for NSGA-II obtained on open source systems 86

Figure 29: Single Objective system compared with multi objective system 91

Figure 30: An example of a detection rule according to SBSE formulation 94

Figure 31: An exemplified mutation operation. .. 95

Figure 32: A Model before Crossover operation is performed ... 95

Figure 33: A Model after Crossover operations is performed .. 95

Figure 34: IHV boxplots on 3 projects having different sizes. ... 102

Figure 35: IGD boxplots on 3 projects having different sizes ... 103

Figure 36: The median values of precision and recall for five types of code-smell. 105

Figure 37: Initial Version for Motivating Example for Refactoring... 107

Figure 38: Intermediate Version for Motivating Example for Model Refactoring 109

Figure 39: Final Version for Motivating Example for Model Refactoring 110

Figure 40: Multi-objective model refactoring: An Overview ... 118

Figure 41: High-level pseudo-code of NSGA-II .. 120

Figure 42: Representation of an NSGA-II individual ... 122

Figure 43: Changes operators in Model Refactoring. ... 124

Figure 44: NFD median values of NSGA-II, GA and DesignImpl .. 133

Figure 45: Design quality improvements for Class and Activity diagrams. 135

Figure 46: Quality factors values of NSGA-II. ... 135

Figure 47: The refactoring precision (RP) using Wilcoxon rank sum test 136

Figure 48: The MP median values using the Wilcoxon rank sum test 137

Figure 49: Pareto front for NSGA-II obtained on Xerces-J. ... 138

Figure 50: Mapping of Test Cases to Software Code using Search Based techniques. 145

xii

ABSTRACT

Model-Driven Engineering (MDE) considers models as first-class artifacts during the software

lifecycle. The number of available tools, techniques, and approaches for MDE is increasing as its

use gains traction in driving quality, and controlling cost in evolution of large software systems.

Software models, defined as code abstractions, are iteratively refined, restructured, and evolved.

This is due to many reasons such as fixing defects in design, reflecting changes in requirements,

and modifying a design to enhance existing features.

In this work, we focus on four main problems related to the evolution of software models: 1) the

detection of applied model changes, 2) merging parallel evolved models, 3) detection of design

defects in merged model, and 4) the recommendation of new changes to fix defects in software

models.

Regarding the first contribution, a-posteriori multi-objective change detection approach has been

proposed for evolved models. The changes are expressed in terms of atomic and composite

refactoring operations. The majority of existing approaches detects atomic changes but do not

adequately address composite changes which mask atomic operations in intermediate models.

For the second contribution, several approaches exist to construct a merged model by

incorporating all non-conflicting operations of evolved models. Conflicts arise when the

application of one operation disables the applicability of another one. The essence of the problem

is to identify and prioritize conflicting operations based on importance and context – a gap in

existing approaches. This work proposes a multi-objective formulation of model merging that

aims to maximize the number of successfully applied merged operations.

For the third and fourth contributions, the majority of existing works focuses on refactoring at

source code level, and does not exploit the benefits of software design optimization at model

level. However, refactoring at model level is inherently more challenging due to difficulty in

assessing the potential impact on structural and behavioral features of the software system. This

xiii

requires analysis of class and activity diagrams to appraise the overall system quality, feasibility,

and inter-diagram consistency. This work focuses on designing, implementing, and evaluating a

multi-objective refactoring framework for detection and fixing of design defects in software

models.

KEYWORDS

Search-based Software Engineering, Model Merging, Model-Driven Engineering, Multi-

Objective Optimisation, Refactoring, Defect Detection.

1 Introduction

Chapter 1: Introduction

1.1 Model Driven Engineering

The majority of industrial software companies are nowadays dealing with projects involving

high number of requirements, hard deadlines, and high expectations in terms of efficiency

and quality of the resulting software [1]. Thus, Model-Driven Engineering (MDE) [2] is

applied increasingly to cope with the complexity of software systems by raising the level of

abstraction. To address the size of software systems, teams of developers have to cooperate

and work in parallel on software models. Consequently, techniques to support building

models collaboratively are a necessity.

Model-Driven Engineering (MDE) [3] considers models as first-class artifacts during the

software lifecycle. The number of available tools, techniques, and approaches for MDE is

increasing and more attention is paid to the evolution aspects in MDE [3] along with the

growing importance of modeling in software development. In fact, software models, defined

as code abstractions, are iteratively refined, restructured, and evolved due to many reasons

such as correcting errors in design, reflecting changes in requirements, and modifying a

design to enhance existing features. Thus, effective techniques to evolve models as well as to

understand their evolution are a must.

Models are used to generate primary reusable software artifacts. This helps in generating

generic code for the platform along with schematic code based on application based model

transformations. Therefore, MDE, if properly deployed and maintained in a software

development process, has the potential to increase productivity.

In this work, we use Unified Modeling Language (UML) to define the studied software

models. UML is an industry standard for conceptualizing, defining, detailing, and

2 Introduction

documenting software systems. We use both the Class Diagrams and Activity Diagrams in

analyzing the studied models to not only incorporate class and object information that make

the system, but also system states and conditions that the system assumes as it executes over

time. This allows for specifying both static and dynamic constraints as well as implemented

workflow of the system.

1.2 Detection of Changes at Model Level

The transition from code to models induces the need for adequate techniques to cope with the

continuous and concurrent evolution of models. One of the most important tasks in this realm

is the detection and analysis of operations that have been applied between two versions of a

model. In general, we may distinguish between two categories of operations. The first

category concerns atomic operations, such as additions, deletions, updates, and moves. The

second category comprises composite operations [4] consisting of a set of cohesive atomic

operations, which are applied within one transaction to achieve one common goal. Such

operations usually have well-defined pre and post conditions that specify their applicability

and their intended effect. The most prominent class of composite operations concerns

refactorings introduced by Opdyke [5]. However, composite operations are not limited to

refactorings; they may be used to implement any kind of in-place model transformation for

supporting a specific purpose, such as model completion, refinement, and evolution. As

reported in [6], the availability of the information on applied composite operations is a

crucial prerequisite for automating several model management tasks. These tasks include

model versioning and merging, the comprehension of a model’s evolution, and the co-

evolution of models, such as the migration of models to new meta-model versions and the

synchronization of models and multiple views on them.

3 Introduction

1.3 Merging Models

When models are changed in parallel, they have to be merged eventually to obtain a

consolidated model. Therefore, several approaches have been proposed for detecting the

operations that have been applied in parallel by developers. Once the applied operations are

available, conflict detection algorithms are used to identify pairs of operations that interfere

with each other [7]. In this regard, a conflict denotes a pair of operations, where one

operation masks the effect of the other (i.e., they do not commute) or one operation disables

the applicability of the other. An example for the former is a pair of parallel operations that

update the same feature in the model with different values. The latter case is at hand if one

operation’s preconditions are not valid anymore after applying the operations of the other

developer. Such a scenario frequently occurs if composite operations (a sequence of cohesive

atomic changes), e.g., model refactorings [5] [8], are applied because they may have

potentially complex preconditions that may easily be invalidated by parallel operations.

In general, two kinds of merge approaches can be distinguished [9]. First, state-based merge

approaches aim at merging two model versions by combining their model elements into one

merged model. Second, operation-based merge approaches in contrast do not reason about

the models’ states, but consider recorded operation histories and apply the combination of the

parallel histories to the common initial version to compute the merged version.

For both approaches, the notion of conflict is essential, because when having two parallel

evolutions of one model, not all operations may be combined to compute one unique merged

model. Basically, we can distinguish between two kinds of conflicts. First, two operations are

conflicting if one operation masks the effect of the other operation in the merged version:

e.g., for update/update conflicts, the latter update in the operation sequence applied on the

model is effective, while the former update is lost. Thus, such conflicting operations are not

confluent, i.e., different operation sequences result in different models. Second, a conflict

also occurs if one operation disables the applicability of the other. Every operation has

4 Introduction

specific preconditions, e.g., an update of an element can only be performed when the element

still exists; otherwise a delete/update conflict is raised.

Empirical studies [10] showed that users prefer to work with a tentative merged model acting

as a basis for reasoning about possible conflict resolutions, instead of working with the list of

operations in terms of choosing to reject one or the other conflicting operation for creating a

merged model. A few approaches respect this preference and produce a merged model by

applying all non-conflicting operations; conflicting operations are omitted. However,

especially in case of a large number of conflicts, many operations are not merged with this

strategy, leading to a tentative merged model that does not reflect the maximal combined

effect of the parallel operations. Furthermore, the majority of existing works [11] [12] [6]

[13] [14] [15] [10] treat the applied refactoring operations to be merged with equal

importance. However, in a real world scenario these operations have different importance

scores that can depend on the type of the refactoring and the context of the refactoring

application. Thus, in existing work the developer cannot integrate her/his priority preferences

concerning the importance of some refactorings that should be included in the merging

process.

1.4 Detection and Correction of Design Defects

Refactoring is a widely used technique to improve the overall quality of systems by altering

design structure while preserving the overall functionalities and behavior [5].

A refactoring operation is a transformation aimed at mitigating a code smell or anti pattern

without altering the behavior of the software. Therefore improving the structure of code does

not only require identification of the afflicting smell but also carefully proposing the

refactoring transformations which fix the smell without the expense of new smell or even

worse a software bug. Usually a code smell is identified by using a set of detection rules.

5 Introduction

These detection rules tend to look for certain anomalies and characteristics in the code e.g.

number of attributes in a class, number of methods etc to locate code smells in the source

code. Manual formulation of detection rules is a no easy task. It requires careful inspection

and analysis to formulate a set of detection rules which detect the code smells while

minimizing the false positives.

A variety of refactoring work has been proposed in the literature [5] [16] and the majority of

them focus only on the source code level. Despite its importance, model refactoring is still in

its infancy [17] [18] [19]. In fact, model refactoring is more difficult and challenging than

code refactoring for several reasons. First, the evaluation of the impact of refactorings in the

model level is difficult. At the source code level, traditional code quality metrics are used to

evaluate the quality of a system after applying a sequence of refactorings. However, applying

refactoring on a specific model such as class diagrams have an impact on related other

diagrams such as activity diagrams, sequence diagrams, etc. Sometimes, an improvement of

class diagram quality metrics may decrease the quality of an activity diagram. Thus, it is

important to evaluate the impact of suggested refactorings not only on one diagram but also

other related diagrams to estimate the overall quality. Second, some refactorings suggested at

the model level cannot be applied to the source code level. For example, a move method

between two classes can be applicable at the class diagram level but cannot be applied in the

source code one. Such situations can be detected using an activity diagram that can evaluate

the feasibility of some refactorings. Third, it is difficult to check if a refactoring applied to a

class diagram preserves the behavior or not without the use of some related behavioral

diagrams such as an activity diagram.

6 Introduction

1.5 Contributions

The main focus of this work is to address the challenges in software development when

evolving software models. A model can evolve into multiple parallel models. Therefore,

detecting the list of changes in an evolved model is essential to keep software development

consistent. Parallel evolved models are always merged together to consolidate requirements

and determine conflicts. Merged models need to ensure the quality specification and should

not have design defects. The four components in model driven software development are

shown in Figures 1-5. The contribution of this work is divided into four sections, and each

section specifically focuses on each of these stages and uses search based optimization to

address challenges in change detection, merge models, defect detection, and defect correction

in software models. In each of the following sections we present the block diagram for each

stage.

Figure 1: The four main componenents of Model Driven Software Development : (1) Change Detection (2) Model

Merging (3) Defect Detection, and (4) Defect Correction

7 Introduction

Figure 2 : Detailed Model for Change Detection in Evolving Models. Model V1 is initial Model and Model V2A, V2B

..V2C are the parallel evolved models. The rectangular block represents the application of search based detection

scheme to detect the sequence of changes between initial and evolved models.

8 Introduction

Figure 3 : Model Merging using search based merging techniques. Model V3 is the merged Model which uses Model

V2A as initial model. The rectangular block represents the application of search based merge scheme merge two

models

9 Introduction

Figure 4: Defect Detection in Merged Model. The rectangular block represents the application of search based defect

detection technique which uses set of software metrics to detect design defects.

10 Introduction

Figure 5: Defect Correction in the identified Model. The dotted rectangular block represents the application of

search based defect correction technique which uses a set constraints as input and finds a final model which meets

the quality specifications.

1.5.1 Contribution 1: Detection of Composite Changes at Model Level

This work addresses the problem of the detection of composite changes at Model Level as a

multi objective optimization problem. The approach takes as input an initial and a revised

11 Introduction

model, and as controlling parameters, an exhaustive list of refactoring operations. Refer to

Figure 2 for detailed block level overview. The approach generates a set of refactoring

sequences that represents the evolution from the initial model to the revised model. The

process of detecting model changes can be viewed as the mechanism that finds the best way

to combine refactoring operations from the exhaustive list of possible refactorings, in such a

way to (i) maximize the similarity between the revised model and the resulting model when

applying the detected refactorings on the initial model and (ii) minimize the number of

refactorings. In other words, this process aims at finding the best tradeoff between these two

conflicting criteria.

1.5.2 Contribution 2: Model Merging

This work attempts to treat the problem of model merging as a combinatorial optimization

problem. The goal of our approach is to construct a tentative merged model that minimizes

the number of disabled operations and maximizes the number of important enabled ones.

Therefore, we use a multi-objective optimization algorithm to compute an optimal sequence

of merging operations in terms of finding trade-offs between minimizing the number of

operations that are disabled by preceding operations and maximizing the number of

important operations that are enabled. Figure 3 shows a detailed block level overview. The

process of generating a solution can be viewed as the mechanism that finds the best order

among all possible operation sequences.

1.5.3 Contribution 3: Design Defect Detection

The defect detection problem involves searching for the metric combinations among the set

of candidates, which constitutes a huge search space. The solution of defect detection

problem is a set of rules (metric combination with their thresholds values). Figure 4 shows a

detailed block level overview. We address the problem of defect detection as an optimization

12 Introduction

problem which involves tuning of thresholds in detection rules to maximize the capture of

design defects or anti patterns in the analyzed model.

1.5.4 Contribution 4: Design Defect Correction

After having identified the design defects in the merged model the next logical step would be

to suggest possible refactoring solutions to minimize the defects in the model. The proposed

approach aims to find the best sequence of refactorings that provides a good trade-off

between maximizing the quality of class diagrams and activity diagrams while preserving the

behavioral constraints defined in activity diagrams.

Figure 5 shows an overview of the proposed refactoring solution. Therefore, we use a multi-

objective optimization algorithm to compute an optimal sequence of refactorings which tend

to not only improve the structural integrity of the design but also preserves the system

behavior.

13 Related Work

Chapter 2: Related Work

2.1 Detecting Changes at the Model Level

In general, existing approaches propose to detect differences between model versions using

pre and post conditions specified for each refactoring. In this regard, we distinguish the

existing work in two categories: the first category [20] [21] [22] [23] produces only atomic

differences and the second category [24] [25] [26] is able to produce composed differences

such as detecting refactorings. Our work can be classified in the second category. In this

case, the specified conditions are related to the possible changes that can be detected by

comparing between source and revised models. However, some problems limit their

effectiveness. First, it is not possible to find the applied refactorings, if they have been

performed in an overlapping sequence, because their pre and post conditions might not be

valid due to preceding or succeeding refactorings when only considering the initial and the

final versions of a model in the absence of each intermediate version after every single

refactoring. Second, the list of possible changes and their combination may be very large for

some modeling languages, e.g., consider UML where most refactorings of object-oriented

programming may be applied on class diagrams [27]. Thus, it is a fastidious task to specify

detection rules for each possible refactoring combination, which is currently required by

most of the existing approaches. Third, the evolution of a model from an initial version to a

revised version can be described using different refactoring sequences having the same

result. In fact, some complex refactorings are equivalent to a specific composition of basic

refactorings. For instance, an Extract Class refactoring is a combination of a set of atomic

operations such as Create Class, Move Field, Move Method, etc. Thus, some criteria have to

be used to choose the best solution from equivalent ones. One of the important criteria, in

addition to correctness of detected changes, is the number of refactorings used to describe the

14 Related Work

model evolution. In general, minimizing the number of refactorings is equivalent to

maximizing the number of large composite refactorings used to describe the evolution.

Similar to change tracking for programming environments, the usage of change tracking in

model environments has been proposed in [6] coming with the same advantages and

disadvantages as discussed before for program code. The state-based comparison of models

attracted much attention in the last years that led to a huge list of different model comparison

approaches which has been surveyed in [28].

Most approaches for model comparison apply a two step-process: they first identify the

correspondences between model elements of two different model versions, and second, based

on these correspondences, the differences between the two model versions are derived. In the

context of software evolution, difference calculation has been investigated intensively as

witnessed by a number of approaches ranging from simple text comparisons based on the

XMI serializations of models to dedicated model differencing techniques. Table 1 depicts a

summary of the approaches discussed in the following and illustrates a comparison of them

with our proposed approach.

A specialized differencing method has been introduced to compare UML models by Xing

and Stroulia [29]. Another UML specific differencing approach is proposed by Nejati et al.

[4] which is specifically tailored for matching UML state machines. SiDiff [30] started also

as a comparison tool for UML models but has been further generalized to detect changes for

arbitrary models by having an internal generic graph representation to which rarity languages

can be mapped. Alanen and Porres [31] discussed how to detect differences between MOF-

based models. Rivera and Vallecillo [32] propose to compare model based on identifier as

well as structural similarities by using rules defined in Maude. Thus, before the models are

compared, they are translated to corresponding Maude representations on which the

comparison is actually performed. DSMDiff [33] is another protagonist for computing

differences between models, irrespectively of their metamodel. Finally, EMF Compare [34]

15 Related Work

is an Eclipse plug-in for comparing EMF-based models providing out-of-the-box matching

and differencing support as well as several extension points to develop tailored matching and

differencing support. All the approaches mentioned in this paragraph derive only atomic

changes, namely additions, deletions, updates, and some of them, moves.

A few approaches use an additional third step in the model comparison process to combine

atomic changes to composite changes by using dedicated aggregation rules. In particular, the

output of the second phase of model comparison is used as input for the third phase, i.e., the

earlier detected atomic changes are rewritten to composite ones by applying the aggregation

rules.

The starting point is the approach by Xing and Stroulia [27] for detecting refactorings in

evolving software models which is integrated in UMLDiff. For detecting refactorings,

change pattern queries have to be developed for each refactoring. These change pattern

queries are executed on a difference model obtained by a state-based model comparison to

report refactoring applications. The approach is tailored to UML models and the detection of

hidden changes is not mentioned.

In Langer et al. [35], an approach based on graph transformation rules to detect refactorings

in software models is presented. In contrast to [27], no additional rules have to be developed

for detecting changes. On the contrary, the rules for executing the operations are reused for

detecting applications. Using an iterative and incremental operation detection approach,

overlapping operation sequences are supported as long as the post conditions of preceding

operations that enable other succeeding operations are fulfilled in the revised model.

However, operation sequences, in which the post conditions are not fulfilled in the revised

model, are not supported.

Kehrer et al. [26] follows a similar path by proposing to derive dedicated detection rules from

graph transformation rules that represent composite operations. The derived detection rules

are then matched on difference models containing the atomic operations that have been

16 Related Work

applied between two versions of a model. The approach by Vermolen et al. [24] copes with

the detection of evolution steps between different versions of a metamodel to allow for a

higher automation in model migration, i.e., to adapt the existing models to the new

metamodel version. They use a difference model comprising atomic changes as input and

calculate composite changes. The approach is tailored to the core of object-oriented

metamodeling languages, but follows a similar methodology as UMLDiff. However, the

approach requires developing an additional detection rule for every possible change

combination which represents a practical challenge if a larger set of refactoring operations is

used.

In the area of business process modeling, there is the work of Küster et al. [25] for

calculating hierarchical change logs for business process models including compound

changes in the absence of recorded change logs. The authors apply the concept of Single-

Entry-Single-Exit fragments to calculate the hierarchical change logs after computing the

correspondences between two process models. Thereby, several atomic changes are hidden

behind one compound change representing an introduction or deletion of a model fragment.

However, changes that cross-cut the containment hierarchy are not considered.

In summary, the detection of composite operations and hidden operations on models is

currently only discussed by Vermolen et al. [36] and Langer et al. [37]. Nevertheless, when

following [36] for detecting hidden refactorings, additional rules have to be developed by

hand for each possible combination which makes the elaboration of the complete search

space practically impossible due to the huge size of possible refactoring combinations and

even more challenging due to eventually overlapping atomic changes. In [37], no additional

rules are needed, but some refactorings are not detectable when the operation’s post

conditions are not valid in the final model version.

17 Related Work

Detectable Additional Rules Detectable Additional Rules

REF-FINDER yes yes yes no n.a.

Dig et al. yes yes yes no n.a.

Weissgerber et al. yes yes yes no n.a.

Demeyer et al. yes yes* yes yes* no

EMFCompare no no n. a. n.a. n.a.

Alanen & Porres no no n.a. n.a. n.a.

DSMDiff no no n.a. n.a. n.a.

SiDiff no no n.a. n.a. n.a.

Barret et al. no no n.a. n.a. n.a.

Riviera & Vallecillo no no n.a. n.a. n.a.

SiLift no yes no no n.a.

ETL no yes yes no n.a.

UMLDiff yes yes yes no n.a.

Küster et al. yes yes yes no n.a.

Vermolen et al. yes yes yes yes° yes

Langer et al. no yes no yes° no

Hartung & Rahm yes yes yes no n.a.

GenDiff no yes no yes no

Legend:
* an estimation possible refactorings is reported

° hidden operations are only partially supported

Composite changes Hidden Changes Language-

specific

Table 1: Comparison of Selected Comparison Approaches for Programs, Models, and Ontologies

2.2 Model Merging Approaches

Research on versioning systems has a long tradition in software engineering dating back to

the early 1970s [38]. Conradi & Westfechtel [39] proposed so-called version models to

characterize and document the diversity of existing versioning approaches.

With respect to the scope of work in this thesis, namely to integrate two parallel operation

histories into one operation sequence that maximizes the number of successfully applied

important operations, related work dates back to the early 1990s. Before that time, merging

has been mostly achieved based on the states of the artifacts under version control [40]. The

origin work on operation-based merging has been published by Lippe [15]. He pointed out

18 Related Work

several advantages of operation-based merging over purely state-based merging and

contributed the important notion of frontier set [15]. The frontier set is constructed by

building a two-dimensional space, where one axis enumerates the changes by one developer

and the other axis the changes done in parallel by another developer, and subsequently

collecting the points in this space which do not exactly correspond to one possible merge

solution. It is an indicator of extent of conflicts that exist when trying to combine the given

changes. Thus, the frontier set, including the so-called frontier points, is an indicator how far

one can merge two sequences of operations. One goal is to shift the frontier points as far

away from the original model version as possible to maximize the applicability of the

performed operations. One way to shift the frontier points is to reorder the atomic operations,

i.e., to apply all non-conflicting atomic operations before the conflicting ones. What we have

contributed with our search-based approach is a mechanism to reduce the critical points in

the merge process where the users have to be involved, even when composite operations,

such as refactorings, have been applied.

Operation-based merging has been heavily applied in asynchronous collaborative graphical

editing. Edwards [14] has defined several strategies for combining two operation sequences

into one sequence. The strategies range from fully automatic merging by computing each

possible sequence of non-conflicting operations to interactive merging allowing the user to

decide how each operation of a conflicting operation pair should be incorporated in the

finally merged model. Ignat & Norrie [9] have compared an operation-based approach and a

state-based approach for merging operation logs of collaborative graphical editors. They

distinguish “real” conflicts from resolvable conflicts. The latter may be resolved by finding

an appropriate order to incorporate the operations to the final merged model. For finding the

appropriate order, priority lists for operation types have to be defined. In our approach, we

also use priorities, i.e., the importance score, for operations, but only for “real conflicts” and

not for resolvable conflicts as proposed by Ignat & Norrie. The latter are resolved by

searching for the sequences that allow applying the operations of resolvable conflicts.

19 Related Work

Munson & Dewan present a flexible framework for merging arbitrary objects, which may be

configured in terms of merge policies [41]. Merge policies may be tailored by users to their

specific needs and include rules for conflict detection and rules for automatic conflict

resolution. Actions for automatic conflict resolution are defined in merge matrices and

incorporate the kinds of atomic operations made to the object and the users who performed

those operations. Thus, it may be configured, e.g., that operations of specific users always

dominate operations of others, or that updates outpace deletions.

With the advent of MDE, the research topic collaborative modeling is gaining momentum.

Several state-based approaches for model versioning have been proposed (see [40] for an

overview), as well as a few operation-based approaches. Koegel et al. [6] record operations

in modelling editors and provide conflict detection for two sequences of recorded operations.

They also support composite operations, but only consider how these operations are built up

from atomic operations while explicit preconditions are disregarded. If they detect that a

composite operation is in conflict with an atomic operation, they let the user decide which

one to take. Similarly, Barret et al. [42] discuss pushing the frontier points as far as possible

by incorporating all non-conflicting operations to produce a merged model and then let again

the user decide which operation of a conflict pair to prioritize. Other operation-based

approaches for models have been presented in [43] [44] [41], but no dedicated reordering

strategies have been discussed. In [45], the authors present a fixed merge policy with a

dedicated focus on raising the number of enabled parallel operations applied on ordered

features by interleaving insert operations of both developers and relaxing the constraint that

the inserted elements have to be exactly at the given index as long as the relative order of

them is still given. In [46], the authors mention that finding an appropriate sequence for

unifying the operations of two parallel operation sets may be considered as an optimization

problem, but they based their approach on manual conflict resolution during the merge

process.

20 Related Work

Cicchetti et al. [47] propose an adaptable merging algorithm by defining conflict patterns

describing specific difference patterns which are supplemented with a reconciliation strategy.

Such strategies state how the conflicts should be automatically resolved by specifying either

which side should be preferred in the merge process or by introducing a transformation to

resolve the conflict. While policy-based approaches require user intervention in certain

conflict cases where no policy is at hand, [10] present a formal merge approach based on

graph transformation theory, yielding a merged model by construction and deferring the

resolution of conflicts.

In summary, maximal arbitrary application orders of the operations is not considered by

existing operation-based merge approaches. State-of-the-art approaches mostly reside on a

two-phase process: first, they apply the non-conflicting operations and then let the user select

the operation to be prioritized out of two conflicting operations. In contrast, our approach

explores arbitrary sequences and the result is the most applicable sequence of operations

found by NSGA-II. Thus, we are able to minimize the critical and labor-intensive tasks

involving user interaction in the merge process going beyond existing state-of-the-art

approaches.

2.3 Detection of Design Defects

Software metrics can be used to capture the structural and semantic attributes of the software,

and can be a reliable indicator of the quality of design. These quality indicators can then be

used to quantitatively estimate and reflect the design signatures of a software architecture in

terms of many metrics including coupling, cohesion, cyclic complexity etc. The code smell

detection process usually involves finding the fragments of code which violate these software

metrics. Chidamber and Kemerer [48] has performed one of the benchmarking studies in

classifying these software metrics for object oriented architectures. We selected and used in

our experiments the following quality metrics, namely Weighted Methods per Class (WMC),

21 Related Work

Response For a Class (RFC), Lack of Cohesion Of Methods (LCOM), Cyclomatic

Complexity (CC), Number of Attributes (NA), Attribute Hiding factor (AH), Method Hiding

factor (MH), Number of Lines of Code (NLC), Coupling Between Object classes (CBO),

Number of Classes (NC), Depth of Inheritance Tree (DIT), Polymorphism Factor (PF),

Attribute Inheritance Factor (AIF) and Number Of Children (NOC). Table 2 lists the

relevant structural metrics along with their desirable value ranges.

Table 2: Structural Metrics, their relevance and desirable value ranges.

Weighted Method

Class

It measures the effort needed to maintain a

class by counting the number of methods in

class along with their normalized complexity

[49].

Desirable value should be low

Response for a

class

It is the count of number of methods and

constructors that can be invoked in a class

[50].

Desirable value should be low.

Usually a value less than 50 is

recommended.

Lack of Cohesion

Method

It estimates the cohesiveness of methods

present in a class. Classes with disjoint

methods with non intersecting functionalities

are prone to bugs and higher effort during

maintenance. Non cohesive classes are good

candidates for sub division into more cohesive

smaller classes [51].

Lower values are more

desirable since it indicates

absence of non-cohesive

characteristics among methods

in a class.

Cyclomatic

Complexity

It estimates the program complexity by

measuring the number of linearly independent

paths. A high cyclomatic complexity indicates

that that program structure is too complex

resulting in increased risk in maintenance [52].

Low values are desired.

Number of

Attributes

Number of attributes in a class counts the

number of fields in a class. It helps in

estimating the risk potential in future

extensions and maintainability. A class with

too many attributes is a high risk class and is a

possible candidate ExtractClass [50].

Low values are desired. Values

higher than 10 may pose

potential risks.

Attribute Hiding

Factor

It is a measure of attribute hiding. Ideally all

attributes should be hidden and be visible only

It is measured in ration and can

have maximum value of 1 for

22 Related Work

to corresponding class methods. This not only

improves encapsulation but also

implementation refinement in the design [53].

best case scenarios. Values

close to zero indicates

complete absence of

encapsulation in the design.

Method Hiding

Factor

It is a measure of functionality in class

methods. It indicates a tradeoff between

functionality and abstractness. A good design

incorporates as much functionality in its class

methods while not compromising on

abstractness [53].

The value is a tradeoff. A high

value indicates high

functionality. However, high

functionality might be

achieved at the expense of

abstractness in the design.

Number of Lines of

Code

It is the count of number of physical lines in

the code. In our experiment we include every

line in the source code including comments

but excluding blanks.

It can be used as a metric to

measure the size of program,

class or a method. It is used in

conjunction with other metrics.

Coupling between

Objects

It is a count of number of classes a considered

class is coupled. A high coupling indicates that

methods in one class are excessively used in

the other classes. This indicates lack of

modular design and potentially high

maintenance costs [48].

The desired value for this

metric is low. Inter object class

coupling should be kept to

minimum to allow for less

complex, modular and

encapsulated design.

Number of Classes It is the number of classes in the source code.

It is to be used in conjunction with other

supporting metrics such as response of a class,

weighted method etc.

Though no desired value can

be ascribed to this metric, the

objective is to have number of

classes in the design such that

complexity and cohesion is

reduced with minimal tradeoff

on coupling.

Depth of

Inheritance Tree

It quantitatively measures the depth of a class

in class hierarchy. Since a change in an

ancestor class might trigger a change in

inherited class, a class lying deep in

inheritance tree usually requires higher

maintenance cost [48].

A bigger inheritance tree

usually results in more

complexity. DIT should be

small with recommended value

range of less than 5.

Polymorphism

Factor

It is a measure of use of parametrized classes

in the system. This allows for flexible and

refined design.

It is measured in ratio with 1

indicating maximum usage of

parametrization.

Attribute

Inheritance Factor

A class which inherits a lot of attributes from

its ancestor results in high attribute inheritance

[54]. It indicates the level of reuse in the

system.

Higher value indicates reuse of

ancestral attributes while low

value indicates redefinition.

The value is upper bounded to

50%.

23 Related Work

Number of

Children

It is the count of number of directly

subordinate classes in class hierarchy tree.

Greater number of children

might indicate improper

abstraction, deeper inheritance

as well as more complex

design.

The manual definition of rules to identify is difficult and can be time-consuming. One of the

main issues is related to the definition of thresholds when dealing with quantitative

information. For example, the Blob detection involves information such as class size.

Although we can measure the size of a class, an appropriate threshold value is not trivial to

define. A class considered large in a given program/community of users could be considered

average in another. Thus, the manual definition of detection rules sometimes requires a high

calibration effort. Furthermore, the manual selection of the best combination of metrics that

formalize some symptoms of code-smells is challenging. In fact, multiple metrics can detect

same symptoms while tracking their corresponding code smell trigger signature. For

example, a very deep inheritance tree might also be accompanied by unsettling values in

number of children, coupling between objects, cohesion etc. Thus different possible metric

combinations need to be explored to fully exploit the visibility of smell in multiple metrics.

In addition, the translation of code-smell definitions into metrics is not straightforward. Some

definitions of code-smells are confusing and it is difficult to determine which metrics to use

to identify such design problems.

2.4 Correction of Design Defects

With respect to the contribution of this work, we organize related approaches using three

categories of related work: (i) refactoring approaches working solely on the model level, (ii)

refactoring working on model and code level that may be also considered as a kind of multi-

view refactoring, and (iii) widely related approaches working solely on the code level.

24 Related Work

2.4.1 Model Level Refactoring

Two surveys concerning model refactorings are available [55] [56] that discuss different

research trends and classifications for model refactoring. One of the first investigations in

this area was done by Sunyè et al. [57] who define a set of UML refactorings on the

conceptual level by expressing pre- and post-conditions in OCL. Boger et al. [58] present a

refactoring browser for UML supporting the automatic execution of pre-defined UML

refactorings. While these two approaches focus on pre-defined refactorings, approaches by

Porres [59], Zhang et al. [60], and Kolovos et al. [61] discuss the introduction of user-defined

refactorings by using dedicated textual languages for their implementation. A similar idea is

followed in [62] [63]where graph transformations are used to describe refactorings and graph

transformation theory is applied for analyzing model refactorings. Pattern-based refactoring

for UML models with model transformations is presented in [64].

The mentioned approaches cover mostly single-view refactorings and focus on the

implementation of semi-automatically executable refactorings. Only some approaches for

tackling consistency between different views in the context of refactorings have been

presented. For instance, [65] [66] proposed to refactor UML class diagrams, also adapting

attached OCL constraints. Another approach that considers the effect on refactorings of UML

class diagrams on operations implemented in OCL with respect to behavioral equivalence is

presented in [67]. A constraint-based refactoring approach for UML is presented in [68]

which considers well-formed rules and translates refactorings to CSP to eventually compute

the additional changes required for a semantic-preserving model refactoring.

Reuse of model refactorings for different languages is discussed in [69] by specifying generic

role-based refactorings that can be bound to specific languages. Another approach aiming for

generic model refactorings is present in [70] by using a combination of aspect weaving and

model typing. Refactorings are developed on a generic metamodel and may be reused for

specific metamodels which fulfill the model typing relationship to the generic metamodel.

25 Related Work

In [71] tool support for defining model metrics, smells, and refactorings is presented. In

particular, language specific and project specific metrics, smells, and refactorings for the

design-level may be defined based on graph transformations. A refactoring approach

considering performance optimization of models, i.e., runtime-level, is presented in [19]. In

this context, refactorings are used to eliminate anti-patterns that may have a negative impact

on performance aspects.

Related to multi view refactoring is the field of multi-view consistency [72]. We have early

works on multi-view consistency [61] [17] using a generic representation of modifications

and relying on users to write code to handle each type of modification in each type of view.

This idea influenced later efforts on model synchronization frameworks in general [73] [74]

and in particular bi-directional model transformations [75] [64]. Other approaches use so-

called correspondence rules for synchronizing models in the contexts of RM-ODP and

model-driven web engineering [76] [77] [70]. All these approaches have in common that they

consider only atomic changes when reconciling models and not refactorings. In [70], coupled

transformations to refactor different views were presented by automatically executing the

coupled transformations when initial transformations are executed.

In related work [78] it has been proposed to use Interactive Genetic Algorithm (IGA) for

model refactoring allowing the modelers to provide feedback during refactoring focusing on

single-view improvements.

To abridge, all these mentioned model refactoring approaches are mostly considering a single

view during refactoring. If multiple views are considered by approaches from multi-view

synchronization, the only quality aspect that is taken care of is having consistency between

the different viewpoints.

26 Related Work

2.4.2 Multi View Refactoring

The synchronization of models and code is a considerably challenging issue when it comes to

refactoring. In [79], distributed graph transformations are used to specify coupled

refactorings on UML models and Java code. Van Gorp et al. [74] have presented an

extension of the UML metamodel which allows expressing the pre and post conditions for

refactorings as well as for representing method implementations in UML class diagrams

based on the UML action semantics – a predecessor of fUML. Furthermore, they use OCL to

detect code smells on the model level and propose to refactor designs independent of the

underlying programming language on the model level by applying the following

transformation chain: reverse engineering, model refactoring, and forward engineering. The

approach for constraint-based model refactoring [68] discussed before, has been also

extended for dealing model/code co-refactoring by so-called bridge constraints that capture

the correspondences between model elements and the code elements [80].

To sum up, there are some approaches that consider refactorings on both model and code

level, but we are not aware of any approach considering the models aligned with code as a

multi-objective optimization problem.

27 Search Based Problem Solving

Chapter 3: Search Based Problem Solving

3.1 Search Based Optimization Algorithm – NSGA-II

3.1.1 NSGA-II Definitions

Before describing the adaptation of NSGA-II to solve the multi objective optimization

problems, some background definition related to multi-objective optimization is described

based on [81]:

Definition 1 (MOP). A multi-objective optimization problem (MOP) consists in minimizing or

maximizing an objective function vector under some constraints. The general form of a MOP

is as follows:





















.1

1 0)(

1 0)(

)](),...,(),([)(21

,...,nixxx

,...,Q;kxh

,...,P;jxg

xfxfxfxfMin

U

ii

L

i

k

j

T

M

where M is the number of objective functions, P is the number of inequality constraints, Q is

the number of equality constraints,
L

ix
 and

U

ix
 correspond to the lower and upper bounds of

the variable ix
. A solution ix

 satisfying the (P+Q) constraints to be feasible and the set of all

feasible solutions defines the feasible search space denoted by Ω. In this formulation, we

consider a minimization MOP since maximization can be easily turned to minimization based

on the duality principle by multiplying each objective function by -1. The resolution of a

MOP consists in approximating the whole Pareto front.

Definition 2 (Pareto optimality). A solution *x is Pareto optimal if  x and

 MI ,...,1 either Im we have
)()(*xfxf mm 

 or there is at least one Im such that

28 Search Based Problem Solving

)()(*xfxf mm 
.The definition of Pareto optimality states that

*x is Pareto optimal if no

feasible vector x exists which would improve some objective without causing a

simultaneous worsening in at least another one. Other important definitions associated with

Pareto optimality are essentially the following:

Definition 3 (Pareto dominance). A solution u = (u1,u2,..., un) is said to dominate another

solution v= (v1,v2,...,vn) (denoted by)()(vfuf ) if and only if)(uf is partially less than

)(vf . In other words,  Mm ,...,1  we have
)()(vfuf mm 
 and  Mm ,...,1  where

)()(vfuf mm 
.

Definition 4 (Pareto optimal set). For a MOP)(xf , the Pareto optimal set is

 )()'(,' * xfxfxxP 
.

Definition 5 (Pareto optimal front). For a given MOP)(xf and its Pareto optimal set
*P , the

Pareto front is  *PxxfPF ),(*

.

3.1.2 Overview of NSGA-II

NSGA-II [82] is one of the most widely used multi-objective evolutionary algorithms (EAs)

in tackling real world problems including software engineering ones [83] [84] to find trade-

offs between different objectives simultaneously. It begins by generating an offspring

population from a parent one by means of variation operators (crossover and mutation) such

that both populations have the same size. After that, it ranks the merged population (parents

and children) into several non-dominated layers, called fronts, as depicted in Figure 6. Non-

dominated solutions are assigned a rank of 1 and constitute the first layer. Non-dominated

solutions according to the population truncated of the layer 1 are assigned rank of 2 and

constitute the layer 2. This process is continued until the ranking of all parent and children

individuals is complete. After that, each solution is assigned a diversity score, called

29 Search Based Problem Solving

crowding distance, front wise. This distance corresponds to the half of the perimeter of the

cuboid having the two closest neighboring solutions to the considered individual as vertices.

It is important to note that extreme solutions are assigned an infinite crowding score since

they are of great importance for diversity. The fitness in NSGA-II is not a scalar value. In

fact, it is a couple (rank, crowding distance). Solutions having better ranks are emphasized.

Among solutions having the same rank (belonging to the same layer), solutions having larger

crowding distances are emphasized since they are less crowded than the others. Once all

individuals of the merged population are assigned a rank and a diversity score, we perform

the environmental selection to form the parent population for the next generation. Indeed,

solutions belonging to the best layers are selected. Figure 6 illustrates this process where the

last selected layer is the 4
th

 one. Usually, the cardinality of the last layer (layer 4 in Figure 6)

is greater than the number of available slot in the parent population of the next generation. As

denoted by Figure 6, solutions of the 4
th

 layer are selected based on their crowding distance

values. In this way, most crowded solutions are the least likely to be selected; thereby

emphasizing population diversification. To sum up, the Pareto ranking encourages

convergence and the crowding factor procedure emphasizes diversity, therefore NSGA-II is

an elitist multi-objective EA which is today widely used to address real-world problems

including software engineering ones.

30 Search Based Problem Solving

Figure 6 : NSGA-II replacement scheme.

3.2 Quality Metrics for Search Based Optimization

When comparing two mono-objective algorithms, it is usual to compare their best solutions

found far during the optimization process. However, this is not applicable when comparing

two multi-objective evolutionary algorithms since each of them gives as output a set of non-

dominated (Pareto equivalent) solutions. For this reason, we use the three following

performance indicators [85] when comparing NSGA-II with any other multi objective

optimization scheme:

Hypervolume (IHV) corresponds to the proportion of the objective space that is dominated

by the Pareto front approximation returned by the algorithm and delimited by a reference

point. A Pareto front or a set is a set up non dominated solutions among which every solution

meets the selection criteria. It is difficult to improve the quality of a pareto solution without

adversely affecting the quality of other solutions in the front. Larger values for this metric

mean better performance. The most interesting features of this indicator are its Pareto

dominance compliance and its ability to capture both convergence and diversity. The

reference point used in this study corresponds to the nadir point [86] of the Reference Front

31 Search Based Problem Solving

(RF), where the Reference Front is the set of all non-dominated solutions found so far by all

algorithms under comparison as shown in Figure 7.

Inverse Generational Distance (IGD) is a convergence measure that corresponds to the

average Euclidean distance between the Pareto front Approximation (PA) provided by the

algorithm and the reference front RF. The distance between PA and RF in an M-objective

space is calculated as the average M-dimensional Euclidean distance between each solution

in PA and its nearest neighbour in RF. Lower values for this indicator mean better

performance (convergence).

Contribution (IC) corresponds to the ratio of the number of non-dominated solutions the

algorithm provides to the cardinality of RF. Larger values for this metric mean better

performance.

Figure 7 : A Demonstration of Nadir Point in a set of non dominated solutions in a Pareto Front.

Throughout this work we use these three metrics to compare performance of different MOGP

schemes and evaluate the quality of the selected solution sets.

32 Changes Detection at Model Level

Chapter 4: Changes Detection at Model Level

4.1 Introduction

Models evolve during software development process. It can be incremental evolution due to

design improvement, requirement changes, implementation bottlenecks and work around,

feedback from end users, budget dependencies, or software milestones. Furthermore, parallel

models can evolve from main trunk due multiple product lines, new products, software

module reuse etc. By enabling optimum model reuse among different product lines, code

reuse is increased, and therefore cost of developing, testing, delivering and maintaining

software decreases. However, model reuse is not a simple problem. The fundamental knot in

enabling model reuse among different product lines is to detect changes between parallel

models. If these changes can be broken down into atomic or composite blocks, it will allow

the software development to estimate the cost of changes, develop glide path to reach new

model from existing model, and implement and deploy the changes. This strategy of change

detection allows existing models to be reused heavily, therefore reducing the cost of

developing and maintaining customized software specific to needs to multiple product lines.

33 Changes Detection at Model Level

Figure 8 : A Base Model with set of defined APIs and Specifications is being compared using SBSE techniques with

an evolved Model.

4.1.1 Model Comparison : A Motivating Example

To illustrate the issue of overlapping sequences of refactorings, we present in this section a

motivating example for illustrating atomic operations and discuss the challenges of finding

an optimal sequence of composite operations that best describes the evolution history of a

model.

Consider the evolution scenario depicted in Figure 10. In this scenario, we have two model

versions, called V1 and V2, in the repository. Between these two versions, two refactorings

have been applied. First, the user applied the refactoring Inline Class. This refactoring moves

all features of the class to be inlined into another class that originally references the inlined

class. Finally, the inlined class can be deleted without losing any information. The

precondition of this refactoring is that the inlined class is referenced through a single-valued

reference by the class that eventually contains all features. Applying this refactoring to our

34 Changes Detection at Model Level

example, the attribute version is moved from the class Description to Service and the class

Description, as well as the reference description in class Service, is finally deleted.

Figure 9: Example of atomic refactoring between evolving models

When applying a model comparison algorithm to the model versions V1 and V2, we detect

that the class Description has been deleted and the attribute version has been added to

WebService and RESTService. However, this situation does not match with any refactoring

specification, because neither the postconditions of Inline Class nor the preconditions of Push

Feature are fulfilled when only considering the available model versions V1 and V2. Thus, no

refactoring can be detected, as the second refactoring hides the operation constituting the first

refactoring and the intermediate state V1' is not available in the repository.

Although several remarkable techniques have been proposed for deriving the applied

operations a posteriori from two versions of a model. However, most of the existing model

comparison tools are capable of detecting only atomic operations and, thus, do not provide

35 Changes Detection at Model Level

the crucial information for enabling several model management tasks that also require the

explicit knowledge on applied composite operations.

An example for atomic changes and how they are represented is shown in Figure 10. In this

Figure, two versions of a simple UML class diagram representing different kinds of services

are shown in the upper and lower half of the Figure, whereas in the middle the atomic

operations between the two versions are represented. Although, for this simple example the

differences are not too complex to understand, larger examples that involve a higher number

of operations are challenging to be understood. Furthermore, for reasoning on the evolution

of models, a set of atomic operations solely fails to reveal explicitly the reasons and

intentions behind the actual evolution. Therefore, an explicit set of composite operations

would be necessary.

Figure 10: Change list in terms of atomic refactoring operations between V1 and V2 models. The lack of presence of

composite operations makes it difficult to infer the underlying reasons behind the choice of atomic refactoring

operations.

However, only a few approaches have been proposed that also address the detection of

composite operations. These approaches search for patterns of atomic operations among all

atomic operations obtained from model comparison tools. If a change pattern of a composite

RESTService

Service Description

version : String
description

1

WebService

RESTService

Service

version : String

WebService

version : String

V1

Differences ‘

V2

 Deletion: Reference Service.description

 Deletion: Class Description

 Deletion: Attribute Description.version

 Addition: Attribute WebService.version

 Addition: Attribute RESTService.version

36 Changes Detection at Model Level

operation is found, they evaluate the pre and post conditions of the respective operation

before an occurrence of the operation is reported. A detailed case study of such an approach

[35] revealed that successful detection of such operations is only achieved as long as there

are no overlapping sequences of composite operations. However, in several scenarios the

subsequent operations mask preceding operations (e.g., they delete an updated element so

that the update is not visible anymore) or render the postconditions of the preceding

operations invalid. Also it is not uncommon that multiple composite parallel or overlapping

operations might have been applied. As a result, current approaches do not have a high

detection rate of composite operations especially when overlapping composite sequences are

present. Studies, however, have shown that as much as 20% of model transformation consists

of overlapping composite sequences [35]. This highligts the importance of detection

mechanism which is resilient to presence of composite operations in all its different

personifications including overlapping sequences.

4.1.2 Quality of Detected Operations Sequence

A naive approach to this problem would be to relax the pre and post conditions of

refactorings to a certain degree during the detection process. However, this would lead to

several wrong refactoring indications (false-positives). Moreover, the pre and post conditions

are very specific to certain refactorings and it seems to be impossible to decide on a general

basis which conditions can be relaxed and which conditions should hold at any time to

accomplish a trustworthy refactoring detection.

A better approach is to search for a possible sequence of operations that lead from the initial

model to the given final model, whereas the preconditions of every operation in this sequence

are fulfilled when applied at the respective position in the sequence. However, as applying

one operation in this sequence may affect the applicability of subsequent operations, finding

a valid operation sequence is a combinatorial optimization problem within a huge search

space. But not all valid solutions are good solutions in terms of understandability and

37 Changes Detection at Model Level

minimality. Consider, for instance, the alternative operation sequence (Figure 11) which

constitutes a valid solution for the same initial version V1 and revised version V2 too. In this

sequence, we first add the class Description as a superclass of Service and apply the

composite operation Imitate Super Class to Service. This refactoring replaces a superclass by

a subclass, whereas all its features are maintained by the respective subclass. Thus, in our

example, the target of the reference description is changed from Description to Service and

the attribute version of Description is moved to Service. Finally, the class Description is

deleted as it is now imitated entirely by the class Service. Next, we delete the feature

description and finally apply the Push Feature refactoring to obtain the same version V2 as

from the original sequence in Figure 10.

38 Changes Detection at Model Level

Figure 11: Alternate Operations Sequences

Although this operation sequence is valid in terms of the preconditions of all applied

operations and does not contain unnecessary operations (e.g., an addition of an element that

is removed again later), it still does not reflect the evolution optimally, because it is not as

concise as the original sequence and it still contains an atomic operation that has been

39 Changes Detection at Model Level

originally part of a refactoring (i.e., Delete Feature, which deletes the reference description).

Note that even more alternative sequences of operations that also constitute valid transitions

from V1 to V2 are possible. However, all of these alternative operation sequences contain

additional atomic and composite operations instead of showing the most direct transition

from V1 to V2. In addition, it is easier for developers to understand changes described in terms

of a short sequence of composite operations. Thus, these sequences distort the actual

evolution, as well as the original intentions of the users. This makes it harder to understand

the model evolution and potentially hampers the automation of certain model management

tasks that depend on these operation sequences.

Figure 12 : Possible set of operations (both atomic and composite) which can generate a target model from an initial

one.

4.2 Approach Overview

4.2.1 Detection Scheme

The general structure of our approach is introduced in Figure 13. The approach takes as

input an initial and revised (evolved) model, and as controlling parameters, an exhaustive list

40 Changes Detection at Model Level

of refactoring operations. The approach generates a set of refactoring applications that

represents the evolution from the initial model to the revised model. The process of detecting

model changes can be viewed as the mechanism that finds the best way to combine

refactoring operations of the exhaustive list of possible refactorings, in such a way to (i)

maximize the similarity between the revised model and the resulting model when applying

the detected refactorings on the initial model and (ii) minimize the number of refactorings. In

other words, this process aims at finding the best tradeoff between these two conflicting

criteria. In fact, maximizing the correctness of the detected refactorings corresponds to

maximizing the similarity between the initial model after applying refactorings and the

revised one (expected or evolved model). Minimizing the number of refactoring used to

describe the changes corresponds to maximizing the use of a few larger (composite)

refactorings instead of using a larger amount of smaller (atomic) refactorings for describing

the evolution.

Figure 13 : Input and output of the multi-objective model change detection approach

Due to the large number of possible refactoring solutions and the two conflicting objectives,

we consider the detection of refactoring between different model versions as a multi-

objective optimization problem instead of a single-objective one [87]. The algorithm explores

a huge search space. In fact, the search space is determined not only by the number of

possible refactoring combinations, but also by the order in which they are applied. Formally,

if m is the number of available refactoring operations, then the number of possible

refactoring solutions is given by all the permutations of all the possible subsets and is at least

equal to: (m!)
m
. The shear vastness of search space is shown in Figure 14. It is evident that

Multi-Objective

Refactoring Detection

(by NSGA-II)

Initial model

Revised model

Refactoring

Operations

Refactoring

Applications

41 Changes Detection at Model Level

with just number of three available rfactoring operations the search space can be as large as

300 possible solutions. This number can be bigger, since the same refactoring operations can

be applied several times in different model fragments. To explore this huge search space, we

use the non-dominated sorting genetic algorithm (NSGA-II) to find the best trade-off

between our two conflicting objectives [82].

Figure 14 : Size of search space. Graph Plotted for (m!)m.

4.2.2 Solution Coding

One key issue when applying a search-based technique is to find a suitable mapping between

the problem to solve and the techniques to use, i.e., in our case, detecting high-level model

changes. We discuss an example where the i
th

 individual (solution) represents a combination

of refactoring operations to apply. The order of applying refactorings corresponds to their

position in the table (referred to as dimension number in the following). In addition, the

execution of the refactorings respects pre and post conditions to avoid conflicts and semantic

42 Changes Detection at Model Level

inconsistencies. Furthermore, it has to be noted that the same type of refactoring operation

could be applied several times in the same solution(but to different model fragments).

Figure 15 :Solution Coding Example

For instance, the solution represented in Figure 15 is composed by two dimensions

corresponding to two refactoring operations to apply in some model fragments. The two

refactorings composing the generated solution are Push Feature that is applied to the

reference description and Unfold Class that is applied to the class Description. After

applying the proposed solution we obtain a new model that will be compared with the

expected revised model using a fitness function.

When generating a solution, we selected from the exhaustive list of refactorings proposed by

Fowler in [88] which can be applied in the model level for UML class diagrams. But it has to

43 Changes Detection at Model Level

be noted that the approach is designed to be generic, thus also other refactorings for various

modeling languages may be supported. We considered the following list of refactorings in

our experiments:

 Replace Inheritance with Delegation Replaces a direct inheritance relationship with

a delegation relationship.

 Replace Delegation with Inheritance Replaces a delegation relationship with a

direct inheritance relationship.

 Rename Class Changes the name of a class to a new name, and updates its

references.

 Extract Hierarchy Adds a new subclass to a non-leaf class C in an inheritance

hierarchy.

 Extract Subclass Adds a new subclass to class C and moves the relevant features to

it.

 Extract Superclass Adds a new super class to class C and moves the relevant

features to it.

 Collapse Hierarchy Removes a non-leaf class from an inheritance hierarchy.

 Inline Class Moves all features of a class into another class and deletes it.

 Extract Class Creates a new class and moves the relevant features from the old class

into the new one.

 Push Down Method Moves a method from a class to those subclasses that require it.

 Pull Up Method Moves a method from some class(es) to the immediate superclass.

 Rename Method Changes the name of a method to a new one, and updates its

references.

 Move Method Creates a new method with a similar body in the class it uses most.

Either turns the old method into a simple delegation, or removes it.

 Push Down Field Moves a field from a class to those subclasses that require it.

44 Changes Detection at Model Level

 Pull Up Field Moves a field from some class(es) to the immediate superclass.

 Move Field Moves a field from a class to another one which uses the field most.

 Rename Field Changes the name of a field to a new name, and updates its references.

 Encapsulate Field Creates getter and setter methods for the field and uses only those

to access the field.

4.2.3 Solution Search

For NSGA based search algorithm to initialize, the first step is to select an initial set of

population. This population set will evolve in successive generations based on a set of well

defined criteria to iterate towards the optimum solution in search space.

4.2.3.1 Initial Population Set

To generate an initial population, we start by defining the maximum vector length including

the number of refactorings. The vector length is proportional with the number of refactorings

to use for detecting model changes. Sometimes, a high vector length does not mean that the

results are more precise, but that only a few refactorings are sufficient to detect changes.

These parameters can be specified either by the user or chosen randomly. Thus, the

individuals have different vector length (structure). Then, for each individual we randomly

assign one refactoring, with its parameters, to each dimension.

4.2.3.2 Selection Criteria

Since any refactoring combination is possible, we do need to define some conditions to

verify when generating an individual. For example, we cannot remove a method from a class

that was already moved to another class, thus the pre-conditions and post conditions of the

operations have to be fulfilled before their execution.

To select the individuals that will undergo the crossover and mutation operators, we used the

stochastic universal sampling (SUS) [89], in which the probability of selection of an

45 Changes Detection at Model Level

individual is directly proportional to its relative fitness in the population. SUS is a random

selection algorithm which gives higher probability to be selected to the fittest solutions while

still giving a chance to every solution. For each iteration, we use SUS to select individuals

(population_size/2) from population Pn for the next population Pn+1. These selected

individuals (upper half of the ranking) will “give birth” to new individuals (substituting the

lower half of the ranking) using the crossover operator.

4.2.3.3 Crossover

When two parent individuals are selected, a random cut point is determined to split them into

two sub-vectors. Then, crossover swaps the sub-vectors from one parent to the other. Thus,

each child combines information from both parents. This operator must enforce the length

limit constraint by eliminating randomly some refactoring operations.

For each crossover, two individuals are selected by applying the SUS selection. Even though

individuals are selected, the crossover happens only with a certain probability. The crossover

operator allows creation of two offspring : P1’ and P2’ from the two selected parents : P1 and

P2. A random position k is selected. The first k refactorings of P1 become the first k elements

of P1’. Similarly, the first k refactorings of P2 become the first k refactorings of P2’.

Figure 16 shows an example of the crossover process. In this example, P1 and P2 are

combined to generate two new solutions. The right sub-vector of P1 is combined with the left

sub-vector of P2 to form the first child, and the right sub-vector of P2 is combined with the left

sub-vector of P1 to form the second child.

4.2.3.4 Mutation

The mutation operator consists of randomly changing one or more dimensions (refactoring)

in the solution (vector). Given a selected individual, the mutation operator first randomly

selects some dimensions in the vector representation of the individual. Then the selected

dimensions are replaced by other refactoring. Furthermore, the mutation can only modify the

46 Changes Detection at Model Level

controlling elements of some dimensions without replacing the operation by a new one.

Figure 16 illustrates the effect of a mutation that replaced the dimension number one Push

Feature (description) by Push Feature (version).

Figure 16 : Example of Cross Over and Mutation Operations

4.2.4 Correctness Function

In general, the encoding of a solution should be formalized as a mathematical function called

“fitness function”. The fitness function quantifies the quality of the proposed refactoring

sequence. The goal is to define an efficient and simple fitness function in order to reduce the

computational complexity. In our work, we are using two fitness functions. The first function

is based on a similarity score between the generated models and expected ones to maximize

the correctness of detected model changes. The second function counts the number of used

refactoring to detect the changes. This function tends to rank the solution higher if it has

smaller number of refactoring sequences. In fact, minimizing the number of refactoring

improves the comprehension of model evolution by favoring course-grained changes over

fine-grained changes and reduces possible redundancies in the change sequence.

The quality of an individual, in terms of correctness, is proportional to the quality of the

refactoring operations composing it with respect to the expected revised model. In other

words, the best solution is the one that maximizes the similarity between the computed

model, obtained after applying the refactoring sequence, and the expected revised model.

47 Changes Detection at Model Level

In this context, we define the fitness function of a solution, normalized in the range [0, 1], as:

where t is the number of model elements in the expected revised model, p is the number of

model elements in the generated model, and ai has value 1 if the ith element in the generated

model exists in the expected one, and value 0 otherwise.

To illustrate the fitness function, we consider the example of Figures 2 and 6. The model V2

of Figure 3 is considered as the expected revised model and V2 of Figure 6 as the generated

model after applying the refactoring solution. There are two differences between the two

models which correspond to class Description and attribute version. The fitness function in

this case is :

Figure 17 : Comparison between the generated model and the expected model

48 Changes Detection at Model Level

In our approach, we define the complexity function, to minimize, as the number of

refactoring used to detect the changes: fsize = n, where n is the number of refactorings in the

generated solution.

4.3 Validation

4.3.1 Research Questions

In order to evaluate the feasibility of our approach for detecting high-level model changes,

we conducted an experiment based on different versions of real-world models extracted from

large open source systems [90] [91] [92] [93] [94]. We defined seven research questions that

address the applicability and performance in comparison to existing model changes detection

approaches, and the usefulness of our multi-objective formulation. The seven research

questions are as follows:

RQ1: Search validation (sanity check). To validate the problem formulation of our

approach, we compared our NSGA-II formulation with Random Search (RS). If RS

outperforms an intelligent search method, we can conclude that there is no need to use a

metaheuristic search.

RQ2: To what extent can the proposed approach detect correctly changes between

different model versions (in terms of correctness and completeness) and reduce the

number of refactorings (reducing redundancies/overlaps and maximizing the use of

complex/composite refactorings)?

The next four questions are related to the comparison between our proposal and the state-of-

the-art model changes detection approaches.

RQ3.1: How does NSGA-II perform compared to another multi-objective algorithm? It

is important to justify the use of NSGA-II for the problem of model changes detection. We

compare NSGA-II with another widely used multi-objective algorithm, Multi-Objective

Particle Swarm Optimization (MOPSO) [95] using the same fitness functions.

49 Changes Detection at Model Level

RQ3.2: How does our multi-objective model changes detection formulation perform

compared to a mono-objective one? A multi-objective algorithm provides a trade-off

between the two objectives where developers can select their desired changes detection

solution from the Pareto-optimal front. A mono-objective approach uses a single fitness

function that is formed as an aggregation of both objectives and generates as output only one

solution of detected changes. This comparison is required to ensure that the solutions

provided by NSGA-II and MOPSO provide a better trade-off between the two objectives

than a mono-objective approach. Otherwise, there is no benefit to our multi-objective

adaptation.

RQ3.3: How does NSGA-II perform compared to existing search-based model changes

detection approaches? Our proposal is the first work that treats the problem of model

changes detection using a multi-objective approach. However, in [55], a mono-objective

genetic algorithm is used for model changes detection using only one objective which is

maximizing the similarity with the expected version.

RQ3.4: How does NSGA-II perform compared to existing model changes detection

approaches not based on the use of metaheuristic search? While it is very interesting to

show that our proposal outperforms existing search-based model changes detection

approaches, software developers and engineers will only consider our approach useful [96] if

it can outperform other existing tools [37] [96] that are not based on optimization techniques.

The last research question is related to the benefits of our approach for software engineers.

RQ4: Can our multi-objective approach for model changes detection be useful for

software engineers in a real-world setting? In a real-world problem, it is important to show

that it is useful to consider the correctness, size and understandability of detected model

changes. A feed-back from software engineers is required to illustrate the importance of the

use of a multi-objective approach for model changes detection in a real-world setting.

50 Changes Detection at Model Level

4.3.2 Experimental Setup

We chose to analyze the extensive evolution of three Ecore-based metamodels coming from

the Graphical Modeling Framework (GMF)
1
, an open source project for generating graphical

modeling editors. In our case study, we considered the evolution from GMF’s release 1.0

over 2.0 to release 2.1 covering a period of two years. We analyzed the revisions of three

models, namely the Graphical Definition Metamodel, the Generator Metamodel, and the

Mappings Metamodel. Therefore, the respective metamodel versions had to be extracted

from GMF’s version control system and, subsequently, manually analyzed to determine the

actually applied changes between successive metamodel versions. For achieving a broader

data basis, we additionally used an existing corpus [97] of 81 releases of four open source

Java projects, namely Apache Ant, ArgoUML, JHotdraw and Xerces-J. We used Rational-

Rose tool to extract the models from the different open source systems. Apache Ant is a build

tool and a library specifically conceived for Java applications. ArgoUML is an open source

UML modeling tool. Xerces is a family of software packages for parsing and manipulating

XML. It implements a number of standard APIs for XML parsing. JHotdraw is a framework

used to build graphic editors. Table 3: Open Source Systems used for studyreports the open

source system characteristics of the analyzed systems. The table also reports the number of

refactoring operations (as well as the number of different kinds of refactorings) identified for

the different systems. More than 17000 refactoring applications on code level have been

identified and analyzed manually to filter out those that cannot be applied on the model level.

This analysis resulted in 9128 refactoring applications that can be considered on model level

and, thus, constitute the input of our experiment.

We choose Xerces-J, JHotDraw, and Apache Ant because they are medium-sized open-

source projects and were analyzed in the related work. The initial version of Gantt, GMF, and

Apache Ant was known to be of poor quality, which has led to a new major revised version.

1 h t tp://www.eclipse.org/modeling/gmp/

51 Changes Detection at Model Level

Xerces-J, ArgoUML, and JHotDraw have been actively developed over the past 10 years,

and their design has not been responsible for a slowdown of their developments.

For this experiment, we had to specify all refactoring types manually that have been applied

across all metamodel versions. In total, 32 different types of refactoring operations have been

applied since we selected only those that can be applied to the model level when using UML

class diagram based modeling languages. The evolution of the different models provides a

relatively large set of revisions. In total, the evolution of the considered models comprises 81

revisions that involved at least one refactoring operation. Overall, 9128 refactoring

operations have been applied, whereas one transition between two revisions contains on

average 104 operations. Most of the commits comprise between 1 and 26 refactoring

operations. Table 3 describes the number of expected refactorings to be detected by our

approach on the different models. These operations cover 32 refactoring types (e.g. move

method, move feature, etc.).

Table 3: Open Source Systems used for study

Model
Number of expected

refactoring

Number of model

elements (min, max)

GMF Map 8 367, 428

GMF Graph 24 277,310

GMF Gen 93 883,1295

Apache Ant 1024 722, 1889

ArgoUML 1839 936, 2092

JHotdraw 1842 2494, 2873

Xerces-J 4423 4323, 5932

To assess the accuracy of our approach, we compute the measured precision and recall

originally stemming from the area of information retrieval. When applying precision and

recall in the context of our study, the precision denotes the fraction of correctly detected

52 Changes Detection at Model Level

refactoring operations among the set of all detected operations. The recall indicates the

fraction of correctly detected refactoring operations among the set of all actually applied

composite operations (i.e., how many operations have not been missed). In general, the

precision denotes the probability that a detected operation is correct and the recall is the

probability that an actually applied operation is detected. Thus, both values may range from 0

to 1, whereas a higher value is better than a lower one.

The quality of our results was measured by two methods: automatic correctness (AC) and

manual correctness (MC). Automatic correctness consists of comparing the detected changes

to the reference ones, operation by operation using precision (AC-1) and recall (AC-2). AC

method has the advantage of being automatic and objective. However, since different

refactoring combinations exist that describe the same evolution (different changes but same

target model), AC could reject a good solution because it yields different refactoring

operations from reference ones. To account for those situations, we also use MC which

manually evaluates the detected changes, here again operation by operation. We calculate

also NR the number of refactoring used to detect the changes between the different model

versions.

4.3.3 Results and Discussion

 Our multi-objective approach generates 9504 refactoring operations. Overall, we were able

to generate 8948 refactoring operations correctly among all 9128 operations (i.e., around

97%), whereas only less than 500 operations have been incorrectly detected, which leads to a

precision of around 94%. It is worth noting that the evolution history of these seven open

source systems is very different. The Graphical Definition Metamodel (GMF Graph for

short) was extensively modified within only one large revision comprising 24 refactoring

operations, but most of them were detected using our technique with a good recall of 91%.

The Generator Metamodel (GMF Gen for short) was subjected to 40 revisions. Thus, the

evolution of this model is a very representative mixture of different scenarios for the

53 Changes Detection at Model Level

detection of refactoring operations leading to a precision of 95% and a recall of 97%. The

evolution of the third model under consideration, the Mappings Metamodel (GMF Map for

short), contained four revisions and in each revision at maximum three refactoring operations

have been applied.

As the studied evolution of the remaining systems covers a time period of ten years (as

opposed to the considered time period of two years of the GMF case study), they have a

larger number of refactorings to be detected. However, our multi-objective proposal performs

also well on the large evolutions of the remaining systems. For Apache, most of detected

changes are correct with 95% and 98% respectively as precision and recall. For ArgoUML

and JHotDraw, they have approximately the same number of refactoring to detect and our

approach detected most of them with an average of 95% of precision and 96% of recall.

Xerces-J is the larger system that we studied with more than 4197 refactoring applied over 10

years and our proposal successes to detect almost all of them with more than 92% of

precision and recall. Thus, overall we can conclude that using our approach we could identify

most of the applied operations correctly with an average of 93% of precision and 95% of

recall. We noticed that our technique does not have a bias towards the types of refactoring

since most of them were detected.

With regards to manual correctness (MC), the precision and recall scores for all the seven

models were improved since we found interesting refactoring alternatives that deviates from

the reference ones proposed by the experts. For instance, MC for the GMF graph model was

improved from 95 to 100% and 87 to 92% respectively for the precision and recall. In

addition, we found that sequence of applying the refactoring is sometimes different between

generated refactoring and reference ones. We found that sometimes a different sequence can

reduce the number of refactoring used to detect changes.

54 Changes Detection at Model Level

Table 4: NSGA-II Detection Correctness for change detection in Evolving Models.

Model AC1: Precision AC2: Recall MC1: Precision MC2: Recall

GMF Map 7/7= 100% 7/8= 87% 7/7= 100% 7/8= 87%

GMF Graph 20/22= 91% 20/24= 84% 21/22= 95% 21/24= 88%

GMF Gen 90/94= 95% 90/93= 97% 92/94= 97% 92/93= 98%

Apache Ant 1012/1067= 95% 1012/1024 = 98% 1019/1067 = 95% 1019/1024 = 99%

Argo UML 1831/1904 = 96% 1831/1839 = 99% 1834/1904 = 96% 1834/1839 = 99%

JHot-draw 1791/1874 = 95% 1791/1842 = 97% 1809/1874 = 96% 1809/1842 = 98%

Xerces-J 4197/4536 = 92% 4197/4423 = 94% 4227/4536 = 93% 4227/4423 = 95%

The quality of our results was measured by two methods: automatic correctness (AC) and

manual correctness (MC). Automatic correctness consists of comparing the detected changes

to the reference ones, operation by operation using precision (AC-P) and recall (AC-R). AC

method has the advantage of being automatic and objective. However, since different

refactoring combinations exist that describe the same evolution (different changes but same

target model), AC could reject a good solution because it yields different refactoring

operations from reference ones. To account for those situations, we also use MC which

manually evaluates the detected changes, here again operation by operation. We calculate

also NR the number of refactoring used to detect the changes between the different model

versions.

We compared our results with an existing work proposed by Langer et al. [37] that

introduced an approach for defining and detecting composite operations for software models

based on model transformations by-example techniques. The approach allows defining

composite operations on models by demonstrating them on examples from which the general

transformations (including the pre and post conditions of the operations expressed as OCL

constraints) is semi-automatically derived. These transformations can be used for applying

the composite operations as well as detecting applications of them between two versions of a

model. A composite operation is detected either if its pre and post conditions are fulfilled or

if the pre conditions can be established by an already detected composite operation, but the

55 Changes Detection at Model Level

post conditions always have to be fulfilled by the revised version for all detected composite

operations.

We also compared our approach to UMLDiff a refactoring detection technique not based on

heuristic search [96]. UMLDiff includes three main steps. First, facts regarding design-level

entities and their relations in each individual version of the system are extracted from the

source-code versions of the system. Then, the designs of subsequent system versions are

pair-wise compared to determine how the basic entities and relations have changed from one

version to the next. Finally, queries, corresponding to typical refactorings change patterns,

are applied to the change-facts database to extract instances of particular refactorings and

their participant elements.

To answer the first research question RQ1, we implemented a “random” solution in which

refactorings were randomly generated at each iteration. The obtained Pareto fronts were

compared for statistically significant differences with NSGA-II using IHV, IGD and IC.

Table 5 : The significantly best algorithm among random search, NSGA-II and MOPSO (Not sign. diff.

means that NSGA-II and MOPSO are significantly better than random search, but not statistically

different).

System IHV IGD IC

GMF Map NSGA-II NSGA-II NSGA-II

GMF Graph NSGA-II MOPSO MOPSO

GMF Gen NSGA-II MOPSO MOPSO

GanttProject NSGA-II NSGA-II NSGA-II

Xerces-J NSGA-II NSGA-II NSGA-II

JHotDraw Not sign. diff. NSGA-II NSGA-II

ApacheAnt NSGA-II Not sign. diff. Not sign. diff.

MROI-Ford NSGA-II NSGA-II NSGA-II

Table 5 : The significantly best algorithm among random search, NSGA-II and MOPSO (Not sign. diff. means

that NSGA-II and MOPSO are significantly better than random search, but not statistically different).confirms

that both multi-objective algorithms NSGA-II and MOPSO are better than random search

56 Changes Detection at Model Level

based on the three quality indicators IHV, IGD and IC on all the seven open source systems

and the industrial project. The Wilcoxon rank sum test showed that in 51 runs both NSGA-II

and MOPSO results were significantly better than random search. Table 5 also shows the

overview of the results of the significance tests comparison between NSGA-II and MOPSO.

NSGA-II outperforms MOPSO in most of the cases: 17 out of 24 experiments (71%).

MOPSO outperforms the NSGA-II approach only in GMF Gen and GMF Graph, which are

the smallest open source system considered in our experiments, having a low number of

operations to detect. In particular, NSGA-II outperforms MOPSO in terms of IHV values in 7

out 8 experiments with one ‘no significant difference’ result.

To answer RQ2, we evaluated the average of NR, AC-P, AC-R and MC scores for non-

dominated changes detection solutions proposed by NSGA-II.

In this section, we evaluate the performance of NSGA-II to find good trade-offs between the

two objectives of minimizing the number of refactorings and maximizing the correctness of

detected changes.

Table 6 : NSGA-II Detection Correctness. Median number of disabled refactorings on 51 independent

runs. The results were statistically significant on 51 independent runs using the Wilcoxon rank sum test

with a 95% confidence level (α < 5%).

Model AC-Precision AC-Recall MC NR

GMF Map 14/14= 100% 14/17= 82% 14/17= 82% 17

GMF Graph 31/36= 77% 31/39= 79% 33/39= 91% 39

GMF Gen 104/112= 92% 104/122= 85% 108/122= 88% 122

GanttProject 69/72= 96% 69/84 = 82% 69/84 = 87% 84

Xerces-J 81/86 = 96% 81/92 = 88% 86/94 = 91% 92

JHot-draw 77/81 = 95% 77/86 = 89% 82/93 = 88% 86

Apache Ant 242/258 = 92% 242/267 = 90% 254/267 = 95% 267

MROI-Ford 314/327 = 96% 314/331 = 95% 328/341 = 96% 330

57 Changes Detection at Model Level

It confirms that our NSGA-II adaptation was successful in detecting model changes and

describing them with a minimum number of refactorings. Overall, our approach was able to

detect 932 refactoring operations correctly among all the 1037 expected operations (i.e.,

around 90% of recall), whereas 986 refactorings have been detected, which leads to a

precision of around 94%. It is worth noting that the evolution history of the different systems

is very different. The Graphical Definition Metamodel (GMF Graph for short) was

extensively modified within only one large revision comprising 36 refactoring operations, but

most of them were detected using our technique with a good recall of 80%. The Generator

Metamodel (GMF Gen for short) was subjected to 40 revisions. Thus, the evolution of this

model is a very representative mixture of different scenarios for the detection of refactoring

operations leading to a precision of 92% and a recall of 85%. The evolution of the third

model under consideration, the Mappings Metamodel (GMF Map for short), contained four

revisions and in each revision at maximum five refactoring operations have been applied that

all of them were detected using our approach.

In this section, we compare our NSGA-II adaptation to the current, state-of-the-art model

changes detection approaches. To answer RQ3.1, we compared NSGA-II to another widely

used multi-objective algorithm, MOPSO, using the same adapted fitness function as

described earlier. A more qualitative evaluation is presented in Figure 18 which illustrates the

box plots obtained for the multi-objective metrics on the different projects. We see that for

almost all problems the distributions of the metrics values for NSGA-II have smaller

variability than for MOPSO. This fact confirms the effectiveness of NSGA-II over MOPSO

in finding a well-converged and well-diversified set of Pareto-optimal model changes

detection solutions. Similarly, our results show that NSGA-II based multi objective search

technique outperforms both mono objective search technique as well as other existing change

detection schemes present today. In conclusion, we answer RQ3, the results support the claim

that our NSGA-II formulation provides a good trade-off between both objectives, and

58 Changes Detection at Model Level

outperforms on average the state-of-the-art of model changes approaches, both search-based

and non-search-based ones.

Figure 18 : Boxplots using the quality measures (a) HV, (b) IGD, and (c) IC applied to NSGA-II and MOPSO.

Figure 19 depicts the different Pareto surfaces obtained on two open source systems and one

industrial project (GMFGraph, JHotDraw and MROI-Ford) using NSGA-II to optimize both

objectives related to minimizing the number of refactorings and maximizing the correctness

(similarity to the expected version). Due to space limitations, we show only some examples

of the Pareto-optimal front approximations obtained which differ significantly in terms of

size. Similar observations were obtained on the remaining systems. The 2-D projection of the

Pareto front helps software engineers to select the best trade-off solution between the two

59 Changes Detection at Model Level

objectives based on their own preferences. Based on the plots, the software developer could

decrease the number of detected refactorings while controlling visually the correctness. In

this way, the developer can select the preferred model changes detection solution to realize.

We found that the knee-point solution with lower number of refactorings did not include any

redundancy and most of the refactorings are complex ones (not atomic). Hence we conclude

that RQ4 is affirmed and that the multi-objective approach has value for software engineers

in a real-world setting that can help programmers to understand detected changes while

maximizing the correctness. In fact, all the interviewed developers mention that they could

easily understand the solution with composite changes comparing atomic ones.

Figure 19 : Pareto fronts for NSGA-II obtained on GMF Graph (small), JHotDraw (medium), and MROI-Ford

(large).

60 Model Merging

Chapter 5: Model Merging

5.1 Introduction

When models evolve or are changed in parallel, they have to be merged eventually to obtain

a consolidated model. This may be needed to consolidate product lines, or design from

different development teams focused on singular objective or merging development trunks

with the goal of increasing model reuse and then eventually code reuse. Several approaches

have been proposed for detecting the operations that have been applied in parallel by

developers. Once the applied operations are available, conflict detection algorithms are used

to identify pairs of operations that interfere with each other [98]. In this regard, a conflict

denotes a pair of operations, where one operation masks the effect of another or one

operation disables the applicability of another operation. An example for the former is a pair

of parallel operations that update the same feature in a model with different values. Such

scenarios occur frequently if composite operations (a sequence of cohesive atomic changes)

are applied, because they may have potentially complex preconditions that may easily be

invalidated by other parallel operations.

For resolving conflicts, empirical studies [99] showed that users prefer to work with a

tentative merged model acting as a basis for resolving possible conflict resolutions, instead of

working with the list of operations in terms of choosing to reject one or the other conflicting

operation for creating a merged model. Few approaches respect this preference and produce a

merged model by applying all non-conflicting operations; conflicting operations are omitted.

However, especially in case of a large number of conflicts, many operations are not merged

with this strategy, leading to a tentative merged model that does not reflect the maximal

combined effect of the parallel operations. Furthermore, the majority of existing works [11]

[12] [6] [100] [14] [10] treat the applied refactoring operations to be merged with equal

importance. However, in a real world scenario these operations have different importance

61 Model Merging

scores that can depend on the type of the refactoring and the context of the refactoring

application. Thus, in existing work the developers cannot integrate their priority preferences

concerning the importance of some refactorings that should be included in the merging

process.

As described in Figure 20 the proposed multi-objective approach aims to find the best

trade-off between minimizing the number of conflicts and maximizing the number of

successfully applied important operations. A conflict denotes pairs of operations where one

operation disables the applicability of the other. Whether one operation disables the other,

however, often depends on the order in which they are applied. The scheme aims to find an

operation sequence that minimizes the number of disabled operations among all parallel

operations. The system takes as input the initial model and the revised ones (i.e., the different

parallel versions), a list of the applied operations and an importance score for each composite

operation, and generates as output a set of merging solutions that reflect the best trade-off

between the two conflicting objectives. The importance score for each composite operation

can be calculated manually or automatically. In following experiments the importance score

is calculated using quality metrics that formalize the complexity of a class that will be

modified and a classification of the types of composite operations based on their complexity.

In general, larger composite operations (combinations of atomic and smaller composite

operations) are more important than smaller ones since they introduce more significant

changes to the design.

Figure 20 : Multi-objective model merging: overview

62 Model Merging

5.1.1 Model Merging: A Motivating Example

To present the challenges associated with the problem of model merging we present a

following motivating example. The starting point is the UML class diagram shown in Figure

21. This version of a person management system has been subject to parallel evolution by

two developers who concurrently applied a set of atomic and composite operations leading to

the version shown in Figure 21 b and c respectively.

Figure 21: Parallel Evolution of a Class Diagram: (a) Initial Model v0, (b) Revised Model v1a, (c) Revised Model v1b.

First, developer A deletes the city attribute of class Person, because she identifies that this

attribute is redundant, as the information is already covered by city Code attribute.

Furthermore, developer A is applying the Pull Up Attribute refactoring [101] in a second

step: the name attribute of classes Male and Female are substituted by introducing this

attribute to the class Person. This refactoring is represented by one composite operation

which contains all atomic operations, i.e., adding the name attribute to the super class and

Person

Male Female

birthday : Date
city : String
cityCode : String

(a)

Person

name : String
birthday : Date
cityCode : String
gender : {male,female}

«abstract»
Person

birthday : Date

Address
city : String
cityCode : String

address

1..1

Male Female

(b) (c)

1.1 Delete attribute

1.2 PullUp attribute

1.3 Subclass to
Enumeration

2.1 Extract Class

2.2 Concrete to
Abstract Class

2.3 Change
multiplicity

name : String name : String

name: String[] name : String

63 Model Merging

deleting the name attributes in the subclasses. The precondition of this refactoring is clearly

fulfilled: both subclasses of class Person have the name attribute with the same property

values, i.e., same data type and multiplicities. Finally, developer A applies another

refactoring: substituting the now empty subclasses by an enumeration-typed attribute. The

precondition for applying this refactoring is that the superclass receiving the enumeration-

typed attribute is a concrete class and not an abstract one.

Developer B applies the Extract Class refactoring to create an explicit class for the address

information, and subsequently, the Concrete to Abstract Class refactoring. Again, these two

refactorings are represented by composite operation consisting of several atomic operations.

Please note that the Concrete To Abstract Class refactoring comprises a dedicated

precondition that has to be fulfilled, namely the subject for this refactoring has to provide at

least one concrete subclass. Furthermore, developer B changes the upper bound cardinality of

the name attribute of class Male from one to many by marking this attribute as an array. The

resulting model is depicted in Figure 21c.

Now a naive operation-based merge approach may apply the operations of developer A to the

initial model, and subsequently, on this intermediate version, the changes of developer B.

However, in this sequence, the Extract Class refactoring is not applicable anymore, because

the city attribute is already missing. Furthermore, the Concrete to Abstract Class refactoring

is disabled as well due to the unsatisfied precondition for the intermediate version that is

produced by applying the operations of developer A. Starting with the operations of

developer B and continuing with the operations of developer A, also leads to two disabled

operations: the Pull Up Attribute refactoring cannot be executed, because the name attributes

in both subclasses have different cardinalities after applying the operations by developer B.

Thus, the precondition of the refactoring is not fulfilled, and consequently, the operation

cannot be applied. The same is true for the Subclass to Enumeration refactoring.

64 Model Merging

Now we may consider whether we can find an operation sequence that contains a higher

number of applicable operations by intermingling the operations of both developers with

each other in order to maximize the combined effect of both developers. In this example, 720

(6!) different operation sequences would have to be considered since changing the order of

applying the operations sequence will lead to different solutions. In fact, for this example,

sequences exist that allow for applying more operations successfully by intermingling the

operations of developer A and B than using a phasing approach. For instance, executing the

Extract Class refactoring, deleting the city attribute, executing the Pull Up Attribute and

Subclass to Enumeration refactorings, and finally, setting the upper bound cardinality

represents one operation sequence that contains more enabled operations than the pure

phasing approach. However, one operation is disabled, namely the Concrete to Abstract

Class refactoring is in conflict with the Subclass to Enumeration refactoring irrespectively of

the application sequence. Due to the fact that both operations are mutual exclusive, it is only

possible to enable one of them. Selecting the operation that should be applied rather than

disabled requires having a measure of importance of the operation. One measure is the

magnitude of an operation, i.e., the number of atomic changes a composite change consists

of. Consequently, the merge solution shown in Figure 21b is preferable over the merge in

Figure 21c, because the number of disabled operations is equal in both b and c, but the

overall magnitude of all enabled operations is higher in Figure 21b.

It is important to stress that for six operations, an exhaustive based approach is applicable,

but when doubling the number of operations, we already have to explore over 470 million

combinations because n! solutions exist where n is the number of applied operations. Thus, in

the next section a scalable approach to solve this problem is presented that is able to consider

the importance of operations, as well as to explore the sequences that maximize the

application of operations.

65 Model Merging

5.1.2 Challenges of Model Merging Problem

The goal of our approach is to construct a tentative merged model that minimizes the number

of disabled operations and maximizes the number of important enabled ones. Therefore, it is

an inherently multi-objective optimization problem which needs an algorithm to compute an

optimal sequence of merging operations in terms of finding trade-offs between minimizing

the number of operations that are disabled by preceding operations and maximizing the

number of important operations that are enabled.

The search-based process takes as inputs the sequences of operations that have been applied

concurrently to a model by an arbitrary number of developers with an importance score for

each composite operation. These sequences can be detected using operation detection

algorithms presented in previous work [35]. Note that these sequences may be obtained

alternatively by tools that record operations directly in the modeling editor. The sequences

are composed of operation applications, thereby each entry in a sequence states the operation

type as well as the elements on which it has been applied. Having these sequences at hand,

we may now combine them into one common sequence of operations and compute the

number of disabled operations. Therefore, we use composite operation specifications that

contain explicitly specified preconditions in combination with a condition evaluation engine

[100] to verify whether the preconditions of each operation in a sequence are fulfilled in a

certain state of a model after the preceding operations in the sequence have been applied. If

we determine an operation with invalid preconditions in a certain state of the model, we

consider this operation to be disabled in the respective operation sequence.

The process of generating a solution can be viewed as the mechanism that finds the best

order among all possible operation sequences that minimizes the number of disabled

operations and maximizes the number of enabled important ones. The size of the search

space is determined not only by the number of operations applied by the different developers

on the same model, but also by the order in which they are applied. Due to the large number

66 Model Merging

of possible refactoring sequences and the two conflicting objectives to optimize, we

considered refactoring merging as a multi-objective optimization problem.

It is therefore evident that a model merging problem is intrinsically a challenging problem

with multi dimensional dependencies for finding an optimal solution. The potentially huge

size of search solution space is a primary obstacle. Unless explosively fast and resilient multi

objective algorithms are employed, the probability of finding optimal solution shall be very

low. Furthermore, the problem of ranking different operations is also subject to contention.

To achieve relevant and applicable results developers need to define concise ranking for

different operation sequences, along with pre and post conditions for each sequence. These

pre and post conditions are tantamount in evaluating the potential conflict or disabling

operations. The correctness of these conditions dictate the success and relevance of merged

model.

5.2 Approach Overview

5.2.1 Detection Scheme

We propose a multi-objective formulation of the model merging problem that takes the

importance of the refactoring operations to merge into account. Consequently, there are two

objective functions in problem formulation: (1) minimize the number of disabled

refactorings, and (2) maximize the number of important enabled refactorings. Analytically

speaking, the formulation of the model merging problem can be stated as follows:

)()(

)(

__

1

2

1
















refenablednb

i

ixImportanceSfMaximize

ndoSfMinimize

where ndo is the number of disabled operations, xi is the i-th enabled operation in the

sequence S, nb_enabled_ref is the number of enabled refactorings and Importance(xi) is the

67 Model Merging

importance of the operation xi in S. The importance of the operation is independent from its

order in the vector.

The goal is to define an efficient and simple—in the sense that it is not computationally

expensive—fitness function in order to reduce the computational complexity. This function

should evaluate the number of disabled operations. Therefore, previously developed tools are

being used to specify composite operations including their preconditions in combination with

an engine for evaluating the conditions in a certain model state (see [35] for details). As

evaluating conditions can be rather expensive, we only compute whether one operation in a

sequence disables another for each possible pair-wise combination of operations in advance,

instead of checking the preconditions of each operation with the combined effect of every

operation that precedes the operation in the sequence. Please note that this approach might

miss detecting some disabled operations in certain scenarios: the preconditions of an

operation might be fulfilled with respect to each single preceding operation (checking

operations pair-wise), but the preceding operations in combination might still invalidate the

preconditions of a subsequent operation.

The information on which operation in a sequence disables the other is represented in terms

of a matrix n × n where n is the number of operations applied originally by the different

developers in total (after eliminating duplicates). Each item in this matrix represents a

combination of two operations and holds a value of either 0 or 1: if an operation i disables the

operation j then, the item (i,j) in the matrix takes the value 1, otherwise it takes 0. Based on

this matrix, we may determine easily the number of disabled operations for a specific

operation sequence by summing up all values in the matrix. The n x n matrix is generated to

each sequence (solution), and the matrix values consider the specific sequence of operations.

We define the refactoring importance as follows:

68 Model Merging

icsnumberMetr

cM

tancetype_imporxImportance

icsnumberMetr

j

ij

i





1

i

)(

)(x)(

such that Mj represents a software metric and ci is the class where the refactoring xi will be

applied. Thus, we defined the class importance using a set of software metrics. In our

experiments, we considered the following metrics:

Weighted Methods per Class (WMC), Response for a Class (RFC), Lack of Cohesion of

Methods (LCOM), Cyclomatic Complexity (CC), Number of Attributes (NA), Attribute

Hiding Factor (AH), Method Hiding Factor (MH), Number of Model Elements (NME),

Coupling Between Object Classes (CBO), Number of Association (NAS), Number of Classes

(NC), Depth of Inheritance Tree (DIT), Polymorphism Factor (PF), Attribute Inheritance

Factor (AIF), Number of Children (NOC).

We have normalized each metric value into the interval [0, 1] using the following formula:

M_norm(x) = (M(x) - M_min)/(M_max - M_min) where M_max and M_min correspond

respectively to the maximal and minimal metric value taken from classes in the system. In

this way, all values are between 0 and 1.

We use a model that considers two categories of operations: an operation can be a Low-Level

Operation (LLO) or a High-Level Operations (HLO). HLO is composed by the combination

of two or more operations and LLO is an elementary/atomic operation. We classify the

following basic operations in the LLO category: create_class, delete_method, add_field,

move_method, rename_method, create_relationship, etc. The HLO or complex refactoring

are extract_class, extract_subclass, pull_up_method, push_down_field, etc. In fact, the

application of these complex refactorings includes the execution of some LLO operations.

For example, extract_class includes create_new_class, move_method, etc. In our

experiments, we defined the type_importance measure as follows:

69 Model Merging










LLO xif ,5.0

HLO xif ,1
)(x tan

i

i

icetype_impor

There are of course many ways in which the importance of classes and code changes could

be measured, and one of the advantages of the search-based approach is that this definition

could be easily replaced with a different one. In summary, the basic idea behind this work is

to take into account the importance of the operations to merge while maximizing

simultaneously the number of enabled refactorings. These two objectives are in conflict.

Thus, the goal is to find a good compromise. In fact, once the bi-objective trade-off front is

obtained, the user can navigate through this front in order to select his/her preferred merging

solution. This is achieved through sacrificing some degree of number of enabled refactorings

while gaining in terms of including important ones in the merging process.

5.2.2 Solution Coding

We use the well-known multi-objective evolutionary algorithm NSGA-II [82] to try to

solve the model merging problem. As noted by Harman et al. [83] [84], a generic algorithm

like NSGA-II cannot be used ‘out of the box’ – it is necessary to define problem-specific

genetic operators to obtain the best performance. To adapt NSGA-II to our problem, the

required steps are to create: (1) solution representation, (2) solution variation and (3) solution

evaluation. We examine each of these in the following.

5.2.2.1 Solution Representation

To represent a candidate solution (individual), a vector is being used which contains all

operations that have been applied by the developers in parallel, where each item in the vector

represents a single operation (with links to the elements to which it is applied) and the order

of operations in this vector represents the sequence in which the operations are applied.

Please note that some operations can be eliminated in case they are equivalent; that is, two

developers applied the same operation to the same model elements. Thus, we exclude

duplicates. Consequently, all vectors, each representing one candidate solution, have the

70 Model Merging

same number of dimensions that corresponds to the number of all parallel operations applied

by all developers. Figure 22 depicts a possible population of operation sequences where R**

refers to the label of the respective refactoring. For instance, the solutions represented are

composed of five dimensions corresponding to five operations proposed by two different

developers. All the solutions have the same length, but they constitute a different order.

The proposed algorithm first generates a population randomly from the list of all operations.

Second, crossover and mutation operators are used to generate new populations in the next

iterations as explained in the following.

 Figure 22 : Population of operation sequences

5.2.2.2 Solution Variation

In a search algorithm, the variation operators play the key role of moving within the search

space with the aim of driving the search towards better solutions. We used the principle of

the Roulette wheel [82] to select individuals for mutation and crossover. The probability to

select an individual for crossover and mutation is directly proportional to its relative fitness

in the population. In each iteration, we select population_size / 2 individuals from the

population popi to form population popi+1. These (population_size / 2) selected individuals

will “give birth” to another (population_size / 2) new individuals using a crossover operator.

Therefore, two parent individuals are selected, and a few dimensions picked on each one.

When applying the crossover, we ensure that the length of the vector remains the same. The

one point crossover operator allows creating two offspring p’1 and p’2 from the two selected

parents p1 and p2. It is defined as follows: a random position, k, is selected. The first k

71 Model Merging

operations of p1 become the first k elements of p’1. Similarly, the first k operations of p2

become the first k operations of p’2.

The crossover operator could create a child that contains redundant operations. In order to

resolve this problem, for each obtained child, we verify whether there are redundant

operations or not. In case of redundancy, we replace the redundant operation by a randomly

chosen one without causing another redundancy. We have used the one-point crossover since

this operator has demonstrated its effectiveness in solving permutation based problems of

similar degree e.g. the traveling salesman problem [102].

The mutation operator can be applied to pairs of dimensions of the vector selected randomly.

Given a selected solution, the mutation operator first randomly selects one or many pairs of

dimensions of the vector. Then, for each selected pair, the dimensions are swapped.

5.2.2.3 Solution Evaluation

The solution is evaluated based on the two conflicting objective functions. Maximizing the

number of enabled refactorings maximizes the number of detected conflicts. Thus, the two

objectives are conflicting since we want to maximize the number of important enabled

refactorings and minimize the number of detected conflicts. In our case, we are using a multi-

objective approach to maximize the number of enabled important refactorings and minimize

the number of conflicts. To fix a number of conflicts then the number of omitted refactorings

increases. For this reason, the number of omitted refactorings is conflicting with the number

of enabled important refactorings. In addition, we found that important refactorings create, in

general, conflicts. For this reason, a large increase of the number of enabled refactorings does

not mean that the importance score is improved since most of the enabled ones are “simple”

and not complex/important.

A widely used method in optimization to verify if two objectives are conflicting or not is

the following [82]: If we optimize one of the objectives, the resulting solution may not be the

72 Model Merging

optimum of the second objective and vice versa. Figure 23 illustrates the conflict between the

two considered objectives. In fact, we recorded the values of each objective at the beginning

of evolutionary process (generation 0) and at the end (generation 150) using NSGA-II. Figure

23 shows the intermediate values (between generation 0 and 150) resulting in the straight

lines when trying to optimize the first objective (number of disabled refactorings). It is clear

that when the number of disabled refactoring decreases, the importance of enabled

refactoring decreases too since most of the enabled ones are atomic changes and not

important - the atomic changes take place of the important complex refactorings.

 Figure 23 : Illustrating the conflict relation between the two objectives (f1: number of disabled refactorings, f2:

importance of enabled refactoring).

5.3 Validation

5.3.1 Research Questions

We defined six research questions that address the applicability, performance in comparison

to existing merging approaches, and the usefulness of our robust multi-objective merging

approach. The six research questions are as follows:

RQ1: Search validation (sanity check). To validate the problem formulation of our

approach, we compared our NSGA-II formulation with Random Search (RS). If RS

73 Model Merging

outperforms an intelligent search method, we can conclude that there is no need to use a

metaheuristic search.

RQ2. To what extent can the proposed approach reduce the number of disabled

operations and maximize the number of enabled important operations? It is important to

evaluate the performance of our model merging approach, based on NSGA-II, when applied

to real-world scenarios.

The next four questions are related to the comparison between our proposal and the state-of-

the-art model merging approaches.

RQ3.1: How does NSGA-II perform compared to another multi-objective algorithm? It

is important to justify the use of NSGA-II for the problem of model merging. We compare

NSGA-II with another widely used multi-objective algorithm, MOPSO (Multi-Objective

Particle Swarm Optimization), [95] using the same fitness functions.

RQ3.2: How does our multi-objective model merging formulation perform compared to

a mono-objective one? A multi-objective algorithm provides a trade-off between the two

objectives where developers can select their desired merging solution from the Pareto-

optimal front. A mono-objective approach uses a single fitness function that is formed as an

aggregation of both objectives and generates as output only one merging solution. This

comparison is required to ensure that the solutions provided by NSGA-II and MOPSO

provide a better trade-off between the two objectives than a mono-objective approach.

Otherwise, there is no benefit to our multi-objective adaptation.

RQ3.3: How does NSGA-II perform compared to existing search-based model merging

approaches?

RQ3.4: How does NSGA-II perform compared to existing model merging approaches

not based on the use of metaheuristic search? While it is very interesting to show that our

proposal outperforms existing search-based merging approaches, developers will consider

74 Model Merging

our approach useful, if it can outperform other existing model merging tools [10] that are not

based on optimization techniques where the operations are applied as they arrive without

trying the find the best sequence/order of applying them.

RQ4: Can our multi-objective approach for model merging be useful for software

engineers in a real-world setting? In a real-world problem, it is important to show that it is

useful to consider the importance/priority score related to each refactoring when merging

models. Some scenarios are required to illustrate the importance of the use of a multi-

objective approach for model merging in a real-world setting.

5.3.2 Experimental Setup

We chose to analyze the extensive evolution of three Ecore metamodels coming from the

Graphical Modeling Framework (GMF) [90], an open source project for generating graphical

modeling editors. We considered the evolution from GMF’s release 1.0 over 2.0 to release

2.1 covering a period of two years. For achieving a broader data basis, we analyzed the

revisions of three models, namely the Graphical Definition Metamodel (GMF Graph), the

Generator Metamodel (GMF Gen), and the Mappings Metamodel (GMF Map). Therefore,

the respective metamodel versions had to be extracted from GMF’s version control system

and, subsequently, manually analyzed to determine the actually applied operations between

successive metamodel versions. In addition to GMF, we used UML class diagrams extracted

from four open source projects: GanttProject (Gantt for short) [103], JHotDraw [104],

ApacheAnt [91] and Xerces-J [91]. We considered the evolution across three versions of

Gantt (v1.7, v1.8, and v1.9.10), three versions of JHotDraw (v5.1, v5.2, and v5.3), four

versions of ApacheAnt (v1.6.1, v1.6.2, v1.6.3 and v1.6.4) and four versions of Xerxes-J

(v1.4.4, v2.5.0, v2.6.0, and v2.6.1). Xerces-J is a family of software packages for parsing

XML. GanttProject is a cross-platform tool for project scheduling. ApacheAnt is a build tool

and library specifically conceived for Java applications. Finally, JHotDraw is a GUI

framework for drawing editors. Table 7 summarizes for each model evolution scenario the

75 Model Merging

number of applied refactorings, as well as the number of model elements for the smallest and

largest model version.

Additionally, we had to specify all operation types (i.e., their comprised atomic operations

and preconditions) that have been applied across all versions leading to 38 different types of

operations. The evolution of the analyzed models provides a relatively large set of revisions

containing overall 659 different applications of the operation types. Since we considered the

evolution of several versions of the studied models, Table 7 describes also the minimum and

maximum number of model elements between the different versions of a given model.

Due to the lack of existing parallel revision histories that we could have used for evaluating

our approach, we emulate parallel evolution by dividing the applied operations from the

single revisions into parallel sequences of operations manually and asked five graduate

students to additionally modify different model fragments of these open source systems in

order to cause disabled operations in the considered evolutions.

Table 7: Systems studied in Model Merging experiments.

Model
Number of refactorings

Number of elements

(min, max)

GMF Map 14 367, 428

GMF Graph 36 277,310

GMF Gen 112 883,1295

GanttProject 72 451, 572

Xerces-J 86 1698,1732

JHotDraw 81 985, 1457

ApacheAnt 258 2166, 2489

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for a same problem instance from one run to another. For this reason, our experimental study

is performed based on 51 independent simulation runs for each problem instance and the

76 Model Merging

obtained results are statistically analyzed by using the Wilcoxon rank sum test with a 99%

confidence level (α = 1%). The latter verifies the null hypothesis H0 that the obtained results

of two algorithms are samples from continuous distributions with equal medians, as against

the alternative that they are not, H1. The p-value of the Wilcoxon test corresponds to the

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is

less than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-

value that is strictly greater than α (> 0.05) means the opposite. In fact, for each problem

instance, we compute the p-value of random search, MOPSO and mono-objective search

results with NSGA-II ones. In this way, we could decide whether the superior performance of

NSGA-II to one of each of the others (or the opposite) is statistically significant or just a

random result.

5.3.3 Results and Discussion

To answer the first research question RQ1, an algorithm was implemented where merging

solutions were randomly generated (random sequence) at each iteration. The obtained Pareto

fronts were compared for statistically significant differences with NSGA-II using IHV, IGD

and IC. We do not dwell long in answering the first research question (RQ1) that involves

comparing our approach based on NSGA-II with random search. The remaining research

questions will reveal more about the performance, insight, and usefulness of our approach.

Table 8 confirms that both multi-objective algorithms NSGA-II and MOPSO are better

than random search based on the three quality indicators IHV, IGD and IC on all the seven

open source systems. The Wilcoxon rank sum test showed that in 51 runs both NSGA-II and

MOPSO results were significantly better than random search. The Wilcoxon rank sum test

allows verifying whether the results are statistically different or not. However, it does not

give any idea about the difference magnitude. The effect size could be computed by using the

Cohen’s d statistic [105]. The effect size is considered: (1) small if 0.2 ≤ d < 0.5, (2) medium

if 0.5 ≤ d < 0.8, or (3) large if d ≥ 0.8.

77 Model Merging

Table 8 shows the overview of the results of the significance tests comparison between

NSGA-II and MOPSO. NSGA-II outperforms MOPSO in most of the cases: 17 out of 21

experiments (81%). MOPSO outperforms the NSGA-II approach only in GMF Gen, which is

one of the smallest open source system considered in our experiments, having a low number

of operations to merge. In particular, NSGA-II outperforms MOPSO in terms of IHV values

in 6 out of 7 experiments with one ‘no significant difference’ result. Regarding IGD and IC,

NSGA-II outperformed MOPSO in 5 out of 7 experiments, where only one case was not

statistically significant, namely GMF Graph and one case where MOPSO provides better

results namely GMF Gen.

Table 8 and Table 9, and Figure 24, Figure 25 confirm the superior performance of

NSGA-II and MOPSO comparing to random search in terms of number of disabled

refactoring, importance of enabled refactoring and automatic and manual correctness. In fact,

random search is not efficient to generate good merging solutions using all the above metrics

in all the experiments. Thus, an intelligent algorithm is required to find good trade-offs to

propose efficient merging solutions. We conclude that there is empirical evidence that our

multi-objective formulation surpasses the performance of random search thus our

formulation is adequate and the use of metaheursitic search is justified (this answers RQ1).

Table 8 : The significantly best algorithm among random search, NSGA-II and MOPSO

(Not sign. diff. means that NSGA-II and MOPSO are significantly better than random

search, but not statistically different).

System IHV IGD IC

GMF Map NSGA-II NSGA-II NSGA-II

GMF Graph NSGA-II Not sign. diff. Not sign. diff.

GMF Gen Not sign. diff. MOPSO MOPSO

GanttProject NSGA-II NSGA-II NSGA-II

Xerces-J NSGA-II NSGA-II NSGA-II

JHotDraw NSGA-II NSGA-II NSGA-II

ApacheAnt NSGA-II NSGA-II NSGA-II

78 Model Merging

To answer RQ2, we evaluated the average of NDR, IER, AC and MC scores for non-

dominated merging solutions proposed by NSGA-II. We evaluated the performance of

NSGA-II to find good trade-offs between the two objectives of minimizing the number of

disabled refactorings and maximizing the number of important enabled ones. Table 9

confirms that our NSGA-II adaptation was successful in generating merging sequences that

minimize the number of disabled refactorings. The number of disabled refactorings seems

reasonable if we consider the high number of refactorings (more than 250) to merge for

ApacheAnt.

Table 9 : Median number of disabled refactorings on 51 independent runs.

The results were statistically significant on 51 independent runs using the Wilcoxon rank sum test with a

99% confidence level (α < 1%).

Systems NDR-

NSGAII

NDR-

MOPSO

NDR-

RS

NDR-

AggGA

NDR-GA NDR-Practical

GMF Map 3 4 7 6 3 8

GMF Graph 6 8 14 11 5 16

GMF Gen 16 18 43 23 16 49

GanttProject 21 23 31 34 19 33

Xerces-J 12 12 34 19 12 29

JHotDraw 11 14 29 18 11 37

ApacheAnt 26 29 68 34 23 71

Table 10 shows that NSGA-II provides merging solutions that not only minimize the

number of disabled operations but also maximize the number of important enabled ones. This

confirms that most of the disabled refactorings are not very important and it is interesting that

the importance of the operations can help the algorithm which operation to disable when

conflicts are detected. The highest importance score of enabled refactorings is 471.6 for

ApacheAnt and the lowest importance score is 28.6 for GMF Map. An interesting

observation that the highest and lowest number of disabled refactorings is also found in the

79 Model Merging

same systems: ApacheAnt and GMF Map. Thus it is evident that NSGA-II finds the best

trade-off between our two conflicting objectives. This can be explained by the fact that the

algorithm tried to disable operations with the lowest importance when a conflict is detected

to optimize simultaneously both objectives.

Table 10 : Median importance scores of enabled refactoring on 51 independent runs.

The results were statistically significant on 51 independent runs using the Wilcoxon rank sum test with a

99% confidence level (α < 1%).

Systems IER-

NSGA-II

IER-

MOPSO

IER-

RS

IER-

AggGA

IER-GA IER-Practical

GMF Map 28.6 27.4 19.1 23.4 18.8 17.4

GMF Graph 39.4 41.1 22.5 29.8 19.6 18.1

GMF Gen 194.5 189.4 112.8 138.1 108.4 101.8

GanttProject 128.3 131.2 84.2 98.3 81.4 78.6

Xerces-J 139.1 134.4 88.1 96.1 86.3 81.3

JHotDraw 142.8 138.7 89.4 101.4 84.5 80.6

ApacheAnt 471.6 452.2 295.6 319.4 288.6 283.4

We considered two other metrics related to automatic and manual correctness. Figure 24

shows that the suggested merging solutions using NSGA-II are similar to the “reference”

solution provided manually by developers with more 78% for all the 7 systems. However, it

is a fastidious process for developers to manually merge parallel operations thus sometimes

better solutions can be provided by our automated merging algorithm. A deviation with the

set of reference solutions does not necessarily mean that there is an error/conflict with our

multi-objective solutions but it could be another possible good merging solution different

from the reference ones. To this end, we evaluated the suggested solutions by NSGA-II

manually and we calculated a manual correctness score. Figure 25 confirms that most of the

suggested merging solutions are good with an average of more than 85% in all the seven

systems. This manual validation provides strong evidence that our merging solutions make

sense semantically and could be applied to provide coherent model versions/releases. When

80 Model Merging

comparing NSGA-II against MOPSO, we have found the following results: a) On small and

medium scale software systems (Xerces-J, JHotDraw and ApacheAnt), NSGA-II is better

that MOPSO on most systems with a medium effect size lower than 0.8; and b) on large scale

software systems, NSGA-II is better than MOPSO on most systems with a small effect size

lower than 0.5.

Figure 24 : Automatic correctness median values on 51 independent runs for the case studies

0

10

20

30

40

50

60

70

80

90

100

AC-NSGA-II

AC-MOPSO

AC-RS

AC-GA-Agg

AC-GA

AC-Practical

81 Model Merging

Figure 25 : Manual correctness median values on 51 independent runs for the case studies

To answer RQ3.1 we implemented a widely used multi-objective algorithm, namely multi-

objective particle swarm optimization (MOPSO) and we compared NSGA-II and MOPSO

using the same quality indicators used in RQ1. In addition, we used boxplots to analyze the

distribution of the results and discover the knee point (best trade-off between the objectives).

To answer RQ3.2 we implemented a mono-objective Genetic Algorithm (Agg-GA) [106]

where one fitness function is defined as an average of the two objectives. The multi-objective

evaluation measures (IHV, IGD and IC) cannot be used in this comparison thus we

considered the NDR, IER, AC and MC metrics. To answer RQ3.3 we compared NSGA-II

with earlier mono-objective work for model merging [107] where the importance/priority of

operations is not taken into account. We considered different metrics for the comparison such

as NDR, IER, AC and MC. To answer RQ3.4 we used an existing model merging tool not

based on optimization techniques where the operations are applied as they arrive without

trying the find the best sequence/order of applying them. We compared the results of this tool

with NSGA-II using NDR, IER, AC and MC metrics since only one solution can be proposed

0

10

20

30

40

50

60

70

80

90

100

MC-NSGA-II

MC-MOPSO

MC-RS

MC-GA-Agg

MC-GA

MC-Practical

82 Model Merging

and not a set of “non-dominated” solutions.

A more qualitative evaluation is presented in Figure 26 illustrating the box plots obtained

for the multi-objective metrics on the different projects. We see that for almost all problems

the distributions of the metrics values for NSGA-II have smaller variability than for MOPSO.

This fact confirms the effectiveness of NSGA-II over MOPSO in finding a well-converged

and well-diversified set of Pareto-optimal merging solutions.

Figure 26 : Boxplots using the quality measures (a) IC, (b) IHV, and (c) IGD applied to NSGA-II and MOPSO.

Next, we use all five metrics NDR, IER, AC, MC and ICT to compare three robust

refactoring algorithms: our NSGA-II adaptation, MOPSO, a mono-objective genetic

algorithm (GA-Agg) that has a single fitness function aggregating the two objectives, mono-

objective model merging and a manual merging tool [107]. In order to make meaningful

83 Model Merging

comparisons, we select the best solution for NSGA-II and MOPSO using a knee point

strategy.

For NDR, the number of disabled refactorings using NSGA-II is lower than MOPSO in all

systems however the lowest number of disabled refactoring is provided by the mono-

objective genetic algorithm approach where only one objective (maximizing the number of

enabled refactorings) is considered. The number of disabled refactorings is the same between

NSGA-II and GA in 50% of the cases thus NSGA-II can provide similar results to the mono-

objective approach while taking into account the importance of enabled refactorings. The

mono-objective GA approach that aggregates the two objectives in one provides highest

number of disabled refactorings than NSGA-II, MOPSO and the non-search-based tool in

100% all the cases. This confirms that it is difficult to find trade-offs between conflicting

objectives aggregated in only one fitness function. The random search and the non-search-

based merging tool provides the highest number of disabled conflicts due the huge search

space to explore to find the best sequence.

Table 9 describes the results of the comparison of our NSGA-II adaptation with the state-

of-the-art merging approaches in terms of enabling the most of important refactorings for

model merging (IER). NSGA-II suggests the best merging sequences that increase the

number of enabled important refactorings for all systems except for Gantt. MOPSO

outperforms NSGA-II in terms of IER only for Gantt and GMF Graph. The deviation

between the performance of NSGA-II comparing to the performance of other approaches

(except MOPSO) is high since all the mono-objective and manual approaches provides low

importance score of the enabled refactoring on all the seven systems. This can be explained

by the fact that multi-objective formulation selected the least important refactorings to

disable when a conflict is detected. A more qualitative evaluation of NDR and IER is

presented in Figure 27. It clearly shows the high deviation between the multi-objective and

mono-objective formulation on 51 runs in terms of IRE and also it is important to note that

the results of our multi-objective formulation is similar to the mono-objective ones in terms

84 Model Merging

of NDR.

For AC and MC, Figure 25 and Figure 26 show that the solutions provided by NSGA-II

have the highest manual and automatic correctness values. In fact, the average AC value for

NSGA-II is 83% and it is lower than 80% for all the remaining algorithms for the seven

systems. The same observation is valid for MC, NSGA-II has the highest MC average value

with 86% while the remaining algorithms their MC average is lower than 82%. Figure 24

Figure 25 also reveal an interesting observation that there is no correlation between the

number of operations to merge and the correctness values. More precisely, we sort AC and

MC based on the number of refactorings for each open source system. From this data, we

conclude that AC and MC are not necessarily affected negatively by a larger number of

refactorings. For example, MC even increases from 82% to 88% when the number of

refactorings increases from 86 to 112. Thus, we can conclude that our proposal shows a good

scalability and is not affected negatively by the number of refactorings. However, when the

number of operations increases, it does not necessarily mean that the number of disabled

operations does.

Regarding IC, the execution time of NSGA-II is invariably lower than that of MOPSO

with the same number of iterations (100,000), however the execution time required by Mono-

EA (1h34 in average) is lower than both NSGA-II and MOPSO (1h58 in average for NSGA-

II and 2h09 for MOPSO). It is well known that a mono-objective algorithm requires less

execution time for convergence since only one objective is handled. However, the execution

times of NSGA-II and MOPSO are not so far from those of mono-objective algorithms. For

this reason, we can say that the proposed scheme has an accepted efficiency since it generates

high quality solutions with a CPU time that is not significantly larger than the time needed by

mono-objective algorithms.

In conclusion, we answer RQ3.1-3.4, the results support the claim that our NSGA-II

formulation provides a good trade-off between both objectives, and outperforms on average

85 Model Merging

the state-of-the-art of model merging approaches, both search-based and non-search-based

ones.

Figure 27: Boxplots using the measures NDR and IER applied to NSGA-II, MOPSO, Agg-GA, and Random Search

(RS) on the different systems for 51 independent runs: GMF Graph, GMF Map, GMF Gen, Gantt, JHotDraw,

Xerces-J and ApacheAnt.

To answer the last question (RQ4) we discussed on how the shape of the Pareto front can

help developers to select the best merging solution based on their preferences.

Figure 28 depicts the different Pareto surfaces obtained on three open source systems

(Apache Ant, JHotDraw and GMF Graph) using NSGA-II to optimize both objectives related

to minimizing the number of disabled refactorings and maximizing the number of important

enabled ones. Due to space limitations, we show only some examples of the Pareto-optimal

front approximations obtained which differ significantly in terms of size. Similar

observations were obtained on the remaining systems.

86 Model Merging

Figure 28: Pareto fronts for NSGA-II obtained on three open source systems:GMF Graph (small), JHotDraw

(medium), and ApacheAnt (large).

One striking feature about all the three plots is that starting from the lowest number of

disabled operations solution the trade-off between both objectives is not in favor of including

important operations in the merging process, meaning that the number of enabled operations

degrades slowly with a fast increase in the overall importance score of considered operations

in the merging up to the knee point, marked in each figure. Thereafter, there is a sharp drop

in the number of enabled operations with only a small increase in the importance score of

considered operations in the merging solutions. It is very interesting to note that this property

of the Pareto-optimal front is apparent in all the problems considered in this study. It is likely

that a software engineer would be drawn to this knee point as the probable best trade-off

between our both objectives. Without any consideration of the importance of operations in

the search process, one would obtain the highest number of enabled operations in solution all

the time, but Figure 28 shows how a better merging solution that include important

operations can be obtained by sacrificing just a little in the number of total enabled

refactorings.

We also compared the merging solution at the knee-point for JHotDraw with the best

mering solution that maximizes only the number of enabled operations to understand why the

former solution finds a good trade-off. We found that the knee-point solution disabled

refactorings that were not important and not applied to important classes. Hence we conclude

87 Model Merging

that RQ4 is affirmed and that the multi-objective approach has value for software engineers

in a real-world setting.

The experiment results indicate clearly that the number of disabled operations is reduced

significantly in comparison to the number of disabled operations without taking into

consideration the different possible operation orders. Furthermore, the results provide strong

evidence to support the claim that our proposal enables the generation of efficient model

merging solutions to be comparable in terms of minimizing the number of conflicts to those

suggested by existing approaches and to carry a high importance score of merged operations.

Although our approach has been evaluated with real-world models with a reasonable number

of applied operations, we are working now on larger models and with larger lists of

operations applied in parallel. This is necessary to investigate more deeply the applicability

of the approach in practice, but also to study the performance of our approach when dealing

with very large models.

88 Defects Detection at the Model Level

Chapter 6: Defects Detection at the Model Level

6.1 Introduction

Code-smells classify shortcomings in software that can decrease software maintainability.

They are also defined as structural characteristics of software that may indicate a code or

design problem that makes software hard to evolve and maintain, and trigger refactoring of

code [108] [109]. Code-smells are not limited to design flaws since most of them occur in

code and are not related to the original design. In fact, most of code-smells represent patterns

or aspects of software design that may cause problems in the further development and

maintenance of the system [110]. As stated by Fowler in [88], code-smells are unlikely to

cause failures directly, but may do it indirectly. In general, they make a system difficult to

change, which may in turn introduce bugs. Different types of code-smells, presenting a

variety of symptoms, have been studied in the intent of facilitating their detection and

suggesting improvement solutions.

In our approach, we focus on the following five code-smell types:

Blob: It is found in designs where one large class monopolizes the behavior of a system (or

part of it), and the other classes primarily encapsulate data.

Feature Envy (FE): It occurs when a method is more interested in the features of other

classes than its own. In general, it is a method that invokes several times accessor methods of

another class.

Data Class (DC): It is a class with all data and no behavior. It is a class that passively store

data.

Spaghetti Code (SC): It is a code with a complex and tangled control structure.

89 Defects Detection at the Model Level

Functional Decomposition (FD): It occurs when a class is designed with the intent of

performing a single function. This is found in a code produced by non-experienced object-

oriented developers.

We choose these code-smell types in our experiments because they are the most frequent to

detect and fix based on recent empirical studies [111] [112] [113] [114]. Of course, the

proposed approach in this paper can be extended to other types of code smell.

Software metrics can be used to capture the structural and semantic attributes of the software,

and can be a reliable indicator of the quality of design. These quality indicators can then be

used to quantitatively estimate and reflect the design signatures of software architecture in

terms of many metrics including coupling, cohesion, cyclic complexity, etc. The code smell

detection process usually involves finding the fragments of code which violate these software

metrics. Several studies [48] [53] [51] classified these software metrics for object oriented

architectures. We selected and used in our experiments the software metrics described in

Table 11.

Table 11: List of Software Metrics.

Metrics Description

Weighted Methods per Class (WMC)

WMC represents the sum of the complexities of its methods.

Response for a Class (RFC) RFC is the number of different methods that can be executed when an

object of that class receives a message.

Lack of Cohesion of Methods (LCOM) Chidamber and Kemerer define Lack of Cohesion in Methods as the

number of pairs of methods in a class that does not have at least one

field in common minus the number of pairs of methods in the class that

does share at least one field. When this value is negative, the metric

value is set to 0.

Number of Attributes (NA) Number of attributes in aclass.

Attribute Hiding Factor (AH)

AH measures the invisibilities of attributes in classes. The invisibility of

an attribute is the percentage of the total classes from which the attribute

is not visible.

90 Defects Detection at the Model Level

Method Hiding Factor (MH)

MH measures the invisibilities of methods in classes. The invisibility of

a method is the percentage of the total classes from which the method is

not visible.

Number of Lines of Code (NLC)

NLC counts the lines but excludes empty lines and comments.

Coupling Between Object classes (CBO)

CBO measures the number of classes coupled to a given class. This

coupling can occur through method calls, field accesses, inheritance,

arguments, return types, and exceptions.

Number of Classes (NC) Number of classes in the considered package.

Depth of Inheritance Tree (DIT)

DIT is defined as the maximum length from the class node to the

root/parent of the class hierarchy tree and is measured by the number of

ancestor classes. In cases involving multiple inheritances, the DIT is the

maximum length from the node to the root of the tree.

Polymorphism Factor (PF)

PF measures the degree of method overriding in the class inheritance

tree. It equals the number of actual method overrides divided by the

maximum number of possible method overrides.

Attribute Inheritance Factor (AIF)

AIF is the fraction of class attributes that are inherited.

Number of Children (NOC) NOC measures the number of immediate descendants of the class.

The manual definition of rules to identify can be time-consuming for some types of code

smell such as the Functional Decomposition defect. One of the main issues is related to the

definition of thresholds when dealing with quantitative information. For example, the Blob

detection involves information such as class size. Although we can measure the size of a

class, an appropriate threshold value is not trivial to define. A class considered large in a

given program/community of users could be considered average in another. Thus, the manual

definition of detection rules sometimes requires a high calibration effort. Furthermore, the

manual selection of the best combination of metrics that formalize some symptoms of code-

smells is challenging. In addition, the translation of code-smell definitions into metrics is not

straightforward. Some definitions of code-smells are confusing and it is difficult to determine

which metrics to use to identify such design problems. To address these challenges, we

91 Defects Detection at the Model Level

describe in the next section our approach based on the use of multi-objective genetic

programming to generated code-smells detection rules using not only bad design practice

examples but also good ones.

6.2 Approach Overview

6.2.1 Detection Scheme

We propose in this work to consider the problem of code-smells detection as a multi-

objective problem as shown in Figure 29 where examples of code-smells and well-designed

models are used to generate detection rules. To this end, we use multi-objective genetic

programming (MOGP) to find the best combination of metrics that maximizes the detection

of design defect examples and minimizes the detection of well-designed relevant software

model.

Figure 29: Single Objective system compared with multi objective system. The multi objective system uses Good-

Example to improve the quality of detection rules and help minimize the false positives.

92 Defects Detection at the Model Level

The code-smells detection problem involves searching for the best metric combinations

among the set of candidate ones, which constitutes a huge search space. A solution of our

code-smells detection problem is a set of rules (metric combination with their thresholds

values) where the goal of applying these rules is to detect code smells in a system. We

propose a multi-objective formulation of the code-smells rules generation problem.

Consequently, we have two objective functions to be optimized: (1) maximizing the coverage

of code-smell examples, and (2) minimizing the detection of good design-practice examples

as false positives. The collected examples of well-design code and code-smells on different

systems are taken as an input for our approach.

6.2.2 Solution Coding

Analytically speaking, the formulation of the multi-objective problem can be stated as

follows:





























2

)(

)()(

)(min

2

)(

)()(

)(max

2

1

xDCS

EGExDCS

EGE

EGExDCS

xf

xDCS

ECSxDCS

ECS

ECSxDCS

xf

where |DCS(x)| is the cardinality of the set of Detected Code-Smells by the metric

combination x, |ECS| is the cardinality of the set of Existing Code-Smells, and |GDE| is the

cardinality of the set of Existing Good Examples.

Once the bi-objective trade-off front is obtained, the developer can navigate through this

front in order to select his/her preferred solution (metric combination).

As noted by Harman et al. [84], a multi-objective algorithm cannot be used “out of the box”

– it is necessary to define problem-specific genetic operators to obtain the best performance.

93 Defects Detection at the Model Level

To adapt MOGP to our problem, the required steps are to create: (1) solution representation,

(2) solution variation, and (3) solution evaluation.

6.2.2.1 Solution Representation

In this MOGP based detection approach, a solution representation is composed of terminals

and functions. Therefore, when applying MOGP to solve a specific problem, they should be

carefully selected and designed to satisfy the requirements of the current problem. After

evaluating many parameters related to the code-smells detection problem, the terminal set

and the function set are decided as follows. The terminals correspond to different quality

metrics with their threshold values. The functions that can be used between these metrics are

Union (OR) and Intersection (AND). More formally, each candidate solution x in this

problem is a set of detection rules where each rule is represented by a binary tree such that:

(1) each leaf-node (Terminal) belongs to the set of metrics (such as number of

methods, number of attributes, etc.) discussed in Section 2 and their corresponding

thresholds generated randomly.

(2) each internal-node (Functions) N belongs to the Connective (logic operators) set C =

{AND, OR}.

The set of candidates solutions (rules) corresponds to a logic program that is represented as a

forest of AND-OR trees. Each sub-tree corresponds to a rule for the detection of specific

code-smell (e.g. blob, functional decomposition, etc.). Figure 30 illustrates an example of a

solution according to our formulation including two rules. It is an example of rules generated

randomly by the genetic programming and not the best set of rules found at the end of the

execution of the algorithm. The first rule is to detect Blob using the two metrics NLC and

NA and the second rule detects Spaghetti Code (SC) using one metric NOC. The thresholds

values are selected randomly along with the comparison and logic operators.

L

94 Defects Detection at the Model Level

Figure 30: An example of a detection rule according to our formulation.

6.2.2.2 Solution Variation

Solution variation in this detection scheme utilizes a mutation operator that can be applied to

a function node or a terminal node. It starts by randomly selecting a node in the tree. Then, if

the selected node is a terminal (quality metric), it is replaced by another terminal (metric or

another threshold value). If it is a function (AND-OR), it is replaced by a new function. If a

tree mutation is to be carried out, the node and its sub-tree are replaced by a new randomly

generated sub-tree. Figure 31 illustrates an example of a mutation operation. One node is

deleted from the tree representation to generate a new other possible solution. For the

crossover, two parent individuals are selected and a sub-tree is picked on each one. Then

crossover swaps the nodes and their relative sub-trees from one parent to the other. This

operator must ensure the respect of the depth limits. The crossover operator can be applied

with only parents having the same rules category (code-smell type to detect). Each child thus

obtains information from both parents. Figure 32 illustrates a set of detection rules before

crossover and Figure 33 shows the rules after the application of cross over operation. Two

sub-trees are exchanges between two solutions to generate two new ones.

95 Defects Detection at the Model Level

Figure 31: An exemplified mutation operation.

Figure 32: Before Crossover operation is performed

Figure 33: After Crossover operations is performed

96 Defects Detection at the Model Level

6.2.2.3 Solution Evaluation

The solution is evaluated based on the two objective functions: maximize detection of anti

patterns while minimizing the detection of false positives in reference design. Since we are

considering a bi-objective formulation, we use the concept of Pareto optimality to find a set

of compromise (Pareto-optimal) solutions. The fitness of a particular solution in MOGP

corresponds to a couple (Pareto Rank, Crowding distance). In fact, MOGP classifies the

population individuals (of parents and children) into different layers, called non-dominated

fronts. Non-dominated solutions are assigned a rank of 1 and then are discarded temporary

from the population. Non-dominated solutions from the truncated population are assigned a

rank of 2 and then are discarded temporarily. This process is repeated until the entire

population is classified with the domination metric. After that, a diversity measure, called

crowding distance, is assigned front-wise to each individual. The crowding distance is the

average side length of the cuboid formed by the nearest neighbors of the considered solution.

Once each solution is assigned its Pareto rank, mating selection and environmental selection

are performed. This is based on the crowded comparison operator ( n) that favors solutions

having better Pareto ranks and, in case of equal ranks, it favors the solution having larger

crowding distance. In this way, convergence towards the Pareto optimal bi-objective front

and diversity along this front are emphasized simultaneously. The output of MOGP is the last

obtained parent population containing the best of the non-dominated solutions found. When

plotted in the objective space, they form the Pareto front from which the user will select

his/her preferred code-smells detection rules solution.

6.3 Validation

6.3.1 Research Questions

We defined five research questions that address the applicability, performance in comparison

to existing refactoring approaches, and the usefulness of our multi-objective code-smells

detection approach. The five research questions are as follows:

97 Defects Detection at the Model Level

RQ1: How does MOGP perform against Random Search (this serves as sanity check)?

If random search outperforms an intelligent search method, then we can conclude that our

problem formulation is not adequate.

RQ2: How does MOGP perform against start of the art code-smell detectors?

RQ 2.1: How does MOGP perform compared to MOAIS? It is important to justify the use

of MOGP for the problem of multi-objective code-smells detection. It is almost impossible to

formally justify the use of a specific metaheuristic search against another. The only proof in

general is the experiments’ result. To this end, we compared MOGP with another multi-

objective algorithm, MOAIS [115] using the same adaptations. MOAIS is a widely used

multi objective non dominated neighbour based selection algorithm which is used as a

benchmark for evaluation of multi object search algorithms.

RQ 2.2: How does MOGP perform compared to mono-objective genetic programming

(GP) with aggregation of both objectives? This research question is essential to validate

the choice of using multi objective algorithm as opposed to using mono objective algorithm.

RQ 2.3: How does MOGP perform compared to some existing code-smells detection

approaches? It is important to determine if the proposed detection approach which employs

good and bad design examples performs better than existing approaches including non-search

techniques.

RQ3: To what extent can our approach generate rules that detect different code-smell

types? It is important to discuss the ability of our approach to detect different types of code-

smells to evaluate the quality of each detection rule separately.

6.3.2 Experimental Setup

Our study considers the extensive evolution of different open source Java systems analyzed

in the literature [116] [117]. As described in Table 2, the corpus used includes releases of

Apache Ant, ArgoUML, Gantt, Azureus and Xerces-J. Apache Ant is a build tool and library

98 Defects Detection at the Model Level

specifically conceived for Java applications. ArgoUML is an open-source UML modeling

tool. Xerces is a family of software packages that implement a number of standard APIs for

XML parsing. GanttProject is a tool for creating project schedules in the form of Gantt charts

and resource-load charts. Azureus is a peer-to-peer file-sharing tool. Table 12 reports the size

in terms of classes of the analyzed systems. The table also reports the number of code smells

identified manually in the different systems by a team of software engineers and researchers,

more than 800 in total for the five types of code smell considered in our experiments. For

replication of experimental results, the team provided a corpus describing instances of

different code smells including blob, spaghetti code, and functional decomposition. Subjects

included 8 master students in Software Engineering, 5 Ph.D. students in Software

Engineering and 2 faculty members in Software Engineering. All the 15 subjects were

familiar with Java development, software maintenance activities including code smells

detection and refactoring. The experience of these subjects on Java programming ranged

from 1 to 17 years. In our study, we verified the capacity of our approach to detect classes

that correspond to instances of these code smells. We choose the above-mentioned open

source systems because they were analyzed in related work and for comparison purposes.

JHotDraw was chosen as an example of reference code (training examples for our MOGP of

good design practices) because it contains very few known code-smells.

Table 12: Software projects features.

Systems
Number of

classes

Number of code smells

Blob FD SC DC FE

ArgoUML v0.26 1358 22 52 64 21 14

ArgoUML v0.3 1409 10 58 61 16 22

Xerces v2.7 991 14 32 36 19 24

Ant-Apache v1.5 1024 22 47 34 23 21

Ant-Apache v1.7.0 1839 25 51 48 18 26

Gantt v1.10.2 245 4 21 16 14 11

Azureus v2.3.0.6 1449 19 44 52 29 34

99 Defects Detection at the Model Level

We use the two following performance indicators (which are among the most used in multi-

objective optimization) when comparing MOGP and MOAIS:

Hypervolume (IHV) [118]: It corresponds to the proportion of the objective space that is

dominated by the Pareto front approximation returned by the algorithm and delimited by a

reference point. Larger values for this metric mean better performance.

Inverted Generational Distance (IGD) [118]: It is a convergence measure that corresponds to

the average Euclidean distance between the Pareto front Approximation PA provided by the

algorithm and the Reference Front RF (RF is the set of non-dominated solutions obtained

over all runs). The distance between PA and RF in an M-objective space is calculated as the

average M-dimensional Euclidean distance between each solution in PA and its nearest

neighbour in RF. Lower values for this indicator mean better performance (convergence).

To assess the accuracy of our approach, we compute two measures: (1) precision and (2)

recall, originally stemming from the area of information retrieval:

Precision (PR): It denotes the fraction of correctly detected code-smells among the set of all

detected code-smells. It could be seen as the probability that a detected code-smell is correct.

Recall (RE): It corresponds to the fraction of correctly detected code-smells among the set of

all manually identified code-smells (i.e., how many code-smells have not been missed). It

could be seen as the probability that an expected code-smell is detected.

Since metaheuristic algorithms are stochastic optimizers, they usually provide different

results for the same problem instance from one run to another. For this reason, our

experimental study is performed based on 51 independent simulation runs for each problem

100 Defects Detection at the Model Level

instance and the obtained results are statistically analyzed by using the Wilcoxon rank sum

test with a 95% confidence level (α = 5%). This statistical test verifies the null hypothesis H0

that the obtained results of two algorithms are samples from continuous distributions with

equal medians, as against the alternative that they are not, H1. The p-value of the Wilcoxon

test corresponds to the probability of rejecting the null hypothesis H0 while it is true (type I

error). A p-value that is less than or equal to α (≤ 0.05) means that we accept H1 and we

reject H0. However, a p-value that is strictly greater than α (> 0.05) means the opposite.

Parameter setting has a significant influence on the performance of a search algorithm on a

particular problem instance. For this reason, for each multi-objective algorithm and for each

system (cf. Table 3), we perform a set of experiments using several population sizes: 50, 100,

200, 500 and 1000. The stopping criterion was set to 250,000 fitness evaluations for all

algorithms in order to ensure fairness of comparison. The other parameters’ values were

fixed by trial and error and are as follows: (1) crossover probability = 0.8; mutation

probability = 0.20 where the probability of gene modification is 0.3; stopping criterion =

250,000 fitness evaluations. For MOAIS, the maximum size of the dominant population, and

the clone population size are set to 100 and 20 respectively.

6.3.3 Result and Discussion

We do not dwell long in answering the first research question (RQ1) that involves comparing

our approach based on NSGA-II with random search. The remaining research questions will

reveal more about the performance, insight, and usefulness of our approach. Table 13

confirms that MOGP and MOAIS are better than random search based on the two quality

indicators IHV and IGD on all seven open source systems. The Wilcoxon rank sum test

showed that in 51 runs both MOGP and MOAIS results were significantly better than random

search. We conclude that there is empirical evidence that our multi-objective formulation

surpasses the performance of random search thus our formulation is adequate (this answers

RQ1).

101 Defects Detection at the Model Level

Table 13: The significantly best algorithm among random search, MOGP and MOAIS

(No stat. diff. means that MOGP and MOAIS are significantly better than random, but

not statistically different).

Project IHV IGD

ArgoUML v0.26 MOGP MOGP

ArgoUML v0.3 MOGP MOGP

Xerces v2.7 No stat. diff. MOAIS

Ant-Apache v1.5 MOGP MOGP

Ant-Apache v1.7.0 MOGP MOGP

Gantt v1.10.2 MOGP No stat. diff.

Azureus v2.3.0.6 MOGP MOGP

In section, we compare our MOGP adaptation to the current, state-of-the-art code-smells

detection approaches. To answer the second research question, RQ2.1, we compared MOGP

to another multi-objective algorithm, MOAIS, using the same adaptations. Table 14 shows

the overview of the results of the significance tests comparison between MOGP and MOAIS.

MOGP outperforms MOAIS in most of the cases: 11 out of 14 experiments (78%).

A more qualitative evaluation is presented in Figure 34Figure 35 illustrating the box plots

obtained for the multi-objective metrics on the different projects. We see that for almost all

problems the distributions of the metrics values for MOGP have smaller variability than for

MOAIS. This fact confirms the effectiveness of MOGP over MOAIS in finding a well-

converged and well-diversified set of Pareto-optimal detection rules solutions (RQ2.1).

102 Defects Detection at the Model Level

Figure 34: IHV boxplots on 3 projects having different sizes (Gantt v1.10.2: small, Xerces v2.7: medium, Ant-Apache

v1.7.0: large).

Next, we use precision and recall measures to compare the efficiency of our MOGP approach

compared to mono-objective GP (aggregating both objectives) and two existing code-smells

detection studies [116] [117]. We first note that the mono-objective approaches provide only

one detection solution (set of detection rules), while MOGP generate a set of non-dominated

solutions. In order to make meaningful comparisons, we select the best solution for MOGP

using a knee point strategy as. The knee point corresponds to the solution with the maximal

trade-off between maximizing the coverage of code-smells and minimizing the number of

detected well-designed code. Thus, for MOGP, we select the knee point from the Pareto

approximation having the median IHV value. We aim by this strategy to ensure fairness

when making comparisons against the mono-objective EA. For the latter, we use the best

solution corresponding to the median observation on 51 runs.

103 Defects Detection at the Model Level

Figure 35: IGD boxplots on 3 projects having different sizes (Gantt v1.10.2: small, Xerces v2.7: medium, Ant-

Apache v1.7.0: large).

The results from 51 runs are depicted in Table 14. It can be seen that MOGP provides better

precision and recall scores for the detection of code-smells. For recall (RE), MOGP is better

than GP in 100% of the cases. We have the same observation for the precision also where

MOGP outperforms GP in all cases with an average of more than 90%. Thus, it is clear that a

multi-objective formulation of our problem outperforms the aggregation-based approach. In

conclusion, we answer RQ2.2 by concluding that the results obtained in Table 14 confirm

that both multi-objective formulations are adequate and outperform the mono-objective

algorithm based on an aggregation of two objectives related to use of good and bad software

design examples. Table 14 also shows the results of comparing our multi-objective approach

based on MOGP with two mono-objective refactoring approaches [116] [117]. In [116], the

authors used search-based techniques to detect code-smells from only code-smell examples.

In [117], an artificial immune system approach is proposed to detect code-smells by

deviation with well-designed code examples. It is apparent from Table 14 that MOGP

outperforms both mono-objective approaches in terms of precision and recall in most of the

cases. This is can be explained by the fact that our proposal takes into account both positive

and negative examples when generating the detection rules. If only code-smell examples are

used then it is difficult to ensure the coverage of all possible bad design behaviors. The same

104 Defects Detection at the Model Level

observation is still valid for the use only of well-designed code examples. The use of both

types of examples represents a complementary way to formulate the problem of code-smells

detection using a multi-objective approach. To answer RQ2.3, the results of Table 14 support

the claim that our MOGP formulation outperforms, on average, the two code-smells existing

approaches.

Table 14: Recall and precision median values of MOGP, MOAIS, GP, [28] and [29] over 51 independent

simulation runs.

System RE-

MOGP

RE-

MOAIS

RE-GP RE-[28] RE-[29] PR-MOGP PR-

MOAIS

PR-GP PR-[28] PR-[29]

ArgoUM

L v0.26

92%

(158/173)

90%

(155/173)

85%

(147/173)

81%

(141/173)

83%

(143/173)

87%

(158/176)

85%

(155/178)

76%

(147/188)

74%

(141/194)

72%

(141/198)

ArgoUM

L v0.3

90%

(149/167)

88%

(146/167)

81%

(136/167)

74%

(123/167)

76%

(126/167)

86%

(149/174)

86%

(146/174)

73%

(136/179)

64%

(123/194)

63%

(123/196)

Xerces

v2.7

90%

(113/125)

90%

(113/125)

83%

(103/125)

75%

(93/125)

76%

(95/125)

87%

(113/131)

85%

(113/136)

71%

(103/143)

69%

(93/132)

67%

(93/136)

Ant-

Apache

v1.5

89%

(131/147)

87%

(127/147)

79%

(116/147)

85%

(124/147)

82%

(120/147)

90%

(131/145)

90%

(127/145)

76%

(116/152)

75%

(124/160)

72%

(124/167)

Ant-

Apache

v1.7.0

93%

(157/168)

93%

(157/168)

77%

(129/168)

71%

(119/168)

69%

(115/168)

95%

(157/163)

92%

(157/169)

72%

(129/176)

67%

(119/176)

65%

(119/181)

Gantt

v1.10.2

90%

(57/66)

86%

(55/66)

83%

(56/66)

77%

(51/66)

72%

(48/66)

79%

(57/73)

76%

(55/76)

63%

(56/88)

58%

(51/89)

63%

(51/82)

Azureus

v2.3.0.6

94%

(169/178)

92%

(163/178)

79%

(140/178)

69%

(122/178)

72%

(128/178)

86%

(169/187)

86%

(163/187)

76%

(140/184)

67%

(122/188)

69%

(122/182)

We noticed that our technique does not have a bias towards the detection of specific code-

smells types. In all systems, as shown in Figure 36, we had an almost equal distribution of

each code-smell types (SCs, Blobs, FEs, DCs and FDs). Overall, all the five code smell types

105 Defects Detection at the Model Level

are detected with good precision and recall scores in the different systems (more than 85%).

This ability to identify different types of code-smells underlines a key strength to our

approach. Most other existing tools and techniques rely heavily on the notion of size to detect

code-smells. This is reasonable considering that some code-smells like the Blob are

associated with a notion of size. For code-smells like FDs, however, the notion of size is less

important and this makes this type of anomaly hard to detect using structural information.

This difficulty limits the performance of GP in well detecting this type of code-smells. Thus,

we can conclude that our MOGP approach detects well all the five types of considered code-

smells (RQ3).

Figure 36: The median values of precision and recall on 51 runs for the five types of code-smell.

106 Refactoring Recommendation at the Model

Level

Chapter 7: Refactoring Recommendation at the Model Level

7.1 Introduction

One of the most widely used techniques for fixing design defects and improving structural

integrity of evolving software systems is refactoring, which improves design structure while

preserving external behavior [5]. Various tools [5] [119] [120] [121] [122] supporting

refactoring have been proposed in the literature. The vast majority of these tools provide

different environments to apply manually or automatically refactorings to avoid and fix bad-

design practices [123].

The majority of existing refactoring works focus mainly on the source code level. The

suggestion of refactorings at the model level is more challenging due to the difficulty to

evaluate: a) the impact of the suggested refactorings applied to a diagram on other related

diagrams to improve the overall system quality, b) their feasibility, and c) inter-diagram

consistency. In the source code level, traditional code quality metrics are used to evaluate the

quality of a system after applying a sequence of refactorings. However, applying refactoring

on a specific model such as class diagrams has an impact on related other diagrams such as

activity diagrams, sequence diagrams, etc. Sometimes, an improvement of class diagram

quality metrics may decrease the quality of an activity diagram. Thus, it is important to

evaluate the impact of suggested refactorings not only on one diagram, but also other related

diagrams to estimate the overall quality. Second, some refactorings suggested at the model

level cannot be applied to the source code level. Third, it is difficult to check if a refactoring

applied to a class diagram preserves the behavior or not without the use of some related

behavioral diagrams such as an activity diagram.

We propose, in this chapter, a novel framework that enables software designers to apply

refactoring at the model level. To this end, we used a multi-objective evolutionary algorithm

107 Refactoring Recommendation at the Model

Level

to find a trade-off between improving the quality of different diagrams at the same time such

as class diagrams and activity diagrams. The proposed multi-objective approach provides a

multi-view for software designers to evaluate the impact of suggested refactorings applied to

class diagrams or related activity diagrams in order to evaluate the overall quality, and check

their feasibility and behavior preservation. The statistical evaluation performed on models

extracted from four open source systems confirms the efficiency of our approach.

7.1.1 Multi View Refactoring : A Motivating Example

To showcase the challenges of finding an optimal sequence of refactorings to improve the

quality of the class diagram and at the same time the quality of the activity diagram, consider

the example illustrated in Figure 37 (initial version before refactoring) and Figure 38

(intermediate version after refactoring of class diagram), and Figure 39 (final version after

refactorings of class and activity diagrams).

Figure 37 : Initial Version for Motivating Example – Initial Version before Refactoring

The class Circle contains two properties x and y, which specify the coordinates of its center

point, we may apply the refactoring “Extract Class” to encapsulate these two parameters. Of

course, we also have to co-refactor the activity diagram accordingly. The class and activity

diagram after the refactoring and the co-refactoring is depicted in Figure 38. Thus, a new

Circle

+ x :int

+ y :int

+ radius :int

+ distance(int, int) :int

+ distance(int, int, int, int) :int

distance(int, int)

y :Integer

x :Integer return :Integer

this

ReadSelf distance()

(Circle::distance)

x2

y 1

x1

y 2

x

ReadStructuralFeature

y

ReadStructuralFeature

Activity

edges = 9

nodes = 5

actions = 4

CFC = 3

LOC = 1

Classes

classes = 1

PPC = 3

OPC = 2

Legend

PPC … # properties per class

OPC … # operations per class,

CFC … control-flow complexity = #forks + # decisions

LOC … locality = # reads in referenced class / all reads

108 Refactoring Recommendation at the Model

Level

class Point has been introduced, which now contains the two properties x and y. Besides, a

new association is created to link the point from the class Circle. Alongside the class

diagram, we had to apply co-refactorings in the operation distance(int, int). In particular, a

new ReadStructuralFeatureValueAction (“point”) has been added to obtain the values x and

y. We may observe that, although the quality of the class diagram might have been improved

(e.g., there is a better distribution of properties per class), the length, the number of edges, the

control-flow complexity (CFC), as well as the locality (LOC) indicate a worse design with

respect to the activity diagram. The reason for this is that the activity specifying the behavior

of the operation distance(int, int) contains an additional read-action to obtain values from a

referenced object.

109 Refactoring Recommendation at the Model

Level

Figure 38 : Intermediate Version for Motivating Example for Model Refactoring – After Extract Class Point

Refactoring

To improve this situation, we have to apply another refactoring, namely “Move Operation”,

in order to move the operations distance(int, int) into the newly created class Point as shown

in Figure 39. Then, however, we break the conformance rules of class diagram and the

activity diagram, because in distance(int, int), the operation distance(int, int, int, int) is

called, which is not possible in the scope of Point, since Point has no access to the instance

of Circle. Nevertheless, when we accept the temporary inconsistency and also move the

operation distance(int, int, int, int) into the class Point, we obtain a new result, depicted in

Figure 3, which not only validates all conformance rules, but also improves the metrics of the

activity diagram significantly; the number of edges has been reduced and the control-flow

complexity, as well as the locality, has been improved.

Activity

edges = 11

nodes = 7

actions = 4

CFC = 4

LOC = 0,4

Classes

classes = 2

PPC = 1,5

OPC = 1

Legend

PPC … # properties per class

OPC … # operations per class,

CFC … control-flow complexity = #forks + # decisions

LOC … locality = # reads in referenced class / all reads

Circle

+ radius :int

+ distance(int, int) :int
+ distance(int, int, int, int) :int

Point

+ x :int
+ y :int

+point

1

distance(int, int)

y :Integer

x :Integer

return :Integer

this
ReadSelf

distance()
(Circle::distance)

x2

y1

x1

y2

target

x
ReadStructuralFeature

y
ReadStructuralFeature point

ReadStructuralFeature

110 Refactoring Recommendation at the Model

Level

Figure 39 : Final Version for Motivating Example for Model Refactoring – After Move Methods distance Operation

In conclusion, applying refactorings on the class diagram may have a strong impact on the

quality of the activity diagrams that specify the behavior of the classes’ operations. Even

worse, in several scenarios, the class refactorings will break their consistency. Finding a good

sequence of refactorings to obtain a consistent and improved class and activity diagram is a

major challenge. First, we have to deal with a multi-dimensional optimization problem, and

second, we may have to accept temporarily inconsistencies to ultimately reach even better

solutions.

7.1.2 Challenges in Refactoring at Model Level

Finding an optimal sequence of refactorings on class diagrams and the corresponding co-

refactorings on activity diagrams in order to accomplish a high quality of both views on a

software system is a challenging task, because the effects of refactorings may improve the

quality of one view, while they decrease the quality of the other. In this section, we introduce

Activity

edges = 9

nodes = 5

actions = 4

CFC = 3

LOC = 1

Classes

classes = 2

PPC = 1,5

OPC = 1

Legend

PPC … # properties per class

OPC … # operations per class,

CFC … control-flow complexity = #forks + # decisions

LOC … locality = # reads in referenced class / all reads

Circle

+ radius :int

Point

+ x :int

+ y :int

+ distance(int, int) :int

+ distance(int, int, int, int) :int

+point

1

distance(int, int)

y :Integer

x :Integer return :Integer

this
ReadSelf

distance()
(Point::distance)

x2

y1

x1

y2

target

x
ReadStructuralFeature

y
ReadStructuralFeature

111 Refactoring Recommendation at the Model

Level

some well-known quality metrics that we use to evaluate the overall quality of the design and

discuss the refactorings of class diagrams and the corresponding co-refactorings of activity

diagrams that can be applied to improve the quality of both views. Based on these quality

metrics and refactorings, we showcase the challenge of finding an optimal sequence based on

a small example. However, at the same time we like to stress that our approach is not limited

to these specific multi-view refactoring problem, but maybe it can be used as a general

approach to tackle also another multi-view refactoring scenarios.

7.1.2.1 Quality Metrics

It is not a trivial task to select appropriate quality metrics to determine quality of class and

activity diagram. Among the several metrics have been proposed to evaluate the structural

quality of software artifacts (e.g., [124]), many have been successfully adopted for evaluating

the structural design quality of UML (meta-)models, e.g., by Ma et al. [125]. Based on those

works, we selected several metrics for class diagrams and activity diagrams (for activity

diagrams we mostly based our metrics on existing work in the field of business processes,

e.g., [126]) covering their design size and complexity (e.g., number of attributes and methods

per class, number of parameters of methods, etc.), their coupling and encapsulation (e.g.,

number of associations, number data accesses over associations), as well as their abstraction

(e.g., inheritance depth, number of polymorphic methods).

7.1.2.2 Refactorings

The refactoring of object-oriented programs is a well-researched domain [88] and many of

the identified refactorings for object-oriented programs have been adopted for the refactoring

of design models [127]. In this work, we consider refactorings that are applicable on class

diagrams. However, the problem becomes challenging when we also have to identify the

necessary co-refactorings for activity diagrams. The co-refactoring of activities is necessary

after applying a refactoring to the class diagram in order to maintain the validity of

consistency rules among classes and activities. A complete list of the considered class

112 Refactoring Recommendation at the Model

Level

diagram refactorings and the corresponding co-refactorings of activities is available in [128].

This makes the problem of refactoring at the model level inherently more challenging, but at

the same time gives the developer a better overview of different system states.

When using class diagrams and activity diagrams to represent the structure and behavior of

programs, the consistency rules between class diagrams and activity diagrams largely

correspond to the static semantics rules between classes and statements of an object-oriented,

statically-typed programming language. To avoid ambiguities regarding the semantics of

classes, activities, and actions, we adopt the semantics of the Foundational Subset For

Executable UML (fUML) to define consistency rules and to derive necessary co-refactorings.

As an example for such consistency rules, we may consider a

ReadStructuralFeatureValueAction in an activity, which obtains the value of a specific

feature from an object. The consistency rule of this action with respect to the class diagram is

that the feature to be read must be a direct or inherited feature of the object’s class.

Moreover, the feature must be visible in the current context. The complete list of refactorings

and co-refactoring is shown in Table 15.

We consider 15 well-known refactorings of class diagrams [127] [58] ranging from moving

features, such as properties and operations, through extracting classes or superclasses from

other classes, as well as pushing down and pulling up features along inheritance

relationships, through to replacing inheritance with delegation and vice versa. For each of

those refactorings of class diagrams, we identified the necessary co-refactorings for activity

diagrams to maintain the validity of consistency rules between classes and activities. For

instance, if a new class is extracted from one class and, thereby, a new association is added

from the original class to the extracted class and one or more features (properties and

operations) of the original class are moved to the new extracted class, all

StructuralFeatureValueActions that access the moved features have to be prepended with a

ReadStructuralFeatureValueAction that first reads the introduced association to navigate

from the original class to the extracted class; otherwise, moved features would not be

113 Refactoring Recommendation at the Model

Level

accessible in the object that is of the type of the original class. Note that in certain scenarios,

it might not be possible to re-establish the validity of all conformance relationships with a co-

refactoring of activities. For instance, when a private property of a class is pulled-up to its

superclass and there are activities in the subclass reading this private property, we would

have to pull-up this activity and the corresponding operation too. However, if this activity

also reads other private properties that were not pulled up into the superclass, we cannot pull-

up the activity and the operation; thus, it is not possible to establish valid conformance rules.

Table 15: The list of refactorings and corresponding co-refactorings

Name of

refactoring:

Description Co-evolution process

Rename Class Changes the name of a class

with a new name, and

updates its references.

No co-refactoring needed, because in the abstract syntax the element

references do not break with renames

Replace Inheritance

with Delegation

Replaces a direct inheritance

relationship with a delegation

relationship.

We assume that a delegation relationship is a 1..1 association

For each operation of the original super class, introduce a new

operation in the original subclass and activities that navigate through

the delegation association (ReadStructuralFeatureValueAction) and

call the respective operation (CallOperationAction).

Existing CallOperationActions calling the original superclass’s

operation have to be changed in order to call the new introduced

operation in original subclass instead.

ReadIsClassifiedObjectActions (instance of) have to be adapted,

because the original subclass is not a subclass of the original

superclass anymore.

Replace Delegation

with Inheritance

Replaces a delegation

relationship with a direct

inheritance relationship.

Delete operations and activities from new subclass.

Existing CallOperationActions must be changed to call the operation

of the new superclass instead.

114 Refactoring Recommendation at the Model

Level

Extract Subclass Adds a new subclass to class

C and moves the relevant

features to it.

The CreateObjectAction that created the object of class C must be

changed to the create an object of the new subclass instead, if

features that are pushed down in this refactoring are used on the

created object.

Types of operation parameters have to be changed to the new

subclass if the respective operation accesses features which are now

only available in the subclass.

For methods being pushed down to the new subclass, see Push

Down Method / Field.

Extract Superclass Adds a new super class to

class C and moves the

relevant features to it.

For the features being pulled up to the new superclass, see Pull Up

Method / Field.

Co-evolution would be beneficial for code quality; the superclass

should be used instead of the subclass wherever it is possible; that is,

where no features are used that remain in the respective subclass.

Collapse Hierarchy Removes a class from an

inheritance hierarchy.

Adaptation necessary; see Extract Superclass and Extract Subclass

Inline Class Moves all features of a class

into another class and deletes

it.

We assume that a 1..1 association to the deleted class exists

Access to attributes and call of operations have to be adapted (no

navigation through association using a

ReadStructuralFeatureValueAction is needed anymore).

Adapt all references to deleted class and use class containing all its

features instead in CreateObjectAction,

ReadIsClassifiedObjectAction, parameter types, etc.

115 Refactoring Recommendation at the Model

Level

Extract Class Creates a new class and

moves the relevant features

from the old class into the

new one.

We assume that a 1..1 association to the new class is introduced

Delegating operations have to be added for operations moved to

extracted class.

Read/Add/ClearStructuralFeatureValueActions and

CallOperationValueActions have to be adapted. Before these can be

executed, the object of the extracted class has to be obtained first

through a ReadStructuralFeatureValueAction on the association

pointing to the extracted class.

Usages of non-encapsulated and non-private attributes outside of the

class from which the features were extracted having to be adapted

(navigation to extract object has to be added).

CreateObjectAction and respective linking for the extracted class

has to be added wherever the existing class was instantiated (also

DestroyObjectAction for new class has to be added).

Push Down Method Moves a method from a class

to those subclasses that

require it.

If the pushed-down operations were pushed-down into multiple

subclasses, these operations are moved only from to one subclass

and copied from the other subclasses; thus, for the references to

those operations must be adapted in all CallOperationActions

depending on the type of the object on which the operation is called.

It must be ensured that the moved operations still have access to the

used features (i.e., private attributes and operations in the superclass

C must not be used in

Read/Add/ClearStructuralFeatureValueActions,

CallOperationAction, etc. in the moved operations).

Pushed-down operations must be non-private, if they are calling

somewhere in the superclass or on the level of the superclass type,

because otherwise the pushed-down operations would not be

accessible anymore.

116 Refactoring Recommendation at the Model

Level

If clients of the superclass call the operation, they must use the/a

subclass instead (thus CreateObjectActions or parameter types must

be adopted).

Pull Up Method Moves a method of some

class (es) to the immediate

superclass.

If the pulled-up operations were pulled-up from multiple subclasses,

these operations are moved only from one class and removed from

the other subclasses; thus, for all CallOperationActions that point to

the removed operation, the corresponding moved operation in the

new superclass has to be used instead of the deleted ones.

Pulled up operations must be non-private, if they are used

somewhere in the subclass, because otherwise they would not be

accessible anymore from the subclasses.

Rename Method Changes the name of a

method to a new one, and

updates its references.

No co-refactoring needed

Push Down Field Moves a field from a class to

those subclasses that require

it.

If the pushed-down fields were pushed-down to multiple subclasses,

these fields are moved only from to one subclass and copied from

the other subclasses; thus, for the references to those fields must be

adapted in all StructuralFeatureValueActions depending on the type

of the object on which the field is accessed.

Pushed-down fields must be non-private, if they are accessed

somewhere in the superclass or on the level of the superclass type,

because otherwise the pushed-down fields would not be accessible

anymore.

If clients of the superclass access the pushed-down fields, they must

use the subclass instead (thus CreateObjectActions or parameter

types must be adopted).

117 Refactoring Recommendation at the Model

Level

Pull Up Field Moves a field from some

class(es) to the immediate

superclass.

If the pulled-up fields were pulled-up from multiple subclasses,

these features are moved only from one class and removed from the

other subclasses; thus, for all actions that access those removed

features, the respective corresponding moved field in the new

superclass has to be used instead of the deleted ones in

StructuralFeatureValueActions.

Pulled up fields must be non-private, if they are used somewhere in

the subclass, because otherwise they would not be accessible

anymore from the subclasses.

Rename Field Changes the name of a field

to a new name, and updates

its references.

No co-refactoring needed

Encapsulate Field Creates getter and setter

methods for the field and uses

only those to access the field

Getter and setter activity have to be created (ReadSelf &

Read/AddStructuralFeatureValueAction).

Replace StructuralFeatureValueActions to that field with

CallOperationActions to the getter and setter respectively.

7.2 Approach Overview

7.2.1 Detection Scheme

The goal of our approach is to generate the best refactoring sequence that improve the quality

of different diagrams at the same time and also preserve some behavior preservation

constraints. Therefore, we use a multi-objective optimization algorithm to compute an

optimal sequence of refactorings in terms of finding trade-offs between maximizing the

quality of class diagrams and activity diagrams, and minimizing the number of violated

118 Refactoring Recommendation at the Model

Level

behavioral preservation constraints. In fact, the evaluation of refactorings applied on a class

diagram depends on their impact on the related diagrams such as activity diagrams. In

addition, activity diagrams should be used to verify if the behavior is changed after applying

the refactorings on the class diagram.

The general structure of our approach is sketched in Figure 40. The search-based process

takes as inputs the list of 15 possible types of refactoring that can be applied to a class

diagram, the list behavioral preservation constraints, the co-evolution rules to generate the

equivalent activity diagram from a refactored class diagram, a list of metrics to evaluate the

quality of class diagrams and activity diagrams, and the system design to refactor. The

process of generating a solution can be viewed as the mechanism that finds the best

refactorings sequence among all possible solutions that minimizes the number of violated

behavioral constraints, maximizes the quality of the class diagram and maximizes also the

quality of the related activity diagram. The size of the search space is determined not only by

the number of refactorings but also by the order in which they are applied. Due to the large

number of possible refactoring combinations and the three objectives to optimize, we

considered model refactoring as a multi-objective optimization problem. In the next

subsection, we describe the adaptation of NSGA-II proposed by Deb et al. [82] to our

problem domain.

Figure 40: Multi-objective model refactoring: overview

119 Refactoring Recommendation at the Model

Level

The search based NSGA-II drives the population of candidate solutions to evolve toward the

near-optimal solution in order to solve a multi-objective optimization problem. NSGA-II is

designed to find a set of near-optimal solutions, called non-dominated solutions or the Pareto

front. A non-dominated solution is one that provides a suitable compromise between all

objectives without degrading any of them. As described in Algorithm below (, the first step

in NSGA-II is to create randomly a population P0 of individuals encoded using a specific

representation (line 1). Then, a child population Q0 is generated from the population of

parents P0 using genetic operators such as crossover and mutation (line 2). Both populations

are merged into a new population R0 of size N (line 5). Fast-non-dominated-sort is the

algorithm used by NSGA-II to classify individual solutions into different dominance levels.

Indeed, the concept of Pareto dominance consists of comparing each solution x with every

other solution in the population until it is dominated by one of them. If no solution dominates

it, the solution x will be considered non-dominated and will be selected by the NSGA-II to be

a member of the Pareto front. If we consider a set of objectives fi , i,j  1…n, to maximize, a

solution x dominates x′

iff i, fi (x′) ≤ fi (x) and j | fj (x′)  fj (x).

The whole population that contains N individuals (solutions) is sorted using the dominance

principle into several fronts (line 6). Solutions on the first Pareto-front F0 get assigned

dominance level of 0 Then, after taking these solutions out, fast-non-dominated-sort

calculates the Pareto-front F1 of the remaining population; solutions on this second front get

assigned dominance level of 1, and so on. The dominance level becomes the basis of

selection of individual solutions for the next generation. Fronts are added successively until

the parent population Pt+1 is filled with N solutions (line 8). When NSGA-II has to cut off a

front Fi and select a subset of individual solutions with the same dominance level, it relies on

the crowding distance to make the selection (line 9). This parameter is used to promote

diversity within the population. This front Fi to be split, is sorted in descending order (line

120 Refactoring Recommendation at the Model

Level

13), and the first (N-|Pt+1|) elements of Fi are chosen (line 14). Then a new population Qt+1 is

created using selection, crossover and mutation (line 15). This process will be repeated until

reaching the last iteration according to the stop criteria (line 4). It is interesting to mention

that NSGA-II is an elitist algorithm that does not use any explicit archive of elite individuals.

In fact, elitism is ensured by the crowded comparison operator that prefers solutions having

better Pareto ranks. In this way, NSGA-II preserves elite solutions by keeping best non-

dominated fronts in the race, and when considering the last non-dominated front, only least

crowded solutions are selected from this latter to build the next population of N individuals.

1

Create an initial population P0

Generate an offspring population Q0

t=0;

while stopping criteria not reached do

Rt = Pt ∪ Qt;

F = fast-non-dominated-sort (Rt);

Pt+1 = ∅ and i=1;

while | Pt+1| +|Fi| ≤ N do

Apply crowding-distance assignment(Fi);

Pt+1 = Pt+1 ∪ Fi ;

i = i+1;

end

Sort(Fi, ≺ n);

Pt+1 = Pt+1 ∪ Fi[1 : (N-| Pt+1 |)];

Qt+1 = create-new-pop(Pt+1);

t = t+1;

end

Figure 41: High-level pseudo-code of NSGA-II

121 Refactoring Recommendation at the Model

Level

7.2.2 Solution Coding

This section describes how NSGA-II can be used to find design refactoring solutions with

multiple conflicting objectives. To apply NSGA-II to a specific problem, the following

elements have to be defined:

 Representation of the individuals;

 Evaluation of individuals using a fitness function for each objective to optimize to

determine a quantitative measure of their ability to solve the problem under

consideration;

 Selection of the individuals to transmit from one generation to another;

 Creation of new individuals using genetic operators (crossover and mutation) to

explore the search space.

Next, we describe the adaptation of the design of these elements for the generation of model

refactoring solutions using NSGA-II.

7.2.2.1 Solution Representation

To represent a candidate solution (individual), we used a vector representation. Each vector’s

dimension represents a class diagram refactoring operation. Thus, a solution is defined as a

long sequence of refactorings applied to different parts of the design. The size of the solution

represents the number of refactoring (dimensions) in the vector. When created, the order of

applying these refactorings corresponds to their positions in the vector. In addition, for each

refactoring, a set of controlling parameters (stored in the vector), e.g., actors and roles are

randomly picked from the class diagram to be refactored and stored in the same vector. For

example, the controlling parameters of a move method refactoring are the source and target

classes and the method to move from the source class as described in the example of Figure

37. Thus, the refactorings and its parameters are encoded as logic predicates (Strings). Each

dimension of the vector is a logic predicate describing the refactoring type and its

parameters.

122 Refactoring Recommendation at the Model

Level

An example of a solution is given in Figure 42 on the class diagram of the motivating

example discussed earlier. This solution contains 3 dimensions that correspond to three

refactorings applied to different parts of the source class diagram. For instance, the predicate

move method (Circle, Point, distance(int, int)) means that the method distance(int, int) is

moved from class Circle (source class) to class Point (target class).

move method (Circle, Point, distance(int, int))

move field (Point, Circle, x)

extract class(Circle, Proprieties, radius, distance (int, int, int))

Figure 42: Representation of an NSGA-II individual

After the generation of the refactoring for the class diagram, we automatically generate the

equivalent activity diagram refactorings using the co-evolution rules described in previous

section. These activity diagram refactorings are also represented in a vector similar to those

applied to the class diagram. Moreover, when creating a sequence of refactorings

(individuals), it is important to guarantee that they are feasible and that they can be legally

applied. For example, to apply the refactoring operation move method(Circle, Point,

distance()), a number of necessary preconditions should be satisfied, e.g., Circle and Point

should exist and should be classes; distance() should exist and should be a method; the

classes Circle and Point should not be in the same inheritance hierarchy; the method

distance() should be implemented in Circle; the method signature of distance() should not be

present in class Point. As postconditions, Circle, Point, and distance() should exist;

distance() declaration should be in the class Point; and distance () declaration should not

exist in the class Circle.

7.2.2.2 Solution Variation

To guide the selection process, NSGA-II uses a binary tournament selection based on

dominance and crowding distance. NSGA-II sorts the population using the dominance

123 Refactoring Recommendation at the Model

Level

principle which classifies individual solutions into different dominance levels. Then, to

construct a new offspring population Qt+1, NSGA-II uses a comparison operator based on a

calculation of the crowding distance to select potential individuals having the same

dominance level.

To better explore the search space, the crossover and mutation operators are defined. For

crossover, we use a single, random, cut-point crossover. It starts by selecting and splitting at

random two parent solutions. Then, crossover creates two child solutions by putting, for the

first child, the first part of the first parent with the second part of the second parent, and, for

the second child, the first part of the second parent with the second part of the first parent.

Each solution has a length limit in terms of number of refactorings. When applying the

crossover operator, the new solution may have higher number of refactorings than the length

limit (input of the algorithm). Thus, the algorithm randomly eliminates some of the

dimensions of the vector (refactorings) to respect the size constraint. As illustrated in Figure

7.a, each child combines some of the refactoring operations of the first parent with some ones

of the second parent. In any given generation, each solution will be the parent in at most one

crossover operation.

The mutation operator picks randomly one or more operations from a sequence and replaces

them with other ones from the initial list of possible refactorings. An example is shown in

Figure 43. After applying genetic operators (mutation and crossover), we verify the

feasibility of the generated sequence of refactoring by checking the pre and post conditions.

Each refactoring operation that is not feasible due to unsatisfied preconditions will be

removed from the generated refactoring sequence. The new sequence after applying the

change operators is considered valid in our NSGA-II adaptation if the number of rejected

refactorings is less than 5% of the total sequence size.

124 Refactoring Recommendation at the Model

Level

(a) Cross-over operator

(b) Mutation operator

Figure 43: Changes operators in Model Refactoring.

Overall, the adaptation of NSGA-II to our model refactoring problem is generic thus it can be

easily extended to include other modelling languages by adding a new fitness function (to

evaluate the quality of the new type of models). The solution representation and change

operators will remain the same. Of course, the input should be also extended to integrate new

quality metrics related to the new considered modelling language that will be used by the

new fitness function as a new objective to optimize

7.2.2.3 Solution Evaluation

After creating a solution, it should be evaluated using fitness functions. Since we have three

objectives to optimize, we are using three different fitness functions to include in our NSGA-

II adaptation. We used the following fitness functions:

125 Refactoring Recommendation at the Model

Level

Quality of the class diagram fitness function is calculated using a set of 11 quality metrics

used by the QMOOD model as shown in Table 16. The table shows cases the QMOOD

metrics being used along with computation of quality attributes. All the 11 metrics are

aggregated in one fitness function with equal importance and normalized between 0 and 1.

Table 16: QMOOD metrics for design properties

Design Property Metric Description

Design size DSC Design size in classes

Complexity NOM Number of methods

Coupling DCC Direct class coupling

Polymorphism NOP
Number of polymorphic

methods

Hierarchies NOH Number of hierarchies

Cohesion CAM
Cohesion among methods

in class

Abstraction ANA
Average number of

ancestors

Encapsulation DAM Data access metric

Composition MOA Measure of aggregation

Inheritance MFA
Measure of functional

abstraction

Messaging CIS Class interface size

Table 17: Computation of Quality Attribute using QMOOD Metrics

Quality

attribute
Definition and Computation

Reusability
A design with low coupling and high cohesion is easily reused by other designs.

0.25*Coupling+0.25*Cohesion+0.5*Messaging+0.5*Design Size

Flexibility

The degree of allowance of changes in the design.

0.25*Encapsulation-0.25*Coupling+0.5*Composition+0.5*Polymorphism

126 Refactoring Recommendation at the Model

Level

Understandability

The degree of understanding and the easiness of learning the design implementation

details.

0.33*Abstraction+0.33*Encapsulation-0.33*Coupling+0.33*Cohesion-0.33*Polymorphism-

0.33*Complexity-0.33*Design Size

Functionality

Classes with given functions that are publically stated in interfaces to be used by others.

0.12*Cohesion+0.22*Polymorphism+0.22*Messaging+0.22*DesignSize+0.22*Hierarchies

Extendibility

Measurement of design’s allowance to incorporate new functional requirements.

0.5*Abstraction-0.5*Coupling+0.5*Inheritance+0.5*Polymorphism

Effectiveness
Design efficiency in fulfilling the required functionality.

0.2*Abstarction+0.2*Encapsulation+0.2*Composition+0.2*Inheritance+0.2*Polymorphism

 Quality of the activity diagram fitness function represents an aggregation (sum) of 12

metrics described in Table 18. All these metrics are normalized between 0 and 1.

Table 18: Activity diagrams metrics

Metric Description

NP Number of parameters

NNO Number of nodes

NED Number of edges

NAC Number of actions

CFC Control-Flow Complexity

ICOM Inteface Comlexity

HAC Halstead-based Activity Complexity

CNC Coefficient of Network Complexity

FIFO Fan-in/Fan-out Metrics for Activities

TD Tree depth metric

127 Refactoring Recommendation at the Model

Level

TW Tree width metric

LO Locality

 Number of violated behavioral constraints fitness function checks how many

behavioral constraints are violated by the generated refactoring solutions when

applied to an activity diagram.

7.3 Validation

7.3.1 Research Questions

In our study, we assess the performance of our model refactoring approach of finding out

whether it could generate meaningful sequences of refactorings that improve the structure of

class diagrams and activity diagrams while preserving the behavior. Our study aims at

addressing the following research questions outlined below. We also explain how our

experiments are designed to address these questions. To this end, we defined the following

research questions:

RQ1: To what extent can the proposed approach improve the quality of class diagrams and

activity diagrams?

RQ2: To what extent the proposed approach preserves the behavior while improving the

quality?

RQ3: How does the proposed multi-objective approach based on NSGA-II perform

compared to a mono-objective approach where only one objective is considered to improve

the quality of class diagrams?

RQ4: How does the proposed multi-objective design refactoring approach performs

compared to an existing model refactoring approach not based on heuristic search?

128 Refactoring Recommendation at the Model

Level

RQ5: Insight. How our multi-objective model refactoring approach can be useful for

software engineers in real-world setting?

To answer RQ1, we validate the proposed design refactoring solutions to improve the quality

of the system by evaluating their ability to fix some design defects that can be detected on

class diagrams extracted from four open-source systems. We adapted earlier work [107]

based on quality metrics rules to detect three types of design defects: Blob (it is found in

designs where one large class tends to centralize the functionalities of a system, and the other

related classes primarily exposing data.), Long Parameter List (methods with numerous

parameters are a challenge to maintain, especially if most of them share the same data-type)

and Data Clumps (interrelated data items which often occur as clump in the model. The same

data items are often together in different places such as attributes in classes or parameters in

method signatures). We defined a measure NFD, Number of Fixed Defects, which

corresponds to the ratio of the number of corrected design defects over the initial number of

detected defects on a class diagram before applying the suggested refactoring solution.

gsrefactorin applying before defects#

diagram classa on defects design fixed#
NFD

It is also important to assess the refactoring impact on the design quality and not only on a

class diagram. The expected benefit from refactoring is to enhance the overall software

design quality as well as fixing design defects. The quality metrics considered by our

approach can improve different aspects of the design quality related to reusability, flexibility,

understandability, functionality, extendibility, and effectiveness. The improvement in quality

can be assessed by comparing the quality before and after refactoring independently to the

number of fixed design defects. Hence, the total gain in quality G before and after refactoring

129 Refactoring Recommendation at the Model

Level

can be easily estimated as:
1112

11

1

12

1


















i

i

ii

i

i

ii qq

agramActivityDiandG

qq

amClassDiagrG ,

where q’i and qi represents the value of the quality attribute i respectively after and before

refactoring. As described in the previous section, we considered a total of 12 metrics related

to class diagrams and 11 metrics for activity diagrams.

To answer RQ2, we asked groups of potential users of our refactoring tool to evaluate,

manually, whether the suggested refactorings are feasible and preserve the behavior or not.

The users evaluated the entire best solutions proposed by our approach. We define the metric

“refactoring precision” (RP) which corresponds to the number of meaningful refactorings

over the total number of suggested refactoring operations:
gsrefactorin proposed#

gsrefactorin feasible#
RP

To answer RQ3, we compare our approach to a mono-objective formulation using a genetic

algorithm (GA) that considers the refactoring suggestion task only from the class diagram

quality improvement perspective (single objective). The use of a single-objective algorithm is

to show that the two objectives of our multi-objective formulation are conflicting. If the two

objectives were not conflicting then the results of NSGA-II will be similar to GA. Thus, in

that case we will not need to propose a multi-view approach.

To answer RQ4, we compared our design refactoring results with a recent tool, called

DesignImpl proposed recently by Iman and Mel [129]that does not use heuristic search

techniques. The current version of DesignImpl is implemented as an Eclipse plug-in that

proposes a list of class diagram and code refactorings based on an interaction with the

designer who specify the desired design based on an evaluation of the class diagram.

To answer RQ5, we asked a group of eight software engineers to refactor manually some of

the detected design defects on the class diagrams, and then compare the results with those

proposed by our tool. To this end, we define the following precision metric MP (Manual

130 Refactoring Recommendation at the Model

Level

precision):
m

m

R

RR
MP


 , where R is the set of refactorings suggested by our tool, and Rm is

the set of refactorings suggested manually by software engineers. In fact, several equivalent

refactoring solutions can be proposed to improve the quality. Thus, the tool can propose

some refactorings that are different than those proposed by the designers, but improve the

overall quality of the design. Thus, MP corresponds to the portion of the correct refactorings

after manually evaluating them by the developers (that can be dissimilar from their

suggestions).

7.3.2 Experimental Setup

Our study considers 27 model fragments extracted from four open source projects using the

IBM Rational Rose tool [130]: Xerces-J, GanttProject (Gantt for short), JFreeChart, and

Rhino. Xerces-J is a family of software packages for parsing XML. GanttProject is a cross-

platform tool for project scheduling. JFreeChart is a powerful and flexible Java library for

generating charts. Finally, Rhino is a JavaScript interpreter and compiler written in Java and

developed for the Mozilla/Firefox browser. Table 19 summarizes for each model the number

of detected design defects, as well as the number of model elements. A model fragment is a

set of model elements extracted from the open source system. In fact, we extracted these

model fragments from the different open source systems (we did not consider the open

source system as one model but we extracted several fragments from these systems). The

number of elements in Table 19 is not the number of model fragments, but the number of

elements in all the model fragments per open source system.

We selected these systems for our validation because they range from medium to large-sized

open source projects that have been actively developed over the past 10 years, and include a

large number of design defects. Our study involved 6 subjects from the University of

Michigan and some of them are working in automotive industry companies. Subjects include

4 master students in Software Engineering and 2 PhD students in Software Engineering. 4 of

them are working in industry as senior software engineers. All the subjects are volunteers and

131 Refactoring Recommendation at the Model

Level

familiar with Java development. The experience of these subjects on Java programming

ranged from 6 to 16 years. The subjects manually evaluated the best refactoring solutions

proposed by the different techniques. In addition, they manually refactor some of the

detected design defects on the class diagrams. This outcome was compared with the solutions

proposed by our techniques.

Parameter setting has a significant influence on the performance of a search algorithm on a

particular problem instance. For this reason, for each algorithm and for each system, we

perform a set of experiments using several population sizes: 50, 100, 200, 300 and 500. The

stopping criterion was set to 100000 evaluations of all algorithms in order to ensure fairness

of comparison. The other parameters’ values were fixed by trial and error and are as follows:

(1) crossover probability = 0.8; mutation probability = 0.5 where the probability of gene

modification is 0.3; stopping criterion = 100000 evaluations. The elitism can cause premature

convergence since population members would be converging towards the same region of the

search space. Based on our experimentations, we concluded that for our problem, it is

effective and efficient to use an elitist schema while using a high mutation rate (0.8). The

latter allows the continued diversification of the population, which discourage premature

convergence to occur.

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental

study is performed based on 51 independent simulation runs for each problem instance and

the obtained results are statistically analyzed by using the Wilcoxon rank sum test with a

99% confidence level (α = 1%). The latter verifies the null hypothesis H0 that the obtained

results of the two algorithms are samples from continuous distributions with equal medians,

as against the alternative that they are not, H1. The p-value of the Wilcoxon test corresponds

to the probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value

that is less than or equal to α (≤ 0.01) means that we accept H1 and we reject H0. However, a

p-value that is strictly greater than α (> 0.01) means the opposite. In this way, we could

132 Refactoring Recommendation at the Model

Level

decide whether the outperformance of NSGA-II over one of each of the others (or the

opposite) is statistically significant or just a random result.

Table 19: The systems studied for Model Refactoring

The Wilcoxon signed-rank test allows verifying whether the results are statistically different

or not. However, it does not give any idea about the difference in magnitude. The effect size

could be computed by using the Cohen’s d statistic [131]. The effect size is considered: (1)

small if 0.2 ≤ d < 0.5; (2) medium if 0.5 ≤ d < 0:8, or (3) large if d > 0.8. Table 20 gives the

effect sizes in addition to the p-values of the Wilcoxon test when comparing the results of

NSGA-II to the GA.

Table 20: Statistical test results when comparing NSGA-II to the mono-objective approach

Scenario JFreeChart GanttProject Xerces-J Rhino

p-value 6.12E-06 3.51E-09 8.27E-04 2.32E-04

Effect size 0.13 0.69 0.52 0.82

We note that the mono-objective algorithm provides only one refactorings solution, while

NSGA-II generates a set of non-dominated solutions. In order to make meaningful

comparisons, we select the best solution for NSGA-II using a knee point strategy [132]. The

knee point corresponds to the solution with the maximal trade-off between the three

objectives. Hence moving from the knee point in either direction is usually not interesting for

the user.

Systems Release #Elements #Smells

JFreeChart v1.0.9 81 22

GanttProject v1.10.2 114 28

Xerces-J V2.7.0 96 31

Rhino v1.7R1 88 26

133 Refactoring Recommendation at the Model

Level

7.3.3 Result and Discussion

As described in Figure 44, after applying the proposed refactoring operations by our

approach (NSGA-II), we found that, on average, more than 85% of the detected design

defects (model smells) were fixed (NFD) for all the class diagrams extracted from the four

studied systems.

This high score is considered significant to improve the quality of the refactored diagrams by

fixing the majority of defects that were from different types. We found that the majority of

non-fixed defects are related to the blob type. The similar observation is also valid for the

other techniques used in our experiments. This type of defect usually requires a large number

of refactoring operations and is known to be very difficult to fix [133].

Another observation is that our technique may introduce some new defects after refactoring.

These new defects can be fixed by our approach since the fitness function counts the number

of remaining defects in the system (to minimize) after executing the refactorings sequence.

Figure 44: NFD median values of NSGA-II, GA and DesignImpl over 51 independent simulation runs using the

Wilcoxon rank sum test with a 99% confidence level (α < 1%).

In Figure 45 and Figure 46, we show the obtained gain values that we calculated for all the

metrics considered for both class diagrams and activity diagrams before and after refactoring

for each studied system. We found that the diagrams quality increases across all the quality

134 Refactoring Recommendation at the Model

Level

factors. As a consequence, we noticed that the quality of both class diagrams and activity

diagrams is improved. The highest quality improvement scores of all systems are mainly

observed on class diagrams.

To sum up, we can conclude that our approach succeeded in improving the design quality not

only by fixing the majority of detected model smells but also by improving the user

understandability, the reusability, the flexibility, as well as the effectiveness of the refactored

design. Figure 46 shows that all the quality metrics were improved on all the systems except

the functionality attribute for JFreeChart and Xerces-J. We looked to experiments data to

understand the reason of the loss on Functionality of JFreeChart and Xerces-J. In fact, the

functionality measure is calculated as the following:

Measure = 0.12*Cohesion+0.22+Polymorphism+0.22*Messaging+0.22*DesignSize+0.22*Hierarchies.

We found that the design size of some JFreeChart and Xerces-J models after refactoring was

lower than the design size before refactoring. Several move methods/fields were applied,

leading to some empty classes after refactoring (thus not considered in the design size

anymore). Furthermore, we found that the best refactoring solution included few extract class

refactorings thus the design size was not increased with new classes (model elements). This

can be explained by the fact that JFreeChart and Xerces-J were the only systems that did not

include several large classes and most of the classes have a small or medium size in terms of

number of methods. Of course, the overall functionalities of the system were the same before

refactoring as demonstrated later in RQ2 by the manual refactoring evaluation (RP).

135 Refactoring Recommendation at the Model

Level

Figure 45 : Design quality improvements median values for Class diagrams and Activity diagrams of NSGA-II, GA

and DesignImpl over 51 independent simulation runs.

Figure 46 : Quality factors median values of NSGA-II, over 51 independent simulation runs.

Lets now discuss the results for RQ2. As described in Figure Figure 47, we found that an

average of more than 80% of proposed refactoring operations are considered as feasible and

do not generate behavior incoherence. A slight loss in the NFD and G is largely compensated

by the significant improvement in terms of refactorings feasibility and behavior preservation.

136 Refactoring Recommendation at the Model

Level

Figure 47: The refactoring precision (RP) median values of NSGA-II, GA and DesignImpl over 51 independent

simulation runs using the Wilcoxon rank sum test with a 99% confidence level (α < 1%).

To answer results for RQ3 we refer to Figure 45,Figure 46Figure 47, it is clear that our

proposal outperforms both the mono-objective GA and DesignImpl. Figure 44Figure 45

show that our approach improves the quality of the design with a comparable values to both

GA and DesignImpl. However, in terms of behavior preservation it is clear that our approach

provides much more feasible refactorings than GA and DesignImpl for all the systems

considered in our experiments. This can be explained by the fact that our proposal checks the

behavior preservation using the activity diagrams, however existing approaches did not

consider it.

For RQ4 we need to evaluate the relevance of our suggested design refactorings for real

software engineers, we compared the refactoring strategies proposed by our technique and

those proposed manually by the subjects (software engineers) to fix several model smells on

the diagrams considered in our experiments. Figure 48 shows that most of the suggested

refactorings by NSGA-II are similar to those applied by developers with an average of more

than 70%. In fact, we calculated the intersection between the recommended refactorings by

NSGA-II and the manually suggested refactorings by the subjects over the total number of

recommend refactorigs. Some defects can be fixed by different refactoring strategies and also

the same solution can be expressed in different ways. Thus, we consider that the average of

137 Refactoring Recommendation at the Model

Level

precision of more than 70% confirms the efficiency of our tool for real developers to

automate the refactoring process. It is clear that our proposal outperforms GA and

DesignImpl on all the diagrams, this can be explained by the fact that both of these

techniques do not consider the behavioral constraints defined on the activity diagrams.

Figure 48: The MP median values of NSGA-II, GA and DesignImpl over 51 independent simulation runs using the

Wilcoxon rank sum test with a 99% confidence level (α < 1%).

Another advantage related to the use of our multi-objective approach is the diversity of non-

dominated solutions as described in Figure 49. Figure 49 depicts the Pareto front obtained on

Xerces using NSGA-II to optimize the three considered objectives. Similar fronts were

obtained on the remaining systems. The 2-D projection of the Pareto front helps software

engineers select the best tradeoff solution between the three objectives based on their own

preferences.

The selection of the “best” solution is based on the preferences of the developer. In fact, the

developer may select a solution providing a high quality of class and activity diagrams but

violating several constraints since he has enough time to fix them before the next release for

example. In another situation, the developer may select a solution that do not violate

0

10

20

30

40

50

60

70

80

90

100

JFreeChart GanttProject Xerces-J Rhino

MP-NSGA-II

MP-GA

MP-DesignImpl

138 Refactoring Recommendation at the Model

Level

constraints (or only violating few of them) and slightly increase the quality of the models

because he do not have enough time to fix the errors created by the constraints or if he want

to minimize the risk related to the new refactorings. In case that the developer do not have

any specific preferences and he wants to optimize all the three objectives at the same time

then he can select the solution at the knee point or the closest solution to the ideal point (the

ideal point is (0,0,0) if all the objectives are to minimize and normalized between zero and

one).

Based on the plots of Figure 49, the engineer could degrade quality in favor of behavior

preservation. In this way, the user can select the preferred refactoring solution to realize. This

is a very interesting feature, since recent studies showed that software developers still select

refactoring solutions that could change the behavior with a high quality improvement

because they believe that it is easy to fix the behavior violation.

Figure 49: Pareto front for NSGA-II obtained on Xerces-J.

139 Conclusion

Chapter 8: Conclusion

Model-Driven Engineering is applied increasingly to cope with the complexity of software

systems by raising the level of abstraction. This work utilizes the power of refactoring in

multi objective optimization domain to solve emerging problems in the field of model driven

engineering. Today model driven engineering is being used to modify or merge existing

models to accomodate changes in customer requirements. However, to accomplish this

reliably with quick turn around time software developers need access to powerful tools in

change detection, model merging, defect detection and correction in model merging.

Consequently, techniques to support building models collaboratively are a necessity. This

research tends to address this as a multi objective optimization problem. The four major

objectives studies in this research are listed below:

 Design, implement and evaluate a multi-objective approach to detect model changes

as a sequence of refactoring applications.

 Propose a multi-objective formulation of the problem of model merging that aims to

find the best trade-off between minimizing the number of omitted operations and

maximizing the number of successfully applied important operations.

 The use of genetic programming to generate detection rules of design defects using

quality and changes history metrics.

 Design, implement and evaluate a multi-objective framework for the refactoring of

software models to find a trade-off between improving the quality of different

diagrams at the same time such as class diagrams and activity diagrams.

We addressed each objective as a separate search based optimization problem with a set of

objectives and constraints. We have evaluated each scheme on multiple open source systems

and validated the applicability of NSGA-II based search scheme in solving the software

development problems in model driven engineering.

140 Conclusion

8.1 Discussions on Change Detection in Model

Software models, defined as code abstractions, are iteratively refined, restructured and

evolved due to many reasons such as reflecting changes in requirements or modifying a

design to enhance existing features. For understanding the evolution of a model a-posteriori,

change detection approaches have been proposed for models. The majority of existing

approaches are successful to detect atomic changes. However, composite changes, such as

refactorings, are difficult to detect due to several possible combinations of atomic changes or

eventually hidden changes in intermediate model versions that may be no longer available.

Moreover, a multitude of refactoring sequences maybe used to describe the same model

evolution. Chapter 4 focused on a multi-objective approach to detect model changes as a

sequence of refactorings. The approach takes as input an exhaustive list of possible types of

model refactoring operations, the initial model, and the revised model, and generates as

output a list of refactoring applications representing a good compromise between the

following two objectives (i) maximize the similarity between the expected revised model and

the generated model after applying the refactoring sequence on the initial model, and (ii)

minimize the number of atomic changes used to describe the evolution. Due to the huge

number of possible refactoring sequences, a metaheuristic search method is used to explore

the space of possible solutions. To this end, we use the non-dominated sorting genetic

algorithm (NSGA-II) to find the best trade-off between our two objectives. The algorithm

starts by randomly generating a set of refactoring combinations, executing them on the initial

model to generate a revised model, and then evaluates the quality of the proposed solution

(refactorings) by comparing the generated revised model and the expected one. The goal is to

maximize their similarity and at the same time to minimize the number of generated

refactorings.

The chapter also exhibited the results of an empirical study of our multi-objective model

changes detection technique as applied on various versions of real-world models taken from

open source projects and one industrial project. The approach is compared with random

141 Conclusion

search, multi-objective particle swarm optimization (MOPSO), an existing mono-objective

changes detection approach and two model changes detection tools not based on

computational search. The statistical test results provide evidence to support the claim that

the scheme enables the generation of changes detection solutions with correctness higher

than 85%, in average, using a variety of real-world scenarios.

Although the approach has been evaluated with real-world models with a reasonable number

of changes to detect, future work should focus on larger models and with larger lists of

refactoring types. This is not only necessary to investigate deeper the applicability of the

approach in practice, but to also study the performance of the approach when dealing with

very large models.

8.2 Discussions on Model Merging

Chapter 5 described in detail a novel multi-objective approach for merging parallel versions

of models by finding the best operation sequence that takes into account the importance of

the operations to merge. Having such a sequence is very useful in model versioning to find a

tentative merge, as a basis for subsequently resolving the remaining conflicts manually.

Therefore, a merged model is essential that maximizes the combined effect of all operations

that have been applied by multiple developers in parallel to the same model. This is achieved

by finding an optimal (potentially interleaved) order of operations that minimizes the number

of disabled operations. Furthermore, it is useful for team managers to select merging

solutions that include the most important operations while minimizing the number of

disabled ones. As the search space in terms of all possible sequences of operations is

potentially huge and we have two conflicting objectives to optimize, we considered in this

scheme the merging process as a multi-objective optimization problem.

We evaluated our scheme with seven real-world model evolutions extracted from different

open source systems. The experiment results indicate clearly that the number of disabled

operations is reduced significantly in comparison to the number of disabled operations

142 Conclusion

without taking into consideration the different possible operation orders. Furthermore, the

results provide strong evidence to support the claim that our proposal enables the generation

of efficient model merging solutions to be comparable in terms of minimizing the number of

conflicts to those suggested by existing approaches and to carry a high importance score of

merged operations.

Although this scheme has been evaluated with real-world models with a reasonable number

of applied operations, future work in this area needs to focus on larger models and with

larger lists of operations applied in parallel. This is necessary to investigate not only the

applicability of the approach in practice, but also to study the performance of our approach

when dealing with very large models.

8.3 Discussions on Defect Detection

In chapter 6 we introduced a novel multi-objective approach to generate rules for the

detection of code-smells. To this end, we used MOGP to find the best trade-offs between

maximizing the detection of examples of code-smells and minimizing the detection of well-

designed code examples. We evaluated our approach on seven large open source systems. All

results were found to be statistically significant over 51 independent runs using the Wilcoxon

rank sum test with a 99% confidence level (α < 1%). Our MOGP results outperform existing

studies by detecting most of the expected code-smells with an average of 87% of precision

and 92% of recall.

This approach is inspired by contributions in the domain of Search-Based Software

Engineering (SBSE) [134]. SBSE uses search-based approaches to solve optimization

problems in software engineering. Once a software engineering task is framed as a search

problem, many search algorithms can be applied to solve that problem. Based on recent

SBSE surveys [134], the use of multi-objective optimization is still limited in software

engineering especially in the area of anti pattern detection.

143 Conclusion

8.4 Discussions on Defect Correction

Chapter 7 presented a multi-view refactoring approach taking into consideration multiple

criteria to suggest good and feasible design refactoring solutions to improve the design

quality. The suggested refactorings preserve the behavior of the design to restructure and

consider the impact of refactoring a class diagram on related diagrams such as activity

diagrams. Our search-based approach succeeded to find the best trade-off between these

multiple criteria. Thus, our proposal produces more meaningful refactorings in comparison to

some of those discussed in the literature. Moreover, the proposed approach was empirically

evaluated on several diagrams extracted from four open-source systems, and compared

successfully to an existing approach not based on heuristic search.

In our experiments, construct validity threats are related to the absence of similar work that

uses multi-objective techniques for automated multi-view model refactoring. For that reason,

we compare our proposal with GA-based approach and an existing semi-automated design

refactoring technique. Another threat to construct validity arises because, although we

considered 3 types of model smells, we did not evaluate the performance of our proposal

with other model smell types. In future work, we plan to use additional model smell types

and evaluate the results. For the selection threat, the subject diversity in terms of profile and

experience could affect our study. First, all subjects were volunteers. We also mitigated the

selection threat by giving written guidelines and examples of refactorings already evaluated

with arguments and justification. Additionally, each group of subjects evaluated different

operations from different systems using different techniques/algorithms.

We take into consideration the internal threats to validity in the use of stochastic algorithms

since our experimental study is performed based on 51 independent simulation runs for each

problem instance and the obtained results are statistically analyzed by using the Wilcoxon

rank sum test with a 99% confidence level (α = 1%). However, the parameter tuning of the

different optimization algorithms used in our experiments creates another internal threat that

144 Conclusion

we need to evaluate in our future work by additional experiments. The parameter tuning of

the different optimization algorithms used in our experiments creates another internal threat

that we need to evaluate in our future work. In fact, parameter tuning of search algorithms is

still an open research challenge till today. We have used the trial-and-error method which

one of the most used ones. However, the use of ANOVA-based technique could be another

interesting direction from the viewpoint of the sensitivity to the parameter values.

External validity refers to the generalization of our findings. In this study, we performed our

experiments on diagrams extracted from different widely-used open-source systems

belonging to different domains and with different sizes. However, we cannot assert that our

results can be generalized to other applications, and to other practitioners. Future replications

of this study are necessary to confirm the general aspect of our findings and evaluate the

scalability of our approach with larger models.

The proposed multi-objective approach provides a multi-view for software designers to

evaluate the impact of suggested refactorings applied to class diagrams on related activity

diagrams in order to evaluate the overall quality, and check their feasibility and behavior

preservation. The statistical evaluation performed on models extracted from four open source

systems confirms the efficiency of our approach.

8.5 Future Work

In this section we outline some of the directions for possible future work in this field. These

future areas of research revolve around application of search based optimization techniques

in solving problems in software engineering.

This work investigates fixing of design defects by analyzing class and activity diagrams. The

work can be extended by adding addition views when suggesting refactorings such as

sequence diagrams as well as object diagrams. Also the work can be extended by adding an

145 Conclusion

additional set of refactoring and co refactoring operations to fix different types of model-

smells.

The type of design defects being detected in this work involves structural metrics. However,

history information based design defects e.g. shotgun surgery can also be detected by

enhancing the detection rules, optimization objectives along with corresponding constraints.

By adding the additional dimension of history based defect detection, the overall solution can

be made more relevant to rapidly evolving large software systems which have development

history spanning multiple years.

Figure 50: Mapping of Test Cases to Software Code using Search Based techniques.

146 Conclusion

Search based schemes have many potential applications with limitless horizons. Another

interesting direction of future work which has potential impact in improving software quality

involves software testing. One of the proposed applications include mapping test cases to

software code by using semantic and structural analysis techniques employing search based

algorithms. With the ability to map validation test cases to code or model level, the software

team will be better able to analyze code coverage, defect analysis as well as have the ability

to proactively update test cases when a segment of code or a model changes as described in

Figure 50.

147 References

References

[1] J. Bézivin. On the Unification Power of Models. Software and Systems Modeling, 4(2):171-188,

(2005).

[2] M. Brambilla, J. Cabot, M. Wimmer: Model-Driven Software Engineering in Practice. Synthesis

Lectures on Software Engineering, Morgan & Claypool Publishers, (2012).

[3] R. France, B. Rumpe: Model-driven development of complex software: a research roadmap;

Engineering, In: Proceedings of the International Conference on Software Engineering (ICSE’07):

Future of Software; IEEE Computer Soceity Press, (2007).

[4] Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and Merging of

Statecharts Specifications. In: Proceedings of the International Conference on Software Engineering

(ICSE 2007), pp. 54–64. IEEE (2007).

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts: Refactoring – Improving the Design of Existing

Code; 1st ed. Addison-Wesley, June (1999).

[6] M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, D. Joern: Comparing State- and Operation-based

Change Tracking on Models; in: Proceedings of the IEEE International EDOC Conference, (2010).

[7] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, M. Wimmer: An Introduction to Model

Versioning. In Proceedings of SFM, (2012).

[8] G. Sunyé, D. Pollet, Y. Le Traon, J. M. Jézéquel. Refactoring UML Models. In Proceedings of UML,

(2001).

[9] C. Ignat and M. C. Norrie. Operation-based versus State-based Merging in Asynchronous Graphical

Collaborative Editing. In Workshop on Collaborative Editing, (2004).

[10] K. Wieland, P. Langer, M. Seidl, M. Wimmer, G. Kappel. Turning Conflicts into Collaboration -

Concurrent Modeling in the Early Phases of Software Development. Computer Supported Cooperative

Work, 22(2-3):181-240, (2013).

[11] D. Dig, K. Manzoor, R. E. Johnson, T. N. Nguyen. Effective Software Merging in the Presence of

Object-Oriented Refactorings. IEEE Transactions on Software Engineering, 34(3):321-335, (2008).

[12] T. Ekman, U. Asklund. Refactoring-aware Versioning in Eclipse. Electronic Notes in Theoretical

Computer Science 107:57-69, (2004).

[13] P. Langer. Adaptable Model Versioning based on Model Transformation By Demonstration. PhD

Thesis, Vienna University of Technology, (2011).

[14] W. K. Edwards: Flexible Conflict Detection and Management in Collaborative Applications. In

Proceedings of Symposium on User Interface Software and Technology, pages 139-148, (1997).

[15] E. Lippe, N. van Oosterom. Operation-based merging. In Proceedings of SDE, pages 78-87, (1992).

[16] Tom Mens and Tom Tourwé. A Survey of Software Refactoring. IEEE Trans. Softw. Eng. 30, 2, 126-

139, (2004).

148 References

[17] Mens, T. On the use of graph transformations for model refactoring. In: Generative and

Transformational Techniques in Software Engineering pp. 219-257, LNCS 4143, Springer, (2006).

[18] Mens, T., Taentzer, G., & Runge, O. Analyzing Refactoring Dependencies Using Graph

Transformation. Journal on Software and Systems Modeling. Springer, Heidelberg, (2007).

[19] D. Arcelli, V. Cortellessa, C. Trubiani: Antipattern-based model refactoring for software performance

improvement. QoSA 2012: 33-42, (2012).

[20] D. Dig, C. Comertoglu, D. Marinov, R. Johnson: Automated Detection of Refactorings in Evolving

Components; in: Proceedings of the European Conference on Object-Oriented Programming

ECOOP'06, Vol. 4067 of LNCS, Springer, pp. 404-428, (2006).

[21] P. Weissgerber, S. Diehl: Identifying Refactorings from Source-Code Changes; in: Proceedings of the

International Conference on Automated Software Engineering ASE'06, IEEE, pp. 231-240, (2006).

[22] M. Kim, D. Notkin, D. Grossman, G. Jr. Wilson: Identifying and Summarizing Systematic Code

Changes via Rule Inference; IEEE Transactions on Software Engineering, early access article, (2012).

[23] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel, W. Retschitzegger, W.

Schwinger, An Example Is Worth a Thousand Words: Composite Operation Modeling By-Example;

in: Proceedings of MoDELS’09, Springer, pp. 271-285, (2009).

[24] S. Vermolen, G. Wachsmuth, E. Visser: Reconstructing complex metamodel evolution; Tech. Rep.

TUD-SERG-2011-026, Delft University of Technology (2011).

[25] J. M. Küster, C. Gerth, A. Förster, G. Engels: Detecting and Resolving Process Modeling Differences

in the Absence of a Change Log; in: Proceedings of the International Conference on Business Process

Management BPM'08, LNCS, Springer, pp. 244, (2008).

[26] T. Kehrer, U. Kelter, G. Taentzer: A rule-based approach to the semantic lifting of model differences

in the context of model versioning; in: Proceedings of the International Conference on Automated

Software Engineering ASE’11, IEEE, pp. 163, (2011).

[27] Z. Xing, E. Stroulia: Refactoring Detection based on UMLDiff Change-Facts Queries; in: Proceedings

of the 13th Working Conference on Reverse Engineering WCRE'06, IEEE, pp. 263-274, (2006).

[28] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige: Different models for model matching:

An analysis of approaches to support model differencing. In Proceedings of the Workshop on

Comparison and Versioning of Software Models CVSM'09 @ ICSE, (2009).

[29] Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-oriented Design Differencing. In:

Proceedings of the International Conference on Automated Software Engineering ASE 2005, pp. 54–

65, (2005).

[30] http://pi.informatik.uni-siegen.de/Projekte/sidiff.

[31] Alanen, M., Porres, I.: Difference and Union of Models. In: Proceedings of the International

Conference on the Unified Modeling Language (UML'03). LNCS, vol. 2863, pp. 2-17. Springer,

(2003).

[32] Rivera, J., Vallecillo, A.: Representing and Operating With Model Differences. In: Paige, R.F., Meyer,

B. (eds.) TOOLS EUROPE 2008. LNBIP, vol. 11, pp. 141–160. Springer (2008).

149 References

[33] Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-specific Models. European

Journal of Information Systems 16(4), 349–361 (2007).

[34] Brun, C., Pierantonio, A.: Model Differences in the Eclipse Modeling Framework. UPGRADE, The

European Journal for the Informatics Professional 9(2), 29–34 (2008).

[35] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdoerfer, M. Seidl, K. Wieland, G. Kappel: A

Posteriori Operation Detection in Evolving Software Models; Journal of Systems and Software,

(2012).

[36] S. Vermolen, G. Wachsmuth, E. Visser: Reconstructing complex metamodel evolution; Tech. Rep.

TUD-SERG-2011-026, Delft University of Technology (2011).

[37] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdoerfer, M. Seidl, K. Wieland, G. Kappel: A

Posteriori Operation Detection in Evolving Software Models; Journal of Systems and Software,

(2012).

[38] J. Estublier, D. B. Leblang, A. van der Hoek, R. Conradi, G. Clemm, W. F. Tichy, D. Wiborg Weber:

Impact of software engineering research on the practice of software configuration management. ACM

Trans. Softw. Eng. Methodol. 14(4): 383-430 (2005).

[39] R. Conradi, B. Westfechtel: Version Models for Software Configuration Management. ACM Comput.

Surv. 30(2): 232-282 (1998).

[40] T. Mens. A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software

Engineering, 28(5):449-462, (2002).

[41] C. Gerth, J. Malte Küster, M. Luckey, G. Engels: Detection and resolution of conflicting change

operations in version management of process models. Software and System Modeling 12(3):517-535

(2013).

[42] S. Barrett, P. Chalin, G. Butler. Table-Driven Detection and Resolution of Operation-Based Merge

Conflicts with Mirador. In Proceedings of ECMFA, (2011).

[43] C. Schneider, A. Zündorf, J. Niere. CoObRA - a small step for development tools to collaborative

environments. In Workshop on Directions in Software Engineering Environments, (2004).

[44] A. Mougenot, X. Blanc, M. Gervais. D-Praxis: A Peer-to-Peer Collaborative Model Editing

Framework. In Proceedings of DAIS, (2009).

[45] M. Alanen, I. Porres: Difference and Union of Models. In: Proceedings of UML 2003: 2-17, (2003).

[46] M. Schmidt, S. Wenzel, T. Kehrer, U. Kelter. History-based Merging of Models. In Workshop on

Comparison and Versioning of Software Models, (2009).

[47] Antonio Cicchetti, Davide Di Ruscio, Alfonso Pierantonio: Managing Model Conflicts in Distributed

Development. MoDELS 2008: 311-325, (2008).

[48] Chidamber, S.R., Kemerer, C.F. A metrics suite for object-oriented design. IEEE Trans. Software.

Eng.20(6), 293–318, (1994).

[49] Chidamber, S.R., Kemerer, C.F. A metrics suite for object-oriented design. IEEE Trans. Software.

Eng.20(6), 293–318, (1994).

150 References

[50] http://staff.unak.is/andy/StaticAnalysis0809/metrics/overview.html.

[51] Fenton N, Pfleeger SL. Software Metrics: A Rigorous and Practical Approach (2nd edition). London,

UK, International Thomson Computer Press, (1998).

[52] Engineering:, McCabe. A Complexity Measure. IEEE Transactions on Software, (1976).

[53] F. Abreu, M. GoulÃ£o and R. Esteves "Toward the Design Quality Evaluation of Object-Oriented

Software Systems", Proceedings of 5th ICSQ, (1995).

[54] Da-wei, E. Analysis and Implementation of Software Metric for Object-Oriented. Computational

Intelligence and Software Engineering, International Conference on , vol., no., pp.1,4, 11-13, (2009).

[55] M. Mohamed, M. Romdhani, K. Ghédira: Classification of Model Refactoring Approaches. JOT 8(6):

143-158 (2009).

[56] T. Mens, G. Taentzer, D. Müller: Challenges in Model Refactoring. In: Proc. 1st Workshop on

Refactoring Tools, University of Berlin (2007).

[57] Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.M.: Refactoring UML Models. In: UML’01. LNCS, vol.

2185, pp. 134–148. Springer (2001).

[58] Boger, M., Sturm, T., Fragemann, P.: Refactoring Browser for UML. In: NetObjectDays’02. LNCS,

vol. 2591, pp. 366–377. Springer (2002).

[59] P. Weissgerber, S. Diehl: Identifying Refactorings from Source-Code Changes; in: Proceedings of the

International Conference on Automated Software Engineering ASE'06, IEEE, pp. 231-240, (2006).

[60] Zhang, J., Lin, Y., Gray, J.: Generic and Domain-Specific Model Refactoring using a Model

Transformation Engine. In: Model-driven Software Development—Research and Practice in Software

Engineering. pp. 199–217. Springer (2005).

[61] Kolovos, D.S., Paige, R.F., Polack, F., Rose, L.M.: Update Transformations in the Small with the

Epsilon Wizard Language. JOT 6(9), 53–69 (2007).

[62] Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G.,Weiss, E.: Graphical Definition of In-

Place Transformations in the Eclipse Modeling Framework. In: MoDELS’06. LNCS, vol. 4199, pp.

425–439. Springer (2006).

[63] Mens, T.: On the Use of Graph Transformations for Model Refactoring. In: GTTSE’05. LNCS, vol.

4143, pp. 219–257. Springer (2006).

[64] R. B. France, S. Ghosh, E. Song, D.-K. Kim: A Metamodeling Approach to Pattern-Based Model

Refactoring. IEEE Software 20(5): 52-58 (2003).

[65] Markovic, S., Baar, T.: Refactoring OCL annotated UML class diagrams. SoSym 7(1), 25–47 (2008).

[66] A. Correa, C. Werner. Applying Refactoring Techniques to UML/OCL Models. Proc. Int'l Conf. UML

2004, LNCS 3273, pp. 173-187, Springer-Verlag, (2004).

[67] W. Sun, R. B. France, I. Ray: Analyzing Behavioral Refactoring of Class Models. ME@MoDELS

2013: 70-79, (2013).

[68] Steimann, F: Constraint-Based Model Refactoring. MoDELS (2011).

151 References

[69] J. Reimann, M. Seifert and U. Aßmann Role-based Generic Model Refactoring. In Proc. of MODELS,

(2010).

[70] M. Wimmer, N. Moreno, A. Vallecillo: Viewpoint Co-evolution through Coarse-Grained Changes and

Coupled Transformations. TOOLS 50: 336-352, (2012).

[71] T. Arendt, G. Taentzer: A tool environment for quality assurance based on the Eclipse Modeling

Framework. Automated Software Engineering, Volume 20, Issue 2, page 141-184, (2013).

[72] Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management in multiviewpoint

systems using ASP. In: WODPEC’08. IEEE (2008).

[73] Van Der Straeten, R., Jonckers, V., & Mens, T. Supporting Model Refactorings through Behaviour

Inheritance Consistencies, In: UML, pp. 305-319, LNCS 3273, Springer, (2004).

[74] Van Gorp, P., Stenten, H., Mens, T., & Demeyer, S. Towards automating source-consistent UML

refactorings, In: UML, pp. 144-158. LNCS 2863, Springer, Heidelberg, (2003).

[75] N. Moha, V. Mahé, O. Barais, J.-M. Jézéquel: Generic Model Refactorings. MoDELS: 628-643,

(2009).

[76] Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing dependent changes in coupled evolution. In:

ICMT’09. LNCS, vol. 5563, pp. 35–51. Springer (2009).

[77] Grundy, J., Hosking, J., Mugridge,W.B.: Inconsistency Management for Multiple-view Software

Development Environments. IEEE Trans. Softw. Eng. 24(11), 960–981 (1998).

[78] A. Ghannem, G. El-Boussaidi, M. Kessentini: Model Refactoring Using Interactive Genetic

Algorithm. SSBSE (2013).

[79] P. Bottoni, F. Parisi-Presicce, G. Taentzer: Specifying Integrated Refactoring with Distributed Graph

Transformations, 220-235, AGTIVE (2003).

[80] J. von Pilgrim, B. Ulke, A. Thies, F. Steimann: Model/code co-refactoring: An MDE approach. ASE:

682-687, (2013).

[81] Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K. and Zhang, Q. Objective Reduction in Many-objective

Optimization: Linear and Nonlinear Algorithms. IEEE Transactions on Evolutionary Computation.

vol. 17, no. 1. 77–99, (2013).

[82] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm:

NSGA-II, IEEE Trans. Evol. Comput., vol. 6, pp. 182–197, Apr. (2002).

[83] M. Harman. The current state and future of search based software engineering. In Proceedings of

ICSE, (2007).

[84] M. Harman, S. A. Mansouri, Y. Zhang. Search-based software engineering: Trends, techniques and

applications. ACM Computing Surveys 45(1):Article11, (2012).

[85] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. and da Fonseca, V. G.: Performance assessment

of multiobjective optimizers: an analysis and review. IEEE Transaction on Evolutionary Computation.

vol. 7, no. 2, 117-132, (2003).

152 References

[86] Bechikh, S., Ben Said, L. and Ghédira, K.: Estimating Nadir Point in Multi-objective Optimization

using Mobile Reference Points. In Proceedings of the IEEE Congress on Evolutionary Computation

CEC’10. 2129–2137, (2010).

[87] John R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA, (1992).

[88] Fowler, Martin, et al.: Refactoring: Improving the design of existing programs. (1999).

[89] Fonseca, C. M. and Fleming, P. J. Genetic algorithms for multi-objective optimization: Formulation,

discussion and generalization. In Forrest, S., editor, Proceedings of the Fifth International Conference

on Genetic Algorithms, pages 416–423, Morga, (1993).

[90] http://www.eclipse.org/gmf/.

[91] http://ant.apache.org/.

[92] http://argouml.tigris.org.

[93] http://www.jhotdraw.org.

[94] http://xerces.apache.org.

[95] Li, X. A non-dominated sorting particle swarm optimizer for multiobjective optimization. In

Proceedings of the 2003 International Conference on Genetic and Evolutionary Computation

GECCO'03. 37-48, (2003).

[96] Xing, Z., Stroulia, E.: UMLDiff: An Algorithm for Object-oriented Design Differencing. In:

Proceedings of the International Conference on Automated Software Engineering ASE 2005, pp. 54–

65. ACM (2005).

[97] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, O. Strollo. When does a

Refactoring Induce Bugs? An Empirical Study. In Proceedings of the 12th IEEE WCRE, IEEE Press,

(2012).

[98] P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland, M. Wimmer: An Introduction to Model

Versioning. In Proceedings of SFM, (2012).

[99] K. Wieland, P. Langer, M. Seidl, M. Wimmer, G. Kappel. Turning Conflicts into Collaboration -

Concurrent Modeling in the Early Phases of Software Development. Computer Supported Cooperative

Work, 22(2-3):181-240, (2013).

[100] P. Langer. Adaptable Model Versioning based on Model Transformation By Demonstration. PhD

Thesis, Vienna University of Technology, (2011).

[101] M. Herrmannsdoerfer, S. Vermolen, G. Wachsmuth: An Extensive Catalog of Operators for the

Coupled Evolution of Metamodels and Models. In: Proceedings of SLE’10, pp. 163-182, (2010).

[102] S. Elaoud, J. Teghem, T. Loukil: Multiple crossover genetic algorithm for the multiobjective traveling

salesman problem. Electronic Notes in Discrete Mathematics 36: 939-946, (2010).

[103] http://www.ganttproject.biz.

[104] http://www.jhotdraw.org.

153 References

[105] J. Cohen, “Statistical power analysis for the behavioral sciences,” Routledge, (1988).

[106] C. 1. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press.

[107] M. Kessentini, W. Werda, P. Langer, M. Wimmer: Search-based model merging. In: Proceedings of

GECCO 2013: 1453-1460, (2013).

[108] Aiko Fallas Yamashita, Leon Moonen: Do code smells reflect important maintainability aspects?

ICSM 2012: 306-315, (2012).

[109] Brown WJ, Malveau RC, Brown WH, Mowbray TJ. Anti-Patterns: Refactoring Software,

Architectures, and Projects in Crisis. John Wiley and Sons, (1998).

[110] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano Di Penta, Andrea De

Lucia, Denys Poshyvanyk, When and Why Your Code Starts to Smell Bad, ICSE (2015).

[111] Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Guéhéneuc, Y. G., & Aimeur, E. Smurf: A svm-

based incremental anti-pattern detection approach. In Reverse Engineering WCRE, 19th Working

Conference on pp. 466-475. IEEE, (2012).

[112] Al Dallal, Jehad. "Identifying refactoring opportunities in object-oriented code: A systematic literature

review." Information and Software Technology 58: 231-249, (2015).

[113] Palomba, Fabio, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and Andrea De Lucia. "Do

They Really Smell Bad? A Study on Developers' Perception of Bad Code Smells." In Software

Maintenance and Evolution ICSME, IEEE International Confe, (2014).

[114] Sahin, Dilan, Marouane Kessentini, Slim Bechikh, and Kalyanmoy Deb. "Code-smell detection as a

bilevel problem." ACM Transactions on Software Engineering and Methodology TOSEM 24, no. 1: 6,

(2014).

[115] Gong M, Jiao L, Du H, Bo L. Multiobjective Immune Algorithm with Nondominated Neighbor-Based

Selection. Evolutionary Computation, vol. 6, no. 2, pp. 225-255, (2008).

[116] Kessentini M, Kessentini W, Sahraoui H, Boukadoum M, Ouni A. Design Defects Detection and

Correction by Example. In Proceedings of the 19th IEEE International Conference on Program

Comprehension ICPC’11, pp. 81-90, (2011).

[117] Kessentini M, Vaucher S, Sahraoui H. Deviance from Perfection is a Better Criterion than Closeness to

Evil when Identifying Risky Code. In proceedings of the 25th IEEE/ACM International Conference on

Automated Software Engineering ASE, pp. 141-151.

[118] Arcuri A, Briand LC. A practical Guide for using Statistical Tests to Assess Randomized Algorithms

in Software Engineering. In Proceedings of the 33rd International Conference on Software Engineering

ICSE, pp. 1-10, (2011).

[119] N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F. L. Meur: DECOR: A method for the specification and

detection of code and design smells; IEEE Transactions on Software Engineering TSE, (2009).

[120] H. Liu, L. Yang, Z. Niu, Z. Ma, and W. Shao: Facilitating software refactoring with appropriate

resolution order of bad smells; in Proceedings of the ESEC/FSE’09, pp. 265–268, (2009).

154 References

[121] M. Harman, L. Tratt: Pareto optimal search based refactoring at the design level; in: Proceedings of the

Genetic and Evolutionary Computation Conference GECCO’07, pp. 1106-1113, (2007).

[122] Workbook, W. C. Wake: Refactoring; Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, (2003).

[123] B. Du Bois, S. Demeyer, J. Verelst: Refactoring—Improving Coupling and Cohesion of Existing

Code; in: Proceedings of the 11th Working Conference on Reverse Engineering, WCRE'04, pp. 144-

151, (2004).

[124] N. Fenton and S.L. Pfleeger: Software Metrics: A Rigorous and Practical Approach, International

Thomson Computer Press, (1997).

[125] H. Ma et al.: Applying OO metrics to assess UML meta-models. In: Proc. of UML, (2004).

[126] J. Cardoso, J. Mendling, G. Neumann, H.A. Reijers: A Discourse on Complexity of Process Models.

BPM Workshops, (2006).

[127] G. Sunye et al.: Refactoring UML models. In Proc. of UML, (2001).

[128] www.sbse.us/SQJ/.

[129] Iman Hemati Moghadam, Mel Ó Cinnéide: Automated Refactoring Using Design Differencing.

CSMR: 43-52, (2012).

[130] http://www-03.ibm.com/software/products/en/ratirosefami.

[131] Cohen J. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates,

Mahwah, NJ, USA, (1988).

[132] Lily Rachmawati, Dipti Srinivasan: Multiobjective Evolutionary Algorithm With Controllable Focus

on the Knees of the Pareto Front. IEEE Trans. Evolutionary Computation 13(4): 810-824 (2009).

[133] Dag I. K. Sjøberg, Aiko Fallas Yamashita, Bente Cecilie Dahlum Anda, Audris Mockus, Tore Dybå:

Quantifying the Effect of Code Smells on Maintenance Effort. IEEE Trans. Software Eng. 39(8):

1144-1156 (2013).

[134] Harman M, Mansouri SA, Zhang Y. Search-based software engineering: Trends, techniques and

applications. ACM Computing Surveys, 45, 61 pages, (2012)..

[135] A. Abran and H. Nguyenkim, "Measurement of the Maintenance Process from a Demand- Based

Perspective," Journal of Software Maintenance: Research and Practice, pp. 63-90, (1993).

[136] M. Kessentini, W. Werda, P. Langer, M. Wimmer: Search-based model merging. In: Proceedings of

GECCO 2013: 1453-1460, (2013).

[137] Beck, Kent, Martin Fowler, and Grandma Beck. "Bad smells in code."Refactoring: Improving the

design of existing code: 75-88, (1999).

[138] Goldberg, D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA,

USA: Addison-Wesley Longman Publishing Co., Inc., (1989).

[139] J. Bansiya and C. G. Davis. A hierarchical model for object-oriented design quality assessment. IEEE

Trans. Softw. Engg., 28(1): 4–17, (2002).

155 References

[140] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur, “Decor: A method for the specification

and detection of code and design smells,” IEEE Transactions on Software Engineering, vol. 36, no. 1,

pp. 20–36, (2010).

[141] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method refactoring opportunities,” IEEE

Transactions on Software Engineering, vol. 35, no. 3, pp. 347–367, (2009).

[142] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws,” in 20th

International Conference on Software Maintenance ICSM 2004, 11-17 September 2004, Chicago, IL,

USA. IEEE Computer Society, pp. 350–359, (2004).

[143] D. Arcelli, V. Cortellessa, C. Trubiani: Antipattern-based model refactoring for software performance

improvement. QoSA 2012: 33-42, (2012).

[144] Li, X. A non-dominated sorting particle swarm optimizer for multiobjective optimization. In

Proceedings of the 2003 International Conference on Genetic and Evolutionary Computation

(GECCO'03). 37-48, (2003).

