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ABSTRACT

Purpose: Thisstudy aimedto investigatethe breast dose reductiguotential of a breast

40  positioning. (BP) technique for thoracic CT examinations with ordeased tube current
modulation (OTCM).

This article is protected by copyright. All rights reserved



45

50

55

60

65

Methods: This study included 3 femaleanthropomorphic computational phantoMCAT, age
range: 27- 65 y.o., weight range: 52105.8 kg). Each phantomas modified to simulatéhree
breast sizes.standard supine geometry. The raledl breasts were themorphedto emulate BP
that constraired, the majority of théoreasttissue insidethe 120° anterior tube current (mA)
reduction zoneThe OTCM mA value was modeled usirggay-tracingprogram, which reduck
themA to20% in the anterior regiowith a correspondingicreaseo the posterior iggon. The
organ doses were estimated by a validMedte Carlo progranfor a typical clinicalCT system
(SOMATOM. Definition Flash, Siemens Healthcare). The simulated organ dodesrgan doses
normalized by CTDJ, wereused to compare three CT protoc@enuatiorbased tube current
modulation (ATCM) OTCM, and OTCM with BP (OTCIyb).

Results: On_average, compared to ATCM, OTCM reduced the breast dod8.8y+ 4.5%,
whereasOTCMgp reduced breast dods 38.6 + 8.1% (an additional3.8 £ 9.4 %) The dose
saving off OTCMgp was more significant for larger breasts (on averd8e 38 and 44%
reduction for 0.5, 1, and Ky breasts, respectively). Compared to ATCM, OTgsMIso reduced
thymus and heart dose by 15.1 £ 7.4 % and 15.9 %6 12spectively.

Conclusions:_In' thoracic CT examination®TCM with a breast positioning techniquenca
markedly reduce unnecessary exposure to the radiosensitive amgiesanterior chest wall,
specifically breast tissue. The breast dose reduction is maeble for womenwith larger
breasts

KEYWORDS:«thoracic CT, Monte Carlo, organ dodeeast doseprganbased tube current

modulation

|. INTRODUCTION
Computedtemography (CT) ha significantly benefitted the clinical diagnosis of a wide

spectrumsof diseaset the past decades, the use of CT has grown exponentially. In 2014,

approximately=81.2 million CT examinations were performed in timited Stated ? The
increased number of CT examinations leakto concerns about the associgiegulationbased
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radiation dosg Significant efforts have been made to minimize unnecessary radiation exposure
and maximize patient benefits through the develayinoé dose reduction techniqu&dhese
techniques..generally aim to reduce the unnecessary exposure to major radiesergins
while maintaining the required image qualityel.>°

Breasts are=among the most radio@imes organs for female patient. In thoracic CT
examinations although breasts are usually tndiagnostically targetedthey receive a
considerable amount of radiation d82In an effort to protect superficial radiosensitive organs
such as breastsome vendors have developed organ based tulbentumodulation (OTCM)
technique&? In one implementation d®TCM, the tube current (mA) iseduced by 804 in the
anterior region (#0°) of the patient with a corresponding increase in the posterior region (X
CARE, Siemen#$iealthcare)lt has been reported that, with OTCM, breast dosesbereduced

by 30— 50%with no detrimental effect on image quafity.** However, a major challenge
associated'withr the OTCM technique has bémenextension of thbreastso outsidethe dose
redudion zone'2 A previous study has shown that, without any constraint, when the patient is
supine, lhe breast tissuextends within an average angular zofd 55°;this is larger than the
120° dose reduction zone andlen effect for most womenatleast one breagtartly residsin

the incféased=dose zone, betweelY and * 84°!’ Another challenge with OTCM and
associated breast dose is tttat outer breast region containsigher percentage of glandular
tissue, makingit more susceptible to carlééviore than half of breashaligrant tumorsfirst
develop in the upper outer quadrant of the brEa&s. a resultthe effectiveness of OTCM has
been questioned, especially for women with larger bréasts.

The purpose of this study was to evaludae dose radction potential of a specialgesigned
breast pesitioning technique for OTCM examinations. The breast positioning techvague
modeled by constraining most of the breast tissue to within the dose reductio lzedese
reduction ‘potentiabf this technique was evaluated across a library of phantoms with various
ages, weightsand breast size3he organ dosesere computedirom Monte Carlo simulations
with three CT Scan protocols: attenuation based tube current moduklatiomMj, OTCM, and

OTCM with breast positioning altered (referred tdDaSCMgp).
This article is protected by copyright. All rights reserved



100

105

110

II. MATERIAL AND METHODS

A. Computational phantoms

This study” includednodels ofthirteen female adult patien{age range: 265 y.o., weight
range: 5271071058 kgyho received a chesind abdominapelvis, or a chestabdominal-pelvis
CT examination at our institutioithe patients represented the anatomical variability astang

clinical population with a broad range of age and BMI distribution (Figure 1).
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Figurel: The BMI and age distribution of the computational phantoms

The models have been developed frira CT image®f the patienté® Initially, large organs

within thessean volumes were segmented to generate phantom masks followed by 3D
triangulated=polygon models using a marching cubes algorithm. The polygon structure was
translated t0 3D neaoniform rational Bspline surface (NURBS[Rhinoceros, McNeel North
America, Seattle, WA)The remaining organs and structures were generated by morphing a
template's corresponding anatomies. The template was segmented frerasbigtion visible
human female fulbody image$’ %’ The organ volume was rescaled to the organ volume and
anthropometry data reported in ICRP8JThe phantomsrontal views are shown in Figure 2.
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Each phantom was voxelizedatisotropic resolution of 3.45 mm for input into a Monte Carlo
115  simulation program. The resolution was chosen consideringritimic details and simulation
time 24 ==
To investi the effect of dose on glandular density, two compositiofseabts were
simulatedmﬂo breast (80 glandular tissuand 50% adipose tissue), as a representative
cae for-y@ women and (2) 20/8reast (206 of glandular tissue and 80 adipose tissue),

120 which wawproximation of mean glandular perceritagavidepopulation??’

Figure2: The threedimensional frontal view of phantoms.

B. Morphing the breasts

125  The phan rary wasnhancedy modeling each phantom with two additional breast sizes
(Figuritow for the usef additional breast sizes, the torso surface of each phantom was
first m a smooth brediste surface. The individual breasts were modeled as closed

surfaceﬂbﬁre added to the brea$tee surface. The modeling of two additional breast

geonetriesE:atiermroviding a library of 39 phantommeserved the breaste surface and
130  kept all other organs and structures constant.

Breast ning (BP) was simulated on each phantom. The BP effectively modeiepoat

brassierg which pressedbreast tissue closer to the center of torso to a greater extent than a
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normalbrassiere This ensure majority of breast tissue within the@° dose reduction zone
In order to approximate this BP numerically, finite element models of the breastsreate’’

135 A voxelized. version of each breast (at isotropgsolution of 0.2 mm) was used to create
hexahedral finite elements for each voxel. The elemedjcent to the midline of the torso or
the imaginary breadtee torso surface were constrained to have zero displacefieist.
restrictedthe overall motion of the breast and provided a consistent attachment to the remainder
of the body during the deforation. The breasts were modeled as a uniform hyperelastie Neo

140  Hookean material with a moduli of elasticity (E_adipose 1 kiaich has been previouslsed
for breast FE |simulatiorfS! and a nearlyincompressible Poiss’s ratio of 0.49. The
deformation due to the BP support was approximated as a body force roughly tangenéal to t
breastfree_torso surfagewhere the magnitude of the body force was scaled to achieve the
desired positioningThe resulting large deformation finite element model was solved using

145 FEBio (University of Utah's Musculoskeletal Research Laboratories and Columbia's
Musculoskéetal\ Biomechanics Laboratoryj The force was applied incrementally using 20
equal steps to account for the large deformations.

Deformation™fields from the finite element analysis were applied to transfoenpdtygon
meshes and.subsequently NURBS surfaces of each breast. Mamgeiions were applied,

150  when necessary, to furtherorph the breasts to ensure that the desired positioning was achieved
and that the=breast volume remained constant. Figure 3 shoeample phantom with three
breast sizevefareand after applying BP. The phantom library viagher divided into three
groups bybreast size: small (447 187 g), medium (106& 222 g), and largsized (192% 432
g) groups.The percentage of breastlme within dose reduction zone standard supine

155  positioning.and after applying BP is listed in Table 1.
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Standard supine Breast positioning

a)

b)

Figure3: Transyerse slice of a modified voxelized XCAT phantdfree breast sizege shown(a)
small, (b). medium (c) largeith breast in standard supine position (left column) and the corresponding

160 slice with*breast positiang techniqudright column) The breast tissue éghlighted in yellow

Tablel: Mean of percentage of breast volume from all phantoms within £60° frontalzibne

and without breast positioning (BP).

Without BP (%) With BP (%) Change in Volume (%)
Small breasts 68.5+11.1 93.9+4.2 255+12.1
Mediumbreasts| 68.0+17.0 93.7+5.2 25.6 +14.3
Large breasts 57.2+145 93.9+3.3 36.6 +12.3
All Models 64.6 £ 15.2 93.8+4.0 29.1+14.1
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C. CT examination Smulations

165 A previously.validated Monte Carlo simulation program was used to simulate 6325¢aThe
package included PENOLOPE as a subprogram to track the energy loss of phdtons.
A 64-section=CT system (SOMATOM Definition Flash; Siemens Healthcare, Forchheim,
Germany)-was=modeletf The scanner parameters were 120 kVp, pitch factor of 0.6, rotation
time of 0.5s, table speed of 2.304 cm/rot, 38Mn collimation qualty reference mAs of 150

170  mAs, andCTDlyo value denoted belovA clinical chest CT examination was simulated for each
phantom. TThescan coverage was defined as 1 cm above lung apex to 1 cm below the lung base.
The attenuatioibased tube currentmodulation profile (MArcm) Simulated thevirtual
CAREDose4D, which takes into accoumtenuation of patient in both longitudinal (Z) and
angular (XY) plané’ The XYZ attenuation through the phantom was simulated by a previously

175  developedsrayracing prograni® At each projection angle 0, the ‘fanbeam’ function was used to
measurethe line integrals ohttenuationcoefficients alonesachray from the source to each
detector bin (Matlab2010a; Mathworks, Natick, MA). Thaximumline integrals of attenuation
coefficients(utd) from all detector bins & was selected as the basis to generate tube current
profile atd. The tube cuant profile was modeled as

MApzu(0) = mAye® O, (1)
180  wheremAg@ftmA, .y (0) arethe fixed and attenuation modulated mA, respectivedyg) is

the maximumline integrals of attenuation coefficientalculated a, anda is the modulation

strength®® A typical averaged mdulation strength level (0=0.5) was used. Finally, at each

rotation angle, the tube current was scaled to belewytstems’ maximum mA limit

To generatesthe organ based tube current profilegfiad) (X-CARE, Siemens Healthcardhe
185  longitudinal«(Zplane) profile was reducda/ 80% between 60° and the reduction was evenly

divided .and added to the remaining projections within one rotation. The angulapldK¥)

modulation wasurned off'® The longitudnalprofile was modeled as

This article is protected by copyright. All rights reserved



190

195

200

mAz(0) = 0.5 X (mAye®(1d®ar) 4 mA e@*(ud@ran))y 2)

wheremA, andmA,(0) are the fixed and longitudinal modulated mAespectivelyud(6,p)
andud (6, 4p)-arethe attenuation in APafiterior-posterigrandin LAT (lateral) direction ang
the Zplane.at.gantry ang®* This approackemulated the CBystem, in thathe Zprofile was
generated"prior to the schased orocalization radiographs in LAT and AP directidiisThe
simulationfurther modeledradual change in mA (slopgs a function of rotation time, and
upward- anddownward-transtion time) when switching between mA reduction and mérease
zone.Using 0428 rot/s and 1 rot/s per Duar a/," themA upward and dwnwardtimes at 0.5
rot/s was estimated using linear approximation a%oland 6% of raaton time, respectively.
The mA valuewas generated for modelgth and without BP separatelthus, referred to as

MAotem and_MmAorcmsp, respectivelyThe mAatcm, MAotem, and mAstem gp Of One examle
phantom is.shown in Figure 4.
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Figure4:"An,example of the tube current profile generated for attenuation basezlitvdr® modulation
(ATCM), organbased tubeurrent modulation (OTCMyand OTCMwith breast positioningOTCMgp)
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for a phantonwith breast mass of 1098(50/50 breast) The shadedegionscorrespond to the dose

reduction zone.

D. Organ dose estimation

Organ dosge.weredetermined by tracking the energy deposited within each argjag flux for

a particular€IDl, valuespecificto each phantom afictated by the average mA over the scan
coverage (of the applied TCMhe CTDIl, valuesfor the phantomscanned with OTCM and
ATCM ranged from 4.7 to 16.2 mGWith breast positioning, CTRJ, changedslightly by an
average of 4 5 % reductiorleading to a CTDk, range of 4.5 to 17.1 mG¥yhe Size Specific

Dose Estimate§SDE was also calculated for each simulated scan using each phantom’s chest
water equiivaleéndiametet® and the SSDE/CTR4 conversion factorasdefined by AAPM task

group 204 To reportin detail the CTDl and SSDE values for ATCM/TCM and OTCMsp

were fitted_as.an exponential function of chestter equivalentdiameters (Figure 5)For

CTIDva, the'fitting equations Wer€TDl,, arcm/orem = 0.56€%°°% and CTDlyy; oremy, =

0.49e%% for ATCM/OTCM and OTCMp, respectively, wherel represents chestvater

equivalentdiameter. For SSDE, the fitting equations WE&S® Ercy jorcy = 2.12¢%%%? and
SSDEpremp, = 1.94€%%6% for ATCM/OTCM and OTCMp, respectively. All fittings have
R? > 0.9.
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Figure5: (@) CTDl, and (b) SSDE values for ATCM/OTCM and OT@Mkcans fitted to chestater

equivalentdiameter.

The organ_doses were further normalized @yDl,, to derive the CTDk-to-organ dose
225  conversion coefficient$/ factors). As CTDl, alore significantlyinfluences doseexpanding
the results-irterms of/ factorscould be interpretedsaacomparing technique where total flux
(and thus image quality bynplication) remairs constantso that the neeffect of modulation
alone on dosecan be evaluatedby comparingiyrey andhorey - Similarly, the net effect of
breast positioningilonecan be evaluatedy comparinghyrcy andhorcy gp- The breast dose
230  was computed for both 50/50 and 20/80 homogeneous breasts.
The organ,dose and factors percentage differenctr breasts as well as othergars were
calculated -for=OTCM, OTCMb and ATCM, respectively. Organs were further grouped into
anterior organs, medial or distributedgans and posterior organs based on organ geometric
center locations with respect to the CT scanner.
235 Because breast ptisining repositions more breagblume withinthe dose reduction zone for
larger breasts (Table lijy orderto assess the effect of breast mass on dose reduction potential,

the breast dose valuend /#factorswerefurtherfitted to breast mass as
This article is protected by copyright. All rights reserved



Dpreast = Pp,1Mpreast + Pp,2 (3&)

Ebreast = Pn1Mpreast T Ph,2 (3b)

whereD,, 445 andhy,..s; denote thédreast dosand / factors for breastgespectivelymy, ¢qst

is the weight'of‘both breasts in each phantom,;gaddp, arethe lineaffitting coefficients

240 To betterestimate the overall organ dose reduction potential for OTCM and Q#Citle
average effective dose was calculated for ATCM, OTCM, and OgClVhe effective dose was
calculated as"the sum of organ doses multiplied by tissue weighting factord defii@RP
103 following the common praate of using effective dose as the scalar metric of radiation
dose, evenmrthough, by definition, the effective dose can only be evaluated by reference phantoms.

245  The dosegor=organs not explicitly modeled (salivary glandsxtrathoracic (ET) regienoral
mucosadases, lymphatic nodesand muscledoses), were approximated as the doses to
neighboring organ®

In order toreport the organ dose, an exponential regression mddigosdrs and chest diameter
was calculated as
A= etndtBi 4)

250 whereh denotes the fitting curve ofi factors vs. chest diameter, and B, are the fitting
coefficients,_andl is the chest diameter. Given patient size, the organ dose can be rapidly
predicted fof this specific tube current modulation scheme and CT s¢affh&r**Please note
thatthis organdose estimatiotechnique is more accurate for organs within the scan coverage,
where the majority of the dose is distribut@hus, giverpatient size and CTRY,, patient dose

255  can be rapidly estimated for the CT system simulated in this study.
III. RESULTS

On average, eompared to ATCM, OTOMduced the 50/5breast dose by 198 4.5%. The

260 average breast dose was further decreased laglditional 23.8 + 9.446 to 38.6 +£8.1% with
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270

OTCMpgp compared to ATCM (Figuré). The correspondingercentage reduction in terms /of
factors were 21.3 = 7.3% (OTCMgp to OTCM) and36.5+ 6.9 % (OTCMgp to ATCM),
respectively.Table2 shows tle average breast doaed /factorsfor the 50/50 and 20/80 béasts
simulatedwith ATCM, OTCM and OTCMp. The difference imfactorsbetweerthe two breast
compositionawas®8.8 = 0.5 % andthe two compositions exhibited very similar trends in terms
of impactyof imaging method on dodeigure 7shows dose distribution plots of one phantom
with smallmedium, and large breastmdergoingATCM, OTCM, and OTCMp examsat a
mid-transverse‘'plane

I Breast50/50

)14, b) 1.2
12 +
I Breast20/80

I Breasts0/50
I Breast20/80

vol
—

[a—y
=

ot

o

=
PN

Breast Dose (mGy)
Breast Dose per CTDI
=
=N

=
o

ATCM OTCM OTCMBP ATCM OTCM OTCMBP

Figure6: a)Breast dose and bverage of CTD|,-normalizedbreast breast dose coefficients simulated
with ATCM;OTEM, and OTCMg for all phantoms with 50/50 and 20/80 breasts. Errcs tegaresent +

1 standard deviation.
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Figure 7: Dosexdistribution plots of one example phantaith small (a), medium (b), and large (c)
breasts

The breast dose saving of OT@Mcompared to ATCM was more significant foatients with
larger breast¥=or small (447 187 g), medium (1068 222 g), and largsized (1929 432 Q)
groups,OTCMgp andATCM breast dose difference wer@2.6 =+ 7.0%, -38.3 + 5.2%, and-
44.8 + 7.2%. The corresponding values in terms/pfactors difference were31.4 + 6.5%, -
36.8 £ 5.0%, and 41.3 + 5.3%. respectively (Tablg). Compared to OTCM alone, OTGM
breast dese~decreased 8.7+ 9.0%, 22.3%+ 7.1%, and 30.5t 8.2 % for small, medium, and
large sized groups, respectively. The corresponding value in terffactorswere17.3+ 7.8
%, 20.4 +'6.206, and 26.2 = 4.9. The fitting coefficientof dosevaluesvs. breasmass for the

three protocols argivenin Table 4 (Figure 8
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Table2: Average breast dose and the difference from ATCM, OTCM, and QGiFCM

Breast dose

OTCMgp to OTCM to OTCMgp to
Breast ATCM Dose OTCM Dose  OTCMgp
- ATCM ATCM OTCM
Compesition (mGy) (mGy) Dose(mGy) ) _ )
difference (%) difference(%) difference(%)
50/50 99+29 79+21 6.0+£1.7 -38.6 + 8.1* -19.3 £ 4.5* -23.8 £9.4*
20/80 9.0+2.6 7.2+19 55%+1.6 -38.1 £ 8.1* -19.2 + 4.5* -23.4 £9.3*
CTDIyg-normalized-breast dose coefficients
OTCMgp OTCMgp to OTCM to OTCMgp to
Breast ATCM Dose OTCM Dose
N Dose per ATCM ATCM OTCM
Compesition| per CTDl  per CTDly ) _ )
CTDlyo difference (%) difference (%) difference (%)
&> 50/50 1.0+0.1 0.8+0.1 0.7+£0.1 -36.5 + 6.9* -19.3 £ 4.5* -21.3+7.3*
20/80 09+0.1 0.8+0.1 06+0.1 -36.0 + 6.8* -19.2 £ 4.5* -20.8 £ 7.2*

! Negative means dose reductior
* represents.statistical significan

Table3: Average breast dose coefficients and dose difference in different sized breast group.

Breast dose

OTCMgp to OTCM to OTCMgp to
_ ATCM Dose OTCM Dose OTCMgp Dose
Breast Size ATCM ATCM OTCM
(mGy) (mGy) (mGy) : : :
difference (%) difference (%) difference (%)
Small 8.0+25 6.5+1.8 54+1.9 -32.6 £ 7.0* -16.9+4.1* -18.7 £ 9.0*
Medium 9.3+22 74+1.6 58114 -38.3 £5.2* -20.5+4.3* -22.3+7.1*
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Large 124+2.1 9815 6.8+1.4 -44.8 + 7.2* -20.6 + 4.3* -30.5 £ 8.2*
CTDI,-normalized-breast dose coefficients
OTCMgp to OTCM to OTCMgp to
_ ATCM Dose OTCM Dose OTCMgp Dose
Breast.Size ATCM ATCM OTCM
per CTDlLo  per CTDly per CTDl ) . )
difference (%) difference (%) difference (%)

Small 1.1+0.1 09+0.1 0.7+£0.1 -31.4 + 6.5* -16.9 +4.1* -17.3+7.8*
Medium 1.0+0.1 0.8+0.1 06+0.1 -36.8 £ 5.0* -20.5+4.3* -20.4 £ 6.2*
Large 1.0+0.1 0.8+0.1 06+0.1 -41.3 +5.3* -20.6 + 4.3* -26.2 £ 4.9*

2Negative'means dose reduction.
290 *represents statistical significant.
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Figure8: a) breast dose ar) CTDI,,-normalizedbreast doseoefficients linearly fitted to breast mass
scanned with ATCM, OTCM and OTC# as equation (2).

295
Table4: Fitting cefficients ofbreastdoseand CTDl-normalizedbreast dose coefficients
fitted vs. breast mass

Breast dose CTDI,q-normalized-breast dose coefficients

Pt (kg™ Pp,2 RMSE Pra(kg™) Ph,2 RMSE

ATCM 2.7 6.58 2.18 -0.007 1.042 0.073

OTCM 1.99 5.45 1.57 -0.027 0.87 0.098

OTCMagp 0.94 4.83 1.57 -0.063 0.735 0.084
Figure 9shows the organ dose differences between OgGivid ATCM, OTCM andATCM,
300 and OTCMp andOTCM. Compared to ATCM, OTCM significantly reducddse and factors

to general anterior organ(exceptlarynx-pharynx)( p < 0.01). Doses to sveral orgas (arge
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intestine, stomach, thymus, pancreases, and small injeddoeeased up to 19%. Thedoses to
medial and posterior organ daseOTCM compared to ATCM was increased by less th@fo

(p < 0.01).Fordistributed organs such Bene-narrow and bonsurface,which arelocated

more towards ‘posteriarf the patientorgan doses wermcreased by-10 %. The skin dose
remainedrelatively' constant. When using BEompared to OTCM aloneall organ doses were
decreased or not changstynificantly The correspondingy factorsto anterior organsvere
decreasear net changed significantlgnd he h factorsto medial and posterior organvere
increased by.less thar®@(except for spleen)

Table 5 shows the average effective dose results for 39 phantoms and diffeasksibed
groups. The results showed that the effective dosessiaiiar for ATCM and QCM with 4.8

+ 1.1 mSv.and4.6 + 1.0 mSy, respectivélf CM to OTCM effective doseeduction was-6 %

for different“breassize groupsWith BP, the average effectivdose was reduced to 4.2 £ 1.0
mSv. Compared to ATCM, OTCMS reduced effective dose by 1H2.0 %, 12.4 + 3.6 %, and

15.2 + 6.0% for small, medium, and large-sized breast groups, respectively.

Figure 10 shows factors fitted to patient chest diameter as an exponential function and Table 6
shows the fitting coefficients. For organs within the scan coverage (lung, gsepteeart,
thymusy -trachedronchi), the organ doses are more strongly correlated with chest
diametergR? > 0.7), except for breasts. For distributed organs, the correlations are moderate
(0.85 > R?>"0:6). For organs on the periphery or outside of the scan coverage, the correlations

are relatively smalfR? < 0.6).

This article is protected by copyright. All rights reserved



325

a

Anterior
wrgandosedifferences (%) ~

Medial or distributed
organ dosedifferences (%)

=
—

Anferior organ
th factors differénces (%)

i factors: d:ffezenm (%)

Medial or distributed organ

Figure9: Differences ina) organdose and bLTDlI,,-normalizedorgandose coefficients acrogsl CM,

OTCM and OTCMp.
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Table5: Average effective dose and the difference between ATCM, OTCM, and @T.CM

Effective dose (ED)
OTCMgp to OTCM to OTCMgp to
_ OTCM ED OTCMgp ED
Breast-Size | ATCM ED (mSv) ATCM ATCM OTCM
(mSv) (mSv) . . :
difference (%) difference (%) difference (%)
Small 42+1.1 3.9+£0.97 3.7+£1.0 -11.2+3.0r -56+1.7* -5.9+4.1*
Medium 4.7+0.88 4.5+0.81 4.2 £0.87 -124+3.6* -58+1.9* -7.0+£4.2*
Large 5.6 +0.77 5.3+0.71 4.8 +0.78 -15.2+6.0r -55+1.4* -10.3 + 6.4*
AlFmodels 48+1.1 46+1.0 42+1.0 -129+46* -56+1.7* -7.7 £5.2*
ED.normalized by dose-length-product (DLP)
ATCM OTCMgp OTCMgp to OTCM to OTCMgp to
_ OTCM ED/DLP
Breast.Siz¢ ED/DLP ED/DLP ATCM ATCM OTCM
(mSv/mGycm) . ' '
(mSv/mGycm) (mSv/imGycm) difference (%) difference (%) difference (%)
Small 0.022 £0.002 0.021£0.002 0.020+0.001 -9.8+2.0* 5.6 +1.7* -4.4 + 2.6*
Medium 0.021 £0.002 0.020+£0.002 0.019+0.002 -10.3+3.8* -58+1.9* -4.8 £ 3.3*
Large 0.020 £0.002 0.019+0.002 0.018+0.002 -9.7+2.3* -55+1.4* -4.5 + 1.6*
Allmodels | 0.021 +0.002 0.020 £+0.002  0.019+0.002 -9.9%2.7* -5.6+1.7* -4.6 + 2.5*
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! Negative means dose reduction.
* rep s statistical significi
change.
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Table6: Fitting parameters of organ dose with respect to chastedefEq. (4)]

CTDI,,-normalized-organ dose coefficients

ATCM OTCM OTCMgp
Organ Anarcm Brarem  R* @norem Bnorem  R* QnorcmiBrorcmsr R
Anterior-organs
Breast -0.01 047 045 -003 0.65 056 -0.03 051 0.47
Large intestine 0.04 -343 0.12 0.03 -3.44 010 0.04 -3.71 0.15
Stomach -0.05 105 031 -005 096 030 -0.04 0.44 0.20
Liver -0.03 036 046 -003 025 0.38 -0.02 0.12 0.28
Thyroid -0.08 185 053 -0.07 151 053 -0.05 0.85 041
Larynx-pharyax | -0.01  -1.09 0.09 -0.01 -1.18 0.06 0.00 -1.51  0.00
Trach-bronchi -0.06 189 094 -0.05 165 0.92 -0.05 153 0.86
Eyes 0.01 -455 0.09 000 -439 0.01 0.02 -4.82 0.16
Thymus -0.06 190 0.89 -0.06 173 0.89 -0.05 1.37 0.75
Gallbladder 0.01 -217 0.02 0.01 -2.16 0.01 o0.01 -2.26  0.02
Heart -0.05 143 086 -0.05 133 0.82 -0.04 1.00 0.71
Pancreas -0.03 -0.32 0.09 -0.03 -045 0.09 -0.02 -0.78 0.04
Smallintestine 0.03 -3.26 0.08 0.03 -3.24 0.06 0.03 -3.51 0.11
Bladder -0.01 -5.76 0.02 -0.01 -583 0.02 -001 -588 0.01
Medial or distributed organs
Lung -0.04 135 0.87 -0.04 126 0.84 -0.04 1.25 0.81
Bone marrow -0.05 059 0.77 -0.05 053 0.72 -0.05 061 0.71
Esophagus -0.06 169 094 -005 146 0.88 -0.05 141 0.84
Bonersurface -0.05 0.88 081 -0.04 0.83 0.77 -0.04 0.88 0.76
Skin -0.04 -0.47 063 -0.04 -046 065 -0.04 -0.39 0.70
Brain 001 -413 0.06 -001 -411 0.04 -001 -418 0.03
Posterior organs
Kidneys -0.11 154 048 -0.11 158 046 -0.11 1.71  0.46
Adrenals -0.10 221 055 -0.10 248 054 -0.11 2.78 0.54
Spleen -0.05 099 040 -0.04 083 0.29 -0.03 0.64 0.22
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FigurelQ: The CTDI,q-normalizedorgan doseoefficients fitted against phantacthest diameteras

shown in Eq(4). Example organs fromnterior (ac), medialor distributed (¢le), and posterior (f) grosp

IV. DISCUSSION

Organbased tube current modulation techniques Haa@n devised to imimize unnecessary
radiation exposure to major radiosensitive organs while maintaining the reopage quality

In this work;,we. evaluated the dose saving potential of an addiboeast positioning technique
for organbasedtube current modulatiomxaminations(OTCM). Compared tcstandard tube
current modulationOTCM offered anaverageof 19.3 + 4.5% reduction in breast dose. The
breast positioning extended that reduction by an add2®& + 9.4 %. Targeted breast
positioningtakes &uller advantage of OTCM for reducing breast dose in body CT examinations.
In this study,a constantCTDIl,, vadue was usedor ATCM and OTCM schemdor each
phantom A previous study has argued that OTCM is less -@asmomical compared to ATCM,
and resulted ina 5 10 %CTDl, increase to maintain image qualftyWwhen OTCM is utilized
the xy modulation is shut ofthe Zplane mA is generated basedtbha average of AP and LAT
attenuationlf'techniques permit, keepingyxplane modulation in OTCM would be more dose
efficient. We='simulated this scenari®TCMigea), reducing mhArcm by 80 % and a
corresponding increase in the remaining projections. The dose reduction wasnlagtarior
organs. The dose for htaand thymuswas reduced by 14.%# 3.4 % and 20.0+ 4.6 %,
respectively..The dose increase was smaller in distributed and posterior organs (except for
spleen). No significant change was natetling, esophagus, and kidneys

To take fullFadvantage of OTCM, dastpositioning techniquesonstrain the breasy within the
dose reduction“zone. Seidenfusfsa/ have dermanstrated that a normbakassierecan constrain
more breast tissue within the dose reduction Zbawever, in that implementatipthe breasts
are still not fully sheltered, especially in women with larger breasts where onl¥88f3he
volume is constraineddditiondly, that study did noévaluate the breast doge this studywe
simulatedsthe breast positioning technique that can optimize bresisbpdeyond a normal

brassiers support by compressingnore breast tissue to within the dose reduction zone. To
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ensure the modeled breast locations reflect real scenario, the percentage of breast tissue within
the dose reduction zone was compared with those reported in literature. Seideafusported

breast volumes within dose reduction zone on CT images from 578 female patignendi
without brassieré? On average, 60.4 24.7% and 91.3+ 9.4% of breast volume was within

dose reduction zone with and with@ubrassiererespectively’* In our work, the average breast
tissue withinthe dose reduction zone was 64:615.2 %originally, andincreased t®3.8 £4.0

% after applying BP. The ratio of breast within the dose reduction zone is higinés study
comparedto.Seidenfuss a/because in our technigube breast tissueas compressecloser
towards the center of the torso. To implemietstudiedbreast positioningechniqueclinically,

we recommend theseof sportsbrassieravith foampadding.

The breast dose savings of OTCM and OTg&gNrom ATCM were compared with physical
phantomgeported by literatureaComparing OTCM to ATCM reduction fan anthropomorphic
phantom with"peast attachment.ungrenet a/ reported theanterior and posterior breast dose
reduction 0f29 = 45% and 9- 19%, respectively® Our results were generally cortsist from

ATCM to OTCM, the average breast dose reductiangesat 11.0 - 28.7%. For ATCM to
OTCMgp, thesbreast doseeduction ranges &1.0 - 518 % and when normalized by CTJal

the correspending reduction range@it% - 48.1%. Another study reported that breast dose
was reducedtby 34%, 34%, and 396 with OTCM compared to ATCM for small, medium, and
large sem@anthropomorphic phantoms (820, 35¢<25, 4«30 cm in lateral and posterianterior
dimension)** To derive breast dose corresponding to the above average chest diameter in our
study, thebreast dosevas fitted to chest diameter as exponential functiofEq. (4)] (Figure

11). On average, compared to ATCRTCM reduceddreast dose by 13%, 18.1%, and 22.8

%, and/factoisby 12.7%, 18.0%, and 23.0%. The OTCM savings in our study was smaller
compared to the literature, as the XCAT breasts were explicitly modeled, while the phantoms
used in otherstudies were with “underdeveloped” bsdast, the breastsverenot spread§ *

14.16. 45 Fhids, more lateral portisrof the XCAT breasts were in the dogecreased zone. The

full advantage‘of OTCM was not taken without BP. The OEedhvedthebreast dose by 34.4
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%, 38.1%, 41.5% and Ahfactors by 30.1 %, 35.80, and 40.24 for phantoms with 2&m, 30
cm, and 3%m chest diametsyrespectively.
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Figurell a)Breast dosand b)CTDI,q-normalizedbreast dose from ATCM, OTCM and OTGM
390 simulations fitted to chest diametes Eq(4).

Using the same CTRY;, OTCM reducedhe effective doseslightly, thiscan be explained by the
fact that most of the radiosensitive organs are located antéfidriyngren et a/.reported the
effective deseyby evaluating the organ dose recorded by dosimeters for an antipbpom
395 physical phantom. The results were 4.41 + 0.3 mSv (after scanning,&£®B¥ mGy) and 5.25
+ 0.36 mSv (after scanning CTRI 7.51 mGy) for ATCM and OTCM, respectivel§.The
discrepancy between Lungrex a/.and this study can be explained by the fact that the (T DI
used in this_study was constant between OTCM and ATCM, while the 71 OTCM is
generally 5 — 10 % higher as noted previously.
400 Other organsdoses were also compared with physical phantoms. Lusgegrhas reported
anteriororgan,dose reduced 747 %; posterior organ dose significantly increased; lateral and

inner organ dose showed similar restfit&ur results were consistent enmetypical anterior
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and posterior organs. Thymasd kidney dose changed by 10®%band-1.6 % (7 % and-1 %

from Lungrenet a/). The «in dose profile was alscompared with measurement of physical
phantoms frontheliterature. The skin dose was sampled and interpolaitéh 360 degregfor

eat phantomon one selected slice tbantairs large volume of breast tissue. The interpolated
skin dose"was*further arsged across all phantoms. Duan a/. reported surface dose of
anthropomorphic phantoms receiving OTCM and fixed mA scang{)i& To compare our
results to those of Duaet al, the skin dose wasnormalized by CTDJ, and scalal to unit
averageOur results showed excellent agreement with the measurement from physical phantoms
(Figure ). For OTCM, the dose was unsymmetrical on left and right reduction zone, whéch wa
due to unequal upward and downward transitiomes. Comparm to mAsix, the MmAarcm IS

generally larger i AT and smalleiin AP.

= OTCM this study
----- ATCM this study

® OTCM Duan eral

¢ Fixed mA Duan e al,

270

180

Figured2:=Skin dose simulated wittomputerized phantomith ATCM and OTCMfrom this study
comparedskin dosemeasured with physical phams with OTCM andixed mA from Duanet a/. The
dose was"averaged to a unit mean for comparisons. For thiststeigin dose profile was averaged

across all phantoms. The dose reduction zone is shaded in yellow.
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Although use of a patient’s owarassieras cost efficiat, a specially designed BP support would
be superioras it compressasoreof the breast tissue withithe dose reduction zone, especially
the outer.quadrant of thereast which more than half of breast carcinoma oscir'® *’With a
normalbrassiete 17 % of the breast isoutsidethe dose reduction zone for large sized bre#sts.
With the implemented BP, the portion of breast tissue withérdose increased zone decreases
to 6%. FurthermoreBP constraia anaverageconstant portion @%) of breast tissue withithe
dose reduction zone all groups. However, normal brassieres performance svareong
different breassize group$? The dose savimsgffect and potential artifacts in CT images with
various normabrassieress yet to be examined. A standardized BP allows one to accurately
monitor dose and prospectively optimize CT procedure.

For all theorgans within the scan caage, lungs have the same radiosensitivity as br&asts.
Our results'showed that lung dose only increased slightly using OTCM, compared b A$C

the tube current was decreased aotlr and increased posteriorly, the lung dose is-non
uniformly [distributed. To estimate the distribution of lung ddgeg dose was estimated %t
differentlung ROIs on thedose distribution plot located as shownFigure B. The lung dose
was averageds,over each ROI across 39 phantomsaftit modulation scheme. The results
showed that-anterior lung regions and posterior lung regions have lower and higher dose,
respectively, for OTCM, compared to ATCM. For lung regions in the central line of AP
direction, theslung dosearesimilar for OTCM and ATCM. Lungrest al. reported that theuhg
dosedecreased by % (average of 126 and 2%) and 13% (average of 186 and 7%) for
anterior and posterior lung regions, respectivély their study, the decrease of lung dose in
posterior regions may be a result of sampling posterior lungrdosecentrally compared to our
samplingscheme
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Figure 13:/(a) Example of5 ROIs drawn ondose distribution plots to evaluate the nonform

distribution.of.lung dosgb) For each ROI, the average dose value was calculated

In this study, the primary focus was breast dose. However, the most relevant conopbneast

dose is average glandular dose (AGD). A side study was conducted to ascertain teawattee
related A priorstudy has derived the AGD from homogeneous breast tissue via simtfl&an.

each photormaterial interaction, the dose to breast tissue was corrected to the glandular tissue
by the ratie.of glandular to breast mass attenuation coefficients at that emexid§ Using this
approachgaconversion was derived as

%(Ei,glandular)

P(E, ()

Threast—to—AGD = E(E. breast)
p v

whereP (E)ristsource energy spectrum, filtered by the bowtie filter, %I@Hi, glandular) and

%(El-, breast) are the mass attenuation coefficients for glandular and breast tissues atEgnergy

respectively=Assuming the spectrum’s further filieg by patient body can be ignored,
Threast—to—acp Was computed to be 1.015 and 1.031 for the 50/50 breast and 20/80 breast,
respectively. This indicates the breast dose and ADG are closely corraefa@l energies.
Figure 14shows a plot ofaverage glandular dose for OT@GMvs. OTCM. Please ate,
homogeneous distribution giandular dose is an approximation. Future study is warranted to

simulate heterogeneous breast tissue.
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Figurel4: ajpaverage glandular dose (AGD) andCi)Dl,-normalizedAGD simulated by OTCMe vs.
OTCM. The AGD was derived by equatids).(

This work=has several limitationEirst, the dose coefficient estimation was limited to one CT
scanner Secong although the dose reduction potential was demonstrated, an optimized
positioning technique with minimum dose and patient comfort is yet tdebired For each
phantom, only one breast positioning was simulaiédtd, image quality was not examined in
this study. In previous studies, no significant difference in noise and CT numbers have been
reported when comparing OTCM with ATCM or fixed mA scans using physical phafhtdths

18 Neither awere streaking and beam hardening artifacts withejpable differences found. In
Seidenfus®talwork, the image quality was assas$éer women scanned with OTCM, with and
without & normal brassiergno artifacts were reportdd A similar study will be conducted for
OTCMgp in the future. Fourth, the mA profile was generated theoretically, as the aéualan

CT systemmaysnot be predicted merely by patient attenudtidfor example, the mA profile
may overshoot at the beginning of a s€afio ensure the tube current profile in general agree

with the physical behavior, the skin dose was sampled and compared to studiesngne&suri

This article is protected by copyright. All rights reserved



480

485

490

495

500

dose on physical phantoms and our results showed strong agreement (Figbtdut2 studies
may include modelling the mA profile taking into account actual physical behakitibs.theh
factors and.the 'comparisong fiifferent modulation schemes reported in this study was specific
to the mAfscheme (av@ge modulation strength). The study of othesdulation strengths as
well as other‘orgabased tube current modulation schemes used by various scanners and the
associgedgeffect on organ doses would be of valdewever, as CTDQ}, is a strong normalizing
and a majer factor significantly influencingrgan dose, the CTRJ-normalizedorgan dose
datasetanireasonably characterithee net effect of modulation or breast positioning.
CONCLUSION

In this study, the dose reduction potential of alternate breast positioning wasex/&bunatrgan
based TCM examination&eeping CTDl, constant, on average, compared to ATCM, OTCM
reduced thebreast dose by-20 %. The averagebreast dosewvas further decreased by an
additional239% with targeted breast positioningargeted breast positioning is needed to take
full advantage of OTCM for reducing breast dose in body CT examinations.
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