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ABSTRACT 

 

Web service interfaces are considered as one of the critical components of a Service-Oriented 

Architecture (SOA) and they represent contracts between web service providers and clients 

(subscribers). These interfaces are frequently modified to meet new requirements. However, these 

changes in a web service interface typically affect the systems of its subscribers. Thus, it is 

important for subscribers to estimate the risk of using a specific service and to compare its 

evolution to other services offering the same features in order to reduce the effort of adapting their 

applications in the next releases. In addition, the prediction of interface changes may help web 

service providers to better manage available resources (e.g. programmers’ availability, hard 

deadlines, etc.) and efficiently schedule required maintenance activities to improve the quality. In 

this research, we propose to use machine learning, based on times series, for the prediction of web 

service antipatterns. To this end, we collected training data from quality metrics of previous 

releases from 8 web services. The validation of our prediction techniques shows that the predicted 

metrics value, such as number of operations, which are used to feed the antipattern detection rules 

on the different releases of the 8 web services were similar to the expected ones with a very low 

deviation rate. In addition, most of the quality issues of the studied Web service interfaces were 

accurately predicted, for the next releases. The survey conducted with active developers also shows 

the relevance of prediction technique for both service providers and subscribers.  

 

Keywords: Web services evolution, prediction, quality of services. 
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CHAPTER 1. INTRODUCTION 

 

Service-based systems heavily depend on the interface of selected services used to implement 

specific features. However, service providers do not know, in general, the impact of their changes, 

during the evolution Web services, on the applications of subscribers. The subscribers are 

reluctant, in general, to use Web services that are risky and not stable [1]. Thus, analyzing and 

predicting Web service changes is critical but also challenging because of the distributed and 

dynamic nature of services. As a consequence, recent studies were proposed to understand the 

evolution of Web services especially at the interface level [1] [2] [3]. 

The few existing work studying the evolution of Web services are limited to the detection of 

changes between different releases [2] or the analysis of the types of change introduced to the 

service interfaces. Romano et al. [1] proposed a tool called WSDLDiff to detect changes between 

different versions of a Web service interface based on structural and textual similarities measure. 

Fokaefs et al. [2] suggested another tool, called VTracker, which uses XML differencing 

techniques, to detect changes in WSDL documents. However, both tools are just limited to the 

detection of changes between different Web service releases and did not target the problem of 

predicting future changes or providing recommendations to the service providers or subscribers 

about the quality of services interface based on the collected data. 

We use, in this paper, the changes collected from previous Web service releases to address the 

following problems. Most of the changes in a web service interface typically affect the systems of 

its subscribers. Thus, it is important for subscribers to estimate the risk of using a specific service 

and compare its evolution to other services offering the same features in order to reduce the effort 

of adapting their applications in the next releases. Subscribers prefer to use, in general, Web 

services that are stable with a low risk to include bugs and introduce major revisions in the future. 

In addition, the prediction of interface changes may help web service providers to better manage 

available resources (e.g. programmers’ availability) and efficiently schedule required maintenance 

activities to improve the quality of developed services. In fact, the prediction of Web service 
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changes can be used to identify potential quality issues that may occur in the future releases. Thus, 

it is easier to fix these quality issues as early as possible before that they become more complex. 

In this work, we propose a machine learning approach based on time series to predict the evolution 

of Web services interface from the history of previous releases’ metrics. The predicted interface 

metrics value are used to predict and estimate the risk and the quality of the studied Web services. 

We evaluated our approach on a set of 8 popular Web services including more than 90 releases. 

We report the results on the efficiency and effectiveness of our approach to predict the evolution 

of Web services interfaces and provide useful recommendations for both service providers and 

subscribers. The results indicate that the prediction results of several Web service metrics, on the 

different releases of the 8 Web services, were similar to the expected ones with very low deviation 

rate. Furthermore, most of the quality issues of Web service interfaces were accurately predicted, 

for the next releases. The survey conducted with a set of developers also shows the relevance of 

prediction technique for both service providers and subscribers. 

The remainder of this report is as follows: Section 2 presents the related work; Section 3 gives an 

overview about the proposed predictive modelling technique; Section 4 discusses the obtained 

evaluation results and possible threats of validity of our experiments. Finally, Section 5 concludes 

and proposes future research directions. 
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CHAPTER 2. RELATED WORK 

 

We summarize, in this section, the existing work that focus on studying the evolution of Web 

services.  

Fokaefs et al. [2] used the VTracker tool to calculate the minimum edit distance between two trees 

representing two WSDL files. The outcome of the tool is the percentage of interface changes such 

as added, changed, and removed elements among the XML models of two WSDL interfaces. 

Romano et al. [1] proposed a similar tool called WSDLDiff that can identify fewer types of change 

than VTracker that may help to analyze the evolution of a WSDL interface without manually 

inspecting the XML changes. Aversano et al. [4] analyzed the relationships between sets of 

services change during the service evolution based on formal concept analysis. The main focus of 

the study is to extract relationships among services.  

Several studies have been proposed to measure the similarity between different Web services to 

search for relevant ones or classify them but not to analyze their evolution. Xing et al. [5] suggested 

a tool, called UMLDiff to detect differences between different UML diagram versions to 

understand their evolution. Zarras et al. [6] detected evolution patterns and regularities by adapting 

Lehman’s laws of software evolution. The study was focused only on Amazon Web Services 

(AWS). 

Based on this overview of existing work in the area of Web services evolution, the problem of 

predicting the evolution of Web services was not addressed before. In addition, the use of machine 

learning algorithms in Web services was limited to the classification of Web Services and their 

messages into ontologies [7]. These existing machine learning-based studies are not concerned 

with the analysis of the releases within the same Web service but more about mining different Web 

services (one release per service) to classify them in order to help the composition of services 

process for the subscribers based on their requirements. 
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Another category of related work focus on detecting and specifying antipatterns in SOA and Web 

services which is a relatively new area. Rotem-Gal-Oz described the symptoms of a range of SOA 

antipatterns [8]. Kral et al. [9] listed seven “popular” SOA antipatterns that violate accepted SOA 

principles. A number of research works have addressed the detection of such antipatterns. 

Recently, Moha et al. [10] have proposed a rule-based approach called SODA for SCA systems 

(Service Component Architecture). Later, Palma et al. [3] extended this work for Web service 

antipatterns in SODA-W using declarative rule specification based a domain-specific language 

(DSL) to specify/identify the key symptoms that characterize an antipattern using a set of WSDL 

metrics. Rodriguez et al. [11] [8] and Mateos et al. [12] provided a set of guidelines for service 

providers to avoid bad practices while writing WSDLs based on eight bad practices in the writing 

of WSDL for Web services. Recently, Ouni et al. [13] proposed a search-based approach based on 

standard GP to find regularities, from examples of Web service antipatterns, to be translated into 

detection rules.  
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CHAPTER 3. PREDICTION OF WEB SERVICE ANTIPATTERNS 

USING MACHINE LEARNING 

 

In this chapter, we present an overview of our approach and then we provide the details of our 

problem formulation and the solution approach. 

3.1 Approach Overview 

 
Figure 1. Approach Overview Diagram 

As described in Figure 1, our technique takes as input the previous releases of the Web service 

interfaces to predict its evolution in terms of metrics and the antipatterns detected through them. 

Those WSDL (Web Services Description Language) files are analyzed in order to calculate metrics 

in each of the different releases. Table 1 shows the web services and the number of releases used 

in this research, Table 2 shows which metrics are calculated from each web service release. 
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Table 1. Web services names and number of releases 

Web Service Name # Releases 

Amazon EC2 44 

FedEx Rate Service 18 

FedEx Ship Service 17 

Amazon Mechanical Turk 15 

FedEx Track Service 10 

Amazon Simple Queue 6 

Microsoft Bing Search 5 

PayPal Services 7 
 

Table 2. Metrics calculated to each web service release 

Metric Name Definition 

NPT Number of port types 

NOD Number of operations declared 

NAOD Number of accessor operations declared 

NOPT Average number of operations in port types 

ANIPO Average number of input parameters in operations 

ANOPO Average number of output parameters in operations 

NOM Number of messages 

NBE number of elements of the schemas 

NCT Number of complex types 

NST Number of primitive types 

NBB Number of bindings 

NBS Number of services 

NPM Number of parts per message 

NIPT Number of identical port types 

NIOP Number of identical operations 

COH Cohesion 

COU Coupling 
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Metric Name Definition 

AMTO Average meaningful terms in operation names 

AMTM Average meaningful terms in message names 

AMTMP Average meaningful terms in message parts 

AMTP Average meaningful terms in port-type names 

ALOS Average length of operations signature 

ALPS Average length of port-types signature 

ALMS Average length of message signature 

RCOD Ratio of CRUDY operations 

RAOD Ratio of accessor operations declared 

 

The metrics calculated are store in CSV files, a file is generated per each web services and each 

file have metrics for all releases available; those files are used to generate predictions to each one 

of the metrics selected. 

The forecasting algorithms used to generate the predicted values are: Linear regression, Gaussian 

processes, and Multilayer Perceptron; those three algorithms forecast values of each metric, 

considering them as an individual element and as a group. 

The last part of the process uses the metrics generated and the original metrics to evaluate the error 

rate of the predictions generated by each algorithm and compare between them. Additionally, those 

metrics are used to detect Web Antipatterns and the results are analyzed to state the accuracy of 

the antipatterns prediction. 

Table 3. Antipattern detection rules 

Antipattern Detection Rule 

Multi service 

 (NOD(s)≥17 AND COH(s)≤0.43 AND (NOPT(s)≥7.8 OR LCOM≤12) 

OR (NOD(s)≥24 AND COH(s)≤0.39 AND NPT(s)≥2 AND NST(s)≥41 

OR NCT(s)≥32) AND (LCOM3<0.71 OR CBO>4) 

Nano service 

(NCT(s)≤5 OR NST(s)≤8 AND NPT(s)≤2 AND NOD(s)≤5 AND 

COH(s)≥0.42) OR (NOPT(s)≤4.2 AND COUP(s)≥0.36 AND 

COH(s)≥0.39 AND NOD(s)≤6 OR NPT(s)≤2) 
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Antipattern Detection Rule 

Chatty Service 

((NPT(s)≤3 OR DAM≥1) AND NOD(s)≥10 AND RAOD(s)≥0.38 

AND (NCT(s)≥15 OR ANOPO(s)≥8.1) AND (NOM(s)>=38 OR 

NPM(s)>=2.2) AND COH(s)≤0.42) 

Data service 

((ANIPO(s)≥4 OR ANOPO(s)≥4) AND (NCT(s)≥31 OR 

NOM(s)>=79) AND (COH(s)≥0.31 OR LCOM3≥0.68 AND DAM≥1) 

AND NAOD(s)>=13) 

Ambiguous Service 
(ALOS(s)≤1.6 OR ALOS(s)≥4.9 AND AMTO(s)≤0.6 AND NIOP(s)≥4 

OR AMTM(s)≤0.52) 

  

3.2 Forecasting tool 

 

Figure 2. Forecasting tool screenshot 

To create customized predictions a tool was created using Java programming language, this tool 

allows users to choose which algorithms want to use in the prediction and the comparison, which 
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metrics should to be predicted, what data should be displayed and how many time units or steps 

the predictions should have. 

This tool is feed with WSDL files, those are organized in subdirectories representing each web 

services to be analyzed and those subdirectories need to be located a folder called WSDL which 

must be in the same place as the application (JAR file in this case) 
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CHAPTER 4. VALIDATION 

 

In order to evaluate the ability of our prediction framework to efficiently predict antipatterns of 

Web services, we conducted a set of experiments based on eight widely used Web services. In this 

section, we first present our research questions, the experiments setup and then describe and 

discuss the obtained results. Finally, we discuss some threats related to our experiments. 

4.1 Research Questions and Evaluation Metrics 
We defined the following three research questions that address the applicability, performance, and 

the usefulness of our Web services prediction approach. The three research questions are as 

follows: 

 

RQ1: To what extent can our approach predict correctly the evolution of web services? 

RQ2: To what extent can our approach predict antipatterns? 

RQ3: Can our prediction results be useful for developers? 

 

To answer RQ1, we calculated the average error rate from the differences between the metrics 

values predicted and the actual values in calculated in each release, after the previous process the 

average error rate is group by algorithm and the results generates a new value defined as algorithm 

error rate. To this end, we considered the list of metrics described in section 3.1. The average error 

rate and the algorithm error rate are defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
# 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

# 𝑊𝑊𝑊𝑊𝑊𝑊 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 

 

We calculated the error rate for one and many steps (releases) over time for every of the considered 

web services. 

To answer RQ2, we calculated the antipattern detection accuracy where the average of the 

correctly predicted antipatterns is totalized and use to calculate the algorithm antipattern detection 

accuracy. The antipattern detection accuracy and the algorithm antipattern detection accuracy are 

defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (5)  

  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  ∑𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
# 𝑊𝑊𝑊𝑊𝑊𝑊 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

  

 

We considered five types of antipatterns from the literature [10]: Multi-service (MS: a service 

implementing many operations), Nano-service (NS: too-fine grained service), Chatty-service (CS: 

a service including many fine-grained operations), Data-service (DS: a service including only data 

access operations) and Ambiguous service (AS: a service including ambiguous names of 

operations). More details about existing Web service antipatterns can be found in the following 

references [10] [3]. We used the manually defined rules in [13] to detect the predicted and actual 

Web service antipatterns. 

To answer RQ3, we used a post-study questionnaire that collects the opinions of developers on our 

prediction results and antipatterns detection. We also wished to assess how these results may help 

developers working on services-based applications. To this end, we asked 24 software developers, 

including 11 developers working in a Web development startup and providing some Web services 

for customers from the automotive industry sector. The remaining participants are 13 graduate 

students (8 MSc and 5 PhD students) in Software Engineering at the University of Michigan-
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Dearborn. 9 out the 13 students are working either full-time or part-time programmers in Software 

industry. All the participants are volunteers and have a minimum of 2 years of experience as a 

developer. The participants were first asked to fill out a pre-study questionnaire containing five 

questions. The questionnaire helped to collect background information such as their role within 

the company, their programming experience, their familiarity with Web services and service-based 

applications. In addition, all the participants attended one lecture about Web service antipatterns 

and passed five tests to evaluate their performance to evaluate the design of Web services using 

quality metrics. 

 

4.2 Studied Web Services 
We selected these 8 Web services for our validation because different releases of their WSDL 

interface are publicly available and belong to different categories. Table 2 provides some 

descriptive statistics about these eight Web services: 

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable 

compute capacity in the cloud. In this study, we have considered a total of 44 releases 

from 2006 until 2014.  

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for storing 

messages exchanged between computers. We considered in our study a total of 6 

releases. 

• FedEx Track service offers accurate update of the status of shipments. We used 10 

releases from this Web service. 

• FedEx Ship Service: The Ship Service provides functionalities for managing package 

shipments and their options. A total of 17 releases are considered in our experiments 

from this Web service. 

• FedEx Rate Service: The Rate Service provides the shipping rate quote for a specific 

service combination depending on the origin and destination information supplied in 

the request. We used 18 releases for our prediction algorithm. 

• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand, 

scalable, human workforce to complete jobs that humans can do better than computers 
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such as recognizing objects in photos. We used 15 releases developed between 2005 

until 2012. 

• Microsoft Bing: is a web service which allow users submit queries to and retrieve 

results from the Bing Engine. We used 5 releases from version 2.0 to version 2.4. 

• PayPal: is a web service which allow user to incorporate the functionalities offered by 

PayPal in applications oriented to web and mobile environments. We used 4 releases. 

 

4.3 Results 

4.3.1 Results for RQ1.  

Figure 3 shows the results obtained from calculating the average error rate in each web services 

selected using individual metrics prediction. 

 

Figure 3. Algorithm average error rate using individual metrics comparison per web service 

Figure 4 shows the results obtained from calculating the average error rate in each web services 

selected using aggregated metrics prediction. 
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Figure 4. Algorithm average error rate using aggregated metrics comparison per web service 

The first thing to notice is the no correlation between the number or releases and the accuracy of 

the prediction calculated; Amazon EC2 web service presents accurate results been the web services 

with more releases to be analyzed, but Microsoft Bing Search web service which has 5 releases 

got in average the better predictions. 

The second, and most important aspect analyzed, is how the error rate values decrease using 

aggregated metrics to calculate the predictions. Figure 5 shows the differences between both types 

of predictions, and the cases where there is an actual increasing in the prediction accuracy.  

 

Figure 5. Percentage difference between individual and aggregated predictions per web service 
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As the figure 5 shows, Linear regression algorithm offers the best predictions with 15.66% of error 

predicting metrics individually and 13.13% of error predicting metrics as group. 

 

Figure 6. Algorithm average error rate comparison 
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Figure 7. Percentage of better results generated using aggregated and individual attributes 

4.3.2 Results for RQ2. 

As is expected, the algorithm with best metrics prediction will be the most accurate to help in the 
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Figure 8. Comparison of the algorithms accuracy of the antipattern prediction 
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In addition, the metrics predicted individually and aggregated generates antipatterns detection with 

high values (superior to 94%) but the higher detection prediction is obtained using aggregated 

attributes. 

 

Figure 9. Comparison of the accuracy of the antipattern prediction using individual and aggregated attributes 
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The agreement of the participants was 4.6 and 4.8 for the first and second statements respectively. 

This confirms the usefulness of our prediction results for the developers considered in our 

experiments.  

The remaining questions of the post-study questionnaire were about the benefits and also 

limitations (possible improvements) of our prediction approach. We summarize in the following 

the feedback of the developers. Most of the participants mention that our results may help 

developers of the service providers to decide when to refactor their Web service implementations. 

For example, they can consider to perform some refactorings when the prediction results show that 

the quality issue may become much more severe after few releases such as a multi-service 

antipattern. Thus, the developers liked the functionality of our tool that helps them to identify 

refactoring opportunities as early as possible.  

The participants found our tool helpful for also the developers of Service-based applications. In 

fact, the majority of the participants mention that they consider the stability and quality of services 

as important criteria to select a Web service when several options are available. The non-stability 

of a service may negatively impact their systems in the future and it is maybe an indication that 

the used service includes many bugs explaining several new releases. Furthermore, the subject 

liked the prediction of antipatterns feature since it is easier for them to evaluate the quality of Web 

services in next releases based on the number of antipatterns rather than analyzing a set of metrics. 

The participants also suggested some possible improvements to our prediction approach. Some 

participants believe that it will be very helpful to extend the tool by adding a new feature to 

automatically calculate the risk, cost and benefits of using different possible Web services. Another 

possibly suggested improvement is to use some visualization techniques to evaluate the evolution 

of the We services to easily estimate their stability.  
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CHAPTER 5. CONCLUSION 

 

This research proposed an approach to predict the evolution of web services and use this 

information to predict . In fact, it is maybe important for subscribers to estimate the risk of using 

a selected service and compare its evolution to other possible services offering the same features. 

Furthermore, the prediction of future changes may help web service providers to better manage 

available resources and efficiently schedule required maintenance activities to improve the quality. 

In this paper, we propose to use machine learning, based on Artificial Neuronal Networks, for the 

prediction of the evolution of Web services interface design. To validate the proposed approach, 

we collected training data from quality metrics of previous releases from 6 Web services. The 

validation of our prediction techniques shows that the predicted metrics value, such as number of 

operations, on the different releases of the 6 Web services were similar to the expected ones with 

a very low deviation rate. In addition, most of the quality issues of the studied Web service 

interfaces were accurately predicted, for the next releases, with an average precision and recall 

higher than 82%. The survey conducted with developers also shows the relevance of prediction 

technique for both service providers and subscribers.  

Future work involves validate our prediction technique with additional metrics, Web services and 

developers to conclude about the general applicability of our methodology. Furthermore, in this 

paper we only focused on the prediction of Web services evolution. We plan to extend the approach 

by defining new risk measures based on the predicted metrics value. In addition, we will study of 

the impact of predicted quality issues on the usability and popularity of Web services over time. 
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