
J. London Math. Soc. (2) 95 (2017) 94–114 C�2016 London Mathematical Society
doi:10.1112/jlms.12011

Automorphisms of the compression body graph

Ian Biringer and Nicholas G. Vlamis

Abstract

Let S be a closed, orientable surface. We show that the automorphism group of the compression
body graph of S is the (extended) mapping class group Mod(S). Here, vertices are compression
bodies with exterior boundary S, and edges connect compression bodies when one can be realized
as a submanifold of the other.

1. Introduction

A compression body is a compact, orientable, irreducible 3-manifold C with a distinguished
‘exterior’ boundary component ∂+C, such that the inclusion ∂+C −→ C is π1-surjective. Fixing
a surface S, an S-compression body is a pair (C, f), where C is a compression body and
f : S → ∂+C is a homeomorphism.

Any S-compression body can be constructed as follows (see Lemma 2.1). Starting with
S × [0, 1], attach 2-handles along a collection of disjoint essential annuli in S × {0} and then
glue a 3-ball onto every resulting spherical boundary component. Here, the exterior boundary
is S × {1}, which clearly π1-surjects, and has a natural identification with S. Two extreme
examples of this construction occur when the collection of annuli is empty, in which case we
obtain the trivial compression body S × [0, 1], and when the collection is large enough so that
after attaching the 2-handles, every interior boundary component is a sphere, in which case
∂C = S × {1} and C is a handlebody.

We say that (C, f) and (D, g) are isomorphic if there is a homeomorphism H : C −→ D
such that H ◦ f = g. We also say that (C, f) is contained in (D, g) if there is an embedding
H : C −→ D such that H ◦ f = g. Two S-compression bodies are isomorphic if and only if each
is contained in the other (see Section 2).

The compression body graph, written CB(S), is the graph whose vertices are isomor-
phism classes of nontrivial S-compression bodies, and where (C, f), (D, g) are adjacent if
either

(C, f) ⊂ (D, g) or (D, g) ⊂ (C, f).

The mapping class group of S, written Mod(S), is the group of isotopy classes of self-
homeomorphisms φ of S. (Sometimes this is called the extended mapping class group.) It acts
on CB(S) by precomposing the markings:

(C, f)
φ−→ (C, f ◦ φ−1).

Theorem 1.1. When g(S) � 2, the natural map Mod(S) −→ Aut(CB(S)) is a surjection.

Here, g(S) is the genus of the surface S. Note that when S is a torus the theorem is false,
since then CB(S) is an infinite graph with no edges.
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The action of Mod(S) is faithful except when S has genus 2, in which case the kernel is
generated by the hyperelliptic involution. This follows from the analogous statement about the
action of the mapping class group on the complex of curves, since any simple closed curve α
on S gives a small compression body S[a] obtained by attaching a 2-handle along an annulus
framing α on S × {0}, and Mod(S) acts on these small compression bodies via the defining
curves (see Section 2).

The compression body graph is an example of a comparability graph, where an edge joins
vertices that are comparable in a partial order. As such, it is perfect, that is, the chromatic
and clique numbers of all subgraphs agree. Such graph invariants come up briefly below; for
instance, Lemma 3.6 implies that the chromatic and clique numbers of CB(S) are 2g − 1.

The inspiration for Theorem 1.1 is the theorem of Ivanov [7], see also Luo [10], that the
automorphism group of the curve graph is Mod(S). Here, the curve graph is the graph C(S)
whose vertices are isotopy classes of simple closed curves on S, and edges connect isotopy classes
that admit disjoint representatives. Ivanov used his theorem to give a geometric proof that the
isometry group of Teichmüller space, regarded with the Teichmüller metric, is also Mod(S)
(originally proved by Royden [13] and Earle–Kra [5]), and the outer automorphism group of
the mapping class group is trivial. Since then, there have been a number of papers proving
similar rigidity results for complexes associated to a surface S, for example, the complex of
nonseparating curves [6], and the pants complex [11].

The action of the mapping class group on CB(S) encodes a wealth of information about
the interaction of mapping classes and 3-manifolds. For instance, an element φ ∈ Mod(S) fixes
an S-compression body (C, f) if and only if the homeomorphism f ◦ φ ◦ f−1 of ∂+C extends
to a homeomorphism of C. Extension into compression bodies has been previously studied by
Casson–Long [4], Long [8, 9], Biringer–Johnson–Minsky [2], and Ackermann [1], among others.
In studying the cobordism group of surface automorphisms, Bonahon [3, Proposition 5.1]
shows that when a homeomorphism of a surface S extends to a 3-manifold M with ∂M = S,
it also extends to a 3-manifold in which all the nonperiodic action happens on the union of a
compression body and an interval bundle.

There are a number of similar ‘graphs of compression bodies’ that are quasi-isometric
to CB(S). In particular, Maher–Schleimer have shown that a related handlebody graph is
δ-hyperbolic and has infinite diameter, which implies the same facts about CB(S). (Maher–
Schleimer should be credited as the first to study the implied notion of distance between
handlebodies or compression bodies.) One could also connect two compression bodies with an
edge if they differ by a single compression, or alternatively by a single minimal compression
(see Section 2.2), and one could also consider directed versions of all these graphs. For directed
graphs of all compression bodies, our proof goes through verbatim, and some of the work in
Section 3 can actually be avoided. We thought it interesting to characterize the automorphism
group of the undirected graph in the case of CB(S), though, which requires a bit more work.
In general, we find CB(S) (and its directed version) to be the most natural of these: it is a
comparability graph, the edge relation can be seen transparently within the curve complex of
S, and its structure is natural when considering the extension of homeomorphisms of S into
compression bodies. For instance, [2] implies that if the attracting lamination of a pseudo-
Anosov map f : S −→ S is a limit of meridians in C, then there is a finite f -orbit in the link
of C ∈ CB(S).

For the proof of Theorem 1.1, we introduce an auxiliary simplicial complex, which is of
independent interest. The torus complex, denoted by T C(S), is the simplicial complex whose
vertices are isotopy classes of nonseparating simple closed curves, and where a collection of
vertices {a0, . . . , ak} spans a k-simplex if there exists a punctured torus T ⊂ S such that ai
can be isotoped to be contained in T for all 1 � i � k.

Theorem 1.2. For g(S) � 2, the natural map Mod(S) → Aut(T C(S)) is a surjection.
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So, every bijection of the set of nonseparating simple closed curves on S that preserves when
curves lie in a punctured torus is given by a mapping class.

As in Theorem 1.1, this map is an isomorphism except when S has genus 2, in which case
the kernel is generated by the hyperelliptic involution. The relationship between T C(S) and
CB(S) is described in the following proof sketch.

1.1. Sketch of the proof of Theorem 1.1

We will outline here the proof of the main theorem, modulo results to be proved later. A full
proof will be given at the end of the paper in Section 5.

Suppose that f : CB(S) −→ CB(S) is an automorphism. In Proposition 3.1, we show that
f preserves the set of small compression bodies S[a], those that are obtained from S
by compressing a single curve a. Moreover, f preserves whether the compressing curve is
nonseparating or separating. Briefly, the idea is that small compression bodies are (among)
those with small height, a notion of complexity introduced in Section 2.2, and the height of
a compression body C is encoded in the chromatic number of certain subsets of the link of
C ∈ CB(S). This is the subject of Section 3.

In particular, f acts on the set of nonseparating simple closed curves on S. This action has
the property that it preserves when a set of nonseparating curves comes from a single punctured
torus T ⊂ S. When g(S) � 3, this is because two nonseparating curves a, b lie in a punctured
torus if and only if the compression bodies S[a] and S[b] contain a common subcompression
body, while g(S) = 2 requires an additional argument. This leads us to consider the torus
complex T C(S).

Section 4 is dedicated to proving Theorem 1.2 and is entirely separate from the rest of the
paper.

Consequently, the action of f on the set of nonseparating small compression bodies agrees
with the action of mapping class φ ∈ Mod(S). We then show that the actions of f and φ agree
on all of CB(S), using that a compression body is determined by the small compression bodies
it contains.

2. Compression bodies

A compression body is a compact, orientable, irreducible 3-manifold C with a π1-surjective
boundary component ∂+C, called the exterior boundary of C. The complement ∂C � ∂+C
is called the interior boundary and is written ∂−C. Note that the interior boundary is
incompressible. For if an essential simple closed curve on ∂−C bounds a disk D ⊂ C, then
C � D has either one or two components, and in both cases, Van Kampen’s Theorem implies
that ∂+C, which is disjoint from D, cannot π1-surject.

Let S be a closed, orientable surface. In the introduction, we defined an S-compression
body as a pair (C, f) where f : S −→ ∂+C is a homeomorphism. Throughout the remainder
of the paper, we will suppress the marking f , and consider compression bodies whose exterior
boundaries are implicitly identified with S. With this new language, two S-compression bodies
are isomorphic if they are homeomorphic via a map that is the identity on their exterior
boundaries, and an S-compression body C is contained in D, written C ⊂ D, if there is an
embedding of C into D that is the identity on the exterior boundary. Often, we will just view
C as a submanifold of D that shares its exterior boundary.

If {a1, . . . , ak} is a collection of disjoint simple closed curves on S, let S[a1, . . . , ak] be the
S-compression body obtained by compressing each of the curves ai. This means that we attach
2-handles to S × [0, 1] along a collection of annuli on S × {0} whose core curves are the ai, fill
in S2-boundary components with balls, and identify S with S × {1}. We will call {a1, . . . , ak}
a compressing system for S[a1, . . . , ak].
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Figure 1. A boundary-connected sum of four balls and interval bundles over a torus and a
genus 2 surface. Here, the boundary-connected sum of the four balls is a genus 2 handlebody.

A simple closed curve on S is called a disk, or meridian, of an S-compression body C if it
bounds an embedded disk in C. The disk set of an S-compression body C, written D(C), is
the set of (isotopy classes of) meridians of C.

Lemma 2.1. If {a1, . . . , ak} ⊂ D(C) is a collection of disjoint meridians of C, then
S[a1, . . . , ak] ⊂ C. Moreover, if {a1, . . . , ak} is maximal, S[a1, . . . , ak] = C.

In particular, any compression body can be constructed from S as above, by compressing a
collection of simple closed curves and filling in spheres with balls.

Proof. As the meridians {a1, . . . , ak} are disjoint, they bound a collection of disjoint disks
Di in C. By irreducibility, every 2-sphere boundary component of a neighborhood of the union
S ∪

⋃
i Di bounds a ball in C. So, filling in these boundary components gives a submanifold of

C homeomorphic to S[a1, . . . , ak].
Now assume that the collection {a1, . . . , ak} is maximal. The interior boundary components

of S[a1, . . . , ak] are then incompressible in C: if not, a simple closed curve on an interior
boundary component that compresses in C \ S[a1, . . . , ak] can be homotoped to a new
meridian on S that is disjoint from the collection {a1, . . . , ak}. So, each component of
C \ S[a1, . . . , ak] has a π1-surjective, incompressible boundary component, so is an interval
bundle by Waldhausen’s cobordism theorem [15]. �

The following is an immediate consequence of Lemma 2.1.

Corollary 2.2. Let C,D be S-compression bodies. Then C and D are isomorphic if and
only if D(C) = D(D), and C ⊆ D if and only if D(C) ⊆ D(D).

In particular, this implies that C and D are isomorphic if and only if C ⊆ D and D ⊆ C.
Compression bodies can also be constructed as boundary-connected sum of closed balls and
interval bundles Fi × [0, 1], where the Fi are closed, orientable surfaces, and the boundary-
connected sums are always performed along Fi × {1} (see Figure 1). Here, such sums of
irreducible 3-manifolds are irreducible, and the union of the Fi × {1} with the boundaries
of the balls and 1-handles is a π1-surjective boundary component.

Lemma 2.1 shows that every compression body can be so constructed. If C = S[a1, . . . , ak],
let Fi be the surfaces obtained by surgering S along disks D1, . . . , Dk ⊂ C with boundary
a1, . . . , ak. (Here, if Si is a component of S \ (a1 ∪ · · · ∪ ak), then Fi is obtained from Si by
attaching the adjacent disks to its boundary components.) Each Fi ⊂ C bounds either a ball,
if Fi is a sphere, or an interval bundle Fi × [0, 1]. These pieces are attached along the disks Dj ,
which expresses C as a boundary-connected sum.

Corollary 2.3. A compression body is determined up to homeomorphism by the genera
of its boundary components.
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Note that since the exterior boundary always has the largest genus, it is not necessary to
label the genera as ‘exterior’ and ‘interior’ in the statement of the corollary.

Proof. We claim that any compression body C can be obtained by attaching interval bundles
Fi × [0, 1] with a single 1-handle to a handlebody H. To do this, think of a boundary-connected
sum decomposition for C as a graph, where vertices are balls and interval bundles, and edges
are 1-handles. The homeomorphism type of the compression body is unchanged if each interval
bundle vertex in the graph is replaced by a ball vertex, and then that interval bundle is
reattached to the new ball with an additional 1-handle. The result is a graph of balls and
1-handles, that is, a handlebody, attached to interval bundles.

The genera of the interior boundary components determine the interval bundles, while the
difference between the genus of the exterior boundary and the total genus of the interior
boundary is the genus of the handlebody. �

Finally, we end with a useful gluing construction.

Corollary 2.4 (Exterior-to-interior gluings). Suppose that C is an S-compression body
with an interior boundary component F ⊂ ∂−C, and D is an F -compression body. Then the
natural gluing C �F D is an S-compression body.

Conversely, let C ⊂ E be the S-compression bodies, and let ∂−C = F1 � . . . � Fn. Then E is
isomorphic to an S-compression body obtained by gluing to C a collection of (possibly trivial)
Fi-compression bodies Di, one for each i.

Proof. Represent C and D as the boundary-connected sums of balls and interval bundles.
Gluing F × [0, 1] to D does not change its homeomorphism type, so C �F D is a boundary-
connected sum of the balls and interval bundles from D, together with all balls and interval
bundles from C except F × [0, 1].

For the second part, extend a compressing system a1, . . . , ak for C to a compressing system
a1, . . . , ak, b1, . . . , bl for C �F D. The bj are all disjoint from a1, . . . , ak, so are homotopic to
simple closed curves b′j on the interior boundary of C. Then Ci is the compression body defined
by the compressing system consisting of all b′j that lie on Fi. �

2.1. Small compression bodies

Throughout this work, there will be a special class of compression bodies that we will
consistently come back to, which we now define.

Definition 1. A small compression body is a compression body C that can be written as
S[a] for some simple closed curve a ⊂ S = ∂+C.

A solid torus is an example of a small compression body — it has a unique meridian.
When S has genus at least 2, the disk set of a small compression body S[a] has a unique

meridian only when a is separating. We will prove this, but first we need some notation.
Given a, b ∈ C(S), the geometric intersection number, denoted i(a, b), is the minimal number
of intersections between any two representatives of a and b. If a, b ∈ C(S) and i(a, b) = 1, the
band sum of a and b is the separating curve

B(a, b) = ∂N(a ∪ b),

where N(a ∪ b) is a regular neighborhood of a ∪ b. Note that B(a, b) is the boundary of a
once-punctured torus, N(a ∪ b), that contains a. Conversely, any curve that bounds a once-
punctured torus T containing a can be expressed as a band sum B(a, b), by taking b to be any
curve in T that intersects a once.
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Proposition 2.5 (Disk sets of small compression bodies). Suppose that S is a closed,
orientable surface and a is a simple closed curve on S. If S is a torus or a is separating,

D(S[a]) = {a},

while if the genus g(S) � 2 and a is nonseparating, then

D(S[a]) = {a} ∪ {B(a, b) : b ∈ C(S), i(a, b) = 1}

= {a} ∪ {∂T : T ⊂ S a punctured torus with a ⊂ T}.

In the remainder of the paper, we will call a small compression body C = S[a] separating or
nonseparating depending on the type of the compressed curve a ⊂ S.

An S-compression body C is called minimal if it does not contain any nontrivial subcom-
pression bodies. Any minimal compression body must be small, but if a is nonseparating
and g(S) � 2 then S[a] is not minimal, since compressing any separating meridian gives a
nontrivial subcompression body. On the other hand, all other small compression bodies have
a single meridian, so are certainly minimal. In summary:

Corollary 2.6. An S-compression body is minimal if and only if it is a solid torus or a
small compression body obtained by compressing a separating curve.

Before proving Proposition 2.5, we need the following lemma. Although we are only concerned
with compression bodies, we might as well state it more generally.

Lemma 2.7. Suppose that S is a boundary component of a compact 3-manifold C, and a, b
are meridians on S with i(a, b) > 0. Then the intersections with a divide b into a collection of
arcs, one of which, say b′, has the following properties:

(i) both intersections of b′ with a happen on the same side of a;
(ii) the union of b′ with either of the two arcs of a with the same endpoints is a meridian,

which is disjoint from (after isotopy) but not isotopic to a.

Proof. Pick two transverse disks Da and Db with boundaries a and b, and assume that the
number of components of the intersection Da ∩Db is minimal.

Let γ be an arc of Da ∩Db that is innermost in Db, meaning that one of the two components,
say X, of Db � γ has no intersections with Da. The boundary arc b′ = X ∩ ∂Db is disjoint from
a except at its endpoints. These two intersections happen on the same side of a, since the side
of the disk Da that X is on cannot flip while traversing γ. (Properly embedded disks in
3-manifolds are always two-sided, since they are simply connected.)

Gluing X to either of the two components of Da � γ gives a disk D ⊂ C whose boundary is
the union of b′ with an arc a′ of a, as desired. Note that ∂D is an essential simple closed curve
in S, since if it were inessential b′ and a′ would be homotopic rel endpoints, and then a and
b would not be in minimal position. Also, since the intersections of b′ with a happen on the
same side of a, ∂D can be isotoped to be disjoint from a.

Hoping for a contradiction, assume that ∂D is isotopic to a. By a small isotopy, ∂D can
be made disjoint from a; more carefully, perform the isotopy by pushing a′ slightly away from
a while keeping its endpoints on b′. After the isotopy, ∂D and a cobound an annulus A ⊂ S.
If A and b′ approach a from the same side, then b′ is homotopic to a � a′ rel endpoints (see
Case 1, Figure 2), so as before a, b cannot be in minimal position.

If A and b′ approach a from opposite sides, then a is nonseparating and up to the action of
the mapping class group of S, exactly as shown in Case 2, Figure 2. However, it is impossible
to extend the b′ in this figure to a closed curve that is in minimal position with respect to a.
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Figure 2 (colour online). The curve a is the vertical circle containing the segment a′. The curve
∂D is obtained by isotoping a′ ∪ b′ to be disjoint from a. In both cases, the annulus A bounded
by a and ∂D starts from the left of a.

Figure 3. A surgery of a curve δ along a cannot produce a curve that is a band sum of a.

For continuing from the endpoints of b′, since it cannot turn immediately back to intersect
a again, the curve b would be forced to wind infinitely many times through the thin ‘strip’
indicated in the figure, and could never close up. �

We are now ready to prove Proposition 2.5, which characterizes the disk sets of small
compression bodies.

Proof. Suppose first that a ⊂ S is a separating curve. If D is disk in S[a] with boundary a,
and Si is a component of S � a, then the union D ∪ Si is a closed surface isotopic in C to an
interior boundary component of S[a]. As remarked at the beginning of Section 2, this means
that D ∪ Si is incompressible in S[a]. So, the only essential simple closed curves on Si that
are compressible in S[a] are isotopic to the boundary, a. In other words, there are no other
meridians of S[a] that are disjoint from a. A priori, there could be meridians that intersect a,
but Lemma 2.7 converts these to meridians disjoint from a, so in fact a is the only meridian.

Now, suppose that a ⊂ S is nonseparating. Form a closed surface S′ by attaching to S � a
two copies of the disk D. As before, S′ is incompressible in S[a].

Assume that γ is a meridian in S � a. Then, γ bounds a disk in S′. The intersection of this
disk with S � a is a twice punctured disk with γ as a boundary component, and reidentifying
the two copies of a gives a punctured torus T ⊂ S bounded by γ that contains a.

If δ is a meridian of S[a] that intersects a, then by Lemma 2.7, there is a surgery on δ that
produces a meridian disjoint from a, which is then a band sum γ by the previous paragraph.
However, Figure 3 shows that this is impossible. �

2.2. Height of a compression body

When C is an S-compression body, a sequence of minimal compressions for C is a chain

S × [0, 1] = C0 ⊂ C1 ⊂ · · · ⊂ Ck = C (2.1)
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of compression bodies in which each Ci is created from Ci−1 by gluing a minimal Fi-compression
body to some component Fi ⊂ ∂−Ci−1. Recall that a compression body is minimal if it does
not contain any nontrivial subcompression bodies (in Corollary 2.6), we saw that these are
exactly the solid tori and separating small compression bodies.

Sequences of minimal compressions are exactly chains (Ci) as in (2.1) that are maximal, in
the sense that they are not properly contained in a larger chain.

As an example, let C = S[a], where a is nonseparating and g(S) � 2. By Proposition 2.5,
any separating meridian b for S[a] bounds a punctured torus containing a, so a is isotopic to
a curve a′ on a torus T ⊂ ∂−S[b]. The compression body S[a] is obtained by attaching a solid
torus to S[b] along T so that the meridian is identified with a′. So here,

S × [0, 1] ⊂ S[b] ⊂ S[a]

is a sequence of minimal compressions for any separating meridian b in S[a].
More generally, we have the following lemma.

Lemma 2.8. Suppose that C = S[a1, . . . , ak], and for each i let Si be the component of
S \ a1 ∪ · · · ∪ ai−1 containing ai. If

(∗) for each i, either we have g(Si) = 1, or we have g(Si) � 2 and ai separates Si,

then Ci = S[a1, . . . , ai] defines a sequence of minimal compressions for C. Conversely, any
sequence of minimal compressions for C can be written as Ci = S[a1, . . . , ai] for some collection
a1, . . . , ak satisfying (∗).

Whenever C = S[a1, . . . , ak], the (ai) can be altered to satisfy (∗). For if g(Si) = 0, then ai
is already a meridian in S[a1, . . . , ai−1], so its inclusion is redundant and it can be removed. If
g(Si) � 2 and ai is nonseparating in Si, insert a new curve bi ⊂ Si that bounds a punctured
torus containing ai between ai−1, ai in the sequence.

Proof. Suppose C = S[a1, . . . , ak] and (ai) satisfies (∗). Then for each i,

Ci = Ci−1 �Fi
Fi[a′i],

where Fi is the component of ∂−Ci−1 homotopic to the surface obtained by attaching disks to
Si, and a′i ⊂ Fi is the unique curve homotopic to ai. Note that g(Si) = g(Fi), and ai separates
Si if and only if a′i separates Fi. Then (∗) says that Fi[a′i] is minimal.

Conversely, if (Ci) is a sequence of minimal compressions, we can use Lemma 2.1 to iteratively
extend compressing systems from Ci−1 to Ci. The result is a compressing system a1, . . . , ak for
C that satisfies (∗). �

The following is the main result of the section.

Proposition 2.9. If C is a compression body with ∂−C = F1 � · · · � Fn, the length k of
any sequence of minimal compression S × [0, 1] = C0 ⊂ C1 ⊂ · · · ⊂ Ck = C is

h(C) := (2 · g (S) − 1) −
n∑

i=1

(2 · g (Fi) − 1) . (2.2)

We call h(C) the height of C. A genus g handlebody has height 2g − 1, so a solid torus has
height 1. A separating small compression body also has height 1, as the genera of the two
interior boundary components sum to the genus of the exterior boundary.
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Proof. If C is a compression body and F is a component of ∂−C, then h adds when an
F -compression body D is glued to C:

h(C �F D) = h(C) + h(D),

since the only boundary component from C or D that is not referenced in h(C �F D) is F ,
but 2 · g(F ) − 1 appears with opposite signs in h(C) and h(D). So, gluing on a solid torus or
a separating small compression body increments height. �

As a consequence of Proposition 2.9, height is positive and increases under the inclusion

C ⊂ D =⇒ h(C) < h(D).

Hence, the length of any chain (Ci) of subcompression bodies of C is at most h(C), and any
chain is contained in a maximal chain, that is, a sequence of minimal compressions.

Corollary 2.10 (‘Short’ compression bodies).

(i) Height 1 compression bodies are solid tori and small compression bodies S[a], where a
is separating.

(ii) Height 2 compression bodies are small compression bodies S[a], where a is nonseparating
and g(S) � 2, and compression bodies of the form S[a1, a2], where a1, a2 are disjoint, separating
curves on S.

Proof. By Proposition 2.9, height 1 compression bodies are minimal compression bodies, so
(1) follows from Corollary 2.6.

A nonseparating small compression body S[a], where g(S) � 2, has height 2, since its interior
boundary is connected with genus 1 less than that of the exterior boundary.

A pair of disjoint separating curves a, b ⊂ S separates S into three subsurfaces S1, S2, S3,
where

∑
i g(Si) = g(S). All of these have positive genus, so S[a, b] has three interior boundary

components, with these same genera. So, h(S[a, b]) = 2.
Finally, if a compression body C has height 2, then by Corollary 2.8 there must be a pair of

disjoint curves a1, a2 satisfying (∗) with S[a1, a2] = C. It follows from (∗) that g(S) � 2, and
that a1 is separating. If a2 is nonseparating, then (∗) implies that the component of S \ a1

containing a2 is a punctured torus, in which case S = S[a2]. �

2.3. Separating and nonseparating compression bodies

In this section, it is shown that for every compression body, either there exists a compressing
system consisting of entirely nonseparating curves, or one entirely of separating curves, and
that these options are mutually exclusive. Furthermore, this dichotomy is determined by the
presence or lack, respectively, of a nonseparating meridian.

Proposition 2.11. For an S-compression body C, the following seven conditions are
equivalent:

(i) C = S[a1, . . . , ak], where each ai is separating;
(ii) H1(S) −→ H1(C) is injective (and hence an isomorphism);
(iii) every meridian of C is separating;
(iv) solid tori are never used in any sequence of minimal compressions for C;
(v) C has a sequence of minimal compressions in which solid tori are never used;
(vi) the number of interior boundary components of C is h(C) + 1;
(vii) the genera of the interior boundary components of C sum to g(S);
(viii) C is contained in a compression body that has g(S) interior boundary components,

all of which are tori, as shown in Figure 4.
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Figure 4 (colour online). An S-compression body that has g(S) interior boundary components,
all of which are tori (outlined in dots). The vertical circles form a compressing system. All such
compression bodies are isomorphic, although not all compressing systems look like the above.

Proof. For (1) =⇒ (2) the kernel of π1S −→ π1C is normally generated by the curves
a1, . . . , ak, which lie in the commutator subgroup [π1S, π1S]. So, the entire kernel lies in
[π1S, π1S], implying that the induced map H1(S) −→ H1(C) is injective.

For (2) =⇒ (3), note that any nonseparating curve is nontrivial in H1(S), so by (2) cannot
be trivial in H1(C).

(3) =⇒ (1) are trivial.
(3) =⇒ (4), since gluing a solid torus to an interior boundary component F ⊂ ∂−C

compresses a nonseparating curve on F , which is then homotopic to a nonseparating meridian
on S.

(4) =⇒ (5) is trivial.
(5) =⇒ (6), since gluing a separating small compression body onto an interior boundary

component F removes F , but contributes two new interior boundary components.
(6) =⇒ (7), by the definition of height.
(7) =⇒ (8), since to each interior boundary component F of C, we can glue an F -compression

body with g(F ) interior boundary components, all of which are tori.
For (8) =⇒ (2), note that the compression body in Figure 4 has a compressing system

consisting of only separating curves, so all its meridians are separating by the fact that
(1) =⇒ (2). The same is then true for any subcompression body. �

The next result is a corollary of Lemma 2.1 and Corollary 2.3.

Corollary 2.12. An S-compression body C can be written as S[a1, . . . , am] with each ai
nonseparating if and only if C contains a nonseparating meridian.

Proof. The forward implication is obvious, so assume that C has a nonseparating meridian.
As described in Corollary 2.3, we can construct C by attaching, for each component of ∂−C,
an interval bundle with a single 1-handle to a handlebody H. Since C has a nonseparating
meridian, H must have positive genus, for otherwise H would admit a compressing system
with only separating meridians, violating Proposition 2.11 (3).

Each 1-handle intersects ∂H in a disk; let {D1, . . . , Dn} be the collection of these disks.
Choose any pants decomposition {a1, . . . , am} for the punctured surface ∂H � (

⋃
i Di) in which

all the ai are nonseparating (as in Figure 5); we claim that C = S[a1, . . . , ak]. To see this,
observe that {a1, . . . , am, ∂D1, . . . , ∂Dn} is a maximal set of disjoint meridians for C, and for
each 1 � i � n there exists 1 � j �= k � m such that ∂Di bounds a pair of pants with some aj
and ak. It follows that

C = S[∂D1, . . . , ∂Dn, a1, . . . , ak] = S[a1, . . . , ak],

where the first equality is due to Lemma 2.1. �
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Figure 5. A handlebody with spots D1, D2, D3 corresponding to the attachment of 1-handles.
The nonseparating meridians shown on the surface give a pants decomposition of the punctured
surface obtained by deleting the spots from the boundary of the handlebody.

3. Small compression bodies are invariant

The main goal of this section is to show that an automorphism of CB(S) sends small
compression bodies to small compression bodies with the same type:

Proposition 3.1. Suppose that f is an automorphism of the compression body graph
CB(S). If a is a simple closed curve on S, then f(S[a]) = S[b] for some simple closed curve b.
Moreover, a is separating if and only if b is separating.

Recall from Section 2.2 that the height, written h(C), of an S-compression body C is the
length k of any sequence of minimal compressions

S × [0, 1] = C0 ⊂ · · ·Ck = C.

Height 1 compression bodies are solid tori and small compression bodies S[a], where a is
separating. Height 2 compression bodies are of the form S[a], where a is nonseparating, or of
the form S[a, b], where a, b are separating. See Corollary 2.10.

The bulk of the work in Proposition 3.1 is in the following result.

Proposition 3.2. Every automorphism of the compression body graph preserves height.

The proof of Proposition 3.2 will occupy most of this section; the idea is that the height of C
is encoded in the chromatic numbers of certain subsets of the link of C in CB(S). We describe
the structure of links in Section 3.1, and finish the proof of height preservation in Section 3.2.

The invariance of small compression bodies almost follows from Proposition 3.2, but one
must also show that nonseparating small compression bodies are not sent by f to compression
bodies S[a, b], where a, b are separating. For this, one can use the following lemma.

Lemma 3.3. Any height preserving automorphism f : CB(S) −→ CB(S) preserves the set of
compression bodies C with only separating meridians.

Such C admit a number of different characterizations, see Proposition 2.11. In particular,
by (1) =⇒ (3), a height 2 compression body S[a, b], with a, b separating, has only separating
meridians. A nonseparating small compression body clearly does not.

Proof. Note that f preserves containment, since one can distinguish between the edge
relations C ⊂ D and D ⊂ C using height. It must then preserve the set of chains C1 ⊂ C2 ⊂ · · ·
of compression bodies, and therefore the set of maximal such chains, that is, sequences of
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minimal compressions. Also f sends handlebodies to handlebodies, since these are exactly the
compression bodies with height 2g(S) − 1.

It follows that f preserves the set of compression bodies C that have only torus interior
boundary components, as these C can be characterized by the fact that after choosing a
handlebody H ⊃ C, there are only finitely many sequences of minimal compressions from C
to H. Here, solid tori can be attached to the interior boundary components of C in any order,
but the attachment maps are prescribed by H. If C has a higher genus interior boundary
component F , then there are infinitely many intermediate compressions to choose from when
attaching a handlebody to F .

In particular, f must preserve the height g(S) − 1 compression bodies C that have only
torus interior boundary components, as shown in Figure 4. Here, the number of boundary
components is g(S), since g additional compressions are required to reach a handlebody, which
has height 2g(S) − 1. By Proposition 2.11, the compression bodies that are contained in such
C are exactly those that have only separating meridians. �

The remainder of the section presents the proof of Proposition 3.2, which states that
automorphisms of the compression body graph preserve height.

3.1. Links in CB(S)

Given a graph Γ we denote the edge relation in Γ by ∼Γ. We will simply use ∼ when the graph
is clear from context. The join of two graphs Γ and Γ′, written Γ + Γ′, is the graph with vertex
set Γ � Γ′, and where vertices v, w are adjacent if either:

(i) v, w ∈ Γ and v ∼Γ w, or
(ii) v, w ∈ Γ′ and v ∼Γ′ w, or
(iii) v ∈ Γ and w ∈ Γ′.

In particular, note that if two vertices in a graph join are not connected by an edge, they must
lie in the same factor. Here is a useful consequence.

Fact 3.4 (Uniqueness of join). Suppose Γ,Γ′ are anticonnected graphs, and Δ,Δ′ are
arbitrary. If Γ + Γ′ = Δ + Δ′, then up to exchanging factors, Γ = Δ and Γ′ = Δ′.

Here, a graph is anticonnected if any two vertices can be connected by an antipath, that is, a
sequence of vertices (vi) where vi �∼ vi+1 for all i. To prove the fact, just assume there is some
v ∈ Δ ∩ Γ and note that any antipath starting at v stays in Δ.

As mentioned above, the link of a compression body C ∈ CB(S) decomposes as a join

Link(C) = Link−(C) + Link+(C),

where

Link+(C) = {D ∈ CB(S) : C ⊂ D}
and

Link−(C) = {D ∈ CB(S) : D ⊂ C}
are the uplink and downlink of C, respectively.

Lemma 3.5. If C ∈ CB(S), the graphs Link+(C) and Link−(C) are anticonnected.

So by Fact 3.4, the only way to write Link(C) as a join is using the uplink and downlink.

Proof. We will say two vertices v, w are antiadjacent if v �∼ w in CB(S).
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We first deal with Link+(C). Pick a handlebody H ⊃ C that lies in Γ. By Corollary 2.4, H
is obtained from C by attaching handlebodies (with smaller genus) to the components of ∂−C.
In particular, there is a nonseparating simple closed curve a on some component F ⊂ ∂−C that
bounds a disk in H.

Choose a simple closed curve b on F with i(a, b) = 1, and let C[b] be the compression body
obtained from C by compressing b. Then C[b] and H are antiadjacent, since two meridians
in a handlebody cannot intersect once. Moreover, every compression body containing C[b] is
antiadjacent to H as well.

Any two compression bodies with the same height are antiadjacent. The compression body
C[b] and its uplink represent all heights in Link+(C), except h(C) + 1 when g(F ) � 2. In this
last case, though, there is a separating simple closed curve c on F that is not a band sum with
b, and then C[c] is a height h(C) + 1 compression body that is antiadjacent to C[b]. Therefore,
the uplink Link+(C) is anticonnected.

The argument for Link−(C) is similar. Start with a compression body D ⊂ C with
height h(C) − 1, and pick some meridian a of C that is not a meridian in D. Then every
subcompression body of C that contains a is antiadjacent to D. These fill out all heights in
Link−(C), except height 1 if a is not separating. In this latter case, h(C) − 1 � 2, so C must
have a separating meridian b that is not a band sum with a. Then S[b] is a height 1 compression
body that is antiadjacent to S[a], and the downlink is anticonnected. �

A clique in a graph Γ is a complete subgraph and the clique number, written ω(Γ), is the
number of vertices in a maximal clique. A proper coloring of a graph is a labeling of the vertices
such that vertices connected by an edge are assigned different labels. The minimal number of
colors required to give a proper coloring of Γ is the chromatic number, written χ(Γ). It is clear
that

ω(Γ) � χ(Γ). (3.1)

Lemma 3.6. If C ∈ CB(S), the clique and chromatic numbers satisfy

ω(Link−(C)) = χ(Link−(C)) = h(C) − 1

and

ω(Link+(C)) = χ(Link+(C)) = 2g − 1 − h(C).

Proof. Labeling a vertex of Link−(C) by its height is a proper coloring, so χ(Link−(C)) �
h(C) − 1. The induced subgraph on any maximal chain of subcompression bodies C1 ⊂ · · · ⊂
Ch(C)−1 = C is a complete graph, so ω(Link−(C)) � h(C) − 1. Therefore,

ω(Link−(C)) = χ(Link−(C)) = h(C) − 1

by (3.1). The case for uplinks is similar. �

3.2. Automorphisms preserve height: the proof of Proposition 3.2

Fix an automorphism f ∈ Aut(CB(S)). If C ∈ CB(S), we can write

Link(f(C)) = Link+(f(C)) + Link−(f(C)) = f(Link+(C)) + f(Link−(C)).

The uniqueness of the join (Lemma 3.5) that implies that either:

(i) f(Link+(C)) = Link+(f(C)) and f(Link−(C)) = Link−(f(C)); or
(ii) f(Link+(C)) = Link−(f(C)) and f(Link−(C)) = Link+(f(C)).
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Lemma 3.7. Either (i) holds for all C ∈ CB(S), or (ii) holds for all C ∈ CB(S).

Proof. Since the graph CB(S) is connected, it suffices to show that when two compression
bodies are adjacent, either (i) holds for both or (ii) holds for both. For convenience, let

Link�(C) = {C} ∪ Link+(C) and Link�(C) = {C} ∪ Link−(C).

Then if C ⊂ D, the only inclusions that are present between the four sets

Link�(C), Link�(C), Link�(D), Link�(D)

are that Link�(C) ⊃ Link�(D) and Link�(C) ⊂ Link�(D). Here, it is necessary to add in C
to the up- and downlinks, for if H is a handlebody, Link+(H) is empty, and is included in all
four sets above. Similarly, Link−(H) is empty when C is a separating small compression body.

In conclusion, it cannot be the case that up- and downlinks are switched for C, but preserved
for D (or vice versa), since then when considering f(C) and f(D), one would see some Link�

included in a Link� (or vice versa). �

By Lemma 3.6, the height of a compression body can be calculated from the chromatic
number of its uplink, or of its downlink. So, in light of Lemma 3.7, f is either height preserving
(in which case we are done) or ‘height reversing’, that is,

h(f(C)) = 2g − h(C), for all C ∈ CB(S). (3.2)

Assuming (3.2), we break into cases. When g(S) � 3, every compression body of height 2g − 2
has a single torus interior boundary component, so by Corollary 2.3, they are all homeomorphic.
Therefore, Mod(S) acts transitively on height 2g − 2 compression bodies. This action is
conjugated by f to a transitive, height preserving action on height 2 compression bodies.
We claim that this is a contradiction. Indeed, suppose the automorphisms act transitively on
compression bodies of height 2. Then, Corollary 2.10 implies that there exists an automorphism
f sending a compression body of the form S[a, b], where a, b are separating and disjoint,
to a nonseparating small compression body. By Lemma 3.7, f is height-preserving implying
f(S[a, b]) cannot contain a nonseparating meridian by Proposition 2.11 and Lemma 3.3, a
contradiction.

When S has genus 2, the argument above fails since a genus 2 surface does not admit a pair
of disjoint separating curves. Here, there are three possible heights:

(h = 1) separating small compression bodies;
(h = 2) nonseparating small compression bodies;
(h = 3) handlebodies.

As f is height reversing, the set of nonseparating small compression bodies is left invariant,
while separating small compression bodies and handlebodies are exchanged. Note that since f
reverses height, it reverses the order of containment: C ⊂ D =⇒ f(C) ⊃ f(D).

Let a, b be the curves indicated in Figure 6, and let

f(S[a]) = S[a′], f(S[b]) = S[b′].

As S[a] and S[b] are contained in a common handlebody, both S[a′] and S[b′] contain the same
separating small compression body, that is, there are punctured tori Ta and Tb containing a′, b′

with ∂Ta = ∂Tb. If Ta = Tb, then a′, b′ have nonzero algebraic intersection number, so S[a′]
and S[b′] cannot be contained in the same handlebody, contradicting that both a, b contain
a common separating small compression body. Therefore, we must have Ta �= Tb, in which
case the configuration of a′, b′ is the same, up to homeomorphism, as that of a, b. But this
is a contradiction, since then S[a′], S[b′] contain infinitely many common separating small
compression bodies, while S[a], S[b] are contained in only a single handlebody.
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Figure 6 (colour online). The two curves above are both meridians in only a single handlebody,
while there are infinitely many separating curves that are disjoint from both.

Figure 7. An example of three curves forming an empty triangle in T C(S).

4. The torus complex

The torus complex associated to a surface S, written T C(S), is the complex whose vertices are
isotopy classes of simple nonseparating curves and where the collection of vertices {a0, . . . , ak}
spans a k-dimensional simplex if there exists a punctured torus T ⊂ S with ai ⊂ T for every
1 � i � k (see Figure 7). Note that this is an infinite dimensional complex.

As described in the introduction, the automorphism group of the compression body graph
can be determined using the following theorem.

Theorem 1.2. The natural map Mod(S) → Aut(T C(S)) is a surjection.

As with automorphisms of the curve complex and CB(S), the map is an isomorphism unless
S has genus 2, in which case the kernel is generated by the hyperelliptic involution. We will
prove surjectivity by showing that an automorphism of T C(S) induces an automorphism of the
Schmutz graph. Here, the Schmutz graph N (S) has the same vertex set as T C(S), but edges
connect pairs of vertices that intersect once. Schaller [14] proved that every automorphism of
N (S) is induced by a mapping class.

We will need the following definition.

Definition 2. A triangle in T C(S) is a triple of vertices a, b, c, where each pair of vertices
is connected by an edge. A triangle is empty if it does not bound a 2-simplex.

Suppose a, b are adjacent vertices in T C(S). We claim that if i(a, b) = 1, there exists a
punctured torus T ⊂ S such that there are infinitely many empty triangles a, b, c with a, c
contained in T , while if i(a, b) �= 1, there are at most three empty triangles for every T . As
this characterization concerns just the simplicial structure of T C(S), it proves that intersection
number one is preserved by simplicial automorphisms. So by Schaller [14], any automorphism
of T C(S) is induced by a mapping class.
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Assuming i(a, b) = 1, the empty triangles are easy to construct. Choose any simple closed
curve d in S that intersects a once, is disjoint from b, but is not homotopic into a regular
neighborhood N of a ∪ b. If T is a regular neighborhood of a ∪ d, then twisting a around d
gives infinitely many simple closed curves c in T that lie in punctured tori with both a and b.
Any such c determines an empty triangle with vertices a, b, c.

For the other direction, we will need the following result.

Proposition 4.1. At most one edge of an empty triangle in T C(S) can connect simple
closed curves on S that intersect more than once.

Deferring the proof for a moment, let us finish the characterization of pairs of vertices that
intersect once. Suppose i(a, b) > 1. If a, b, c is an empty triangle, then by Proposition 4.1, we
must have i(a, c) = i(b, c) = 1. But if T is a punctured torus containing a, there are at most
three simple closed curves c ⊂ T that intersect both a, b once.

This is easiest to see in coordinates. After picking a basis for the homology of T , proper arcs
and curves in T can be labeled by extended rational numbers p

q ∈ Q ∪∞. Here, the p
q -arc is

the unique arc that is disjoint from the p
q -curve (see Figure 9(a)). The intersection number of

the p
q -curve and m

n -curve is |pn−mn|, and the same formula holds for intersections of arcs and
curves (although for intersections of two arcs, it is off by one). So, assume a is the 1

0 -curve, and
some component of b ∩ T3 is the p

q -arc. As i(a, b) > 0, we can assume that this arc intersects
a, that is, q �= 0. Then if the m

n -curve in T intersects a and b once, it intersects the p
q -arc at

most once, so

|1 · n− 0 ·m| = 1, |p · n− q ·m| � 1.

These conditions are only satisfied when q = ±1, in which case m
n must be p

q or (p± 1)/q.

4.1. The proof of Proposition 4.1

We require the following lemma.

Lemma 4.2. If a1, a2 ∈ T C(S) are in minimal position and contained in a punctured torus
T ⊂ S, then for any punctured torus T ′ �= T in S containing a1,

a2 ∩ T ′ = α1 � · · · � αn,

where αj is a simple proper arc of T ′ satisfying i(a1, αj) � 1 for each 1 � j � n.

Proof. Suppose i(a1, αj) � 2 for some 1 � j � n, then we may perform the surgery shown
and described in Figure 8. The resulting curve a satisfies i(a1, a) = 1 implying it is in minimal
position with respect to a1 allowing us to conclude that a �= a1. As this surgery occurred in T ′,
it is clear that a ⊂ T ′. Furthermore, as a is obtained from a surgery on a1 and a2, a ⊂ T . Now
T and T ′ share two distinct simple closed curves implying T = T ′, which is a contradiction. �

Proof of Proposition 4.1. Label the vertices of the empty triangle as a1, a2, a3 ∈ T C(S). We
will show that if i(a1, a2) > 1, then i(a1, a3) = 1.

Let Ti ⊂ S be the punctured torus containing aj and ak for i �= j �= k ∈ {1, 2, 3}. Then in
light of Lemma 4.2, it is enough to show that a3 ∩ T3 has a single component.

Note that we can guarantee that the collection of curves {ai} are in pairwise minimal position
in S as well as in all the Ti by taking geodesic representatives of each ai and ∂Ti in a complete
hyperbolic metric on S.

As above, we will work in coordinates, labeling arcs and curves in T3 by extended rational
numbers p

q ∈ Q ∪∞. We will assume a1 is the 1
0 -curve in T3. Since i(a1, a3) > 0, Lemma 4.2
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Figure 8 (colour online). Shown here are two consecutive intersections between a1 and αj and
the curve a resulting from the following surgery: Begin at the intersection on the left, follow αj to
the second intersection, and then following a1 back to the first intersection. Note that i(a1, a) = 1.

guarantees that there exists a component α of a3 ∩ T3 that intersects a1 exactly once; without
loss of generality, we may assume α is the 0

1 -arc. As i(a1, a2) �= 1, we know a2 is not the 0
1 -curve;

in particular, i(a2, α) = 1 by Lemma 4.2 as a2, a3 ⊂ T1. This forces a2 to be the 1
m -curve for

some m ∈ Z with |m| � 2.
We now want to rule out the existence of other components β of a3 ∩ T3. Any such β

intersects both a1 and a2 once. For if i(a1, β) = 0, then β is the 1
0 -arc, implying i(a2, β) > 1,

contradicting Lemma 4.2. So, we can conclude i(a1, β) = 1, again by Lemma 4.2. Similarly, we
have i(a2, β) = 1.

Suppose first that β is not isotopic to α. Then as i(a1, β) = 1, we know β is the n
1 -arc for

some n �= 0 ∈ Z. We now have two integers m,n satisfying

|m · n− 1| = 1,

as i(a2, α) = 1. Since n �= 0,

(m,n) ∈ {(2, 1), (−2,−1)}

so that |m| � 2.
Consider the case (m,n) = (2, 1), where a2 is the 1

2 -curve and β is the 1
1 -arc (see Figure 9(b)).

Choose orientations for a1, a2, and a3. As a1 and a3 live in a punctured torus, we know that the
orientations of the intersections of α and β with a1 must agree (as in Figure 9(b)). However,
this forces the orientations of the intersections of α and β with a2 to disagree, which contradicts
a2 and a3 being contained in the punctured torus T1. A similar argument implies that (m,n) �=
(−2,−1).

We have now shown that all the components of a3 ∩ T3 are isotopic to the 0
1 -arc in T3.

When ∂T2 and ∂T3 are put in minimal position, the intersection T2 ∩ T3 must then be exactly
as shown in Figure 9(c), since any component of T2 ∩ T3 must contains some component of
a3 ∩ T3. Then R = T2 ∩ (S � T3) is a rectangle, and a3 ∩R is a collection of parallel arcs. Since
S is orientable, the parallel arcs in a3 ∩ T3 and a3 ∩R glue to a collection of parallel loops. But
a3 is supposed to be a simple closed curve, so a3 ∩ T3 must have a single component intersecting
a1 once. �

5. Automorphisms as mapping classes

In this section, we complete the proof of Theorem 1.1, that is to say that the natural
homomorphism Mod(S) → Aut(CB(S)) is a surjection.
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Figure 9 (colour online). (a) A reference torus. (b) Drawn here is a2, α, and β with a2 given an
arbitrary orientation. As a1 and a3 live in a torus, the orientations of the intersections of α and
β with the 1

0
-curve must agree. (c) The region containing a1 that is bounded by the ∂T2 and ∂T3

is the intersection T2 ∩ T3.

Let f be an automorphism of CB(S). By Proposition 3.1, f permutes the small compression
bodies S[a] ∈ CB(S), so the formula f(S[a]) = S[f∗(a)] defines a map

f∗ : {simple closed curves on S} −→ {simple closed curves on S}.

Moreover, Proposition 3.1 says that a is nonseparating if and only if f∗(a) is. Since a
nonseparating curve a ⊂ S is contained in a punctured torus T ⊂ S, if and only if S[∂T ] ⊂ S[a],
f∗ preserves when a collection of nonseparating curves is contained in a punctured torus. So, f∗
extends to an automorphism of the torus complex T C(S). As every automorphisms of T C(S)
agrees with a mapping class (Theorem 1.2), the action of f on the set of nonseparating small
compression bodies agrees with a mapping class.

By postcomposing f with a mapping class, we obtain an automorphism of CB(S) fixing all
nonseparating small compression bodies. We claim the following.

Proposition 5.1. The only automorphism of CB(S) that fixes all nonseparating small
compression bodies is the identity.

This will imply that our f above agrees with a mapping class, and will finish the proof of
Theorem 1.1. To prove Proposition 5.1, we must set up some terminology.

Let Σ be an orientable finite-type surface, possibly with boundary. The curve graph C(Σ) is
the graph whose vertices are isotopy classes of essential nonperipheral simple closed curves in
Σ and where edges connect pairs of simple closed curves that intersect minimally. (Note that
unless S is a torus, a punctured torus or a 4-holed sphere, there are pairs of disjoint curves on
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S, so then ‘intersect minimally’ means disjoint.) The curve graph C(Σ) has a natural metric
dC , determined by setting each edge to have length one. Masur–Minksy [12, Proposition 4.6]
have shown that C(Σ) has infinite diameter. Let F be an interior boundary component of a
separating small compression body S[a] and let Da be a properly embedded disk bounded by
a. Let ΣF ⊂ S be the component of S � a such that ΣF ∪Da is isotopic to F within S[a]. Note
that as these surfaces are incompressible in S[a], the isotopy gives a canonical identification

C(ΣF ∪Da)
∼=−→ C(F ).

The interior boundary projection from S to F is the multivalued function

πF : C(S) −→ C(ΣF ∪Da) ∼= C(F )

defined as follows: let b ∈ C(S) and assume b is in minimal position with a. Now,

(i) if b ∈ C(ΣF ) ⊂ C(S), let πF (b) = b;
(ii) if b ∩ ∂ΣF is nonempty, then for each arc β of b ∩ ΣF , let β1, β2 ∈ C(ΣF ) be the two

components of the boundary of a regular neighborhood of β ∪ ∂ΣF ; then,

πF (b) =
⋃

β⊂b∩ΣF

{β1, β2} ;

(iii) otherwise πF (b) = ∅.

For the familiar, this is the same as the subsurface projection from S to ΣF , except that at
the end we cap off the boundary of ΣF with a disk. The only fact we will need is the following.

Lemma 5.2. If S[a], S[b] are both contained in an S-compression body C, there is component
F ⊂ ∂−S[a] and an element m ∈ πF (b) that bounds a disk in C � S[a].

Proof. The surgery of b and ∂ΣF presented in Lemma 2.7(2) gives a meridian for C that is
contained in ΣF , and isotoping this to F gives an element of πF (b). �

We can now prove Proposition 5.1.

Proof. The proof will proceed in three stages: first, we show that our automorphism f fixes
all compression bodies that contain a nonseparating meridian, then we show that this implies
that f fixes all small compression bodies (including the separating ones), and then we show
that f is the identity.

Lemma 5.3. An automorphism of CB(S) fixing every nonseparating small compression body
fixes every compression body containing a nonseparating meridian.

Proof. If C is an S-compression body containing a nonseparating meridian, then
C = S[a1, . . . , am], where each ai is nonseparating (Corollary 2.12). If f ∈ Aut(CB(S)) fixes
every nonseparating small compression body, then S[ai] ⊂ f(C) for 1 � i � m. In particular,
C ⊂ f(C), but h(C) = h(f(C)) (Proposition 3.2) forcing C = f(C). �

Lemma 5.4. An automorphism of CB(S) that fixes every compression body that contains a
nonseparating meridian fixes every small compression body.

Proof. By Proposition 3.1, the set of small compression bodies is invariant, so we must only
show that separating small compression bodies are not nontrivially permuted. So, we claim
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that if S[a] and S[b] are distinct separating small compression bodies, there is a compression
body C that has a nonseparating meridian such that

S[a] ⊂ C, but S[b] �⊂ C.

This will prove the lemma, since if f(C) = C, then we cannot have f(S[a]) = S[b].
From the definition, it is easy to see that πF (b) has finite diameter in C(F ), so that we can

choose a nonseparating curve c ∈ C(F ) satisfying

dC(c, πF (b)) � 2. (5.1)

Let C be obtained by gluing F [c] to S[a] (see Corollary 2.4). If S[b] ⊂ C, Lemma 5.2 gives some
m ∈ πF (b) that bounds a disc in C � S[a] = F [c]. (Note that the m given must lie on F , since
the other component of ∂−S[a] is incompressible in C.) But by Lemma 2.5, every meridian in
F [c] is disjoint from c, so this would violate (5.1). �

Finally, recall that the disk set of a compression body C, denoted D(C), is the collection of
all (isotopy classes of) meridians in C. Then,

(a) S[a] ⊂ C if and only if a ∈ D(C); and
(b) D(C) = D(D) if and only if C and D are isomorphic (Corollary 2.2).

Therefore, an automorphism fixing every small compression body is the identity. �
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