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We examine the performances of several popular Lévy jump models and some of
the most sophisticated affine jump-diffusion models in capturing the joint dynamics of
stock and option prices. We develop efficient Markov chain Monte Carlo methods for
estimating parameters and latent volatility/jump variables of the Lévy jump models
using stock and option prices. We show that models with infinite-activity Lévy jumps in
returns significantly outperform affine jump-diffusion models with compound Poisson
jumps in returns and volatility in capturing both the physical and risk-neutral dynamics
of the S&P 500 index. We also find that the variance gamma model of Madan, Carr,
and Chang with stochastic volatility has the best performance among all the models
we consider.
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1. INTRODUCTION

Modeling the dynamics of stock returns is one of the most important issues in modern
finance. A realistic model of return dynamics is essential for option pricing, portfolio
analysis, and risk management. Although continuous-time models for return dynamics
since Black and Scholes (1973) and Merton (1976) have mainly relied on Brownian
motion and compound Poisson process as basic model building blocks, Lévy processes
have become increasingly popular for modeling asset price dynamics in recent years.1

Martin Wells gratefully acknowledges the support of NSF Grant DMS 02-04252. We thank Yacine
Aı̈t-Sahalia for providing the data used in this study. We thank Yacine Aı̈t-Sahalia, Antje Berndt, Peter
Carr, Francois Derrien, Jefferson Duarte, Bjorn Eraker, Wayne Fuller, John Hull, Raymond Kan, Bob
Jarrow, George Jiang, Dilip Madan (the editor), John Maheu, Nour Meddahi, Tom McCurdy, Ray Renken,
Sidney Resnick, Ernst Schaumburg, Neil Shephard, George Tauchen, Liuren Wu, the associate editor, two
anonymous referees, and seminar participants at Cornell University, Hong Kong University of Science and
Technology, Iowa State University, Rice University, Virginia Commonwealth University, the University of
Arizona, the University of Toronto, and the 17th Derivatives Conference at FDIC for helpful comments.
We are responsible for any remaining errors.

Manuscript received June 2007; final revision received August 2009.
Address correspondence to Cindy L. Yu, Department of Statistics, Iowa State University, Ames, IA

50010; e-mail: cindyyu@iastate.edu.
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Lévy processes are continuous-time stochastic processes with stationary and indepen-
dent increments. Although Brownian motion and compound Poisson process are two of
the most well-known special cases of Lévy processes, there are many other members of
the Lévy family that offer greater flexibility for modeling purposes. For example, Lévy
processes allow nonnormal increments as compared to normal increments of Brownian
motion. The jump component of a general Lévy process also is much more flexible than
a compound Poisson process. In particular, the so-called infinite-activity Lévy jumps
have infinite jump arrival rates and can generate, in addition to large jumps, an infinite
number of small jumps within any finite time interval.

There are concerns, however, that infinite-activity Lévy jumps, despite their theoretical
appeals, may not have significant empirical advantages over some of the most flexi-
ble models of stock returns based on affine jump-diffusions (hereafter AJD) of Duffie,
Pan, and Singleton (2000) (hereafter DPS). In AJD models, stock returns are driven by
affine diffusions and compound Poisson processes. One of the most sophisticated AJD
models for stock returns is the double-jump models of Eraker, Johannes, and Polson
(2003) (hereafter EJP), which include not only stochastic volatility and leverage effect,
but also compound Poisson jumps in both returns and volatility. The double-jump mod-
els capture important stylized behaviors of both returns and volatility of major U.S.
stock indices. Therefore, it is not clear that infinite-activity Lévy jump models can sig-
nificantly outperform the double-jump models in empirical applications. Unfortunately,
there are no direct comparisons between Lévy jump models and the double-jump models
of EJP (2003) in capturing the joint dynamics of stock and option prices in the current
literature.2

Our paper addresses a basic and yet fundamental empirical issue in the current
continuous-time finance literature: Can commonly used Lévy jump models outperform
the most sophisticated AJD models in capturing the joint dynamics of spot and op-
tion prices? In particular, we consider models with stochastic volatility and jumps in
returns that follow the variance gamma (VG) model of Madan, Carr, and Chang (1998)
or the log stable (LS) model of Carr and Wu (2003), two of the most widely used
Lévy processes in the current literature.3 We also consider AJD models with stochas-
tic volatility and compound Poisson jumps in returns or correlated compound Pois-
son jumps in both returns and volatility. The latter is the preferred model of EJP
(2003).4

Statistical analysis of Lévy processes, however, can be difficult due to various reasons.
First, the probability densities of most Lévy processes are not known in closed form and
for certain processes, such as stable processes, not all moments exist. As a result, it is
difficult to use either likelihood- or moment-based methods for estimation. Second, it is
computationally demanding to deal with the high-dimensional latent volatility variables

model of Madan, Carr, and Chang (1998); the generalization of the variance gamma model in Carr et al.
(2002); and the finite moment log-stable model of Carr and Wu (2003) among others. See also Wu (2006b)
for an excellent review of the current literature on Lévy processes.

2 Existing studies of Lévy processes using option prices, such as Huang and Wu (2003), do not compare
the performances of Lévy jump models with that of the double-jump model.

3 Earlier studies on variance gamma processes include Madan and Seneta (1990) and Madan and Milne
(1991).

4 We emphasize that the continuous part of the volatility process in both the AJD and Lévy jump models
follows affine diffusion. Therefore, the main focus of our comparison is on the jump structures of the two
classes of models. We refer to the two classes of models as the AJD and Lévy jump models mainly for ease
of distinction.
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typically included in some of the most sophisticated Lévy models.5 Finally, attempts
to include option prices in model estimation significantly increase the computational
complexity because calculations of option prices involve numerical integrations.

We first develop efficient computational Bayesian Markov chain Monte Carlo (here-
after MCMC) methods for estimating the above Lévy and AJD models using both
stock and option prices. Our focus on the joint dynamics makes it possible to estimate
simultaneously the risk-neutral and physical dynamics of asset returns, as well as the
market prices of risks that govern the change of measure process. Based on our MCMC
methods, we obtain estimates of model parameters and posterior distributions of latent
volatility/jump variables, which are important for understanding different aspects of
model performance. Although Li, Wells, and Yu (2008) (hereafter LWY) have examined
MCMC estimation of Lévy jump models using stock prices, the estimation problem
becomes computationally much more challenging due to the inclusion of option prices.
As a result, we rely on more sophisticated updating procedures to estimate many model
parameters and latent variables.

Based on the new MCMC methods, we estimate the AJD and Lévy jump models
using daily returns of the S&P 500 index and daily prices of a short-term ATM SPX
option. We show that the Lévy jump models significantly outperform the preferred AJD
model of EJP (2003) in capturing the joint dynamics of the spot and option prices of the
S&P 500 index. For the physical dynamics, the infinite-activity Lévy jumps capture many
small movements in index returns that cannot be captured by the AJD models. For the
risk-neutral dynamics, the Lévy jump models have significantly smaller in-sample and
out-of-sample option pricing errors than the preferred AJD model. We also find that
the VG model Madan, Carr, and Chang (1998) with stochastic volatility has the best
performance among all the models we consider.6

There are only a few other studies that estimate Lévy processes using spot and option
prices jointly. Wu (2006a) introduces the so-called dampened power law to capture the tail
behaviors of index returns under the physical and the risk-neutral measures. Bakshi and
Wu (2005) estimate Lévy jump models using the spot and option prices of the Nasdaq
100 index during the Internet “bubble” period. Although Wu (2006a) and Bakshi and
Wu (2005) use numerical likelihood method to estimate model parameters, the MCMC
methods we adopt are particularly suitable to deal with the large number of latent
volatility and jump variables. The Bayesian approach also makes it possible to study the
impacts of priors and parameter uncertainties in applications such as hedging, portfolio
selection, and VaR calculation involving Lévy processes. Consistent with the empirical
focus of our study, we also adopt a different approach to the change of measure for Lévy
processes from that of Wu (2006a) and Bakshi and Wu (2005). We require that jumps
follow the same Lévy processes under the physical and the risk-neutral measures in order
to have a fair comparison with AJD models in which jumps under both measures follow
compound Poisson processes. Given this restriction, we obtain the Radon-Nikodym
derivatives for VG and LS processes based on Sato’s (1999) theorem. In contrast, Wu

5 Stochastic volatility is essential for capturing empirical behaviors of stock returns, and existing studies,
such as Carr et al. (2003) and Carr and Wu (2004), have used stochastic time change to generate stochastic
volatility in Lévy processes.

6 Aı̈t-Sahalia and Jacod (2009) and Tauchen and Todorov (2008) provide nonparametric evidence that
jump activity of asset prices is higher than that of the variance gamma process. However, their evidence
is based on intraday stock prices and exchange rates, respectively, which might exhibit more active jumps
that the daily data we use. Nevertheless, the two papers support the main point of our paper of using
infinite-activity jumps in modeling asset prices.
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(2006a) and Bakshi and Wu (2005) fix the form of the Radon-Nikodym derivative, which
is defined by the so-called Esscher transform. Under this transform, jumps generally
follow different Lévy processes under the two measures.7

The rest of the paper is organized as follows. In Section 2, we introduce the AJD and
Lévy jump models and discuss the change of measure and option pricing under these
models. In Section 3, we develop MCMC methods for estimating model parameters and
latent variables of the Lévy jump models using spot and option prices. Section 4 contains
empirical results using daily S&P 500 index returns and prices of SPX options. Section
5 concludes the paper. The appendix provides additional information on the four jump
models we consider and detailed discussions of the MCMC methods.

2. AJD AND LÉVY JUMP MODELS FOR RETURN DYNAMICS

In this section, we introduce the AJD and Lévy jump models considered in our study. We
also discuss the change of measure (between the physical and the risk-neutral measures)
and option pricing under these models.

2.1. AJD and Lévy Jump Models for Return Dynamics

Suppose the uncertainty of the economy is described by a probability space (�,F, P)
and a filtration {Ft}. We refer to P as the physical probability measure which represents
the probability measure of the real world in which we reside. Let St be the price of a
stock and Yt be the continuously compounded return on the stock, that is, Yt = log St.

We assume that the dynamics of Yt are characterized by the following model:

dY t = μ dt + √
vt dW (1)

t (P) + d J y
t (P),(2.1)

dvt = κ(θ − vt) dt + σv
√

vt
(
ρdW (1)

t (P) +
√

1 − ρ2 dW (2)
t (P)

)+ d Jv
t (P),(2.2)

where μ measures the expected rate of return, vt measures the instantaneous volatility of
return, W (1)

t (P) and W (2)
t (P) are independent standard Brownian motions under P, and

J y
t (P) and Jv

t (P) represent jumps in returns and volatility under P, respectively.
The above model nests all the models considered in this paper. In particular, the contin-

uous part of the instantaneous volatility of returns in all models follows the square-root
process of Heston (1993): θ represents the long-run mean of vt, κ is the speed of mean re-
version, σv is the so-called volatility of volatility, and ρ measures the correlation between
volatility and returns. Many studies have documented a strong negative correlation be-
tween volatility and returns, the so-called “leverage” effect, and the correlation coefficient
ρ helps to capture this phenomenon. The main difference between AJD and Lévy jump
models is the jump process. In AJD models, jumps follow compound Poisson processes,
which are finite-activity jumps. In Lévy models, jumps are infinite-activity.

In the first AJD model, we consider, Jv
t (P) = 0, and J y

t (P) follows a compound Poisson
process with a constant jump intensity and jump sizes that follow a normal distribution:

7 Other studies that estimate Lévy processes using underlying or option prices include Barndorff-Nielsen
and Shephard (2004), Belomestny and Reiss (2006), Cont and Tankov (2004a), Griffin and Steel (2006),
among others. Aı̈t-Sahalia (2004) and Aı̈t-Sahalia and Jacod (2008) provide theoretical analyses on statistical
inferences of Lévy processes.
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J y
t (P) =

Nt∑
n=1

ξ y
n ,(2.3)

where Nt ∼ Poisson(λt) and ξ
y
n ∼ N(μy, σ

2
y ). We refer to this model as the stochastic

volatility Merton jump (hereafter SVMJ) model because the jump process was first
introduced in Merton (1976).

The second AJD model we consider allows correlated jumps in both returns and
volatility. The stochastic volatility correlated Merton jump (hereafter SVCMJ) model is
the preferred model in EJP (2003) and Eraker (2004):(

J y
t (P)

Jv
t (P)

)
=

Nt∑
n=1

(
ξ

y
n

ξ v
n

)
,(2.4)

where Nt ∼ Poisson(λt), ξ v
n ∼ exp(μv ), and ξ

y
n | ξ v

n ∼ N(μy + ρJξ
v
n , σ 2

y ). The above model
is sometimes referred to as the double-jump model because of the jumps in both returns
and volatility. As shown in EJP (2003), the negative jumps in returns, J y

t (P), help to
capture the major crashes observed in the U.S. market; and the jumps in volatility, Jv

t (P),
help to model rapid increase in volatility that cannot be easily captured by the square-root
process.

The two basic building blocks for AJD models, Brownian motion and compound
Poisson process, are special cases of Lévy processes, which are continuous-time stochastic
processes with stationary and independent increments. Formally, if Xt is a scalar Lévy
process with respect to the filtration {Ft}, then Xt is adapted to Ft, the sample paths of
Xt are right-continuous with left limits, and Xt − Xs is independent of Ft and distributed
as Xt−s for 0 ≤ s < t. Lévy processes are much more flexible than Brownian motion and
compound Poisson process because they allow discontinuous sample paths, nonnormal
increments, and more flexible jump structures that have (possibly) infinite arrival rates.8

Unlike finite-activity jump processes, an infinite-activity jump process allows an (pos-
sibly) infinite number of jumps within any finite time interval. Within the infinite-activity
category, the sample path of the jump process can exhibit either finite or infinite variation,
meaning that the aggregate absolute distance traveled by the process is finite or infinite,
respectively, over any finite time interval.

In our empirical analysis, we choose the relatively parsimonious VG model of Madan,
Carr, and Chang (1998) as a representative of the infinite-activity but finite-variation
jump model. The VG process is obtained by subordinating an arithmetic Brownian
motion with drift γ and variance σ by an independent gamma process with unit mean
rate and variance rate ν, Gν

t . That is,

XVG(t | σ, γ, ν) = γ Gν
t + σ W(Gν

t ),(2.5)

where W(t) is a standard Brownian motion and is independent of Gν
t . The model in (2.1)

and (2.2) reduces to the SVVG model, if J y
t (P) = XVG(t | σ, γ, ν) and Jv

t (P) = 0.

We choose the finite moment LS process of Carr and Wu (2003) as a representative of
the infinite-activity and infinite-variation jump model in our analysis. The increments of
the LS process follow an α-stable distribution. That is, for t > s,

XLS(t | α, σ ) − XLS(s | α, σ ) ∼ Sα

(−1, σ
1
α (t − s)

1
α , 0
)
,(2.6)

8 For more detailed discussions on Lévy processes, see Cont and Tankov (2004b).
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where a generic α-stable distribution is denoted as Sα(β, δ, γ ), with a tail index α ∈ (0, 2],
a skew parameter β ∈ [−1, 1], a scale parameter δ ≥ 0, and a location parameter γ ∈
R. The parameter α determines the shape of the distribution, while β determines the
skewness of the distribution. Stable densities are supported on either R or R+. The latter
situation occurs only when α < 1 and β = ±1. Following Carr and Wu (2003), we set
β = −1 to achieve finite moments for index levels under the risk-neutral measure (and
thus finite option prices), and negative skewness in the return density, a feature that
cannot be captured by either a Brownian motion or a symmetric Lévy α-stable process.
We also restrict α ∈ (1, 2) so that the process has the support of the whole real line.
The model in (2.1) and (2.2) reduces to the SVLS model, if J y

t (P) = XLS(t | α, σ ) and
Jv

t (P) = 0.

The two models, SVVG and SVLS, allow us to compare the performances of infinite-
activity jumps in returns with that of compound Poisson jumps in both returns and
volatility.

2.2. Change of Measure and Option Pricing for the AJD and Lévy Jump Models

Although equations (2.1) and (2.2) describe the AJD and Lévy jump models under
the physical measure P, for the purpose of option pricing, we also need return dynamics
under the risk-neutral measure Q. Thus, we need to consider the change of measure
between P and Q for these models.

The change of measure for Brownian motion is well understood in the literature.
Following the standard practice of Pan (2002), we assume that the market prices of risks
of Brownian shocks to returns and volatility are

γ
(1)
t = ηs√vt, γ

(2)
t = − 1√

1 − ρ2

(
ρηs + ηv

σv

)√
vt,(2.7)

respectively. Thus, the change of measure for the two Brownian motions is

dW (1)
t (Q) = dW (1)

t (P) + γ
(1)
t dt, dW (2)

t (Q) = dW (2)
t (P) + γ

(2)
t dt,(2.8)

where W (1)
t (Q) and W (2)

t (Q) are independent standard Brownian motions under Q.

Although the change of measure for Brownian motion only involves changing the drift
term, the change of measure for Lévy processes is much more complicated. The important
result of Sato (1999) (given in the Appendix) provides the theoretical foundation for the
change of measure of Lévy processes considered in this paper. To apply Sato’s (1999)
general theorem to our setting, some restrictions on model structures have to be imposed.

Under AJD models, jumps under both P and Q follow the same compound Poisson
processes with different parameters. To have a fair comparison with AJD models, we
restrict Lévy jumps under P and Q to follow the same Lévy process. That is, if the Lévy
jump under P is VG (LS), then the Lévy jump under Q has to be VG (LS) as well,
although with possible different parameters. Under this restriction, the Radon-Nikodym
derivative between P and Q generally will be different from that of Wu (2006a) and
Bakshi and Wu (2005). Based on the general result of Sato (1999) and our specific model
restriction, we obtain the following results on the change of measure for the four jump
processes considered in our paper.
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PROPOSITION 2.1. The parameters of the following four jump processes under measures
P and Q must satisfy the following restrictions:

• All parameters of MJ, (λ, μy, σy), can change freely between P and Q;
• All parameters of CMJ, (λ, μy, σy, ρJ, μv ), can change freely between P and Q;
• Among the parameters of VG, (ν, γ, σ ), γ and σ can change freely between P and Q,

while ν has to be the same under P and Q;
• None of the parameters of a Lévy α-stable process, (α, β, σ, γ ), can change between P

and Q.9

The above results impose restrictions on the physical and the risk-neutral parameters
of the four jump processes. For MJ and CMJ, all parameters can take different values
under the physical and the risk-neutral measures. Previous studies, such as Pan (2002)
and Eraker (2004), show that allowing all the parameters to change between measures
makes econometric identification difficult. As a result, they only allow the mean jump
size μy to be different between P and Q. To compare our results with existing studies,
we follow the same approach. As a result, the parameters of MJ and CMJ under both
measures are (λ, σy, μy, μ

Q
y ) and (λ, σy, σv , ρJ, μy, μ

Q
y ), respectively. The parameters of

VG and LS under both measures are (ν, γ, σ, γ Q, σQ) and (α, σ ), respectively.
If the Lévy measures of the four jump processes under P and Q satisfy the restrictions in

Proposition 2.1, then the Radon-Nikodym derivatives of these processes are given as eUt ,

where Ut is defined as in the second part of Sato’s (1999) theorem.10 Combining this with
the change of measure for the two Brownian motions, we obtain the Radon-Nikodym
derivatives for the AJD and Lévy jump models:

dQ

dP

∣∣∣∣
t
= exp

{
−
∫ t

0
γ (1)

s dW (1)
s (P) −

∫ t

0
γ (2)

s dW (2)
s (P)

−1
2

(∫ t

0
γ (1)2

s ds +
∫ t

0
γ (2)2

s ds
)}

exp Ut.

(2.9)

This naturally leads to the risk-neutral return dynamics of all four models we consider

dY t =
[

rt − 1
2

vt + ψ
Q
J (−i )

]
dt + √

vt dW (1)
t (Q) + d J y

t (Q),(2.10)

dvt = [κ(θ − vt) + ηv vt]dt + σv
√

vt
(
ρdW (1)

t (Q) +
√

1 − ρ2 dW (2)
t (Q)

)+ d Jv
t (Q),(2.11)

where Jv
t (Q) = 0 for SVMJ, SVVG, and SVLS. The drift term of the return process under

Q has three components: the risk-free interest rate rt, the Ito adjustment for log price
− 1

2 vt, and the jump compensator in returns ψ
Q
J (−i ) under Q. Consequently, the drift

term of the return process under P equals μ = rt − 1
2 vt + ψ

Q
J (−i ) + ηsvt.11

Option prices are determined by the risk-neutral dynamics of stock returns. Carr and
Wu (2004) show that Lévy processes are as tractable as AJD models for the purpose
of option pricing: The risk-neutral dynamics in (2.10) and (2.11) lead to closed-form

9 The proof of the Proposition involves straightforward verification of the conditions of Sato’s theorem
for each of the jump processes and is available from the authors upon request.

10 Because of the restriction that jumps under P and Q have to follow the same process (with different
parameters), the four jump models have different Uts as well. Therefore, the Lévy jump models differ from the
AJD models not only in jump structures but also in the Radon-Nikodym derivatives of the jump processes.

11 The explicit expressions of ψ
Q
J (·) of the four jump processes are given in the Appendix.
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solution to the characteristic function of the log stock price under Q. That is, when
interest rate is constant,

φt(u) = EQ
0

[
eiuYt

] = EQ
0

[
eiuY0+iu(r+ψ

Q
J (−i ))t+iu(

∫ t
0

√
vt dW (1)

s (Q)− 1
2

∫ t
0 vs ds)+iu J y

t
]

= eiuY0+iu(r+ψ
Q
J (−i ))t EQ

0

[
eiu J y

t
]
EQ

0

[
eiu(

∫ t
0

√
vt dW (1)

s (Q)− 1
2

∫ t
0 vs ds)]

= eiuY0+iu(r+ψ
Q
J (−i ))te−tψQ

J (u)e−b(t)v0−c(t),

where

b(t) = (iu + u2)(1 − e−δt)
(δ + κM) + (δ − κM)e−δt

, c(t) = κθ

σ 2
v

[
2 ln

2δ − (δ − κM)(1 − e−δt)
2δ

+ (δ − κM)t
]
,

κM = κ − ηv − iuσvρ, δ =
√

(κM)2 + (iu + u2)σ 2
v , and Y0 = log(S0).

The closed-form expression of the characteristic function of the log stock price natu-
rally leads to closed-form expression of the Fourier transform of option prices. Conse-
quently, option price can be solved using the Fourier inversion formula. The time-0 price
of a European call option with time-to-maturity of τ and strike price of K equals

F(Y0, v0, τ, K) = EQ
0 [e−rτ (Sτ − K)+] = e−rτ

π
× Re

(∫ ∞

0
e−i x log(K) φτ (x − i )

−x2 + i x
dx
)

.

In addition to the contractual terms of the option, the option price also depends on the
current levels of the stock price (Y0) and the instantaneous stochastic volatility (v0).

3. MCMC ESTIMATION OF LÉVY JUMP MODELS USING
SPOT AND OPTION PRICES

In this section, we discuss Bayesian MCMC estimation of Lévy jump models using
spot and option prices. We first summarize the specifications of all models considered
in our analysis. Then we discuss the statistical methods used for model estimation and
comparison.

3.1. Summary of Model Specifications

In our joint estimation of Lévy jump models, we use daily returns on the S&P 500 index
and daily prices of a short-term ATM SPX option. Let C(t, τ, K) be the market price at t
of the option with time-to-maturity τ and strike price K, and F(t, τ, K, Yt, vt; �) be the
theoretical price of the same option in a given model where the log stock price equals Yt,

the instantaneous volatility equals vt, and the vector of model parameters is denoted as
�. We assume that the market price of the option equals its theoretical price plus some
random noises:

C(t, τ, K) = F(t, τ, K, Yt, vt; �) + � c
t ,

where � c
t ∼ N(ρc�

c
t−1, σ

2
c ). The first-order autocorrelation in option pricing errors also

has been considered in Eraker (2004) and captures the phenomenon that if option pricing
error is high on one day, it is likely to be high on the next day.
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We consider first-order Euler discretization of the continuous-time models at daily fre-
quency. Simulation studies in EJP (2003) and LWY (2008) show that the bias introduced
by daily discretization is very small. Therefore, the joint dynamics of the daily spot and
the option prices under the four models we consider are summarized by the following
system of equations:⎧⎪⎪⎨⎪⎪⎩

Ct+1 − Ft+1 = ρc(Ct − Ft) + σcε
c
t ,

Yt+1 = Yt + μ� +
√

vt�ε
y
t+1 + J y

t+1,

vt+1 = vt + κ(θ − vt)� + σv
√

vt�εv
t+1 + Jv

t+1,

(3.1)

where � = 1
252 , μ = rt − 1

2 vt + ψ
Q
J (−i ) + ηsvt, ε

c
t , ε

y
t+1, and εv

t+1 ∼ N(0, 1), corr(εy
t+1,

εv
t+1) = ρ, and εc

t is independent of ε
y
t+1 and εv

t+1.

Specializing (12) to each of the four models, we have the following exact specifications
of each model.

• SVMJ. In this model, J y
t+1 = ξ

y
t+1 Ny

t+1, P(Ny
t+1 = 1) = λ�, ξ

y
t+1 ∼ N(μy, σ

2
y ), and

Jv
t+1 = 0 for all t. We have observations (Yt, Ct)T

t=0; latent volatility variables
(vt)T

t=0, jump times (Ny
t )T

t=1, and jump sizes (ξ y
t )T

t=1; and parameters � =
{(κ, θ, σv , ρ, μy, σy, λ), (μQ

y ), (ηs, ηv ), (ρc, σc)}, where the first group of parameters
is either common to both measures or unique to the physical measure, the second
one is unique to the risk-neutral measure, the third one represents the market prices
of return and volatility risks, and the last one represents option pricing errors.

• SVCMJ. In this model, J y
t+1 = ξ

y
t+1 Nt+1, Jv

t+1 = ξ v
t+1 Nt+1, P(Nt+1 = 1) = λ�,

ξ v
t+1 ∼ exp(μv ), and ξ

y
t+1 | ξ v

t+1 ∼ N(μy + ρJξ
v
t+1, σ

2
y ). We have observations

(Yt, Ct)T
t=0; latent volatility variables (vt)T

t=0, jump times (Nt)T
t=1, and jump

sizes (ξ v
t )T

t=1 and (ξ y
t )T

t=1; and parameters � = {(κ, θ, σv , ρ, μy, σy, λ, ρJ, μv ),
(μQ

y ), (ηs, ηv ), (ρc, σc)}, where the first group of parameters is either common to
both measures or unique to the physical measure, the second one is unique to the
risk-neutral measure, the third one represents the market prices of return and volatil-
ity risks, and the last one represents option pricing errors.

• SVVG. In this model, Jv
t+1 = 0 for all t, and J y

t+1 follows a VG process whose
discretized version is

J y
t+1 = γ Gt+1 + σ

√
Gt+1ε

J
t+1,

where ε J
t+1 ∼ N(0, 1) and Gt+1 ∼ �( �

ν
, ν).ε J

t+1 and Gt+1 are independent of each
other and are independent of ε

y
t+1 and εv

t+1. The parametrization of the Gamma
distribution, �(α, β), used in this paper has density form 1

βα�(α) xα−1e− x
β . We

have observations (Yt, Ct)T
t=0; latent volatility variables (vt)T

t=0, jump times/sizes
(J y

t )T
t=1, and time-change variables (Gt)T

t=1; and parameters � = {(κ, θ, σv , ρ, ν,

γ, σ ), (γ Q, σQ), (ηs, ηv ), (ρc, σc)}, where the first group of parameters is either com-
mon to both measures or unique to the physical measure, the second one is unique
to the risk-neutral measure, the third one represents the market prices of return and
volatility risks, and the last one represents option pricing errors.

• SVLS. In this model, Jv
t+1 = 0 for all t. The jump size J y

t+1, independent of ε
y
t+1 and

εv
t+1, follows a stable distribution with shape parameter α, skewness parameter −1,

zero drift, and scale parameter σ�
1
α . That is, J y

t+1 ∼ Sα(−1, σ�
1
α , 0). We have obser-

vations (Yt, Ct)T
t=1; latent volatility variables (vt)T

t=0, and jump times/sizes (J y
t )T

t=1;
and parameters � = {(κ, θ, σv , ρ, α, σ ), (ηs, ηv ), (ρc, σc)}, where the first group of
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parameters is either common to both measures or unique to the physical measure,
the second one represents the market prices of return and volatility risks, and the
last one represents option pricing errors.

3.2. MCMC Methods

Estimation of Lévy processes is generally very difficult for several reasons. First,
the probability densities for most Lévy processes are not known in closed form, and
for certain Lévy processes higher moments of asset returns do not even exist. Second,
the high dimensionality of latent variables, such as stochastic volatility, jump sizes,
and jump times, significantly complicates the estimation. Computationally it is very
demanding to integrate out the large number of latent variables when implementing either
likelihood or moment-based approaches. The inclusion of option prices significantly
increases the computational complexity because certain parameters enter into the option
pricing formulae nonlinearly, and the computation of option prices involves numerical
integrations.

LWY (2008) have developed efficient Bayesian MCMC methods for estimating Lévy
processes using only the spot price.12 We extend their methods to estimate the physical
and risk-neutral dynamics of Lévy processes jointly using spot and option prices. The
main difference here is that we need to rely on more sophisticated updating procedures
for many model parameters and latent variables due to the nonlinear option pricing
formula involved.

Because MCMC analysis of SVMJ and SVCMJ has been considered in previous
studies, such as EJP (2003) and Eraker (2004), we focus our discussions of MCMC
methods on SVVG and SVLS. We mainly discuss how to derive the joint posterior
distributions of model parameters and latent variables for the two models and briefly
explain how to obtain posterior samples for individual parameters and latent variables by
simulating from the complicated joint posterior distributions. More detailed discussions
of our MCMC methods are provided in the Appendix.

We first consider SVVG. To simplify notation, we denote the index returns as
Y ={Yt}T

t=0, the option prices as C = {Ct}T
t=0, the volatility variables as V ={vt}T

t=0, the
jump times/sizes as J ={J y

t }T
t=1, and the time-change variables as G ={Gt}T

t=1. The joint
posterior distribution of parameters and latent variables, p(�, V, J, G | Y, C), can be
decomposed into products of individual conditionals

p(�, V, J, G | Y, C) ∝ p(Y, C, V, J, G, �)

= p(C | Y, V, �)p(Y, V | J, �)p(J | G, �)p(G | �)p(�).

Given the assumed option price dynamics, we have

p(C | Y, V, �) =
T−1∏
t=0

1√
2πσc

exp
{
− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

}
.

Conditioning on vt and J y
t+1, Yt+1 − Yt and vt+1 − vt follow a bivariate normal

distribution

12 Earlier studies, such as Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998), Chib,
Nardari, and Shephard (2002), and Maheu and McCurdy (2004) among others, apply MCMC methods to
estimate discrete-time stochastic volatility models.
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Yt+1 − Yt

vt+1 − vt

)∣∣∣∣∣ vt, J y
t+1 ∼ N

((
μ� + J y

t+1

κ(θ − vt)�

)
, vt�

(
1 ρσv

ρσv σ 2
v

))
,

J y
t+1 | Gt+1, � ∼ N(γ Gt+1, σ

2Gt+1) and Gt+1 | � ∼ �

(
�

ν
, ν

)
.

Therefore, the joint posterior distribution of parameters and latent variables is given as

p (�, V, J, G | Y, C) ∝
T−1∏
t=0

1√
2πσc

exp

{
− [(Ct+1 − Ft+1) − ρc (Ct − Ft)]

2

2σ 2
c

}

×
T−1∏
t=0

1

σv vt�
√

1 − ρ2

× exp
{
− 1

2(1 − ρ2)

((
ε

y
t+1

)2 − 2ρε
y
t+1ε

v
t+1 + (εv

t+1

)2)}

×
T−1∏
t=0

1

σ
√

Gt+1
exp
{
− (Jt+1 − γ Gt+1)2

2σ 2Gt+1

}

×
T−1∏
t=0

1

ν
�
ν �

(
�

ν

)G
�
ν
−1

t+1 exp
{
−Gt+1

ν

}
× p(�),

where ε
y
t+1 = (Yt+1 − Yt − μ� − J y

t+1)/
√

vt� and εv
t+1 = (vt+1 − vt − κ(θ − vt)�)/

(σv
√

vt�).
In SVLS, conditioning on vt and St+1, Yt+1 − Yt, and vt+1 − vt follow a bivariate

normal distribution(
Yt+1 − Yt

vt+1 − vt

)∣∣∣∣ vt, St+1 ∼ N
((

μ� + St+1

κ(θ − vt)�

)
, vt�

(
1 ρσv

ρσv σ 2
v

))
,

St+1 ∼ Sα

(− 1, σ�
1
α , 0
)
.

In SVLS, we model jumps using stable process which can exhibit skewness and
heavier tails than normal distributions. Unfortunately, the probability density of
St+1, p(St+1 | �), is unknown. This makes it difficult to explicitly write down
the joint likelihood function of (Yt+1, vt+1, St+1), because p(Yt+1, vt+1, St+1 | �) =
p(Yt+1, vt+1 | St+1, �)p(St+1 | �). Consequently, it is difficult to obtain the joint posterior
distribution for SVLS.

Buckle (1995) provides a representation of a stable variable which makes it possible
to estimate parameters of stable distributions using MCMC. The basic observation of
Buckle (1995) is that although the density of a stable variable is generally unknown,
the joint density of the stable variable and a well-chosen auxiliary variable is explicitly
known. This joint density in turn leads to known joint posterior density of the stable
variable and the auxiliary variable, which can be used in our MCMC algorithm.

For the LS process we consider, we set α ∈ (1, 2], β = −1, γ = 0, and δ = σ�
1
α . We

denote the index returns as Y ={Yt}T
t=0, the option prices as C = {Ct}T

t=0, the volatility
variables as V ={vt}T

t=0, the jump times/sizes as S ={St}T
t=1, and the auxiliary variables

as U ={Ut}T
t=1. Based on Buckle’s (1995) result, we obtain the joint posterior distribution

of V, S, U, and � as
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p(�, V, S, U | Y, C) ∝ p(Y, C, V, S, U, �) = p(C | Y, V, �)p(Y, V | S)p(S, U | �)p(�)

∝
T−1∏
t=0

1√
2πσc

exp
{
− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

}

×
T−1∏
t=0

1

σv vt�
√

1 − ρ2

× exp
{
− 1

2(1 − ρ2)

((
ε

y
t+1

)2 − 2ρε
y
t+1ε

v
t+1 + (εv

t+1

)2)}

×
(

α

| α − 1 | � 1
α σ

)T

× exp

⎧⎨⎩−
T−1∑
t=0

∣∣∣∣∣ St+1

σ�
1
� tα(Ut+1)

∣∣∣∣∣
α

α−1

⎫⎬⎭
×

T−1∏
t=0

⎧⎪⎪⎨⎪⎪⎩
∣∣∣∣∣ St+1

σ�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1 1∣∣∣∣ St+1

σ�
1
α

∣∣∣∣
⎫⎪⎪⎬⎪⎪⎭

×
T−1∏
t=0

[
1St+1∈(−∞,0)∩Ut+1∈(− 1

2 ,lα ) + 1St+1∈(0,∞)∩Ut+1∈(lα, 1
2 )

]× p(�)

where ε
y
t+1 = (Yt+1 − Yt − μ� − St+1)/

√
vt�, εv

t+1 = (vt+1 − vt − κ(θ − vt)�)/(σv
√

vt�),

lα = α−2
2α

, and tα(Ut+1) = ( sin[παUt+1+ (2−α)π
2 ]

cos[πUt+1] )( cos[πUt+1]
cos[π (α−1)Ut+1+ (2−α)π

2 ]
)(α−1)/α. We obtain joint

posterior samples of �, V, S, and U by simulating from the above joint posterior density.
We then marginalize U out to obtain the samples for �, V, and S. That is, we simply
throw away the observations of U and retain the observations of �, V, and S.

In general, it is difficult to simulate directly from the above high-dimensional posterior
distributions. Instead, we derive the complete conditional distributions for each individ-
ual parameter and latent variable and obtain posterior samples by simulating from these
individual complete conditionals iteratively following standard MCMC procedure. For
example, for SVVG, we obtain the posterior distribution p(�i | �−i , J, G, V, Y, C) for i =
1, . . . , k, where �i is the ith element of � and �−i = (θ1, . . . , θi−1, θi+1, . . . , θk), the pos-
terior distribution for jump times p(J y

t | �, G, V, Y, C), jump sizes p(Gt | �, J, V, Y, C),
and latent volatility variables p(vt | vt+1, vt−1, �, J, G, Y, C), for all t. In estimation, we
draw posterior samples from the above complete conditional distributions and use the
means of the posterior samples as parameter estimates and the standard deviations of the
posterior samples as standard errors of the parameter estimates. The Appendix provides
the priors, the posterior distributions, and the updating procedures for model parameters
and latent variables for all four models.

In an interesting paper, Griffin and Steel (2006) have developed MCMC methods for
estimating an Ornstein–Uhlenbeck (OU) volatility process driven by a positive Lévy
process without Gaussian component. They rely on a series representation of Lévy
processes for drawing latent volatility variables. Their approach requires the inverse tail
mass function of Lévy process to be known analytically.
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3.3. Model Diagnostics and Comparisons

The posterior estimates of model parameters and latent state variables allow us to
examine the performances of all four models in capturing the joint dynamics of spot and
option prices.

One way to gauge the performances of each model in capturing the spot price is to
test whether the standardized model residuals of both returns and volatility follow an
N (0, 1) distribution as in EJP (2003) and LWY (2008). For example, for SVLS, if the
model is correctly specified, then

Yt+1 − Yt − μ� − St+1√
vt�

= ε
y
t+1 ∼ N(0, 1) and

vt+1 − vt − κ(θ − vt)�

σv
√

vt�
= εv

t+1 ∼ N(0, 1).

Deviations of ε
y
t+1 and εv

t+1 from N(0, 1) can reveal rich information on potential sources
of model misspecifications.

To compare the performances of different models in capturing the risk-neutral dynam-
ics, we test whether one model has significantly smaller option pricing errors than an-
other. For this purpose, we adopt an approach developed by Diebold and Mariano (1995)
(hereafter DM) in time series forecasting literature. Consider two models whose associ-
ated true daily option pricing errors (calculated at true model parameters) are {e1(t)}T

t=1
and{e2(t)}T

t=1, respectively. The null hypothesis that the two models have the same squared
pricing errors is E[e2

1(t)] = E[e2
2(t)], or E[d(t)] = 0, where d(t) = e2

1(t) − e2
2(t). DM (1995)

show that if {d(t)}T
t=1 is covariance stationary and short memory, then

√
T(d − μd ) ∼ N(0, 2π fd (0)),

where d = 1
T

∑T
t=1[ε2

1(t) − ε2
2(t)], fd (0) = 1

2π

∑∞
q=−∞ γd (q), and γd (q) = E[(dt − μd )

(dt−q − μd )]. In large samples, d is approximately normally distributed with mean μd

and variance 2π fd (0)/T. Thus, under the null hypothesis of equal squared pricing errors,
the following DM statistic

DM = d√
2π f̂d (0)/T

is distributed asymptotically as N(0, 1), where f̂d (0) is a consistent estimator of fd (0).13

In empirical analysis, however, we do not observe the true pricing errors {e1(t)}T
t=1

and{e2(t)}T
t=1. Instead we only observe the estimated pricing errors (calculated at esti-

mated model parameters) {ê1(t)}T
t=1 and {ê2(t)}T

t=1. Because of parameter estimation un-
certainty, E[ê2

i (t)] �= E[e2
i (t)], for i = 1, 2. To address this issue, we use modified pricing

errors
√

T
T−ki

êi (t) in our implementation of the DM test, where ki represents the number
of parameters for model i. This approach is based on the fact that in both linear and
nonlinear regressions, 1

T−ki

∑T
t=1 ê2

i (t) is an unbiased estimator of E(e2
i (t)) as T → ∞,

for i = 1, 2. Our approach not only takes into account parameter estimation uncertainty
but also penalizes more complex models with a larger number of parameters.14

13 We estimate the variance of the test statistic using the Bartlett estimate of Newey and West (1987) with
a lag order of 50.

14 We thank Wayne Fuller for suggesting this approach. For references, see Casella and Berger (2001) and
Gallant (1987). We acknowledge that our argument for the modified DM statistic is mainly heuristic and
may not completely address the problem of parameter estimation uncertainty.
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To compare the overall performances of the two models, we use the DM statistic to
measure whether one model has significantly smaller squared option pricing errors than
another. We also use the DM statistic to measure whether one model has smaller squared
pricing errors than another for options in a specific moneyness and maturity group.

4. EMPIRICAL RESULTS

In this section, we provide empirical analysis of the four models (SVMJ, SVCMJ, SVVG,
and SVLS) using the spot and option prices of the S&P 500 index. We first introduce the
data used in our analysis. We then examine the performances of the four models based
on their (i) posterior means of model parameters and latent volatility/jump variables;
(ii) empirical fits of the spot price; and (iii) in-sample and out-of-sample option pricing
errors.

4.1. The Data

We use the same data as that in Aıt-Sahalia and Lo (1998), which include daily spot
and option prices of the S&P 500 index between January 4, 1993 and December 31, 1993.
Aıt-Sahalia and Lo (1998) take the midpoint of the bid and ask prices of each option
as observed market price and eliminate observations with time-to-maturity less than
1 day, implied volatility greater than 70%, and price less than 1

8 . To deal with potential
nonsynchronous trading and unobservable dividend yield, they back out the futures price
of the underlying index at the time the option prices are observed. They obtain prices
of calls and puts that have the same time-to-maturity and strike price and are closest to
the money. Using put-call parity, they solve for the futures price at that certain maturity,
which then can be used to back out the implied dividend yield via the cost-of-carry
relation.15

Our estimation uses daily returns of the S&P 500 index and daily prices of a short-
term ATM SPX option that we choose for each day.16 We require that the option has a
time-to-maturity between 20 and 50 days and is closest to the money, that is, its strike to
spot price ratio is closest to one.17 On a few days without such options, we use an option
whose time-to-maturity is closest to 20 days. Table 4.1 provides summary statistics on the
data used directly in our estimation. During 1993, the mean and standard deviation of
annualized continuously compounded daily returns of the index are 7.36% and 8.94%,
respectively. Index returns exhibit slight negative skewness and high kurtosis. The mean
and median time-to-maturities of the short-term options are 34 and 35 days, respectively,
whereas the shortest and longest time-to-maturities are 16 and 50 days, respectively.
The price of the options has a mean of $7.14 and a range between $3.44 and $10.72.
The implied volatility has a mean of 9.2% and a range between 6.7% and 12.23%. The
ratio between the strike and the spot price of the short-term option is very close to 1.
Aıt-Sahalia and Lo (1998) note that the short-term interest rates exhibit little variation
during 1993, ranging from 2.85% to 3.21%. As a result, we assume constant interest rate
in our estimation and use the prevailing interest rate each day in our pricing formula.

15 See Aı̈t-Sahalia and Lo (1998) for more detailed descriptions of the data set.
16 Short-term ATM options are among the most liquid options and should have the most efficient prices

in the market.
17 Because the time-to-maturity of an option changes daily, we have to use different options on different

days in our estimation.
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TABLE 4.1
Summary Statistics of Spot and Option Prices of the S&P 500 Index

Mean Variance Skewness Kurtosis Min Max

Panel A. Summary statistics of continuously compounded daily returns of the S&P
500 index between January 4, 1993 and December 31, 1993.

S&P 500 0.000292 0.0000316 −0.0332 5.5602 −0.0256 0.0223

Mean Median Std. Dev. Min Max

Panel B. Summary statistics for the short-term ATM SPX option used in model
estimation between January 4, 1993 and December 31, 1993.

Time-to-maturity 34 35 9.24 16 50
Option price 7.14 7.25 1.61 3.44 10.72
Implied volatility 0.092 0.0914 0.0095 0.0679 0.1223
Strike price 449.8207 450 10.3086 425 450
Spot price 450.0755 448.394 10.1711 427.0155 470.0928
Moneyness (strike/spot) 0.9994 0.9994 0.003 0.9946 1.0055

Note: This table provides summary statistics of spot and option prices of the S&P
500 index between January 4, 1993 and December 31, 1993. Panel A reports summary
statistics of continuously compounded daily returns of the S&P 500 index during the
sample period. Panel B reports summary statistics on time-to-maturity, price, implied
volatility, strike price, spot price, and moneyness (strike/spot) of the short-term ATM
SPX option used in model estimation. We restrict the time-to-maturity of the option
to be between 20 and 50 days. On a few days without such options, we use an option
whose time-to-maturity is closest to 20 days. Because the time-to-maturity of an option
changes daily, in general we have to use different options on different dates.

Figure 4.1 provides time series plots of the level and log change of the S&P 500
index, and the implied volatility of the short-term SPX options. The level of the index
has increased steadily during 1993, with occasional relatively large negative returns,
although none is as large as that of several major stock market crashes in other periods.
The implied volatility fluctuates between 5% and 15% during 1993 with strong mean
reversion.

4.2. Estimates of Model Parameters and Latent Volatility/Jump Variables

Table 4.2 reports posterior estimates of (i) model parameters under both the physical
and the risk-neutral measures; (ii) market prices of risks for the two Brownian shocks
(ηv and ηs); and (iii) parameters describing option pricing errors (ρc and σc). Figures 4.2
and 4.3 provide time series plots of the filtered volatility and jump variables for the four
models, respectively. The estimates of model parameters and latent variables reveal both
similarities and differences among the four models.

Consistent with existing studies, all four models exhibit strong negative correlations
between volatility and returns: The estimates of ρ for the four models range from −0.56 to
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FIGURE 4.1. Level and log change of the S&P 500 index, and implied volatility of the
short-term ATM SPX options used in model estimation between January 4, 1993 and
December 31, 1993.

−0.82. The four models share similar estimates of the long-run mean (θ ) of the volatility
processes.18 The estimates of the market prices of return and volatility risks are very
similar across the four models and are similar to those in previous studies. For example,
the estimates of ηs (ηv ) in the four models are between 3.5 and 4.4 (2.9 and 4.8), whereas
the estimate of ηs (ηv ) in Pan (2002) equals 3.6 (3.1). The four models also share similar
estimates of parameters describing option pricing errors (ρc and σc). In particular, the
estimates of ρc in the four models are about 0.90, confirming that there is indeed strong
autocorrelation in option pricing errors.

The four models also differ from each other in important ways. For example, the
volatility process of SVVG has the strongest mean-reversion (κ) and the highest volatility
of volatility (σv ) among the four models.19 The filtered volatility variables of the four
models in Figure 4.2 confirm this fact and show that the other three models have much

18 Because of jumps in volatility in SVCMJ, the long-run mean of volatility in this model should include
the impact of jumps.

19 The estimates of κ in this paper differ from that in LWY (2008) in magnitude mainly because we use a
different scale on observables in our estimation. While LWY (2008) consider index returns in percentages,
we express index returns in decimal points.
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TABLE 4.2
Parameter Estimates of AJD and Lévy Jump Models

SVMJ SVCMJ SVVG SVLS

κ 2.6387 3.3627 15.778 6.2792
(0.544) (0.6452) (1.3706) (0.467)

θ 0.0049 0.0076 0.0060 0.0055
(0.0030) (0.0022) (0.0011) (0.0017)

σ v 0.1198 0.1676 0.3043 0.1852
(0.0116) (0.0179) (0.0315) (0.0268)

ρ −0.7014 −0.7786 −0.8167 −0.5619
(0.0163) (0.0324) (0.0511) (0.0746)

ηv 3.0526 1.1074 4.7128 2.9419
(0.8005) (0.5933) (2.2753) (1.336)

ηs 3.7020 4.3586 4.328 3.5962
(2.7850) (2.499) (3.046) (1.784)

ρc 0.8952 0.8665 0.895 0.9023
(0.0557) (0.0495) (0.0584) (0.0660)

σ c 0.2039 0.2257 0.1869 0.2666
(0.0275) (0.0216) (0.0189) (0.0256)

λ 0.0103 0.0048 - -
(0.0216) (0.0040)

μy
P 0.0150 −0.03376 - -

(0.0108) (0.0108)
μy

Q −0.3091 −0.3414 - -
(0.1294) (0.0892)

σ y 0.0107 0.0103 - -
(0.0064) (0.0063)

μv - 0.00849 - -
(0.0075)

ρJ - −0.0038 - -
(0.00492)

ν - - 0.0142 -
(0.0017)

γ P - - 0.0256 -
(0.0315)

σ P - - 0.0462 -
(0.0070)

γ Q - - 0.0030 -
(0.0056)

σ Q - - 0.0412 -
(0.0150)

α - - - 1.846
(0.0012)

σ - - - 0.0352
(0.0014)

This table reports posterior estimates of model parameters of AJD and Lévy jump models using
daily returns on the S&P 500 index and daily prices of a short-term ATM SPX option between
January 4, 1993 and December 31, 1993. We discard the first 10,000 runs as "burn-in" period and
use the last 90,000 iterations in MCMC simulations to estimate model parameters. Specifically,
we take the mean of the posterior distribution as parameter estimate and the standard deviation
of the posterior as standard error.
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FIGURE 4.2. Estimated volatility variables of SVMJ, SVCMJ, SVVG, and SVLS using
daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options
between January 4, 1993 and December 31, 1993.

smoother volatility factors. Interestingly, the filtered volatility variables of SVVG mimic
the behavior of the implied volatilities of the short-term SPX options (shown in Figure
4.1) much more closely than that of the other three models.20

The AJD and Lévy jump models exhibit dramatically different jump behaviors. The
estimated jump intensities (λ) for SVMJ and SVCMJ suggest that on average there are
about one to two jumps per year. While the mean jump sizes under P

(
μP

y

)
in the two

models are close to zero, the mean jump sizes under Q
(
μQ

y

)
are much more negative. The

filtered jump sizes and times of the two models in Figure 4.3 also show that there are a
few large jumps in returns (and volatility) in SVMJ (SVCMJ). On the other hand, Figure
4.3 shows that in addition to several large jumps, SVVG and SVLS also exhibit many
frequent small jumps in returns. Hence, VG and LS have the advantage over MJ and
CMJ in capturing both the infrequent large jumps as well as the frequent small jumps

20 The simulation evidence in LWY (2008) shows that the MCMC methods can estimate the AJD and
Lévy jump models very accurately using return data alone. The inclusion of option prices should make it
even easier to identify model parameters. Therefore, the differences in parameter estimates across different
models are an indication of model misspecification. Parameters of a misspecified model may have to take
unreasonable values to capture certain features of the data that the model inherently cannot capture. This
in turn could lead to large option pricing errors.
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01/01/93 04/01/93 07/01/93 10/01/93 01/01/94

-0.02

0

0.02

a. Estimated Jumps in Return: SVMJ

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94

-0.02

0

0.02

b. Estimated Jumps in Return: SVCMJ

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94

-0.02

0

0.02

c. Estimated Jumps in Return: SVVG

01/01/93 04/01/93 07/01/93 10/01/93 01/01/94

-0.02

0

0.02

d. Estimated Jumps in Return: SVLS

FIGURE 4.3. Estimated jumps in returns of SVMJ, SVCMJ, SVVG, and SVLS using
daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options
between January 4, 1993 and December 31, 1993.

in returns. The risk-neutral jump distribution of VG is less positively skewed than its
physical jump distribution, suggesting that jumps are less positive under Q than under P.

This fact suggests that LS is likely to underperform VG in modeling the joint dynamics of
index returns because its parameters are restricted to be the same under both measures.
The estimated jump risk premium in index returns is given by ψ

Q
J (−i ) − ψP

J (−i ) for each
model. The jump risk premiums for SVMJ and SVCMJ are 0.29% and 0.12%, respectively.
The jump risk premium for SVVG is much higher at 2.28%, and by definition the jump
risk premium for SVLS is zero.

4.3. Performances in Modeling the Spot Price

In this section, we examine the performances of the four models in capturing the
physical dynamics of the S&P 500 index. Based on estimated model parameters and
latent volatility/jump variables, we calculate the standardized residuals for both returns
and volatility, ε

y
t+1 and εv

t+1. If a given model is correctly specified, then the distributions
of both residuals should be close to N (0, 1).

Figure 4.4 (5) plots kernel density estimators of ε
y
t+1(εv

t+1) of each of the four models and
the density function of N (0, 1) . For both SVMJ and SVCMJ, ε

y
t+1 and εv

t+1 exhibit clear



402 C. L. YU, H. LI, AND M. T. WELLS

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
a. Kernel Density of Residuals in Returns: SVMJ

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
b. Kernel Density of Residuals in Returns: SVCMJ

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
c. Kernel Density of Residuals in Returns: SVVG

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
d. Kernel Density of Residuals in Returns: SVLS

N(0,1)

SVMJ

N(0,1)

SVLS

N(0,1)

SVVG

N(0,1)

SVCMJ

FIGURE 4.4. Kernel densities of standardized model residuals of returns of SVMJ,
SVCMJ, SVVG, and SVLS, which are estimated using daily returns of the S&P 500
index and daily prices of the short-term ATM SPX options between January 4, 1993
and December 31, 1993.

deviations from standard normal: There is a high peak at the center of the distributions of
both residuals, suggesting that the two models fail to capture the many small movements
in both returns and volatility. On the other hand, the distributions of ε

y
t+1 and εv

t+1 of
the two Lévy jump models are much closer to standard normal. The residuals of SVVG
are closer to standard normal than that of SVLS. The fact that none of the parameters
of LS can change between P and Q limits its ability in capturing the joint dynamics of
index returns.

In addition to graphical illustrations, we also formally test whether ε
y
t+1 and εv

t+1 follow
N (0, 1) using the Kolmogorov–Smirnov (KS hereafter) test. For each set of the residuals,
the KS test compares the empirical cumulative distribution function (CDF) with the CDF
of N (0, 1) and rejects the null hypothesis if the maximum distance between the two CDFs
is too big. The KS tests in Table 4.3 reject the null hypothesis that ε

y
t+1 and εv

t+1 of SVMJ
and SVCMJ follow a standard normal distribution. The p-values are between 3% and
4% for most cases, except that the p-value equals 5.37% for εv

t+1 of SVCMJ. This suggests
that including MJ jumps in volatility improves the modeling of the volatility process.
Consistent with Figures 4.4 and 4.5, the KS test fails to reject the null hypothesis that
ε

y
t+1 and εv

t+1 of the two Lévy models follow a standard normal distribution (p-values
range from 25% to 38% for the two residuals under both models).

The above findings are consistent with the simulation and empirical evidence of LWY
(2008). In particular, LWY (2008) fit SVMJ and SVCMJ to return data simulated from
SVVG and SVLS using similar MCMC methods developed for return data only. They
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TABLE 4.3
Kolmogorov–Smirnov Goodness-of-Fit Test of Model Residuals

Return residuals Volatility residuals

SVMJ SVCMJ SVVG SVLS SVMJ SVCMJ SVVG SVLS

KS statistics 0.096 0.0934 0.0619 0.0695 0.0950 0.0893 0.0642 0.0592
P-values 0.0317 0.041 0.3246 0.2531 0.0305 0.0537 0.2902 0.3797

This table provides Kolmogorov–Smirnov (KS) tests of the hypotheses that the stan-
dardized model residuals of returns and volatility of each of the four models follow
N(0,1). We report the KS statistics and their corresponding p-values for both residuals
of all four models.

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
a. Kernel Density of Residuals in Vol: SVMJ

N(0,1)

SVMJ

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
b. Kernel Density of Residuals in Vol: SVCMJ

N(0,1)

SVCMJ

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
c. Kernel Density of Residuals in Vol: SVVG

N(0,1)

SVVG

-4 -2 0 2 4
0

0.1

0.2

0.3

0.4

0.5
d. Kernel Density of Residuals in Vol: SVLS

N(0,1)

SVLS

FIGURE 4.5. Kernel densities of standardized model residuals of volatility of SVMJ,
SVCMJ, SVVG, and SVLS, which are estimated using daily returns of the S&P 500
index and daily prices of the short-term ATM SPX options between January 4, 1993
and December 31, 1993.

also estimate the four models using daily returns of the S&P 500 index between January
1980 and December 2000. The deviations from N (0, 1) of return residuals

(
ε

y
t+1

)
from

simulated and actual data for both SVMJ and SVCMJ documented in LWY (2008)
are very similar to that observed in Figure 4.4. These results show that the parametric
specifications of existing AJD models are not flexible enough to capture the many small
movements in index returns. In contrast, because VG and LS can generate both large
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and small jumps, they can capture those movements that are too big for the diffusion
part and too small for MJ/CMJ in the AJD models.21

4.4. Performances in Modeling Option Prices

There is no guarantee that a model that captures the physical dynamics better also
can fit option prices better. For example, Eraker (2004) shows that while the double-
jump model of EJP (2003) captures index returns better than SVMJ, it does not have
significantly smaller option pricing errors. In this section, we address the basic question
whether the Lévy jump models we consider can capture the joint dynamics of the S&P
500 index returns better than the AJD models.

Panel A of Table 4.4 reports the time series mean of daily absolute and percentage
pricing errors of the short-term ATM SPX options used in model estimation for the
four models.22 We find similar pricing errors for SVMJ and SVCMJ: The mean absolute
pricing errors of the two models are about 44 cents (the mean option price is $7.14); and
the mean percentage pricing errors of the two models are about 6.3%, which is bigger
than the percentage bid-ask spread of the option. On the other hand, the mean absolute
pricing errors of SVVG and SVLS are about 16 and 24 cents, respectively, and the mean
percentage pricing errors are about 2.4% and 3.6%, respectively. Consistent with the
results of Eraker (2004), the DM statistics in Panel B of Table 4.4 show that the squared
pricing errors of SVMJ and SVCMJ are not significantly different from each other. In
contrast, SVVG and SVLS have significantly smaller squared pricing errors than SVMJ
and SVCMJ, and SVVG has significantly smaller squared pricing errors than SVLS.
The time series plots of the daily absolute pricing errors of the four models in Figure
4.6 show that SVVG and SVLS have smaller absolute pricing errors than SVMJ and
SVCMJ during most of the sample period. In particular, SVVG has almost uniformly
smaller in-sample option pricing errors than the AJD models. SVLS has somewhat worse
performances than SVVG.23 Panel C of Table 4.4 shows that the KS test fails to reject
the null hypothesis at the 5% level that the option pricing errors εc

t follow N (0, 1) for all
models, confirming our econometric specification of option pricing errors.

In addition to the short-term ATM SPX options used in estimation, we also examine
the performances of the four models in pricing 12,725 other options in the data set.24

Because these options have not been used in model estimation, they provide evidence
on the out-of-sample performances of the four models in option pricing. We divide all
options into six moneyness groups, from deep in-the-money (ITM) to deep out-of-the-
money (OTM) options, and five maturity groups, with time-to-maturities from less than
1 month to longer than 6 months. The majority of these options are ITM options with
time-to-maturities between 1 and 6 months, and we do not observe many short-term deep

21 We emphasize that although compound Poisson processes can approximate an infinite activity Lévy
processes with arbitrary precision, such approximation would require a much richer specification of com-
pound Poisson processes than those in the current AJD literature. The basic point of our paper is that the
parametric specifications of compound Poisson processes in the current AJD literature are not as flexible as
the Lévy jump models in capturing return dynamics.

22 Absolute pricing error of an option is the absolute value of the difference between model and market
prices of the option, and percentage pricing error of an option is the absolute pricing error divided by the
market price of the option.

23 We obtain very similar results using both absolute and percentage pricing errors. For the rest of the
paper, we only report results based on absolute pricing errors.

24 We eliminate options with prices that are less than one dollar.
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TABLE 4.4
In-Sample Performances in Option Pricing

SVMJ SVCMJ SVVG SVLS

Panel A. Time series mean and standard deviation (in parentheses) of the absolute
and percentage pricing errors of the short-term ATM options used in model
estimation.

Absolute (in dollars) 0.44 0.44 0.16 0.24
(0.2913) (0.3268) (0.1189) (0.1890)

Percentage 0.0629 0.0634 0.024 0.0361
(0.0419) (0.0467) (0.0186) (0.0329)

VG-MJ LS-MJ VG-LS VG-CMJ LS-CMJ MJ-CMJ

Panel B. Diebold–Mariano (DM) statistics for in-sample option pricing errors. The
DM statistics measure whether the first model has significantly smaller squared
pricing errors than the second model in each of the six pairs of models in the first row.
Bold entries mean that the difference is significant at the 5% level for one-sided test.
To save space, we omit “SV” in the names of all four models.

DM Stats −2.2194 −1.9954 −2.1095 −2.1767 −1.9255 −0.5283

SVMJ SVCMJ SVVG SVLS

Panel C. Kolmogorov–Smirnov test of the hypotheses that the standardized option
pricing errors of each of the four models follow N(0,1). We report the KS statistics
and their corresponding p-values for each model.

KS statistics 0.0846 0.0794 0.0800 0.0765
P-values 0.0525 0.0812 0.0771 0.1022

This table provides summary information on the in-sample performances of the four
models in pricing the short-term ATM options used in model estimation. Absolute
pricing error is defined as the absolute value of the difference between model and
market prices of an option. Percentage pricing error is defined as the absolute pricing
error of an option divided by the market price of the option.

OTM options. Based on the estimated model parameters and latent volatility variables,
we calculate the theoretical price of each of these options under each model. Then based
on options that are available on each day, we obtain daily arithmetic weighted average
of absolute and percentage pricing errors for (i) all options; (ii) options within each of
the moneyness groups (options across all maturities that belong to a certain moneyness
group) or each of the maturity groups (options across all moneyness that belong to a
certain maturity group); and (iii) options within each individual moneyness/maturity
group.

We first examine the overall performances of the four models by focusing on the
average pricing errors of the 12,725 out-of-sample options. The time series mean of daily
weighted average of the absolute pricing errors of all options are reported in the last four
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FIGURE 4.6. In-sample absolute option pricing errors of SVMJ, SVCMJ, SVVG, and
SVLS, which are estimated using daily returns of the S&P 500 index and daily prices
of the short-term ATM SPX options between January 4, 1993 and December 31, 1993.

rows of the last column in Panel A of Table 4.5. We see clearly that SVCMJ has smaller
absolute pricing errors than SVMJ, and SVVG and SVLS have smaller absolute pricing
errors than SVMJ and SVCMJ. The DM statistics for pair-wise comparisons of the four
models based on the squared pricing errors of all options are reported in the last six
rows of the last column in Panel B of Table 4.5. SVCMJ has significantly smaller squared
pricing errors than SVMJ. SVVG has significantly smaller squared pricing errors than
both SVMJ and SVCMJ. SVLS has somewhat worse performances than SVVG. Figure
4.7 provides time series plots of daily weighted average of the absolute pricing errors
of all options for the four models during our sample period. Consistent with the DM
statistics, we find that SVVG and SVLS have smaller absolute pricing errors than SVMJ
and SVCMJ during most of the sample period.

Next we examine the performances of the four models in pricing options grouped by
time-to-maturity. The time series mean of daily weighted average of the absolute pricing
errors of options in each of the five maturity groups are reported in the last column in
Panel A of Table 4.5. The DM statistics for pair-wise comparisons of the four models
based on the squared pricing errors of options in the five maturity groups are reported in
the last column in Panel B of Table 4.5. We find similar patterns in model performances
for options in each maturity group as that for all options. For example, we find that
SVVG has significantly smaller squared pricing errors than SVMJ and SVCMJ for most
maturity groups.
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Finally, we examine the performances of the four models in pricing options grouped
by moneyness. The time series mean of daily weighted average of the absolute pricing
errors of options in each of the six moneyness groups are reported in the last four
rows in Panel A of Table 4.5. The DM statistics for pair-wise comparisons of the four
models based on the squared pricing errors of options in the six moneyness groups are

TABLE 4.5
Out-of-Sample Performances in Option Pricing

<0.93 0.93–0.97 0.97–1.0 1.0–1.03 1.03–1.07 >1.07 All

Panel A. Time series mean of daily weighted average of absolute pricing errors (in
dollar) of out-of-sample options in each moneyness/maturity group.

<1 m No. 410 731 650 387 9 0 2187

SVMJ 0.2265 0.3663 0.4277 0.3347 0.6449 N/A 0.3410
SVCMJ 0.2148 0.3518 0.3867 0.3025 0.3220 N/A 0.3172
SVVG 0.2319 0.3061 0.2399 0.2234 0.2404 N/A 0.2553
SVLS 0.1779 0.2817 0.2760 0.2580 0.2277 N/A 0.2524

1–2 m No. 694 896 679 676 306 0 3251

SVMJ 0.5133 0.8113 0.7902 0.5226 0.3700 N/A 0.6371
SVCMJ 0.4575 0.6893 0.6252 0.4697 0.3393 N/A 0.5400
SVVG 0.4667 0.5653 0.3045 0.2467 0.2835 N/A 0.3915
SVLS 0.3996 0.5682 0.3721 0.3444 0.4344 N/A 0.4297

2–3-m No. 605 693 611 612 613 16 3150

SVMJ 0.7937 1.3026 1.2660 0.8602 0.4593 0.4491 0.9452
SVCMJ 0.6335 0.9732 0.9043 0.7091 0.4726 0.3407 0.7250
SVVG 0.6639 0.8261 0.4889 0.3119 0.4252 0.1543 0.5286
SVLS 0.5467 0.7267 0.4215 0.4468 0.6531 0.5792 0.5527

3–6 m No. 941 415 334 328 370 170 2558

SVMJ 1.1953 1.8914 1.9260 1.5650 0.8238 0.4239 1.3352
SVCMJ 0.8150 1.2498 1.3257 1.2193 0.8240 0.5618 0.9805
SVVG 0.9454 1.1721 0.8257 0.4151 0.4524 0.5474 0.7876
SVLS 0.6982 0.8231 0.4669 0.3818 0.8369 0.9546 0.6700

>6 m No. 696 170 128 120 154 311 1579

SVMJ 1.8625 3.2767 3.0434 3.2549 2.4035 1.0897 2.1051
SVCMJ 0.9751 1.7010 1.7761 1.8833 1.6684 1.0344 1.2712
SVVG 1.4383 2.1033 1.4651 1.4414 0.6432 0.4837 1.2285
SVLS 0.8029 0.9653 0.4122 0.4376 0.8658 1.3964 0.8610

All No. 3346 2905 2402 2123 1452 497 12725

SVMJ 0.8482 1.0786 1.0641 0.8752 0.6895 0.7868 0.9296
SVCMJ 0.5997 0.7877 0.7595 0.6776 0.6109 0.7943 0.6832
SVVG 0.6953 0.7172 0.4541 0.3392 0.3832 0.4422 0.5444
SVLS 0.5095 0.5792 0.3702 0.3768 0.6378 1.1006 0.5093

(continued)
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reported in the last six rows in Panel B of Table 4.5. We find that SVVG and SVLS
have significantly smaller squared pricing errors than SVMJ and SVCMJ for most ITM
and slightly OTM (1.0 < K/S < 1.03) options. While SVVG has smaller squared pricing
errors than SVMJ and SVCMJ for all deep OTM options (K/S > 1.03) , the differences
are statistically significant only for absolute pricing errors. SVVG tends to have larger

TABLE 4.5
Continued

<0.93 0.93–0.97 0.97–1.0 1.0–1.03 1.03–1.07 >1.07 All

Panel B. Diebold–Mariano statistics for out-of-sample squared absolute option
pricing errors. The DM statistics provide pair-wise comparison of the four models by
testing whether one model has significantly smaller average squared pricing errors for
all options in a moneyness/maturity group than another model. Bold entries mean
that the difference is significant at the 5% level for one-sided test. To save space, we
omit “SV” in the names of all four models.

<1 m CMJ-MJ −1.8760 −1.2468 −1.3720 −1.3913 −1.1857 N/A −1.4356
VG-MJ −0.9924 −2.0587 −2.2073 −2.1726 −1.1646 N/A −2.2196
LS-MJ −1.9788 −2.1380 −2.1593 −2.0294 −1.1382 N/A −2.2431
VG-CMJ 1.8267 −1.8767 −2.0081 −2.0682 −0.8847 N/A −2.1357
LS-CMJ −1.9612 −1.8109 −1.7500 −1.2245 −0.6546 N/A −1.8931
VG-LS 2.0098 0.3429 −1.6095 −1.5835 −0.0798 N/A −1.0260

1–2 m CMJ-MJ −1.8547 −1.7263 −1.4837 −0.9065 −0.4881 N/A −1.4702
VG-MJ −2.0359 −2.3167 −2.3194 −2.1112 −1.0077 N/A −2.2518
LS-MJ −2.2008 −2.3157 −2.2948 −1.9670 1.1143 N/A −2.2530
VG-CMJ 0.3630 −1.9169 −2.1336 −2.2551 −0.9283 N/A −2.1883
LS-CMJ −2.2439 −1.7375 −1.9642 −1.3159 1.3400 N/A −1.7832
VG-LS 2.2363 −0.3727 −1.6809 −1.6245 −1.9018 N/A −1.8366

2–3 m CMJ-MJ −1.8094 −1.9877 −1.7572 −1.0595 −0.0972 −1.0426 −1.7109
VG-MJ −1.9395 −2.3205 −2.3510 −2.2343 −0.6682 −1.1401 −2.2865
LS-MJ −1.9849 −2.3021 −2.3219 −2.1415 1.2392 1.1848 −2.2552
VG-CMJ 0.9804 −1.6520 −2.1103 −2.2833 −1.0680 −1.2298 −2.1052
LS-CMJ −2.0228 −2.0675 −2.2546 −2.0913 1.6694 1.2528 −2.1740
VG-LS 2.0255 1.8253 1.3916 −1.7197 −2.1155 −1.2681 −0.5989

3–6 m CMJ-MJ −1.7672 −1.6398 −1.6616 −1.4190 −0.4070 1.4619 −1.6688
VG-MJ −1.8426 −1.7313 −1.8234 −1.8212 −1.7285 0.9065 −1.8327
LS-MJ −1.8208 −1.7195 −1.8171 −1.8127 −1.0470 1.3944 −1.8220
VG-CMJ 1.4865 −0.9991 −1.7170 −1.7974 −1.6710 0.1463 −1.6100
LS-CMJ −1.8087 −1.7686 −1.8105 −1.8049 −0.5355 1.2670 −1.7987
VG-LS 1.7821 1.6601 1.7202 0.5454 −1.6131 −1.5439 1.6706

>6 m CMJ-MJ −1.7002 −1.6398 −1.4476 −1.4017 −1.3692 −0.6747 −1.6748
VG-MJ −1.7200 −1.6758 −1.4735 −1.4841 −1.5470 −1.6319 −1.7421
LS-MJ −1.7155 −1.6698 −1.4795 −1.4664 −1.5237 0.9748 −1.7456
VG-CMJ 1.6634 1.4437 −1.3809 −1.4402 −1.5931 −1.6835 −0.1868
LS-CMJ −1.7297 −1.7288 −1.4843 −1.5707 −1.4867 1.0068 −1.7471
VG-LS 1.7090 1.6575 1.4961 1.3922 −0.9588 −1.5663 1.7428

(continued)
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TABLE 4.5
Continued

<0.93 0.93–0.97 0.97–1.0 1.0–1.03 1.03–1.07 >1.07 All

All CMJ-MJ −1.9279 −2.0100 −2.1283 −1.7568 −1.3439 −0.3758 −2.0548
VG-MJ −2.0673 −2.1634 −2.3182 −2.1807 −1.9363 −1.7026 −2.2968
LS-MJ −2.0069 −2.0929 −2.2794 −2.0398 −1.4463 1.3682 −2.2150
VG-CMJ 1.6460 −1.0717 −2.0806 −2.2271 −2.0860 −1.7240 −1.9971
LS-CMJ −2.1797 −2.0070 −2.0740 −1.9737 −0.6785 1.2596 −2.0679
VG-LS 1.9318 1.8282 1.7840 0.0511 −2.1586 −1.6360 1.4424

This table reports the out-of-sample performances of the four models in option pricing.
Based on the estimates of model parameters and latent volatility variables using the
spot and option prices of the S&P 500 index, we obtain the theoretical price of each
option that is not used in model estimation (12,725 in total) under each of the four
models. We divide these options into six moneyness (defined as the ratio between
strike and spot prices) and five maturity groups. The numbers of options belonging to
each moneyness/maturity group during the entire sample also are reported. Based on
options that are available on each day, we obtain daily arithmetic weighted average of
the absolute pricing errors of options within each moneyness/maturity group. Then we
obtain the time series means of the daily pricing errors over the sample period for each
option group. Absolute pricing error is defined as the absolute value of the difference
between model and market prices of an option.

(smaller) pricing errors than SVLS for ITM (OTM) options. We obtain similar findings
for moneyness groups with different time-to-maturities, although the advantages of the
Lévy jump models over the AJD models become less significant for options with longer
time-to-maturities.

The analysis in this section clearly demonstrates the advantages of the Lévy jump
models over the AJD models in modeling the joint dynamics of the spot and option
prices of the S&P 500 index. The VG and LS models capture the many small movements
in index returns that cannot be captured by the AJD models. The Lévy jump models also
have significantly smaller in-sample and out-of-sample option pricing errors than the
AJD models. Among all the models we consider, we find that the VG model of Madan,
Carr, and Chang (1998) with stochastic volatility has the best performance in modeling
the risk-neutral and physical dynamics of the S&P 500 index returns. We emphasize that
the superior performances of the Lévy jump models are obtained under the restriction
that jumps under the physical and the risk-neutral measures must follow the same Lévy
process. If we allow jumps to follow different Lévy processes under the two measures,
Lévy jump models are likely to have even better performances in capturing the joint
dynamics of index returns. Therefore, our analysis points out the great potentials of Lévy
processes for continuous-time finance modeling and strongly suggests that we can enrich
existing AJD models by incorporating infinite-activity Lévy jumps.

5. CONCLUSION

In this paper, we address a basic and yet fundamental empirical issue in the current
continuous-time finance literature: Whether newly developed Lévy jump models can
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FIGURE 4.7. Average absolute pricing errors for all out-of-sample options of SVMJ,
SVCMJ, SVVG, and SVLS, which are estimated using daily returns of the S&P 500
index and daily prices of the short-term ATM SPX options between January 4, 1993
and December 31, 1993.

outperform some of the most sophisticated AJD models in capturing the joint dynamics
of stock and option prices. We develop efficient MCMC methods to estimate the posterior
distributions of parameters and latent volatility/jump variables of the Lévy jump models
using stock and option prices. We show that models with infinite-activity Lévy jumps
in returns significantly outperform the AJD models with compound Poisson jumps in
returns and volatility in capturing the joint dynamics of the spot and option prices of
the S&P 500 index. We also find that the variance gamma model of Madan, Carr, and
Chang (1998) with stochastic volatility has the best performance among all the models we
consider.

Our results suggest that existing AJD models need much more sophisticated para-
metric specifications of the compound Poisson process to capture the data. The more
general Lévy processes we consider provide a convenient alternative and are suggestive
of presence of infinite activity jumps in asset prices. Our results are consistent with the
nonparametric evidence of Aı̈t-Sahalia and Jacod (2009) and Tauchen and Todorov
(2008) and suggest that incorporating infinite-activity Lévy jumps into existing AJD
models can substantially increase the flexibility of AJD models without sacrificing their
tractability.
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APPENDIX

In this appendix, we first provide more detailed information on the finite- and infinite-
activity jump processes considered in the paper. Then we provide the details of the
MCMC methods for estimating SVMJ, SVCMJ, SVVG, and SVLS models.

A.1. Characteristic Component, Lévy Measure and Drift for MJ, CMJ, VG, and LS

In this section, we provide analytical expressions of the characteristic component,
Lévy measure and drift for MJ, CMJ, VG, and LS, which have been used in the paper.
To emphasize the generality of these results, we omit dependence of model parameters
on probability measures.

MJ:

ψJ(u) = λ
(
1 − eiuμy− 1

2 σ 2
y u2)

, π (x) = λ√
2πσy

e
− (x−μy)2

2σ2
y , μ̄ =

∫
| x | ≤1

xπ (dx).

CMJ:

ψJ(u) = λ

(
1 − eiu1μy− 1

2 σ 2
y u2

1

1 − iu1μvρJ − iu2μv

)
, π (x) = λ

μv
√

2πσy
e
− x2

μv
− (x1−μy−ρJ x2)2

2σ2
y ,

μ̄ =
∫

|x|≤1
xπ (dx).

VG:

ψJ(u) =
log
(

1 − iuγ ν + σ 2νu2

2

)
ν

,

π (x) =

⎧⎪⎪⎨⎪⎪⎩
1
ν

exp(−Mx)
x

x > 0

1
ν

exp(−G | x |)
| x | x < 0

, μ̄ =
∫

| x | ≤1
xπ (dx),

where

M =
(√

1
4
γ 2ν2 + 1

2
σ 2ν + 1

2
γ ν

)−1

and G =
(√

1
4
γ 2ν2 + 1

2
σ 2ν − 1

2
γ ν

)−1

.

If γ = 0, then the jump structure is symmetric around zero, and M = G.
Lévy α-stable Process: Suppose X1 ∼ Sα(β, σ, γ ), which reduces to Log-Stable process

if β = −1 and γ = 0, then

ψJ(u) = σα|u|α(1 − iβsign(u) tan
(πα

2

)
+ iγ u,

π (x) =

⎧⎪⎪⎨⎪⎪⎩
c1

1
x1+α

x > 0

c2
1

|x|1+α
x < 0

, μ̄ = γ −
∫

1 | x |>1

xπ (dx),
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where c1 = σα (1+β)
2 and c2 = σα (1−β)

2 . In the LS model, c1 becomes zero so that only
negative jumps are allowed in the Lévy measure. However, it is important to point out
that in addition to the pure jump part characterized by the Lévy measure πLS(dx), the
LS process also has a deterministic drift part that compensates the negative jumps so
that the whole process is a martingale. For infinite-variation jumps, the compensation is
so much that the admissible domain of LS actually covers the whole real line, although
there are only negative jumps. As a result, the LS process has an α-stable distribution
with infinite pth moment for p > α.

A.2. Change of Measure for Lévy Processes

Theorem (Sato 1999). Let (XP
t , P) and (XQ

t , Q) be two Lévy processes on R with
corresponding characteristic triplets (μ̄P, σ̄ 2

P, πP(dx)) and (μ̄Q, σ̄ 2
Q, πQ(dx)), and φ(x) =

log( πQ(x)
πP(x) ). Sato (1999) shows that P and Q are equivalent for all t if and only if the

following conditions are satisfied: (i) σ̄P = σ̄Q; (ii) The Lévy measures are equivalent with∫∞
−∞(eφ(x)/2 − 1)2πP(dx) < ∞; and (iii) If σ̄P = 0, then we must in addition have μ̄Q −

μ̄P = ∫ 1
−1 x(πQ(x) − πP(x)) dx. And the Radon-Nikodym derivative equals eUt , where

Ut is a Lévy process with characteristic triplet (μ̄u, σ̄
2
u , πu(dx)): (i) σ̄ 2

u = 0; (ii) μ̄u =
− ∫∞

−∞(ey − 1 − y|y|≤1)(πPφ−1) dy; and (iii) πu = πPφ−1.

This theorem provides the necessary and sufficient conditions for two probability
measures of Lévy processes to be equivalent. The first condition requires that the change
of measure does not affect the volatility of the Brownian part of a Lévy process, which is
similar to the change of measure for Brownian motions. The second condition requires
the Hellinger distance between the two Lévy measures to be finite. That is, for the two
probability measures to be equivalent, the jump structures of the two Lévy processes
cannot be too different from each other. The third condition imposes restriction between
the drift terms and the Lévy measures of the two Lévy processes.

A.3. Priors for Model Parameters

In this section, we discuss the priors for parameters of all four models. To simplify
our numerical simulations, we choose standard conjugate priors whenever possible to
simplify numerical simulations.

• Priors for parameters common to four models. We consider the following prior
distributions: κ ∼ N(0, 1) (truncated at zero), θ ∼ N(0, 1) (truncated at zero),
ρ ∼ Uniform(0, 1), σv ∼ 1

σv
, ηs ∼ N(0, 1), ηv ∼ N(0, 1), ρc ∼ N(0, 1), and σc ∼ 1

σc
.

• Priors for parameters common to SVMJ and SVCMJ. For μP
y and μQ

y , we choose
standard conjugate priors: μP

y ∼ N(0, 1) and μQ
y ∼ N(0, 1). We choose flat priors for

σy and λ: σy ∼ 1
σy

and λ ∼ Uniform(0, 1).
• Priors for parameters unique to SVCMJ. For μv and ρJ, we choose the following

priors: μv ∼ 1
μv

and ρJ ∼ N(0, 1).
• Priors for parameters unique to SVVG. We choose the following priors for the five

parameters that are unique to SVVG: γ P ∼ N(0, 1), γ Q ∼ N(0, 1), ν ∼ 1
ν
, σP ∼ 1

σP ,

and σQ ∼ 1
σQ .

• Priors for parameters unique to SVLS. For α and σ, we choose the following joint
priors: α ∼ Uniform(1, 2) and σ ∼ 1

σ
.
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Although we choose flat priors for the variance parameters, the priors of most other
parameters are proper priors, pretty uninformative, and have been used in previous
studies. In general, as the sample size becomes large, the information contained in the
likelihood function dominates that in the priors. As a result, we find the results computed
later seem to be relatively invariant to the choice of priors.

A.4. MCMC Methods for SVMJ

In this section, we discuss the updating algorithms and the posterior distributions of
model parameters and latent variables for SVMJ. Compared to that of LWY (2008), which
only uses stock prices, the posterior likelihood here always has an additional component,
which is the likelihood of option pricing errors. Because the computation of option price
involves numerical integration, the parameters that appear in the option pricing formula
usually do not have known posterior distributions. To overcome this difficulty, we adopt
the method of Damine, Wakefield, and Walker (1999) (hereafter DWW) to update these
parameters. Parameters that are not involved in the option pricing formula usually have
standard known posterior distributions, from which we draw posterior samples. In this
and the following sections, we discuss the updating methods, first for parameters that
appear in the option pricing formula, then for the rest.

• Posterior for κ. The posterior of κ is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(κ)

×N

(
S
W ,

√
1
W

)
1κ>0

where W = �
(1−ρ2)σ 2

v

∑T−1
t=0

(θ−vt)2

vt
+ 1,S = 1

σv (1−ρ2)

∑T−1
t=0

(θ−vt)(
Bt+1
σv

−ρ At+1)
vt

, At+1 =
Yt+1 − Yt − (rt − 1

2 vt + ψJ(−i ) + ηsvt)� − Ny
t+1ξ

y
t+1, and Bt+1 = vt+1 − vt. We de-

note the first term as l(κ), omitting dependence on other parameters to simplify
notation. Its calculation involves numerical integration because of the option pricing
formula involved. The second term in the posterior is a truncated normal distribu-
tion. This combination motivates us to use the DWW method. Specifically, for a
given previous draw, κ (g), the algorithm for (g + 1)-th iteration is:
1. Draw κ (g+1) from N( S

W ,
√

1
W )1κ>0;

2. Draw an auxiliary variable u from Uniform(0, l(κ (g)));
3. Accept κ (g+1) if l(κ (g+1)) > u; otherwise, keep κ (g).

• Posterior for θ . Similarly, the posterior of θ is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(θ )

×N

(
S
W ,

√
1
W

)
1θ>0

where W = κ2�
σ 2

v (1−ρ2)

∑T−1
t=0

1
vt

+ 1,S = κ
(1−ρ2)σv

∑T−1
t=0 ( Bt+1/σv −ρ At+1

vt
), At+1 = Yt+1 −

Yt − (rt − 1
2 vt + ψJ(−i ) + ηsvt)� − Ny

t+1ξ
y
t+1, and Bt+1 = vt+1 + (κ� − 1)vt. Again

we use the DWW method and the updating algorithm is the same as that for κ.
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• Posterior for σv . The posterior of σv is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
× exp

(
ρ

1 − ρ2

(
T−1∑
t=0

At+1 Bt+1

)
1
σv

)
︸ ︷︷ ︸

:=l(σv )

×
(

1
σ 2

v

) T
2 + 1

2

exp

⎛⎜⎜⎜⎜⎜⎝−

T−1∑
t=0

B2
t+1

2(1 − ρ2)
1
σ 2

v

⎞⎟⎟⎟⎟⎟⎠
where At+1 = Yt+1−Yt−(rt− 1

2 vt+ψJ (−i )+ηs vt)�−Ny
t+1ξ

y
t+1√

vt�
and Bt+1 = vt+1−vt−κ(θ−vt)�√

vt�
. The al-

gorithm is similar to that for κ:

1. Draw 1
(σ (g+1)

v )2
from �( T

2 + 3
2 , (

∑T−1
t=0 B2

t+1

2(1−ρ2) )−1);

2. Draw an auxiliary variable u from Uniform(0, l(σ (g)
v ));

3. Accept σ
(g+1)
v if l(σ (g+1)

v ) > u; otherwise, keep σ
(g)
v .

• Posterior for ρ. The posterior of ρ is proportional to the function π (ρ)

∝ π (ρ) :=
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)

× (1 − ρ2)−
T
2 exp

(
−12(1 − ρ2)

T−1∑
t=0

(
A2

t+1 + B2
t+1

)+ ρ

(1 − ρ2)

T−1∑
t=0

At+1 Bt+1

)

where At+1 = Yt+1−Yt−(rt− 1
2 vt+ψJ (−i )+ηs vt)�−Ny

t+1ξ
y
t+1√

vt�
and Bt+1 = vt+1−vt−κ(θ−vt)�

σv
√

vt�
. It is well

known that the sampling distribution of Pearson’s correlation is negatively skewed
and the so-called “Fisher’s Z transformation” converts Pearson’s correlation to a
normally distributed variable. Motivated by Fisher’s idea, we develop the following
algorithm:
1. Draw 1

2 log 1+ρ(g+1)

1−ρ(g+1) from N( 1
2 log 1+ρr

1−ρr
, 1

T−3 ), where ρr = Corr(A, B), A =
{At+1}T−1

t=0 , B = {Bt+1}T−1
t=0 , and g(ρr ) = 1

2 log 1+ρr
1−ρr

is the formula of Fisher’s Z trans-
formation.
2. Accept ρ(g+1) with probability

min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π (ρ(g+1)

π (ρ(g)
×

exp

⎛⎜⎜⎝− (g(ρ(g) − g(ρr ))2

2
T − 3

⎞⎟⎟⎠

exp

⎛⎜⎜⎝− (g(ρ(g+1) − g(ρr ))2

2
T − 3

⎞⎟⎟⎠
, 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

By removing the skewness of the distribution for the candidate draw, our algorithm
converges more quickly than the one without the transformation.

• Posteriors for ηv and μQ
y . Because the updating methods and the posteriors of ηv and

μQ
y are the same, we focus our discussion on ηv . The posterior of ηv is proportional to
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∝ π (ηv ) :=
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
× exp

(
− (ηv )2

2

)
.

We update the parameter using the Metropolis–Hasting algorithm. A normal dis-
tribution centered at the previous draw with constant variance 1 is used as the
proposal distribution for the candidate draw, which is accepted with the probability
min( π (ηv(g+1))

π (ηv(g)) , 1).
• Posterior for σy. The posterior of σy is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(σy)

×
(

1
σ 2

y

) T
2 + 1

2

exp

(
−1

2

t−1∑
t=0

(
ξ

y
t+1 − μP

y

)2 1
σ 2

y

)
.

We use the DWW method to update the parameter:
1. Draw 1

(σ (g+1)
y )2

from �( T
2 + 3

2 , 1
1
2

∑T−1
t=0 (ξ y

t+1−μP
y )2

);

2. Draw an auxiliary variable u from Uniform(0, l(σ (g)
y ));

3. Accept σ
(g+1)
y if l(σ (g+1)

y ) > u; otherwise, keep σ
(g)
y .

• Posterior for λ. The posterior of λ is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(λ)

×λ
∑T−1

t=0 Nt+1 (1 − λ)T−∑T−1
t=0 Nt+1 .

The DWW method is used and the proposal distribution for the candidate draw is
Beta(

∑T−1
t=0 Nt+1 + 1, T −∑T−1

t=0 Nt+1 + 1). The algorithm is skipped.

For parameters that do not appear in the option pricing formula, that is, (ηs, μP
y, ρc, σc),

we obtain known posterior distributions.

• Posterior for ηs . The posterior of ηs follows a normal distribution ηs ∼
N( S

W , 1
W ), where W = �

(1−ρ2)

∑T−1
t=0 vt + 1,S = 1

(1−ρ2)

∑T−1
t=0 (At+1 − ρ

σv
Bt+1), At+1 =

Yt+1 − Yt − (rt − 1
2 vt + ψJ(−i ) + ηsvt)� − Ny

t+1ξ
y
t+1, and Bt+1 = vt+1 − vt − κ(θ −

vt)�.
• Posterior for μP

y . The posterior of μP
y follows a normal distribution μP

y ∼ N( S
W , 1

W ),

where W = T
σ 2

y
+ 1, and S = ξT−1

t=0 ξt+1

σ 2
y

.

• Posterior for ρc. The posterior of ρc follows a normal distribution ρc ∼ N( S
W , 1

W ),

where W =
∑T−1

t=0 A2
t

σ 2
c

+ 1,S =
∑T−1

t=0 At At+1

σ 2
c

, and At+1 = Ct+1 − Ft+1.
• Posterior for σc. The posterior of σc follows a gamma distribution 1

σ 2
c

∼ �( T
2 +

3
2 , 1

1
2

∑T−1
t=0 (At+1−ρc At)2

), where At+1 = Ct+1 − Ft+1.

Next we consider the posteriors of latent jump and volatility variables.
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• Posterior for ξ
y
t+1. The posterior of ξ

y
t+1 is ξ

y
t+1 ∼ N( S

W , 1
W ), where W =

N2
t+1

(1−ρ2)vt�
+ 1

σ 2
y
, S = Nt+1

(1−ρ2)vt�
(At+1 − ρBt+1/σv ) + μy

σ 2
y
, At+1 = Yt+1 − Yt − (rt − 1

2 vt

+ ψJ(−i ) + ηsvt)�, and Bt+1 = vt+1 − vt − κ(θ − vt)�.
• Posterior for Nt+1. The posterior of Nt+1 is Nt+1 ∼ Bernoulli ( α1

α1+α2
), where α1 =

e− 1
2(1−ρ2)

[A2
1−2ρ A1 B]

λ, α2 = e− 1
2(1−ρ2)

[A2
2−2ρ A2 B]

(1 − λ), A1 = (Yt+1 − Yt − (rt − 1
2 vt +

ψJ(−i ) + ηsvt)� − ξ
y
t+1)/

√
vt�, A2 = (Yt+1 − Yt − (rt − 1

2 vt + ψJ(−i ) + ηsvt)�)/√
vt�, and B = (vt+1 − vt − κ(θ − vt)�)/(σv

√
vt�).

• Posterior for vt+1. For 0 < t + 1 < T, the posterior of vt+1 is proportional to

∝ exp
(

− 1
2σ 2

c
[(Ct+1 − Ft+1)2 − 2ρc(Ct+1 − Ft+1)(Ct − Ft)]

)
× exp

(
− 1

2σ 2
c

[
ρ2

c (Ct+1 − Ft+1)2 − 2ρc(Ct+2 − Ft+2)(Ct+1 − Ft+1)
])

× exp

{
−
[− 2ρε

y
t+1ε

v
t+1 + (εv

t+1

)2]
2(1 − ρ2)

}
× 1

vt+1

× exp

{
−
[(

ε
y
t+2

)2 − 2ρε
y
t+2ε

v
t+2 + (εv

t+2

)2]
2(1 − ρ2)

}
,

where ε
y
t+1 = (Yt+1 − Yt − (rt − 1

2 vt + ψJ(−i ) + ηsvt)� − Ny
t+1ξ

y
t+1)/

√
vt�, and

εv
t+1 = (vt+1 − vt − κ(θ − vt)�)/(σv

√
vt�). And the posterior for vt when t = 0 and

t = T can be derived in the similar way. We use the traditional Metropolis-Hasting
method to update vt, and use the Student-t distribution with a degree of freedom of
6 as the proposal distribution.

A.5. MCMC Methods for SVCMJ

The common parameters and latent variables between SVMJ and SVCMJ have similar
posterior distributions. So in this section we focus on the posterior distributions of the
parameters and latent variables that are unique to SVCMJ.

• Posterior for μv . The posterior of μv is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(μv )

×
(

1
μv

)T+1

exp

(
− 1

μv

T−1∑
t=0

ξ v
t+1

)
.

The DWW method is used and the proposal distribution for the candidate draw is
IG(T + 2, 1∑T−1

t=0 ξ v
t+1)

).

• Posterior for ρJ . The posterior of ρJ is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(ρJ )

×N

(
S
W ,

√
1
W

)
,
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where W =
∑T−1

t=0 (ξ v
t+1)2

σ 2
y

+ 1,S =
∑T−1

t=0 ξ v
t+1 At+1

σ 2
y

, and At+1 = ξ
y
t+1 − μP

y . The DWW

method is used and the proposal distribution for the candidate draw is N( S
W ,
√

1
W ).

• Posterior for ξ v
t+1. The posterior of ξ v

t+1 follows a normal distribution ξ v
t+1 ∼

N( S
W , 1

W )1ξ v
t+1>0, where W = N2

t+1

(1−ρ2)vt�
+ ρ2

J
σ 2

y
,S = Nt+1

(1−ρ2)vt�
(−ρ At+1 + Bt+1σv

+
ξ

y
t+1−μP

y )ρJ

σ 2
y

− 1
μv

, At+1 = Yt+1 − Yt − (rt − 1
2 vt + ψJ(−i ) + ηsvt)�, and Bt+1 = vt+1 − vt −

κ(θ − vt)� − Nt+1ξ
v
t+1.

A.6. MCMC Methods for SVVG

The common parameters and latent variables between SVMJ and SVVG have similar
posterior distributions. So in this section we focus on the posterior distributions of the
parameters and latent variables that are unique to SVVG.

• Posterior for ν. The posterior of ν is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)⎛⎜⎜⎝ 1

ν
�
ν �

(
�

ν

)
⎞⎟⎟⎠

T (
T−1∏
t=0

Gt

) �
ν
−1

︸ ︷︷ ︸
:=l(ν)

× exp

{
−1

ν

(
T−1∑
t=0

Gt

)}
1
ν
.

The DWW method is used and the proposal distribution for the candidate draw is
IG(2, 1∑T−1

t=0 Gt+1)
).

• Posteriors for γ Q and σQ. The algorithms for updating γ Q and σQ are the same as
that for ηv in SVMJ, except that the candidate draw for σQ needs to be truncated at
zero because it has to be a positive number.

• Posterior for γ P. The posterior of γ P is γ P ∼ N( S
W , 1

W ), where W =
1

(σP)2

∑T−1
t=0 Gt+1 + 1, and S = 1

(σP)2

∑T−1
t=0 Jt+1.

• Posterior for σP. The posterior of σP is (σP)2 ∼ IG( T
2 + 3

2 , 1
1
2

∑T−1
t=0

(Jt+1−γPGt+1)2

Gt+1

).

• Posterior for Jt+1. The posterior of Jt+1 follows a normal distribution Jt+1 ∼
N( S

W , 1
W ), where W = 1

(1−ρ2)vt�
+ 1

(σP)2Gt+1
,S = 1

(1−ρ2)vt�
(At+1 − ρBt+1

σv
) + γ P

(σP)2 ,

At+1 = Yt+1 − Yt − (rt − 1
2 vt + ψJ(−i ) + ηsvt)�, and Bt+1 = vt+1 − vt − κ(θ −

vt)�.
• Posterior for Gt+1. The posterior of Gt+1 is proportional to

∝ G
�
ν
− 3

2
t+1 exp

{
− J2

t

2σ 2

1
Gt+1

}
exp
{
−
(

(γ P)2

2(σP)2
+ 1

ν

)
Gt+1

}
.

The posterior distribution of Gt+1 is nonstandard and difficult to simulate from.
After considering a variety of updating methods, we choose the Adaptive Rejection
Metropolitan Sampling (ARMS) method of Gilks, Best, and Tan (1995) to update
volatility variables one at a time in our estimation of all four models. ARMS is a
generalization of the Adaptive Rejection Sampling (ARS) method of Gilks (1992),
which is very efficient for sampling from posterior densities that are log-concave.
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ARS works by constructing an envelope function of the log of the target density,
which is then used in rejection sampling (see, e.g., Ripley, 1987). Whenever a point is
rejected by ARS, the envelope is updated to correspond more closely to the true log
density, thereby reducing the chance of rejecting subsequent points. To accommodate
densities that are not log concave, ARMS performs a Metropolis step on each point
accepted at an ARS rejection step. In the Metropolis step, the new point is weighed
against the previous point sampled. If the new point is rejected, the previous point
is retained as the new point. The procedure returns samples from the exact target
density, regardless of the degree of complexity of the log density (see Robert and
Casella 2004, for more detailed discussions of the method). Our simulation studies
have shown that ARMS has excellent performance in updating Gt.

A.7. MCMC Methods for SVLS

The common parameters and latent variables between SVMJ and SVLS have similar
posterior distributions. So in this section we focus on the posterior distributions of the
parameters and latent variables that are unique to SVLS.

• Posterior for α. The posterior of α is proportional to

π (α) ∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)

×
(

α

α − 1

)T

exp

⎧⎨⎩−
T−1∑
t=0

∣∣∣∣∣ St+1

σ�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1

⎫⎬⎭
×

T−1∏
t=0

∣∣∣∣∣ St+1

σ�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1

×
[(

1
σ

) α
α−1

]m+1

exp

{
−
(

1
σ

) α
α−1 1

M

}
× 1(α)α∈[1.01,2],

where m and M are the hyperparameters of the prior of σ and equal to 2.5 and 10,

respectively. As pointed out by Buckle (1995), we tend to have computer overflow
problems when α is very close to 1 because of the term ( α

α−1 )T in all the condi-
tional posterior densities. As a result, we choose a uniform prior of α over [1.01, 2]
in our implementation of the MCMC methods. It is notoriously difficult to esti-
mate the shape parameter of a stable distribution because the complete conditional
distribution for α does not have a standard form. Motivated by the idea in Qiou
and Ravishanker (2004), we use the Metropolis-Hastings Algorithm with a linearly
transformed Beta distribution as the proposal density. This is mainly because α is
bounded from both above and below and its density appears to be unimodal. We
choose the parameters of the proposal beta density, a and b, such that the previous
draw α(g) is the mode of this density and a + b = 5 log(T), a constant suggested by
Buckle (1995). Define

g(α | a, b) = �(a + b)
�(a)�(b)

(
α − 1.01

0.99

)α−1 (2 − α

0.99

)b−1

.

Then, the algorithm works in the following way:
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1. Calculate ⎧⎪⎨⎪⎩a1 =
(

α(g) − 1.01
0.99

)
(5 log(T) − 2) + 1

b1 = 5log(T) − a1

and then draw τ from Beta(a1, b1) and set α(g+1) = 0.99τ + 1.01;
2. Calculate ⎧⎪⎨⎪⎩a2 =

(
α(g+1) − 1.01

0.99

)
(5log(T) − 2) + 1

b2 = 5log(T) − a2

;

3. Draw u from Uniform(0, 1);
4. Accept α(g+1) if u > min( p(α(g+1))

p(α(g)) × g(α(g) | a2,b2)
g(α(g+1) | a1,b1) , 1), otherwise keep the previous draw.

• Posterior for σ . The posterior of σ is proportional to

∝
T−1∏
t=0

exp
(

− [(Ct+1 − Ft+1) − ρc(Ct − Ft)]2

2σ 2
c

)
︸ ︷︷ ︸

:=l(σ )

×
[(

1
σ

) α
α−1

T + 1

]
exp

⎧⎨⎩−
(

1
σ

) α
α−1

⎛⎝T−1∑
t=0

∣∣∣∣∣ St+1

�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1

⎞⎠⎫⎬⎭ .

The DWW method is used with the following proposal distribution ( 1
σ

)
α

α−1 ∼ �(T +
α−1
α

+ 1, 1∑T−1
t=0 | St+1

�
1
α tα (Ut+1)

| α
α−1 + 1

M

).

• Posterior for St+1. The posterior of St+1 is

p(St+1 | ·) ∝ exp
{
− St+1

2(1 − ρ2)vt�

[
St+1 − 2

(
Ct+1 − ρ

σv
dt+1

)]}

× exp

⎧⎨⎩−
∣∣∣∣∣ St+1

σ�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1

⎫⎬⎭ |St+1| 1
α−1 ,

where Ct+1 = Yt+1 − Yt − μ� and Dt+1 = vt+1 − vt − κ(θ − vt)�. Simple algebra
shows this posterior is log-concave. So it is very efficient to use the ARS algorithm
of Gilks (1992) to sample from this posterior distribution.

• Posterior for Ut+1. The posterior of Ut+1 is

p(Ut+1 | ·) ∝ exp

⎧⎨⎩−
∣∣∣∣∣ St+1

σ�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1

+ 1

⎫⎬⎭
∣∣∣∣∣ St+1

σ�
1
α tα(Ut+1)

∣∣∣∣∣
α

α−1

︸ ︷︷ ︸
g(Ut+1)

×[1St+1∈(−∞,0)∩Ut+1∈(− 1
2 ,lα ) + 1St+1∈(0,∞)∩Ut+1∈(lα, 1

2 )

]
.
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Due to the monotonicity of tα(Ut+1), we know that p(Ut+1 | ·) has a global maximum
which equals 1 at tα(Ut+1) = St+1

σ�
1
α
. The knowledge of this maximum makes the

Rejection algorithm of Devroye (1986) or Ripley (1987) a suitable method to sample
from p(Ut+1 | ·). This algorithm works in the following way:

1. Draw

U(g+1)
t+1 ←−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Uniform

(
−1

2
, lα

)
if St+1 < 0

Uniform
(

lα,
1
2

)
if St+1 > 0

;

2. Draw u from Uniform(0, 1);
3. Accept Ut+1 if u < g(U(g+1)

t+1 ), otherwise return to 1.
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