
Android Malware Prediction by Permission Analysis and Data Mining

by

Youchao Dong

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
(Computer and Information Science)

in The University of Michigan-Dearborn
2017

Master’s Thesis Committee:

Associate Professor Di Ma, Chair
Associate Professor Jinhua Guo
Associate Professor Shengquan Wang

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisor Professor Di Ma, for

giving me the opportunity to work in the fields of mobile security using data mining and machine

learning, and for providing me continuous guidance and encouragement during my research work.

I learned a lot from her in the numerous heated discussions about those tough research and practical

problems.

Second, I would like to thank the rest of my thesis committee for reviewing my thesis and

making insightful comments.

Third, I would like to thank my colleagues Linxi Zhang, Jiafa Liu, Ying Zou, Haoyu Li, Zheng

Zhang in the Security Research Lab for discussing various interesting research topics with me,

which inspired me in my research.

Next, I wish to thank the Computer and Information Department of the University of Michigan,

Dearborn campus for sponsoring my study and research work at the university.

Last but not least, my deepest gratitude goes to my family for their never ending assistance and

love. Special thanks to my wife, Yarong Gu, for not only supporting as a family member but also

as a colleague who gave so many awesome suggestions and helps.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

LIST OF FIGURES v

LIST OF TABLES vii

ABSTRACT viii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Our Approach . 3

1.4 Thesis Organization . 4

Chapter 2 Related Work 5

2.1 Malware Detection Applications . 5

2.2 Common Techniques . 6

2.2.1 Signature-Based Detection . 6

2.2.2 Inter-Component Communication Analysis 7

2.2.3 Behavior-Based Dynamic analysis . 8

2.3 Android Permission Model . 9

2.4 Typical Permissions . 10

2.4.1 Privacy Related Permissions . 10

2.4.2 Write or Modify Related Permissions . 11

2.5 Permission-Related Research . 12

iii

2.5.1 Permission Abuse . 12

2.5.2 Malware Permission Characterization . 13

2.5.3 Permission-Based Malware Detection . 13

Chapter 3 Data Acquisition and Preprocessing 15

3.1 Data Source . 15

3.2 APK Decompiling . 16

3.3 Permission Extraction and Feature Aggregation 17

3.4 Permission Data Cleaning . 20

Chapter 4 Logical and Statistical Analysis 22

4.1 Permission-Malware Correlation Analysis . 22

4.2 File Size Distribution and Malware Correlation Analysis 25

4.3 Logical Analysis on Training Features . 27

4.4 Permissions Independence, Inner Correlation, and Combination Analysis 28

4.5 Conclusion . 30

Chapter 5 Machine Learning and Parameter Tuning 32

5.1 Dimension Reduction . 33

5.1.1 Principal Component Analysis . 33

5.2 Class-Imbalance Issue . 35

5.3 Ensemble Learning . 38

5.3.1 Common types of ensembles . 38

5.4 Linear/Logit Model . 40

5.4.1 Principal Procedure . 40

5.4.2 Result and Analysis . 42

5.5 Tree Models with Ensemble . 43

5.5.1 Basic Procedure . 46

iv

5.5.2 Random Forester and GBDT . 47

5.5.3 Result and Analysis . 48

5.6 Multi-layer Perceptron . 49

5.6.1 Principle Procedure . 49

5.6.2 Result and Analysis . 53

Chapter 6 Conclusion 57

Bibliography 58

v

LIST OF FIGURES

3.1 Example: permissions in a manifest file . 18

4.1 Frequency-ChiSquare ranking distribution . 25

4.2 Benign App file size distribution . 26

4.3 Malware file size distribution . 26

5.1 Percentage of variance for each principal component 35

5.2 Accumulated explained variance . 36

5.3 Logistic function . 41

5.4 ROC curve for L1 and L2 Logistic Regression . 42

5.5 Learning curve for default Logistic Regression 44

5.6 Min, max and average accuracy achieved by training set percentage 45

5.7 Deviation of accuracy by training set percentage 45

5.8 Learning curve for default Random Forest . 49

5.9 ROC curves for different tree models . 50

5.10 ROC curves for different tree size . 50

5.11 ROC curves for with and without resampling . 51

5.12 ROC curve for default neural network model . 54

5.13 ROC curve for different neural network models 54

5.14 ROC curve for Ensemble model . 55

5.15 ROC curve for Ensemble model - excluding Logistic Regression 56

vi

LIST OF TABLES

3.1 Top 10 frequent permissions extracted from all Apps 19

3.2 Top 10 frequent permissions extracted from benign Apps 19

3.3 Top 10 frequent permissions extracted from malware Apps 19

3.4 Permission extraction result for a typical App . 21

4.1 Observed and expected count of Apps for android.permission.SEND_SMS 23

4.2 Permissions ranked by χ2 . 24

4.3 Frequency and χ2 ranking . 24

4.4 Permission to permission Chi-Square test . 29

4.5 Chi-square test on Permission combination and Malware. 30

4.6 Previously non-significant permissions combining to be useful 31

5.1 Contingency Table for test set . 43

5.2 Confusion table for test set . 43

vii

ABSTRACT

In recent years, smartphones have brought people’s lives to a new high level. Smartphone appli-

cations, or Apps, are accelerating the process with many more functions getting developed, such

as browsing the Internet, making payments, taking photos and share. However, the "Apps" are

bringing potential vulnerability when they access private information from the phones, and mobile

security has never been so much focused on like today. In this paper, we presented a novel An-

droid Permission based malware detection technique. We first gather a huge set of both malware

and benign Apps through web clawer and develop a tool to decompile Apps to source code and

manifest files automatically. Then permissions with other information are extracted for each App,

making up to a raw data set. Afterward, we apply data cleaning, dimension reduction and statical

analysis to the raw data set. We find that the distribution of permissions for Apps shares a differ-

ence between malware dataset and benign dataset. Finally, we take advantage of machine learning

algorithms, including Logistic Regression Model, Tree Model with Ensemble techniques, Neural

Network and finally an ensemble model to find patterns and more valuable information. Other

models are also discussed. Extended experiments using these various machine learning models are

conducted in the end. From the results, we can see that our method generates a good accuracy,

F-score and overall performance of malicious App prediction.

viii

CHAPTER 1

Introduction

1.1 Motivation

Personal Portable Devices (PPD), or more commonly called mobile devices, have significantly

brought people’s personal lives to a new high level. Take personal phones for example, in the pre-

vious century when it was just invented and put into public use, all it can do is to text and make

phone calls. Then smartphones came into the world, along with it there were many more func-

tions such as browsing the Internet, making payments, take a photo and share it, people can even

download more smartphone applications for more personalized or complicated things. During the

first decade of this century, smartphones begin to be equipped with sensors such as light sensor,

gyroscope sensor, Barometer sensor and more, which allows them to accomplish even more so-

phisticated work. To some degree, smartphones have surpassed personal computers regarding user

frequency and dependence.

The broader capabilities of smartphones, along with increasing number of activities that users

perform on them, has arisen quite grave concern concerning personal privacy protection and device

security. Personal private information includes and is not limited to name, gender, age, phone

number, photos, voice or video records, credit card info, even users’ location history and web-

browsing history.

Among all existing smartphone operating systems like Apple iOS, Blackberry, Windows Phone,

Android, Palm OS and Tizen [1], Linux-based Android and Unix-based Apple iOS are the most

1

two popular platforms. These operating systems are designed to be highly secured, plus they keep

evolving and updating to fix bugs or loopholes. So it is quite hard to break through the systems

and perform malicious actions. However, smartphone applications or Apps, provide potential vul-

nerability for accessing privacy through them.

As a matter of fact, there are more than two million Apps on both Google Play Store and Apple

App Store[2], which are the largest providers of Apps for Android and Apple iOS, respectively.

For such a huge amount of Apps, it must be hard for systems to determine which App is acting

abnormally, or distinguish some sensitive operations are permitted by users or not.

To describe more about what is the whole process for a malicious application getting into action,

here is a brief example. Assume there is an App called Better Photo, which leads users and App

Store administrators to consider it as an App that can take photos and beautify them afterward.

So smoothly the App developer releases it on the App Store, get approved, then users see it and

download to use daily. Once this malicious App gets successfully installed, it performs just like

other benign Apps and takes its routines correctly. However, deep down this App is programmed

to access user’s photo library, then steal the private photos and upload to some individual servers.

Such mechanism and behavior are absolutely behind the scene, and no user can get aware of this.

As long as the user does not uninstall this App, it will continuously steal photos all the time, which

is definitely a big issue but the user doesn’t know it at all. Malicious Apps must be detected and

prevented!

1.2 Problem Statement

Due to Android’s top popularity and open-source nature, it has also been the priority target of ma-

licious Apps over other mobile operating systems, so our main focus will be on Android malicious

App prediction. Truly, there already exists quite a few successful anti-virus software companies

and products, but their approach to detecting malware is not totally suitable for mobile devices,

2

which will be discussed and proved with more details in the next chapter. Again, take the Better

Photo App as an example. From the perspective of an ordinary mobile device user, he wants to

know if this App might perform malicious behavior before installing it, not get informed after he

already did it, which will bother him again to uninstall. He may also wish that such protection

is built in with his mobile phone operating system, not a third-party App which may take extra

effort to look for, or may cost money, or just consumes more battery energy. What is more, such

protection mechanism ought to act quite fast, invisible when not needed, not always rely on the

Internet, and never suggest users do a virus scan or pop-up any advertisement. Meanwhile, even

an App itself is not malware, as long as it is over-privileged, the App is still highly possible to be

taken advantage of and passively assist malware according to [3] To sum up, what we aim to study

and design is a light-weight, fast and invisible mechanism that could tell users not to install certain

malicious Apps before they do it. These malicious Apps are not only true virus and malware, but

also over-privileged or vulnerable Apps.

1.3 Our Approach

Our approach focuses on using as less information and low computational resources as possible to

generate acceptable accuracy rate for detecting malicious Apps without actually installing them.

To achieve this goal, we studied Android system’s permission model and found the break-

through. Every App can be granted access to some particular information or sensors if and only if

it claims to request corresponding system permissions at the time of installation. In other words,

an active malicious App must already get approved of some over-privileged permissions before it

can perform malicious activities. So, if users can be warned of claims for these over-privileged

permissions, malicious Apps can be prevented from being installed. Then we also found Google’s

official APK-Tool, which allows APK files of Apps to be decompiled into source files. Permission

claims for each App are stored separately in its manifest file, which saves a lot of computational

3

resources of digging source code.

In this thesis, we first developed a web clawer to automatically download most popular and

benign Apps in each category from Google Play App Store, then requested a malware App data

set from an open source website. After that, we programmed Google’s APK-Tool to batch to

decompile benign and malware Apps to source code and manifest files. Then permissions with

other several information were extracted for each App and stored as our raw data. Afterward, we

applied data cleaning, dimension reduction and statical analysis to the raw data set. We found that

the distribution of permissions for Apps shared a quite difference between malware dataset and

benign data set, but it was really hard to come up with a rule to distinguish them. So we took

advantage of machine learning algorithms to find patterns and more valuable information. Finally,

we generated a good accuracy of malicious App prediction by tree models and neural networks

with Ensemble technique.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 discusses the related works about mal-

ware detection and analysis applications, typical malicious behavior detection technologies, related

study about Android permission model and permission-based detection. Chapter 3 describes the

procedure to retrieve and pre-process the raw data, extract information and perform data clean-

ing. Chapter 4 analyzes the cleaned data from logic and detailed statistics perspective, then draws

some useful conclusions. Chapter 5 first discusses some commonly used machine learning tech-

niques and algorithms, including dimension reduction, re-balancing, Ensemble learning and three

machine learning models, then applies these techniques, compares and analyzes results and per-

formance. 6 concludes the thesis and highlights some future research directions.

4

CHAPTER 2

Related Work

In this chapter, we discuss the work related to our study in this thesis. Section 2.1 lists some related

works about malware detection and analysis applications. Section 2.2 reviews some commonly

used malware detection techniques. Section 2.3 introduces Android permission model. Section

2.4 explains some of the most typically risky permissions. Section 2.5 first states that permissions

are being abused, then demonstrates the characteristics of malware permission use through some

research results. We also present some recent researches in permission-based malware detection in

this section.

2.1 Malware Detection Applications

There are quite a lot of powerful and modern malware detection companies or applications on the

market, such as Bitdefender, Kaspersky, Norton, 360 Safe Guard, and Tencent Security Manager

[4]. Some of them only focus on personal laptop systems like MacOS and Windows; some also

support mobile systems like IOS and Android.

Since our primary focus is on Android, we found some specially Android-targeted security

applications that had already gathered millions of downloads. To name a few most popular ones,

they are 360 Boost, AndroHelm, Avira, TrustGo and AVAST [5]. Most of them store a huge

database of malware’s hash value on their server, then try to find a match in users’ phones by

scanning and computing hash value for all Apps. More techniques are discussed in detail in below

sections.

5

2.2 Common Techniques

The most well-known technique for malware detection is signature-based detection, and it is also

the primary method for most of the anti-virus Apps. Inter-Component Communication(ICC) anal-

ysis and Dynamic analysis are often utilized by companies or App servers to discover and collect

more information from App source code and runtime behavior. Android Permission Model and

Permission-based method are to study system permissions requested by Apps, which more speci-

fied for mobile systems, including IOS and Android.

2.2.1 Signature-Based Detection

The signature-based detection approach is frequently carried out by most of the daily used anti-

virus software such as Norton and McAfee. To identify malware, this method first calculates the

target file’s signature which usually being its MD5 hash value, then try to find a match in its

database of signatures that generated from known malware.

Such a strategy is quite convenient and efficient, but it is problematic because it usually fails to

detect variants of known malware, which is easily accomplished by modifying any source code, or

by using program obfuscation[6] such as packing and junk insertion. Therefore, signature-based

detectors can only provide very limited zero-day protection, which means it is almost unable to

detect malware unless this particular file has already been captured with the signature generated

and stored in its database. Furthermore, since signature-based detectors have to use one separate

signature for each malware variant, the database of signatures needs quite an ample storage space

because it grows at an exponential rate. Attackers are quick to exploit this weakness by using

program obfuscation techniques such as altering source code, polymorphism, and metamorphism

to generate different manifestations of the same malicious behavior. Unless the Google Play Store

itself provides such first-layer prevention before putting Apps on the market, it is not practical for

users to seek for such techniques.

6

One more issue is that, since the malware signature database is too large to store on every user’s

device, this mechanism must use an Internet connection to transmit value or result, which is against

our original intention to make it still functional when offline.

2.2.2 Inter-Component Communication Analysis

To overcome the disadvantages of signature-based approach, Inter-Component Communication

Analysis, or ICC analysis is now one of the primary methods in Android malware detection[7].

This method is to track the information transferred between components and try to find if any

privacy data is accessed or leaked.

Android applications are developed in Java and compiled to Java bytecode, then translated into

DEX bytecode (Dalvik VM)[8]. To analyze data flow, it is required to decompile Android APK

files to Java bytecode or Java source code. The ICC analysis includes permission call analysis, API

call analysis, control flow analysis, data flow analysis, structural analysis, semantic analysis and

so on.

For example, Jeong et al.[9] analyzes the instructions related to the system call sequence in a

binary executable and demonstrates the result in the form of a topological graph called the code

graph. Other researchers[10] combine the static and dynamic binary translation techniques. Criti-

cal API Graph based on Control Flow Graph is generated to do subgraph matching with the defined

Malware Behavior Template. Some other researchers[11] infer the system call graphs from exe-

cution traces, and then derive a specification by computing the minimal differences between the

system call graphs of malicious and benign programs. Shabtai et al.[12] applied machine learn-

ing classifier techniques like decision trees, Naive Bayes (NB), Bayesian Networks (BN), etc. to

classify Android applications like games and utilities citing the non-availability of malware appli-

cations. They collected around 22,000 features initially and later reduced to 50 features for the

purpose of classification. William[13] proposed an approach where a certificate is generated dur-

7

ing an application’s installation. This certificate gives complete information about the application

by rating them using Kirin security rules, which are based on the combinations of permissions ex-

tracted from Manifest file. DroidAnalyt[14] is a signature-based system for detecting repackaged

applications.

The first obvious drawback of such a technique is high implementation difficulty. Furthermore,

to implement this on a sufficient scale, considerable computational resources and long process

time are necessary, which is not quite a good choice according to our original intention of making

it small, efficient and effective.

2.2.3 Behavior-Based Dynamic analysis

Dynamic analysis is also proposed for purposes of tracking data flow in mobile applications, es-

pecially in Android malware detection. It focuses on App’s runtime behavior, such as accessing

private information without notifying the user or try to send text messages in the background.

TaintDroid[15] and Vet-Droid[16] are dynamic taint analyses that track information flow by in-

strumenting the Dalvik VM. However, in fact, many benign Apps also transmit sensitive data for

performing their required functionality, especially multi-functional or communication and social

Apps like Wechat, Facebook, and Instagram. For example, in Facebook App, one user takes a

photo, then access its GPS information, after that he accesses his contact list and send it to one

of his friends. In this scenario, the App accesses quite a lot sensitive information and transmit

them through SMS message or Internet, which should alert the dynamic analysis mechanism and

regarded as malicious behavior. Thus, taint analyses are not enough accurate and sufficient to au-

tomatically differentiate malicious Apps from benign Apps, and the combination of taint analysis

with high-level malware signatures is needed to identify malicious code efficiently.

More importantly, dynamic analysis technique demands Apps to be installed first; then it can

start monitoring and analyzing it in an active system or sandbox. Thus, it’s not ideal based on our

8

intentions, which is to notify users beforehand, not after installation.

2.3 Android Permission Model

Permission models have become one of the primary security mechanisms for smartphone operating

systems to provide access control to sensitive information or hardware. According to Android’s

official developer documentation [17], no Android App has permission to perform any operations

that affect user’s information, or the operating system, or other Apps by default. Every Android

App operates in its process sandbox with distinct system identity, so each App is separated from

others and the running system. Thus, in this architecture, each App must explicitly declare the

hardware, information or resources they need to share or use, which is contained in system per-

missions.

Among modern mobile operating systems namely Android, Windows Phone, Apple iOS and

Blackberry OS, Android’s permission model has extremely high controllability over OS. Mean-

while, the naming of permissions gives intuitive and exact information on what it requests from

OS [18].

Android system also demands every App must contain a precisely named AndroidManifest.xml

file. The purpose of this file is to list all relevant information about this App to notify the Android

system, including system permissions which are under the <uses-permission> tag.

There are four types of permissions in Android permission system. The first two categories,

Signature and System permissions, are not designed for third party applications, so they are not in

our consideration. The later two are Normal and Dangerous permissions, available for requesting

by Apps. For Normal permissions, the system will automatically grant them without involving

users, while Dangerous permissions will alert the user before installing. However, most daily users

will ignore this warning and proceed to continue.

Currently, there are almost two hundred different permissions according to our experiment.

9

With such a large number of permissions, it is quite hard for ordinary users to distinguish whether

an App is over-privileged or not, or judge if it needs some certain permission to carry out its

function. Furthermore, users only interact with the permission system for installing, if they deny

the permission requests, installation process is terminated right away.

Among over 200 available permissions provided by Android and 75-80 prevalently request

permissions, despite different Android Versions, the study in [18] proves there is quite low redun-

dancy level, which means almost every permission has its own significance, and the correlation

coefficient between any two permissions or permission groups is quite low.

2.4 Typical Permissions

Some of them are more dangerous than others in the sense of user security among over 200 per-

missions. We list some typical permissions below in the following content [19].

2.4.1 Privacy Related Permissions

Some malware attempts to gather users’ private information that is not intended to share with them.

Most of these permissions are read-related. For example, a basic calculator does not need to access

user’s voice mail, and it is not normal to request it.

• ACCESS_COARSE_LOCATION & ACCESS_FINE_LOCATION: Allows an application

to access approximate or precise location.

• BODY_SENSORS: Allows an application to access data from sensors that users use to mea-

sure his/her body status, for example, heart rate.

• CALL_PHONE: Allows an application to start a phone call directly, skipping the system’s

Dialer user interface.

• CAMERA: Allows an application to access all camera features.

10

• GET_ACCOUNTS: Allows access to the list of accounts in Account Service.

• READ_CALENDAR: Allows to read the calendar data.

• READ_CALL_LOG: Allows an application to read the user’s call log.

• READ_CONTACTS: Allows an application to read the user’s contacts.

• READ_PHONE_STATE: Allows an application to read the phone state, for example, phone

number and status of ongoing calls.

• READ_SMS & RECEIVE_MMS & RECEIVE_SMS: Allows an application to read or mon-

itor user’s SMS and MMS messages.

• RECORD_AUDIO: Allows an application to record audio from the user.

2.4.2 Write or Modify Related Permissions

Some malware attempts to modify users’ private information, some of them may be misleading

to the users. For example, it is abnormal if basic calculator requires sending text messages, and

this malware may try to send user’s private information. Some even attempt to modify a contact

number to a misleading fraud number.

• ADD_VOICEMAIL: Allows an application to add voicemails into the system.

• PROCESS_OUTGOING_CALLS: Allows access to the outgoing call number, and redirect

or abort the call.

• SEND_SMS: Allows an application to send SMS messages.

• WRITE_CALENDAR: Allows an application to write on user’s calendar.

• WRITE_CALL_LOG: Allows an application to write the user’s call log data.

• WRITE_CONTACTS: Allows an application to write the user’s contacts data.

11

2.5 Permission-Related Research

2.5.1 Permission Abuse

Privacy protection is so fragile when on mobile devices, and more attacks could be brought to cause

privacy leakage, with new permission or combinations usage. For example [20] has proposed a

method to recover human speech by directly accessing to the gyroscope sensor on a mobile device,

which is after just requesting a permission and got granted.

Stowaway [21], used for detecting over-privileged permissions for Android Apps. Their re-

search shows there is almost one in every three Android Apps that has over-privilege issues.

Moreover, although some malware attacks mobile devices directly, some may just steal sensitive

information from the back. In [22], it is stressed that after the approval of two permissions named

"READ_EXTERNAL_STORAGE" and "WRITE_MEDIA_STORAGE", the App will have access

to mobile device’s real SD card, where usually important photos, videos, and notes are stored. It

also points out that, Android system did not make a quite clear statement that such permissions

should only be granted top-priority Apps or the system itself, not for every App to request freely.

Thus, it has gradually become a consensus that permissions need to be controlled. Although

by principle, every Android App should declare all the permissions that it may require, which also

decides what this App is able and not able to do, there do exits one approach called collusion

attacks [3] that can lighten one malware’s suspicion by not declaring some sensitive permissions.

In such cases, malware developers have to program at least two Apps that work in conjunction.

The first App, which is usually big in size and only intended to act generally, requests several

extra permissions and establishes an inner connection at runtime to the second App, which is

developed to do the dirty work but did not declare those permissions to elude anti-virus software.

In such situations, we regard Apps like the first App as malicious or vulnerable because it might be

potential accessory malware or it can be easily re-programmed to. It’s definitely more dangerous

and harder to detect such cases, so it comes quite necessary to distinguish Apps that declares more

12

or fewer permissions than it should, compared with benign Apps.

2.5.2 Malware Permission Characterization

Lots of studies on malware characterizations has been conducted including [23, 24, 25].

According to David Barrera’s work [23], more than one thousand popular benign Android Apps

are analyzed regarding different categories tend to request a different set of permissions, there are

still several permissions commonly requested among all, such as Internet and READ_PHONE_

STATE.

The study in [24] shows that Android malware tends to utilize some permissions that not as fre-

quently requested from benign Apps, such like "sendTextMessage” to send a text message without

notifying the users. It also researched statistics on both 1260 malicious Apps and benign Apps and

recognized a significant difference between two data sets regarding most frequently requested 20

permissions.

DroidSwan [25] points out eight permissions as suspicious, including "WRITE_APN_

SETTINGS", "INTERNET", "WRITE_SMS" and "WRITE_EXTERNAL_STORAGE", which cor-

responds to other works. It also weighs suspicious permission combinations as 5 points and suspi-

cious permissions as 3 points.

2.5.3 Permission-Based Malware Detection

[26] is a permission-based Android malware detection technique. Similar as in our method, it

first extracts features from .apk files, and creates a dataset from the features. It then performs

machine learning approaches (K-means, J48 Decision Tree, Random forests and Classification

and Regression Tree) to classify the samples. However, the results are not ideal since the authors

have not complied detailed feature engineering (some of their arguments are too arbitrary) and data

preprocessing, and their machine learning algorithms are very limited. Their dataset is also small.

13

[27] is a lightweight method to detect Android malware using static analysis. They extract

features from the manifest file including hardware components, requested permissions, App com-

ponents and filtered intents, and also feature sets from disassembled code. It then applies learning-

based detection. However, this paper focuses on various aspects, although the authors have some

study on permissions, they do not put more emphasis on the details. Furthermore, their learning-

based detection only uses Support Vector Machines, neglecting deeper research on other machine

learning algorithms. Similarly, [28] implements permissions and control flow graphs as the fea-

tures, and also only uses Support Vector Machines. [29] utilizes extra information like permissions,

Intent messages passing K-means to classify clusters, and then uses Singular Value Decomposition

on the low-rank approximations. Other than the typical drawbacks above, this kind of unsupervised

learning is seldom applied in practice nowadays.

14

CHAPTER 3

Data Acquisition and Preprocessing

3.1 Data Source

Android application package (APK) is a format created by Google, which is used to distribute and

install an application onto the Android operating system. VirusShare.com is the most famous free

virus-sharing website with currently 27 million virus samples, as well as a repository of malware

samples to provide security researchers, incident responders, forensic analysts, and the morbidly

curious access to samples of malicious code. We were provided by it with a malware dataset

consisting of 24317 Android malicious APK files. These APK files have already been renamed to

their hash value, which made it impossible to retrieve the original name or category. This data set

was generated in April 2015.

To validate the authenticity of this malware set, we utilized several popular anti-virus software

to run through the set. However, due to high consumption of computational resources or workload

of the software, all of them crushed before completing scanning. As far as the completed scans

of 7% in the data set, there are around 1700 malware APK files, which will be scaled to exactly

24,000 if they are all scanned successfully. Thus, we can conclude that almost every APK file is

indeed a malicious App.

However, due to the high popularity of VirusShare.com, it is possible that anti-virus companies

also got this malware set and added it to the database before we carried out experiments. In this

situation, our experiment could be pointless, and there would be no effective and efficient ways to

15

validate the authenticity of this malware set. On the other hand, we have not seen any related paper

that discusses this malware set or uses it as training sample in any format.

As for benign Apps, we chose official Google Play Store as the data source. We utilized an

open-source batch web clawer tool obtained from Github that introduced in[30] to automatically

download Apps. There were more than one million Apps that have frequently been downloaded,

but there was no way to validate them all or to get absolute purely benign Apps, so our best

approach was to trust Google Play Store’s review system and only download highly popular Apps

or Apps from trusted and well-known sources. There were also different categories of Apps, which

might affect the distribution of permissions. For example, an App from Social Category would be

regarded as normal when requesting for access to contacts, but it should be malicious for an App

such as basic calculators from Tool category. We decided to respect the quantitative frequency

distribution of all Apps between categories and download a certain amount of top Apps in each

category accordingly. As a result, we got 4100 benign Apps, which ought to be a good sampling of

benign Apps. To examine if malware exists in this set, again we utilized the same several anti-virus

software to run through the set and found zero malicious App.

As a conclusion, we got 24,317 malware and 4,100 benign Apps as raw data set. The next step

will be decompiling and extracting permissions.

3.2 APK Decompiling

An Android APK file is a zipped directory, Manifest file, classes.dex file and raw resources such as

images and layout files are compressed in it. There are quite several open-source APK decompiling

tools such as Dex2jar[31], ApkTool[32] and JD-GUI[33]. We utilized ApkTool since it ought to

be more powerful and easy to scale. However, these tools were designed only to work for one

APK file at a time, so we developed a Batch script in Windows platform for continuously invoking

ApkTool to decompile APK file, rename Manifest file accordingly and delete others that we were

16

not interested. Time needed for decompiling one APK file may vary from several seconds to

around one minute depending on file size. The whole process was carried on SafeLab’s desktop

computer in Windows platform, and it took around two hundred hours.

We found there were around 100 malware APK files that could not be decompiled, which meant

they were not in APK file format at all. We tried to install them onto a real Android device, none

of them succeeded. These files were then ignored from our research, as they only counted less than

1% and the reason could simply be filename extension mistakes by developers. This situation did

not happen on benign Apps.

During this process, we noticed that malware appeared to contain fewer images and much less

source code, which made them smaller in size than benign Apps. Since it is entirely logical,

reasonable and may be useful when distinguishing malware from benign Apps, we decided to

include file size as one feature along with permissions. The statistics regarding file size will be

discussed in more details in the following chapter. As a result, we decompiled 28847 valid APK

files and got their Manifest files; next step will be extracting permissions from them.

3.3 Permission Extraction and Feature Aggregation

Each Manifest file is encoded by Extensible Markup Language(XML) as manifest.xml, which

defines a set of rules for encoding documents in a format that is both human-readable and machine-

readable. System permissions in this file requested by App shows a specific prefix string pattern

"<uses-permission android:name="***"/>", in which "***" is the target permission. According to

Android developer’s guide, such format is mandatory and consistent among all Android versions;

it is also unique from other formats, which would avoid extracting any non-permission strings.

Figure 3.1 shows an actual and more intuitive example.

There are four permissions highlighted in this case. We also notice that in some cases, there exist

duplicates even in the same manifest file. According to Android developer’s guide, the duplicate

17

Figure 3.1: Example: permissions in a manifest file

request will not bring benefit or harm, so we planned to only count each permission once in the

same file. The rest part of this manifest file could not provide more valuable information, and those

contents could vary a lot, so ignoring them should be the right approach.

With the help of an open-source library "BeautifulSoup4", we developed a Python-based batch-

processing tool to extract permissions and build the whole data set in two phases.

To build a more intuitive data set, we firstly wanted to put the most frequent permissions in the

front and less common in the later. So in the first phase, we just iterate through all of the manifest

files and record the times appeared for each permission. We successfully processed 24,377 mal-

ware Apps and 4,070 benign Apps, aggregate numbers both respectively and together, then sort

the permissions by frequency decreasing order. Figure 3.1 shows the top 10 permissions by de-

scending order of frequency. All the data later will be presented in such order. Table 3.2 and Table

3.3 shows top 10 permissions extracted from benign and malware Apps respectively, which indi-

cate some difference between the distribution of permissions. Such difference and the information

18

behind will be stressed and analyzed in the next chapter.

Table 3.1: Top 10 frequent permissions extracted from all Apps
android.permission.INTERNET 16675
android.permission.READ_PHONE_STATE 15896
android.permission.WRITE_EXTERNAL_STORAGE 15275
android.permission.ACCESS_NETWORK_STATE 15171
android.permission.ACCESS_WIFI_STATE 11982
android.permission.WAKE_LOCK 8577
android.permission.GET_TASKS 8530
android.permission.ACCESS_COARSE_LOCATION 7907
android.permission.VIBRATE 7642
android.permission.RECEIVE_BOOT_COMPLETED 7249

Table 3.2: Top 10 frequent permissions extracted from benign Apps
android.permission.INTERNET 2688
android.permission.WRITE_EXTERNAL_STORAGE 2662
android.permission.ACCESS_NETWORK_STATE 2657
android.permission.READ_PHONE_STATE 2520
android.permission.ACCESS_WIFI_STATE 2381
android.permission.GET_TASKS 1777
android.permission.ACCESS_COARSE_LOCATION 1715
android.permission.VIBRATE 1661
android.permission.WAKE_LOCK 1639
android.permission.ACCESS_FINE_LOCATION 1418

Table 3.3: Top 10 frequent permissions extracted from malware Apps
android.permission.INTERNET 13987
android.permission.READ_PHONE_STATE 13376
android.permission.WRITE_EXTERNAL_STORAGE 12613
android.permission.ACCESS_NETWORK_STATE 12514
android.permission.ACCESS_WIFI_STATE 9601
android.permission.WAKE_LOCK 6938
android.permission.GET_TASKS 6753
android.permission.SEND_SMS 6193
android.permission.ACCESS_COARSE_LOCATION 6192
android.permission.RECEIVE_BOOT_COMPLETED 5992

In [34], the authors examined 34,000 Apps from Android market (the author did not specify,

but we should consider more than 99% of them are benign Apps here) and find that Apps of

different categories have ranged percentage concerning containing duplicated permission requests,

from roughly 0% to almost 30%. They also extracted top ten frequently repeated permissions.

During the first phase, we also found 5138 malware and 1013 benign Apps declared duplicated

permissions, making the proportion 21 and 33 percent respectively. From a statistical perspective,

19

such a difference might be useful to determine whether an unknown App is malicious or not, so

we added "whether duplicated permissions existed" as one of the features. As for the first step,

duplicated permissions are only counted once in the same App. Another interesting fact is that

there exist 2117 different permissions extracted from all Apps, but Android system itself only

provides around 170 system permissions according to developer guide [19], numbers may vary

between the various versions. This issue will be stressed and handled in the next section.

For the second phase, we also wanted the whole data set to be more structured, so we utilized

the decreasing order of total frequency as a fixed universal order for all Apps. For each App, the

tool will assign every requesting permission into its position and change the value to "1", and all

the remaining permissions are set to default "0".

After executing these two-phase steps, a raw data set has been generated. The next move is to

conduct data cleaning and add extra useful features.

3.4 Permission Data Cleaning

As mentioned above, invalid permission issue is the first problem to overcome. By mentioning

"invalid" permission, it is not necessarily wrong or non-existent permissions. Although Android

system provides around 170 permissions, only 100 of them get frequently requested, which means

some permissions are rarely useful for daily Apps, or they have just come out with newer Android

version. For the most situations, invalid permissions are typically caused by several reasons: input

typo or wrong format; requesting self-defined or inner-App permissions; requesting hyper level

permissions; requesting customized Android system’s permissions(Some Android phone OEMs

customize the system to be more appealing to local users, such as Huawei and Xiaomi). Because

of that, among total 2117 permissions, 1382 of them only occurred once, 245 occurred twice, and

1854 occurred below ten times. So we eliminated more than 1910 invalid permissions and re-

served the less frequent but actual valid permissions for future evaluation, making it totally 174

20

permission-based features. We also added the following features as discussed above: whether

including duplicated permission; file size; whether malware. As a result, there are totally 177 fea-

tures for one App. Table 3.4 shows a representative example with 14 permissions from beginning,

and also the last three permissions.

Table 3.4: Permission extraction result for a typical App
1 1 1 1 1 0 0 0 1 1 0 0 1 0 . . . 0 0.5 1

Another issue is "zero" data. There are totally 7791 Apps that request zero permissions and their

file size are relatively quite small, including 7205 Apps with rounded-up 0.0 MB in size. Reasons

behind it could be mistaken data source(might not be a valid Android App at all), or errors when

decompiling due to Google’s APK tool. Although this kind of data had a significant amount, they

were still discarded because they could not provide much useful permission information.

21

CHAPTER 4

Logical and Statistical Analysis

As mentioned in previous chapter, Table 3.2 and Figure 3.3 shows a significant difference regarding

permission distribution between benign and malware Apps data set. This chapter will focus on the

analysis of such difference from logical and statistical perspective.

4.1 Permission-Malware Correlation Analysis

Chi-squared test, also written as χ2 test, is any statistical hypothesis test wherein the sampling

distribution of the test statistic is a chi-square distribution when the null hypothesis is true. It is

often constructed from a sum of squared errors, or through the sample variance. Test statistics that

follow a chi-squared distribution arise from an assumption of independent normally distributed

data, which is valid in many cases due to the central limit theorem. A chi-squared test can be used

to attempt rejection of the null hypothesis that the data are independent[35].

In this section, Chi-squared test is utilized to determine whether or not permissions are re-

quested equally regardless of malware or not, also known as discrete uniform distribution. Taken it

as the null hypothesis, which also means each App’s request for certain permission is independent

of the App being malware or not. Then χ2 is the sum of squared deviations divided by degrees of

freedom, which can be calculated by the formula:

χ̃2 =
1

d

n∑
k=1

(Ok − Ek)
2

Ek

(4.1)

22

Here Ok is Kth observed data, Ek is Kth expected data, d is degrees of freedom, using d =

(row−1)(col−1) to calculate the number of parameters of the system that may vary independently.

Table 4.1: Observed and expected count of Apps for android.permission.SEND_SMS
Observed Number of Apps
(Expected Number) Malware Benign Total

Request Permission
SEND_SMS

6380
(5799.3)

485
(1065.7) 6865

None Request
8916
(9496.7)

2326
(1745.3) 11242

Total 15296 2811 18107

For instance, Contingency Table 4.1 illustrates that SEND_SMS is requested 6380 times

among 15296 malware but only 485 times among 2811 benign Apps, but according to the null

hypothesis, numbers are expected to be 5799.3 and 1065.7, resulting in χ2 603.4 and p-value

1.8e−130 based on degrees of freedom as 1. Taking α as 0.05, according to Chi-Square distribution

table, the threshold for χ2 is 7.879, from which null hypothesis should be denied with a conclusion

that there does exist a significantly statistical correlation between SEND_SMS and malware.

Instead of manually picking specific permissions to study like other papers, we developed a

batch tool to conduct χ2 test on all training features, including 174 permissions and one extra fea-

ture (whether requests duplicate permissions). There is one feature remaining and will be discussed

in the next section, file size, which is non-applicable for χ2 test because its value is continuous.

Table 4.2 lists part of all permissions ranked by descending χ2 value. Still taking α as 0.05,

degrees of freedom as 1 and threshold for χ2 as 7.879, it can be concluded that top 120 permis-

sions have statistical significance when predicting malware, especially permissions on the top have

extremely low p-value, which means they are highly correlated to malware. There are 55 per-

missions currently show no strong statistical correlation to malware, but thy are only concluded

non-significant when each single of them takes the χ2 test. Later sections will also discuss the

correlation between permission combinations and malware results. Another interesting fact is that

most but a few of the permissions are negative-related to malware, which will also be discussed

later.

23

Table 4.2: Permissions ranked by χ2

Rank Permission χ2 Correlation
1 android.permission.MANAGE_ACCOUNTS 1395.47 -1
2 android.permission.BROADCAST_STICKY 1274.89 -1
3 android.permission.DISABLE_KEYGUARD 967.1 -1
4 android.permission.WRITE_SETTINGS 874.96 -1
5 android.permission.CAMERA 792.38 -1
6 android.permission.RECORD_AUDIO 773.61 -1
7 android.permission.USE_CREDENTIALS 674.74 -1
8 android.permission.SEND_SMS 603.38 1
9 android.permission.AUTHENTICATE_ACCOUNTS 518.32 -1

10 android.permission.ACCESS_WIFI_STATE 513.61 -1
...

120 android.permission.CLEAR_APP_USER_DATA 7.88 -1
121 android.permission.ACCESS_LOCATION 7.76 -1
...

171 android.permission.BIND_WALLPAPER 0.03 -1
172 android.permission.SET_WALLPAPER_HINTS 0.03 1
173 com.anddoes.launcher.permission.READ_SETTINGS 0.02 -1
174 com.fede.launcher.permission.WRITE_SETTINGS 0.01 1
175 com.htc.launcher.permission.READ_SETTINGS 0 -1

According to Table 4.3, it is also notable that frequency ranking of permissions is not neces-

sarily or strictly correlated to χ2 ranking. Figure 4.1 more intuitively shows the distribution of

Frequency-χ2 ranking of permissions, in which only around 60 percent permissions have corre-

sponding relations. As a short conclusion, frequent permissions do not always value more.

Table 4.3: Frequency and χ2 ranking
Permission Rank of Frequency Rank of χ2

android.permission.INTERNET 1 63
android.permission.READ_PHONE_STATE 2 110
android.permission.WRITE_EXTERNAL_STORAGE 3 27
android.permission.ACCESS_NETWORK_STATE 4 24
android.permission.ACCESS_WIFI_STATE 5 10
android.permission.WAKE_LOCK 6 42
android.permission.GET_TASKS 7 20
android.permission.SEND_SMS 8 8
android.permission.ACCESS_COARSE_LOCATION 9 16
android.permission.VIBRATE 10 18

24

Figure 4.1: Frequency-ChiSquare ranking distribution

4.2 File Size Distribution and Malware Correlation Analysis

To better visualize the distribution of file size, we utilized histograms, set bin-width to be 1.2 and

take log2(size) as x-axis value. Figure 4.3 and 4.2 both show nearly normal distributions for the file

size of Benign App set and Malware set, which makes it appropriate to conduct a t-test on the two

samples for determining whether the two distributions are statistically different. Take t-test type of

"paired t-test with independent two data sample," statistic value turns out to be 40.41. According to

t-table, the threshold value is 31.599 under two-tails’ highest Confidence Level 99.9% and degree

of freedom as 2, from which conclusion can be drawn that Malware and benign Apps’ file size has

a significantly statistical difference.

25

Figure 4.2: Benign App file size distribution

Figure 4.3: Malware file size distribution

26

4.3 Logical Analysis on Training Features

In previous sections, we only analyze the data and features from a statistics perspective, this section

we will focus on the reasoning logic behind that, try to understand the meaning of data and test

results. Additionally, because all permission requesting was conducted and coded by real human

developers instead of automatically generated, we also try to speculate the developing process,

motivations, thinking process or mental activities of developers, which is also quite important.

The difference in file size between malware and benign Apps is quite easy to understand: Be-

nign Apps are usually programmed to realize more practical and complicated behavior, the logic

of coding is also more sophisticated, all leading to bigger code base; while malware is typically

intended to conduct some specific malicious behavior, making it straightforward and small.

According to the Chi-square test results, among 120 single relative permissions, 37 of them

are positively correlated and 83 negatively correlated, besides there are only three positive per-

missions in top 50. Such a fact together with all previous conclusions could bring several rea-

sonable inferences. First, malware tends to request some particular range of permissions in or-

der to do something specific, such as SEND_SMS to send malicious text messages for illegal

profit, or INSTALL_PACKAGES to secretly install other Apps. Second, Benign Apps tend

to have more functions or abilities, resulting in requesting a wider range of permissions, such as

online accounts related MANAGE_ACCOUNTS and AUTHENTICATE_ACCOUNTS,

or hardware like V IBRATE and ACCESS_WIFI_STATE. Third, there also exist a range

of permissions that get requested much more frequently in benign Apps than malware, such as

BROADCAST_STICKY , a permission involved in process/thread synchronization.

These inferences are not just reasonable but also true according to our knowledge and under-

standing of benign Apps as well as malware behavior and intentions: steal information, make profit

or harm systems.

We are also interested in whether requesting duplicate permissions would help to decide mal-

27

ware, but its Chi-square test turns out to be 6.35 and slightly negatively correlated. To understand

this, first our best guess before getting this result was that: for benign Apps, because it’s often a big

project with lots of permissions and may involve two or more developers, App developers may not

be aware that certain permission has already been requested, which results in duplicate requests;

while for malware, since it’s usually small with fewer permissions and maybe just one developer,

it’s rather unlikely to request delicately. Following this logic, the correlation should be strong. On

the other side, benign Apps tend to be developed by more organized developers if not by one; also

good code management tools such as Git or SVN can prevent immature mistakes; while malware

developers tend to be more self-educated, subterranean and often less organized, increasing the

possibility to write duplicate codes. This weakens the assumption that benign Apps tend to have

duplicate permission requests. In a word, both malware and benign Apps may or may not have

duplicate requests, and that explains our statistic that this feature is slightly negatively correlated

to the verdict.

4.4 Permissions Independence, Inner Correlation, and Combination Anal-

ysis

In the previous sections, we haven’t studied the inner correlation and independence between per-

missions, which is a fundamental concept in statistics and rather essential for both understanding

permissions and the next chapter. In this section, we conduct Chi-square test for each two of the

174 valid permissions, not including the extra features we add manually, making it totally 15225

possible combinations of them.

Table 4.4 shows some of the interesting combinations and its Chi-square statistics. Taking α

as 0.05 and degree of freedom as 1, according to Chi-Square distribution table, the threshold for

χ2 is 7.879. There are almost half, totally 7335 of them rejected the null hypothesis and showed a

significantly statistical correlation between them.

28

Table 4.4: Permission to permission Chi-Square test
Rank Permission 1 Permission 2 Chi Stats
138 android.permission.READ_SMS android.permission.WRITE_SMS 5920.664
139 android.permission.SEND_SMS android.permission.READ_SMS 5907.707
140 ACCESS_NETWORK_STATE ACCESS_WIFI_STATE 5857.667
141 MANAGE_ACCOUNTS AUTHENTICATE_ACCOUNTS 5850.927
193 android.permission.READ_CONTACTS android.permission.WRITE_CONTACTS 4325.753
452 android.permission.READ_CONTACTS android.permission.WRITE_SMS 2109.178
695 android.permission.REBOOT android.permission.DIAGNOSTIC 1134.952
938 com.android.vending.BILLING com.android.vending.CHECK_LICENSE 779.545
7335 android.permission.WRITE_CALL_LOG android.permission.SET_DEBUG_APP 7.887
7336 android.permission.RECEIVE_WAP_PUSH android.permission.READ_PROFILE 7.876
15213 android.permission.READ_SETTINGS android.permission.BIND_WALLPAPER 0

The 7335 correlated combinations can generally be divided into several categories with quite a

few that raised our interest:

• The combinations of permissions have to be requested together, such as

com.motorola.launcher.permission.INSTALL_SHORTCUT and

com.motorola.dlauncher.permission.INSTALL_SHORTCUT .

• Two permissions show a "one or the other" pattern due to different Android versions or OEM

customized platforms, such as MOTO and LG.

• Two or more permissions, usually logically function together, such as

android.permission.READ_SMS with android.permission.WRITE_SMS,

ACCESS_NETWORK_STATE and CCESS_WIFI_STATE. This category has

more practical meaning to us.

• Other combinations. This category takes about half of 15225 combinations; however, it is

hard for us to define or explain their correlations, and thus this category does not make much

sense to our research, resulting in a very low statistics.

We are also interested in how the dependency relation is between malware features and combi-

nations of permissions. We conducted Chi-square test on all 15225 possible combinations against

malware feature. Part of the results is shown in Table 4.5. Taking α as 0.05 and degree of free-

dom as 3. According to Chi-Square Distribution Table, the threshold for χ2 is 12.838, and 13552

29

of the null hypothesis is rejected. Meanwhile, based our previous results, 120 permissions show

a correlation with malware feature, making it 7140 possible combinations among 13552 current

combinations. In the rest 6412 combinations, there are 290 combinations formed by the 50 previ-

ously non-significant permissions, as shown in Table 4.6. The result indicates that more complex

combinations or the new type of combinations may also have been involved with our analysis. In

fact, keeping more permissions adds more variables to our functions, and that we can calculate the

coefficients more precisely.

Table 4.5: Chi-square test on Permission combination and Malware.
Rank Permission 1 Permission 2 Chi Stats

1
android.permission.

SEND_SMS
android.permission.
WRITE_SETTINGS 2524.883

2
android.permission.

BROADCAST_STICKY
android.permission.

MANAGE_ACCOUNTS 2187.319

3
android.permission.

DISABLE_KEYGUARD
android.permission.

MANAGE_ACCOUNTS 2116.836

4
android.permission.

SEND_SMS
android.permission.

MANAGE_ACCOUNTS 1992.082

5
android.permission.
WRITE_SETTINGS

android.permission.
MANAGE_ACCOUNTS 1957.65

6
android.permission.

RECEIVE_SMS
android.permission.
WRITE_SETTINGS 1922.792

...

13552
android.permission.

BROADCAST_SMS
ru.apps.android.permission.

C2D_MESSAGE 12.858

13553
android.permission.

MODIFY_PHONE_STATE
android.permission.

ACCOUNT_MANAGER 12.827

15225
com.htc.launcher.permission.

READ_SETTINGS
android.permission.

BIND_WALLPAPER 0.032

4.5 Conclusion

In this chapter, we first analyzed single permission - malware correlation by paired Chi-square

test, found 120 dependent permissions. We then looked into the distribution of the file size of mal-

ware and benign Apps, found it a similar normal distribution, then conducted a t-test to conclude

a significant difference in size distribution. After that, we logically analyzed the possible reasons

behind the patterns of how permissions are requested along with other features. Lastly, we con-

30

Table 4.6: Previously non-significant permissions combining to be useful
Rank Permission 1 Permission 2 Chi stats

1
android.permission.

WRITE_SECURE_SETTINGS
com.android.alarm.permission.

SET_ALARM 132.062

2
android.permission.

EXPAND_STATUS_BAR
android.permission.

SET_WALLPAPER_HINTS 108.817

3
com.htc.launcher.permission.

WRITE_SETTINGS
com.lge.launcher.permission.

WRITE_SETTINGS 90.913

4
com.htc.launcher.permission.

READ_SETTINGS
com.fede.launcher.permission.

READ_SETTINGS 81.96

5
android.permission.

MODIFY_PHONE_STATE
org.adwfreak.launcher.permission.

WRITE_SETTINGS 68.637

...

289
com.htc.launcher.permission.

READ_SETTINGS
com.lge.launcher.permission.

WRITE_SETTINGS 12.976

290
android.permission.
RECORD_VIDEO

org.adwfreak.launcher.permission.
WRITE_SETTINGS 12.971

ducted Chi-square test between permission and permission, found 7335 among 15225 permission

combinations show inner dependency and 13552 combinations show dependency with malware.

For now, we have analyzed all possible situations that involving two or less permission. For ex-

ample Permission A and B, we now know the relation between A, or Ã against malware, B or B̃

against malware, A, or Ã against B or B̃, AB̃ or ÃB or AB or ÃB̃ against malware, totally four

situations. However, combination analysis only looks at two permissions, so when a third per-

mission C comes in, currently analysis can not support new logical combinations such like ÃBC̃.

The number of possible combinations is actually exponentially growing when there is no limit on

permission numbers. Computing all of them is not hard, but analyzing them is. The best practice at

this phase is to involve statistical model learning, or nowadays called machine learning techniques,

which will be introduced in the next chapter.

31

CHAPTER 5

Machine Learning and Parameter Tuning

Machine learning is currently the most popular subfield of computer science, statistics [36] and

mathematics. It enables programs to have the ability to "learn" the potential rule behind some

distribution or phenomenon without being explicitly programmed [37].

Machine learning focuses on the construction, design, and optimization of algorithms that can

extract, compute then learn from the provided data, to make correct predictions [38]. It is now

widely employed in areas that require sophisticated logic and infeasible to explicitly program, or

rules not intuitively captured or understood. This includes but is not limited to computer vision,

stock market prediction, malware detection, anomaly prediction and search engines [39].

To implement machine learning techniques, we first generate a group of structured data. A set

of training data is called a "dataset", where each record is a description of an event or object, called

an "instance" or an "attribute" or a "feature"; a value of an attribute, referred to as an "attribute

value"; the mathematical space generated by attributes is called "attribute space", "sample space"

or "input space". We also refer to an example as a "feature vector." The number of attributes used

to describe the object is also defined as the sample dimensionality.

The process of learning a model from data is known as "learning" or "training," this process

is conducted by performing a learning algorithm. The data used in the training process is called

"training data," Where each sample is referred to as a "training sample, " and a set of training

samples is called a "training set." The learned model corresponds to a certain underlying law about

the data, which we call "hypothesis," and this potential law itself is called "truth." Our goal of the

32

learning process is to find or approach the truth. This process is also sometimes referred to as

"learner," which can be seen as a learning algorithm in the given data and parameter space on the

instantiation.

In this chapter, our goal is to develop a binary classification model for predicting malware

through the training set. We utilize three frequently used machine learning algorithms includ-

ing Liner Model, Tree Model, and Random Forester, and Neural Network and Deep Learning to

classify the training Apps. In each section, experiments are conducted to classify test data to val-

idate the accuracy of each of the model. In the end, we ensemble all the three. To measure the

performance of the models, receiver operating characteristic (ROC) curve [40] is plotted, which

illustrates the true positive rate (TPR) against the false positive rate (FPR) at various threshold

settings.

To allow any individual or organization reproduce our experiment results easily, we will always

begin with the default model parameters provided by Scikit Learn, the most common machine

learning library. We will try to make the least changes with specifying which parameter is changed

exactly.

5.1 Dimension Reduction

Since each of our training samples contains 176 features and one class label, and there are totally

18107 training samples, train the whole set would take a lot of computational resources. Before

we apply any machine learning algorithms, we want first to seek a method to reduce the dimension

of features by utilizing some common techniques, such as PCA that discussed below.

5.1.1 Principal Component Analysis

Principal component analysis, or more commonly called PCA in data science, is a statistical pro-

cess that uses an orthogonal transformation to convert a set of variables that observations are pos-

33

sibly correlated, into a set of values of linearly uncorrelated variables called principal components

[41]. The transformed vectors, or called principal components, have a few number of original ones,

but with a high percentage of original variables’ variability. The principal components are defined

to be sorted in descending order regarding largest possible variance. In such a way, original vari-

ables are re-constructed, and users can choose how many principal components to keep, achieving

the balance between accuracy and computational resources.

For our whole training set, X, the transformation can be defined by an array of p-sized vectors

w(k) = (w1, . . . , wp)(k) that map each row vector x(i) of X to a new vector of principal compo-

nent scores t(i) = (t1, . . . , tk)(i), given tk(i) = x(i) ·w(k). Individual variable of t inherits the most

variance from x and is sorted in decreasing order.

As a result, we get each of the loading vector w(i) that has to satisfy:

w(k) = argmax
‖w‖=1

{
‖X̂kw‖2

}
= arg max

{
wT X̂T

k X̂kw

wTw

}
(5.1)

Leaving all the remaining mathematically calculations behind, a full principal components de-

composition of X can be represented as

Tszw = XW (5.2)

where W is a p-by-p matrix whose columns are the eigenvectors of XTX

In our training set, the value of 174 permissions is categorical and binary specifically. Although

PCA is designed for numerous features, binary values can also work. Figure 5.1 shows the percent-

age of variance for each principal component. The first, also the largest principal component, takes

up less than 8%, which indicates the whole training set in a good variance distribution. Figure 5.2

intuitively shows the accumulated explained variance according to the number of principal com-

ponents. The line is quite smooth, and to retain 99% of the original information, it requires almost

34

Figure 5.1: Percentage of variance for each principal component

150 features or 100 features for 90% of the information. Obviously, this compression could not

bring a significance benefit. Therefore, we prefer to achieve the best accuracy and full information,

instead of saving computational resources from compression.

Except for PCA, we also utilized Linear Discriminant Analysis (LDA) and Multiple Discrimi-

nant Analysis (MDA), but neither of them achieved an ideal outcome, so we decided to continue

the machine learning process without feature compression.

5.2 Class-Imbalance Issue

Class-imbalance issue refers to a situation that numbers from different classes in the training set

varies widely, which is common when dealing with those machine learning tasks originated from

reality.

In our training set, there are 15296 positive samples and 2811 negative samples, making the

positive proportion 84.5%. In other words, without any knowledge or decision criteria, by simply

predicting it as positive will return a True Positive rate 84.5%. This result seems good to the

training set, but obviously, it has extremely high bias and low variance.

35

Figure 5.2: Accumulated explained variance

A core strategy of unbalanced class learning is "rescaling." The idea of rescaling is simple, but

the practice is not trivial, mainly because the assumption "the training set is the unbiased sampling

of the real sample" is always not true with real tasks. In other words, we may not be able to

effectively base on training set observation probability to infer the true probability. Generally there

are three types of common practices: 1) "under-sampling" the large class in the training set, for

example removing some counterexamples so that the number of positive and negative examples

are close and then continue learning; 2) "oversampling" the small class instance in the training

set, that is, adding some examples to make the number of positive and negative examples close;

3) to learn directly based on the original training set, making adjustments on the threshold itself,

which is embedded in its decision-making process when it is predicted by a trained classifier, called

"threshold-moving". The time cost of a under-sampling method is usually much smaller than that

of oversampling method, because the former discards many negative examples, which makes the

36

training set of the classifier much smaller than the initial training set, while the oversampling

method adds many positive examples, whose training set is larger than the original training set.

As for the specific situation of our training set, firstly the threshold moving technique is not

feasible because it will be quite hard to move the threshold for every model and the Ensemble

model. The under-sampling method may discard some important information if the counterex-

ample is discarded randomly, while an advanced representative algorithm of the under-sampling

method is EasyEnsemble [42], in which the authors used the integrated learning mechanism where

the inverse cases are divided into several sets for use by different learners, so that each learner

is under-sampled, but the important information is not lost in the whole view. The oversampling

method must not simply repeat the sampling of the original positive samples. Otherwise, it will

lead to a serious over-fitting; over-sampling method representative algorithm is presented in [43],

and the authors over-sample through a mathematical interpolation method.

We finally conducted the oversampling technique for several reasons. Firstly, the previous

statistical analysis showed there were more permissions and permission combinations indicating

a negative correlation to malware, making every malware more valuable even though they were

more in numbers, so under-sampling on malware was not preferred. Secondly, because the be-

nign Apps we batched to downloading were the most popular and widely downloaded ones among

users in its category, each of them had quite a few competitive products that can conduct very

similar functions, resulting in them having almost the same distribution of permissions and file

size. Even we did not download their competitive products, but since the training samples only

contained permission and size information, we were able to conservatively conduct over-sampling

on each benign App by creating five siblings to mimic its competitors. For each sibling, we ran-

domly dropped one of original App’s permissions, then re-adjusted its size to a random proportion

between 80% and 120%. As a result, we achieved 15296 positive samples(malware) and 16427

negative samples(benign Apps), making it 31732 training samples. This method is right in con-

junction with the mathematical interpolation to conduct over-sampling as stated in [43], and thus

37

is a more convincing way compared to threshold-moving and under-sampling.

5.3 Ensemble Learning

Ensemble learning is to build a predictive model by integrating multiple models, and thus it im-

proves the performance by taking advantage of every model. Moreover, some models may fall into

local optimal solution, and combining every model may decrease this kind of risk.

In the following sections, we will introduce several machine learning models. We utilize each

of the models and combine these models into a final result. In fact, in Section 5.5, ...; and in Section

5.6... We introduce the ensemble learning ahead in this section because this idea is throughout our

entire machine learning analysis.

A typical ensemble method contains the following building blocks [44]:

• Training set. The training set is a data set used for ensemble training and has been mentioned

many times in previous chapters and sections.

• Base Inducer. The performance of the classifiers depends highly on the induction algorithm

used to generate them.

• Diversity Generator. We generate the diverse classifiers using diversity generator.

• Combiner. We combine the various models using a combiner. The combining strategy usu-

ally includes average, weighted average, majority voting, weighted voting, and learner.

5.3.1 Common types of ensembles

Bayes optimal classifier

This technique is to sum up all available hypotheses probability via a given vote proportional

multiplied by prior probability of that hypothesis[45]:

38

y = argmax
cj∈C

∑
hi∈H

P (cj|hi)P (T |hi)P (hi) (5.3)

Where y is the final output label, C is the set of all possible classes, and T is the whole data set.

This method is not feasible to implement, either not intuitive to analyze.

Bootstrap aggregating (bagging)

Bagging, on the other hand, is easy to understand, control, scale and evolve. It first trains each

different or same model with a different subset of the whole training set, then simply adding the

code with equal or controlled weight[46]. Random forest is a typical example, and it has been

achieving amazingly good accuracy without overfitting [47]. Later in our thesis, we will compare

the accuracy of separate models with an ensemble model using bagging, and also try to learn a best

weight distribution vector for all involved models.

Boosting

Boosting is another frequently utilized strategy. This method starts with weak learners, then em-

phasize the misclassified training data by previous models by assigning more weight. So in such

a process, it involves incrementally until some termination criteria met. Boosting algorithms have

been developing rapidly, among them Adaboost [48] is the most common implementation, while

GBDT (Gradient Boosting Decision Tree [49]) is currently taking the dominator position in in-

dustry. Boosting has overall better performance than bagging, but it can also easily overfitting on

training data since every mistake is stressed.

Stacking

Stacking usually refers to using a combiner machine learning model to take in all other models’

output as input data, then train this combiner model (usually a simple logistic regression model).

39

In this thesis, since the number of training samples is rather limited while feature dimension

is large, to avoid overfitting, we will only try a few ensemble methods to balance each models’

output. We will start with linear models to try to learn the logic behind predicting malware.

5.4 Linear/Logit Model

5.4.1 Principal Procedure

Linear and logit models are the most commonly used machine learning algorithms. They are

intuitive, easy to implement and quite powerful in many practical problems. We utilized Linear

Regression as our first attempt to predict malware.

In Statistics, Linear Regression is a regression analysis of the relationship between one or more

independent and dependent variables using the least squares function known as a linear regression

equation [50]. This function is a linear combination of one or more model parameters called

regression coefficients. Linear Regression was originally not designed for classification problem

until it was reformed to Logistic Regression, developed by statistician David Cox in 1958 [51] To

estimate the probability, David Cox used a cumulative logarithmic distribution function to assign

the continuous-number-output to a class variable.

Given a data set {yi, xi1, . . . , xip}ni=1 of n statistical units, the logistic regression model takes

the form:

zi = β1xi1 + · · ·+ βpxip + εi = xT
i β + εi, i = 1, . . . , n (5.4)

where β is a parameter vector of dimensional p, error term εi and response variable zi. Then zi is

mapped to f(z)i using the following logistic function:

f(z)i =
1

1 + e−zi
, i = 1, . . . , n (5.5)

40

Figure 5.3 shows the shape of the logistic function. The value of previous outcome zi can vary

from negative to positive infinity, but with the help of logistic function, f(z)i is bounded between

0 and 1, which makes it easy to decide the final class label by formula:

yi =

 1, f(z)i >= 0.5, i = 1, ..., n

0, else

Figure 5.3: Logistic function

The next step is parameter estimation and model fitting through Least-squares estimation tech-

nique, which is expressed in formula:

β̂ = (XTX)−1XTy =
(∑

xix
T
i

)−1 (∑
xiyi

)
(5.6)

After β is settled, the learning process of logistic regression is completed.

41

5.4.2 Result and Analysis

First, we want to compare model performance with L1 and L2 penalization. Figure 5.4 shows

they have almost same performance using other default parameters. Even manually increasing the

output model’s penalization coefficient, or simply removing penalization term will not cause much

difference. We think this results from the existing sparsity of feature distribution and relatively not

complicated logic for the model to learn. In the analysis below, we will leave out L1 penalization

for simplicity.

Using L2 regularization, the 10-fold cross-validation evaluation returns an overall accuracy of

77.03%, compared to the default 48.2%. On the randomly selected, reserved and un-learned test

set (10%of the population), it achieves 78% accuracy as well. Result from the test set shows in

Contingency Table 5.1 and Confusion Table 5.2. Changing regularization, the L1 returns 0.4%

drop of accuracy, which is not significant.

Figure 5.4: ROC curve for L1 and L2 Logistic Regression

42

Table 5.1: Contingency Table for test set
Contingency Table Actually Benign Actually Malware

Classified as Benign 1252 350
Classified as Malware 347 1224

One thing interests us is that, just taking a small percentage of data from the whole set as

training samples will achieve a result accurate enough as 5.5 shows the Learning Curve. We also

collect data by taking 0.1% to 15% as the training set with every 0.1% increase interval, at each

percentage we repeat the training process by randomly selecting training sample for 100 times,

record the statistics and generate the figures. Figure 5.6 and 5.7 shows the minimum, maximum

and average accuracy along with accuracy deviation according to the percentage of the whole set.

5% of the training set(around 1600 training samples) leads to a steady 77% accuracy. Starting from

5% all the way up to 95%, the result stays the same, and the 10-fold cross-validation evaluation

shows almost no sign of overfitting. As a conclusion, with logistic regression, we achieved a steady

77% precision, recall, and f-1 score. This performance is way under our expectation; one possible

explanation is that linear models are not good at interpreting complicated logic functions including

even a simple ’exclusive OR,’ while the process of predicting malicious App by only looking at

the binary features require quite a lot of logical conditions. To overcome this issue, we want to

introduce decision tree and its ensemble models to achieve better results.
Table 5.2: Confusion table for test set

Confusion Table Precision Recall F1-Score Support
Benign 0.78 0.78 0.78 1602

Malware 0.78 0.78 0.78 1571
Average/Total 0.78 0.78 0.78 3173

5.5 Tree Models with Ensemble

Decision tree and all tree-based machine learning techniques are quite popular in both academia

and industry [52]. Intuitively, this kind of method is implemented with a tree structure, in which

root represents the whole input data, and each child node corresponds to a subset of input data,

while each edge to child node indicates some condition or splitting rule. Each leaf node contains

43

Figure 5.5: Learning curve for default Logistic Regression

the output result of this model, and it is reached by some subset of input data that qualifies all

conditions or splitting rules through the path from the root to leaf. For a detailed description of

tree algorithm, see [53, 54]

Tree-based algorithms have many advantages [55], such as:

1.Given an already constructed decision tree, its logic is much more easily understandable for

humans than other popular machine learning algorithms, because it makes an explicit requirement

on every alternative. Such a nature makes it quite feasible to be interpreted and explained for

analytics purpose.

2.The computation needed to get the result for the program is also very cheap for the newly

input data.

3.They are quite scalable regarding input data size or dimension and can be easily assembled

with other algorithms, which will be discussed below in random forest.

44

Figure 5.6: Min, max and average accuracy achieved by training set percentage

Figure 5.7: Deviation of accuracy by training set percentage

45

4.They do not need much feature engineering work because all data types for features can be

input without transforming, besides nonlinear correlations or non-independence issues between

features will not affect performance.

5.5.1 Basic Procedure

The algorithms for constructing a decision tree have been evolving for the past several decades.

Most of them work top-down as a greedy approach, which is by choosing the current best variable

that splits the set of data for each step(node). This recursive partitioning process is repeated for

each node with corresponding data subset. Also, each algorithm has its rule of terminating the

recursion process. Normally when all the subset data at current node have already reached the

same value of target variable, termination criteria is met.

The definition and evaluation metrics for "best" is actually where different algorithms distin-

guish from each other. Generally there are three directions that metrics can go: Gini impurity,

information gain and variance reduction [53, 54]. Splitting by variance reduction is more used

when most target variable is continuous, which is not our case. Gini impurity measures the proba-

bility of incorrect label for a random data piece, under conditions that it’s randomly assigned label

according to label distribution for the whole training set. To compare different splitting rules, the

value of Gini impurity can be computed as sum of probability fi which indicates the chosen time

with label i, multiplied by the probability of wrongly labeling it 1− fi:

IG(f) =
J∑

i=1

fi(1− fi) =
J∑

i=1

(fi − fi2) =
J∑

i=1

fi −
J∑

i=1

fi
2 = 1−

J∑
i=1

fi
2 =

∑
i 6=k

fifk (5.7)

Here J is the total number of possible labels. By recursively computing for every node and choos-

ing the current highest impurity value’s corresponding splitting rule, finally a leaf node will reach

zero as Gini impurity value, indicating that all data in this node belong to to a same label, then

this path is completed. This method is slightly correlated but should be distinguished with the

46

following technique. Information gain is the most commonly used metrics which is based on the

entropy concept from information theory [56]. Entropy is defined as:

H(T) = IE(p1, p2, ..., pn) = −
J∑

i=1

pi log2 pi (5.8)

p1, p2, ... represent the distribution fraction of each class in the current node, sum of which is

always 1. Information gain is defined as entropy value for current node minus the weighted sum

of all child nodes’ entropy value:

IG(T, a) = H(T)−H(T |a) (5.9)

, by at each node choosing the largest information gain, algorithms tries to do the max split in order

to keep the depth of tree as small as possible. This process is also repeated until all data in current

node already belong to to a same label.

5.5.2 Random Forester and GBDT

In most cases different measuring metrics introduced above have similar performances, so we will

not discuss more detailed metrics-related differences. Decision tree tends to overfit training set

especially when it grows too deep without regulation or early pruning, but this drawback inspired

scientists and engineers to apply the concept of ensemble learning into single decision trees. Ran-

dom decision forests, or more commonly called as random forests [57, 58], is one of the ensemble

learning methods that operates by combining multiple single decision trees when training. More

specifically, the training process adopts bagging or bootstrap aggregating as introduced in Section

5.3, into a branch of single decision trees. While in each node for every tree, feature bagging is

also utilized to ensure each tree does not reflect too strong correlation due to the correlation of

specific features: only select a random subset of features, not all of them. Random forests also get

47

developed to different variants including Extremely randomized trees (ExtraTrees [59]) or combin-

ing with unsupervised learning, but in this thesis, we will only compare the most common random

forester algorithm with other machine learning algorithms.

GBDT(Gradient Boosted Decision Tree) is boosting ensemble technique combining with deci-

sion trees and learning by gradient as introduced in Section 5.3. It performs very well at regression

and ranking problems[60] and it can also handle classification problems, it is also scalable and not

easily to overfit but not that intuitive to understand as Random Forest. In this thesis, we will leave

out the algorithm details and directly compare it with other ensemble techniques for reference.

5.5.3 Result and Analysis

In this section, we are presenting and analyzing results for different models. Here for Random

Forest and Gradient Boosted Decision Tree, we are using its default hyperparameters from Scikit-

Learn: 10 and 100 as a number of trees, Gini impurity as splitting measuring metrics, two as

max depth and so on. Default single decision tree already returns a good 94% accuracy with

87% F-score, a 10-tree default Random Forest model returns a steady 95% accuracy and 90% F-

score. Default Gradient Boosted Decision Tree only returns an 81% accuracy and 80% F-score,

but it evolves to become better when size and depth get larger as expected, but still not as good

as Random Forest. Figure 5.9 shows the ROC curves for different tree models including single

decision tree, Random Forest, and Gradient Boosted Decision Tree. Random Forest outperforms

others by large, but it does not get significantly better performance when increasing parameters to

make it more sophisticated according to figure 5.10.

Figure 5.8 demonstrates the Learning Curve for default Random Forest model. It is notice-

able that the gap between Cross-validation score and Training score is much larger than Logistic

Regression, which indicates the Random Forest model might overfit the training set. Another pos-

sibility is that the training set is contradictory to itself to some degree. Even these hypotheses

48

might be true; Random Forest is still much better than Logistic Regression for this particular data

set. We are also interested to see model’s performance on training set without oversampling by

again comparing ROC curves. Taking Random Forest as example model, figure 5.11 shows that

resampling does help a lot on improving model performance.

Figure 5.8: Learning curve for default Random Forest

5.6 Multi-layer Perceptron

5.6.1 Principle Procedure

Multi-layer Perceptron, or more commonly called Neural network, is a computational approach

based on neural units (perceptrons). Each connected perceptron has a weight associated with it.

During the learning phase, the whole network learns by adjusting the weight and thus can predict

the correct output tuples, which is the accurate classification in our study. Neural networks involve

long training times. However, they usually have a high tolerance of noisy data, and they have the

49

Figure 5.9: ROC curves for different tree models

Figure 5.10: ROC curves for different tree size

50

Figure 5.11: ROC curves for with and without resampling

advantage to classify patterns they have not been trained on[61]. This is ideal for us because we

have a relatively vague understanding of the relationships between the features.

The perceptron, mentioned above as the basic unit in a neural network, is a supervised learn-

ing algorithm of binary classifiers to determine whether an input belongs to a class or another

[62]. Each perceptron is a linear classifier, and may have a summation function like the algorithm

introduced in Section 5.4. For each training sample j, actual output is:

yj = f(w · xj) (5.10)

= f(w0xj,0 + w1xj,1 + ...+ wnxj,n) (5.11)

We use the Heaviside step function as the activation function, as shown below to make a binary

classification:

51

f(x) =

 1, if w · x+ b > 0

0, otherwise

For more complicated or non-linearly divisible problems, the perceptrons are connected into a

multi-layer feedforward neural network [63, 64]. The perceptrons in each layer are not connected,

and each layer is fully connected to the next layer. The first layer has input neurons, sending

information to the next layer. The second layer processes information, and finally sends to the last

layer of output neurons. The second layer is called hidden layer. The more complex system may

have more layers. A neuron’s network function f(x) is defined as a composition of other functions

gi(x). Interestingly, gi(x)can further be defined as a composition of hi(x). We use nonlinear

weighted sum to represent the function:

f(x) = K

(∑
i

wigi(x)

)
(5.12)

where K is the activation function. Furthermore, gi(x) follows similar rule, depending upon the

output of every h(x). To train such a multi-layer model efficiently, a technique called Backpropa-

gation is invented and commonly used in today’s implementations. It repeats a two-phase cycle to

training the model until some criteria met. The first step is to calculate the result based on current

parameters layer by layer until output. The second step is to compare the current result against

target output using a loss function, then propagate backward from output to input to update the

parameter according to gradient descent value. A detailed introduction is in [65], here we directly

run the model and compare results. It is also indicated in [65] that, with enough layers and enough

perceptrons, a neural network can interpret almost any complicated logic, which might outperform

any known models.

52

5.6.2 Result and Analysis

The default model with one hidden layer and total 100 perceptrons returns good accuracy 93% and

F-score 90% as shown in figure 5.12, which is quite good already. We are also interested to see

how different complication levels affect the result. Not surprisingly, comparing ROCs from models

with different hidden layer size and perceptrons number does not show a significant difference as in

figure 5.13, even though the performance in accuracy varies from 85% to 94% and F-score ranges

from 80% to 90%. This result again proves our conclusion that the logic behind determining an

App as malicious is rather straightforward and robust, especially even the default 100-perceptron

model outperforms a 40-40-40-40 model by a little bit. We also find the Learning Curves for

different models vary a lot, which indicates that tuning parameters for Neural Networks is of

particular importance to avoid both underfitting and overfitting.

On the other hand, since it is quite hard to tune a neural network, we want to apply Ensemble

techniques to overcome it. What is more, we decided to do ensemble on all three models: Logistic

Regression to interpret linear correlation, Random Forest to cover complex logic, and several weak

Neural Network models to capture main prediction logic. Figure 5.14 shows the ROC curve for

an Ensemble model that contains all three models with default parameters. Unfortunately, the

logistic regression performs too bad which lowered the whole performance. Figure 5.15 shows the

Ensemble model that only contains Random Forest and Neural Network. This time the Ensemble

model takes advantage of both models and performs better than any single one. Overall speaking,

we achieved 95.1% accuracy with 90.5% F-score, which is better than other related researches by

a lot.

53

Figure 5.12: ROC curve for default neural network model

Figure 5.13: ROC curve for different neural network models

54

Figure 5.14: ROC curve for Ensemble model

55

Figure 5.15: ROC curve for Ensemble model - excluding Logistic Regression

56

CHAPTER 6

Conclusion

Personal Portable Devices (PPD), or more commonly called mobile devices, have significantly

brought people’s personal lives to a new high level. Smartphone applications or simplified as Apps,

provide potential vulnerability for accessing privacy, which is harmful to normal users, and hard

to discover. Due to Android’s top popularity and open-source nature, it has also been the priority

target of malicious Apps over other mobile operating systems. Existing techniques for malware

detection have their limitations of either being too heavy-weight or requires Internet connection,

and some of them may need to observe the behaviors after they have already happened. In this

paper, we presented an Android Permission Model-based technique to detect malware. The main

contributions of our work are summarized as below:

• A big data set of malware and benign Apps is collected and decompiled, and features are

extracted and aggregated. Android permission model is studied in detail to pre-process and

clean the permission data.

• The logical and statistical analysis is performed to first analyze single permission - mal-

ware correlation by paired Chi-square test. Another Chi-square test is conducted between

permissions to study the internal relations between two permission combinations.

• Principal component analysis is conducted to reduce the dimension of features, help analyze

the complexity and understand features better.

• Class-imbalance issue is resolved by resampling the benign Apps’ data. It is explained in

detail, and later experiments show positive support.

57

• The Linear model, tree model, neural network and Ensemble model is studied, utilized and

analyzed to detect the malware in deep. Experiments are conducted for each model, ROC

and Learning curve are also plotted to demonstrate the performance of the models.

• The ensemble is conducted at the end to take advantage from each of the three models,

achieving 95.1% accuracy with 90.5% F-score without much overfitting.

Our future work includes:

• Deeper understanding on the logic to predict malware.

• More detailed parameter tuning for separate models.

• More diversity on Ensemble models.

• Consider the practical implementation in order to bring our research into real products.

58

Bibliography

[1] Wikipedia. Mobile operating system — wikipedia, the free encyclopedia, 2017. [Online;
accessed 7-March-2017].

[2] Statista. Number of apps available in leading app stores as of june 2016, 2016. [Online;
accessed 7-March-2017].

[3] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza Sadeghi,
and Bhargava Shastry. Towards taming privilege-escalation attacks on android. In NDSS,
2012.

[4] Renee Shipley. The best anti-malware software of 2017, 2016. [Online; accessed 7-March-
2017].

[5] Joe Hindy. 15 best antivirus android apps and anti-malware android apps, 2017. [Online;
accessed 7-March-2017].

[6] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In Broad-
band, Wireless Computing, Communication and Applications (BWCCA), 2010 International
Conference on, pages 297–300. IEEE, 2010.

[7] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques
Klein, and Yves Le Traon. Effective inter-component communication mapping in android
with epicc: An essential step towards holistic security analysis. In Proceedings of the 22nd
USENIX security symposium, pages 543–558, 2013.

[8] Ed Burnette. Hello, Android: introducing Google’s mobile development platform. Pragmatic
Bookshelf, 2009.

[9] Kyoochang Jeong and Heejo Lee. Code graph for malware detection. In Information Net-
working, 2008. ICOIN 2008. International Conference on, pages 1–5. IEEE, 2008.

[10] Haoran Guo, Jianmin Pang, Yichi Zhang, Feng Yue, and Rongcai Zhao. Hero: A novel
malware detection framework based on binary translation. In Intelligent Computing and
Intelligent Systems (ICIS), 2010 IEEE International Conference on, volume 1, pages 411–
415. IEEE, 2010.

[11] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining specifications of mali-

59

cious behavior. In Proceedings of the 1st India software engineering conference, pages 5–14.
ACM, 2008.

[12] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated static code analysis for classifying
android applications using machine learning. In Computational Intelligence and Security
(CIS), 2010 International Conference on, pages 329–333. IEEE, 2010.

[13] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on Computer and com-
munications security, pages 235–245. ACM, 2009.

[14] Min Zheng, Mingshen Sun, and John CS Lui. Droid analytics: a signature based analytic sys-
tem to collect, extract, analyze and associate android malware. In Trust, Security and Privacy
in Computing and Communications (TrustCom), 2013 12th IEEE International Conference
on, pages 163–171. IEEE, 2013.

[15] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS), 32(2):5, 2014.

[16] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X Sean Wang,
and Binyu Zang. Vetting undesirable behaviors in android apps with permission use analy-
sis. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 611–622. ACM, 2013.

[17] android.com. Permissions, 2017. [Online; accessed 7-March-2017].

[18] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: analyzing the
android permission specification. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 217–228. ACM, 2012.

[19] android.com. Manifest.permission, 2017. [Online; accessed 7-March-2017].

[20] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Recognizing speech from
gyroscope signals. In 23rd USENIX Security Symposium (USENIX Security 14), pages 1053–
1067, 2014.

[21] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. Android
permissions demystified. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 627–638. ACM, 2011.

[22] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang. An empirical study on
android for saving non-shared data on public storage. In ICT Systems Security and Privacy

60

Protection, pages 542–556. Springer, 2015.

[23] David Barrera, H Güneş Kayacik, Paul C van Oorschot, and Anil Somayaji. A methodology
for empirical analysis of permission-based security models and its application to android. In
Proceedings of the 17th ACM conference on Computer and communications security, pages
73–84. ACM, 2010.

[24] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution.
In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95–109. IEEE, 2012.

[25] V Babu Rajesh, Phaninder Reddy, P Himanshu, and Mahesh U Patil. Droidswan: Detect-
ing malicious android applications based on static feature analysis. Computer Science &
Information Technology, page 163.

[26] Zarni Aung and Win Zaw. Permission-based android malware detection. International Jour-
nal of Scientific and Technology Research, 2(3):228–234, 2013.

[27] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT
Siemens. Drebin: Effective and explainable detection of android malware in your pocket. In
NDSS, 2014.

[28] Justin Sahs and Latifur Khan. A machine learning approach to android malware detection.
In Intelligence and security informatics conference (eisic), 2012 european, pages 141–147.
IEEE, 2012.

[29] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. Droidmat:
Android malware detection through manifest and api calls tracing. In Information Security
(Asia JCIS), 2012 Seventh Asia Joint Conference on, pages 62–69. IEEE, 2012.

[30] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market: detecting
malicious apps in official and alternative android markets. In NDSS, volume 25, pages 50–52,
2012.

[31] B Alll and C Tumbleson. Dex2jar: Tools to work with android. dex and java. class fil es.

[32] R Winsniewski. Apktool: a tool for reverse engineering android apk files. URL:
https://ibotpeaches. github. io/Apktool/(vi sited on 07/27/2016), 2012.

[33] Java Decompiler. Jd-gui.

[34] Timothy Vidas, Nicolas Christin, and Lorrie Cranor. Curbing android permission creep. In
Proceedings of the Web, volume 2, pages 91–96, 2011.

[35] Wikipedia. Chi-squared test — wikipedia, the free encyclopedia, 2016. [Online; accessed

61

7-March-2017].

[36] Jerome H Friedman. Data mining and statistics: What’s the connection? Computing Science
and Statistics, 29(1):3–9, 1998.

[37] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210–229, 1959.

[38] Ron Kohavi and Foster Provost. Glossary of terms. Machine Learning, 30(2-3):271–274,
1998.

[39] Pedro Domingos. A few useful things to know about machine learning. Communications of
the ACM, 55(10):78–87, 2012.

[40] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, informedness,
markedness and correlation. 2011.

[41] Wikipedia. Principal component analysis — wikipedia, the free encyclopedia, 2017. [Online;
accessed 7-March-2017].

[42] Tian-Yu Liu. Easyensemble and feature selection for imbalance data sets. In Bioinformatics,
Systems Biology and Intelligent Computing, 2009. IJCBS’09. International Joint Conference
on, pages 517–520. IEEE, 2009.

[43] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research,
16:321–357, 2002.

[44] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-2):1–39, 2010.

[45] Francisco Pereira, Tom Mitchell, and Matthew Botvinick. Machine learning classifiers and
fmri: a tutorial overview. Neuroimage, 45(1):S199–S209, 2009.

[46] Peter Bühlmann. Bagging, boosting and ensemble methods. In Handbook of Computational
Statistics, pages 985–1022. Springer, 2012.

[47] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[48] Michael Collins, Robert E Schapire, and Yoram Singer. Logistic regression, adaboost and
bregman distances. Machine Learning, 48(1-3):253–285, 2002.

[49] Jane Elith, John R Leathwick, and Trevor Hastie. A working guide to boosted regression
trees. Journal of Animal Ecology, 77(4):802–813, 2008.

[50] MW Browne. Predictive validity of a linear regression equation. British Journal of Mathe-

62

matical and Statistical Psychology, 28(1):79–87, 1975.

[51] Strother H Walker and David B Duncan. Estimation of the probability of an event as a
function of several independent variables. Biometrika, 54(1-2):167–179, 1967.

[52] Lior Rokach and Oded Maimon. Data mining with decision trees: theory and applications.
World scientific, 2014.

[53] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier methodology.
IEEE transactions on systems, man, and cybernetics, 21(3):660–674, 1991.

[54] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm. In icml,
volume 99, pages 124–133, 1999.

[55] Mark A Friedl and Carla E Brodley. Decision tree classification of land cover from remotely
sensed data. Remote sensing of environment, 61(3):399–409, 1997.

[56] Robert M Gray. Entropy and information theory. Springer Science & Business Media, 2011.

[57] Tin Kam Ho. Random decision forests. In Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on, volume 1, pages 278–282. IEEE, 1995.

[58] Tin Kam Ho. The random subspace method for constructing decision forests. IEEE transac-
tions on pattern analysis and machine intelligence, 20(8):832–844, 1998.

[59] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

[60] David Cossock and Tong Zhang. Statistical analysis of bayes optimal subset ranking. IEEE
Transactions on Information Theory, 54(11):5140–5154, 2008.

[61] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Else-
vier, 2011.

[62] Yoav Freund and Robert E Schapire. Large margin classification using the perceptron algo-
rithm. Machine learning, 37(3):277–296, 1999.

[63] Teuvo Kohonen. An introduction to neural computing. Neural networks, 1(1):3–16, 1988.

[64] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[65] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366, 1989.

63

