The Influence of Diversity and Experience on the Effects of Crowd Size

Lionel P. Robert Jr*
School of Information, University of Michigan, 4381 North Quad, 105 South State Street, Ann Arbor, MI 48109-1285. E-mail: lprobert@umich.edu

Daniel M. Romero
School of Information, University of Michigan, 4381 North Quad, 105 South State Street, Ann Arbor, MI 48109-1285. E-mail: drom@umich.edu

One advantage of crowds over traditional teams is that crowds enable the assembling of a large number of individuals to address problems. The literature is unclear, however, about the relationship between the size of crowds and its impact on outcomes. To better understand the effects of crowd size we conducted a study on the retention and performance based on 4,317 articles in the WikiProject Film community. Our results suggest that crowds benefit from their size when they are diverse, experienced, and have low retention rates.

Introduction

Crowds are being deployed to tackle complex problems and issues that were once the domain of traditional organizational teams (Chen, Ren, & Riedl, 2010; Yu & Nickerson, 2011). Yet, unlike their organizational counterparts, we know much less about what facilitates better retention and performance in crowds (Qin, Salter-Townshend, & Cunningham, 2014). As a result, our knowledge of what leads to effective crowd work has not kept pace with the deployment of crowds in our global economy (Ransbotham & Kane, 2011; Xiao, 2014). As crowds become increasingly vital to how work gets done, there is a need to better comprehend what conditions facilitate better retention and performance (Arazy, Yeo, & Nov, 2013).

One advantage of crowds over traditional teams is that they enable the assembling of large numbers of individuals. Yet the literature is unclear about when an increase in crowd size might actually lead to better outcomes. There are three views on the relationship between size and both retention and performance in the literature on traditional teams. One view is that increase in size should increase retention and performance. As size increases so should work output and resources available to attract more members (Cummings, Kiesler, Zadeh, & Balakrishnan, 2013; Hausknecht, Trevor, & Howard, 2009). Another view is that size should be negatively related to retention and performance. This view asserts that as size increases coordination cost and conflict increase and individual effort decreases, all of which should lower retention and performance (Alnuaimi, Robert, & Maruping, 2010; Hausknecht et al., 2009; Newell, Maruping, Riemenschneider, & Robert, 2008; Romero et al., 2015; Srinivasan, Maruping, & Robert, 2012). A third view on size highlighted by Oliver and Marwell (1988) is that the effects of size are relative to a group’s composition.

This article builds on this third view and examines the role of crowd composition on the relationship between crowd size and both retention and performance. This article extends the literature on crowds in three ways. One, we examine how crowd composition, in terms of diversity and experience, impacts the relationship between size and performance. Two, we examine the impact of diversity and experience on the relationship between crowd size and retention. Retention, the ability to retain participants in a crowd, has been viewed as an important outcome in crowd work (Halfaker, Geiger, Morgan, & Riedl 2013; Ransbotham & Kane, 2011). However, research has not examined how size, diversity, and experience can combine to undermine or facilitate better retention in crowds. Three, we investigate the relationship between retention and performance. Although retention has been touted as

*Corresponding Author

Received June 18, 2015; revised August 24, 2015; accepted August 25, 2015

© 2016 ASIS&T • Published online 2 March 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jasist.23653
Crowd Size and the Performance of Crowds

The research on crowd size and crowd performance in Wikipedia crowds can be divided into three categories: the direct effect approach, the indirect effect approach, and the contingency approach. The direct effect approach includes studies that examine the relationship between crowd size and performance in crowds without any mediators or moderators. Some of these studies employ crowd size as one of the theoretical constructs of interest whereas others include it as only a control variable. The results have been inconsistent. For example, several studies have included crowd size as a control variable predicting performance, and these studies found that crowd size is nonsignificant (Arazy & Nov, 2010; Arazy, Nov, Patterson, & Yeo, 2011; Kane, 2011). However, several other studies found that size is positively related to crowd performance (Arazy et al., 2013; Carillo & Okoli, 2011; Choi, Woo, & Han, 2013; Wilkinson & Huberman, 2007). The indirect approach involves studies that examine how crowd size impacts crowd performance through a mediating variable. One study employing the indirect approach found that crowd size decreased crowd performance, in part by increasing diversity (Arazy, Morgan, & Patterson, 2006).

The contingency approach examines how moderators influence the relationship between crowd size and performance. Several studies have employed the contingency approach to understand the relationship between crowd size and performance. Two of these studies examined the influence of inequality of workload among editors on the relationship between crowd size and performance (Kittur & Kraut, 2008; Kittur, Lee, & Kraut, 2009). Low levels of inequality in article workload mean that work is evenly distributed across all editors, whereas high levels of inequality mean that work is unevenly distributed and that most work is performed by a relatively few editors. These studies argue that inequality in article workload represents better or more coordination, which should become increasingly important as crowd size increases. They have found that inequality in article workload either decreased the negative relationship between size and performance (Kittur & Kraut, 2008) or strengthened the positive relationship between crowd size and performance (Kittur et al., 2009). Another study found that discussion among crowd members moderated the relationship between crowd size and performance. Specifically, the positive relationship between crowd size and performance became stronger when discussion among crowd members increased (Choi et al., 2013). In all, the literature on crowd size suggests that the relationship between size and performance is likely to be dependent on other variables.

Crowd Size and Retention in Crowds

Retention remains an important topic to Wikipedia scholars (Mesgar, Okoli, Mehdi, Nielsen, & Lanamäki, 2015). In the near term, the importance of retention is demonstrated by the strong link between retention and performance (Ransbotham & Kane, 2011). In the long term, the ability to attract and maintain a voluntary workforce is critical to the success of Wikipedia’s long-term sustainability (Halfaker et al., 2013). Yet, scholars have noted that there has been a decrease in the number of active participants in the Wikipedia community (Lam & Riedl, 2011). This decrease has been attributed to Wikipedia’s inability to retain participants in its community (Halfaker et al., 2013). The importance of retention is expected to increase as the topic of recruitment and inclusion of under-represented minorities becomes central to the broader Wikipedia community (WMDW, 2014).

Much of the research on retention has focused on policies and procedures that can create conditions that facilitate retention (see Halfaker et al., 2013, for a review). However, much less research has been directed at understanding how crowd characteristics might influence retention. This is in stark contrast to previous studies examining retention in other online groups, where group characteristics like size have shown to be particularly important in understanding retention (Butler, 2001). Similarly, we know very little about how retention might impact the performance of crowds. For example, in a recent review of Wikipedia research, Mesgar et al. (2015) only identified one study that examined the relationship between retention and crowd performance. Surprisingly, the study showed that low levels of retention could actually be good for performance under certain circumstances (Ransbotham & Kane, 2011). In all, more research is needed to better understand the relationship between crowd size and retention, and retention and crowd performance.

Theoretical Model

Our model asserts that the relationship between crowd size and both retention and performance is dependent largely on crowd composition (in this study defined as diversity and experience). Our model further asserts that the relationship between crowd size and performance is also largely dependent on retention (see Figure 1). In developing our hypotheses, we draw from the literature on both crowds and
We examine three types of diversity found in the literature examining Wikipedia crowds (Arazy & Nov, 2010; Chen et al., 2010; Kittur & Kraut, 2008). The first two can be considered a type of disparity. Disparity represents the inequality in power, roles, and resources (Harrison & Klein, 2007). The first disparity construct is inequality in article workload when considering the work performed within each article. We label this construct as local workload diversity (LWD). This construct originates from Kittur and Kraut (2008) and was originally used as a measure of coordination. The second is disparity in terms of the inequality in workload when considering the work performed in all of Wikipedia. We label this construct as global workload diversity (GWD). GWD was inspired from Arazy and Nov (2010) and represents the inequality in broader knowledge of the Wikipedia community. LWD and GWD both represent a measure of disparity in workload. However, because one measures disparity in within article workload and the other one measures disparity in workload over all of Wikipedia, they could have very different effects. Indeed, users with high workload within an article could have little workload across Wikipedia if they only contribute to a single or very few articles, and hence, articles with high LWD could have low GWD and vice versa. Users with high levels of contributions within an article are most likely experts in the subject of the article and users with high levels of contribution in Wikipedia are likely to be experts in Wikipedia rules and conventions. Therefore, it is important to distinguish and separately measure LWD and GWD. The third diversity construct can be considered a type of variety. It represents the differences in information, knowledge, and backgrounds among team members (Harrison & Klein, 2007). We operationalized it in terms of the number of topic areas editors had previously worked on together (Chen et al., 2010). This is labeled as interest diversity. Taken together, we examine crowd diversity as LWD and GWD along with interest diversity.

Crowd Size and Local Workload Diversity (LWD)

LWD should moderate the relationship between crowd size and performance. As crowd size increases, it becomes more difficult to coordinate work among individuals (Cummings et al., 2013); yet, at the same time this coordination becomes more important (Kittur & Kraut, 2008). In fact, the inability to coordinate is often cited as one of the major reasons that increases in group size are often associated with decreases in performance (Thomas & Fink, 1963; Weber, Camerer, Rottenstreich, & Knez, 2001). However, in crowds with high LWD, only a relatively small subset of individuals has to coordinate their work (Arazy & Nov, 2010). Hence, in crowds with high LWD, coordination efforts do not have to increase at the same rate as crowd size (Arazy & Nov, 2010). This allows crowds to benefit from increases in size without the drawbacks associated with the inability to coordinate work (Kittur & Kraut, 2008).

\[H1a: \text{Crowd size is positively related to crowd performance when LWD increases.} \]

Crowd size should be positively related to retention when LWD is high, for two reasons. One, increases in crowd size can create a chaotic and unstructured work environment that newcomers find difficult to assimilate into because of coordination problems (Ransbotham & Kane, 2011). This often leads to re-edits—the actions taken by one editor to overwrite the edits of another editor—and the so-called edit wars that often cause decreases in crowd retention (Halfaker, Kittur, & Riedl, 2011; Suh, Convertino, Chi, & Pirolli, 2009). Because crowds high in LWD have considerable variance in the amount of work done across participants, they typically have the property that a few individuals produce more of the work (Kittur et al., 2009). This core set of editors can provide structure to an otherwise unstructured environment, making edit wars less likely or more manageable.

Two, as crowd size increases it becomes difficult for newcomers to understand the implicit norms and unwritten rules of the crowd, such as when and where to contribute (Krieger, Stark, & Klemmer, 2009), which decreases retention (Halfaker et al., 2013). The core group of editors present in crowds high in LWD becomes a strong reference point. As such, when newcomers need to understand the implicit norms and routines of the crowd they have a core set of editors to both model themselves after and go to for questions. Both the ordered work environment and the ability to have a strong reference group should help crowds leverage their size to retain more members.

\[H1b: \text{Crowd size is positively related to crowd retention when LWD increases.} \]

Crowd Size and Global Workload Diversity (GWD)

GWD should also help crowds take advantage of their increases in size. First, GWD can represent the ability of crowds to manage work across articles. Wikipedia articles are not standalone entities but instead have to fit within the broader Wikipedia community (Kittur & Kraut, 2010). As crowd size increases, it can become a challenge to ensure consistency across articles. Editors with experience in the broader Wikipedia community are more likely to be in a
position to help crowds communicate and coordinate across articles to ensure consistency (Kittur & Kraut, 2008).

Two, GWD may also enhance the capability of crowds to manage conflict and resolve deadlocks. Conflict can both result from and lead to work stoppages or other behavior detrimental to crowd performance (Arazy et al., 2013). As crowd size increases such events are likely to increase in frequency (Kittur & Kraut, 2008), but editors with experience in the broader Wikipedia community are likely to know how to handle problems related to conflict or other unproductive behaviors (Arazy & Nov, 2010). This assertion aligns with other research on Wikipedia crowds that found that GWD leads to better crowd performance (Arazy & Nov, 2010). This is also consistent with findings that diversity in unequal power distributions facilitates hierarchical structures, which can lead to more effective decision making and ultimately performance (Daniel, Agarwal, & Stewart, 2013; Groysberg, Polzer, & Elfenbein, 2011; Overbeck, Correll, & Park, 2005). In sum, as the process losses associated with size increase, increases in GWD should help crowd size lead to better crowd performance.

H2a: Crowd size is positively related to crowd performance when GWD increases.

A similar relationship should exist regarding crowd size, GWD and retention. As crowd size increases so does the likelihood that conflict and other unproductive activities will occur (Kittur & Kraut, 2010). Having a group of experienced editors who can intervene to resolve these issues and provide guidance to the crowd is much more inductive to retaining participants. For example, research on Wikipedia crowds has shown that retention increases when crowds can resolve disputes (Halfaker et al., 2011). When increases in crowd size are accompanied by increases in GWD we expect crowd size to be associated with better retention.

H2b: Crowd size is positively related to crowd retention when GWD increases.

Crowd Size and Interest Diversity

We also assert that diversity in members’ interests should determine whether increased crowd size leads to better performance. The assertion that crowd size is positively related to crowd performance is often built on the assumption that more individuals can bring additional skills and knowledge to the group (Van Knippenberg & Schippers, 2007; Windeler, Maruping, Robert, & Riemenschenieder, 2015). When this is true, increases in size lead to increases in the capabilities of the crowd, which in turn should lead to better crowd performance. However, this is only true if each new member brings additional unique knowledge or skills to the crowd (Page, 2007). Diversity in members’ interests can reflect the differences in knowledge and skills among members (Chen et al., 2010; Goyal, Maruping, & Robert, 2008). Therefore, increases in crowd size should be positively related to crowd performance when interest diversity is high.

On the other hand, when crowds are low in interest diversity, increases in crowd size are less likely to translate to better crowd performance. When crowds low in interest diversity increase in size they are adding new members with the same knowledge or skill set (Van Knippenberg & Schippers, 2007). These crowds are likely to encounter social loafing as size increases (Alnuaimi, Robert, & Maruping, 2009; Srinivasan et al., 2012). Social loafing, or the reduction of individual effort within groups, has been shown to increase as group size increases (Alnuaimi et al., 2010; Srinivasan, Maruping, & Robert, 2010). However, social loafing is less likely to occur in groups with diverse information and knowledge (Valacich, Wheeler, Mennecke, & Wachter, 1995).

H3a: Crowd size is positively related to crowd performance as interest diversity increases.

Along with enabling crowd size to lead to better performance, interest diversity should also help crowd size lead to more retention. As crowds increase they can become daunting for newcomers. Increases in traditional team size have been associated with less cohesion and more conflict (Amazon & Sapientia, 1997). Crowds with more interest diversity are likely to avoid these problems normally associated with increases in size. Newcomers who join groups typically look for others who have similar interests (Gotsis & Kortezi, 2015; Newell, Robert, Riemenschneider, & Maruping, 2009; Robert, 2013). These newcomers are much more likely to find others with similar interests in crowds high in interest diversity. Additionally, groups high in interest diversity are often more tolerant and accepting of others (Cox & Blake, 1991; Gonzalez & Denis, 2009). The same could be true for crowds. Therefore, we might expect highly diverse crowds to be more open to newcomers. Taken together, both the ability to find like others and the more tolerant climate in crowds with more interest diversity should allow increases in crowd size to convert to more retention.

H3b: Crowd size is positively related to crowd retention as interest diversity increases.

Crowd Size and Experience

More experienced editors should be better able to personally deal with issues associated with increases in crowd size and help others deal with these issues also. Research in organizations has consistently linked employee experience to higher levels of knowledge and skills (Dokko, Wilk, & Rothbard, 2009; Tesluk & Jacobs, 1998; Wright & Bonett, 2002) and more willingness to help others perform their job well (Ng & Feldman, 2010). More experienced editors should also be less susceptible to effort reduction as crowd size increases. Experienced employees are often the most motivated employees (Bretz & Judge, 1994; Tesluk &
Jacobs, 1998; Wagner, Ferris, Fandt, & Wayne, 1987). This is particularly important because decreases in individual effort, which can occur as size increases, have been accredited to decreases in motivation (Almuaimi et al., 2010). This means that crowds with more experienced editors are less susceptible to decreases in individual effort as size increases. In sum, when crowds have editors who have more ability, who are willing to help others, and who are more motivated, increases in size are more likely to be positively related to crowd performance.

H4a: Crowd size is positively related to crowd performance as crowd experience increases.

Crowd size should also be positively related to retention when crowds have more experience. Experienced members are both less likely to leave and more likely to help retain new members. Organizational scholars argue that experienced employees are less sensitive to the changing work conditions and the stress that often leads to turnover (Johnston, Parasuraman, & Futrell, 1989). One reason this occurs is that employees with more experience are likely to have developed coping skills to handle stressful situations (Armstrong-Stassen, 1994; Long, 1993; Wright & Bonett, 1993), and stress does not necessarily lead to turnover when individuals can find ways to cope with it (Wright & Bonett, 1993). Another reason is that experienced employees are more committed than inexperienced ones (Joseph, Kok-Yee, Koh, & Soon, 2007). When difficulties occur, more committed employees are less likely to leave (Ahuja, Chudoba, Kacmar, McKnight, & George, 2007). Both better coping skills and higher levels of commitment should translate into higher retention when crowd size increases.

H4b: Crowd size is positively related to crowd retention as crowd experience increases.

Crowd Size and Retention

Generally, we expect crowd size to lead to better performance when retention is low. Low retention should help alleviate many of the problems associated with increases in size. As we stated earlier, problems associated with increases in crowd size include coordination difficulties, conflict, and social loafing. Many of these problems in the organization literature have been associated with the addition of employees who are not a good fit with the organization (Kristof-Brown, Zimmerman, & Johnson, 2005). These employees can often be the source of conflict and unproductive interactions with others (Krackhardt & Porter, 1985). The removal of crowd members who are not a good fit should reduce some of the problems associated with increases in crowd size.

Low retention can represent a filtering process where members who are best able to contribute to the team and conform to the norms of the crowd stay while others leave. When new editors join crowds they often encounter a hostile environment and have to learn quickly whether and where they fit into the crowd (Halfaker et al., 2011, 2013). This environment could create a self-selection process, helping editors determine which crowd best fits their interests and skill set. Indirect evidence from the organizational literature supports this assertion. McEvoy and Cascio (1987), in a meta-analysis of 24 studies, found that voluntary turnover was lower among higher-performing employees than lower-performing employees. In other words, high performers were more likely to remain with the company. This could reflect a self-selection system, where employees who fit in and feel successful remain and those who do not move on. This is supported by prior literature that found that low retention can be the result of unhappy employees leaving, which can create a much better work environment for the remaining employees (Krackhardt & Porter, 1985). For example, it is possible that some conflicts and edit wars are resolved or avoided when some editors simply leave the crowd.

Taken together, prior literature on retention in organizations suggests that the filtering process represented by low retention can reduce the process losses normally associated with increases in crowd size. On the other hand, as size increases in crowds with high retention, coordination problems, conflicts, and social loafing are likely to bog down crowds.

H5: Crowd size is positively related to crowd performance as crowd retention decreases.

Method

We collected data from articles on films from Wikipedia’s WikiProject Film community. For each article, we obtained a complete list of edits, including time of the edit and username of the editor. Nearly 350,000 editors contributed at least one edit to an article in our data set. We also obtained a list of all Wikipedia articles that each editor contributed to. We chose this particular community for two reasons. First, most of the articles in the community have been evaluated for quality—we will provide more details on this evaluation. Second, we focused our study on a homogeneous set of articles to minimize variation in other dimensions such as breaking news, unexpected events, and controversial topics. In this way, we prevented our results from being driven by these exogenous factors.

Article Quality

To measure the quality of Wikipedia articles, we used each article’s class as assessed by the project’s own community through a peer-review process. This measure has been used as a proxy for quality in Wikipedia studies (Kittur, Chi, & Suh, 2008; Kittur & Kraut, 2008; Liu & Ram, 2011;

1More details about the assessment process and quality classes can be found at http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Film/Assessment
Stvilia, Twidale, Smith, & Gasser, 2005; Wilkinson & Huberman, 2007), and there is evidence that the quality class is related to the quality assessments of outside reviewers (Kittur et al., 2008). There are six classes, or quality levels, to which articles can be assigned. In descending order of quality, the article classes are FA, GA, B, C, Start, and Stub. Articles in the classes Start and Stub contain very little information and have very few editors. Because we were interested in studying active and relatively large crowds, we dropped articles in Start and Stub from the analysis. After this filtering, our data contained 4,317 articles. We assigned each article a digit from 1 to 4 corresponding to the C, B, GA, and FA classes, respectively. There were 123 articles in each article class, a total number of articles that the pair edited. For each article, we let A_a be the set of articles u that article a has edited on Wikipedia. For every pair of editors (u_1, u_2), we measured their Jaccard similarity as $J_{u_1,u_2} = \frac{|A_{u_1} \cap A_{u_2}|}{|A_{u_1} \cup A_{u_2}|}$. This measure indicates the overlap among the articles edited by u_1 and u_2, while controlling for the total number of articles that the pair edited. For each article a, we let P_a be the set of all pairs of editors of article a. We defined the interest diversity of an article a, TD_a, as one minus the average Jaccard similarity of all pairs of editors. That is $TD_a = 1 - \frac{1}{|P_a|} \sum_{(u_1,u_2) \in P_a} J_{u_1,u_2}$. The average interest diversity was 0.994, with standard deviation of 0.009. When TD_a is high, the editors of a tend to have low overlap in the set of articles they edit, making them a more topically diverse crowd.

Local Workload Diversity (LWD)

Not all articles split the workload among editors in the same way. Some articles are characterized by having a small set of editors that contributes most of the edits, while most other editors contribute a very small number of edits. Other articles have editors who split the work more evenly. To measure the extent to which the editors of an article have a diverse or uniform workload, we used the Gini coefficient of their edits. The Gini coefficient is a measure of inequality originally used to measure dispersion in a country’s income distribution. In this context, it measures dispersion in the distribution of edits among editors. We let E_a be the set of editors of article a, and we let $W_a(e)$ be the number of times editor e contributed to article a. We defined the Local workload diversity (LWD) of article a as the Gini coefficient of the set $\cup_{e \in E_a} \{W_a(e)\}$. An article where all editors contribute a similar number of edits has a low LWD, while an article where a few editors produce significantly more edits than the rest has a high LWD. The average LWD was 0.528, with standard deviation of 0.144.

This measure was proposed by Kittur and Kraut (2008) as a measure of implicit coordination. We argue that this measure also serves as a proxy for a type of diversity. This is because an article with high LWD has different types of editors, some who contribute very little and some who contribute a lot. On the other hand, an article with low LWD has only one type of editor because all editors produce roughly the same amount of work.

Experience

We measured the extent to which editors are engaged in editing all types of Wikipedia articles. For each article a, we defined the experience of its editors as the mean number of edits each editor contributed to Wikipedia articles other than a. The average experience was 2,809 edits, with a standard deviation of 995.

Global Workload Diversity (GWD)

We measured the diversity of workload in Wikipedia as a whole in a similar way to how we measured LWD. This measures whether an article has a combination of editors who are heavy contributors to Wikipedia in general as well as editors who focus mostly on a single or very few articles, or whether most editors have about equal outer engagement. We defined the global workload diversity (GWD) of an article as the Gini coefficient of the number of contributions to other Wikipedia articles by each editor. The average GWD was 0.649, with a standard deviation of 0.084.

Retention

To measure retention, we calculated the probability that an editor who was active on a given month was also active in a future month. More precisely, for each article a and each month m in the articles’ activity period, we let $A_{a,m} be the set of editors who edited article a during month m. We let $AF_{a,m}$ be the set of editors in $A_{a,m}$ who edited the article any time after month m. The retention rate of article a is defined as $R_a = \frac{\sum_{m \in M} |AF_{a,m}|}{\sum_{m \in M} |A_{a,m}|}$. The average retention rate is 0.166 with a standard deviation of 0.076. Hence, on average, 16.6% of editors who are active on a given month come back to edit the article.

Crowd Size

We measured crowd size by the log of the number of editors for each article. The average log of number of editors was 4.66, with a standard deviation of 1.22. The actual average number of editors per article was 198, with as many as 2,618.

Results

We conducted a series of linear regressions to investigate the relationships among our variables. We used standardized independent variables in all regressions. First, we conducted
TABLE 1. Results of regression analysis to predict quality from diversity measures, experience, retention, and crowd size. Model contains a total of 4,317 observations. Coeff = coefficients, SE = Standard Errors. Significance key: *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Main effects</th>
<th>Moderation effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef.</td>
<td>SE</td>
</tr>
<tr>
<td>Interest diversity</td>
<td>0.041**</td>
<td>0.013</td>
</tr>
<tr>
<td>Experience</td>
<td>0.183**</td>
<td>0.016</td>
</tr>
<tr>
<td>Global workload diversity</td>
<td>-0.101***</td>
<td>0.020</td>
</tr>
<tr>
<td>Local workload diversity</td>
<td>0.344***</td>
<td>0.014</td>
</tr>
<tr>
<td>Retention rate</td>
<td>-0.034***</td>
<td>0.014</td>
</tr>
<tr>
<td>Crowd size</td>
<td>0.320***</td>
<td>0.019</td>
</tr>
<tr>
<td>Interest diversity × Crowd size</td>
<td>0.080***</td>
<td>0.016</td>
</tr>
<tr>
<td>Experience × Crowd size</td>
<td>0.062***</td>
<td>0.014</td>
</tr>
<tr>
<td>GWD × Crowd size</td>
<td>0.029*</td>
<td>0.015</td>
</tr>
<tr>
<td>LWD × Crowd size</td>
<td>0.163***</td>
<td>0.014</td>
</tr>
<tr>
<td>Retention rate × Crowd size</td>
<td>-0.076***</td>
<td>0.013</td>
</tr>
</tbody>
</table>

linear regressions where article quality was the dependent variable. Table 1 and Figure 2 show the results from these regressions. In the main effects model, interest diversity, local workload diversity (LWD), crowd size, and experience were positively related to quality, and global workload diversity (GWD) and retention were negatively related to quality. The R^2 was 23%. We then included the moderation effects between all the independent variables and crowd size as recommended by Aiken and West (1991). All moderation effects were significant. The model which included the moderation effects has an R^2 of 26%. The increase in variance explained was significant at the 0.001 level.

These results support our hypotheses that crowd size is positively related to crowd performance in crowds with high diversity in LWD (H1a), GWD (H2a), and interests (H3a). This highlights that crowd size does not always have a positive effect on performance, as previously found in the literature (Chen et al., 2010; Jahn, Northcraft, & Neale, 1999; Larson, Christensen, Abbott, & Franz, 1996; Page, 2007; Stasser, Taylor, & Hanna, 1994), and that diversity may be one of the factors that determine when crowd size is beneficial. The effect of experience is also greater for large crowds than for small crowds (H4a), which suggests that larger crowds benefit more from having editors who are overall more engaged in editing Wikipedia articles. Finally, the results also support our hypothesis that crowd size is positively related to crowd performance in crowds with low retention (H5), suggesting that as crowds become larger, the filtering out of workers may lead to increases in performance.

Next, we explored the impact of crowd diversity and size on retention. Table 2 and Figure 3 show the results of linear regression where retention is the dependent variable. The main effects model shows that interest diversity, LWD, and experience were positively related to retention, and GWD was negatively related to retention. This model has an R^2 of 35%. Crowd size was not significantly related to retention in the main effects model. However, when we added the moderation effects among all the independent variables and crowd size, we found that most of moderation effects were significant. Crowd size was positively related to retention in crowds high in GWD and interest diversity, supporting hypotheses H2b and H3b, respectively. However, we found no support for hypotheses H1b and H4b because crowd size was positively related to retention in crowds with low LWD, and the moderation effect between crowd size and experience was not significant.²

Discussion

The goal of this article was to examine the impact of crowd size on retention and performance in crowds. Specifically, we extended the research on crowds by demonstrating the role of crowd composition on the relationship between crowd retention and performance. This research draws from the literature on crowds and on traditional organizational teams to better understand crowd retention and performance. Our results show that the influence of crowd size is contingent on other factors. Increases in size alone do not necessarily lead to better performance or retention. Thus, our results go beyond existing knowledge and contribute to the understanding of crowds. In the following sections, we discuss the contributions and implications of our research along with future research questions. Then we present the limitations associated with the study and our conclusions.

Contributions

Results of this study highlight that crowd composition is important to understanding when size leads to better performance. More experienced and diverse crowds can leverage increases in size to achieve better performance. The addition of individuals to crowds does not necessarily increase performance. Crowd size had little if any relationship with performance when local workload diversity (LWD), interest diversity, and experience were low. But, crowd size had a strong positive relationship with performance when these factors were high. The impact of global workload diversity (GWD) on the relationship between crowd size and performance was a little more nuanced and complex. Crowd size was positively related to crowd performance when GWD was low but the relationship became much stronger as GWD increased. This study confirms research that found a similar moderation effect of LWD on the relationship between crowd size and performance (Kittur & Kraut, 2008; Kittur et al., 2009) but also extends findings to include GWD, interest diversity, and experience.

²Because more than 70% of the articles in our dataset were in quality class C, we repeated the regression analyses using only quality classes B, GA, and FA. We observed that the trends were consistent in both sets.
Our findings also highlight the complex relationships among crowd size, composition, and retention. Crowd size can lead to more or less retention depending on the crowd’s composition. Crowd size translates to better retention rates when crowds are high in both GWD and interest diversity. However, this was not the case for LWD. In fact, increases in size were negatively related to retention as LWD increased. This was completely opposite of what we expected. Previous research on retention in Wikipedia crowds has used re-edits along with a lack of opportunities to participate in crowd work to explain low retention rates (Halfaker et al., 2011, 2013). LWD may embody both of these issues. Although LWD seems to be problematic for retention, it is vital to helping crowds take advantage of their size to obtain better performance. If we assume that both better retention and better performance are our goals, it

FIG. 2. The moderation effects of each measure and crowd size on quality. GWD global workload distribution, LWD local workload distribution. [Color figure can be viewed at wileyonlinelibrary.com]
would seem that LWD presents a paradox. Crowd experience did not moderate the relationship between crowd size and retention. However, crowd experience was positively associated with crowd retention as a main effect. This indicates that experience is important to retention irrespective of the size of the crowd.

This study also contributes to our understanding of crowd retention and performance. Crowd size was positively associated with performance when retention was low but not when retention was high. The moderation effect coupled with the significant negative main effect of retention on performance seems to suggest that increases in retention do not benefit crowd performance. In fact, the opposite seems to be true. This provides evidence that crowds perform best when they are able to create an environment where members can find their place in the crowd or move on. Yet this is not without drawbacks. Crowds may be sacrificing long-term viability for short-term performance.

Finally, our results have important implications for collaborative systems that support crowd work. The use of crowds is becoming increasingly common across many domains, and this trend has inspired the design of recommender systems intended to maximize the benefits of large collaborations by suggesting new partnerships (Cosley, Frankowski, Terveen, & Riedl, 2007; McDonald, 2003). Currently, recommender systems use individual attributes like expertise and experience to make suggestions (Cosley et al., 2007). Our results suggest

![Image](wileyonlinelibrary.com)
that recommender systems should also consider the number of editors and the diversity of the crowd along with how the new member would change both the size and diversity.

Limitations

This study has several limitations. First, the results of our study were found in one particular Wikipedia community. Future studies should be conducted to determine whether our findings hold true for other Wikipedia communities and for other communities outside of Wikipedia. However, our measures and the framework we utilized can be easily applied to crowds in other contexts. Therefore, it is feasible to validate our findings in other domains. Second, we examined three types of diversity. The literature on groups has identified many types of diversity and each could be important to understanding performance in crowds. Future research should be conducted to determine whether other types of diversity moderate the impacts of crowd size on retention and performance.

Third, although our results shed light on how the effects of crowd composition differ by size, we did not attempt to quantify the exact point at which crowd composition helps or hurts crowds relative to size. Based on our results this seems to depend on the type of composition attribute. For example, experiments could be conducted to determine exactly what amount of diversity, per type of diversity, translates to better or worse outcomes as crowd size increases. Further, the magnitude of the effects we found is not very large even when the effects are significant. This is expected given the relatively small sample size and because there are many other variables that affect performance and retention. We note that our aim is not to predict the performance and retention of a project with high accuracy, but to explore the relationships between the variables we considered. Finally, although we employed the literature on traditional organizational teams, there are significant differences. Traditional organizational teams tend to be much smaller than crowds and, unlike the crowds we studied, interact through face-to-face meetings. As such, it is unclear whether these results would hold true in traditional organizational teams.

Implications for Research

This study has implications for research on crowd size and composition. Results from this study imply that the impacts of size are dependent on crowd composition and what makes larger crowds successful is not always the same as what makes smaller crowds successful. For example, we noticed a break-even point where smaller and less diverse crowds outperformed smaller and more diverse crowds. These smaller crowds performed better when they had much less crowd diversity and had higher retention. Larger crowds tended to perform better when diversity was high and retention was low. Yet, all crowds begin small and some grow while others die out. It is unclear how successful crowds make the transition from being small and homogeneous to becoming large and diverse. Future research should be conducted to determine which characteristics or behaviors enable or hinder crowds in making this transition. This research would be vital to understanding the lifecycle of crowds.

Going forward, scholars should begin to think more about the mechanisms by which the impacts of diversity relative to size influence retention and performance. Diversity is often referred to as a double-edge sword because it can have positive and negative effects on teamwork (O’Reilly, Caldwell, & Barnett, 1989). Diversity can be good for teamwork because it provides a source of unique ideas (Robert, Dennis, & Ahuja, 2008). However, it can be bad because diverse teams have greater difficulty in working together effectively (Van Knippenberg & Schippers, 2007). Based on this premise, it appears that size is crucial to determining when diversity hinders the ability of group members to work well together. But more research is needed to fully examine why. In particular, future research on crowd diversity could explore mediators that could help explain why the moderation effect between size and diversity leads to better performance or more or less retention.

Although we caution against over-generalizing from one study, our findings call into question the value of retention relative to performance. The influence of retention on the relationship between crowd size and performance is both interesting and problematic. On one hand, retention seems to hurt the performance of crowds. On the other hand, the inability of one crowd to retain members may bleed over to other crowds. For example, if an editor quits one crowd how likely is it that the editor will remain in the Wiki community? Although the performance of a specific crowd may not degrade in the short run, the lack of available help may negatively impact other less popular crowds. Research should be conducted to determine whether newcomers simply move to other Wiki communities or leave altogether.

Conclusions

This study has examined the impacts of crowd composition on the relationship of crowd size, retention, and performance. Based on our results, crowd composition is vital to determining when crowd size translates to better retention and performance. In addition, our results suggest that it is not always desirable to retain crowd members. Low retention rates were associated with better performance as crowd size increased. Overall, our results suggest that crowds benefit from increased size when the members are diverse and experienced and have low retention rates.

Acknowledgments

References

