
Prediction of Web Service Antipatterns Using Machine Learning

by

JOHN KELLY VILLOTA PISMAG

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

(Software Engineering)

in the University of Michigan - Dearborn

2017

Master’s Thesis Committee:

Assistant Professor Marouane Kessentini, Chair

Professor Kiumi Akingbehin

Associate Professor Zhiwei Xu

ii

DEDICATION

To my Dad,

my Mom,

my Bro,

because they made this possible

iii

TABLE OF CONTENTS

Dedication ... ii

List of Tables ... iv

List of Figures ... v

Abstract .. vi

Chapter 1. Introduction ... 1

Chapter 2. Related Work .. 3

Chapter 3. Prediction of web service antipatterns using machine learning 5

3.1 Approach Overview ... 5

3.2 Forecasting tool .. 8

Chapter 4. Validation .. 10

4.1 Research Questions and Evaluation Metrics .. 10

4.2 Studied Web Services... 12

4.3 Results .. 13

4.3.1 Results for RQ1... 13

4.3.2 Results for RQ2... 16

4.3.3 Results for RQ3... 17

Chapter 5. Conclusion .. 19

References ... 20

iv

LIST OF TABLES

TABLE 1. WEB SERVICES NAMES AND NUMBER OF RELEASES .. 6
TABLE 2. METRICS CALCULATED TO EACH WEB SERVICE RELEASE .. 6
TABLE 3. ANTIPATTERN DETECTION RULES ... 7

v

LIST OF FIGURES

FIGURE 1. APPROACH OVERVIEW DIAGRAM .. 5

FIGURE 2. FORECASTING TOOL SCREENSHOT ... 8

FIGURE 3. ALGORITHM AVERAGE ERROR RATE COMPARISON ... 15

FIGURE 4. PERCENTAGE OF BETTER RESULTS GENERATED USING AGGREGATED AND INDIVIDUAL

ATTRIBUTES ... 16

FIGURE 5. COMPARISON OF THE ALGORITHMS ACCURACY OF THE ANTIPATTERN PREDICTION 16

FIGURE 6. COMPARISON OF THE ACCURACY OF THE ANTIPATTERN PREDICTION USING INDIVIDUAL

AND AGGREGATED ATTRIBUTES ... 17

vi

ABSTRACT

Web service interfaces are considered as one of the critical components of a Service-Oriented

Architecture (SOA) and they represent contracts between web service providers and clients

(subscribers). These interfaces are frequently modified to meet new requirements. However, these

changes in a web service interface typically affect the systems of its subscribers. Thus, it is

important for subscribers to estimate the risk of using a specific service and to compare its

evolution to other services offering the same features in order to reduce the effort of adapting their

applications in the next releases. In addition, the prediction of interface changes may help web

service providers to better manage available resources (e.g. programmers’ availability, hard

deadlines, etc.) and efficiently schedule required maintenance activities to improve the quality. In

this research, we propose to use machine learning, based on times series, for the prediction of web

service antipatterns. To this end, we collected training data from quality metrics of previous

releases from 8 web services. The validation of our prediction techniques shows that the predicted

metrics value, such as number of operations, which are used to feed the antipattern detection rules

on the different releases of the 8 web services were similar to the expected ones with a very low

deviation rate. In addition, most of the quality issues of the studied Web service interfaces were

accurately predicted, for the next releases. The survey conducted with active developers also shows

the relevance of prediction technique for both service providers and subscribers.

Keywords: Web services evolution, prediction, quality of services.

1

CHAPTER 1. INTRODUCTION

Service-based systems heavily depend on the interface of selected services used to implement

specific features. However, service providers do not know, in general, the impact of their changes,

during the evolution Web services, on the applications of subscribers. The subscribers are

reluctant, in general, to use Web services that are risky and not stable [1]. Thus, analyzing and

predicting Web service changes is critical but also challenging because of the distributed and

dynamic nature of services. As a consequence, recent studies were proposed to understand the

evolution of Web services especially at the interface level [1] [2] [3].

The few existing work studying the evolution of Web services are limited to the detection of

changes between different releases [2] or the analysis of the types of change introduced to the

service interfaces. Romano et al. [1] proposed a tool called WSDLDiff to detect changes between

different versions of a Web service interface based on structural and textual similarities measure.

Fokaefs et al. [2] suggested another tool, called VTracker, which uses XML differencing

techniques, to detect changes in WSDL documents. However, both tools are just limited to the

detection of changes between different Web service releases and did not target the problem of

predicting future changes or providing recommendations to the service providers or subscribers

about the quality of services interface based on the collected data.

We use, in this paper, the changes collected from previous Web service releases to address the

following problems. Most of the changes in a web service interface typically affect the systems of

its subscribers. Thus, it is important for subscribers to estimate the risk of using a specific service

and compare its evolution to other services offering the same features in order to reduce the effort

of adapting their applications in the next releases. Subscribers prefer to use, in general, Web

services that are stable with a low risk to include bugs and introduce major revisions in the future.

In addition, the prediction of interface changes may help web service providers to better manage

available resources (e.g. programmers’ availability) and efficiently schedule required maintenance

activities to improve the quality of developed services. In fact, the prediction of Web service

2

changes can be used to identify potential quality issues that may occur in the future releases. Thus,

it is easier to fix these quality issues as early as possible before that they become more complex.

In this work, we propose a machine learning approach based on time series to predict the evolution

of Web services interface from the history of previous releases’ metrics. The predicted interface

metrics value are used to predict and estimate the risk and the quality of the studied Web services.

We evaluated our approach on a set of 8 popular Web services including more than 90 releases.

We report the results on the efficiency and effectiveness of our approach to predict the evolution

of Web services interfaces and provide useful recommendations for both service providers and

subscribers. The results indicate that the prediction results of several Web service metrics, on the

different releases of the 8 Web services, were similar to the expected ones with very low deviation

rate. Furthermore, most of the quality issues of Web service interfaces were accurately predicted,

for the next releases. The survey conducted with a set of developers also shows the relevance of

prediction technique for both service providers and subscribers.

The remainder of this report is as follows: Section 2 presents the related work; Section 3 gives an

overview about the proposed predictive modelling technique; Section 4 discusses the obtained

evaluation results and possible threats of validity of our experiments. Finally, Section 5 concludes

and proposes future research directions.

3

CHAPTER 2. RELATED WORK

We summarize, in this section, the existing work that focus on studying the evolution of Web

services.

Fokaefs et al. [2] used the VTracker tool to calculate the minimum edit distance between two trees

representing two WSDL files. The outcome of the tool is the percentage of interface changes such

as added, changed, and removed elements among the XML models of two WSDL interfaces.

Romano et al. [1] proposed a similar tool called WSDLDiff that can identify fewer types of change

than VTracker that may help to analyze the evolution of a WSDL interface without manually

inspecting the XML changes. Aversano et al. [4] analyzed the relationships between sets of

services change during the service evolution based on formal concept analysis. The main focus of

the study is to extract relationships among services.

Several studies have been proposed to measure the similarity between different Web services to

search for relevant ones or classify them but not to analyze their evolution. Xing et al. [5] suggested

a tool, called UMLDiff to detect differences between different UML diagram versions to

understand their evolution. Zarras et al. [6] detected evolution patterns and regularities by adapting

Lehman’s laws of software evolution. The study was focused only on Amazon Web Services

(AWS).

Based on this overview of existing work in the area of Web services evolution, the problem of

predicting the evolution of Web services was not addressed before. In addition, the use of machine

learning algorithms in Web services was limited to the classification of Web Services and their

messages into ontologies [7]. These existing machine learning-based studies are not concerned

with the analysis of the releases within the same Web service but more about mining different Web

services (one release per service) to classify them in order to help the composition of services

process for the subscribers based on their requirements.

4

Another category of related work focus on detecting and specifying antipatterns in SOA and Web

services which is a relatively new area. Rotem-Gal-Oz described the symptoms of a range of SOA

antipatterns [8]. Kral et al. [9] listed seven “popular” SOA antipatterns that violate accepted SOA

principles. A number of research works have addressed the detection of such antipatterns.

Recently, Moha et al. [10] have proposed a rule-based approach called SODA for SCA systems

(Service Component Architecture). Later, Palma et al. [3] extended this work for Web service

antipatterns in SODA-W using declarative rule specification based a domain-specific language

(DSL) to specify/identify the key symptoms that characterize an antipattern using a set of WSDL

metrics. Rodriguez et al. [11] [8] and Mateos et al. [12] provided a set of guidelines for service

providers to avoid bad practices while writing WSDLs based on eight bad practices in the writing

of WSDL for Web services. Recently, Ouni et al. [13] proposed a search-based approach based on

standard GP to find regularities, from examples of Web service antipatterns, to be translated into

detection rules.

5

CHAPTER 3. PREDICTION OF WEB SERVICE ANTIPATTERNS

USING MACHINE LEARNING

In this chapter, we present an overview of our approach and then we provide the details of our

problem formulation and the solution approach.

3.1 Approach Overview

Figure 1. Approach Overview Diagram

As described in Figure 1, our technique takes as input the previous releases of the Web service

interfaces to predict its evolution in terms of metrics and the antipatterns detected through them.

Those WSDL (Web Services Description Language) files are analyzed in order to calculate metrics

in each of the different releases. Table 1 shows the web services and the number of releases used

in this research, Table 2 shows which metrics are calculated from each web service release.

6

Table 1. Web services names and number of releases

Web Service Name # Releases

Amazon EC2 44

FedEx Rate Service 18

FedEx Ship Service 17

Amazon Mechanical Turk 15

FedEx Track Service 10

Amazon Simple Queue 6

Microsoft Bing Search 5

PayPal Services 7

Table 2. Metrics calculated to each web service release

Metric Name Definition

NPT Number of port types

NOD Number of operations declared

NAOD Number of accessor operations declared

NOPT Average number of operations in port types

ANIPO Average number of input parameters in operations

ANOPO Average number of output parameters in operations

NOM Number of messages

NBE number of elements of the schemas

NCT Number of complex types

NST Number of primitive types

NBB Number of bindings

NBS Number of services

NPM Number of parts per message

NIPT Number of identical port types

NIOP Number of identical operations

COH Cohesion

COU Coupling

7

Metric Name Definition

AMTO Average meaningful terms in operation names

AMTM Average meaningful terms in message names

AMTMP Average meaningful terms in message parts

AMTP Average meaningful terms in port-type names

ALOS Average length of operations signature

ALPS Average length of port-types signature

ALMS Average length of message signature

RCOD Ratio of CRUDY operations

RAOD Ratio of accessor operations declared

The metrics calculated are store in CSV files, a file is generated per each web services and each

file have metrics for all releases available; those files are used to generate predictions to each one

of the metrics selected.

The forecasting algorithms used to generate the predicted values are: Linear regression, Gaussian

processes, and Multilayer Perceptron; those three algorithms forecast values of each metric,

considering them as an individual element and as a group.

The last part of the process uses the metrics generated and the original metrics to evaluate the error

rate of the predictions generated by each algorithm and compare between them. Additionally, those

metrics are used to detect Web Antipatterns and the results are analyzed to state the accuracy of

the antipatterns prediction.

Table 3. Antipattern detection rules

Antipattern Detection Rule

Multi service

 (NOD(s)≥17 AND COH(s)≤0.43 AND (NOPT(s)≥7.8 OR LCOM≤12)

OR (NOD(s)≥24 AND COH(s)≤0.39 AND NPT(s)≥2 AND NST(s)≥41

OR NCT(s)≥32) AND (LCOM3<0.71 OR CBO>4)

Nano service

(NCT(s)≤5 OR NST(s)≤8 AND NPT(s)≤2 AND NOD(s)≤5 AND

COH(s)≥0.42) OR (NOPT(s)≤4.2 AND COUP(s)≥0.36 AND

COH(s)≥0.39 AND NOD(s)≤6 OR NPT(s)≤2)

8

Antipattern Detection Rule

Chatty Service

((NPT(s)≤3 OR DAM≥1) AND NOD(s)≥10 AND RAOD(s)≥0.38

AND (NCT(s)≥15 OR ANOPO(s)≥8.1) AND (NOM(s)>=38 OR

NPM(s)>=2.2) AND COH(s)≤0.42)

Data service

((ANIPO(s)≥4 OR ANOPO(s)≥4) AND (NCT(s)≥31 OR

NOM(s)>=79) AND (COH(s)≥0.31 OR LCOM3≥0.68 AND DAM≥1)

AND NAOD(s)>=13)

Ambiguous Service
(ALOS(s)≤1.6 OR ALOS(s)≥4.9 AND AMTO(s)≤0.6 AND NIOP(s)≥4

OR AMTM(s)≤0.52)

3.2 Forecasting tool

Figure 2. Forecasting tool screenshot

To create customized predictions a tool was created using Java programming language, this tool

allows users to choose which algorithms want to use in the prediction and the comparison, which

9

metrics should to be predicted, what data should be displayed and how many time units or steps

the predictions should have.

This tool is feed with WSDL files, those are organized in subdirectories representing each web

services to be analyzed and those subdirectories need to be located a folder called WSDL which

must be in the same place as the application (JAR file in this case)

10

CHAPTER 4. VALIDATION

In order to evaluate the ability of our prediction framework to efficiently predict antipatterns of

Web services, we conducted a set of experiments based on eight widely used Web services. In this

section, we first present our research questions, the experiments setup and then describe and

discuss the obtained results. Finally, we discuss some threats related to our experiments.

4.1 Research Questions and Evaluation Metrics
We defined the following three research questions that address the applicability, performance, and

the usefulness of our Web services prediction approach. The three research questions are as

follows:

RQ1: To what extent can our approach predict correctly the evolution of web services?

RQ2: To what extent can our approach predict antipatterns?

RQ3: Can our prediction results be useful for developers?

To answer RQ1, we calculated the average error rate from the differences between the metrics

values predicted and the actual values in calculated in each release, after the previous process the

average error rate is group by algorithm and the results generates a new value defined as algorithm

error rate. To this end, we considered the list of metrics described in section 3.1. The average error

rate and the algorithm error rate are defined as follows:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

11

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑊𝑊𝑊𝑊𝑊𝑊 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

We calculated the error rate for one and many steps (releases) over time for every of the considered

web services.

To answer RQ2, we calculated the antipattern detection accuracy where the average of the

correctly predicted antipatterns is totalized and use to calculate the algorithm antipattern detection

accuracy. The antipattern detection accuracy and the algorithm antipattern detection accuracy are

defined as follows:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (5)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑊𝑊𝑊𝑊𝑊𝑊 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

We considered five types of antipatterns from the literature [10]: Multi-service (MS: a service

implementing many operations), Nano-service (NS: too-fine grained service), Chatty-service (CS:

a service including many fine-grained operations), Data-service (DS: a service including only data

access operations) and Ambiguous service (AS: a service including ambiguous names of

operations). More details about existing Web service antipatterns can be found in the following

references [10] [3]. We used the manually defined rules in [13] to detect the predicted and actual

Web service antipatterns.

To answer RQ3, we used a post-study questionnaire that collects the opinions of developers on our

prediction results and antipatterns detection. We also wished to assess how these results may help

developers working on services-based applications. To this end, we asked 24 software developers,

including 11 developers working in a Web development startup and providing some Web services

for customers from the automotive industry sector. The remaining participants are 13 graduate

students (8 MSc and 5 PhD students) in Software Engineering at the University of Michigan-

12

Dearborn. 9 out the 13 students are working either full-time or part-time programmers in Software

industry. All the participants are volunteers and have a minimum of 2 years of experience as a

developer. The participants were first asked to fill out a pre-study questionnaire containing five

questions. The questionnaire helped to collect background information such as their role within

the company, their programming experience, their familiarity with Web services and service-based

applications. In addition, all the participants attended one lecture about Web service antipatterns

and passed five tests to evaluate their performance to evaluate the design of Web services using

quality metrics.

4.2 Studied Web Services
We selected these 8 Web services for our validation because different releases of their WSDL

interface are publicly available and belong to different categories. Table 2 provides some

descriptive statistics about these eight Web services:

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable

compute capacity in the cloud. In this study, we have considered a total of 44 releases

from 2006 until 2014.

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for storing

messages exchanged between computers. We considered in our study a total of 6

releases.

• FedEx Track service offers accurate update of the status of shipments. We used 10

releases from this Web service.

• FedEx Ship Service: The Ship Service provides functionalities for managing package

shipments and their options. A total of 17 releases are considered in our experiments

from this Web service.

• FedEx Rate Service: The Rate Service provides the shipping rate quote for a specific

service combination depending on the origin and destination information supplied in

the request. We used 18 releases for our prediction algorithm.

• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand,

scalable, human workforce to complete jobs that humans can do better than computers

13

such as recognizing objects in photos. We used 15 releases developed between 2005

until 2012.

• Microsoft Bing: is a web service which allow users submit queries to and retrieve

results from the Bing Engine. We used 5 releases from version 2.0 to version 2.4.

• PayPal: is a web service which allow user to incorporate the functionalities offered by

PayPal in applications oriented to web and mobile environments. We used 4 releases.

4.3 Results

4.3.1 Results for RQ1.

Figure 3 shows the results obtained from calculating the average error rate in each web services

selected using individual metrics prediction.

Figure 3. Algorithm average error rate using individual metrics comparison per web service

Figure 4 shows the results obtained from calculating the average error rate in each web services

selected using aggregated metrics prediction.

7.
56

%

11
.7

9%

26
.7

1%

10
.3

9%

7.
50

% 19
.9

9%

25
.7

0%

6.
57

%

12
.6

1%

11
.2

6%

5.
37

%

34
.1

9%

12
.9

3%

80
.3

1%

7.
71

%

7.
17

%

7.
97

%

11
.0

3%

72
.5

2%

12
.7

7%

37
.6

0%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Linear Regresion Gaussian Proccesses Multilayer Perceptron

14

Figure 4. Algorithm average error rate using aggregated metrics comparison per web service

The first thing to notice is the no correlation between the number or releases and the accuracy of

the prediction calculated; Amazon EC2 web service presents accurate results been the web services

with more releases to be analyzed, but Microsoft Bing Search web service which has 5 releases

got in average the better predictions.

The second, and most important aspect analyzed, is how the error rate values decrease using

aggregated metrics to calculate the predictions. Figure 5 shows the differences between both types

of predictions, and the cases where there is an actual increasing in the prediction accuracy.

Figure 5. Percentage difference between individual and aggregated predictions per web service

8.
45

%

7.
15

%

5.
62

%

10
.3

9%

3.
74

%

30
.8

2%

25
.7

0%

0.
45

% 15
.8

1%

14
.3

3%

6.
26

%

42
.2

9%

14
.3

6%

80
.3

1%

1.
22

%

5.
77

%

7.
72

%

3.
37

% 15
.4

2%

14
.5

6%

90
.7

6%

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Linear Regresion Gaussian Proccesses Multilayer Perceptron

55.18%

11.18%

18.24%

17.62%

35.06%

-26.42%

-47.13%

-60.00% -40.00% -20.00% 0.00% 20.00% 40.00% 60.00% 80.00%

BingSearch

EC2

MechanicalTurk

PayPal

RateService

SimpleQueueService

TrackService

15

As the figure 5 shows, Linear regression algorithm offers the best predictions with 15.66% of error

predicting metrics individually and 13.13% of error predicting metrics as group.

Figure 6. Algorithm average error rate comparison

Reviewing individual values, Gaussian Processes got the lower error rate with 0.45% using

aggregated attributes prediction on Bing Search web service followed by Multilayer Perceptron

with 1.22% in the same web service and using aggregated attributes. On the other extreme,

Multilayer Perceptron got the highest error rate with 90.76% using aggregated attributes prediction

on FedEx Track Service web service followed by Gaussian Processes with 80.31% in the same

web service and using either individual attributes or aggregated attributes.

Is important to notice the reduction of the error rate if the metrics values are predicted as a group

or aggregated, comparing the average error rate for each release metrics predicted in both cases

the results shows 67% more precision using this method. (See figure 4.)

15.66%

25.33%

22.40%

13.13%

26.58%

19.83%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Linear Regresion Gaussian Proccesses Multilayer Perceptron

Individually Aggregated

16

Figure 7. Percentage of better results generated using aggregated and individual attributes

4.3.2 Results for RQ2.

As is expected, the algorithm with best metrics prediction will be the most accurate to help in the

prediction of antipatterns. As figure 5 shows, Linear Regression has a 99.05% of concordance

between the expected antipatterns and the predicted ones.

Figure 8. Comparison of the algorithms accuracy of the antipattern prediction

33%

67%

Individual Attributes Aggregated Attributes

99.05%

93.33%

90.48%

99.05%

96.19%
97.14%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

Linear Regresion Gaussian Proccesses Multilayer Perceptron

Predicted Individually Predicted Aggregated

17

In addition, the metrics predicted individually and aggregated generates antipatterns detection with

high values (superior to 94%) but the higher detection prediction is obtained using aggregated

attributes.

Figure 9. Comparison of the accuracy of the antipattern prediction using individual and aggregated attributes

To summarize, it is clear based on the obtained results that Linear Regression algorithm predicting

attributes as a group offers the most accurate prediction of future presence of web antipatterns.

4.3.3 Results for RQ3.

To answer RQ3, we used a post-study questionnaire to the opinions of the participants about their

experience in using our prediction tool and results. The questionnaire asked participants to rate

their agreement on a Likert scale from 1 (complete disagreement) to 5 (complete agreement) with

the following statements:

• The predicted metrics value are useful to estimate the risk and cost of using a specific

Web service and may help the developer to select the best service based on his

preferences.

• The predicted quality issues may help developers and managers to better schedule

maintenance activities and reduce the cost of fixing these issues.

94.29%

97.46%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

Predicted Individually Predicted Aggregated

18

The agreement of the participants was 4.6 and 4.8 for the first and second statements respectively.

This confirms the usefulness of our prediction results for the developers considered in our

experiments.

The remaining questions of the post-study questionnaire were about the benefits and also

limitations (possible improvements) of our prediction approach. We summarize in the following

the feedback of the developers. Most of the participants mention that our results may help

developers of the service providers to decide when to refactor their Web service implementations.

For example, they can consider to perform some refactorings when the prediction results show that

the quality issue may become much more severe after few releases such as a multi-service

antipattern. Thus, the developers liked the functionality of our tool that helps them to identify

refactoring opportunities as early as possible.

The participants found our tool helpful for also the developers of Service-based applications. In

fact, the majority of the participants mention that they consider the stability and quality of services

as important criteria to select a Web service when several options are available. The non-stability

of a service may negatively impact their systems in the future and it is maybe an indication that

the used service includes many bugs explaining several new releases. Furthermore, the subject

liked the prediction of antipatterns feature since it is easier for them to evaluate the quality of Web

services in next releases based on the number of antipatterns rather than analyzing a set of metrics.

The participants also suggested some possible improvements to our prediction approach. Some

participants believe that it will be very helpful to extend the tool by adding a new feature to

automatically calculate the risk, cost and benefits of using different possible Web services. Another

possibly suggested improvement is to use some visualization techniques to evaluate the evolution

of the We services to easily estimate their stability.

19

CHAPTER 5. CONCLUSION

This research proposed an approach to predict the evolution of web services and use this

information to predict . In fact, it is maybe important for subscribers to estimate the risk of using

a selected service and compare its evolution to other possible services offering the same features.

Furthermore, the prediction of future changes may help web service providers to better manage

available resources and efficiently schedule required maintenance activities to improve the quality.

In this paper, we propose to use machine learning, based on Artificial Neuronal Networks, for the

prediction of the evolution of Web services interface design. To validate the proposed approach,

we collected training data from quality metrics of previous releases from 6 Web services. The

validation of our prediction techniques shows that the predicted metrics value, such as number of

operations, on the different releases of the 6 Web services were similar to the expected ones with

a very low deviation rate. In addition, most of the quality issues of the studied Web service

interfaces were accurately predicted, for the next releases, with an average precision and recall

higher than 82%. The survey conducted with developers also shows the relevance of prediction

technique for both service providers and subscribers.

Future work involves validate our prediction technique with additional metrics, Web services and

developers to conclude about the general applicability of our methodology. Furthermore, in this

paper we only focused on the prediction of Web services evolution. We plan to extend the approach

by defining new risk measures based on the predicted metrics value. In addition, we will study of

the impact of predicted quality issues on the usability and popularity of Web services over time.

20

REFERENCES

[1] D. Romano and M. Pinzger, "Analyzing the Evolution of Web Services Using Fine-Grained
Changes," in IEEE 19th International Conference on Web Services (ICWS), Honolulu, 2012.

[2] M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia and A. Lau, "An Empirical Study on Web
Service Evolution," in IEEE International Conference on Web Services, 2011.

[3] Y.-G. Guéhéneuc, G. Tremblay, N. Moha and F. Palma, "Specification and Detection of
SOA Antipatterns in Web Services," in Software Architecture, Vienna, Springer
International Publishing, 2014, pp. 58-73.

[4] L. Aversano, M. Bruno, M. Di Penta, A. Falanga and R. Scognamiglio, "Visualizing the
evolution of Web services using formal concept analysis," in IWPSE '05 Proceedings of the
Eighth International Workshop on Principles of Software Evolution, Lisbon, Portugal, 2005.

[5] Z. Xing and E. Stroulia, "UMLDiff: an algorithm for object-oriented design differencing,"
in ASE '05 Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, Long Beach, California, 2005.

[6] L. Dinos, P. Vassiliadis and A. V. Zarras, "Keep Calm and Wait for the Spike! Insights on
the Evolution of Amazon Services," in Advanced Information Systems Engineering, vol.
9694, Ljubljana, Springer International Publishing, 2016, pp. 444-458.

[7] "SAWSDL-MX2: A Machine-Learning Approach for Integrating Semantic Web Service
Matchmaking Variants," in ICWS 2009. IEEE International Conference on Web Services,
Los Angeles, California, 2009.

[8] J. M. Rodriguez, M. Crasso, A. Zunino and M. Campo, "Automatically Detecting
Opportunities for Web Service Descriptions Improvement," in Software Services for e-
World, Buenos Aires, Argentina, 2010.

[9] J. Král and M. Žemlicka, "Popular SOA Antipatterns," in 2009 Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, Athens, Greece,
2009.

[10] J.-M. Jézéquel, B. Baudry, Y.-G. Guéhéneuc, B. J. Conseil, M. Nayrolles, F. Palma and N.
Moha, "Specification and Detection of SOA Antipatterns," in Service-Oriented Computing,
Shanghai, Springer Berlin Heidelberg, 2012, pp. 1-16.

21

[11] J. M. Rodriguez, M. Crasso, C. Mateos and A. Zunino, "Best practices for describing,
consuming, and discovering web services: a comprehensive toolset," Software Practice and
Experience, vol. 43, no. 6, p. 613–639, 2012.

[12] C. Mateos, J. M. Rodriguez and A. Zunino, "A tool to improve code-first Web services
discoverability through text mining techniques," Software: Practice and Experience, vol. 45,
no. 7, p. 925–948, 2014.

[13] A. Ouni, R. G. Kula, M. Kessentini and K. Inoue, "Web Service Antipatterns Detection
Using Genetic Programming," in GECCO '15 Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, Madrid, Spain, 2015.

	Dedication
	List of Tables
	List of Figures
	Abstract
	Chapter 1. Introduction
	Chapter 2. Related Work
	Chapter 3. Prediction of web service antipatterns using machine learning
	3.1 Approach Overview
	3.2 Forecasting tool
	3.3

	Chapter 4. Validation
	4.1 Research Questions and Evaluation Metrics
	4.2 Studied Web Services
	4.3 Results
	4.3.1 Results for RQ1.
	4.3.2 Results for RQ2.
	4.3.3 Results for RQ3.

	Chapter 5. Conclusion
	References

