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Abstract: 

 

Land conversion and increasing impervious surface cover are affecting forests across the 

landscape by increasing local temperatures and altering ecosystem processes. In this study, we 

assessed the impact of impervious surface cover and other environmental, landscape, or climate 

factors on the growth of trees in adjacent forest patches. Tree cores were collected from 36 Acer 

saccharum, 40 Carya ovata, and 45 Quercus rubra trees in 11 deciduous forests in Southeastern 

Michigan and their annual radial growth measured from 1985 to 2014. Soil and stand basal area 

data were collected in each forest and distance from edge, mean impervious surface percentage 

within 250 m, and percent slope were calculated for each individual from National Land Cover 

Datasets. Annual average temperature, total precipitation, and Palmer Drought Severity Index data 

was also collected from the National Climatic Data Center.  

Tree growth rate was modeled by species and diameter using a Bayesian framework with 

non-informative priors as a function of percent impervious surface. Running models with several 

combinations of explanatory variables (distance to edge, slope, percent sand, total nitrogen, basal 

area, and climatic variables) did not improve the goodness of fit so random effects terms for 

individual growth and year were added, in addition to antecedent terms, which helped account for 

the potential effect of previous years’ growth.  

The model resulted in R2 values of 0.67 for A. saccharum, 0.71 for C. ovata, and 0.88 for Q. 

rubra. Higher levels of impervious surface did significantly, negatively affect the growth of small 

A. saccharum individuals and growth in an individual is strongly dependent of growth from the 

previous year. The year random effects term showed weak correlations with summer temperatures 

(-), spring and summer (+) precipitation, and the Palmer Drought Severity Index (-). These 

observations imply that not all trees species and size classes are affected equally by urbanization. 

Remnant forest patches typically experience little to no management and largely need to be self-

sustaining over time, which highlights the need for a better understanding of how urbanization will 

affect these ecosystems. 
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Figure 1.  Forest sampling locations overlain on a landcover map created using the 2011 

National Landcover Dataset (Homer et al. 2015), combing the landcover 
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Figure 3.  The relative weights of one (t-1), two (t-2), and three (t-3) year antecedent effects 

on tree growth by species and diameter class. The value of all three years must 

equal 1 so if all years equally contributed to predicting annual tree growth, we 
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influence on annual growth. All values marked with an asterisk (*) are 

significantly different from 0.33. 

Figure 4.  Growth predictions and measured growth for varying percentages of impervious 

surface cover. Solid lines show the prediction with 95%CI as a dashed line and 

dots show actual measurements from samples collected in the field by diameter 

class. Small ACSA shows a decrease in predicted growth with increasing 

impervious surface. 

Figure 5.  The model results for year random effects (YRE) by species, which was used to 

simulate climate in the model, is shown above graphs of average annual 

temperature, precipitation, and Palmer Drought Severity Index values from June 

through August of each year.





 

 

 

Introduction  

Anthropogenic drivers of global change, i.e., land-use alteration, introduction of new 

species, pollution and changing climatic regimes, are affecting forest composition and 

function across the landscape (Coomes et al. 2014). In particular, landscape changes and their 

effects on remnant vegetation constitute one of the major stressors on natural ecosystems 

(Sala et al. 2000). In the case of forests, up to 70% of remaining forested area around the 

globe is less than 1 km from the forest’s edge (Haddad et al. 2015). As land is urbanized, the 

effects of the conversion on the remaining vegetation become more apparent. By increasing 

local temperatures and altering hydrologic and nutrient cycling, land conversion and 

increasing impervious surface cover has been found to affect forest health and forest 

resilience to other stressors (Gavier-Pizarro et al. 2010, Kaye et al. 2005, Matlack 1993, 

McDonnell et al. 1997). Still, these remnant patches of natural forest are critical to improving 

air quality, reducing flooding, tempering the urban heat island effect and providing other 

ecosystem services that are important to both human societies and nature as a whole (Xiao et 

al. 1998, Nowak et al. 2006). Therefore, understanding how urbanization affects the health of 

tree species in remnant forest patches becomes critical to both conservation and management 

of this resource.  

One of the primary changes that accompanies urbanization is the increase in the amount 

of land covered by impervious surfaces such as pavement, buildings, and highly compacted 

soils. Percent impervious surface is a reliable predictor of changes in land surface 

temperature and an appropriate proxy for urban heat island effects (Yuan and Bauer 2007, 

Zhou et al. 2014). Urban heat islands develop around areas with low albedo and high 

absorptive capacity such as asphalt, bare-soil, and other developed surfaces, which heat up 

rapidly and can increase localized temperatures by as much as 10 ºC over temperatures in 

adjacent woodlands (Kim 1992). In a 2015 study by Jiang et al., land converted from forest 

cover to commercial cover experienced a more than 70% increase in land surface 

temperature and a 15% decrease in soil moisture. These changes in the microclimate of 

urbanized areas can affect the remnant vegetation. One small-scale study found a trend of 

lower drought resilience but higher growth rates in trees growing in high-impervious covered 

areas when compared with trees in forested areas (Fahey et al. 2013). In another study, Cregg 

and Dix (2001) found that trees in urban environments experience greater moisture stress and 
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insect damage when compared with trees in intact forests.  In general, increasing impervious 

cover correlates with increasing water stress and vulnerability to drought, having trees in 

more urbanized landscapes higher vulnerability to cavitation and lower protection from 

embolism formation (Savi et al. 2015).  

The impact of these land-use changes on tree health can be estimated by measuring 

changes in annual tree growth. Trees radial growth is a good indicator of the tree's health 

status. Trees with lower rates of growth have been found to have higher rates of mortality 

over time (Wyckoff and Clark 2002). Radial growth can be affected by the frequency of 

precipitation, with diffuse porous species, such as Acer spp., being more sensitive than ring 

porous species, such Quercus spp., to more variable precipitation (Elliott et al. 2015), and by 

maximum temperatures (Martin-Benito and Pederson 2015). Also, the seasonal timing of 

climatic events such as drought can have differential effects on radial growth, with spring 

drought exhibiting a greater influence on radial growth than drought at other times of the 

growing season (Foster et al. 2014). Further, Quercus spp. have been found to have more 

growth variability in drier warmer sites than in wetter cooler areas (White et al. 2010). 

Trees experience a shorter time to mortality when drought conditions are accompanied by 

a temperature increase of approximately 4º C, which is likely a result of internal carbon 

starvation from elevated respiration rates in conjunction with lower photosynthetic rates in 

response to stomatal closure (Adams et al. 2009). Therefore, increasing urbanization could 

compound the impact of climate change on trees. Increases in temperature are to be 

accompanied by more severe and frequent droughts that could increase tree mortality 

(Winkler et al. 2012, Gustafson and Sturtevant 2013). Even if most forest species are able to 

tolerate changes in mean climatic conditions it is not clear that they will be able to withstand 

the effects of extreme weather events like drought (Suarez et al. 2004, Pasho et al. 2011). 

Thus, the synergistic effects of detrimental weather events, like drought, and the increase in 

temperature associated with urban areas could have a strong impact on the health and 

resilience of trees growing in urban settings. A decline in forest health and a change in 

species composition would alter environmental services and ecosystem processes in these 

ecosystems. Remnant forest patches typically experience little to no management and largely 

need to be self-sustaining over time, which highlights the need for a better understanding of 

how urbanization will affect these ecosystems.  
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Most urbanization studies have focused on large cities, where the effects are likely to be 

most extreme, but most cities around the world are small or medium size so it is important to 

understand how localized urbanization affects these prevalent areas. In this study, we 

investigated if tree growth rates were affected by the degree of urbanization surrounding 

remnant forest patches in a middle-sized city in Southeastern Michigan, USA. In particular, 

we assessed how the percent of impervious surface affected the growth of Acer saccharum, 

Carya ovata, and Quercus rubra in remaining vegetation patches along an urban to rural 

gradient. We hypothesized that an increase in impervious surface would decrease annual tree 

growth in all trees, but most significantly in A. saccharum, a highly drought intolerant 

species, due to a decrease in ground water availability and an increase in localized 

temperatures. We developed an individual based model to analyze the relationships between 

tree growth and surrounding growth conditions. We then used this information to understand 

how growth rates might vary between these three native tree species along the urban 

gradient. The basic questions we address are: 1) Does impervious surface impact the growth 

of surrounding trees and does this impact change based on species or tree size? 2) Which 

other environmental factors may also play a role determining tree growth in urban areas? 3) 

Do temperature and precipitation changes differentially affect tree growth depending on the 

surrounding percentage of impervious cover? Understanding the in situ responses of the 

current forest communities to the changing environmental conditions, will be critical to 

forecast the response of remnant forests to urbanization.  

Methods 

Study sites 

This study was carried out in Southeastern Michigan along a twenty-mile urban-rural 

gradient from the city of Ann Arbor, Michigan (population: 113,934; US Census Bureau 

2010) to Pinckney State Recreation Area, northwest from the city (Fig. 1). We collected 

samples from 11 deciduous forests, with surrounding impervious cover ranging from 0 to 35 

percent (Table 1, Fig. 1). These forests were typically logged more than once prior to 1940 

and some were used for agriculture or grazing before reforestation was allowed to occur. 

Bird Hills Natural Area, Edwin S. George Reserve, Saginaw Forest, and Stinchfield Woods 

all have areas that were planted with conifer species with patches of natural deciduous forest. 
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Berkshire Creek, Stapp Nature Area, and Scarlett Mitchell Nature Area were purchased by 

the city of Ann Arbor in the early 2000s to save the properties from development. Nichols 

Arboretum and Horner McLaughlin Woods were donated to the University of Michigan to 

serve as botanical sanctuaries and displays. Sites were selected based on access-consent and 

the presence of multiple individuals of at least two of the following species: Acer saccharum, 

Carya ovata, and Quercus rubra. We established one sampling location in each of the 

smaller forest fragments, Berkshire Creek Nature Area, Stapp Nature Area, Saginaw Forest, 

Radrick Forest, an unnamed area on the UM North Campus, Edwin S. George Reserve, and 

Stinchfield Woods. In the larger forests with surrounding urban development, Bird Hills, 

Scarlett Mitchell, Horner McLaughlin and Nichols Arboretum, we established one or two 

sampling locations within 100 m of the forest edge and one location greater than 200 m from 

the forest edge, for a total of 16 locations in 11 forests (Table 1). 

Study species and tree cores 

We chose to analyze radial growth of A. saccharum, C. ovata, and Q. rubra because all 

three species are native, often found in the same stands, and common in the southern 

Michigan forests. They also represent a range of drought tolerances from intolerant (A. 

saccharum), to moderately tolerant (Q. rubra), to very tolerant (C. ovata; Abrams 1998, 

Cowden et al. 2014, Klos et al. 2009, LeBlanc and Terrell 2009), which allowed us to look at 

urbanization effects regardless of sensitivity to drought (Meinzer et al. 2013, Abrams et al. 

1998, Tang et al. 2012). At each sampling location, we selected three trees to sample from 

each represented species with variable diameters (between 16.5 and 61 cm). For each 

selected tree, we recorded the diameter at breast height (DBH, 1.3 m) and Geographic 

Position System (GPS) coordinates, using a Garmin eTrex 10 GPS Device. One tree core was 

extracted from both the east and west sides of each tree using a 4.3 mm diameter Haglof 

increment borer. Sampling occurred between June and November of 2014.  

In the lab, tree cores were dried, glued to pre-cut mounts, and then sanded. Samples were 

sanded using P150, P220, P320, P600, and P1200 (A. saccharum only). After sanding, cores 

were scanned using a Canon CanoScan LiDE 110 flatbed scanner with 1200 dpi resolution. 

The annual ring widths were then measured digitally using LignoVision by RINNTECH (vs. 

1.37). East and west core measurements were averaged and then samples within each species 
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were cross-dated visually and using skeleton plots (Stokes and Smiley 1987). Cores that were 

broken or damaged were discarded. For each tree, we calculated the sum of the east and west 

cores (or the double of one side if the other was unusable) to estimate total diameter annual 

growth (mm) and then subtracted the annual growth iteratively from the current diameter to 

calculate the approximate DBH in each year. We focused on growth since 1985 (30 years) to 

reflect contemporary levels of urbanization. 

Site data 

To gather data about the land-use conditions surrounding each tree, we obtained four 

years of National Land Cover Datasets (NLCD; 1992, 2001, 2006, and 2011; Fry et al. 2011, 

Homer et al. 2007, Homer et al. 2015, Vogelmann et al. 2001), three years of impervious 

surface percentages (2001, 2006, and 2011; Xian et al. 2011), road alignments, and a Digital 

Elevation Model (DEM; MGDL 2014). The NLCD and DEM data shared 30 m resolution. In 

ArcGIS 10.2, we reclassified all of the landcover layers for each year of the NLCD into 

forest (including deciduous, evergreen, mixed, wetland sub-types) and non-forest and then 

calculated the distance from forest edge to each pixel (ESRI 2013). We used the zonal 

statistics tool in ArcGIS Spatial Analyst to calculate the mean impervious surface percentage 

within 250 m of each tree from the NLCD impervious surface maps and averaged the value 

across 2001, 2006, and 2011 maps to assign one representative value of impervious cover to 

each tree (ESRI 2013). We used percent impervious surface within a 250 m radius 

(impervious) as the proxy for the microclimatic effects due to urbanization. We used the 

DEM to calculate percent slope for each pixel.  

We also collected tree basal area and soil samples from three places at each of the eleven 

sampling locations. At each site, we established three 10 x 10 m basal area plots that 

contained at least one of the sampled trees. In each plot, we recorded the DBH of all living 

trees greater than 3m tall and collected a combined total 100 g of soil from the top 10 cm for 

each sample. We converted the dbh into basal area and added all trees in the plot to 

determine total basal area for each plot and the results of all plots in a forest were averaged to 

determine the representative basal area value in cm2/m2. The soil samples from each location 

were sent to the Michigan State University Soil Laboratory for analysis of total nitrogen, pH, 

phosphorous, cations and percent sand, silt and clay, all variables known to affect tree growth 



6 

 

 

 

(e.g., Vicca et al. 2012, Levesque et al. 2016). The pH was measured using an electronic pH 

meter with a 1:1 water slurry. Cations and phosphate (PO4
-) were extracted from 5-g sub 

samples with a Mehlich III solution. Concentrations of Mg2+, Ca2+, Cl+, Na+ and K+ (ppm) in 

extracts were measured with Direct Current Plasma (DCP, SMI Corp., Glouchestershire, UK) 

atomic emission spectrometry, and the Alpkem Series 500 autoanalyzer was used to measure 

PO4
- (ppm). Total N (mg/g) was measured using the Dumas method (Shea and Watts 1939). 

Particle size analysis (%) was done using the Bouyoucos Hydrometer method (Bouyoucos 

1962). 

We obtained data from the National Climatic Data Center, Southeast Michigan (Region 

10) from 1985 to present monthly average temperatures, total precipitation and Palmer 

Drought Severity Index (PDSI; NCDC 2015).  

Data analysis 

We developed a model to examine the influence of surrounding landscape conditions on 

annual tree growth from 1985 to 2014. Here we assume that the level of land development 

has been constant during this period of time, land cover data were relatively unchanged 

during the period of time we have access to, 1992 to 2011. To address the well-established, 

size-dependent relationship between tree size, or age, and growth rate, with higher growth at 

smaller diameters (or younger cohorts; Mérian and Lebourgeois 2011), we divided the data, 

and analyzed accordingly, into three diameter classes, small (<25 cm), medium (25-40 cm), 

and large (>40 cm). Only small and medium size classes were analyzed for A. saccharum as 

the maximum dbh recorded was 45 cm. We then ran several models with several 

combinations of explanatory variables, e.g., distance to edge, slope, percent sand, total 

nitrogen, basal area, and climatic variables, but these variables did not improve the fit of the 

model (based on goodness of fit). We describe below the model that best predicted the data 

(higher R2 predicted vs observed). Each species was analyzed independently. 

We analyzed growth rate as a function of percent impervious surface within a 250 m 

radius (impervious) of each tree as the proxy for urbanization with � as an intercept. The 

model included an intercept (�). To account for the potential effects that previous years’ 

growth could have on current year growth (Peltier et al. 2016), we also included antecedent 

effects (Ogle et al. 2015). Antecedent effects of previous growth (PG) were estimated as a 
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function of growth (G) during the previous three years: ��� = 	
���
 + 	��� +

	�����with � as the intercept. Where ω are the weights given to each year (∑ 	�
�
��
 = 1). 

We also added an individual random effect term (IRE) to represent the individual growth 

variations that we could not account for with our data (e.g., genetic differences, competitive 

ability, neighborhood processes, access to nutrients). We considered climatic variables, i.e., 

temperature, precipitation, and drought index data in the model, but we were not able to 

achieve good convergence so we decided to include a year random effect term (YRE) to 

represent inter-annual variation in growth across all trees. We then calculated Pearson’s 

correlation values between these YREs and average monthly temperature, precipitation and 

Palmer Drought Severity Index to further explore the influence of climate on growth for each 

species. 

Growth for tree i in year t (Gi,t) was modeled with a normal likelihood (limited to be 

positive, a log-normal model was difficult to run)  

��,�~����������,�, �� 

and process model: 

���,� = � + � ∙ ���,� + � ∙ !�"#�$!�%&'��((�) + *+,� + -+,� 

Parameters α, λ, β, and parameters ω for the calculation of PG, were estimated for each 

diameter class (small, medium and large). Given the inclusion of random effects and of 

antecedent effects, parameters were estimated using a Bayesian framework (Clark 2005). 

Parameters prior distributions were not informative, α, λ, β~Normal(0,10000), IRE, 

YRE~Normal(0,σ*
2), σ*~Uniform(0,100), and ω*~Dirichlet(1/3,1/3,1/3). Analyses were run 

in OpenBugs ver 3.2.3 (Lunn et al. 2009, see supplement for code). We concurrently ran 

three Markov Chain Monte Carlo simulations for 300,000 iterations. After chains converged, 

we estimated posterior parameter means, 95% credible intervals, and standard deviations. We 

then used parameter means, variances and covariances to simulate growth under a gradient of 

impervious surface values. 

Results 

We sampled a total of 121 trees with 36 A. saccharum individuals at 9 sites, 40 C. ovata 

individuals at 10 sites (one core pair unusable), and 45 Q. rubra individuals at 11 sites (two 

core pairs unusable). Tree diameters for A. saccharum ranged between 13.1 and 45.2 cm, 
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with an average of 27.28 cm; C. ovata ranged between 21.6 and 58 cm, average 35.93 cm; 

and Q. rubra range from 16.5 to 61 cm, averaging 36.63 cm. Sampling in the 11 forests with 

16 sites covered a wide range of landscape variation (Table 1, Supplemental Information). 

Impervious surface ranged from 0 to 35.08 %. Distance from edge ranged from 0 to 218.4 

meters. Slope ranged from 0 to 106.7 % (with 45 degrees equaling 100 %). Model fit 

(goodness of fit R2, predicted versus observed data) was 0.67 for A. saccharum, 0.71 for C. 

ovata, and 0.88 for Q. rubra (Supplemental Information). 

Effects of impervious surface on tree growth - The level of impervious surface surrounding 

trees had no effect on the growth of C. ovata and Q. rubra individuals of any size category (β 

parameters, 95%CI overlapped with zero). It had a negative and significant effect on small 

diameter A. saccharum trees, and a negative, but not statistical significant effect on medium 

size A. saccharum trees (Fig. 2; Supplemental Information). 

Effects of previous years' growth on current year growth - Annual growth was significantly, 

positively affected by growth in the previous years for all species and size classes except in 

small C. ovata trees (λ parameters; Fig. 3). Growth during one year prior had the largest 

effect on growth in the current year, with parameter estimates for the antecedent effects in the 

previous year (ω1 parameters) ranging from 0.69 in small A. saccharum to 0.94 in large Q. 

rubra (Supplemental Information).  

Year random effects - YRE, estimated for all trees of each species, were weakly and 

negatively correlated with average monthly temperatures from June through August of the 

current year, and positively correlated with May temperature in both C. ovata and Q. rubra. 

Precipitation was weakly, positively correlated with YRE for A. saccharum in June and 

August, C. ovata from May through September, and Q. rubra from June through August. 

Correlations between YRE and the Palmer Drought Severity Index were unexpectedly 

negative, which would indicate higher growth with higher drought (more negative values on 

the PDSI), except for C. ovata in August and September (Table 2; Fig. 5). 

Growth simulations - In general growth simulations show the large range of variability found 

in the data (Fig. 4) and illustrate the higher growth rates in small A. saccharum trees at lower 

levels of impervious cover than at higher cover (Fig. 4). The growth of medium A. 
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saccharum and all size classes of C. ovata and Q. rubra was unaffected by increasing 

impervious surface cover.  

Discussion  

 The global trend of increasing urbanization is generating isolated patches of vegetation 

that could be strongly influenced by the surrounding landscape. How these changes in 

landscape cover impact remnant forest patches are not well understood, and these impacts 

could cause shifts in forest health and forest resilience to other stressors. In this study, we 

aimed to determine if the percent of adjacent land covered by impervious surface, our proxy 

for the heat island effect and reduced soil moisture associated with urbanization, impacts the 

growth of trees in remnant patches and if this impact is species or size dependent. Further, we 

were interested in determining which other factors might interact with urbanization in their 

effects to tree growth, in particular we were interested in assessing if climatic events, i.e., 

drought conditions, may differentially affect tree growth depending on the surrounding 

percentage of impervious cover. We found that higher levels of impervious surface did affect 

the growth of small A. saccharum individuals, and these effects were negative. We also 

found that growth in an individual is strongly dependent of growth from the previous year. 

These observations imply that not all trees species and size classes are affected equally by 

urbanization and that individual growth characteristics could dominate growth patterns.  

Although we found that the level of impervious surface surrounding trees had no 

effect on the growth of C. ovata and Q. rubra individuals of any size category, it did have a   

negative impact on A. saccharum. Impervious surfaces have been shown to increase local 

temperatures and alter local hydrological regimes, locally simulating drought conditions 

(Albrecht 1974, Kim 1992, Shuster et al. 2005). A. saccharum is the most drought intolerant 

species in our study, and a resulting negative growth response to increasing impervious 

surface would exemplify a possible amplification of localized drought conditions. We may 

not have seen a response in C. ovata or Q. rubra due to their higher drought tolerance or 

potentially because they are an older population of trees, in which drought intolerant 

individuals have already died in previous drought events (average dbh was higher for these 

two species).  
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 Total annual growth of trees in a forest increases with proximity to the forest edge 

(McDonald and Urban 2004, Reinmman and Hutyra 2016). In our alternative models we did 

not see a response to proximity to edge, so we did not include this variable in the final model. 

This lack of response in our data may be due to the fact that edge trees are also more 

negatively impacted by high temperatures, indicating potential complex interactions between 

increased light availability and decreased soil moisture.  

We found growth within each individual tree was highly variable from year to year 

and this variability may be greater than any influence of adjacent land or environmental 

conditions. Annual growth was significantly affected by growth in the previous year for all 

species and size classes except in small C. ovata trees. Growth during one year prior had the 

largest effect on growth in the current year, with the lowest weight in small A. saccharum to 

highest in large Q. rubra. We saw a pattern of higher growth after years of high growth, a 

positive association. An ongoing pattern of higher growth from year to year may indicate that 

the individual is not impeded by competition and has enough access to nutrients to sustain 

higher rates of growth (Gomez-Aparico et al. 2011, Kunstler et al. 2010). 

The year random effects, which we used to assess climatic influences, show weak 

correlations with temperature, precipitation and the Palmer Drought Severity Index overall. 

Generally, the weak negative correlation with summer temperatures indicate a potential 

negative effect under warming conditions likely due to a higher water demand caused by 

higher evapotranspiration rates. Unsurprisingly, precipitation was consistently positively 

correlated with all species for most of the growing season from April to September, 

indicating the importance of water availability for growth of these species. We found an 

unexpectedly negative correlation between YRE and the Palmer Drought Severity Index. 

Typically, larger trees are more sensitive to summer drought than smaller trees (Mérian and 

Lebourgeois 2011) but we did not see a strong relationship between diameter growth and the 

summer Palmer Drought Severity Indices in our study. Our study was limited by sample size 

and coarse spatial resolution of both landscape and climate variables. Tree sampling design 

can influence variability and uncertainties in tree-ring studies (Nehrbass-Ahles et al. 2014). 

We used data with 30 m resolution for several environmental variables, including slope and 

distance to forest edge. Having a finer spatial scale these variables would have aided to 

explain some of the variability in data. Similarly, we used regional climate data rather than 
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spatially extrapolated climate data so we had to rely on impervious cover to approximate any 

urban hear island effects in the Ann Arbor area.  

 Understanding the ecological resilience, i.e., the on-going capacity of a forest to persist 

and recover after disturbance, to changing environmental conditions, and maintain overall 

ecosystem structure and function (Walker et al. 2004, Churchill et al. 2013), becomes 

essential to assess the potential effects of global change on forest ecosystems. In this study, 

we found that three of the common tree species are relatively resistant to the potential impact 

of urbanization and increasing impervious cover. Although, smaller Acer individuals could 

be less resilient to change over time and this could lead to a change in the composition of 

remaining urban forest patches. Although our study did not show strong relationships 

between climate and landscape factors, we cannot rule out the possibility of combined effects 

with accelerating land-use alternation and climate change. With the positive influence of 

precipitation, we also found that decreasing precipitation, such as drought events, could have 

a negative impact on some species in the urban forest as well, which could further alter the 

species composition of urban forests. Declines in forest health and subsequent changes in 

species composition could alter environmental services, like carbon storage, and other 

ecosystem processes provided by remaining forest patches, thus any impact on these forests 

should be considered when constructing predictive models and forest management plans.  
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Site Name 
Site 
ID 

Latitude Longitude Acres ACSA CAOV QURU 
% 

Impervious 
% Sand Soil pH 

Nichols 
Arboretum* 

1e,1i -83.72883 42.40004 123 3 6 6 15.30±10.12 62.15±0.07 6.35±0.21 

Berkshire 
Creek 

2 -83.69823 42.25963 5  3 3 28.42±2.77 60 6.4 

Bird Hills* 3e,3i -83.75827 42.30719 153 6 3 6 0.93±0.64 61.25±8.84 5.75±0.21 

Edwin S. 
George 
Reserve 

4 -84.02105 42.45707 1300 3  3 0 83 5.3 

Horner-
McLaughlin* 

5e1,
5e2,
5i 

-83.66985 42.32228 90 9 9 6 3.31±3.88 42.73±7.36 5.73±0.32 

North Campus 6 -83.70767 42.28486 35 3 1 3 3.11±0.35 73 6.4 

Radrick Forest 7 -83.65731 42.28900 40 3 3 3 0.34±0.12 40 5.6 

Saginaw 
Forest 

8 -83.80473 42.27438 80 3 3 3 11.82±5.48 48.2 5.8 

Scarlett 
Mitchell* 

9e,9i -83.69710 42.23390 25 3 6 6 9.38±6.92 55±7.07 5.7±0.57 

Stapp 10 -83.71531 42.30844 8  3 3 24.43±1.40 49.5 6.4 

Stinchfield 
Woods 

11 -83.92737 42.39936 700 3 3 3 0 58.5 6.2 

 

 

 

Table 1. Forest sampling sites with geographic position, size, number of trees 

sampled in each location, percent impervious cover within a 250m radius, percent 

sand in soil samples, and soil pH. The site IDs correspond with Figure 1 and 

additional site information can be found in the Supplement.  

*Edge and interior sampling locations, within 100 m of the edge and greater than 

200 m from the edge 
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Figure 1.  Forest sampling locations overlain on a landcover map created using the 2011 

National Landcover Dataset (Homer et al. 2015), combing the landcover categories into 

Open Water, Developed Land, Forest, and Farm and Non-Forest Land (labels 

correspond to the Site ID provided in Table 1). The black lines show the boundaries of 

Washtenaw, Livingston, and Oakland Counties in Southeastern Michigan.  
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Figure 2. Parameter estimates for the impact of impervious surface on each species by size 

class. Each species is represented by a four letter abbreviation: ACSA – Acer saccharum, 

CAOV – Carya ovata, QURU – Quercus rubra. Growth of small diameter ACSA individuals 

was estimated to be significantly (*) negatively affected by increasing impervious surface 

cover. Growth of medium ACSA and all sizes of CAOV and QURU was not estimated to be 

significantly affected by impervious cover. 
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Figure 3. The relative weights of one (t-1), two(t-2), and three(t-3) year antecedent effects on 

tree growth by species and diameter class. The value of all three years must equal 1 so if all 

years equally contributed to predicting annual tree growth, we would expect all values to be 

0.33 (dashed line). Values above 0.33 indicate a strong influence on annual growth, whereas 

values below 0.33 indicate a weak influence on annual growth. All values marked with an 

asterisk (*) are significantly different from 0.33.  
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Figure 4. Growth predictions and measured growth for varying percentages of impervious 

surface cover. Solid lines show the prediction with 95%CI as a dashed line and dots show 

actual measurements from samples collected in the field by diameter class. Small ACSA 

shows a decrease in predicted growth with increasing impervious surface. 
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Figure 5. The model results for year random effects (YRE) by species, which was used to 

simulate climate in the model, is shown above graphs of average annual temperature, 

precipitation, and Palmer Drought Severity Index values from June through August of each 

year. 

 

 

Species 

  ACSA 

  CAOV 

  QURU 
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  Previous Year Current Year 

Average 
Temperature 

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep 

ACSA -0.36 -0.26 -0.11 -0.03 0.00 0.09 -0.08 -0.29 -0.30 -0.46 -0.31 0.16 

CAOV -0.31 0.02 -0.03 0.11 0.00 0.09 -0.17 0.20 -0.32 -0.28 -0.51 -0.11 

QURU 0.15 -0.10 -0.05 -0.07 -0.24 0.40 0.39 0.35 -0.18 -0.14 -0.14 0.25 

Average 
Precipitation 

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep 

ACSA -0.07 -0.16 -0.14 -0.16 0.12 0.09 -0.33 -0.26 0.10 -0.37 0.24 -0.09 

CAOV 0.19 -0.10 -0.33 -0.01 0.07 -0.23 -0.16 0.24 0.28 0.22 0.11 0.14 

QURU -0.22 -0.20 -0.25 -0.13 0.21 -0.11 -0.17 -0.07 0.13 0.17 0.12 -0.12 

Palmer 
Drought 
Severity 
Index 

Apr May Jun Jul Aug Sep Apr May Jun Jul Aug Sep 

ACSA -0.05 -0.03 -0.16 -0.21 -0.03 0.01 -0.23 -0.12 -0.03 -0.11 0.07 0.02 

CAOV -0.35 -0.29 -0.33 -0.34 -0.34 -0.32 -0.26 -0.18 0.08 0.19 0.27 0.24 

QURU -0.18 -0.17 -0.25 -0.26 -0.10 -0.12 -0.37 -0.36 -0.18 -0.04 -0.02 -0.07 

Table 2. The Pearson’s correlation coefficients for YRE and climate variables show 

that climate in the current year correlates more with the year random effects than 

climate from the previous year. We also found a generally negative correlation with 

temperature (higher temperatures result in lower annual growth), a positive 

correlation with precipitation ((higher precipitation results in higher annual growth), 

and a negative correlation with PDSI (higher PDSI indicates wetter conditions and 

our results indicate lower growth with wetter conditions). 
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Figure S1. Goodness of fit (R2) for predicted vs. observed model results, as described in the 

text 
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Table S1. Model Parameter Estimates. The model included an intercept (�),	percent impervious surface within a 250 

m radius (impervious) with � as an intercept, antecedent effects of previous growth were estimated as a function of 

growth with � as the intercept, ω are the weights given to each year, an individual random effect term (IRE) to 

represent the individual growth variations, a year random effect term (YRE) to represent inter-annual variation in 

growth across all trees. We divided the data, and analyzed accordingly, into three diameter classes, small (<25 cm), 

medium (25-40 cm), and large (>40 cm). Only small and medium size classes were analyzed for A. saccharum. 

Species 

 

Parameter 

  

Variable 

  

Small Diameter Medium Diameter Large Diameter 

Mean±SD 95% CI Mean±SD 95% CI Mean±SD 95% CI 

ACSA 

α Intercept 0.0584 ± 0.0366 [0.0311,0.0822] 0.0538 ± 0.0252 [0.0296,0.0768]   

λ 
Previous 

Growth 
0.7638 ± 0.1648 [0.6827,0.8707] 0.7104 ± 0.1276 [0.6180,0.8208]   

ω1 t-1 0.6927 ± 0.1186 [0.4359,0.8947] 0.7272 ± 0.1377 [0.4321,0.9466]   

ω2 t-2 0.1407 ± 0.1034 [0.0056,0.3816] 0.1955 ± 0.1292 [0.0090,0.4694]   

ω3 t-2 0.1666 ± 0.0935 [0.0155,0.3717] 0.0773 ± 0.0620 [0.0027,0.2309]   

β 
Percent 

Impervious 
-2.29E-3 ± 1.23E-3 [-0.0042,-6.69E-4] -2.36E-4 ± 8.57E-4 [-1.83E-3,0.0013]   

CAOV 

α Intercept 0.0085 ± 0.0216 [-0.0021,0.0224] 0.0115 ± 0.0235 [0.0028,0.0219] 0.0103 ± 0.0258 [-0.0017,0.0229] 

λ 
Previous 

Growth 
0.8976 ± 0.0937 [0.8017,0.9855] 0.8961 ± 0.1243 [0.8441,0.9602] 0.8915 ± 0.1566 [0.8291,0.9726] 

ω1 rw.ht-1 0.4254 ± 0.1511 [0.0950,0.6694] 0.7605 ± 0.1052 [0.5292,0.9343] 0.8812 ± 0.0714 [0.7088,0.9815] 

ω2 rw.ht-2 0.2400 ± 0.1750 [0.0090,0.6158] 0.1728 ± 0.1098 [0.0095,0.4128] 0.0719 ± 0.0647 [0.0021,0.2407] 

ω3 rw.ht-3 0.3347 ± 0.1055 [0.1160,0.5340] 0.0667 ± 0.0495 [0.0027,0.1839] 0.0469 ± 0.0398 [0.0015,0.1472] 

� 
Percent 

Impervious 
1.72E-4 ± 3.15E-4 [-2.69E-4,6.29E-4] -5.21E-5 ± 2.25E-4 [-2.32E-4,1.13E-4] 6.59E-5 ± 2.59E-4 [-1.73E-4,2.91E-4] 

QURU 

α Intercept 0.0122 ± 0.0066 [-6.97E-4,0.0254] 0.0112 ± 0.0058 [7.00E-6,0.0228] 0.0140 ± 0.0067 [9.49E-4,0.0272] 

λ 
Previous 

Growth 
0.9606 ± 0.0177 [0.9249,0.9945] 0.9504 ± 0.0168 [0.9157,0.9818] 0.9288 ± 0.0210 [0.8871,0.9697] 

ω1 rw.ht-1 0.9176 ± 0.0449 [0.8140,0.9853] 0.7918 ± 0.0643 [0.6540,0.9082] 0.9402 ± 0.0420 [0.8337,0.9927] 

ω2 rw.ht-2 0.0447 ± 0.0396 [0.0013,0.1461] 0.0530 ± 0.0522 [0.0013,0.1924] 0.0435 ± 0.0400 [0.0012,0.1488] 

ω3 rw.ht-3 0.0377 ± 0.0298 [0.0014,0.1106] 0.1553 ± 0.0632 [0.0344,0.2838] 0.0163 ± 0.0155 [4.37E-4,0.0575] 

� 
Percent 

Impervious 
5.24E-5 ± 2.10E-4 [-3.60E-4,4.65E-4] -7.16E-5 ± 2.02E-4 [-4.66E-4,3.25E-4] 8.50E-5 ± 2.87E-4 [-4.78E-4,6.45E-4] 
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Table S2. Compilation of the basal area (BA, cm2/m2) and soil analysis results from the MSU Laboratories.  

Forest Site 

BA 

Average 

BA 

SD pH PO4
- K+ Ca2+ Mg2+ Na+ Cl- 

Total 

N Sand Silt Clay 

Soil 

Type 

Nichols 

Arboretum Interior 216.8 44.00 6.2 23 62 1202 168 13 43 0.23 62.2 30.7 7.1 

Sandy 

Loam 

Nichols 

Arboretum Edge 131.87 55.63 6.5 13 73 1446 247 24 49 0.24 62.1 28.3 9.6 

Sandy 

Loam 

Berkshire Creek Edge 209.8 33.09 6.4 9 90 1557 232 13 41 0.27 60 25.8 14.2 

Sandy 

Loam 

Bird Hills Edge 64  5.6 19 67 1409 220 19 38 0.27 55 30.8 14.2 

Sandy 

Loam 

Bird Hills Interior   5.9 20 47 864 146 9 35 0.1 67.5 19.4 13.1 

Sandy 

Loam 

George Reserve Interior 197.57 78.55 5.3 24 47 416 98 10 38 0.14 83 12.9 4.1 

Loamy 

Sand 

Horner 

McLaughlin S. Edge 179.57 63.22 5.6 6 70 1041 220 41 41 0.19 51 28.9 20.1 Loam 

Horner 

McLaughlin N. Edge 210.83 33.27 5.5 10 64 879 185 23 38 0.16 40.3 36.6 23.1 Loam 

Horner 

McLaughlin Interior 237.5  6.1 7 68 1596 248 20 37 0.22 36.9 36.8 26.3 Loam 

North Campus Edge 230.23 22.50 6.4 23 43 941 129 12 42 0.09 73 17.9 9.1 

Sandy 

Loam 

Radrick Forest Interior 145.47 23.26 5.6 20 50 917 129 13 32 0.15 40 37.6 22.4 Loam 

Saginaw Forest Edge 156.33 61.22 5.8 10 75 1091 178 12 39 0.17 48.2 29.7 22.1 Loam 

Scarlett Mitchell Edge 97.97 33.31 6.1 8 97 1392 263 23 43 0.28 50 29.8 20.2 Loam 

Scarlett Mitchell Interior 143.7 82.56 5.3 16 78 715 138 16 39 0.21 60 24.3 15.7 

Sandy 

Loam 

Stapp Edge 173.87 48.95 6.4 8 75 1414 249 43 36 0.23 49.5 34.3 16.2 Loam 

Stinchfield 

Woods Interior 132.8 41.99 6.2 33 77 987 169 9 40 0.2 58.5 28.3 13.2 

Sandy 

Loam 
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Table S3. Model Individual Random Effects (IRE) results by species and tree ID with the standard 

deviation (SD) 

 

 

 

  

Tree ID ACSA CAOV QURU 

IRE SD IRE SD IRE SD 

1 -0.00104 0.007763 -0.00135 0.002944 8.63E-06 0.002352 

2 -0.01525 0.009245 -7.14E-04 0.00251 -4.34E-04 0.002467 

3 -0.01105 0.008718 0.00162 0.003016 9.06E-04 0.00263 

4 0.0113 0.007754 -3.00E-05 0.002795 -9.40E-04 0.002675 

5 0.00764 0.007387 -0.0021 0.003131 -2.11E-05 0.002465 

6 -0.00351 0.007548 6.81E-04 0.002572 6.26E-04 0.002534 

7 -0.00284 0.007324 -5.18E-04 0.002562 -3.10E-04 0.002437 

8 -0.00182 0.007532 -1.01E-04 0.002452 -6.36E-04 0.002585 

9 -0.0162 0.009069 0.001852 0.003232 -7.45E-04 0.002714 

10 -6.93E-04 0.007615 4.08E-04 0.002479 4.40E-04 0.002478 

11 -8.21E-04 0.007623 -0.00143 0.002981 -4.75E-04 0.002546 

12 -0.01325 0.008308 0.001663 0.003083 -6.78E-04 0.002623 

13 -0.00988 0.008235 -2.55E-04 0.002475 0.001154 0.002807 

14 -0.00428 0.007607 -4.42E-04 0.002528 3.15E-04 0.002396 

15 0.002034 0.007668 4.77E-04 0.002475 -1.17E-04 0.002382 

16 0.02208 0.00955 7.02E-04 0.002872 1.37E-04 0.002367 

17 -0.01187 0.008409 0.001835 0.002866 -3.40E-04 0.002392 

18 0.003911 0.007633 -0.00153 0.00288 7.60E-04 0.002609 

19 0.01153 0.008268 -5.29E-04 0.002507 6.68E-04 0.002616 

20 0.02084 0.009406 -6.62E-04 0.002529 2.46E-04 0.002444 

21 5.89E-04 0.007315 -7.96E-04 0.002565 -3.39E-04 0.002423 

22 -3.38E-04 0.007115 1.01E-04 0.002453 -5.43E-04 0.002491 

23 0.002276 0.007188 -3.56E-04 0.002463 -3.22E-04 0.002387 

24 -0.0064 0.007313 5.01E-04 0.002498 0.001269 0.002988 

25 -0.00854 0.007886 -0.00143 0.002753 8.42E-04 0.002668 

26 -0.00277 0.007412 8.07E-04 0.002607 -0.00115 0.002919 

27 -0.01293 0.008375 -6.30E-04 0.002479 -8.12E-04 0.002631 

28 0.001333 0.008802 4.06E-04 0.002512 -3.71E-04 0.002406 

29 0.01526 0.009605 -0.00248 0.003845 -9.25E-04 0.002741 

30 -0.00746 0.009896 -9.55E-04 0.002563 -3.46E-04 0.002406 

31 -0.01182 0.00835 -8.11E-04 0.002662 0.001607 0.003272 

32 0.008621 0.00739 0.002382 0.003455 -1.36E-04 0.002391 

33 0.002061 0.008091 9.67E-04 0.002518 3.99E-04 0.002551 

34 0.01623 0.009031 -3.79E-04 0.002528 -7.51E-04 0.002652 

35 0.02379 0.009854 -8.48E-04 0.002595 -5.19E-04 0.00247 

36 -0.0075 0.007506 0.0013 0.00276 -7.44E-04 0.002602 

37   3.62E-05 0.002558 0.001267 0.003047 

38   0.002573 0.003443 7.47E-04 0.002739 

39     -4.01E-04 0.002459 

40     0.001336 0.002993 

41     -3.73E-04 0.002444 

42     -2.21E-04 0.002398 

43     -1.07E-04 0.002388 
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 Table S4. Values for DBH, distance from roads, percent slope, distance from edge, and percent 

impervious surface for each tree that was cored. The distances are all measured in meters and were 

calculated from GIS data extraction through AcrGIS.  

Forest Site Species 

Tree 

ID DBH 

Distance 

from 

Roads 

Percent 

Slope 

Distance 

from Edge 

Percent Impervious Surface (250m) 

2001 2006 2011 

ARB E1 ACSA 1 39.1 60 29.34714 60 9.411167 9.619289 9.619289 

ARB E1 ACSA 2 29.6 67.08204 15.81435 60 10.56853 10.77665 10.77665 

ARB E1 ACSA 3 32.7 60 29.34714 30 10.55838 10.7665 10.7665 

BDHS E ACSA 4 29.3 30 81.60002 60 1.57868 1.57868 1.57868 

BDHS E ACSA 5 24.6 30 81.60002 60 1.57868 1.57868 1.57868 

BDHS E ACSA 6 17.2 60 71.4826 67.08204 1.573604 1.573604 1.573604 

BDHS I ACSA 7 39.7 212.132 4.064018 182.4829 0.80203 0.80203 0.80203 

BDHS I ACSA 8 32.3 212.132 40.84909 210 0.274112 0.274112 0.274112 

BDHS I ACSA 9 26.4 228.4732 32.6747 228.4732 0.025381 0.025381 0.025381 

GR I ACSA 10 19.6 500 5 256.32 0 0 0 

GR I ACSA 11 18.6 500 7 305.94 0 0 0 

GR I ACSA 12 18.7 500 10 305.94 0 0 0 

HM E1 ACSA 13 14.9 94.86833 16.53136 84.85281 0.203046 0.203046 0.203046 

HM E1 ACSA 14 20.8 67.08204 21.75566 42.42641 0.228426 0.228426 0.228426 

HM E1 ACSA 15 18 90 20.83468 67.08204 0.203046 0.203046 0.203046 

HM E2 ACSA 16 27.1 150 0 108.1665 7.502538 7.502538 7.502538 

HM E2 ACSA 17 19.9 150 0 108.1665 7.502538 7.502538 7.502538 

HM E2 ACSA 18 35.1 90 18.7154 60 8.761421 8.761421 8.761421 

HM I ACSA 19 21.1 150 14.40457 134.1641 0.746193 0.746193 0.746193 

HM I ACSA 20 26.3 152.9706 16.77581 161.5549 2.786802 2.786802 2.786802 

HM I ACSA 21 22 152.9706 16.77581 134.1641 0.746193 0.746193 0.746193 

NC E ACSA 22 28.7 271.6616 44.68246 30 2.878173 2.918782 2.928934 

NC E ACSA 23 37 270 47.18373 30 3.228426 3.228426 3.228426 

NC E ACSA 24 23.4 240 29.05635 0 3.852792 3.852792 3.857868 

RAD I ACSA 25 31.1 330 15.49302 108.1665 0.365482 0.365482 0.365482 

RAD I ACSA 26 45.2 330 15.49302 108.1665 0.329949 0.329949 0.329949 

RAD I ACSA 27 29 330 17.66953 108.1665 0.365482 0.365482 0.365482 

SAG E ACSA 28 22.3 228.4732 10.90842 0 15.48731 15.48731 15.71574 

SAG E ACSA 29 38.6 241.8677 20.44072 0 12.533 12.533 12.76142 

SAG E ACSA 30 14.8 201.2461 21.52538 0 15.48731 15.48731 15.71574 

SM I ACSA 31 13.1 271.6616 8.7509 150 4.720812 4.720812 4.720812 

SM I ACSA 32 25.1 301.4963 6.318217 150 4.624365 4.624365 4.624365 

SM I ACSA 33 15.4 300 0.457563 90 10.29442 10.29442 10.50761 

SW I ACSA 34 38.2 780.5767 4.970695 108.1665 0 0 0 

SW I ACSA 35 38 780.5767 4.970695 108.1665 0 0 0 

SW I ACSA 36 24.2 768.3749 6.912838 123.6932 0 0 0 

ARB E1 CAOV 1 24 67.08204 43.29435 42.42641 4.639594 4.847716 4.847716 

ARB E1 CAOV 2 31.3 67.08204 43.29435 42.42641 4.639594 4.847716 4.847716 

ARB E1 CAOV 3 48.9 84.85281 60.31552 67.08204 4.624365 4.832487 4.832487 

ARB E2 CAOV 4 24.9 60 47.78124 30 27.51269 27.51269 28 

ARB E2 CAOV 5 38.7 42.42641 29.20827 30 26.71066 26.71066 27.19797 

ARB E2 CAOV 6 40.4 30 24.97906 0 34.58883 34.58883 35.07614 

BC E CAOV 7 49.5 108.1665 19.77522 0 25.40101 30.42132 30.62944 

BC E CAOV 8 42.1 42.42641 12.58633 0 26.1066 30.88833 31.09645 
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BC E CAOV 9 30.4 67.08204 28.37932 0 24.11675 28.88325 29.09137 

BDHS E CAOV 10 41.4 30 89.34985 30 1.335025 1.335025 1.335025 

BDHS E CAOV 11 58 30 89.34985 30 1.335025 1.335025 1.335025 

BDHS E CAOV 12 26.1 30 81.60002 60 1.57868 1.57868 1.57868 

HM E1 CAOV 13 43.5 94.86833 16.53136 84.85281 0.203046 0.203046 0.203046 

HM E1 CAOV 14 31.8 67.08204 15.0332 67.08204 0.228426 0.228426 0.228426 

HM E1 CAOV 15 36.8 30 17.25757 67.08204 0.228426 0.228426 0.228426 

HM E2 CAOV 16 42.5 108.1665 4.529297 0 73.78172 73.78172 73.78172 

HM E2 CAOV 17 42.9 90 7.886551 60 8.543147 8.543147 8.543147 

HM E2 CAOV 18 29.3 150 0 108.1665 7.502538 7.502538 7.502538 

HM I CAOV 19 43.5 152.9706 16.77581 134.1641 0.746193 0.746193 0.746193 

HM I CAOV 20 37.4 152.9706 16.77581 150 0.939086 0.939086 0.939086 

HM I CAOV 21 29.7 134.1641 18.96575 127.2792 0.213198 0.213198 0.213198 

NC E CAOV 22 37.2 240 35.97911 67.08204 3.203046 3.238579 3.238579 

RAD I CAOV 23 28.6 330 15.49302 108.1665 0.365482 0.365482 0.365482 

RAD I CAOV 24 33.2 330 15.49302 84.85281 0.446701 0.446701 0.446701 

RAD I CAOV 25 44.6 330 14.03501 84.85281 0.446701 0.446701 0.446701 

SAG E CAOV 26 42.5 308.8689 14.70132 30 6.57868 6.57868 6.807106 

SAG E CAOV 27 22.2 295.4657 14.67252 30 6.57868 6.57868 6.807106 

SAG E CAOV 28 37.3 295.4657 14.67252 30 6.57868 6.57868 6.807106 

SM E CAOV 29 48.1 120 4.404655 42.42641 14.16751 14.16751 14.38071 

SM E CAOV 30 23.6 120 5.286943 30 16.06091 16.06091 16.27411 

SM E CAOV 31 38 120 5.286943 30 16.06091 16.06091 16.27411 

SM I CAOV 32 23 268.3282 11.02255 180 2.081218 2.081218 2.081218 

SM I CAOV 33 45.8 271.6616 8.7509 180 1.964467 1.964467 1.964467 

SM I CAOV 34 28.2 256.3201 7.827662 180 2.111675 2.314721 2.314721 

STP E CAOV 35 50.5 30 18.19589 30 23.92386 23.92386 24.54315 

STP E CAOV 36 30.4 30 18.19589 42.42641 23.04061 23.04061 23.6599 

STP E CAOV 37 32.9 84.85281 10.63823 67.08204 22.08629 22.08629 22.70558 

SW I CAOV 38 21.6 810 8.476509 60 0 0 0 

SW I CAOV 39 24.9 840 7.950051 42.42641 0 0 0 

SW I CAOV 40 40 780 8.195452 30 0 0 0 

ARB E1 QURU 1 51.7 67.08204 58.26918 42.42641 7.055838 7.263959 7.263959 

ARB E1 QURU 2 35.9 94.86833 53.09673 42.42641 7.106599 7.314721 7.314721 

ARB E1 QURU 3 42.7 108.1665 57.25875 60 8.243655 8.451777 8.451777 

ARB E2 QURU 4 25.8 30 75.40462 30 22.42132 22.42132 22.90863 

ARB E2 QURU 5 42.7 30 106.7394 30 27.57361 27.57361 28.06091 

ARB E2 QURU 6 22.2 42.42641 73.61371 42.42641 21.68528 21.68528 22.17259 

BC E QURU 7 30 108.1665 19.77522 0 25.40101 30.42132 30.62944 

BC E QURU 8 42.3 84.85281 18.00332 0 26.66497 31.68528 31.8934 

BC E QURU 9 19.3 84.85281 18.00332 0 22.96447 27.49239 27.70051 

BDHS E QURU 10 59.5 60 71.4826 67.08204 1.573604 1.573604 1.573604 

BDHS E QURU 11 16.5 30 89.34985 30 1.335025 1.335025 1.335025 

BDHS E QURU 12 27.9 90 51.31572 90 0.690355 0.690355 0.690355 

BDHS I QURU 13 55.6 218.4033 39.95954 212.132 0.152284 0.152284 0.152284 

BDHS I QURU 14 36.5 218.4033 39.95954 218.4033 0.091371 0.091371 0.091371 

BDHS I QURU 15 31.2 218.4033 39.95954 218.4033 0.091371 0.091371 0.091371 

GR I QURU 16 49.1 500 7 276.586 0 0 0 

GR I QURU 17 45.4 500 7 313.209 0 0 0 

GR I QURU 18 29.5 500 7 256.32 0 0 0 

HM E1 QURU 19 37.9 67.08204 21.75566 42.42641 0.228426 0.228426 0.228426 
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HM E1 QURU 20 41 30 17.25757 42.42641 0.228426 0.228426 0.228426 

HM E1 QURU 21 26.4 60 19.89071 42.42641 0.228426 0.228426 0.228426 

HM E2 QURU 22 48.2 60 8.865218 30 9.375634 9.375634 9.375634 

HM E2 QURU 23 26.2 60 15.01146 0 9.517767 9.517767 9.517767 

HM E2 QURU 24 28.3 60 8.677253 30 9.177665 9.177665 9.177665 

NC E QURU 25 43.4 276.5863 47.3511 0 2.908629 2.918782 2.918782 

NC E QURU 26 33.9 270 45.74439 60 2.847716 2.857868 2.857868 

NC E QURU 27 23.7 270 40.71983 30 2.796954 2.796954 2.796954 

RAD I QURU 28 53.1 330 17.66953 127.2792 0.233503 0.233503 0.233503 

RAD I QURU 29 35.6 300 13.07476 84.85281 0.446701 0.446701 0.446701 

RAD I QURU 30 50.2 390 15.25938 127.2792 0.071066 0.071066 0.071066 

SAG E QURU 31 38.2 366.1967 32.73742 30 4.781726 4.781726 4.781726 

SAG E QURU 32 25.6 161.5549 21.94633 30 19.16244 19.16244 20.02538 

SAG E QURU 33 30.9 212.132 9.702703 30 18.38071 18.38071 18.60914 

SM E QURU 34 19.7 120 5.286943 42.42641 19.50254 19.50254 19.71574 

SM E QURU 35 53.4 120 3.410397 30 21 21 21.2132 

SM E QURU 36 21.2 120 5.286943 30 16.06091 16.06091 16.27411 

SM I QURU 37 28.8 268.3282 11.02255 180 2.081218 2.081218 2.081218 

SM I QURU 38 61 271.6616 8.7509 150 4.624365 4.624365 4.624365 

SM I QURU 39 42.4 268.3282 11.02255 150 4.720812 4.720812 4.720812 

STP E QURU 40 36.6 42.42641 18.81428 30 25.6599 25.6599 26.27919 

STP E QURU 41 21.2 42.42641 18.81428 60 25.3198 25.3198 25.93909 

STP E QURU 42 30.1 42.42641 18.81428 60 25.3198 25.3198 25.93909 

SW I QURU 43 51.2 782.3043 8.566132 108.1665 0 0 0 

SW I QURU 44 57.1 725.6032 5.559006 174.9286 0 0 0 

SW I QURU 45 33.5 807.7747 8.175746 123.6932 0 0 0 
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S5. Open BUGS Code used to run models for each species: ACSA, CAOV, and QURU 

  

ACSA model{ 
 
for(i in 1:36) {                  #number of trees 
    for(t in 1:3){ rw.h[i,t]~dnorm(rwl[i,t], tau[1])C(0,)}  #prediction, first 3 years 
    for(t in 4:30){                # number of years modeled, 1988 to 2014 
           rwl[i,t]~dnorm(G[i,t], tau[1])  #likelihood 
           rw.h[i,t]~dnorm(G[i,t], tau[1])                          #prediction  
  
#process model 
G[i,t] <- alpha[1]*st1[i,t]+alpha[2]*st2[i,t]+lam[1]*st1[i,t]*(w[1]*rw.h[i,t-1]+w[2]*rw.h[i,t-2]+w[3]*rw.h[i,t-
3])+lam[2]*st2[i,t]*(v[1]*rw.h[i,t-1]+v[2]*rw.h[i,t-2]+v[3]*rw.h[i,t-
3])+beta[1]*st1[i,t]*imp[i]+beta[2]*st2[i,t]*imp[i]+IRE[i]+YRE[t]   
 
}} 
  
# Priors 
     w[1:3]~ddirich(wm[]) 
     v[1:3]~ddirich(vm[]) 
for(k in 1:3){ 
    wm[k]<-1 
    vm[k]<-1 
} 
   
for(i in 1:2){ 
     alpha[i]~dnorm(0,0.0001) 
}  
 
for(i in 1:2){ 
     lam[i]~dnorm(0,0.0001) 
} 
 
for(i in 1:2){ 
     beta[i]~dnorm(0,0.0001) 
} 
 
for(i in 1:36){ IRE[i]~dnorm(0, tau[2])} #36 is the number of trees 
for(i in 4:30){YRE[i]~dnorm(0, tau[3])} #30 is the number of years 
  
     for(i in 1:3){ 
          tau[i]<-1/(sigma[i]*sigma[i]) 
          sigma[i]~dunif(0,100) 
          } 
 
#simulated predictions 
#at a diameter of 15.58 for small and 31.03 (based on the data, averages) 
#growth the previous 3 years was average, for small diameter 0.1733, for large diameter 0.2183 
 
ire~dnorm(0,tau[2]) 
yre~dnorm(0,tau[3]) 
 
for(i in 1:8){ 
 
#small diameter 
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Gp[1,i] <- alpha[1]+lam[1]*0.1733+beta[1]*impP[i]+ire+yre 
rwP[1,i]~dnorm(Gp[1,i], tau[1])C(0,) #prediction 
 
#large diameter 
Gp[2,i] <- alpha[2]+lam[2]*0.2183+beta[2]*impP[i]+ire+yre 
rwP[2,i]~dnorm(Gp[2,i], tau[1])C(0,) #prediction 
} 
   
} 
 
Model 
 
#initials 
list(sigma=c(1,1,1),  alpha = c(0.1,0.1), lam = c(0,0), beta= c(0,0) )    
#data simulations 
list(impP = c(0,5,10,15,20,25,30,35)) 
 

CAOV model { 

 

for(i in 1:38) {                   #number of trees 

     for(t in 1:3){ rw.h[i,t]~dnorm(rwl[i,t], tau[1])C(0,)} #prediction,  first 3 years 

     for(t in 4:30){     # number of years modeled, 1988 to 2014 

 rwl[i,t]~dnorm(G[i,t], tau[1])    #likelihood 

 rw.h[i,t]~dnorm(G[i,t], tau[1])    #prediction 

 

#process model 

G[i,t] <- alpha[1]*st1[i,t]+alpha[2]*st2[i,t]+alpha[3]*st3[i,t]+gg2[i,t]+gg3[i,t] 

 

gg2[i,t]<-lam[1]*st1[i,t]*(w[1]*rw.h[i,t-1]+w[2]*rw.h[i,t-2]+w[3]*rw.h[i,t-    3])+lam[2]*st2[i,t]*(v[1]*rw.h[i,t-

1]+v[2]*rw.h[i,t-2]+v[3]*rw.h[i,t-3])+lam[3]*st3[i,t]*(u[1]*rw.h[i,t-1]+u[2]*rw.h[i,t-2]+u[3]*rw.h[i,t-3]) 

 

gg3[i,t]<-beta[1]*st1[i,t]*imp[i]+beta[2]*st2[i,t]*imp[i]+beta[3]*st3[i,t]*imp[i]+IRE[i]+YRE[t]   

  

}} 

 

# Priors 

     w[1:3]~ddirich(wm[]) 

     v[1:3]~ddirich(vm[]) 

     u[1:3]~ddirich(um[]) 

for(k in 1:3){ 

     wm[k]<-1 

     vm[k]<-1 

     um[k]<-1 

} 

     for(i in 1:3){ 

     alpha[i]~dnorm(0,0.0001) 

 } 

     for(i in 1:3){ 

     lam[i]~dnorm(0,0.0001) 

 } 

     for(i in 1:3){ 
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     beta[i]~dnorm(0,0.0001) 

 } 

 

for(i in 1:38){ IRE[i]~dnorm(0, tau[2])} #38 is the number of trees 

for(i in 4:30){YRE[i]~dnorm(0, tau[3])} #30 is the number of years 

  

     for(i in 1:3){ 

 tau[i]<-1/(sigma[i]*sigma[i]) 

 sigma[i]~dunif(0,100) 

 } 

 

#simulated predictions 

 

#growth the previous 3 years was average, for small diameter 0.0996, for medium diameter 0.1008, large 

diameter 0.1267 

 

ire~dnorm(0,tau[2]) 

yre~dnorm(0,tau[3]) 

 

for(i in 1:8){ 

 

#small diameter 

Gp[1,i] <- alpha[1]+lam[1]*0.0996+beta[1]*impP[i]+ire+yre 

rwP[1,i]~dnorm(Gp[1,i], tau[1])C(0,) #prediction 

 

#medium diameter 

Gp[2,i] <- alpha[2]+lam[2]*0.1008+beta[2]*impP[i]+ire+yre 

rwP[2,i]~dnorm(Gp[2,i], tau[1])C(0,) #prediction 

 

#large diameter 

Gp[3,i] <- alpha[3]+lam[3]*0.1267+beta[3]*impP[i]+ire+yre 

rwP[3,i]~dnorm(Gp[3,i], tau[1])C(0,) #prediction 

 

} 

   

} 

 

Model 

 

#initials 

list(sigma=c(1,1,1),  alpha = c(0.1,0.1,0.1), lam = c(0,0,0), beta=c(0,0,0) )  

 

#data simulations 

list(impP = c(0,5,10,15,20,25,30,35)) 
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QURU model { 

 

for(i in 1:43) {                   #number of trees 

     for(t in 1:3){ rw.h[i,t]~dnorm(rwl[i,t], tau[1])C(0,)} #prediction,  first 3 years 

     for(t in 4:30){     # number of years modeled, 1988 to 2014 

 rwl[i,t]~dnorm(G[i,t], tau[1])    #likelihood 

 rw.h[i,t]~dnorm(G[i,t], tau[1])    #prediction 

   

#process model 

G[i,t] <- alpha[1]*st1[i,t]+alpha[2]*st2[i,t]+alpha[3]*st3[i,t]+gg2[i,t]+gg3[i,t] 

 

gg2[i,t]<-lam[1]*st1[i,t]*(w[1]*rw.h[i,t-1]+w[2]*rw.h[i,t-2]+w[3]*rw.h[i,t-    3])+lam[2]*st2[i,t]*(v[1]*rw.h[i,t-

1]+v[2]*rw.h[i,t-2]+v[3]*rw.h[i,t-3])+lam[3]*st3[i,t]*(u[1]*rw.h[i,t-1]+u[2]*rw.h[i,t-2]+u[3]*rw.h[i,t-3]) 

 

gg3[i,t]<- beta[1]*st1[i,t]*imp[i]+beta[2]*st2[i,t]*imp[i]+beta[3]*st3[i,t]*imp[i]+IRE[i]+YRE[t]    

}} 

 

# Priors 

     w[1:3]~ddirich(wm[]) 

     v[1:3]~ddirich(vm[]) 

     u[1:3]~ddirich(um[]) 

for(k in 1:3){ 

     wm[k]<-1 

     vm[k]<-1 

     um[k]<-1 

} 

     for(i in 1:3){ 

     alpha[i]~dnorm(0,0.0001) 

 } 

     for(i in 1:3){ 

     lam[i]~dnorm(0,0.0001) 

 } 

     for(i in 1:3){ 

     beta[i]~dnorm(0,0.0001) 

 } 

 

for(i in 1:38){ IRE[i]~dnorm(0, tau[2])} #38 is the number of trees 

for(i in 4:30){YRE[i]~dnorm(0, tau[3])} #30 is the number of years 

  

     for(i in 1:3){ 

 tau[i]<-1/(sigma[i]*sigma[i]) 

 sigma[i]~dunif(0,100) 

 } 

 

#simulated predictions 

 

#at a diameter of 17.03 for small, 31.90 for medium and 47.62 (based on the data, averages) 
#growth the previous 3 years was average, for small diameter 0.2378, for medium diameter 0.2083, large 
diameter 0.2099 



34 

 

 

 

 

ire~dnorm(0,tau[2]) 

yre~dnorm(0,tau[3]) 

 

for(i in 1:8){ 

 

#small diameter 

Gp[1,i] <- alpha[1]+lam[1]*0.2378+beta[1]*impP[i]+ire+yre 

rwP[1,i]~dnorm(Gp[1,i], tau[1])C(0,) #prediction 

 

#medium diameter 

Gp[2,i] <- alpha[2]+lam[2]*0.2083+beta[2]*impP[i]+ire+yre 

rwP[2,i]~dnorm(Gp[2,i], tau[1])C(0,) #prediction 

 

#large diameter 

Gp[3,i] <- alpha[3]+lam[3]*0.2099+beta[3]*impP[i]+ire+yre 

rwP[3,i]~dnorm(Gp[3,i], tau[1])C(0,) #prediction 

} 

   

} 

 

Model 

 

#initials 

list(sigma=c(1,1,1),  alpha = c(0.1,0.1,0.1), lam = c(0,0,0) beta = c(0,0,0) )  

 

#data simulations 

list(impP = c(0,5,10,15,20,25,30,35)) 

 

 


