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Using patient-level data from 35 hospitals for 6 cardiovascular surgeries in New York, we provide empirical

evidence that outcome differences between health care providers are heterogeneous across different groups

of patients. We then use a causal tree approach to identify patient groups that exhibit significant differences

in outcome. By quantifying these differences, we demonstrate that a large majority of patients can achieve

better expected outcomes by selecting providers based on patient-centric outcome information. We also show

how patient-centric outcome information can help providers to improve their processes and payers to design

effective pay-for-performance programs.
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1. Introduction

Choosing a health care provider for a major medical procedure can be literally a life or death

decision. However, because they have historically lacked clear quality information about providers,

most patients have made these important choices based on proximity or familiarity.1 Even patients

who have relied on physician referrals have been unable to rigorously evaluate their options, because

the physicians themselves have lacked objective data and therefore have had to rely on subjective

reputation information.

Recognizing the critical need among patients for more and better information about health

care providers, government and private organizations have made various efforts to provide patient-

oriented hospital ratings. For example, the Center for Medicare & Medicaid Services (CMS) main-

tains the Hospital Compare web site to compare Medicare-certified hospitals across the country

and the US News provides aggregate hospital ratings for broad categories of procedures such as

1 http://www.infographicsarchive.com/health-and-safety/2014-healthgrades-american-hospital-quality-report-
nation/

1
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heart surgery and cancer. These, and other rating systems like them, compare hospitals based on

risk-adjusted rates of mortality, complication and/or readmission, and assign scores or star ratings

to hospitals based on their outcome measures.

However, a widely overlooked reality is that these ratings are based on population averages

(hereinafter referred to as “population-average information”), which imply that the same hospitals

are best for all patients. But this is an assumption built into population-average based ratings,

rather than an empirical fact. To illustrate how such ratings can be misleading, consider a simple

example of three hospitals and two procedure types — Coronary Artery Bypass Grafting (CABG)

and Mitral Valve Surgery. The mortality rates of these three hospitals are 1%, 4% and 2% for

CABG patients, and 5%, 2% and 3% for mitral patients. If all three hospitals have a 50/50 mix

of CABG and mitral patients, the overall mortality rates are 3%, 3% and 2.5%, respectively. If

hospitals are ranked according to overall mortality rate, then the third hospital will come out on

top, even though it is not the best for either procedure type. Hence a population average ranking

on overall mortality rate will misguide patients (and their primary care physicians) in the choice

of a hospital. By suggesting the same hospital for everyone, it will also contribute to a capacity

imbalance.

In recognition that a hospital may perform well for some procedures and not as well for other

procedures, some states such as New York and Pennsylvania have begun publishing hospital quality

report cards for individual cardiac surgeries such as coronary artery bypass grafting, aortic valve

and mitral valve surgeries. But this still does not provide true patient-centric information, because

patients requiring the same procedure differ in their demographics and severity of illness (Huckman

and Kelly, 2013). Hospital outcomes may be sensitive to these differences and the best hospital may

be different for different patients.2 In this paper, we focus on how to measure the heterogeneity of

patient outcomes using readily available data, and how to use the results to generate patient-centric

hospital ratings.

Patient-centric ratings have obvious use in helping individual patients choose a hospital. But

they have other important uses as well. The US government is devoting considerable energy to

designing payment structures that incentivize hospitals to improve quality. Most prominently,

CMS has developed programs to link Medicare payments to hospital performance. For example, it

2 For example, diabetic patients in need of coronary bypass surgery have generally not been treated using the Bilateral
Internal Thoracic Artery (BITA) grafting technique, because of concerns that they are at higher risk of infection
involving the breast bone. However, the Cleveland Clinic found recently that BITA grafting can work very well for
diabetic patients, except for those that are very overweight with diffuse atherosclerosis or widespread hardening of
the arteries (see https://health.clevelandclinic.org/2014/11/the-best-bypass-surgery-option-for-diabetic-patients/ for
more details). Similarly, surgeons at the Greenville Health System have found that patients with end stage renal
disease (ESRD) require special care because they are at a higher risk for complications and death after surgical
procedures including bypass grafting (Schneider et al., 2009).
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launched the Readmission Reduction Program (RRP) in 2013 to penalize hospitals with excessive

30 day readmission rates and the Hospital Acquired Conditions Reduction Program (HACRP) in

2015 to penalize low performers with regard to hospital acquired infections.3 In both programs, if

a hospital’s performance is below a threshold, the hospital is penalized for all its Diagnosis-Related

Groups (DRGs). In 2015, more than 2,000 hospitals were penalized under RRP and more than 700

hospitals were penalized under HACRP.

A problem with both RRP and HACRP is that they rely on population average data. As a

result, they penalize some hospitals for all their procedures and do not penalize other hospitals for

any procedure. As we noted above, low average performance does not necessarily mean that the

hospital is poor at treating all patients. It is possible that some of the penalized hospitals have

good or even excellent performance for some patients. Likewise, hospitals that are not penalized

at all may be providing poor performance to some patients. The result is a misalignment between

the penalties (or lack of them) and hospital performance, and hence misalignment in the incentives

to improve. Using patient-centric ratings allows payers such as CMS to assess hospital quality by

patient group and thereby direct penalties more accurately at areas of poor performance.

In this paper, we examine six cardiovascular surgeries at thirty-five NY hospitals and address

four key questions: (1) Are the outcome differences between hospitals heterogenous across different

patient groups? (2) How can we identify groups of patients that exhibit significant differences in

outcome? (3) How can we quantify the differences in patient outcomes between hospitals in a

(patient-centric) manner that is useful to individual patients? and (4) What are the benefits of

patient-centric ratings to patients, payers and providers?

To answer the first question, we can partition patients into different groups according to their

medical condition/procedure, as well as various patient characteristics such as age and comorbidi-

ties. For each group, we compare the outcomes of different hospitals and estimate the outcome

differences between hospitals.

As mentioned earlier, various consumer-based hospital rating systems such as the New York

State Cardiac Surgery Reporting System attempt to do this by comparing hospitals across differ-

ent procedures. Table 1 summarizes the risk-adjusted mortality rates and the relative ranking of

six hospitals for three cardiovascular surgeries based on New York Cardiovascular Surgery Quality

Report Cards 2011-2013.4 The results show clearly that outcome differences are indeed heteroge-

nous across procedures. To see whether outcome differences are also heterogenous across other

dimensions of patient characteristics, we need a way to group patients to generate patient-centric

outcomes. This presents us with the second question.

3 https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/index.html

4 https://www.health.ny.gov/statistics/diseases/cardiovascular/
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The standard approach for partitioning patients into groups would be to include interaction

terms between hospital indicators and patient groups as covariates in a multivariate regression

model. This method works well when there is a small number of groups, but quickly breaks down

when, as is the case here, the number of patient characteristics is large. Methods such as LASSO can

reduce the dimensionality of the problem, but rely on assumptions of sparsity and linear additivity,

and impose distributions on the error term.

Table 1 Relative Performance of Hospitals for Different Procedures

Procedures
Lenox Hill
Hospital

Mount
Sinai

NYP-
Columbia

NYP-Weill
Cornell

Rochester
General

St. Francis
Hospital

Coronary Count 256 385 419 176 306 658
Artery Bypass Mortality 2.23% 1.80% 1.10% 1.74% 1.65% 1.54%

Grafting Rank 6 5 1 4 3 2

Valve- Count 479 1820 2228 1303 1025 1831
Related Mortality 3.30% 3.10% 2.88% 2.63% 4.91% 3.28%

Surgeries Rank 5 3 2 1 6 4

Percutaneous Count 1551 4522 2541 1298 1569 2289
Coronary Mortality 0.59% 0.92% 1.05% 1.50% 0.99% 0.82%

Intervention Rank 1 3 5 6 4 2

Source: New York Cardiovascular Surgery Quality Report Cards 2011-2013.

These issues can be addressed by a nonparametric method that partitions patients into groups

such that patients within the same group have similar outcome differences between providers.

Unfortunately, while simple to state, it is not straightforward to find the best way to group patients.

First, there are many patient characteristics to consider, so we need to identify those that affect

provider outcome differences. Second, for a given set of patient characteristics, there are many

different ways to group patients. To see this, consider a simple example with patients of two

genders {male, female} and two races {white, black}. These can be grouped into {male, white},

{male, black}, {female, white} and {female, black}. Since the number of patient groups increases

exponentially with the number of patient characteristics, real world settings will have too many

groups to evaluate each one individually with statistically significant results.

In this study, we use tree-based methods from the machine learning literature to recursively par-

tition patients into smaller groups such that patients within each group have similar characteristics.

We compare the traditional regression tree method with the recently proposed causal tree method

and explain why the causal tree method is better able to find heterogenous outcome differences

between providers. However, we also note that the causal tree method was originally developed

to identify binary treatment effects. To extend this approach to identify heterogeneous provider

effects when there are multiple providers, we have to overcome two challenges. First, in addition
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to grouping patients, we also need to group providers because there may not be sufficient data to

detect significant differences between all pairs of providers. Second, we need to derive from our

groupings easy-to-understand outcome information for use by individual patients. Accomplishing

the latter addresses the third key question of deriving patient-centric information by comparing

outcomes of different providers.

To address the fourth key question of how patient-centric information can be used to improve

patient outcomes, we compare scenarios in which patients use patient-centric and population-

average information to select the best provider for them. This characterizes the magnitude of

benefit to individual patients of having patient-centric, instead of population-average, data. We

also illustrate the potential impact of patient-centric information on hospitals and payers to show

how hospitals can use such information to target quality improvements and how Medicare can use

it to better align payments with hospital performance.

2. Literature Review

There is growing interest in hospital quality from both the medical and operations management

communities. The medical literature has focused primarily on identifying hospital characteristics

that indicate better performance. For example, Keeler et al. (1992) compared 197 hospitals and

found that teaching, large and urban hospitals are generally better than non-teaching, small, and

rural hospitals for congestive heart failure, acute myocardial infraction, pneumonia, stroke or hip

replacement. Birkmeyer et al. (2003), Gammie et al. (2009) and Vassileva et al. (2012) found high-

volume hospitals tend to perform better than low-volume hospitals. Tsai et al. (2015) found that

hospitals with boards that pay greater attention to clinical quality and use clinical quality metrics

have more effective management practices and provide higher-quality care.

The operation management literature has taken a more detailed perspective by focusing on the

impact of specific provider practices on performance. For example, Barro, Huckman and Kessler

(2006), Clark and Huckman (2012), Huckman and Zinner (2008), and KC and Terwisch (2011)

analyzed the impact of hospital specialization/focus on productivity and patient outcome; Clark,

Huckman and Staats (2013), Huckman and Pisano (2006), KC and Staats (2012), KC et al. (2013)

and Ramdas et al. (2014) analyzed the impact of related experiences on surgeon performance;

Freeman et al. (2015), Jaeker and Tucker (2015) and Kim et al. (2015) analyzed the impact of

workload on quality and patient outcome; Bavafa et al. (2013), Lu and Lu (2016), and Song et

al. (2015) analyzed the impact of patient-physician communication, mandatory overtime laws and

queue management on productivity and patient outcome.

A common assumption in both literatures is that the effects of quality driver are homogeneous

across patient groups. Any study that gives a single ranking of providers or a single estimate of the
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impact of a practice on quality, regardless of patient group, is implicitly making this assumption.

But a number of scholars have recognized the potential for this assumption to lead to inaccurate

information to patients and have called for heterogeneous effect analysis in both patient care and

quality assessment (see for example, FDA, 2013, Gerteis, 1993, IOM, 2011, Kattan and Vickers,

2004, Kent and Hayward, 2007, Kravitz et al., 2004). Wang et al. (2016) compared medical out-

comes of mitral valve patients treated by surgeons at different hospitals and found heterogeous

outcome differences across different patient groups.

Existing models that incorporate heterogeneity usually assume latent classes of consumers with

different tastes or that consumer tastes are random draws from a known distribution. For example,

Xu et al. (2016) used a random coefficient multinomial logit model to characterize heterogeneous

patient preferences in choose doctors. Guajardo, Cohen and Netessine (2016) also used a random

coefficient multinomial logit model to study the impact of service attributes on consumer demand in

the US automobile industry. Lu et al. (2013) used a similar model to analyze how waiting in queue in

the context of a retail store affects customers’ purchasing behavior. While such modeling framework

is useful in incorporating heterogeneous consumer preferences, they cannot systematically identify

different combinations of characteristics that define heterogeneous consumer groups. As a result,

it offers litter practical guidance to individual consumers.

The machine learning literature, on the other hand, offers several useful frameworks to measure

heterogeneity and to identify heterogeneous groups. For example, a few studies have proposed

methods to analyze the heterogeneous treatment effects. Evaluating patient differences in the effect

of a single treatment (e.g., a clinical trial of a new drug) is similar, although not identical, to

evaluating patient differences in the relative outcomes across a set of providers. Hence, we discuss

the literature on identifying heterogenous treatment effects as a guide to addressing heterogenous

provider effects.

In two separate studies of biological markers in high-dimensional genomic data, Signovitch (2007)

and Tian et al. (2014) applied the standard LASSO procedure with modified outcomes or covariates

to determine from a large set of biological markers the subset of patients that can potentially

benefit from a treatment. Imai and Ratkovic (2013) modified the standard LASSO procedure

using different penalty factors for the covariates and treatment effects to distinguish the effect of

treatment from that of covariates and to allow for the possibility of treatment effects with small

magnitudes. Since they do not systematically partition patients into groups, these methods require

users to define patient groups a priori. All of them apply a single global model to all observations,

and assume that effects are linearly additive and errors follow some distribution.

Realizing that a single global model can not be applied to all observations, Zeileis, Hothorn and

Hornik (2008) proposed to partition the observations into groups and apply separate local models
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such as linear regression or maximum-likelihood based models to individual groups. They proposed

using a tree-based method to partition observations, where the feature with the highest instability

is used to split groups, with a fluctuation test to analyze the parameter stability at a node. Su et

al. (2009) modified the regression tree method to split the predictor space in a way that maximizes

the square of the t-statistic for testing the null hypothesis that the average treatment effect is the

same in the two potential groups. A tuning parameter is used to penalize complex trees with many

terminal nodes, where the value of the parameter is determined through cross-validation based on

the sum of squares of the split t-statistics. These methods split the predictor space based on model

fit or a test-statistic, and do not use cross-validation to select the tuning parameter or to assess

the goodness of fit of the estimated model. Furthermore, by their design these methods are better

suited to outcome prediction than to heterogenous treatment effect analysis.

Recently, Athey and Imbens (2016) proposed a causal tree method to analyze heterogeneous

treatment effects in studies with binary treatments. This method effectively partitions subjects

into groups with either large or small treatment effects. The same concept can be applied to

analyze the heterogenous provider effect when there are two providers by interpreting one hospital

as “treatment” and the other hospital as “control”. However, the causal tree method cannot be

used directly when there are multiple providers, because it is unclear which provider or providers

should be designated as the treatment or control groups. Moreover, while the causal tree method

can be applied to each pair of providers, presenting such pairwise comparisons directly to patients

is likely to be confusing since there may be hundreds of comparisons for a patient to process to

come to a conclusion. In this study, we address all these issues in order to derive easy-to-understand

patient-centric information on a set of providers.

We are not the first to apply machine learning techniques to the field of operations management.

Exiting studies have developed and applied machine learning techniques for better prediction or

decision-making. For example, Ang et al. (2015) developed a new method that combines queueing

theory and the LASSO procedure to improve the prediction of emergency department waiting time.

Bertsimas et al. (2016) used several machine learning methods (LASSO, random forest and support

vector machines) to predict the outcomes of clinical trials and optimize the test regimes. Bastani

and Bayati (2016) developed a new efficient multi-armed bandit algorithm based on the LASSO

estimator to tailor decision-making at individual levels. They illustrated that superior performance

of this algorithm in warfarin dosing. Ban et al. (2016) introduced performance-based regulariza-

tion to improve portfolio performance. Ferreira et al. (2015) used a regression tree approach to

predict demand and to optimized price, which led to 9.7% revenue increase in a field experiment

implemented at an online retailer.
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3. The Model

In this section, we first describe the needs and the challenges of generating patient-centric outcome

information. We then introduce the regression tree and causal tree methods from the machine

learning literature and discuss how to extend them to identify heterogeneous outcome differences

between providers across patient groups.

3.1. Problem Description

The basic problem in which we are interested is identifying the provider, or set of providers, with

the highest likelihood of providing a good outcome for a given patient. The data to us are the

outcomes of prior patients at the various providers. However, because it is possible that outcomes

are influenced by patient characteristics (e.g., age, comorbidities, etc.), prior patient outcomes

are not equally relevant to the given patient. Patients with characteristics that match those of

the given patient are more likely to be representative, than are patients with radically different

characteristics. For instance, a 48-year old black woman with mitral valve disease and hypertension

will probably get better information from outcomes of other middle aged mitral valve patients than

she would from patients in their 90s with coronary artery disease.

While this insight is intuitive, it raises the important question of how similar a patient must be

to provide useful information about likely outcomes. For example, are gender or race important?

Or could the black female patient use outcomes from white male patients to help evaluate her

options? Are only mitral valve patients relevant, or are patients with aortic valve disease also

representative? Does hypertension matter? Or are outcomes from patients with other comorbidities,

or no comorbidities, good indicators for our patient with hypertension? How much does age matter?

Should our patient look only to outcomes for other 48 year olds, or should she consider patients

within some wider window of ages? And so on. Ideally, a method for generating outcome information

for a specific patient should also identify the cohort of patients from which this information should

come.

The basic tradeoff involved in selecting a cohort is one of precision versus power. A very narrow

cohort that closely matches the patient in question along all dimensions will be highly representative

and hence precise in characterizing outcomes, but may be too small to offer statistical power needed

to detect real and important differences between providers. A very broad cohort, which contains

patients that may not resemble the patient in question, will be less precise in estimating outcomes

but will have more power due to the larger sample size. The balance between precision and power

should be struck endogenously by making use of the data itself.

Finally, a key characteristic of our problem is that we are seeking to characterize differences

between provider outcomes. In contrast, most analyses focus on outcome prediction. The latter
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is relevant if a patient is choosing whether or not to receive a procedure. For example, to decide

whether the risk of heart surgery is justified by the benefits, we need an estimate of the mortality

rate from the procedure. However, once we have decided to receive a procedure and must decide

on a provider, it is the difference in the mortality rates between the candidate providers that

matters. In a deterministic world, where we know the absolute mortality rates, we can compute the

differences via simple subtraction. But in a statistical world, where we can only estimate the rates,

a method that focuses on prediction of the absolute rates may not yield the most accurate estimate

of the differences between rates. We focus explicitly on estimating differences between providers,

in the following discussion of regression and causal trees, and in the subsequent empirical analysis.

3.2. Regression Trees

The regression tree method partitions observations into smaller groups such that the outcomes

within each group are similar to each other. A typical algorithm starts at the top of the tree, which

consists of a single group called “parent group”, and successively makes binary splits of groups

based on the most important predictor. The process is repeated until a stopping criterion is met

(for example, the incremental improvement in prediction accuracy or the number of observations in

a group reaches a specified minimal level). The terminal nodes of a tree represent the final groups

of observations that are expected to have similar outcomes.

Obviously, there is a tradeoff between prediction accuracy and tree complexity (number of ter-

minal nodes). It is easy to see that a complex tree (e.g., each observation has its own group) will

closely represent the data used to create the tree. Therefore, regression trees are generally evalu-

ated according to their ability to predict a separate out-of-sample set of data. A complex tree will

produce highly accurate in-sample predictions but may lead to poor out-of-sample predictions due

to over-fitting. To formulate the process for creating a regression tree, we let N train denote the

number of observations in the training sample. We let M denote the number of terminal nodes,

which are exhaustive and non-lapping. Finally, we let L= {l1, .., lM} denote the M terminal nodes,

and Yi denote the observed outcome of patient i. A regression tree solves

min 1
Ntrain

[
∑M

j=1

∑
i∈lj

(Yi− Ȳlj )2] +αM

s.t. L= {l1, ..., lM};

li ∩ lj = ∅,∀i 6= j.

where Ȳlj is the average outcome of the jth terminal node, and α is the tuning parameter which

penalizes complex trees. Given any α, one can solve the above optimization problem to minimize in-

sample prediction error. One can also vary the value of α to minimize the out-of-sample prediction

error over a number of cross-validation test samples: 1
Ntest

∑
i=1(Y test

i − Ŷ test
i )2, where Y test

i and

Ŷ test
i denote the true and predicted outcomes for patient i in the test samples.
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The regression tree method is well-suited to estimation of absolute outcomes because it identifies

important predictors of outcomes and partitions observations into groups with similar characteris-

tics. However, a regression tree designed to achieve the best average out-of-sample predictions may

not accurately characterize the relative differences between providers for different patient groups.

There are two potential approaches to modify the regression tree method to better serve our

goal of providing patient-centric information for comparing providers. One approach is to include

providers as predictors in the regression tree. If the tree does not split on any of the providers in a

group, it means that all of the providers in that group have the same outcome. However, a short-

coming of this approach is that, if one or more patient characteristics (e.g., age or comorbidities)

has a strong effect on outcomes, the tree will split first on these patient characteristics, leading to

smaller groups in successive stages. Small samples may prevent the tree from splitting further even

if outcomes differ between providers. For example, consider a simple case where Provider 1 is better

than Provider 2 at treating male patients and equally good at treating young or old patients. The

preferred tree should split only on gender. However, if age affects outcome more than gender does,

the regression tree will split first on age and may not split further on gender.

The second approach is to fit two separate trees for the two providers using only patient char-

acteristics as predictors. For a patient with given characteristics, we can calculate the outcome

difference between providers using average outcomes of the corresponding terminal nodes to which

the patient belongs. However, if a provider is too small, the regression tree will not split on any

predictors, leading to a single terminal node that consists of all patients treated by that provider.

Such an outcome may obscure patient characteristics that matter to outcomes. Furthermore, even

when the trees split, the predictors that affect treatment outcomes may be different from those

affect outcome differences. Hence, this approach may not yield appropriate patient-centric provider

comparisons.

3.3. Causal Tree

Athey and Imben (2016) proposed a causal tree framework to analyze heterogenous treatment

effects. Below, we first describe how an analogous approach can be used to identify heterogeneous

provider effects when there are two providers, and then extend it to identify heterogenous provider

effects when there are multiple providers.

3.3.1. Casual Tree with Two Providers The main difference between a causal tree and a

regression tree is the objective function used to define splitting criterion. Recall that the objective

of a regression tree is to predict outcomes, and therefore it splits on predictors in a way that

minimizes out-of-sample mean squared errors across all groups. In contrast, the objective of a

causal tree is to identify heterogeneous treatment effects, and therefore it splits on predictors in a



Wang, Li and Hopp: Patient-centric Information
Article submitted to Management Science; manuscript no. 11

way that maximizes the mean squared treatment effects across all groups. Let Dπ
12(xl) denote the

outcome differences between Provider 1 and Provider 2 for a group of patients with characteristics

xl, a causal tree π solves

max 1
M

[
∑M

l=1D
π
12(xl)

2]−αM

s.t. L= {l1, ..., lM};

li ∩ lj = ∅,∀i 6= j.

(1)

where α is the tuning parameter that controls the complexity of the tree.

To estimate Dπ
12, we note that each patient can only be treated by one provider, so we cannot

observe outcomes of both providers for a specific patient. Let Tij ∈ {0,1} indicate whether patient

i was treated by provider j ∈ {1,2}. Let Yij indicate the outcome of patient i at provider j. For

patients who are treated by Provider 1, we observe Yi1 but not Yi2. Similarly, for patients who are

treated by Provider 2, we observe Yi2 but not Yi1. Therefore, Dπ
12 cannot be calculated by taking

the differences of two potential outcomes for each patient. Instead, we estimate it using propensity

score matching. Let P (Xi) denote the propensity that patient i with characteristics Xi will be

treated at Provider 1 and 1 − P (Xi) represent his/her propensity of being treated by Provider

2. Then, we can estimate provider outcome difference Dπ
12(xl) using inverse probability weighting

(Horvitz and Thompson, 1952),

D12(xl) =

∑
i∈l,Ti1=1 Yi1/P (Xi)∑
i∈l,Ti1=1 1/P (Xi)

−
∑

i∈l,Ti2=1 Yi2/(1−P (Xi))∑
i∈l,Ti2=1 1/(1−P (Xi))

Similar to the regression tree method, the parameter α can be chosen through cross validation

and the prediction accuracy can be evaluated using a goodness-of-fit measure on a testing set:

1
N

∑N

i=1(Dtest
12 (Xi)− D̂test

12 (Xi))
2, where Dtest

12 (Xi) denotes the true difference between Provider 1

and Provider 2 for patient i in the test set, and D̂test
12 (Xi) denotes the predicted outcome difference

between the two providers for patients i in the test set. However, in contrast with a regression

tree, where the outcome Y test
i of a patient i in the test set is directly observable, the true outcome

difference Dtest
12 (Xi) cannot be observed. Therefore, one cannot calculate the mean squared errors

in the test set directly.

To address this issue, Su et al. (2009) proposed an “honest” approach to construct unbiased

estimates of mean squared errors using one sample to build the tree and an independent sample to

estimate treatment effects. Let Strain, Sest and Stest denote training, estimation and testing samples

respectively. Given any value of α, we first use the training sample to choose a tree structure that

solves the maximization problem in (1). Given the tree structure, we then use the estimation sample

to estimate the outcome difference between providers for patient i, i.e., Dest
12 (xi). We therefore use
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Dest
12 (xi) from the estimation sample as our predicted difference for the training sample. The mean

squared error to be minimized can be rewritten as

MSE(Stest, Sest) =
1

N

∑
i∈Stest

(Dtest
12 (Xi)−Dest

12 (Xi))
2

The expected MSE is the expectation of MSE(Stest, Sest) over the test and estimation samples. By

exploiting the equality E(Dtest
12 (Xi)) = E(Dest

12 (Xi)) = Dπ
12(Xi) and observing that E(Dtest

12 (Xi)
2)

does not depend on the estimator, we have

EMSE(Stest, Sest) = EStest,SestMSE(Stest, Sest)

= −EStest [Dπ
12(Xi)

2] +EStest,Sest [V ar(D
est
12 (Xi))]

In the second item, V ar(Dest
12 (Xi)) is the variance of estimated differences for the corresponding

group (see Appendix A). The expected variance EStest,Sest [V ar(D
est
12 (Xi))] can be calculated as a

weighted average of the group variances, where the weights are the fractions of observations (of

the estimation sample) in the groups.

We can estimate the first term using the square of the estimated means in the training sample,

Dtrain
12 (Xi)

2, minus an estimate of its variance

ÊStest [D
π
12(Xi)

2] =Dtrain
12 (Xi)

2−V ar(Dtrain
12 (Xi))

We thus have the expected MSE expressed as (see Appendix B),

EMSE(Stest, Sest) =−Dtrain
12 (Xi)

2 +V ar(Dtrain
12 (Xi)) +EStest,Sest [V ar(D

est
12 (Xi))]

Note that this estimate for EMSE is based on a given α. We can now vary the value of α to

minimize expected mean squared error.

3.3.2. Causal Tree with Multiple Providers While it is straightforward to apply the

causal tree method to analyze heterogeneous provider effects for two providers, we need to clear sev-

eral hurdles to extend the method to multiple providers. Recall that the causal tree splits on predic-

tors in a way that maximizes the mean squared treatment/provider effect (i.e., 1
M

[
∑M

l=1D
π
12(xl)

2]).

When there are multiple providers, it is unclear which provider or set of providers should be

considered as the treatment group and which as the control group. That is, eventually, we must

partition providers, as well as patient groups. Note that the partitions of providers can be different

for different patient groups and vice versa.

There are several competing alternatives for addressing this issue. Some of these require pre-

defined provider groups, while others involve modifications of the objective function of the causal

tree to accommodate differences of all pairs of providers. For instance, the causal tree method
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can be applied directly if a provider itself is considered as a group and all the other providers

are considered as another group. We can build the causal tree using patient characteristics and

a provider indicator as predictors. If the tree splits on the provider indicator, it indicates that

the provider differs from the other providers as a group. We can estimate outcome difference

between the provider and the other providers using the procedures discussed earlier. This approach

may work well when the number of providers is relatively small and providers are of similar size.

However, when the number of providers under comparison is large, the propensity of a patient to

visit a single provider will be very small, while the propensity of patients visiting all the other

providers will be very large, which makes the scenario unsuitable for propensity score matching

(Crump et al., 2008). Even if there is no issue with matching, the derived outcome information can

be confusing, because the baseline group changes as we move to compare another provider with its

peers. As a results, a patient can not directly compare the outcomes of two providers when his/her

choices of providers are limited.

An alternative is to modify the objective function. For instance, one can partition patients into

groups such that, within each group, there is a large outcome variation across all providers. Then

the objective function needs to be modified to 1
M

[
∑M

l=1

∑
i 6=jD

π
ij(xl)

2], where Dπ
ij(xl) captures the

outcome difference between any pair of providers for patient group xl. The major problem of

this approach is that the groups differentiating one pair of providers may be different from those

differentiating another pair of providers. Consider a simple example where Provider 1 is better than

Provider 2 only for young patients and Provider 3 is better than Provider 4 only for male patients.

The causal tree with above modified objective function is not suitable because it will result in a

universal partition that is homogeneous across all provider pairs, and hence is not sensitive to the

heterogeneous differences across provider pairs.

A solution to these issues is to apply the causal tree method to each pair of providers. While the

approach is methodologically sound, it poses significant interpretation difficulties. For example, a

patient considering 10 providers would have to examine 45 pairwise comparisons, which is likely

to lead to confusion. To avoid this, we develop a two-stage approach. In the first stage, we analyze

pairwise provider differences. In the second stage, we condense the results into a form that enables a

patient to make direct comparisons between any provider and the state average. First, we estimate

the outcome difference between a provider j and any of the other providers. To do this, we build

N − 1 causal trees using provider j and the other N − 1 providers one at a time. From these trees,

we can estimate the outcome differences between providers j and k for patient i, Djk(Xi),∀j 6= k.

Second, we use the estimated results to derive patient-centric outcome information based on the

outcome difference between each provider and the state average. To formalize this, we let DΠ
j,SA(Xi)
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denote the difference between provider j and the state average of H providers from a set of causal

trees Π,

DΠ
j,SA(Xi) = E[Yj(Xi)− 1

H
(Y1(Xi) +Y2(Xi) + ...+YH(Xi))]

= 1
H

∑
k 6=jE[Yj(Xi)−Yk(Xi))]

= 1
H

∑
k 6=jD

π
jk(Xi)

Because we partition patients into groups based on the outcome differences between two

providers, the groups we identify by comparing providers j and k may be different from those

identified by comparing providers j and l. For example, if provider j is better than provider k

at treating male patients but better than provider l at treating white patients, the causal trees

will partition patients into {male, female} when comparing providers j and k and {white, non-

white} when comparing providers j and l. However, as we will show later, this does not affect our

estimation of outcome differences between provider j and the state average.

Because propensity score is defined as the probability of a patient being treated by one provider

as opposed to another, a patient may have different propensity scores when we compare the same

provider with different alternatives. Let Pj(Xi), Pk(Xi), Pl(Xi) denote the unconditional probabili-

ties of patient i going to providers j, k and l respectively. Let Pjk(Xi) = Pr(Tij = 1|Xi, Tij+Tik = 1)

denote the probability of patient i being treated by provider j given that he/she is treated at

either j or k. Assuming the probability of being treated by a given provider can be modeled using

a multinomial logit model, then we have

Pjk(Xi) = Pj(Xi)/(Pj(Xi) +Pk(Xi))

Pjl(Xi) = Pj(Xi)/(Pj(Xi) +Pl(Xi))

These equations hold as a result of the Independence of Irrelevant Alternatives (IIA) property. Let

ljk denote the terminal node that includes patient i in a causal tree built for providers j and k.

For a given matrix of propensity scores, P (X), the proposed estimator of D
∏
j,SA(Xi) is

D
∏
j,SA(Xi|P (X)) = 1

H

∑
k 6=jD

π
jk(Xi)

= 1
H

∑
k 6=j(

∑
i∈ljk,Tij=1 Yij/Pjk(Xi)∑
i∈ljk,Tij=1 1/Pjk(Xi)

−
∑
i∈ljk,Tik=1 Yik/(1−Pjk(Xi))∑
i∈ljk,Tik=1 1/(1−Pjk(Xi))

)
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It is straightforward to see that E[Dj,SA(Xi)|P (X)] = 1
H

∑
k 6=jE[Yj(Xi) − Yk(Xi)] =

D
∏
j,SA(Xi|P (X)). We can estimate the variance of DS

j,SA(Xi|P (X)) as follows

V ar[D
∏
j,SA(Xi|P (X))] = V ar[ 1

H

∑
k 6=j(

∑
i∈ljk,Tij=1 Yij/Pjk(Xi)∑
i∈ljk,Tij=1 1/Pjk(Xi)

−
∑
i∈ljk,Tik=1 Yik/(1−Pjk(Xi))∑
i∈ljk,Tik=1 1/(1−Pjk(Xi))

)]

= 1
H2 (

∑
k 6=j V ar[D

π
jk(Xi|P (X))]

+
∑

k 6=j
∑

l 6=j Cov[

∑
i∈ljk,Tij=1 Yij/Pjk(Xi)∑
i∈ljk,Tij=1 1/Pjk(Xi)

,

∑
i∈ljl,Tij=1 Yij/Pjl(Xi)∑
i∈ljl,Tij=1 1/Pjl(Xi)

)

= 1
H2 (

∑
k 6=j V ar[D

π
jk(Xi|P (X))]

+
∑

k 6=j
∑

l 6=j

Cov[
∑
i∈ljk,Tij=1 Yij/Pjk(Xi),

∑
i∈ljl,Tij=1 Yij/Pjl(Xi)]∑

i∈ljk,Tij=1 1/Pjk(Xi)
∑
i∈ljl,Tij=1 1/Pjl(Xi)

= 1
H2 (

∑
k 6=j V ar[D

π
jk(Xi|P (X))]

+
∑

k 6=j
∑

l 6=j

∑
i∈ljk,i∈ljl

V ar(Yij)∑
i∈ljk,Tij=1 1/Pjk(Xi)

∑
i∈ljl,Tij=1 1/Pjl(Xi)

Similar to what we did for two providers, we can use the law of iterated expectations and the

total law of variance to estimate the mean and variance of Dj,SA(Xi). A provider is statistically

significantly better (or worse) than the state average if the t-statistic of Dj,SA(Xi) is smaller (or

larger) than the critical values.

Before concluding, we note that the causal tree method is superior to a multivariate regression

model for our study, because the regression model assumes that the effects are linearly additive and

unobservable errors follow a certain distribution (e.g., normal distribution for linear regression and

probit models, and logistic distribution for the logit model). Hence, multivariate regression is not

suitable for studying heterogeneous (i.e., nonlinear) effects with multiple patient characteristics,

because the number of parameters becomes very large once we include the full set of interaction

effects. For example, when there are 10 patient characteristics and 35 providers, a total of 210 ×

(35−1) = 34,816 parameters are required. Methods such as LASSO can reduce the dimensionality,

but they still rely on the assumptions of linear additivity, sparsity and distribution of the errors.

In contrast, the causal tree method is a non-parametric approach, which makes no assumption on

the errors and allows the predictors to interact in a more flexible and sophisticated manner.

4. Empirical Setting and Data

We choose cardiovascular diseases (commonly known as heart diseases) as the empirical setting

for personalized health care outcome analysis for several reasons. First, cardiovascular diseases are

the leading cause of death worldwide (WHO, 2011). Each year, about 17.5 million people die from

cardiovascular diseases, which accounts for 1 in every 4 deaths, and this number is expected to grow
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to more than 23.6 million by 2030.5 Second, cardiovascular surgeries are relatively complicated

procedures. They require sophisticated skills, advanced technology and intensive post-surgical care,

which makes them candidates for sizable variations across providers (hospitals or surgeons). Third,

cardiovascular surgeries include several different types of procedures, each requiring a different set

of skills and technology. As a result, a hospital may perform well for some procedures but not as

well for others.

Cardiovascular diseases refer to (a) conditions when the blood vessels are narrowed or blocked,

which can lead to heart attack, (b) chest pain or stroke and (c) conditions that affect the heart’s

muscles, valves or rhythm. Cardiovascular surgeries are operations performed by surgeons on the

heart and blood vessels to repair the damage caused by diseases or disorders of the cardiovascular

system. In this study, we focus specifically on three cardiac surgeries — Mitral Valve Replacement

(MVR), Aortic Valve Replacement (AVR) and Coronary Artery Bypass Grafting (CABG), and

three vascular surgeries — Abdominal Aortic Aneurysm (AAA) repair, Carotid endarterectomy

(CE) and Lower Extremity bypass Graft (LEG).

4.1. Data Description and Preparation

Our study makes use of data from New York state that consist of patient-level records of all in-

and out-patient discharges from all hospitals in New York from 2008-2012. The data contain de-

tailed clinical and resource use information, including admission status (e.g., elective, emergent

and urgent), patient demographics and comorbidities, hospital identifiers, and principal and sec-

ondary diagnoses. For each discharge, the data indicate the type of surgery a patient underwent.

They also record whether a patient experienced any complications or died during the procedure or

post-surgery hospitalization. Finally, we identify readmissions by linking inpatient and outpatient

data.

We identify discharges related to the six cardiovascular procedures under this study by using

related clinical codes in the International Classification of Disease (9th revision). From 2008-2012,

a total of 124,895 patients with cardiovascular diseases were discharged from 144 hospitals. Because

some of the hospitals did not perform cardiovascular surgeries every year or have a low volume, we

focus on the 41 cardiac hospitals compared by the New York State of Health for Cardiovascular

Surgery Quality Report Cards. However, six of these hospitals did not perform vascular surgeries,

so we focus on the other 35 hospitals that perform all the six cardiovascular surgeries discussed

earlier. This results in a total of 107,252 discharges over the five year period. We focus on isolated

surgeries and exclude patients who underwent multiple types of surgeries (6,950 of the sample).

This allows us to characterize patient outcomes at each hospital for each surgery type. In addition,

5 https://www.heart.org/idc/groups/ahamah-public
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we exclude patients with missing information such as admission status. The final sample contains

a total of 99,378 discharges.

4.2. Outcome Measures and Feature Space

To measure a hospital’s outcome quality, we consider the rates of complication, readmission and

mortality as potential metrics. We identify complications using the diagnosis codes provided in the

data and focus on hospital acquired conditions rather than pre-existing conditions. We are able

to separate the two types of complications because the data indicate whether each diagnosis was

present at admission. We focus on 23 cardiovascular surgery related complications6 and use them

collectively as an outcome measure (STS, 2016, Tuinen et al., 2005, Williams et al., 1965).

In our sample, 29.58% patients had at least one of the 23 complications, while 10.55% had two

or more complications. Because a sizeable number of patients had more than one complications,

we cannot simply use a binary variable to indicate whether a patient experienced at least one

complication. The 23 complications have different severity levels. For example, complications such

as pulmonary embolism or insufficiency are relatively easy to cure, while complications such as

coma and multi-organ failure are likely to lead to patient deaths (Glance et al., 2007, Reddy et al.,

2013). Therefore, we cannot simply count the number of complications a patient experienced. To

capture both the number and the severity of complications associated with a patient during the

surgery and hospital stay, we need to translate complications into a numeric score that weights

each complication by its severity.

The Elixhauser comorbidity index is a vector of 30 binary variables in which each 1 represents

the existence of a comorbidity (Elixhauser et al., 1998). To describe the overall sickness of a patient

and to weight the severity of individual comorbidities, van Walraven et al. (2009) modified the

Elixhauser comorbidity index into a single numeric score (called “Elixhauser comorbidity score”)

by using a backward stepwise multivariate logistic regression to determine the correlation between

each comorbidity and in-hospital mortality. The parameter estimates of the regression model were

modified into a vector of weights based on methods described by Sullivan et al. (2004). The Elix-

hauser comorbidity score is calculated as the dot product of the index vector and the vector of

weights. We follow the same approach to develop a complication score as an outcome measure for

the purpose of this study. The complications and their weights are summarized in Appendix C.

The average complication score for each procedure in our study ranges from 0.11 (for CE) to 1.65

(for AAA) and the average across all procedures is 0.68 (Table 2).

6 The complications are stroke, aortic dissection, renal failure, ventilation, multi-organ failure, coma, cardiac arrest,
sepsis, gastrointestinal events, tracheal reintubation, surgical complications, tamponade, wound infection, renal dial-
ysis, mediastinum, reoperation for bleeding, pneumonia, pulmonary embolism, heart block, myocardial infarction,
pulmonary insufficiency, surgical E codes and other cardiac complications.
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To analyze readmission rate, we merge outpatient discharge data with inpatient discharge data

using the link provided by the Agency for Healthcare Research and Quality. We focus on 30-day

readmission by identifying patients who visited the same or other hospitals within 30 days after

discharge. The last month of the data is censored because their re-admissions are not observed. The

average readmission rate for each procedure ranges from 10.3% (for CE) to 18.1% (for LBG) and

that for all procedures equals 14.7%. Lastly, we observe directly from the data whether a patient

died during hospitalization. The average mortality rate for each procedure ranges from 0.3% (for

CE) to 4.7% (for MVR) and the average across all procedures is 1.7%.

Table 2 Summary of Outcomes for Different Procedures

Surgical Procedure Complication Score Readmission Rate Mortality Rate
name count mean s.d. mean s.d. mean s.d.

CE 14,539 0.11 0.77 10.3% 30.4% 0.3% 5.8%
CABG 46,098 0.66 1.80 14.0% 34.7% 1.2% 10.9%
LBG 12,227 0.41 1.47 18.1% 38.5% 1.5% 12.2%
AAA 1,356 1.65 2.86 11.6% 32.1% 2.7% 16.3%
AVR 20,061 0.99 2.30 16.4% 37.0% 2.9% 16.7%
MVR 5,097 1.47 2.80 17.0% 37.6% 4.7% 21.3%

Total 99,378 0.68 1.90 14.7% 35.4% 1.7% 12.9%

The features we use to construct the causal trees include six cardiovascular procedures (CE,

CABG, LBG, AAA, AVR and MVR), patient genders, races (white, black, hispanic, asian, native

and others), admission statuses (emergent, urgent and elective), six age groups (below 50, 50-60,

60-70, 70-80, 80-90 and above 90) and five major comorbidities (chronic heart failure, chronic lung

disease, diabetes, hypertension and renal failure) of cardiovascular diseases (STS, 2016). Consid-

ering all these features results in a total of 6 procedures × 2 genders × 6 races × 3 admissions ×

6 ages × 25 comorbidities = 41,472 different combinations of patient characteristics.

5. Results and Discussion

To address the first three key questions we raised in the Introduction, we first provide evidence

of heterogeneous outcome differences between hospitals using an exploratory approach in which

patient groups are defined a priori (for example, by procedure type, age group or comorbidity). Then

we apply the regression and causal tree methods to systematically partition patients and discuss

why the causal tree method is better able to detect the outcome differences between hospitals.

Finally, we extend the causal tree method to compare multiple hospitals and identify hospitals

that are statistically significantly better than the state average for each patient.
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5.1. Evidence of Heterogeneous Outcome Differences

To evaluate the extent to which outcome differences between hospitals are indeed heterogenous

across groups of patients, we partition patients into groups according to patient characteristics

(e.g., procedure, age and comorbidities) and use t-tests to see whether one hospital is significantly

different from another for each group. Table 3 summarizes the results for two hospitals of similar

size in New York when patients are partitioned by procedure type, age group and/or comorbidities.

The first partition compares the hospital outcomes for the procedures CE, AVR and CABG.

This shows that Hospital 1 has a lower complication score for CE (0.05 lower, p-value< 0.1), but

a higher complication score for both AVR (0.40 higher, p-value< 0.01) and CABG (0.40 higher, p-

value< 0.01). The results suggest that the outcome differences between providers are heterogeneous

across procedures.

Note, however, that the numbers in the first partition in Table 3 are simple averages for different

patient groups and are not risk adjusted. To make sure the observed heterogeneity is not an artifact

of different patient mixes, we examine some finer partitions based on patient age and comorbidities.

The second partition in Table 3 compares the same procedures but focuses on patients in their

70s. This shows that the differences between the two hospitals are still significant for AVR and

CABG. However, Hospital 1 has a lower complication score than Hospital 2 for AVR patients in

their 70s. The difference between the two hospitals is insignificant for CE. This insignificance can

be due in part to the reduction of the sample size. For both AVR and CABG, the magnitudes of

the differences between the two hospitals are larger for patients in their 70s than for patients of all

ages.

The third partition in Table 3 focuses on CE and patients of different ages (i.e., 60s, 70s and

80s). This shows that Hospital 1 has a higher complication score for patients in their 60s but has

a lower complication score for patients in their 80s. The difference between the two hospitals for

patients in their 70s is not statistically significant. These results indicate that outcome differences

are heterogeneous across patient age groups.

The fourth partition in Table 3 focuses on CE and different comorbidities (i.e., diabetes, lung

disease or heart failure). This shows that Hospital 1 has a lower complication score for patients

with diabetes but a higher complication score for patients with lung disease. The difference is

not significant for patients with hypertension. These results suggest that outcome differences are

heterogeneous across patient comorbidities.

To summarize, Table 3 suggests that outcome differences between Hospital 1 and 2 are hetero-

geneous across procedure types, patient age and comorbidities, which speaks to the first question

raised in the Introduction. It also illustrates the tradeoff between precision and power. As we see

from the fifth partition in Table 3, fine partitions pose the risk of small sample sizes that are
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inadequate for statistical testing. Of course, these partitions are for illustration purpose only and

there are many other ways to partition patients for outcome comparison. In the subsequent section,

we employ tree-based methods to obtain the optimal partition to detect heterogeneous outcome

differences between providers.

Table 3 Complication Scores at Two Hospitals for Various Patient Groups

Partition Procedure Age Group/ Hospital 1 Hospital 2 Difference in Average
Alternatives Type Comorbidity count mean s.e. count mean s.e. Complication Score

CE all 489 0.07 0.02 481 0.12 0.03 −0.05∗
1 AVR all 200 0.83 0.16 385 0.43 0.08 0.40 ∗ ∗∗

CABG all 891 0.40 0.05 969 0.23 0.03 0.17 ∗ ∗∗
CE 70 147 0.05 0.03 158 0.06 0.03 −0.02

2 AVR 70 46 0.07 0.07 97 0.53 0.17 −0.46 ∗ ∗∗
CABG 70 307 0.33 0.08 327 0.15 0.04 0.18 ∗ ∗

CE 60 58 0.12 0.08 47 0 0 0.12∗
3 CE 70 147 0.05 0.03 158 0.06 0.03 −0.02

CE 80 209 0.06 0.03 196 0.14 0.05 −0.09∗
CE diabetes 158 0.08 0.04 197 0.17 0.06 −0.10∗

4 CE lung disease 101 0.17 0.06 197 0.06 0.03 0.11∗
CE heart failure 19 0.53 0.29 29 0.28 0.24 0.25

CE 60/diabetes 49 0.41 0.17 66 0.18 0.12 0.23
5 CE 60/lung disease 29 0.17 0.14 30 0.1 0.1 0.07

CE 60/heart failure 3 1.00 1.00 6 0.50 0.50 0.50

*** p < 0.01, ** p <0.05, * p < 0.1

5.2. Comparison of Causal and Regression Trees With Two Providers

To address the second key question of how to identify patient groups that exhibit significant

outcome differences, we make use of the statistical methods we presented earlier.

We start with the traditional regression tree method using patient characteristics and a hospital

indictor (Hospital 1) as predictors. From Figure 1, we see that the regression tree splits first on

hypertension, which indicates that hypertension is the most important factor affecting outcomes.

For patients with hypertension, it splits on CE only. But for patients without hypertension, it splits

on AAA, chronic heart failure and CE. At the bottom of the tree, there are seven terminal nodes

representing seven distinct groups of patients. The numbers in a terminal node indicate the average

complication score, the total number and the fraction of patients in the node. Finally, we note that

the regression tree does not split on Hospital 1, which indicates that the choice of Hospital 1 over

Hospital 2 is not an important determinant of outcomes for any of the patient groups.

Next we apply the causal tree method to the same patients treated at these two hospitals. Our

objective is to detect significant differences in complication scores between Hospital 1 and Hospital

2. From Figure 2, we see that the causal tree splits first on CABG, which indicates that CABG is the
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Figure 1 Regression Tree Approach

most important factor differentiating outcomes at the two hospitals. For CABG patients, the tree

splits on emergent admission and hypertension, but for patients undergoing other types of surgery,

the tree does not split at all. This non-splitting is unlikely to be due to a small sample, because

the node (non-CABG) includes 61%, or 1560 patients. At the four terminal nodes, a positive value

indicates that Hospital 1 has a higher complication score and a negative value indicates otherwise.

Compared with the regression tree, the causal tree is smaller and partitions patients in a markedly

different way.

Finally, we compare the two trees to analyze which splitting method allows us to detect heteroge-

nous outcomes differences between the two hospitals. From each tree, we first identify patients from

the two hospitals at a terminal node and calculate the average complication scores. We then use

t-tests to determine wether the two hospitals have statistically significantly different complication

scores for the group of patients at the terminal node.

Table 4 shows that the regression tree partitions patients into groups of sizes ranging from 8 (the

5th node) to 2,012 (the 2nd node). Within each terminal node, the average outcome of Hospital 1

is close to that of Hospital 2 and, as a result, the differences for all seven groups are small (from

-0.13 to 0.30). More importantly, the differences are not statistically significant for six of the seven

groups at conventional significance levels.

Table 4 shows that the causal tree partitions patients into groups of sizes ranging from 153 (the

3rd node) to 2,092 (the 1st node). Within each terminal node of the causal tree, the average outcome

of Hospital 1 is very different from that of Hospital 2. The outcome differences of the four groups

range from -0.36 to 2.24 and three of the four differences are significant at conventional levels.
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Figure 2 Causal Tree Approach

As expected, the causal tree partitions patients in a way that maximizes the outcome differences

between hospitals for groups of patients, whereas the regression tree partitions patients in a way

that minimizes the outcome differences among patients.

To obtain additional insight into the differences between causal and regression trees, we compare

groups of patients at the two hospitals after the trees’ initial splitting. The regression tree begins by

partitioning patients into those with and without hypertension. The complication scores are 0.48

and 1.3 for patients with and without hypertension, respectively, so the difference is -0.82. For those

with hypertension, the complication scores are 0.4 and 0.57 for Hospitals 1 and 2, respectively, so

the difference is -0.17. For those without hypertension, the complication scores are 1.33 and 1.21 for

Hospitals 1 and 2, respectively, so the difference is 0.12. Comparing magnitudes of these differences,

we see that hypertension is important in predicting patient outcomes but not as important in

predicting outcome differences between hospitals.

In contrast, the causal tree splits first on the procedure of CABG. The complication scores

are 0.75 and 0.59 for CABG and non-CABG patients, respectively, so the difference is 0.16. For

CABG patients, the complication scores are 0.86 and 0.63 at Hospitals 1 and 2, respectively, so

the difference is 0.23. For those undergoing other types of surgeries, the complication scores are

0.50 and 0.86 at Hospitals 1 and 2, respectively, so the difference is -0.36. Comparing magnitudes

of these differences, we see that CABG is important in predicting outcome differences between

hospitals, but is not as important in predicting patient outcomes. Since our goal is to identify

provider differences that matter to patients, the causal tree is more useful to our purpose.
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Table 4 Comparison of Causal Tree And Regression Tree

Node Index of Hospital 1 Hospital 2 Difference in Average
Respective Trees count mean s.e. count mean s.e. Complication Score

1 390 1.29 0.15 271 1.11 0.16 0.18
2 1,264 0.53 0.04 748 0.66 0.07 −0.13∗

Regression 3 79 0.00 0.00 18 0.00 0.00 0.00
Tree 4 466 0.04 0.02 126 0.02 0.02 0.01

5 5 0.80 0.80 3 1.00 1.00 −0.20
6 11 5.55 1.78 8 5.25 1.47 0.30
7 23 4.65 1.00 5 4.60 3.03 0.05

1 1,560 0.50 0.05 532 0.86 0.10 −0.36 ∗ ∗∗
Causal 2 109 0.88 0.17 327 0.56 0.09 0.32 ∗ ∗
Tree 3 32 3.16 0.87 121 0.92 0.20 2.24 ∗ ∗∗

4 537 0.72 0.08 199 0.59 0.14 0.13

*** p < 0.01, ** p <0.05, * p < 0.1

5.3. Causal Tree for Multiple Providers

As described in Section 3, to identify hospitals that are statistically significantly different from the

state average for certain patient groups, we first construct causal trees for each pair of hospitals,

which requires a total of 35× 34/2 = 595 trees. For each patient, we estimate the differences in

complication score between a hospital and the state average, and calculate the standard error of

the difference using the approach of Section 3. Table 5 summarizes the results for an example of

six different patients. The best hospital for each patient is highlighted in bold. We observe that,

while some hospitals (e.g., hospitals 3 and 4) are uniformly better than the state average for all six

patients, others (e.g., hospital 26) are uniformly worse. However, for hospitals that are uniformly

better (or worse) than the state average, the magnitude of the differences varies for individual

patients. For example, Hospital 3 is better than the state average by 0.74 for the 2nd patient

(AVR, 80s, one comorbidity) and by 0.19 for the 3rd patient (CE, 70s, two comorbidities). There

are also hospitals that are better than the state average for some patients but worse for others.

For example, Hospital 1 is better for the 3rd (CE, 70s, two comorbidities) and 5th (MVR, 30s,

two comorbidities) patients but worse for the 2nd(AVR, 80s, 1 comorbidity), 4th (CABG, 40s, one

comorbidity) and 6th (AAA, 60s, two comorbidities) patients. These results indicate that outcome

differences between pairs of hospitals are indeed heterogenous across patients, and that different

patients have different sets of hospitals that are significantly better that the state average.

Of course, Table 5 only shows six patients as examples. We have analyzed the outcome differences

across hospitals for all of the patients this study. To provide an overall visual illustration of the

heterogeneity in outcomes across hospitals for different patients, we group patients by procedure

type, age group and comorbidities.7 For each patient group, we use Yijk ∈ {−1,0,1} to indicate

7 We tried different ways to group patients and noticed that, when patients are grouped by procedure type, comor-
bidities and age group, the resulting heat map has obvious patterns. Patients within each group may have different
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Table 5 Comparison of Complication Score with the State Average for Different Patients

Hospital LBG, 70s AVR, 80s CE, 70s CABG, 40s MVR, 30s AAA, 60s
Index 1 Comorb 1 Comorb 2 Comorb 1 Comorb 2 Comorb 2 Comorb

(1) (2) (3) (4) (5) (6)

1 −0.37+++ −0.59+++ −0.32+++ −0.35+++ −0.62+++ −0.39+++
2 −0.25+++ −0.74+++ −0.19+++ −0.24+++ −0.48+++ −0.28+++
3 −0.20+++ −0.44+++ −0.35+++ −0.25+++ −0.23++ −0.21+++
4 −0.17++ −0.43+++ −0.41+++ −0.17++ −0.17+ −0.24+++
5 −0.25+ −0.65+++ −0.05 −0.09 −0.05 −0.10
6 −0.04 −0.53+++ −0.16++ −0.03 −0.13 0.02
7 −0.04 −0.23 −0.07 0.02 −0.17 −0.04
8 −0.17++ −0.04 −0.12++ −0.07 0.13 −0.15++
9 0.05 −0.19++ −0.29+++ 0.06 0.07 −0.07
10 −0.11 −0.30+++ −0.01 −0.10+ −0.10 −0.12
11 −0.05 −0.17 −0.17 −0.08 −0.10 −0.16++
12 0.00 −0.14 −0.26++ −0.01 −0.06 0.00
13 −0.19+++ −0.16 −0.34++ −0.22+++ −0.28+++ −0.32+++
14 0.01 −0.06 −0.16 −0.16+++ −0.26+++ −0.22+
15 −0.05 0.08 0.05 0.07 0.00 0.04
16 0.00 −0.10 −0.05 −0.05 −0.15+ −0.06
17 0.07 0.25 −0.04 −0.10++ −0.08 0.06
18 −0.15+ 0.04 −0.03 0.02 −0.23++ −0.07
19 0.02 0.04 −0.26++ −0.08++ 0.03 −0.10
20 0.01 0.13 0.08 −0.10++ 0.21- −0.13+
21 0.13- 0.07 0.07 −0.10+ 0.06 0.11
22 0.06 0.19 −0.11 0.06 0.15 0.05
23 0.38 0.84- 0.37 0.18 0.13 0.18
24 0.09 0.03 −0.07 0.03 −0.03 −0.01
25 0.14- −0.26+ 0.30- 0.04 0.12 −0.02
26 0.16- 0.14 0.15 −0.03 0.13 0.27-
27 −0.15++ 0.42- 0.34− −0.07+ 0.11 −0.11
28 0.04 0.12 0.44− 0.00 0.40- 0.03
29 0.11 0.24- 1.25- −0.10+ −0.03 0.29-
30 0.28- 0.10 −0.06 0.25- 0.49- 0.28-
31 0.29- 0.34- 0.02 0.15- 0.11 0.13-
32 0.05 0.31- −0.22+ 0.21- −0.15+ 0.30-
33 0.04 0.52- 0.34− 0.16- 0.11 0.18-
34 0.26- 0.55- 0.17- 0.67- 0.48- 0.46-
35 0.05 0.63- 0.20 0.46- 0.57- 0.37-

+++, ++, +: better than state average at 99%, 95% and 90% confidence level
---, --, -: worse than state average at 99%, 95% and 90% confidence level

whether hospital j is statistically significantly worse than, the same as, or better than the state

average at a 10% significance level for patient i in group k. Then we calculate the overall per-

formance of hospital j for patient group k using Ȳjk = 1
Njk

∑Njk
i=1 Yijk and present the results in a

heat map (Figure 3), where the yellow/red colors indicate that a hospital’s overall performance

is better/worse than the state average, and the intensity of the colors indicates the fraction of

patients in a cell for which a hospital is better/worse than the state average.

sets of hospitals that are significantly better than the state average. However, as shown in the heat map, a majority
of patients in each group have the same best set of hospitals.
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From Figure 3, we observe that many of the cells in the middle (i.e., those associated with

hospitals 11-25) are orange, which indicates that these hospitals are not significantly different from

the state average for many patient groups. The majority of the cells in rows at the top (e.g., those

associated with hospitals 1-3) have the color of yellow, indicating that these hospitals are better

than the state average for most patient groups. In contrast, the red color of the cells in rows at the

bottom (e.g., those associated with hospitals 34-35) indicates that these hospitals are worse than

the state average for most patient groups. Rows near the top having colors of yellow and orange

indicate that the corresponding hospitals are better for some patient groups, but are not statistically

different from the state average for other patient groups. Likewise, rows near the bottom with a

mixture of red and orange cells indicate that these hospitals are worse for some patient groups

but are not significantly different from the state average for other groups. Interestingly, there are

hospitals (e.g., 13 and 27) that are significantly better than the state average for some patient

groups (e.g., patients with hypertension) but are significantly worse than the state average for

other patient groups (e.g., patients at 60s with no major comorbidities).

Figure 3 Comparison of Hospital Complication Scores for Patient Groups

Note: Patients are grouped by age group (i.e., 50s to 90s), comorbidity and surgery. Acronyms for comorbidities:
HTN - hypertension, DM - diabetes, CHF - chronic heart failure, NA - no comorbidities. Acronyms for surgeries:
CE - carotid endarterectomy, LBG - lower extremity bypass graft, MVR - mitral valve repair, AVR - aortic valve
repair, CABG - coronary artery bypass grafting.
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5.4. Outcome Differences Based on Other Metrics

We have also performed similar analyses of the heterogeneity in outcome differences using in-

hospital mortality and 30-day readmission as metrics. The results are displayed in the heat maps

of Figures 8 and 9 in Appendices D and E. We see that, because mortality is a rare event for the

procedures in this study, most hospitals are not statistically significantly different from the state

average, as indicated by the prevalence of orange in Figure 8. However, we observe that Hospitals

2, 3 and 30 are better than the state average for many patient groups and that Hospitals 22, 26

and 33 are worse for some patient groups and not significantly different from the state average for

other patient groups.

Readmission is a more common event than mortality, so using readmission rate as the outcome

metric allows us to identify more hospitals that are significantly different from the state average.

From Figure 9, we see that Hospitals 3, 27, 9 and 10 are better than the state average for most

patient groups, whereas Hospitals 6, 23, 31 and 34 are worse than the state average for most patient

groups. Most other hospitals (e.g., Hospitals 1, 2, 5 and 8) are either not statistically different from

or are better than the state average, depending on the patient group. Similar to the case with

complication score as the outcome metric, we see that some hospitals (e.g., Hospitals 17, 19, 26

and 30) are better than the state average for some patient groups but worse than the state average

for other patient groups.

Using either complication score or readmission rate allows us to identify a relatively large set of

hospitals that are significantly different from the state average. However, for a given patient group,

the best hospitals that are significantly better than the state average with respect to complication

score may be different than those with respect to readmission rate. For example, for patient group

CE50HTN (CE, 50s, with hypertension), Hospitals 1, 2, 4, 8 and 13 are significantly better than

the state average when outcomes are measured by complication score, but Hospitals 3, 9, 17 and 27

are significantly better than the state average when outcomes are measured by readmission rate.

Likewise, for a given hospital, the set of patient groups for which it produces the best outcomes

are different when different outcome metrics are used. For example, Hospital 2 is significantly

better than the state average for all patient groups when outcomes are measured by complication

score but for only patient group CE90CHF (CE, 90s, with chronic heart failure) when outcomes

are measured by readmission rate. The reason is that these metrics measure different capabilities.

Readmission rate measures the ability of a hospital to ensure patients are healthy (or at least

stable) when released. In contrast, complication rate measures the ability of a hospital to avoid

problems such as hospital-acquired infections, while the patient is in the hospital. Prior studies

that have found mixed results regarding the correlation between readmission and complication
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rates (see for example Hospital Compare,8 2016, Lawson et al., 2013, Merkov et al., 2015, Robbins,

2013) are consistent with the differences we have observed.

6. Managerial Implications

We now turn to the last of our four key questions, which is what are the benefits of patient-centric

information to patients, payers and providers. To evaluate the impacts on patients, we compare

the sets of best hospitals and potential outcomes under population-average and patient-centric

information. To illustrate the potential benefit to payers, we use the Hospital Acquired Condition

Reduction Program as an example of how patient-centric information enables payers to better align

payment with hospital performance. To illustrate the benefits to providers, we discuss how patient-

centric information can help hospitals better align their strategic focus with their strengthes and

focus their process improvement efforts where they will have the greatest impact.

6.1. Implications for Patients

Existing hospital rating systems, such as those of US News and the LeapFrog Group, and quality

report cards, such as the New York Cardiac Surgery Quality Report Cards, compare hospitals using

O/E ratios of observed to expected metrics (e.g., mortality rate). The expected rates are population

averages estimated from a multivariate logit/probit model that includes patient demographics and

comorbdities to control for patient severity of illness and hospital dummies to capture the fixed

effects of individual hospitals. US News aggregates ratings into broad categories such as heart

surgery and cancer, rather than reporting them for individual procedures such as mitral valve or

aortic valve surgeries. As a result, it captures only the average effect of a hospital for all discharged

patients. The LeapFrog Group and NY quality report cards report ratings for individual procedures

such as CABG, mitral valve, aortic valve surgeries, so they capture the average effect of a hospital

for a procedure. But they still make use of population-average O/E ratios that do not capture the

heterogeneity of outcome differences across groups of patients undergoing the same procedure.

Because population-average based rankings, including those making use of O/E ratios, assume

away heterogeneity in provider performance across patient groups, they suggest that the same

hospitals (or surgeons or physicians) are best for all patients. This leads to two problems. First,

as we discussed in the previous section, some hospitals that are high performers on average have

average or below average outcomes for some patient groups. So, O/E ratios will guide some patients

to suboptimal choices of providers. Second, because they suggest a “one size fits all” picture of

hospital quality, population-average based rankings encourage patients to concentrate unnecessarily

in a small subset of hospitals. The resulting capacity overloads will lead to longer patient wait

times that could negatively impact patient outcomes.

8 https://www.medicare.gov/hospitalcompare/compare.html
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6.1.1. Comparison of Best Hospitals To illustrate the difference between patient-centric

and population-average information in terms of their ability to guide patients to the best hospi-

tals, we focus on complication score as the outcome metric.9 We use each type of information to

identify the best hospital(s) (i.e., those that achieve the minimum complication score) for each pa-

tient group. Finally, we compute the weighted average complication score across all patients. The

difference between the average complication score under patient-centric and population-average

information is a measure of the expected incremental value of patient-centric information to a

randomly selected patient who chooses the best hospital for him/her based on the available infor-

mation.

Because the dependent variable (complication score) is left truncated at zero, we use a tobit model

instead of a logit/probit model to identify the best hospital under population-average information.

For all models, we have robust standard errors clustered by hospital to allow for differences in the

variance/standard errors due to arbitrary intra-group correlation (KC and Terwiesch, 2011, Jaeker

and Tucker, 2015). The hospital with the smallest O/E ratio is designated as the best hospital

for all patient groups. To rank hospitals using patient-centric information, we use the causal tree

method discussed earlier. As we noted earlier, this method can identify different hospitals as best

for different patient groups. Furthermore, if the outcome differences between hospitals are not

significant, the tree may not differentiate between them. As a result, multiple hospitals may be

identified as best for a given patient group.

Applying these methods to data for NY patients discharged in 2012 after one of the six car-

diovascular surgeries listed earlier generates the results in Table 6. These identify the set of best

hospitals and the number of patients for whom each hospital is best under population-average

and patient-centric information. The difference in hospital rankings, and the patient complication

scores they produce, that occur when we switch from population-average information to patient-

centric information, characterize the value of patient-centric information to an individual patient

who seeks out the best hospital for him/her using the available information. In addition to guiding

patients to hospitals that will reduce their expected complication score, patient-centric information

guides patients to a wider range of hospitals, which will be more feasible from a capacity standpoint

to provide patients with the best available treatment.

9 We use complication score because it captures a wide range of negative patient outcomes and shows substantial
variation across hospitals. But the difference between patient-centric and population average information can be
evaluated in terms of any of the outcome metrics we introduced earlier, or a composite score that combines them,
without changing the overall conclusions about the value of patient-centric information.
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6.1.2. Comparison of Patient Outcomes There are two main insights from Table 6. The

first is that the hospital that is best on average across the entire population is not best for most

patients. Patient-centric information reveals that different hospitals are best for different patients.

For most of the surgical procedures, the top-ranked hospital under population-average information

is the top hospital only for a minority of patients. For CE, the top-ranked hospital under population-

average information is only best for 36 out of 2681 patients. For CABG, it is optimal for 30 out of

7953 patients. For AAA, it is optimal for 4 out of 185 patients. For AVR, it is optimal for 9 out of

4025 patients. For MVR, it is optimal for 13 out of 1054 patients. And for LBG, the top-ranked

hospital under population-average information is not the best hospital for any group of patients.

The second insight from Table 6 is that choosing the best hospital on the basis of patient-

centric, rather than population-average, information results in a significant reduction in average

complication score. This reduction ranges from 0.11 to 0.40, which is equivalent to a 4.5% to 16%

reduction in mortality, across the six cardiac specialties. The average reduction across all patients

is 0.21, which is equivalent to a 8.8% reduction in mortality.

To get a better sense of which patient groups benefit most from patient-centric information, we

group patients by procedure type, age group and major comorbidities (as what we did for the earlier

heat maps). The average reduction of complication score for each patient group is summarized in

Figure 4. Generally speaking, patients with diabetes or chronic heart failure benefit more than

those with other (or no) comorbidities from patient-centric information. Among all the patient

groups, LBG patients with diabetes or chronic heart failure benefit the most and MVR patients

with chronic heart failure or no comorbidities benefit the least.

Figure 5 displays the distribution of percentage reduction in complication score. From this his-

togram, we see that around 97.5% of patients achieve a positive reduction in their complication

score under patient-centric information. Only a small fraction of patients are equally well off under

population-average and patient-centric information.

6.1.3. Other Outcome Metrics As noted earlier, we can make use of patient-centric in-

formation to rank hospitals according to other outcome metrics besides complication score. To

illustrate how hospitals perform differently on other metrics, Table 7 compares hospitals based

on complication score, readmission and mortality rates for two patients. As we did in the heat

maps earlier, we identify hospitals that are statistically significantly better than the state average.

Table 7 shows that the set of above average hospitals changes when different outcome metrics are

used. Hospitals 3 and 4 are significantly better than the state average for Patient 1 with respect to

complication score but are not different from the state average with respect to readmission rate. In

this example, there are hospitals that are significantly better than the state average with respect
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Table 6 Impact on Average Patient Complication Score From Using Patient-Centric Instead of

Population-Average Information in Hospital Selection

Population-Average Patient-Centric Avg. Reduction
Information Information of Complication

Score

hospital index 2 1 2 4 5 11
CE number of patients 2681 2049 36 97 472 27

change in complication score -0.10 0 -0.20 -0.12 -0.17 -0.11

hospital index 3 1 2 4 5 3
CABG number of patients 7953 5573 4 12 2334 30

change in complication score -0.20 -0.13 -0.03 -0.20 0 -0.19

hospital index 12 1 2 4 5 3
LBG number of patients 2366 1810 494 12 42 8

change in complication score -0.40 -0.41 -0.18 -0.48 -0.20 -0.40

hospital index 2 1 2 4 5 12
AAA number of patients 185 138 4 1 39 3

change in complication score -0.12 0 -0.05 -0.12 -0.06 -0.12

hospital index 3 1 2 4 5 3
AVR number of patients 4025 2499 1139 29 349 9

change in complication score -0.25 -0.23 -0.06 -0.25 0 -0.24

hospital index 3 1 2 3 5
MVR number of patients 1054 658 14 13 359

change in complication score -0.11 -0.13 0 -0.15 -0.12

Figure 4 Complication Reduction by Patient Groups

Note: Patients are grouped by age group (i.e., 50s to 90s), comorbidity and surgery. Acronyms for comorbidities:
HTN - hypertension, DM - diabetes, CHF - chronic heart failure, NA - no comorbidities. Acronyms for surgeries:
CE - carotid endarterectomy, LBG - lower extremity bypass graft, MVR - mitral valve repair, AVR - aortic valve
repair, CABG - coronary artery bypass grafting.

to all three outcome metrics used (e.g., Hospital 33 for Patient 1 and Hospital 15 for Patient 2).

However, it may be the case that no hospital is above average for all metrics for a given patient. If

this is the case, then a patient with his/her primary care physician must either evaluate the multi-
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Figure 5 Complication Reduction Under Patient-Centric Information

dimensional outcomes subjectively or place weights on the various outcome metrics and perform a

quantitative ranking based on the composite metric.

A sensible approach for a ranking service like LeapFrog or US News would be to create a website

that allows a patient to enter his/her characteristics and medical condition, along with weights on

outcome metric, and then use the methodology of this paper to generate a personalized ranking of

providers (Huckman and Kelly, 2013).

6.2. Implications for Hospitals and Payers

Payers are increasingly seeking ways to tie hospital reimbursement to performance. For example, the

Hospital Acquired Condition Reduction Program (HACRP) was established in 2013 as a response

to increasing costs of complications. This program penalizes low-performing hospitals with regard

to the Patient Safety Indicator (PSI) 90 Composite Index Value (Domain 1) and five infection

measures (Domain 2).10 For each measure, CMS uses two years of historical data to calculate risk-

adjusted infection rates and then ranks hospitals accordingly. Each hospital is assigned a score

between 1 and 10 for each measure based on its relative rank in deciles for that measure. There

is only one score for Domain 1. A hospital’s Domain 2 score is calculated as the average of the

domain’s individual measures. The total score is calculated as the weighted average of Domain 1

and Domain 2 scores, where the weights are 15% and 85% for the two domains. In 2015, CMS

10 The PSI measures include rates of pressure ulcer, iatrogenic pneumothorax, central venous catheter-related blood-
stream infection, postoperative hip fracture, perioperative pulmonary embolism or deep vein thrombosis, postopera-
tive sesis, postoperative wound dehiscence and accidental puncture or laceration. The five infection measures are rates
of central line-associated bloodstream infection, catheter-associated urinary tract infection, colon and hysterectomy
surgical site infection, methicillin-resistant staphlococcus aureus bacteremia, and clostrium dfficile infection.
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Table 7 Outcome Metrics for Individual Patients

Hospital Patient 1 (LBG, 70s, 1 Comorb) Patient 2 (AVR, 80s, 1 Comorb)
Index Complication Readmission Mortality Complication Readmission Mortality

1 −0.37+++ −0.03- 0.00- −0.59+++ −0.01- −0.02+++
2 −0.25+++ 0.04- −0.01+++ −0.74+++ 0.01- −0.02+
3 −0.20+++ −0.09+++ −0.01+++ −0.44+++ −0.11+++ −0.02+
4 −0.17++ −0.05+++ 0.00- −0.43+++ −0.02- 0.00-
5 −0.25+ −0.01- 0.01- −0.65+++ −0.01- −0.02+++
6 −0.04- 0.13-- −0.01- −0.53+++ 0.29-- −0.02+++
7 −0.04- −0.03+ 0.00- −0.23- −0.03- 0.01-
8 −0.17++ 0.02- 0.00- −0.04- 0.04- 0.00-
9 0.05- −0.06+++ 0.00- −0.19++ −0.10+++ −0.01-
10 −0.11- −0.05++ 0.00- −0.30+++ −0.04+ −0.01-
11 −0.05- 0.00- −0.01+ −0.17- −0.02- 0.01-
12 0.00- 0.07-- 0.01- −0.14- 0.12-- 0.02-
13 −0.19+++ −0.03++ 0.00- −0.16- −0.04- −0.01-
14 0.01- −0.04++ −0.01+ −0.06- −0.07- −0.01-
15 −0.05- −0.06++ 0.00- 0.08- −0.02- 0.00-
16 0.00- −0.01- 0.02- −0.10- 0.01- 0.00-
17 0.07- 0.05- 0.00- 0.25- 0.11-- 0.01-
18 −0.15+ −0.02- −0.01- 0.04- −0.05++ 0.00-
19 0.02- −0.03+ 0.00- 0.04- −0.03++ 0.00-
20 0.01- −0.04++ 0.01- 0.13- −0.07+++ 0.00-
21 0.13- −0.02- 0.01- 0.07- −0.05+++ 0.00-
22 0.06- −0.02- 0.00- 0.19- −0.03- 0.02-
23 0.38- 0.18-- 0.01- 0.84- 0.12-- 0.03-
24 0.09- 0.00- 0.02- 0.03- 0.00- 0.02-
25 0.14- −0.03+ 0.00- −0.26+ −0.04++ −0.03+++
26 0.16- 0.01- 0.01- 0.14- −0.06+++ 0.02-
27 −0.15++ −0.08+++ −0.01- 0.42-- −0.10+++ 0.01-
28 0.04- 0.02- 0.01- 0.12- −0.09+++ 0.01-
29 0.11- −0.03- 0.00- 0.24- −0.07+++ 0.00-
30 0.28-- −0.07+++ −0.01- 0.10- −0.08+++ −0.03++
31 0.29-- 0.14-- 0.00- 0.34-- 0.33-- −0.01-
32 0.05- 0.02- 0.00- 0.31-- −0.01- 0.01-
33 0.04- 0.01- 0.00- 0.52-- 0.02- 0.00-
34 0.26-- 0.11-- 0.00- 0.55-- 0.13-- 0.02-
35 0.05- −0.01- −0.01- 0.63-- −0.01- 0.00-

+++, ++, +: better than state average at 99%, 95% and 90% confidence level
---, --, -: worse than state average at 99%, 95% and 90% confidence level

reduced total payments (i.e., across all patients) by 1% for hospitals that ranked among the worst

quartile with regard to hospital acquired infections.

6.2.1. Impact of Patient-Centric Information on Hospital Payments The Hospital

Acquired Condition Reduction Program is based on population-average outcome information and so

does not recognize heterogenous outcome differences across patient groups. Consequently, applying

a uniform penalty to these hospitals does not recognize their acceptable or even high performance

for some patient groups. Similarly, hospitals that are not penalized under the HACRP may perform

poorly for some patient groups. In addition to misaligning penalties with performance, an incentive

system based on population-average information can hide areas of poor performance and discourage
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hospitals from addressing them. In contrast, patient-centric information allows payers to assess

hospital performance by patient group and better align payments with quality to provide shaper

incentives for quality improvement.

To illustrate a HACRP-type program under patient-centric information, we group patients by

procedure type, age group and comorbidities. For each patient group, we use Yijk ∈ {0,1} to indicate

whether hospital j is among the worst quartile for patient i in group k. We then calculate the overall

performance of hospital j for patient group k using Ȳjk = 1
Njk

∑Njk
i=1 Yijk and display the results in

the heat map of Figure 6. We see that only Hospitals 23 and 35 are among the worst quartile

across all patient groups. Hospitals 31, 33 and 34 are among the worst quartile for a majority of

patient groups, but they have areas (e.g., procedure CE for Hospital 31) that are not among the

worst quartile. Likewise, Hospitals 20 and 21 are not among the worst quartile for the majority of

patient groups, but they have areas (e.g., old CE patients with chronic heart failure for Hospital

20) that are among the worst quartile.

Payments would be better aligned with performance if hospitals were penalized for only their

low-performing areas. To see how, in Figure 7, we compare scenarios in which hospitals are pe-

nalized based on population-average and patient-centric information. Under population-average

information, there are eight hospitals with average performance among the worst quartile, each of

which would be penalized by 1% on all payments. The other hospitals are not penalized at all. In

contrast, under patient-centric information, only two hospitals are not penalized at all. The rest

are penalized on some portion of their payments. Hence, more hospitals would have a financial

incentive to improve under patient-centric than under population-average information.

6.2.2. Impact on Hospital Strategy and Improvement Efforts Payments based on

patient-centric information provide more focused incentives for hospitals to improve quality, be-

cause they reward hospitals for incremental improvements. For example, consider a hospital that

discharges 1,000 patients a year, of which 100 are CABG patients. The infection rate across all

patients is 1%, but is 5% for CABG patients. If, under the current HACRP, the hospital is not

penalized, then it has no economic incentive to improve. Even if it is being penalized, it may be

the case that reducing infections among CABG patients will not have a large enough effect on the

overall infection rate to eliminate the penalty. However, if HACRP penalties were based on patient-

centric information, and therefore individually penalized payments for CABG patients, then the

hospital would have economic incentives to reduce the CABG patient infection rate, regardless of

whether payments for other types of patients were being penalized or not.

Beyond its use in targeted incentives, transparent patient-centric outcome information can help

hospitals learn from one another. For example, the heat map in Figure 3 shows that Hospital 13 has
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Figure 6 Comparison of Hospitals’ Performance for Patient Groups

Note: Patients are grouped by age group (i.e., 50s to 90s), comorbidity and surgery. Acronyms for comorbidities:
HTN - hypertension, DM - diabetes, CHF - chronic heart failure, NA - no comorbidities. Acronyms for surgeries:
CE - carotid endarterectomy, LBG - lower extremity bypass graft, MVR - mitral valve repair, AVR - aortic valve
repair, CABG - coronary artery bypass grafting.

Figure 7 Percentage Payment under Patient-Centric and Population-Average Measure

very low complication rates for hypertension patients, despite having average performance for other

patients. This may indicate that Hospital 13 has made some kind of innovation that enables them
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to better protect these patients. Hence, patient-centric information in Figure 3 can help hospitals

spot best practices that might be shared to elevate performance across the industry.11

Finally, in addition to supporting incentives for hospitals to improve outcomes for specific patient

groups, patient-centric information may also incent hospitals to focus on the patients they are able

to treat most successfully. For example, suppose a hospital has exceptionally good outcomes (e.g.,

low complication scores), relative to the state average, for elderly patients, but poor outcomes for

younger patients. The penalties from an HACRP-type program would make the younger patients

less economically attractive to the hospital. And, if patient-centric information were transparently

available to patients, demand from younger patients would presumably be weaker as well. Both

factors would encourage the hospital to focus on elderly patients, in its process design and marketing

efforts. Other hospitals might be incented to focus on particular medical procedures or patient

groups (e.g., patients with hypertension, diabetes or cancer). Over time, this would encourage a

network of providers that leverage their individual strengths to produce better patient outcomes.

7. Conclusion

In recent years, there have been many wide-ranging efforts to improve the delivery of health care

in the United States. Perhaps the most straightforward of these has been the push for better

and more transparent outcome information to help patients find the best available care for them.

Unfortunately, as we have shown, the standard approach of computing risk-adjusted outcomes

produces population averages that do not accurately represent the likely outcomes for all patients.

In this paper, we have shown that the relative performance of hospitals is heterogeneous across

patient groups. Consequently, patient-centric rankings of hospitals are significantly different than

rankings based on population-average information.

In this study, we have addressed the challenges of generating patient-centric outcome information

and hospital ranking. Using six cardiovascular surgeries as the clinical setting, we studied the out-

comes of thirty-five hospitals in NY based on different metrics. We extended the causal tree method

for multiple hospitals to recursively partition patients into groups that exhibit significant outcome

differences between hospitals. We quantified the outcome differences for groups of patients using

propensity score matching and derived patient-centric estimates of outcome differences between

hospitals for individual patients. Our analysis shows that outcome differences between hospitals

are heterogeneous not only across procedure types, but also along other dimensions such as patient

age and comorbidities.

11 Competition may hinder sharing of best practices across hospitals. But there are platforms for such sharing. For
example, the Quality Collaborative of the Michigan Society of Thoracic Surgeons http://mstcvs.org/qc.html has been
set up precisely to encourage the open heart programs in the state of Michigan to share data and practices.
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We compared the best hospitals based on population-average and patient-centric information. We

found that, for the majority of patients (around 97.5%), the best hospitals are different than those

indicated as best by a population-average rating. Furthermore, we found that patient-centric infor-

mation results in a larger set of best hospitals, which suggests more opportunities for distributing

patient workload across hospitals to reduce patient waiting time. Most importantly, we compared

the potential outcomes when patients are treated at the best hospitals based on the two types of

information, and estimated that the complication score could be reduced by 46% (equivalent to

a 8.8% reduction in mortality) by using patient-centric information instead of population-average

information.

In addition to the manifest benefits to patients, patient-centric information offers potential ben-

efits to hospitals and payers as well. Using the Hospital Acquired Infection Reduction Program as

an example, we showed that patient-centric information allows the CMS to better align payments

(and penalties) with patient outcomes. This in turn provides sharper incentives for hospitals to

improve quality. Finally, the more detailed patient-centric information can help hospitals to un-

derstand their strengths and weaknesses, as well as those of their peers. This can help them better

align their strategies with their strengths, and also to learn from one another.

Lastly, providers may select patients they are most skilled at treating, and patients may select

providers from whom they are likely to receive the best outcome. This will create an attenuation

bias and will make it more difficult to detect differences among providers. In other words, our

approach tend to generate a conservative estimate of outcome differences, which means that the

impact of using patient-centric information may be even larger than our analysis indicates. It may

be possible to combine the tree method with causal inference methods, and we leave this for future

research.
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Appendix A: Estimation of the Variance of Outcome Difference Estimator

We assume that outcomes of patients treated by the same provider are i.i.d. and outcomes of patients treated

by Providers 1 and 2 are independent. From sample S, we have

V ar[DS
12(Xi)|P (X)] =

∑
i∈l,Ti1=1 1/P2(Xi)

(
∑

i∈l,Ti1=1 1/P (Xi))2
V ar(Yi1)

+
∑

i∈l,Ti2=1 1/P2(Xi)

(
∑

i∈l,Ti2=1 1/P (Xi))2
V ar(Yi2)

By the low of total variance, we have

V ar[DS
12(Xi)] =EP (X)[V ar(D

S
12(Xi)|P (X))] +V ar[Ei∈l(D

S
jk(Xi)|P (X))]

Appendix B: Estimation of Mean Squared Errors

The expected MSE is the expectation of MSE(Stest, Sest) over test and estimation samples

EMSE = EStest,Sest
MSE(Stest, Sest)

= EStest,Sest
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12 (Xi)−Dest
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2]
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where we exploit the equality E(Dtest
12 (Xi)) = E(Dest

12 (Xi)) =Dπ
12(Xi). Because E(Dtest

12 (Xi)
2) does not de-

pend on the estimator,12 minimizing above EMSE is equivalent to minimizing

EMSE(Stest, Sest) =−EStest
[Dπ

12(Xi)
2] +EStest,Sest

[V ar(Dest
12 (Xi))]

12 For each observation i in the test sample, there is a true outcome difference between Providers 1 and 2, Dtest
12 (Xi),

which we do not observe.
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Appendix C: Complications and Weights

Table 8 The Weights of Complications Used to Calculate Complication Score

Complication Coefficient Std.Err. Weight

Stroke 1.03 ∗ ∗∗ 0.12 2
AorticDissection 3.16 ∗ ∗∗ 0.33 7
RenalFailure 1.46 ∗ ∗∗ 0.05 3
Ventilation 0.85 ∗ ∗∗ 0.07 2
MultiOrganFailure 2.16 ∗ ∗∗ 0.07 5
Coma 2.76 ∗ ∗∗ 0.25 6
CardiacArrest 1.79 ∗ ∗∗ 0.09 4
Sepsis 1.03 ∗ ∗∗ 0.14 2
GIEvent 0.44 ∗ ∗∗ 0.10 1
TrachealReintubation 1.22 ∗ ∗∗ 0.06 3
SurgComp 1.11 ∗ ∗∗ 0.15 2
Tamponade 1.02 ∗ ∗∗ 0.14 2
PulmonaryInsuff 0.46 ∗ ∗∗ 0.06 1
Constant −4.93 ∗ ∗∗ 0.04

Note: Robust standard errors are clustered by hospital.
The outcome variable is death during hospitalization. Complications
dropped from backward stepwise multivariate logistic regression include
wound infection, renal dialysis, mediastinum, reoperation for bleeding,
pneumonia, pulmonary embolism, heart block, myocardial infarction,
surgical E codes and other cardiac complications.
*** p < 0.01, ** p <0.05, * p < 0.1
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Appendix D: Mortality and Readmission for Groups of Patients

Figure 8 Comparison of Hospitals’ Mortality for Groups of Patients

Note: Patients are grouped by age group (i.e., 50s to 90s), comorbidity and surgery. Acronyms for comorbidities: HTN - hyper-
tension, DM - diabetes, CHF - chronic heart failure, NA - no comorbidities. Acronyms for surgeries: CE - carotid endarterectomy,
LBG - lower extremity bypass graft, MVR - mitral valve repair, AVR - aortic valve repair, CABG - coronary artery bypass
grafting.
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Figure 9 Comparison of Hospitals’ Readmission for Groups of Patients

Note: Patients are grouped by age group (i.e., 50s to 90s), comorbidity and surgery. Acronyms for comorbidities: HTN - hyper-
tension, DM - diabetes, CHF - chronic heart failure, NA - no comorbidities. Acronyms for surgeries: CE - carotid endarterectomy,
LBG - lower extremity bypass graft, MVR - mitral valve repair, AVR - aortic valve repair, CABG - coronary artery bypass
grafting.


