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Imaging biomarkers for the predictive assessment of treatment response in patients with cancer earlier than
standard tumor volumetric metrics would provide new opportunities to individualize therapy. Diffusion-weighted
MRI (DW-MRI), highly sensitive to microenvironmental alterations at the cellular level, has been evaluated exten-
sively as a technique for the generation of quantitative and early imaging biomarkers of therapeutic response
and clinical outcome. First demonstrated in a rodent tumor model, subsequent studies have shown that DW-MRI
can be applied to many different solid tumors for the detection of changes in cellularity as measured indirectly
by an increase in the apparent diffusion coefficient (ADC) of water molecules within the lesion. The introduction
of quantitative DW-MRI into the treatment management of patients with cancer may aid physicians to individualize
therapy, thereby minimizing unnecessary systemic toxicity associated with ineffective therapies, saving valuable
time, reducing patient care costs and ultimately improving clinical outcome. This review covers the theoretical basis
behind the application of DW-MRI to monitor therapeutic response in cancer, the analytical techniques used and
the results obtained from various clinical studies that have demonstrated the efficacy of DW-MRI for the prediction
of cancer treatment response. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Monitoring cancer treatment response

Image-based assessment of cancer treatment response continues
to be an active area of research with advances inmedical imaging
instrumentation providing opportunities to fundamentally
change the clinical management of patients with cancer. MRI
represents a key modality that has found use in the diagnosis,
treatment planning, and assessment of response and recurrence
of solid malignancies. By providing high spatial resolution and
soft tissue contrast, MRI allows exquisite noninvasive radio-
graphic detection of tumor location, whilst also providing a deter-
mination of the tumor number and dimensions.
Computed tomography and, soon after, MRI have been used

since the 1960s to measure gross changes in tumor volume fol-
lowing a therapeutic intervention (1). Although there have been
advancements in quantitative imaging techniques, such as
diffusion-weighted MRI (DW-MRI), dynamic contrast-enhanced
MRI (DCE-MRI) and fluorodeoxyglucose-positron emission to-
mography (FDG-PET), standard practice for patient management
and clinical trials continues to employ anatomical images to
assess tumor response to treatment (2–4). The World Health
Organization (WHO) and the Response Evaluation Criteria in
Solid Tumors (RECIST) have proposed guidelines primarily
based on a single linear summation of specific lesions, where
monitoring of the morphological changes in tumor volume
allows for routine measurements for cancer response assessment.
Nevertheless, there continues to be growing concerns regarding
the adequacy of these criteria as some treatments, such as
molecularly targeted agents, may provide therapeutic benefit
without significantly reducing the tumor volume (5–7). These
concerns underscore the urgency for the development and
implementation of reliable response imaging biomarkers or

surrogates that can detect response to treatment earlier than cur-
rent methodologies (8,9).

GENERAL CONCEPTS IN DIFFUSION

The first diffusion MR sequence was demonstrated in 1965 by
Stejskal and Tanner (10) and, by the 1980s, DW-MRI of in vivo
systems was reported (11–13). Since then, reviews have been
generated on the principles and technical aspects of this MR
technique, as well as consensus recommendations using diffu-
sion imaging as a response metric for treatment assessment
(14–16). Molecular diffusion is the thermally driven random
translational motion of molecules in media, which is referred
to as ‘Brownian motion’. Key factors that exert their influence
on the mobility of a diffusing molecule include medium viscos-
ity, temperature and its molecular mass. Diffusion is not a
magnetization-related process such as, for example, T1 and T2
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magnetization relaxation, which drives conventional MRI con-
trast. Nevertheless, MRI can be used to noninvasively quantify
(image) water diffusion values spatially in vivo. This is accom-
plished in part through the use of magnetic gradients that
allow for the ‘encoding’ of initial locations of constituent water
molecules in the tissue. Following a brief interval, the same gra-
dients are used to ‘decode’ the molecular locations. For those
water molecules in which displacement has occurred during
the time interval, decoding will be incomplete, resulting in the
loss of signal through spin dephasing. The dephasing amount in-
creases in proportion to the distance translated between
encode/decode diffusion gradient pulses. Highly mobile water
molecules will have greater attenuation of the signal relative to
water in more restricted/cellular tissue environments. The deter-
mination of the degree of signal loss at various diffusion gradient
settings provides for the ability to calculate molecular mobility in
complex systems, such as tumor tissue. However, because tumor
tissue is composed of water located in a highly complex microen-
vironment, the concept of a single diffusion coefficient is not
valid and, as such, it is reported as an ‘apparent diffusion coeffi-
cient’ (ADC) (13,14). ADC measurements can be used to assess a
myriad of properties that impede molecular motions, including
cell membrane integrity, cell density, interactions with macro-
molecules, and processes that enhance mobility via active trans-
port, convective motion and perfusion.

The ability of water to sample its surrounding environment is
the foundation behind its efficacy as a measure of tumor response
to cancer. The thermal, i.e. Brownian, motion of free water at body
temperature (~35 °C) is approximately 3 × 10–3 mm2/s. Clinical DW-
MRI sequences typically have a bipolar gradient interval around 50
ms, resulting in a displacement of free water molecules of 30 μm.
By applying these motion-sensitive gradients, water molecules
can be exploited to sample the microenvironment of biological
systems well within the resolution of the MRI sequence. Structures
within the solid tumor that are sampled by water molecules may
include the tumor cell membranes, organelles, myelin layers and
macromolecules, as well as additional cellular and subcellular enti-
ties, all of which are on the order of micrometers. Transient associ-
ation of water with large, slow-moving macromolecules and cell
membranes that result in water binding, as well as impediment
by membranes and other structures, effectively reduce water mo-
bility to an ADC lower than free water diffusion. The greater the
bulk density of structures within a tumor tissue that impede water
mobility, the lower the ADC value for that tumor. As such, ADC is
considered to be a noninvasive imaging biomarker of cellularity
or cell density. However, if two tissues have different ADC values,
the lower ADC tissuemay not necessarily have the greater number
of cells per unit volume. Other factors that make up the microenvi-
ronment (e.g. cell size, viscosity, vasculature, extracellular matrix
and permeability) also affect water mobility and ADC. Within a
given tissue or cell type, ADC is useful as an indicator of the relative
cellularity, such as in the evolution of a tumor over time following
therapy. Cellular alterations caused by disease or intervention, as
well as changes in cellular organization or integrity of cellular ele-
ments, are available for study by diffusion imaging.

Water diffusion on the order of cellular distances is measur-
able in spite of the presence of other much larger physiologic
motions. A single-shot echo-planar imaging (EPI) approach (17)
is the standard imaging sequence for the acquisition of
diffusion-weighted imaging. By acquiring the entire set of echoes
for an image within one single scanning period, respiratory bulk
tissue motion, which would overwhelm the measurement of

molecular motion, is essentially eliminated. By decreasing the
acquisition times by a factor of 100, EPI also allows DW-MRI to
be incorporated as a standard MRI sequence in clinical scanners
to be used in routine clinical scanning protocols. However, images
generated by EPI are sensitive to artifacts, such as distortion and
signal loss owing to magnetic susceptibility. These limitations aside,
EPI is the most commonly used clinical sequence, combined with
diffusion sensitization gradient pulses, to perform DW-MRI.

ADC AS A MEASURE OF TUMOR CELLULARITY

It is traditionally viewed that, as cellular density increases, the
added tortuosity within the microenvironment reduces water
mobility. Figure 1 illustrates the effect of an effective therapeutic
agent on the water diffusivity in a solid tumor mass (18). Solid tu-
mors typically have a mean ADC value around 1 × 10–3 mm2/s
(Fig. 1). Following the intervention of a therapeutic agent that re-
sults in cell killing (i.e. a decrease in tumor cellularity), the extra-
cellular space increases as the intracellular space diminishes
(Fig. 1). This results in a shift in the tumor water diffusivity to
higher values in therapeutically responsive regions of the tumor.
Several groups have reported the inverse relationship between
ADC and cellular density (19–22). To aid in the interpretation of
these results, a biphasic model relating ADC values to cellularity
has been proposed in which two pools of water within the tissue
exist: a fast diffusion pool and a slow diffusion pool (23). The
slow diffusion pool is proposed to consist of a water layer
trapped by electrostatic forces of the cellular membranes and as-
sociated cytoskeleton. The fast diffusion pool is thought to be-
long to a combination of intra- and extracellular compartments
which are, however, slower than free water. Both the traditional,
i.e. monoexponential, and biphasic diffusion models provide for
the rationale that water diffusion will decrease during cell swell-
ing or cell proliferation, and increase during treatment-induced
loss of cellular viability or density. Regardless of the underlying
mechanism, the fact remains that tumor diffusion values
increase as tumor tissue initially progresses from a solid, cellular
lesion to an acellular, necrotic tumor during successful cytotoxic
therapy. This characteristic of tumor water diffusion values pro-
vides a key opportunity to use this biophysical and quantifiable
ADC parameter as a sensitive biomarker for the detection of
the underlying changes in tumor cytoarchitecture associated
with treatment (24).

DIFFUSION IMAGING TO ASSESS TREATMENT
RESPONSE

Twenty years of research in preclinical studies have supported the
notion that water diffusivity is highly dependent on the tumor
microenvironment. This suggests that diffusion MR can be used to
noninvasively detect cellular changes associated with treatment-
induced cell killing in animal models (19,20,22,25–30). The key
findings in many studies are that changes in ADC values precede
changes in tumor volume regression, as well as being treatment in-
dependent and dose/efficacy dependent. All of this supports the
claim that this imaging biomarker may indeed be used as an early
surrogate for the assessment of treatment outcome.
Diffusion MRI as a method for therapeutic response assess-

ment in the clinic was first demonstrated in patients with glioma
(21). Tumors treated with radiation, with or without chemotherapy,
demonstrated an increase in ADC values from baseline. The
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magnitude of change in ADC values correlated with cellularity in
the tumor mass, albeit in a pilot study. Through advances in
radiofrequency coil design, parallel imaging and rapid pulse
sequencing, diffusion MRI has been demonstrated as a biomarker
of treatment response in breast cancer (31–38), liver cancer
(39–47), prostate cancer (34,48), rectal cancer (49–57), lympho-
mas (20,58–63), head and neck cancer (64,65) and metastases
(29,33,37,66–72). Results from clinical studies have shown a
significant difference in the mean ADC values between patients
responding to treatment relative to patients who were deter-
mined to be nonresponsive to treatment.
An example of the clinical application of DW-MRI for the assess-

ment of early treatment response was reported in patients with
stage II/III breast cancer treated with neoadjuvant chemotherapy
(NAC) (73). Presented in Fig. 2 are representative slices of ADC tumor
maps from two patients with breast cancer who underwent two cy-
cles of NAC. The first patient revealed an increase in tumor diffusion
values (Fig. 2A), indicating that cell killing had occurred with no sig-
nificant reduction in tumor size (Fig. 2B). Following the second cycle
of treatment, a significant decrease in tumor volume was noted. In
the second patient with breast cancer, ADC values remained stable
over the treatment period and the patient was subsequently classi-
fied as non-pathological complete response (non-pCR) (Fig. 2C, D).
These data reveal the tremendous potential of DW-MRI for the early
monitoring of cancer treatment response.
Although an initial increase in tumor ADC values during treatment

is typically associated with cell death, a subsequent decrease in
tumor ADC values may occur, indicating tumor regrowth or, possi-
bly, fibrosis. This present understanding is supported by findings in
recurrent high-grade gliomas and osteosarcomas, where lower

ADC values are observed in viable tumor and higher ADC values in
regions of necrosis following treatment (74,75). Thus, ADC values
in the context of the determination of the treatment response
should probably be limited to early time intervals post-treatment ini-
tiation because of the more complex late-stage cellular processes
that may complicate interpretation.

Metastatic lesions pose a very distinct problem for the treatment
management of patients with cancer with disseminated disease. In
many cases, primary tumors that have metastasized will seed
osseous regions. Although bone scans using technetium 99m
single photon emission computed tomography (Tc99m-SPECT)
imaging are standard clinical practice for the diagnosis of metasta-
tic cancer to the bone, RECIST continues to label bony tumors as
‘non-measurable’ because of the complex metabolic state of the
bone interacting with the tumor. DW-MRI, with its high soft tissue
contrast and resolution, has been shown to be highly sensitive to
tumor response to therapy, irrespective of bone turnover. In a
preliminary pilot study, Lee et al. (29) first demonstrated the utility
of DW-MRI for therapeutic response assessment in two patients
with metastatic prostate cancer to the bone, which was later
validated in a large dataset by Reischauer et al. (76).

WHOLE-BODY DIFFUSION-WEIGHTED MRI
(WBDW-MRI)

Although the aforementioned studies (29,76) focused only on
treatment response in individual tumors, advances in wbDW-
MRI may allow for multiple lesions to be monitored simulta-
neously (77,78). This is illustrated in the work by Horger et al.

Figure 1. Schematic diagram of changes in water diffusivity in a tumor following an effective therapeutic agent. Changes in cellularity (left) occur with
increasing molecular water mobility, measured as the apparent diffusion coefficient (ADC; right), as a tumor responds to treatment (top to bottom). As a
tumor responds to therapy, an increase in extracellular space and membrane permeability occurs, which allows for increased water mobility, and is
detected by diffusion-weighted MRI (DW-MRI) as an increase in ADC values. [Courtesy of ref. (18).]
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(59), where 20 patients with lymphoma undergoing systemic
therapy were monitored using wbDW-MRI. Figure 3 demon-
strates the sensitivity of wbDW-MRI for the detection of varia-
tions in therapeutic response in a single patient. Multi-focal
lesions within the patient were found to have increased ADC
values, suggesting that cell killing occurred following treatment,
as depicted in these inverted gray-scale images (arrows). In con-
trast, the large tumor in the pelvic node (arrowhead) revealed a
stable ADC value. Through the use of wbDW-MRI, early response
assessment can now be obtained over multiple lesions, but at a
cost of reduced spatial resolution.

ANOMALIES IN REPORTED DIFFUSION
VALUES FOR TUMOR RESPONSE

Most studies have reported that tumorwater ADC values typically in-
crease following successful intervention in solid tumors. Although
this trend appears to be the norm, there have been cases in which

a decrease, rather than an increase, in ADCmeasurements has been
reported to correlate with a positive response (54,79–82). As the
tumor mass will respond dynamically throughout the course of
fractionated therapies, the timing of the acquired DW-MRI measure-
ment may have an impact on the findings. For example, two studies
that investigated the efficacy of DW-MRI on treated rectal cancer
(54,80) showed a brief, transient increase in ADC in the first week
post-treatment initiation. Subsequently, a decrease in ADC was ob-
served over the next several weeks. Histology confirmed that che-
moradiation of rectal carcinoma resulted in increased interstitial
fibrosis, which may have had the effect of reducing the ADC values
in the tumor regions (54). The authors also drew attention to the fact
that regions of obvious necrosis, as observed by MRI within the
tumor mass, were not included in the volume of interest prescribed
over the tumor mass. Omission of the necrotic regions would bias
the measurement to lower ADC values. Therefore, the reported
decreased ADC values that correlated with response appear to be
primarily related to the timing of the measurement, as well as
fibrotic formation following tumor cell death.

Figure 2. (A) Apparent diffusion coefficient (ADC) maps superimposed on the post-contrast dynamic contrast-enhanced MR (DCE-MR) images at three
time points [pre-treatment, after one cycle and after all cycles of neoadjuvant chemotherapy (NAC)] for a patient achieving pathological complete re-
sponse (pCR). The numbers for each panel represent the mean ADC values for each time point in the parametric map. (B) The difference image between
pre-contrast and post-contrast DCE-MRI at each time point. (C) ADC maps superimposed on the post-contrast DCE-MR images at three time points (pre-
treatment, after one cycle and after all cycles of NAC) for a non-pCR patient. The numbers for each panel represent the mean ADC values for each time
point in the parametric map. (D) The difference image between pre-contrast and post-contrast DCE-MRI at each time point. [Courtesy of and adapted
from ref. (73).]
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SPATIAL HETEROGENEITY IN TUMOR
RESPONSE

Spatial heterogeneity in tumor response is a major confounding
factor in assigning a single indicator to a patient. A given lesion
often contains wide gradations of viable cellularity and necrosis,
and the response of tumor subregions to treatment can be non-
uniform and dependent on many factors. Histogram analysis of
ADC values throughout the tumor is one approach to address
heterogeneity (83,84). Although a variety of scalar quantities are
derivable from tumor ADC histogram analysis, the magnitude of
regional changes may be underestimated by whole-tumor sum-
mary statistics in the presence of heterogeneous response pat-
terns. Figure 4 from ref. (85) illustrates the effect of response
heterogeneity on the tumor histogram. Using simulated data,
the authors demonstrated that uniform changes in tumor ADC
values result in a mean ADC value that can detect alterations in
tumor ADC values (Fig. 4B). Although other whole-tumor metrics

may provide more sensitivity, such as the standard deviation for
the case in which regions of the tumor demonstrate increasing
and decreasing ADC values from baseline (Fig. 4C), we would
need to know a priori the most appropriate measure. A more
comprehensive evaluation has been performed on the efficacy
of histogram-based measures for therapeutic response assess-
ment using MRI-derived blood volume maps in patients with gli-
oma (86). Although not performed using DW-MRI acquired
parameters, the study observed negligible effectiveness of a
variety of whole-tumor quantitative metrics for the detection of
tumor response at both 1 and 3 weeks post-treatment initiation.

An alternative image processing approach has been developed
to quantify and spatially map the intrinsic treatment-associated het-
erogeneity of diffusion values within a tumor. This technique is re-
ferred to as ‘functional diffusion mapping’ (fDM) (87). A key
element of fDM is the spatial registration of baseline and follow-
up three-dimensional quantitative diffusion maps (i.e. ADC) into a
single geometrical space. Further reading on the registration tech-
niques and limitations for therapeutic response assessment is pro-
vided in refs. (85,88,89). Once registered, diffusion changes are
measured on a voxel-by-voxel basis from spatially aligned pre-
treatment and post-treatment initiation ADC maps. Tumor voxels
are then classified by their extent of change in ADC. Although
fDM was initially evaluated in patients with glioma (87,90–93), this
technique has been applied to other tumor types (29,65,76,85).
Figure 5 shows fDMs [also referred to as parametric response map-
ping (PRMADC)] with corresponding scatter plots from patients with
head and neck squamous cell carcinoma (HNSCC) diagnosed as
complete response (CR) (Fig. 5A) and partial response (PR) (Fig. 5B)
following therapy. By analysis of the diffusion maps using fDM,
heterogeneity in tumor response can be visualized, with red regions
denoting response (i.e. increase in ADC from baseline) versus stable
and decreased ADC regions depicted as green and blue, respec-
tively. As demonstrated in a variety of tumor types, large regions
of increased ADC from baseline (i.e. red voxels) were strongly corre-
lated with treatment response, irrespective of the presence of
tumor regions with stable or decreasing ADC values.

STANDARDIZATION AND REPEATABILITY OF
ADC MEASUREMENTS

As discussed in this review, the principles and technical feasibility
have allowed quantitative DW-MRI to become a clinically viable
technique. Nevertheless, for this imaging protocol to become rou-
tine in themanagement of patients and clinical trials, there is a need
to standardize DW-MRI acquisition schemes to account for intra and
inter-vendor instrument variability (94). In an effort to bring unifor-
mity throughout the various MRI systems, phantoms have been de-
veloped to confirm quantitative agreement across platforms. The
ideal phantom must be stable throughout the imaging sequences
and providemeaningful ADCmeasurements consistent with biolog-
ical systems. As a result of the complexity of water diffusion in living
tissue, the development of a phantom that is both stable and
mimics all tissue properties has its difficulties. Simple fluid-based test
objects are the preferred approach to phantom development using
fluids that are thermally stable, readily available and safe when prop-
erly handled (95,96). In a study by Tofts et al. (97), the diffusion coef-
ficients of 15 organic liquids were evaluated and found to stably
provide repeatable ADC measurements within the relevant range
of biological systems [(0.36–2.6) × 10–3 mm2/s]. In 2011, Chenevert
et al. (98) reported a temperature-controlled phantom using water

Figure 3. Whole-body diffusion-weighted MRI (wbDW-MRI) is presented
as an early indicator of response to systemic therapy in patients with lym-
phoma. (A) Image of a 48-year-old man diagnosed with diffuse large
B-cell lymphoma obtained at baseline shows the ubiquitous involvement
of lymph nodes (e.g. cervical and retroperitoneal, small arrows) and
axillary regions (large arrows) with marked restriction of water diffusivity.
A larger pelvic node (arrowhead) is also seen left of the midline. (B) At day
7 following the institution of chemotherapy with rituximab (anti-CD20
antibodies) + CHOP (cyclophosphamide, hydroxydaunorubicin, vincristine,
prednisolone), wbDW-MRI shows evident reduction in signal intensity in
the cervical and retroperitoneal node regions (small arrows) and axillary
region (large arrows) (from ADC = 0.90/0.33/0.67/0.61 × 10�3mm2/s
to ADC = 1.66/0.73/1.36/1.22 × 10�3 mm2/s), with a corresponding
increase in ADC (not shown), but a less marked response, in the
pelvic node (arrowhead) (from ADC = 0.83/0.51 × 10�3 mm2/s to ADC =
1.12/0.67 × 10�3 mm2/s) At the interim, the patient achieved complete
remission. [Courtesy of ref. (59).]
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cooled to near freezing. This phantom consisted of liquid water
jacketed with ice water, such that the inner chamber was cooled
to ~0 °C. Althoughwater diffusivity is highly sensitive to temperature
(99), jacketing the liquid water with ice allowed a stable environ-
ment with temperatures maintained for up to 4 h and a reliable,
biologically relevant ADC value (~1 × 10–3 mm2/s). The availability
of stable and reproducible phantoms has allowedmulti-center stud-
ies to be performed, demonstrating the repeatability of quantitative
DW-MRI across platforms (100,101).

In the absence of a standard DW-MRI protocol, investigators of
clinical trials are employing strategies to contend with
intra-instrument variability. Affectionately referred to as the
‘coffee-break exam’, this approach acquires repeat DW-MRI
examinations, minutes to hours apart, to ascertain the variability
in the ADC measurement prior to therapeutic intervention. The
motivation of this strategy is to characterize the noise associated
with the ADC measurement for a given patient and platform in
the absence of disease- or treatment-related changes in tumor
physiology and anatomy. Various studies, just to name a few,
have reported stable quantitative DW-MRI measurements in
HNSCCs (64), hepatocellular carcinoma (102), malignant lung
lesions (103), rectal cancer (104) and primary breast cancer (105).
Until uniformity in DW-MRI protocols between vendors, instru-
ments and sites is obtained, the strategy of repeat examinations
prior to therapeutic intervention will help to alleviate some of the
variability in the ADC measurement within a given instrument.

FUTURE DIRECTIONS

The studies presented here support the use of DW-MRI as an
early surrogate biomarker for tumor response assessment. In a

growing body of literature, changes in tumor water diffusion
values have been reported to correlate with response to ther-
apy, despite the diverse set of tumor types, MRI manufacturers
and magnetic field strengths used to collect the data, together
with the varying approaches used to analyse the datasets
(Figure 6, Table 1). Taken together, this reveals the overall
robustness of DW-MRI for oncological treatment assessment.
Clinical cancer studies on the efficacy of DW-MRI as a surrogate
imaging biomarker of the tumor treatment response have dem-
onstrated that treatment-induced cell death can be detected in
responding tumors as an increased ADC value in these regions.
As a result of variability in DW-MRI acquisition and analytical
post-processing protocols, efforts have solidified in the publica-
tion of a consensus paper to provide for standardization across
institutions (16). In addition, temperature-controlled phantoms
have recently been developed to facilitate multi-center DW-
MRI clinical trials (100,101). These standards are needed for data
acquisition, post-image processing, timing of evaluation and
the method used to generate the quantifiable metric used to
report treatment response. Although the momentum for the
use of DW-MRI in the context of tumor response assessment
is continuing to grow, validation of DW-MRI as a surrogate im-
aging biomarker of response will require a large, prospective,
multi-institutional trial performed in a standardized fashion
between sites. Analysis of the data could also be useful for
the validation of the image post-processing software and for
regulatory approval as a device. Having a Food and Drug Ad-
ministration (FDA)- or European-approved software package
would provide additional momentum for enhancing the proba-
bility that DW-MRI will ultimately be incorporated into routine
clinical practice for the management of patients with cancer.

Figure 4. Simulated comparison of whole-tumor histogram analysis (top row; blue line, pre-treatment tumor data; red line, post-treatment tumor data)
versus the corresponding voxel-based analysis using a joint density histogram (bottom row). Histograms from tumors with no major change (A), significant
uniform shift to higher apparent diffusion coefficient (ADC) values with a 34% net mean change (B) and heterogeneous ADC changes (increased and de-
creased ADC values) resulting in no net detectable histogram shift (C). Parametric response maps from the corresponding histograms are also shown, where,
in (D), the confidence interval for the detection of change was set to 95%, and thus no significant change in red voxels (increased values) or blue voxels
(decreased values) was detected. (E) An increase in the number of red voxels was detected at 29% of the total tumor voxels. (F) Both an increase and a decrease
in tumor voxels of approximately 15%were detected, whereas nomajor shift was detected using a histogram analysis of the same data (C). [Courtesy of Ref. (85).]
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Future opportunities in employing DW-MRI in the clinical man-
agement of patients with cancer may include adaptive therapy
protocols based on intra-therapy evaluation of early ADC
changes during fractionated dosage schedules, allowing for
the modification of interventions and for the quantification of

multi-focal disease response using wbDW-MRI (78). Finally, the
recent emergence of anticancer immunotherapies raises an ur-
gent need for the establishment of radiological metrics for

Figure 5. Functional diffusion mapping (fDM) applied to clinical data acquired from patients with head and neck squamous cell carcinoma (HNSCC)
diagnosed as pCR (pathological complete response) (A) and PR (partial response) (B). Results from the fDM analysis are presented as color-coded maps
superimposed on contrast-enhanced T1-weighted images and scatter plots with axes pre-treatment ADC (x-axis) and post-treatment ADC (y-axis). Color-
coding is as follows: red, increased ADC values; blue, decreased ADC values; green, unchanged ADC values. [Courtesy of ref. (65).]

Figure 6. Number of annual publications on the application of diffusion-
weighted MRI (DW-MRI) for therapeutic response assessment. Yearly
evaluation showed a growing increase in the number of studies demon-
strating the efficacy of DW-MRI for cancer response to treatment. The
search was performed on Pubmed using the following criteria
[((diffusion OR ADC OR “apparent diffusion coefficient”) AND MRI AND
response) NOT (stroke OR review)]. Individual references were manually
evaluated.

Table 1. Studies of Therapeutic Response by DW-MRI

Site Reference

Abdominal (109)
Acoustic neuroma (110)
Bladder (111,112)
Bone marrow (113)
Brain (26,87,93,114–138)
Breast (35–38,139–152)
Cervical (153–160)
Eye (161,162)
Leiomyoma (163–165)
Liver (41,42,44,46,70,166–181)
Lung (182–185)
Lymphoma (186–188)
Myeloma (189,190)
Ovarian (191–193)
Pancreas (194)
Prostate (29,195–198)
Rectal (54,79,199–207)
Sarcoma (208–214)
HNSCC (65,215–220)
1HNSCC, head and neck squamous cell carcinoma.
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assessment of the response to such experimental interventions
(106–108). Further efforts investigating advanced imaging tech-
niques, such as DW-MRI, are needed to delineate its ability to
provide meaningful insights into treatment responsiveness in
order for it to have a successful impact on clinical decision
making.
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