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ABSTRACT: Molecular imaging has proven to be a

powerful tool for investigation of parkinsonian disorders.

One current challenge is to identify biomarkers of early

changes that may predict the clinical trajectory of par-

kinsonian disorders. Exciting new tracer developments

hold the potential for in vivo markers of underlying

pathology. Herein, we provide an overview of molecular

imaging advances and how these approaches help us
to understand PD and atypical parkinsonisms. VC 2017
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In the last decade, the molecular imaging field has
entered a new era of exploration into human brain
diseases and has proven to be a powerful tool for
investigation of the human brain, which is character-
ized by highly interconnected regions and networks
involved in motor, cognitive, and behavioral functions.
Whereas several of the recent molecular imaging
approaches are still under development and probably
not yet able to provide definitive answers, they repre-
sent valuable tools to improve our understanding of
basic molecular mechanisms and pathophysiological
processes underlying parkinsonian disorders. One cur-
rent challenge is to identify biomarkers of early
changes that predict at the group-level progression
and development of selected manifestations of parkin-
sonian disorders. On an individual level, it is unclear
how helpful molecular imaging techniques (i.e., PET
and single-photon emission computed tomography
[SPECT]) may help stratify risk for developing motor
and behavioral complications. This personalized medi-
cine approach, though still in its infancy in Parkin-
son’s disease (PD) and related disorders, has future
potential for identifying subgroups of patients for tar-
geted clinical trials of novel agents. Molecular imag-
ing, with newly developed radiopharmaceuticals, now
has increased potential to reveal underlying pathologi-
cal processes, such as changes in receptors (e.g.,
dopaminergic and nondopaminergic), blood flow,
metabolism, neuroinflammation, and abnormal protein
deposition. Furthermore, some molecular imaging
measures may provide biomarkers of target engage-
ment or efficacy for clinical trials. Whereas most imag-
ing studies focused on CNS abnormalities, a few
interesting studies imaged peripheral organs in PD,1

raising the issue of their practical value. Although
most neuroimaging investigations focused on PD,
some have addressed the atypical parkinsonisms.

This knowledge gap certainly creates the need for new
molecular imaging approaches and biomarkers for
these atypical parkinsonian disorders still not suffi-
ciently understood. In this article, we will provide an
overview of high-affinity radiotracers and molecular
imaging advances and how these approaches have had
an impact in understanding PD and atypical
parkinsonisms.

Molecular Imaging of PD
and Its Progression

What Have We Learned From Imaging
the Dopaminergic System?

Degeneration of nigrostriatal neurons is responsible
for most of the classical motor manifestations of early
PD. The underlying pathophysiology in PD includes a-
synuclein deposition in cytoplasmic inclusions, called
Lewy bodies, found in residual neurons in areas such
as the SNpc, but a-synuclein also may be deposited in
dystrophic neurons in striatal or cortical regions
(Lewy neurites). Projection neurons like nigrostriatal
afferents have long, poorly myelinated axons and may
be particularly vulnerable; Lewy neurites may appear
before cell body damage.2

Although dopamine levels (Fig. 1) cannot be mea-
sured directly using imaging, several approaches can
be used to assess altered function of nigrostriatal
dopaminergic nerve terminals (Fig. 2). The most wide-
ly accessible approach is the use of a marker for the
dopamine transporter (DAT). Several positron- or
photon-emitting molecules are available for use with
PET or SPECT, respectively. These ligands have vary-
ing degrees of selectivity for the DAT over other
monoamine reuptake transporters, and pharmacoki-
netic profiles differ from one tracer to another.

FIG. 1. Ascending nigrostriatal (red), mesolimbic (green), and mesocortical (blue) dopaminergic pathways.
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This may be of some practical importance because
some tracers (e.g., 123I-b-CIT; 123I-(–)-2b-carbome-
thoxy-3b-(4-iodophenyl)tropane) do not reach steady
state for several hours, mandating patients to return
for imaging the day following tracer injection, whereas
others (11C-d-threo-methylphenidate, 18F-fluoropropyl-
b-CIT, and 123I-fluoropropyl-CIT) can be imaged
within 1 to 2 hours of tracer injection. An alternative
approach is to label the DAT ligand with 99mTc,
which is an isotope that is widely used in clinical
nuclear medicine. Striatal DAT binding correlates with
loss of nigrostriatal dopamine terminals, but may only
correlate with nigral neurons when that loss does not
exceed 50%,3 whereas direct imaging of midbrain
uptake correlates with residual nigral neurons4; thus,
striatal DAT may not reflect disease progression
beyond mild-to-moderate disease.3,5,6 Striatal or nigral
uptake may therefore be a useful imaging biomarker.

A second approach to determining the integrity of the
presynaptic dopaminergic terminal is to study binding
to vesicular monoamine transporter type 2 (VMAT2).
VMAT2 is responsible for packaging monoamines into
their appropriate synaptic vesicles, and binding is
accordingly not specific to dopamine neurons. However,
more than 90% of striatal VMAT2 binding is to dopa-
minergic nerve terminals. VMAT2 binding is typically
studied with 11C-dihydrotetrabenazine (DTBZ), which
is not widely available, and studies can therefore only
be performed at a few sites. However, an F18-labeled
radiotracer is now commercially available, increasing

the accessibility of these measures. VMAT2 binding
may be less subject to regulation than DAT binding,7

but this remains controversial.8 It may have some sensi-
tivity to vesicular dopamine levels, such that VMAT2
binding may be increased in the rare situation where
nerve terminals are preserved but are depleted of
dopamine.9

The original means of studying dopaminergic func-
tion was with the use of 6-18F-fluoro-L-dopa, which,
like levodopa, is taken up by monoaminergic neurons,
decarboxylated to (fluoro)dopamine, and, in the
healthy brain, packaged in synaptic vesicles. Also,
analogous to markers for DAT and VMAT2, fluoro-
dopa uptake declines with disease progression and
weakly inversely correlates with clinical severity, at
least for mild-to-moderate degrees of disease severity.3

However, the interpretation of fluorodopa scans is
somewhat more complicated, in that uptake reflects
not only the (unidirectional) decarboxylation of fluo-
rodopa to fluorodopamine, but also the egress of
trapped fluorodopamine from synaptic vesicles. This
can be used to estimate dopamine turnover, which
increases with disease severity.10,11

All of these presynaptic markers of dopaminergic
function show a very similar pattern in PD, with
asymmetric involvement of the striatum, and a rostral-
caudal gradient in which the posterior putamen is
maximally affected and the caudate nucleus least.
Whereas this rostral-caudal gradient is preserved
throughout the course of the illness,12 the decline in

FIG. 2. Dopaminergic nerve terminal and various PET radiotracers for the assessment of its integrity. DA, dopamine agonist.
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dopaminergic markers over time is better described by
an exponential, rather than a linear, relationship,
where the majority of change in the putamen has tak-
en place typically within the first 5 years, akin to post-
mortem observations,12 which have demonstrated
almost total loss of tyrosine hydroxylase immunoreac-
tivity within this time.6

Concurrent studies of multiple markers reveal that
in early disease stages (H & Y stage I), the threshold
for clinical manifestations was 29% to 44% of normal
values for DAT binding, 38% to 49% for VMAT2
binding, and 48% to 62% for fluorodopa uptake.13

The more-severe involvement of DAT binding may, in
part, reflect downregulation of the DAT in early dis-
ease, whereas lesser involvement of fluorodopa uptake
may reflect upregulation of decarboxylase activity in
surviving dopamine neurons and/or expression of
decarboxylase by serotonergic neurons. In studies con-
ducted in nonhuman primates with unilateral internal
carotid infusion of different doses of MPTP, it was
found that the loss of only 30% to 35% of striatal ter-
minals in nonhuman primates were able to generate
motor parkinsonism and perhaps, more important,
motor parkinsonism correlated with the nigral cell

counts rather than the terminal field measures.14 In
these animal models, [18F]-6-fluorodopa, [11C] CFT
(DAT biomarker), and 11C- DTBZ correlated with
striatal dopamine and fiber density, a reflection of ter-
minal field function, but interestingly only correlated
with nigral cell number within a limited range of cell
loss (less than 50%),3 as mentioned also above. In
contrast, whereas PET measures of midbrain uptake
of either VMAT2 or DAT correlated well throughout
the full range of severity of nigrostriatal injury with
stereologic counts of nigral dopaminergic neuronal cell
bodies,4 midbrain uptake of fluorodopa did not, thus
suggesting that the midbrain measures may provide a
better biomarker of severity of nigrostriatal injury.
Other studies as well showed evidence that serial
assessments with multiple markers provide an effective
approach to evaluate evolution of dopaminergic deple-
tion in MPTP monkeys.15,16

In a cohort of patients with sporadic PD studied
longitudinally over several years, de la Fuente-
Fernandez and colleagues17 estimated that VMAT2
binding declined 17 years before disease onset, fol-
lowed by DAT binding 13 years before, whereas
decline in fluorodopa uptake occurs last, only 6 years

FIG. 3. (Top) Distribution of the serotonergic pathways (yellow); (bottom) distribution of the cholinergic pathway (red). PPN-LDT, pedunculopontine
and laterodorsal nuclei.
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before disease onset. However, whereas fluorodopa
uptake does not decline until later, dopamine turnover
increases relatively early, an estimated 8 years before
disease onset in sporadic PD,10 and years or even dec-
ades before the expected age of onset in patients with
LRRK2 mutations.18 Consistent with the latter obser-
vation, imaging studies have shown evidence of dopa-
minergic dysfunction in subjects with a number of
pathogenic mutations. The A53T and A53E mutations
in the alpha-synuclein gene (SNCA) can be associated
with early, relatively symmetrical defects in presynap-
tic dopaminergic function.19,20 Additionally, recessive
Parkin21-23 and PINK119 mutations appear to be
mostly associated with symmetrical dopaminergic
losses, whereas in carriers of more-frequent LRRK2
and GBA mutations, the dopaminergic defect is practi-
cally indistinguishable from that of sporadic PD.19,24

In GBA-associated PD, the severity of dopaminergic
dysfunction is related to the degree of glucocerebrosi-
dase enzymatic activity reduction induced by the spe-
cific GBA mutation: Carriers of mild mutations (e.g.,
N370S) overlap with PD noncarriers, whereas PD car-
riers of severe mutations (e.g., L444P) have a similar
phenotype to dementia with Lewy bodies.25

Many investigators have proposed that dopamine
release may also be a valid method to evaluate dopa-
minergic functions. This can be estimated by exploit-
ing (Fig. 2) the relatively high affinity of [11C]-
raclopride, [11C]-(1)-PHNO, [18F]fallypride, or
[11C]FLB-457 for postsynaptic D2/D3 dopaminergic
receptors, such that radioligand binding is subject to
competition from endogenous dopamine.26,27 A
change in binding potential can be used to estimate
dopamine release at the striatal ([11C]-raclopride or
[11C]-(1)-PHNO) or extrastriatal level ([18F]fallypride
or [11C]FLB-457) in response to medications,

behavioral stimuli, and brain stimulation techniques.
More-detailed descriptions of these applications are
reported below in the section related to behavioral
complications in PD.

How Imaging of Nondopaminergic Changes
Contributed to our Current Knowledge?

A large body of evidence suggests that nonopami-
nergic mechanisms may also contribute to the patho-
physiology of PD (Figs. 3 and 4). Studies conducted
with serotonergic PET tracers (Figs. 3 and 4) have
shed some light on understanding the role of this neu-
rotransmitter. A PET biomarker of the serotonin
transporter (SERT), that is, [11C]DASB, has shown a
nonlinear, gradual loss of presynaptic serotonergic ter-
minal function in the subcortical and cortical areas
during PD progression.28,29 Subsequent reports have
suggested its potential role in the pathophysiology of
L-dopa-induced dyskinesias (LIDs).30 Using [11C]DASB
PET together with a series of [11C]raclopride PET
scans, these studies demonstrated that PD patients
with LIDs exhibited relative preserved striatal seroto-
nergic terminals (compared to profound degeneration
of dopaminergic terminals), possibly responsible for
the synaptic dopaminergic levels, and that oral admin-
istration of the 5-HT1A agonist, buspirone (before L-
dopa), reduced L-dopa-related striatal synaptic dopa-
mine increases and attenuated LIDs.30,31 Serotonergic
PET imaging also indicated similar mechanisms under-
lying the development of graft-induced dyskinesias
(GIDs) in transplanted PD patients. Studies with
[11C]DASB PET together with dopaminergic bio-
markers, that is, [18F]fluorodopa, demonstrated sero-
tonergic hyperinnervation and elevated serotonin/
dopamine terminal ratio in the grafted tissue of

FIG. 4. Cholinergic (left) and serotonergic (right) nerve terminal and various PET radiotracers for the assessment of their integrity.
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transplanted PD patients who developed GIDs.32,33

GIDs were markedly attenuated by systemic adminis-
tration of 5-HT1A agonist buspirone, which, by reduc-
ing transmitter release from serotonergic neurons, may
suggest that dyskinesias were likely related to the sero-
tonergic hyperinnervation.

Phosphodiesterase 10A (PDE10A) has a key role in
the regulation of dopaminergic signaling in striatal
pathways and in promoting neuronal survival.
PDE10A is a basal ganglia expressed dual substrate
enzyme, which regulates cyclic adenosine monophos-
phate and cyclic guanosine monophosphate signaling
cascades. PET studies using [11C]IMA107, a biomark-
er of PDE10A in vivo, have demonstrated reduced
striatal levels of PDE10A, which correlated with PD
duration and disease burden scores such as motor dis-
ability and severity of LIDs,34 thus confirming the
complex interaction of dopaminergic and nondopami-
nergic mechanisms underlying the pathophysiology of
PD.

Consistent with this observation, voxel-based map-
ping of cerebral blood flow and metabolic activity has
also revealed stereotyped, spatially distributed distur-
bances of regional brain function in PD patients. Func-
tional brain imaging with [18F]-fluorodeoxyglucose
PET has provided a means of detecting and quantify-
ing highly specific spatial covariance patterns associat-
ed with a variety of neurodegenerative disorders,
including PD.35 The PD-related metabolic pattern
(PDRP), identified in resting-state metabolic imaging
data analyzed using spatial covariance mapping, is
characterized by increased pallidothalamic and ponti-
ne metabolic activity, associated with reductions in
premotor cortex and parietal association areas.
Expression values for the PDRP measured in individu-
al subjects correlates significantly with loss of presyn-
aptic nigrostriatal dopaminergic integrity, as well as
with independent clinical ratings of motor dysfunc-
tion.36,37 Notably, topographically similar metabolic
network abnormalities have been recently identified in
nonhuman primates with experimental parkinsonism
attributed to systemic MPTP exposure.38,39 In a recent
blinded surgical trial of gene therapy for PD, the rate
of PDRP progression measured over 1 year was not
affected by placebo treatment.40 In contrast, reduc-
tions in PDRP expression have been found consistently
during L-dopa therapy and STN-DBS and significantly
correlated with clinical improvement.41 This suggests
that PDRP can be considered a reliable biomarker of
treatment response. PDRP expression is also sensitive
to network changes occurring before the appearance
of motor symptoms. Expression levels of this network
have recently been found to be abnormally elevated in
the clinically unaffected hemisphere of early PD
patients and in “preclinical” subjects with rapid eye
moverment sleep behavior disorder.36,42

Neuroinflammation is also considered to play an
important role in PD.43-45 Translocator protein 18
kDa (TSPO) has been investigated as a potential bio-
marker of inflammation. Elevated TSPO expression
was primarily quantified using [11C](R)PK11195 PET.
To date, a few studies have investigated neuroinflam-
mation in PD patients using [11C](R)PK11195 PET.
Whereas some studies have found elevated TSPO
binding in the nigrostriatal regions,46-48 others did not
support these observations.49 These limitations have
prompted the development of second-generation TSPO
radioligands (i.e., [11C]PBR28; [18F]-FEPPA, etc.),
which present three patterns of binding affinity based
on a genetic polymorphism: low-affinity binders;
mixed-affinity binders (MABs); and high-affinity bind-
ers (HABs).50 These different genotype binding affinity
patterns account for some of the large interindividual
variability in the outcome measures50 and can be pre-
dicted by a single-nucleotide polymorphism, rs6971
located in the exon 4 of the TSPO gene resulting in a
nonconservative amino-acid substitution at position
147 from alanine to threonine (Ala147Thr) in the fifth
transmembrane domain of the TSPO protein. Using
these second-generation TSPO radioligands (i.e., [18F]-
FEPPA), Koshimori and colleagues,43 though noting a
significant genotype effect (MABs vs. HABs) on the
[18F]-FEPPA volume distribution (Vt), did not observe
any disease effect on differential TSPO binding in the
striatum of PD patients. Other studies, however, in
individuals with Alzheimer’s disease (AD) have shown
evidence of significant increase in [18F]-FEPPA Vt in
HABs, but not MABs.51

Mild Cognitive Impairment and
Dementia in PD

Have Different Imaging Biomarkers Helped to
Understand Cognitive Deterioration?

The etiology of cognitive decline in PD is heteroge-
neous. Imaging biomarker studies of cognitive impair-
ment in PD have targeted neurotransmitter systems,
pathological protein deposits, and glucose metabolic
or perfusion changes. Prospective evaluation of glu-
cose metabolic changes have shown that incident
dementia initially may present as a predominant hypo-
metabolic posterior cortical pathology involving the
visual association cortex, inferior parietal and tempo-
ral regions, the posterior cingulum, and precuneus in
PD.52,53 Subsequent progression to dementia is associ-
ated with mixed subcortical, including the thalamus
and caudate nuclei, and widespread cortical changes
that involve the anterior cortices as well.52,54 Spatial
covariance mapping has been particularly useful in
providing information regarding the network topogra-
phy that underlies cognitive dysfunction in PD.35

Indeed, this approach has revealed a distinct PD
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cognition-related pattern (PDCP) characterized by
metabolic reductions in the medial prefrontal, premo-
tor, and parietal association regions, with relative
increases in the cerebellar vermis and dentate nuclei.
In cross-sectional analyses, increased PDCP expression
is associated with more-severe cognitive impairment.
PDCP expression is abnormally elevated, even in PD
patients without evidence of cognitive impairment,
and highest in those with dementia.35 Of note, PD
subjects whose executive function improved with L-
dopa administration (“responders”) also exhibited
concurrent reductions in PDCP expression. By con-
trast, PD subjects showing no cognitive improvement
(“nonresponders”) exhibited no change in PDCP
expression with L-dopa.55 Both groups, however,
exhibited significant L-dopa-mediated reductions in
PDRP expression, underscoring the functional distinc-
tion between the cognitive and motor networks. These
findings, together with a recent study on glucose
metabolism in groups of patients along the spectrum
of parkinsonism to dementia (PD, PD with dementia
[PDD], DLB, and AD), support the notion that glu-
cose metabolism patterns may reflect more the clinical
syndrome than the underlying pathology.56

An intriguing dual syndrome cognitive hypothesis
has been proposed, which posits that the high frequen-
cy of frontostriatal executive dysfunction in PD may
relate to common dopaminergic deficits,57,58 and that
the development of dementia is associated with more
widespread and posterior cortical changes secondary
to additional pathologies, including cholinergic defi-
cits.59,60 Although dopaminergic denervation affects
specific cognitive functions in PD,58 striatal and limbo-
frontal dopaminergic changes are present in nonde-
mented PD subjects,58 but their presence is not
sufficient to explain the full development of dementia
in PD.61 In contrast, greater cholinergic denervation is
shown consistently in PD dementia compared to
PD.61,62 These observations support a more complex
pathophysiological model of interacting dopaminergic
(Fig. 1) and cholinergic degenerative (Figs. 3 and 4)
changes producing cognitive dysfunctions in PD.63-65

However, imaging studies confirmed as well a signifi-
cant relationship between in vivo measures of elevated
cortical and, in particular, striatal b-amyloid deposits
(measured with [11C]PIB) and greater cognitive
impairment in PD.66,67 However, the risk of having an
abnormal [11C] PIB PET study in PDD substantially
underestimated the risk of abnormal b-deposition in
the brain at autopsy in people with PD and demen-
tia.68,69 Interestingly, b-amyloid deposition measured
either in vivo with [11C] PIB or at autopsy with immu-
nohistochemistry did not necessarily reflect coexisting
AD, given that those with dementia attributed to AD
would present marked pathologic deposition of
both b-amyloid and tau. Furthermore, the distribution

of b-amyloid measured with [11C] PIB in PDD has a
significantly different pattern in the brain demonstrat-
ed by principal components analysis compared to
those with AD.70 Together, these data indicate the rel-
evance of b-amyloid brain deposition in PD, but sug-
gest that this does not merely reflect the full spectrum
of AD pathology.

All of these data demonstrate that neurotransmitter
and proteinopathy changes have independent and
incremental contributions to the cognitive syndrome in
PD.65 However, other factors (i.e., neuroinflamma-
tion) may also play a role. In fact, it has been shown
that there may exist a direct relationship between b-
amyloid load and levels of microglial activation in
PDD subjects,71 suggesting that neuroinflammation
may be an early phenomenon, before the dementia
onset, and that amyloid along with microglial activa-
tion could together contribute not only to the local
neuronal dysfunction, but also to the more remote
neuronal disconnection.71 Thus, for future studies,
there is a need for new ligands for not only neuro-
transmission, in particular, norepinephrine, but also
new neuroinflammatory (besides TSPO-binding trac-
ers) and proteinopathy targets, especially tracers to
visualize neurofibrillary tau and a-synuclein protein
aggregates for more comprehensive understanding of
the cognitive impairment syndrome in PD.

Behavioral and Affective
Complications in PD

What Molecular Imaging Has Taught Us About
Behavioral Spectrum Disorders

There is evidence of a behavioral spectrum disorder
ranging from hypodopaminergic levels responsible for
apathy, anxiety, and depression, as described in the
withdrawal dopaminergic syndrome to hyperdopami-
nergic syndrome, including impulse control disorders
(ICDs), hallucinations, and psychosis.72,73 Often,
depression may manifest before the diagnosis of PD;
however, there is considerable evidence suggesting
that this complication can be associated with a more
widespread neurodegenerative process. Imaging
reports seem to suggest involvement of both dopami-
nergic and serotonergic systems. Whereas studies using
the DAT radioligand (i.e., TRODAT-1) found signifi-
cantly higher DAT density in the striatum of depressed
PD patients,74 other investigations with SERT (i.e.,
[11C]DASB) showed abnormal serotonergic neuro-
transmission in the raphe nuclei and limbic structures,
which correlated with depression measures.75 The
serotonergic alteration in depression was confirmed by
another PET study using 18F-MPPF, a selective seroto-
nin 1A receptor antagonist.76 Apathy may also occur
in up to 40% of PD patients, and, although clinically
distinct from depression, the two are often
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comorbid.72 Anatomical and imaging reports have
provided evidence that network abnormalities within
the prefrontal-striatal circuit can lead to an apathetic
behavior. Classically, apathy is the result of a disrup-
tion of “emotional-affective” mechanisms linked to
the ventral striatum, ventromedial prefrontal cortex,
and amygdala.77 PET studies with D2/D3 receptor
antagonist [11C]-raclopride have shown several differ-
ences in dopaminergic binding and transmission in the
mesocorticolimbic system between apathetic and non-
apathetic PD patients.78 [11C]-raclopride binding
potential was increased in apathetic PD patients in the
orbitofrontal cortex (OFC), cingulate cortex, dorsolat-
eral prefrontal cortex, amygdala, as well as in the stri-
atum, implying either (reactive) increase in D2/D3
receptor expression and/or reduction in endogenous
synaptic dopamine. Other PET studies with [11C]RTI-
32, a ligand with affinity to both dopamine and nor-
adrenaline transporters, confirmed that the degree of
apathy severity was inversely correlated with
[11C]RTI-32 binding in the ventral striatum.79 Taken
together, these observations seem to suggest that apa-
thy in PD may result from severe dopamine abnormal-
ities in the mesocorticolimbic system, leading to an
impaired emotion reactivity and poor decision-making
processes,77 as also demonstrated in nonhuman pri-
mate studies of apathetic behaviors after MPTP.80,81

However, from more recent evidence, the mechanism
of apathy, depression, and anxiety in PD may be more
complex and may differ according to the stage of the
disease. In fact, in de novo PD, serotonergic, rather
than dopaminergic, degeneration appears to play a sig-
nificant role in this nonmotor triad.82

Whereas certain behavioral complications are often
inherent to the disease process, others are mainly asso-
ciated with symptomatic treatments. Dopamine ago-
nists, for example, have been implicated in the
development of ICDs.83 Susceptibility to these behav-
ioral addictions is associated with increased striatal
dopamine release84-86 and reduced DAT binding in the
ventral striatum.87 Whereas abnormalities in dopami-
nergic processing in the ventral striatum are critical
for the development of ICDs, prefrontal mechanisms
may also play an important inhibitory role in these
behaviors. Activation PET studies with H2[15O] before
and after administration of a dopamine agonist in PD
with and without gambling behavior found changes in
brain areas implicated in impulse control and response
inhibition (lateral orbitofrontal cortex, rostral cingu-
late zone, and amygdala).88 Although the agonist sig-
nificantly increased regional cerebral blood flow
(rCBF) in these areas in healthy subjects, gamblers
showed, in contrast, a significant reduction of activity.
A subsequent PET study using the extrastriatal dopa-
mine receptor ligand, [11C]FLB-457,89 found signifi-
cant abnormalities in D2 receptor binding in the OFC

and anterior cingulate cortex in PD patients with
pathological gambling, thus confirming the role of pre-
frontal control in the development of ICDs. Similarly,
[18F]fluorodopa PET has shown abnormalities in the
OFC of PD patients with ICDs.90 In PD patients,
STN-DBS may also contribute to certain impulsive
behavior associated with high-conflict decisions.91,92

An rCBF study with H2[15O] PET during a Go/NoGo
task showed a relationship between motor improve-
ment and response inhibition. In particular, STN-DBS
affected response inhibition, as revealed by an increase
in commission errors in NoGo trials91 and stop signal
task.92 These behavioral changes were accompanied
by changes in synaptic activity characterized by a
reduced activation in the cortical networks associated
with proactive and reactive response inhibition. These
observations suggest that modulation of STN with
DBS, although it improves motor functions, may tend
in parallel to favor the appearance of certain impulsive
behaviors by acting on mechanisms involved in
response initiation and/or selection.91 However, to
date, the impact of DBS (and its interaction with
dopamine agonist reduction) on the development of
ICD is unclear and still quite controversial, given that
studies using different approaches have shown con-
flicting results.93-95

Fatigue is a common nonmotor symptom in PD.
Recent studies have reported that PD patients with
higher level of fatigue may show anticorrelated meta-
bolic changes in cortical regions associated with the
salience (i.e., right insular region) and default (i.e.,
bilateral posterior cingulate cortex) networks.96 Other
studies of dopaminergic and serotoninergic function in
PD patients with and without fatigue demonstrated a
serotoninergic denervation in the basal ganglia and
related limbic circuits.97 PD patients with fatigue had
significantly lower SERT binding than patients with-
out fatigue in the basal ganglia structure.97 Addition-
ally, voxel-based analysis identified reduced
dopaminergic activity in caudate and insula and fur-
ther SERT reductions in cingulate and amygdala in
the fatigue group. All together, these findings provide
the rationale for treatment strategies aiming to
increase brain level of serotonin and serotoninergic
transmission as potential treatment of this common
complication in PD patients.

Differentiating Atypical
Parkinsonisms From PD

Is Molecular Imaging Helping Us?

To date, most molecular imaging studies in parkin-
sonism have focused on investigating either dopami-
nergic changes or cerebral blood flow and metabolism.
PSP and corticobasal syndrome (CBS) are common
forms of atypical parkinsonism (APS) and, in early
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stages, can be sometimes quite difficult to diagnose
given that they can overlap clinically with PD and oth-
er parkinsonian syndromes, including MSA. Previous
imaging studies have reported in CBS either asymmet-
ric hypoperfusion or reduced metabolism, mainly in
the striatum, as well as parietal and frontal cortex
contralateral to the affected limb.98 CBS may also be
variably associated with asymmetric striatal dopamine
denervation (e.g., and Cilia and colleagues99. Similar-
ly, PSP patients may present with a variable pattern of
hypometabolism in the fronto-striatal-thalamic regions
depending on the clinical presentation and progres-
sion.98,100 Families with mutations in the progranulin
gene presented profound imaging changes of asymmet-
ric hypoperfusion on SPECT and parietal atro-
phy.101,102 Subsequent work in CBS identified that
hypoperfusion within the left inferior parietal lobule,
including the left angular gyrus, was associated with
more severe ideomotor apraxia. Voxel-based spatial
covariance mapping has also been used to identify
disease-specific networks for MSA, PSP, and cortico-
basal degeneration.103,104 Importantly, an automated
logistic regression algorithm based on pattern expres-
sion values has been developed to aid in discriminat-
ing individuals with idiopathic PD from those with
atypical parkinsonian syndromes and in differentiating
among the various forms of APS. This approach had
excellent diagnostic specificity in an original data
set105 and in a subsequent validation sample.106 Other
methods, such as relevance vector machine analysis,
have also been used for single-case classification with
promising results.107,108 Prospective validation studies
are needed before the relative utility of these methods
can be determined. Neuroinflammation may play an
important role in various atypical parkinsonisms. To
date, only a few studies have investigated neuroinflam-
mation in these disorders using mainly first generation
of radiotracers, that is, [11C](R)PK11195.109 Although
the findings are highly suggestive, they require further
confirmation.

Other studies assessed the diagnostic value of dopa-
minergic tracers using (18F)-FP-CIT PET in differenti-
ating PSP and MSA from PD.110 Compared to PD,
PSP and MSA have more prominent DAT loss in the
anterior caudate and ventral putamen, respectively.
However, it should be emphasized that the pattern of
presynaptic dopaminergic impairment is not felt to
reliably differentiate among various neurodegenerative
forms of parkinsonism. Studies in which presynaptic
dopamine markers are combined with measures of
postsynaptic dopamine receptors may help differenti-
ate PD from atypical parkinsonian syndromes, but not
between these various syndromes. Except in a few
highly specialized centers, neuroimaging has had a
very limited diagnostic value in the differential diagno-
sis of PSP, CBS, and other tauopathies. For this

reason, the development of PET radiotracers specific
for tau represents one of the most active and challeng-
ing areas in molecular imaging.

Several groups have recently reported encouraging
results toward the development of selective tau imag-
ing agents.111,112 [18F]T807 (also known as [18F]-AV-
1451) has been reported as having excellent selectivity
for paired helical filaments of tau.111,112 This tracer
demonstrated high affinity and selectivity as well as
favorable in vivo properties, making this a potentially
promising candidate as an imaging agent for tau.111

Another tracer, [11C]PBB3, has also been recently
applied to human studies, providing PET demonstra-
tion of spreading tau pathologies in transition from
normal aging to advanced AD.113 PET imaging of spo-
radic four-repeat tau pathologies in PSP and CBD is
currently being conducted, and preliminary data have
indicated an increased retention of [11C]PBB3 in mul-
tiple brain areas, including white matter, in patients
with these disorders relative to age-matched controls.
Studies of in vitro binding assays using brain homoge-
nates found that the two tau probes, PBB3 and T807,
do not compete with each other for binding sites in
PSP tau aggregates. Other investigations with [18F]-
AV-1451 (i.e., [18F]T807) in PSP and CBS have shown
preliminary findings with either increase114 or no
retention.115

Future Directions of Molecular
Imaging: Need for Harmonization

and Multicenter Collaboration

Exciting new tracer developments hold the potential
for in vivo markers of underlying pathology, which is
of particular interest for interventions directly target-
ing protein aggregation. However, with increasingly
diverse and sophisticated imaging approaches, it is
now becoming more problematic than ever for nonex-
perts to assess the validity and significance of new
studies. The scientific community should therefore
move toward common standards and harmonization
in molecular imaging. Good scientific practice criteria,
including sample size, correction for multiple compari-
sons, and correction for the effects of age, motion,
and partial volume effects, are among the most impor-
tant issues to address. Anticipating excessive use of
the term “biomarker” in imaging studies, we propose
to use standardized terminology, which may help in
the design of future experiments, especially when
looking for surrogate markers in interventional stud-
ies. In line with the FDA/NIH BEST Resource (2016)
propositions, a biomarker is defined as a characteristic
that is measured as an indicator of a biological (patho-
genic) process. A diagnostic biomarker should increase
diagnostic accuracy for pathological or clinical entities
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in comparison to clinical judgment alone. In agree-
ment with this definition, certain imaging characteris-
tics may also serve to enrich specific features in a trial
population (e.g., as a target verification tool in the
case of tau PET). Monitoring biomarkers are mea-
sured serially and used to detect a change in the
degree or extent of disease. This kind of imaging char-
acteristic may serve as a biomarker that may predict
clinical efficacy, but not likely to act as a surrogate
endpoint given that such an imaging biomarker would
not reflect unintended side effects. For PD, most valu-
able biomarkers would certainly be prodromal diag-
nostic biomarkers and monitoring biomarkers for
disease progression at early/prodromal stages. For
atypical parkinsonism, there often is a mismatch
between clinical and pathological entities (e.g., CBS
with AD pathology, PSP pathology with different clin-
ical phenotypes).116,117 Therefore, diagnostic bio-
markers in atypical parkinsonism should not be
regarded as diagnostic for a clinical entity, unless the
biomarker is pathologically validated. Though certain-
ly fruitful, this kind of endeavor only seems feasible in
a large, multicenter studies strategically focusing on
the integration of postmortem information.
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