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A UNIFIED FRAMEWORK FOR PRICING CREDIT
AND EQUITY DERIVATIVES
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We propose a model which can be jointly calibrated to the corporate bond term
structure and equity option volatility surface of the same company. Our purpose is to
obtain explicit bond and equity option pricing formulas that can be calibrated to find
a risk neutral model that matches a set of observed market prices. This risk neutral
model can then be used to price more exotic, illiquid, or over-the-counter derivatives.
We observe that our model matches the equity option implied volatility surface well
since we properly account for the default risk in the implied volatility surface. We
demonstrate the importance of accounting for the default risk and stochastic interest
rate in equity option pricing by comparing our results to Fouque et al., which only
accounts for stochastic volatility.

KEY WORDS: defaultable bond, defaultable stock, equity options, stochastic interest rate, implied
volatility, multiscale perturbation method.

1. INTRODUCTION

Our purpose is to build an intensity-based modeling framework that can be jointly
calibrated to corporate bond prices and stock options, and can be used to price more
exotic derivatives. The same company has stocks, stock options, bonds, and several
other derivatives. When this company defaults, the payoffs of all of these instruments
are affected; therefore, their prices all contain information about the default risk of the
company. In our framework, we use the Vasicek model for the interest rate, and use doubly
stochastic Poisson process to model default. We assume that the bonds have recovery of
market value and that stocks become valueless at the time of default. Using the multiscale
modeling approach of Fouque et al. (2003), we obtain explicit bond pricing equation with
three free parameters which we calibrate to the corporate bond term structure. On the
other hand, stock option pricing formula contains seven parameters, three of which are
common with the bond option pricing formula. (The common parameters are multiplied
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with the loss rate in the bond pricing formula.) The parameters that remain unknown
after our calibration to the corporate yield curve are determined by calibrating them to
the stock option implied volatility surface. The calibration results reveal that our hybrid
model is able to produce implied volatility surfaces that match the data closely. We
compare the implied volatility surfaces that our model produces to those of Fouque et al.
(2003). We see that even for longer maturities our model has a prominent skew: compare
Figures A.1 and A.2 in Appendix A. Even when we ignore the stochastic volatility effects,
our model fits the implied volatility of the Ford Motor Company well and performs better
than the model of Fouque et al. (2003); see Figure A.3 in Appendix A. (Observe that
when we ignore the stochastic volatility our model has one less parameter to calibrate
than that of Fouque et al. 2003.) This points to the importance of accounting for the
default risk for companies with low ratings.

Our model has three building blocks: (1) We model the default event using the multi-
scale stochastic intensity model of Papageorgiou and Sircar (2008). We also model the
interest rate using an Ornstein–Uhlenbeck process (Vasicek model). As it was demon-
strated in Papageorgiou and Sircar (2008), these modeling assumptions are effective in
capturing the corporate yield curve; (2) We assume the stock price process jumps to zero
when the company defaults. This stock price model was considered in Bayraktar (2008).
Our model specification for the stock price differs from the jump to default models for the
stock price considered by Carr and Linetsky (2006) and Linetsky (2006), which take the
default intensity to be functions of the stock price; (3) We also account for the stochastic
volatility in the modeling of the stocks because even the index options (when there is no
risk of default) possess implied volatility skew. We model the volatility using the fast scale
stochastic volatility model of Fouque, Papanicolaou, and Sircar (2000). We demonstrate
on index options (when there is no risk of default) that we match the performance of
the two timescale volatility model of Fouque et al. (2003) (see Section 4.4). The latter
model extends Fouque, Papanicolaou, and Sircar (2000) by including a slow factor in
the volatility to get a better fit to longer maturity options. We see from Section 4.4 that
when one assumes the interest rate to be stochastic, the calibration performance of the
stochastic volatility model with only the fast factor is as good as the two-scale stochastic
volatility model. This is why we choose the volatility to be driven by only the fast factor.
Even though interest rate is stochastic we are able to obtain explicit asymptotic pricing
formulas for stock options. Thanks to these explicit pricing formulas, the inverse prob-
lem that we face in calibrating our model to the corporate bond and stock data can be
solved with considerable ease. Our modeling framework can be thought of as a hybrid
of the models of Fouque, Papanicolaou, and Sircar (2000), which only considers pricing
options in a stochastic volatility model with constant interest rate, and Papageorgiou
and Sircar (2008), which only considers a framework for pricing derivatives on bonds.
Neither of these models has the means to transfer default information from bond market
to equity markets and vice versa, which we are set to do in this paper. We should note
that our model also takes the treasury yield curve, historical stock prices, and historical
spot rate data to estimate some of its parameters (see Section 4).

Our model extends Bayraktar (2008) by taking the interest rate process to be stochas-
tic, which leads to a richer theory and more calibration parameters, and therefore, better
fit to data: (i) When the interest rate is deterministic the corporate bond pricing formula
turns out to be very crude and does not fit the bond term structure well (compare (2.57)
in Bayraktar 2008 and (4.1)); (ii) With deterministic interest rates the bond pricing and
the stock option pricing formulas share only one common term, “the average intensity of
default” (this parameter is multiplied by the loss rate in the bond pricing equation, under
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our loss assumptions). Therefore, the effect of the default risk is not accounted for in the
implied volatility surface as much as it should be. And our calibration analysis demon-
strates that this has a significant impact. When the volatility is taken to be a constant,
both our new model and the model in Bayraktar (2008) have three free parameters. The
model in Bayraktar (2008) produces a below par fit to the implied volatility surface (see,
e.g., figure 5 in that paper), whereas our model produces an excellent fit (see Section 4.3
and Figure A.1).

The other defaultable stock models are those of Carr and Linetsky (2006), Linetsky
(2006), and Carr and Wu (2006), which assume that the interest rate is deterministic.
Carr and Linetsky (2006) and Linetsky (2006) take the volatility and the intensity to be
functions of the stock price and obtain a one-dimensional diffusion for the predefault
stock price evolution. Using the fact that the resolvents of particular Markov processes
can be computed explicitly, they obtain pricing formulas for stock option prices. On the
other hand, Carr and Wu (2006) uses a Cox-Ingersoll-Ross (CIR) stochastic volatility
model. This paper also models the intensity to be a function of the volatility and another
endogenous CIR factor. The option prices in this framework are computed numerically
using the inverse Fourier transform. We, on the other hand, use asymptotic expansions
to provide explicit pricing formulas for stock options in a framework that combines
(a) the Vasicek interest rate model, (b) fast-mean reverting stochastic volatility model,
(c) defaultable stock price model, and (d) multiscale stochastic intensity model.

Our calibration exercise differs from that of Carr and Wu (2006) because they perform
a time series analysis to obtain the parameters of the underlying factors (from the stock
option prices and credit default swap [CDS] spread time series), whereas we calibrate
our pricing parameters to the daily implied volatility surface and bond term structure
data. Our purpose is to find a risk neutral model that matches a set of observed mar-
ket prices. This risk neutral model can then be used to price more exotic, illiquid, or
over-the-counter derivatives. For further discussion of this calibration methodology, we
refer to Cont and Tankov (2004) (see chapter 13), Fouque, Papanicolaou, and Sircar
(2000), Fouque et al. (2003), and Papageorgiou and Sircar (2008).

The rest of the paper is organized as follows: In Section 2, we introduce our modeling
framework. We also describe how the CDS spread can be computed in our framework.
In Section 3, we introduce the asymptotic expansion method. We obtain explicit (asymp-
totic) prices for bonds and equity options in Section 3.3. In Section 4, we describe the
calibration of our parameters and discuss our empirical results. Finally, figures show our
calibration results.

2. A FRAMEWORK FOR PRICING EQUITY AND CREDIT DERIVATIVES

2.1. The Model

Let (�,H, P) be a complete probability space supporting (i) correlated standard Brow-
nian motions �Wt = (W 0

t , W 1
t , W 2

t , W 3
t , W 4

t ), t ≥ 0, with

E
[
W 0

t , W i
t

] = ρi t, E
[
W i

t , W j
t
] = ρi j t, i , j ∈ {1, 2, 3, 4}, t ≥ 0,(2.1)

where ρi , ρi j ∈ (−1, 1) are such that the correlation matrix is positive definite, and (ii) a
Poisson process N independent of �W. Let us introduce the Cox process (time-changed



496 E. BAYRAKTAR AND B. YANG

Poisson process) Ñt � N(
∫ t

0 λs ds), t ≥ 0, where

λt = f (Yt, Zt),

dYt = 1
ε

(m − Yt) dt + ν
√

2√
ε

dW 2
t , Y0 = y,

d Zt = δc(Zt) dt +
√

δg(Zt) dW 3
t , Z0 = z,

(2.2)

in which ε, δ are (small) positive constants and f is a strictly positive, bounded, smooth
function. We also assume that the functions c and g satisfy Lipschitz continuity and
growth conditions so that the diffusion process for Zt has a unique strong solution. We
model the time of default as

τ = inf{t ≥ 0 : Ñt = 1}.(2.3)

We also take interest rate to be stochastic and model it as an Ornstein–Uhlenbeck process

drt = (α − βrt) dt + η dW 1
t , r0 = r ,(2.4)

for positive constants α, β, and η.
We model the stock price as the solution of the stochastic differential equation

d X̄t = X̄t

(
rtdt + σt dW 0

t − d
(

Ñt −
∫ t∧τ

0
λu du

))
, X̄0 = x,(2.5)

where the volatility is stochastic and is defined through

σt = σ
(
Ỹt
)

; dỸt =
(

1
ε

(m̃ − Ỹt) − ν̃
√

2√
ε

(Ỹt)

)
dt + ν̃

√
2√
ε

dW 4
t , Ỹ0 = ỹ.(2.6)

Here,  is a smooth, bounded function of one variable which represents the market
price of volatility risk. The function σ is also a bounded, smooth function. Note that the
discounted stock price is a martingale under the measure P, and at the time of default,
the stock price jumps down to zero. The pre-bankruptcy stock price coincides with the
solution of

d Xt = (rt + λt)Xt dt + σt Xt dW 0
t , X0 = x.(2.7)

It will be useful to keep track of different flows of information. Let F = {Ft, t ≥ 0} be
the natural filtration of �W. Denote the default indicator process by It = 1{τ≤t}, t ≥ 0,
and let I = {It, t ≥ 0} be the filtration generated by I . Finally, let G = {Gt, t ≥ 0} be an
enlargement of F such that Gt = Ft ∨ It, t ≥ 0.

Because we will take ε and δ to be small positive constants, the processes Y and Ỹ are
fast mean reverting, and Z evolves on a slower time scale. See Fouque et al. (2003) for an
exposition and motivation of multiscale modeling in the context of stochastic volatility
models.

We note that our specification of the intensity of default coincides with that of Papa-
georgiou and Sircar (2008), who considered only a framework for pricing credit deriva-
tives. Our stock price specification is similar to that of Linetsky (2006) and Carr and
Linetsky (2006) who considered a framework for only pricing equity options on default-
able stocks. Our volatility specification, on the other hand, is in the spirit of Fouque,
Papanicolaou, and Sircar (2000).
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Bayraktar (2008) considered a similar modeling framework to the one considered
here, but the interest rate was taken to be deterministic. In this paper, by extending this
modeling framework to incorporate stochastic interest rates, we are able to consistently
price credit and equity derivatives and produce more realistic yield curves and implied
volatility surfaces.

2.2. Equity and Credit Derivatives

In our framework, we will price European options and bonds of the same company in
a consistent way.

1. The price of a European call option with maturity T and strike price K is
given by

C(t; T, K) = E

[
exp

(
−
∫ T

t
rs ds

)
(X̄T − K)+1{τ>T}

∣∣∣∣Gt

]

= 1{τ>t}E
[

exp
(

−
∫ T

t
(rs + λs) ds

)
(XT − K)+

∣∣∣∣Ft

]
,

(2.8)

in which the equality follows from Lemma 5.1.2 of Bielecki and Rutkowski (2002).
(This lemma, lets us write a conditional expectation with respect to Gt in terms of
conditional expectations with respect to Ft.). Also, see Linetsky (2006) and Carr
and Linetsky (2006) for a similar computation.

On the other hand, the price of a put option with the same maturity and strike
price is

Put(t; T) = E

[
exp

(
−
∫ T

t
rs ds

)
(K − XT)+1{τ>T}

∣∣∣∣Gt

]

+ E

[
exp

(
−
∫ T

t
rs ds

)
K1{τ≤T}

∣∣Gt

]

= 1{τ>t}

(
E

[
exp

(
−
∫ T

t
(rs + λs) ds

)
(K − XT)+

∣∣∣∣Ft

]

+ KE

[
exp

(
−
∫ T

t
rs ds

) ∣∣∣∣Ft

]
− KE

[
exp

(
−
∫ T

t
(rs + λs) ds

) ∣∣∣∣Ft

])
.

(2.9)

2. Consider a defaultable bond with maturity T and par value of 1 dollar. We assume
the recovery of the market value, introduced by Duffie and Singleton (1999). In
this model, if the issuer company defaults prior to maturity, the holder of the bond



498 E. BAYRAKTAR AND B. YANG

recovers a constant fraction 1 − l of the pre-default value, with l ∈ [0, 1]. The price
of such a bond is

Bc(t; T)

= E

[
exp

(
−
∫ T

t
rs ds

)
1{τ>T} + exp

(
−
∫ τ

t
rs ds

)
1{τ≤T} (1 − l)Bc(τ−; T)

∣∣∣∣Gt

]

= E

[
exp

(
−
∫ T

t
(rs + l λs) ds

) ∣∣∣∣Ft

]
,

(2.10)

on {τ > t}, see Duffie and Singleton (1999) and Schönbucher (1998).
3. In Section 3, we will obtain explicit pricing formulas for equity options and bonds.

These formulas will be calibrated to the observed prices. Once our model is cali-
brated we can then determine the prices of more exotic derivatives. As an example,
below we will show how a CDS contract can be priced in our framework.

Consider a CDS written on Bc, which is an insurance against losses incurred
upon default from holding a corporate bond. The protection buyer pays a fixed
premium, the so-called CDS spread, to the protection seller. The premium is paid
on fixed dates T = (T1, . . . , TM), with TM being the maturity of the CDS contract.
We denote the CDS spread at time t by cds(t; T ). Our purpose is to determine a
fair value for the CDS spread so that what the protection buyer buyer is expected
to pay, the value of the premium leg of the contract, is equal to what the protection
seller is expected to pay, the value of the protection leg of the contract. For a more
detailed description of the CDS contract, see Bielecki and Rutkowski (2002) or
Schönbucher (2003).

The present value of the premium leg of the contract is

Premium(t; T ) = cds(t; T ) E

[
M∑

m=1

exp
(

−
∫ Tm

t
rs ds

)
1{τ>Tm}

∣∣∣∣Gt

]

= 1{τ>t}cds(t; T )
M∑

m=1

E

[
exp

(
−
∫ Tm

t
(rs + λs) ds

) ∣∣∣∣Ft

]
,

(2.11)

in which we assumed that t < T1. The present value of the protection leg of the contract
under our assumption of recovery of market value is (assuming l ∈ [0, 1))

Protection(t; T ) = 1{τ>t}E
[

exp
(

−
∫ τ

t
rs ds

)
1{τ≤TM}l Bc(τ−; TM)

∣∣∣∣Gt

]

= 1{τ>t}

(
l

1 − l

)(
Bc(t; TM) − E

[
exp

(
−
∫ TM

t
rs ds

)
1{τ>TM}

∣∣∣∣Gt

])

= 1{τ>t}

(
l

1 − l

)(
Bc(t; TM) − E

[
exp

(
−
∫ TM

t
(rs + λs) ds

) ∣∣∣∣Ft

])
,

(2.12)
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in which the second equality follows from (2.10). Now, the CDS spread can be determined,
by setting Protection(t; T ) = Premium(t; T ) and using equations (2.11) and (2.12), as

cds(t; T ) = 1{τ>t}
l

1 − l

Bc(t; TM) − E

[
exp

(
−
∫ TM

t
(rs + λs) ds

) ∣∣∣∣Ft

]
M∑

m=1

E

[
exp

(
−
∫ Tm

t
(rs + λs) ds

) ∣∣∣∣Ft

] when l ∈ [0, 1).

(2.13)

Note that when l = 1

Protection(t; T ) = 1{τ>t}E
[(∫ TM

t
λu du

)
exp

(
−
∫ TM

t
(rs + λs) ds

)]
.(2.14)

Observe that computing cds(t; T ) requires the value of l (an unobserved quantity)
and the value of Bc(t; TM). This value may or may not be available from the bond price
data. If Bc(t; TM) is not quoted, then one has to construct the yield curve to obtain
this value. Moreover, to compute cds(t; T ) we also need E[exp(− ∫ Ti

t (rs + λs) ds)|Ft], i ∈
{1, . . . , M}, which are not available. (Because the loss rate may not be equal to 1 these
values cannot be recovered directly from the bond prices.)

In the next section, we will develop approximate pricing formulas for equity options
and defaultable bonds. We will then calibrate these formulas to the option and bond data
in Section 4, and obtain the value of the loss rate and other model parameters. If we let
B̃c(t, T; l) denote the approximation for the price at time t of a defaultable bond that
matures at time T , and has loss rate l (see 4.1), then the model-implied CDS spread with
maturity TM can be obtained as

cds
model(t, TM) = l

1 − l
B̃c(t, TM; l) − B̃c(t, TM; 1)

M∑
m=1

B̃c(t, Tm; 1)

.(2.15)

Usually, to determine the CDS spread, one assumes that the bond has a recovery of
face value. We, on the other hand, use the recovery of market value assumption on the
bond to determine the value of the CDS spread. This is because we would like to first
calibrate our model to the bond prices, for which we made a recovery of market value
assumption. Also, the simplicity of the CDS spread formula under the recovery of market
value assumption justifies our choice.

3. EXPLICIT PRICING FORMULAS FOR CREDIT
AND EQUITY DERIVATIVES

3.1. Pricing Equation

Let Pε,δ denote

Pε,δ(t, Xt, rt, Yt, Ỹt, Zt) = E

[
exp

(
−
∫ T

t
(rs + lλs) ds

)
h(XT)

∣∣∣∣Ft

]
.(3.1)

When l = 1 and h(XT) = (XT − K)+, Pε,δ is the price of a call option (on a defaultable
stock). On the other hand, when h(XT) = 1, Pε,δ becomes the price of a defaultable bond.
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Using the Feynman–Kac formula, we can characterize Pε,δ as the solution
of

Lε,δ Pε,δ(t, x, r , y, ỹ, z) = 0,

Pε,δ(T, x, r , y, ỹ, z) = h(x),

(3.2)

where the partial differential operator Lε,δ is defined as

Lε,δ � 1
ε
L0 + 1√

ε
L1 + L2 +

√
δM1 + δM2 +

√
δ

ε
M3,(3.3)

in which

L0 � ν2 ∂2

∂y2
+ (m − y)

∂

∂y
+ ν̃2 ∂2

∂ ỹ2
+ (m̃ − ỹ)

∂

∂ ỹ
+ 2ρ24vṽ

∂2

∂y∂ ỹ
,

L1 � ρ2σ (ỹ)ν
√

2x
∂2

∂x∂y
+ ρ12ην

√
2

∂2

∂r∂y
+ ρ4σ (ỹ)ν̃

√
2x

∂2

∂x∂ ỹ

+ ρ14ην̃
√

2
∂2

∂r∂ ỹ
− (ỹ)ν̃

√
2

∂

∂ ỹ
,

L2 � ∂

∂t
+ 1

2
σ 2(ỹ)x2 ∂2

∂x2
+ (r + f (y, z))x

∂

∂x
+ (α − βr )

∂

∂r

+ σ (ỹ)ηρ1x
∂2

∂x∂r
+ 1

2
η2 ∂2

∂r 2
− (r + l f (y, z)),

M1 � σ (ỹ)ρ3g(z)x
∂2

∂x∂z
+ ηρ13g(z)

∂2

∂r∂z
, M2 � c(z)

∂

∂z
+ 1

2
g2(z)

∂2

∂z2
,

M3 � ρ23ν
√

2g(z)
∂2

∂y∂z
+ ρ34ν̃

√
2g(z)

∂2

∂ ỹ∂z
.

3.2. Asymptotic Expansion

We construct an asymptotic expansion for Pε,δ as ε, δ → 0. First, we consider an
expansion of Pε,δ in powers of

√
δ

Pε,δ = Pε
0 +

√
δPε

1 + δPε
2 + · · · .(3.4)

By inserting (3.4) into (3.2) and comparing the δ0 and δ terms, we obtain that Pε
0

satisfies (
1
ε
L0 + 1√

ε
L1 + L2

)
Pε

0 = 0,

Pε
0 (T, x, r , y, ỹ, z) = h(x),

(3.5)
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and that Pε
1 satisfies(

1
ε
L0 + 1√

ε
L1 + L2

)
Pε

1 = −
(
M1 + 1√

ε
M3

)
Pε

0 ,

Pε
1 (T, x, y, ỹ, z, r ) = 0.

(3.6)

Next, we expand the solutions of (3.5) and (3.6) in powers of
√

ε

Pε
0 = P0 + √

εP1,0 + εP2,0 + ε3/2 P3,0 + · · · ,(3.7)

Pε
1 = P0,1 + √

εP1,1 + εP2,1 + ε3/2 P3,1 + · · · .(3.8)

Inserting the expansion for Pε
0 into (3.5) and matching the 1/ε terms gives L0 P0 = 0. We

choose P0 not to depend on y and ỹ because the other solutions have exponential growth
at infinity (see, e.g., Fouque et al. 2003). Similarly, by matching the 1/

√
ε terms in (3.5)

we obtain that L0 P1,0 + L1 P0 = 0. Because L1 takes derivatives only with respect to y
and ỹ, we observe that L0 P1,0 = 0. We choose P1,0 not to depend on y and ỹ.

Now equating the order-one terms in the expansion of (3.5) and using the fact that
L1 P1,0 = 0, we get that

L0 P2,0 + L2 P0 = 0,(3.9)

which is a Poisson equation for P2,0 (see, e.g., Fouque, Papanicolaou, and Sircar 2000).
The solvability condition for this equation requires that

〈L2〉P0 = 0,(3.10)

where 〈·〉 denotes the averaging with respect to the invariant distribution of (Yt, Ỹt), whose
density is given by

�(y, ỹ) = 1
2πνν̃

exp

{
− 1

2
(
1 − ρ2

24

) [( y−m
ν

)2

+
(

ỹ−m̃
ν̃

)2

−2ρ24
(y−m)(ỹ − m̃)

νν̃

]}
.

(3.11)

Let us denote

σ̄1 � 〈σ (ỹ)〉, σ̄ 2
2 � 〈σ 2(ỹ)〉, λ̄(z) = 〈 f (y, z)〉.(3.12)

To demonstrate the effect of averaging on L2, let us write

〈L2〉 := ∂

∂t
+ 1

2
σ̄ 2

2 x2 ∂2

∂x2
+ (r + λ̄(z))x

∂

∂x
+ (α − βr )

∂

∂r

+ σ̄1ηρ1x
∂2

∂x∂r
+ 1

2
η2 ∂2

∂r 2
− (r + l λ̄(z))·

(3.13)

Together with the terminal condition

P0(T, x, r ; z) = h(x),(3.14)
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equation (3.10) defines the leading order term P0. On the other hand from (3.9), we can
also deduce that

P2,0 = −L−1
0 (L2 − 〈L2〉)P0.(3.15)

Matching the
√

ε order terms in the expansion of (3.5) yields

L0 P3,0 + L1 P2,0 + L2 P1,0 = 0,(3.16)

which is a Poisson equation for P3,0. The solvability condition for this equation requires
that

〈L2 P1,0〉 = −〈L1 P2,0〉 = 〈L1L−1
0 (L2 − 〈L2〉)

〉
P0,(3.17)

which along with the terminal condition

P1,0(T, x, r ; z) = 0,(3.18)

completely identifies the function P1,0. To obtain the second equality in (3.17), we used
(3.15).

Next, we will express the right-hand side of (3.17) more explicitly. To this end, let ψ, κ,
and φ be the solutions of the Poisson equations

L0ψ(ỹ) = σ (ỹ) − σ̄1, L0κ(ỹ) = σ 2(ỹ) − σ̄ 2
2 , and L0φ(y, z) = ( f (y, z) − λ̄(z)),

(3.19)

respectively. First observe that

(L2 − 〈L2 〉)P0 = 1
2

(
σ 2(ỹ) − σ̄ 2

2

)
x2 ∂2 P0

∂x2

+ (σ (ỹ) − σ̄1)ηρ1x
∂2 P0

∂x∂r
+ l ( f (y, z) − λ̄(z))

(
x
∂ P0

∂x
− P0

)
.

(3.20)

Now, along with (3.19), we can write

L−1
0 (L2 − 〈L2〉)P0 = 1

2
κ(ỹ)x2 ∂2 P0

∂x2
+ ψ(ỹ)ηρ1x

∂2 P0

∂x∂r
+ l φ(y, z)

(
x
∂ P0

∂x
− P0

)
.

(3.21)

Applying the differential operator L1 to the last expression yields

〈
L1L−1

0 (L2 − 〈L2〉)
〉
P0 = l ρ2ν

√
2〈σφy〉(z)x2 ∂ P0

∂x2
+ l ρ12ην

√
2〈φy〉(z)

∂

∂r

(
x
∂ P0

∂x
− P0

)

+ ρ4ν̃
√

2
(

1
2
〈σκỹ〉x ∂

∂x

(
x2 ∂2 P0

∂x2

)
+ 〈σψỹ〉ηρ1x

∂

∂x

(
x

∂2 P0

∂x∂r

))

+ ρ14ην̃
√

2
(

1
2
〈κỹ〉x2 ∂3 P0

∂x2∂r
+ 〈ψỹ〉ηρ1

(
x

∂3 P0

∂x∂r 2

))

− ν̃
√

2
(

1
2
〈κỹ〉x2 ∂ P0

∂x2
+ 〈ψỹ〉ηρ1x

∂2 P0

∂x∂r

)
.

(3.22)
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Finally, we insert the expression for Pε
1 in (3.8) into (3.6) and collect the terms with

the same powers of ε. Arguing as before, we obtain that P0,1 is independent of y and ỹ
and satisfies:

〈L2〉P0,1 = −〈M1〉P0, P0,1(T, x, r ; z) = 0.(3.23)

3.3. Explicit Pricing Formula

We approximate Pε,δ defined in (3.1) by

P̃ε,δ = P0 + √
εP1,0 +

√
δP0,1.(3.24)

Because the Vasicek interest rate process is unbounded, which implies that the potential
term in L2 or the discounting term in (3.1) is unbounded, the arguments of Fouque et al.
(2003) cannot be directly used. However, as in Cotton et al. (2004) and Papageorgiou
and Sircar (2008), one can write

Pε,δ(t, Xt, rt, Yt, Ỹt, Zt) = B(t, T)ET
[

exp
(

−
∫ T

t
lλs ds

)
h(XT)

∣∣∣∣Ft

]
=: B(t, T)F ε,δ(t, Xt, rt, Yt, Ỹt, Zt),

(3.25)

in which

dPT

dP
=

exp
(

−
∫ T

0
rs ds

)
B(0, T)

,(3.26)

and

B(t, T) = E

[
exp

(
−
∫ T

t
rs ds

) ∣∣∣∣Ft

]
.(3.27)

Now, the analysis of Fouque et al. (2003) can be used to approximate F ε,δ(t, x, r , y, ỹ, z).
As a result of this analysis for each (t, x, r , y, ỹ, z), there exists a constant C such that
|Pε,δ − P̃ε,δ| ≤ C · (ε + δ) when h is smooth, and |Pε,δ − P̃ε,δ| ≤ C · (ε log(ε) + δ + √

εδ)
when h is a put or a call pay-off. In what follows, we will obtain P0, P1,0, and P0,1 explicitly.

Our first objective is to develop a closed-form expression for P0, the solution of (3.10)
and (3.14).

PROPOSITION 3.1. The leading order term P0 in (3.24) is given by

P0(t, x, r ; z) = Bc
0(t, r ; z, T, l)

∫ ∞

−∞
h(exp(u))

1√
2πvt,T

exp
(

− (u − mt,T)2

2vt,T

)
du,(3.28)

where

Bc
0(t, r ; z, T, l) � exp

(− lλ̄(z)(T − t) + a(T − t) − b(T − t)r
)
,(3.29)

in which the functions a(s) and b(s) are defined as

a(s) =
(

η2

2β2
− α

β

)
s +

(
η2

β3
− α

β2

)
(exp(−βs) − 1) − η2

4β3
(exp(−2βs) − 1)(3.30)
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and b(s) = (1 − exp(−βs))/β. On the other hand,

vt,T =
(

σ̄ 2
2 + 2ηρ1σ̄1

β
+ η2

β2

)
(T − t) +

(
2ηρ1σ̄1

β2
+ 2η2

β3

)
exp(−β(T − t))

− η2

2β3
exp(−2β(T − t)) −

(
2ηρ1σ̄1

β2
+ 3η2

2β3

)
,

(3.31)

and

mt,T = log(x) + λ̄ · (T − t) − a(T − t) + b(T − t)r − 1
2

vt,T.(3.32)

Proof. By applying the Feynman-Kac theorem to (3.10) and (3.14) we have that

P0(t, x, r ; z) = E

[
exp

(
−
∫ T

t
(rs + lλ̄(z)) ds

)
h(ST)

∣∣∣∣St = x, rt = r
]

,(3.33)

where the dynamics of S is given by

d St = (rt + λ̄(z))St dt + σ̄2St dW̃0
t ,(3.34)

in which W̃0 is a Wiener process whose correlation with W 1 is ρ̄1 = σ̄1
σ̄2

ρ1.
Let us define

P̃0(t, x, r ) = E

[
exp

(
−
∫ T

t
rs ds

)
h (̃ST)

∣∣∣∣̃St = x, rt = r
]

,(3.35)

in which

d S̃t = rt S̃t dt + σ̄2 S̃t dW̃0
t .(3.36)

Then

P0(t, x, r ; z) = e−lλ̄(z) (T−t) P̃0(t, x exp(λ̄(z)(T − t)), r ).(3.37)

Now, by following Geman, Karoui, and Rochet (1995), we change the probability
measure P to the forward measure PT through the Radon–Nikodym derivative (3.26).

We can obtain the following representation of P̃0 using the T-forward measure

P̃0(t, S̃t, rt) = B(t, T)ET [h (̃ST) |Ft
] = B(t, T)ET [h(FT) |Ft] ,(3.38)

in which

Ft � S̃t

B(t, T)
,(3.39)

which is a PT martingale. Note that an explicit expression for B(t, T) is available since rt

is a Vasicek model, and it is given in terms of the functions a and b

B(t, T) = exp(a(T − t) − b(T − t)rt).(3.40)
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By applying Itô’s formula to (3.39), we observe that the dynamics of F are

d Ft = Ft
(
σ̄1 dW̃0

t + b(T − t)η dW̃1
t

)
,(3.41)

in which W̃1 is a PT Brownian motion whose correlation with the W̃0 (which is still a
Brownian motion under PT) is ρ̄1. Given Xt and B(t, T), the random variable log FT is
normally distributed with variance

vt,T = σ̄ 2
2 (T − t) + η2

∫ T

t
b2(T − s) ds + 2ηρ̄1σ̄2

∫ T

t
b(T − s) ds

=
(

σ̄ 2
2 + 2ηρ̄1σ̄2

β
+ η2

β2

)
(T − t) +

(
2ηρ̄1σ̄2

β2
+ 2η2

β3

)
exp(−β(T − t))

− η2

2β3
exp(−2β(T − t)) −

(
2ηρ̄1σ̄2

β2
+ 3η2

2β3

)
,

(3.42)

and mean

mt,T = log Ft − 1
2

∫ T

t

(
σ̄ 2

2 + b2(T − s)η2 + ρ̄1σ̄2b(T − s)η
)

ds = log
(

S̃t

B(t, T)

)
− 1

2
vt,T.

(3.43)

Now the result immediately follows. �
An immediate corollary of the last proposition is the following:

COROLLARY 3.2.

(i) When l = 1, h(x) = (x − K)+, then (3.28) becomes

C0(t, x, r ; z) = xN(d1) − K Bc
0(t, r ; z, T, 1)N(d2),(3.44)

in which N is the standard normal cumulative distribution function and

d1,2 =
log

x
K Bc

0(t, r ; z, T, 1)
± 1

2
vt,T

√
vt,T

.(3.45)

(ii) When l = 1, and h(x) = (K − x)+, then (3.28) becomes

Put0(t, x, r ; z) = −x + xN(d1) − K Bc
0(t, r ; z, T, 1)N(d2) + K Bc

0(t, r ; z, T, 0).

(3.46)

(iii) When h(x) = 1, then (3.28) coincides with (3.30) in Papageorgiou and Sircar
(2008).

PROPOSITION 3.3. The correction term
√

εP1,0 is given by

√
εP1,0 = −(T − t)

(
Vε

1 (z)x2 ∂2 P0

∂x2
+ Vε

2 x
∂

∂x

(
x2 ∂2 P0

∂x2

))

+ l Vε
3 (z)

(
−x

∂2 P0

∂x∂α
− ∂ P0

∂α

)
+ Vε

4 x2 ∂3 P0

∂x2∂α
+ Vε

5 x
∂2 P0

∂η∂x
+ Vε

6 x
∂2 P0

∂x∂α
,

(3.47)
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in which

Vε
1 (z) = √

ε

(
l ρ2ν

√
2〈σφy〉(z) − ν̃

√
2

1
2
〈κỹ〉

)
, Vε

2 = 1
2

√
ερ4ν̃

√
2〈σκỹ〉,

Vε
3 (z) = √

ε(ρ12ην
√

2〈φy〉(z)),

Vε
4 = −√

ε

(
1
2
ρ14ην̃

√
2〈κỹ〉 − ρ4ν̃

√
2〈σψỹ〉ηρ1 + ρ14ην̃

√
2〈ψỹ〉σ̄1ρ

2
1

)
,

Vε
5 = −√

ε(ρ14ην̃
√

2〈ψỹ〉ρ1),

Vε
6 = √

ε(−ρ4ν̃
√

2〈σψỹ〉ηρ1 + ρ14ην̃
√

2〈ψỹ〉σ̄1ρ
2
1 − ν̃

√
2〈ψỹ〉ηρ1).

(3.48)

Observe that Vε
i , i ∈ {1, . . . , 6} may be functions of the initial value of the slow factor

Z. They do not depend on initial values of Y, Ỹ; the effect of the fast scale factors
are averaged out (in the approximation formula). The V parameters depend on the fast
factors through their mean reversion level, volatility, and their correlation with the other
state variables. These parameters also do not depend on r directly, but P0 and P1,0 are
functions of this variable. Note that if we take the volatility, σt, to depend on a slow factor
(besides the fast factor Ỹ), say Z̃, then the parameters Vε

2 , Vε
4 , Vε

5 , Vε
6 will be functions

of the initial value of Z̃. On the other hand, Vε
1 will depend on both z and z̃, and Vε

3 will
only depend on z. One should note that the above expressions for these parameters will
still look the same.

Proof. Recall that P1,0 is the solution of (3.17) and (3.18) and that the right-hand side
of (3.17) is given by (3.22). The result is a simple algebraic exercise given the following
four observations:

(1) xn ∂n

∂xn commutes with 〈L2〉.
(2) −(T − t)(xn ∂n

∂xn )P0 solves

〈L2〉u =
(

xn ∂n

∂xn

)
P0, u(T, x, r ; z) = 0.(3.49)

(3) By differentiating (3.10) and (3.14) with respect to α, we see that − ∂ P0
∂α

also solves

〈L2〉u = ∂ P0

∂r
, u(T, x, r ; z) = 0.(3.50)

(4) Using 1) and 2) above and the equation we obtain by differentiating (3.10) with
respect to η, we can show that 1/η · (σ̄1ρ1x ∂2 P0

∂x∂α
− ∂ P0

∂η
) solves

〈L2〉u = ∂2 P0

∂r 2
, u(T, x, r ; z) = 0.(3.51) �

REMARK 3.4. By differentiating (3.10) with respect to r, we obtain

〈L2〉∂ P0

∂r
= −x

∂

∂x
P0 + β

∂ P0

∂r
+ P0.(3.52)
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Using observation 2 in the proof of Proposition 3.3, we see that 1
β

(−(T − t) ×
(x ∂ P0

∂x − P0) + ∂ P0
∂r ) solves

〈L2〉u = ∂ P0

∂r
, u(T, x, r ; z) = 0.(3.53)

Now, it follows from observation 3 in the proof of Proposition 3.3 that

−∂ P0

∂α
= 1

β

(
−(T − t)

(
x
∂ P0

∂x
− P0

)
+ ∂ P0

∂r

)
.(3.54)

Using this identity, we can express (3.47) only in terms of the “Greeks.”

Next, we obtain an explicit expression for P0,1, the solution of (3.23). We need some
preparation first. By differentiating (3.10) with respect to z, we see that ∂ P0

∂z solves

〈L2〉u = −λ̄′(z)x
∂ P0

∂x
+ l λ̄′(z)P0, u(T, x, r ; z) = 0.(3.55)

As a result (see Observation 2 in the proof of Proposition 3.3)

∂ P0

∂z
= (T − t)λ̄′(z)

(
x
∂ P0

∂x
− l P0

)
,(3.56)

from which it follows that −〈M1〉P0 can be represented as

−〈M1〉P0 = −(T − t)λ̄′(z)
(

σ̄1ρ3g(z)
(

x2 ∂2 P0

∂x2
+ (1 − l)x

∂ P0

∂x

)

+ ηρ13g(z)
(

x
∂2 P0

∂x∂r
− l

∂ P0

∂r

))
.

(3.57)

PROPOSITION 3.5. The correction term
√

δP0,1 is given by

√
δP0,1 = Vδ

1 (z)
(T − t)2

2

(
x2 ∂2 P0

∂x2
+ (1 − l)x

∂ P0

∂x

)
+ Vδ

2 (z)
1
β

[
x

∂2 P0

∂α∂x
− l

∂ P0

∂α

+ (T − t)2

2

(
x2 ∂2 P0

∂x2
− l x

∂ P0

∂x
+ l P0

)
− (T − t)

(
x

∂2 P0

∂r∂x
− l

∂ P0

∂r

)]
,

(3.58)

in which

Vδ
1 (z) =

√
δλ̄′(z)σ̄1ρ3g(z), Vδ

2 (z) =
√

δλ̄′(z)ηρ13g(z).(3.59)

Proof. We construct the solution from the following observations and superposition
since 〈L2〉 is linear:

(1) We first observe that (T−t)2

2 (xn ∂n

∂xn )P0 solves

〈L2〉u = −(T − t)
(

xn ∂n

∂xn

)
P0, u(T, x, r ; z) = 0.(3.60)
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(2) Next, we apply 〈L2〉 on (T − t) ∂ P0
∂r and obtain

〈L2〉
(

(T − t)
∂ P0

∂r

)
= −∂ P0

∂r
+ (T − t)

(
−x

∂ P0

∂x
+ β

∂ P0

∂r
+ P0

)
,(3.61)

as a result of which we see that

1
β

[
−∂ P0

∂α
− (T − t)2

2

(
x
∂ P0

∂x
− P0

)
+ (T − t)

∂ P0

∂r

]
(3.62)

solves

〈L2〉u = (T − t)
∂ P0

∂r
, u(T, x, r ; z) = 0.(3.63) �

4. CALIBRATION OF THE MODEL

In this section, we will calibrate the loss rate l and the parameters{
λ̄(z), Vε

1 (z), Vε
2 , Vε

3 (z), Vε
4 , Vε

5 , Vε
6 , Vδ

1 (z), Vδ
2 (z)

}
,

which appear in the expressions (3.28), (3.47), and (3.58) on a daily basis (see, e.g., Fouque
et al. 2003 and Papageorgiou and Sircar 2008 for similar calibration exercises carried out
only for the option data or only for the bond data). We demonstrate this calibration on
Ford Motor Company. Note that there are some common parameters between equity
options and corporate bonds. Therefore, our model will be calibrated simultaneously to
both of these data sets. We will also calibrate the parameters of the interest rate and stock
models to the yield curve data, historical spot rate data, and historical stock price data.

We look at how our model-implied volatility matches the real option-implied volatility.
We compare our results against those of Fouque et al. (2003). We see that even when we
make the unrealistic assumption of constant volatility, our model is able to produce a
very good fit.

Finally, in the context of index options (when λ = 0), using SPX 500 index options
data, we show the importance of accounting for stochastic interest rates by comparing
our model to that of Fouque, Papanicolaou, and Sircar (2000) and Fouque et al. (2003).

4.1. Data Description

• The daily closing stock price data is obtained from finance.yahoo.com.
• The stock option data is from OptionMetrics under WRDS database, which is the

same database used in Carr and Wu (2006).

– For index options, SPX 500 in our case, we use the data from their Volatility
Surface file. The file contains information on standardized options, both calls and
puts, with expirations of 30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 calender
days. Implied volatilities there are interpolated data using a methodology based
on kernel smoothing algorithm. The interpolated implied volatilities are very close
to real data because there are a great number of options each day for SPX 500
with different maturities and strikes. The calibration results for index options are
presented in Figure A.4 and only the data set on June 8, 2007 is used.
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– On September 15, 2006 (Friday) Ford announced that it would not be pay-
ing dividends (see, e.g., http://money.cnn.com/2006/09/15/news/companies/
ford/index.htm). Therefore, call options on Ford after that date do not have
early exercise premium starting from September 18, 2006. We use Ford’s implied
volatility surface on April 4, 2007 and June 8, 2007 to create Figures A.3 and
A.4, respectively. We excluded the observations with zero trading volume or with
maturity less than 9 days.

We find that the results given by using interpolated-implied volatilities in the
Volatility Surface File and data-implied volatilities differ. This may be due to the
fact that there are a limited number of option prices available for individual com-
panies; that is, there may not be enough data points for the implied volatilities to
be accurately interpolated. Therefore, we use the Option Price file, which contains
the historical option price information, of the OptionMetrics database

• For both days (April 4, 2007 and June 8, 2007), we use U.S. government Treasury yield
data with maturities: 1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years,
7 years, 10 years, 20 years. This data set is available at: www.treasury.gov/offices/
domestic-finance/debt-management/interest-rate/yield.shtml.

• Corporate bond data is obtained from Bloomberg. Number of available bond quotes
and bond maturities vary. Typically, there are around 15 data points, for example,
on June 8, we have the following maturities: 0.60278, 1.0222, 1.1861, 1.3139, 1.4083,
1.5944, 2.3889, 2.6028, 3.0194, 3.2694, 3.3972, 3.6472, 4.1722, 4.3806, 6.3139, and
9.5194.

4.2. The Parameter Estimation

The following parameters can be directly estimated from the spot-rate and stock price
historical data:

1. The parameters of the interest rate model {α, β, η} are obtained by a least-square
fitting to the Treasury yield curve as in Papageorgiou and Sircar (2008).

2. ρ̄1 = σ̄1
σ̄2

ρ1, the “effective” correlation between risk-free spot rate r (we use the 1-
month treasury bonds as a proxy for r) and stock price in (3.34) is estimated from
historical risk-free spot rate and stock price data.

3. σ̄2, the “effective” stock price volatility in (3.34) is estimated from the historical
stock price data.

Now, we detail the calibration method for l, λ̄(z) and Vε
1 (z), Vε

2 , Vε
3 (z), Vε

4 , Vε
5 ,

Vε
6 , Vδ

1 (z), Vδ
2 (z). We will minimize the in-sample quadratic pricing error using non-

linear least squares to calibrate these parameters on a daily basis. This way we find a risk
neutral model that matches a set of observed market prices. This risk neutral model can
then be used to price more exotic, illiquid, or over-the-counter derivatives. This practice
is commonly employed; and for further discussion of this calibration methodology we
refer to Cont and Tankov (2004) (see chapter 13, and the references therein).

Our calibration is carried out in two steps in tandem:

Step 1. Estimation of lλ̄(z) and {lVε
3 (z), lVδ

2 (z)} from the corporate bond price data. The
approximate price formula in (3.24) for a defaultable bond is

B̃c = Bc
0 + √

εBc
1,0 +

√
δBc

0,1,(4.1)
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in which Bc
0 is given by (3.29) and

√
εBc

1,0 = lVε
3 (z)

∂ Bc
0

∂α
,

√
δBc

0,1 = lVδ
2 (z)

1
β

[
−∂ Bc

0

∂α
+ (T − t)2

2
Bc

0 + (T − t)
∂ Bc

0

∂r

]
.

(4.2)

We obtain {lλ̄(z), lVε
3 (z), lVδ

2 (z)} from least-squares fitting, that is, by minimizing

n∑
i=1

(
Bc

obs(t, Si ) − Bc
model

(
t, Si ; lλ̄, lVε

3 (z), lVδ
2 (z)

))2
,(4.3)

where Bc
obs(t, Si ) is the observed market price of a bond that matures at time Si and

Bc
model(t, Si ; lλ̄, lVε

3 (z), lVδ
2 (z)) is the corresponding model price obtained from (4.1).

Here, n is the number of bonds that are traded at time t. For a fixed value of lλ̄(z) it
follows from (4.1) that {lVε

3 (z), lVδ
2 (z)} can be determined as the least-squares solution

of ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ Bc
0

∂α
(t, S1),

1
β

[
−∂ Bc

0

∂α
+ (S1 − t)2

2
Bc

0 + (S1 − t)
∂ Bc

0

∂r

]
...

...

∂ Bc
0

∂α
(t, Sn),

1
β

[
−∂ Bc

0

∂α
+ (Sn − t)2

2
Bc

0 + (Sn − t)
∂ Bc

0

∂r

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(

lVε
3 (z)

lVδ
2 (z)

)

=

⎛⎜⎜⎜⎜⎝
Bc

obs(t, S1) − Bc
0(t, S1; lλ̄)

...

Bc
obs(t, Sn) − Bc

0(t, Sn ; lλ̄)

⎞⎟⎟⎟⎟⎠ .

Now, we vary lλ̄(z) ∈ [0, M1] and choose the point {lλ̄, lVε
3 (z), lVδ

2 }(z) that mini-
mizes (4.3). Here, we take M1 = 1 guided by the results of Papageorgiou and Sircar
(2008).

Step 2. Estimation of {l, Vε
1 (z), Vε

2 , Vε
4 , Vε

5 , Vε
6 , Vδ

1 (z)} from the equity option data.
These parameters are calibrated from the stock options data by a least-squares fit to the
observed implied volatility. We choose the parameters to minimize

n∑
i=1

(Iobs(t, Ti , Ki ) − Imodel(t, Ti , Ki ; model parameters))2

≈
n∑

i=1

(Pobs(t, Ti , Ki ) − Pmodel(t, Ti , Ki ; model parameters))2

vega2(Ti , Ki )
,

(4.4)

in which Iobs(t, Ti , Ki ) and Imodel(t, Ti , Ki ; model parameters) are observed Black–
Scholes implied volatility and model Black–Scholes implied volatility, respectively. The
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right-hand side of (4.4) is from Cont and Tankov (2004), page 439. Here, Pobs(t, Ti , Ki ) is
the market price of a European option (a put or a call) that matures at time Ti and with
strike price Ki and Pmodel(t, Ti , Ki ; model parameters) is the corresponding model price
which is obtained from (3.24). As in Cont and Tankov (2004), vega(Ti , Ki ) is the market
implied Black–Scholes vega.

Let P0(t, Ti , Ki ; λ̄(z)) be either of (3.44) and (3.46) with K = Ki and T = Ti . Let us
introduce the Greeks,

g1 = −(T − t)x2 ∂2 P0

∂x2
, g2 = −(T − t)x

∂

∂x

(
x2 ∂2 P0

∂x2

)
, g3 = ∂

∂α

(
x
∂ P0

∂x
− P0

)
,

g4 = x2 ∂3 P0

∂x2∂α
, g5 = x

∂2 P0

∂η∂x
, g6 = x

∂2 P0

∂α∂x
, g7 = (T − t)2

2
x2 ∂2 P0

∂x2
,

g8 = 1
β

[
x

∂2 P0

∂α∂x
− ∂ P0

∂α
+ (T − t)2

2

(
x2 ∂2 P0

∂x2
− x

∂ P0

∂x
+ P0

)

− (T − t)
(

x
(

∂2 P0

∂r
∂x
)

− ∂ P0

∂r

)]
,

(4.5)

in which each term can be explicitly evaluated (see Appendix B).
Now from (3.24) and the results of Section 3.3 (with l = 1), we can write

Pmodel(t, Ti , Ki ) = P0(t, Ti , Ki ; λ̄(z)) + Vε
1 (z)g1(Ti , Ki ; λ̄(z)) + Vε

2 g2(Ti , Ki ; λ̄(z))

+ Vε
3 (z)g3(Ti , Ki ; λ̄(z)) + Vε

4 g4(Ti , Ki ; λ̄(z)) + Vε
5 g5(Ti , Ki ; λ̄(z))

+ Vε
6 g6(Ti , Ki ; λ̄(z)) + Vδ

1 (z)g7(Ti , Ki ; λ̄(z)) + Vδ
2 (z)g8(Ti , Ki ; λ̄(z)).

(4.6)

First, let us fix the value of l. Then, from Step 1, we can infer the values
of {λ̄(z), Vε

3 (z), Vδ
2 (z)}. Now the fitting problem in (4.4) is a linear least-squares

problem for {Vε
1 (z), Vε

2 , Vε
4 , Vε

5 , Vε
6 , Vδ

1 (z)}. Next, we vary l ∈ [0, 1] and choose
{l, Vε

1 (z), Vε
2 , Vε

4 , Vε
5 , Vε

6 , Vδ
1 (z)} so that (4.4) is minimized.

4.3. Fitting Ford’s Implied Volatility

We will compare how well our model fits the implied volatility against the model of
Fouque et al. (2003), which does not account for the default risk and for the randomness
of the interest rates. Although, we only calibrate seven parameters (hence we refer to our
model as the seven-parameter model) to the option prices (see the second step of the
estimation in Section 4.2), we have many more parameters than the model of Fouque
et al. (2003), which only has four parameters (we refer to this model as the four-parameter
model). Therefore, for a fair comparison, we also consider a model in which the volatility
is a constant. In this case, as we shall see below, there are only three parameters to
calibrate to the option prices, therefore we call it the three-parameter model.

Constant Volatility Model. In this case, we take σ̄1 = σ̄2 = σ in the expression for P0 in
Corollary 3.2. The expression for

√
δP0,1 remains the same as before. However,

√
εP1,0

simplifies to
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√
εP1,0 = −(T − t)Vε

1 (z)x2 ∂2 P0

∂x2
+ Vε

3 (z)
(

−x
∂2 P0

∂α∂x
+ ∂ P0

∂α

)
.(4.7)

This model has only three parameters, l, Vε
1 (z), Vδ

1 (z) that need to be calibrated to the
options prices, as opposed to the four-parameter model of Fouque et al. (2003).

As can be seen from Figure A.3, as expected, our seven-parameter model outperforms
the four-parameter model of Fouque et al. (2003) and fits the implied volatility data well.
But, what is surprising is that the three-parameter model, which does not account for
the volatility but accounts for the default risk and stochastic interest rate, has almost the
same performance as the seven-parameter model.

The seven-parameter model has a very rich implied volatility surface structure, the
surface has more curvature than that of the four-parameter model of Fouque et al.
(2003), whose volatility surface is more flat; see Figures A.1 and A.2. (The parameters to
draw these figures are obtained by calibrating the models to the data implied volatility
surface on June 8, 2007.) The seven-parameter model has a recognizable skew even for
longer maturities and has a much sharper skew for shorter maturities.

4.4. Fitting the Implied Volatility of the Index Options

The purpose of this section is to show the importance of accounting for stochastic
interest rates in fitting the implied volatility surface. Interest rate changes should, indeed,
be accounted for in pricing long maturity options. When we price index options, we set
λ̄ = 0 and our approximation in (3.24) simplifies to

Pε,δ ≈ P0 + √
εP1,0,(4.8)

in which P0 is given by Corollary 3.2 after settiing λ̄(z) = 0, and

√
εP1,0 = −(T − t)

(
Vε

1 x2 ∂2 P0

∂x2
+ Vε

2 x
∂

∂x

(
x2 ∂2 P0

∂x2

))

+ Vε
4 x2 ∂3 P0

∂x2∂α
+ Vε

5 x
∂2 P0

∂η∂x
+ Vε

6 x
∂2 P0

∂α∂x
.

(4.9)

Note that the difference of (4.8) with the model of Fouque et al. (2003) is that the latter
allows for a slow evolving volatility factor to better match the implied volatility at the
longer maturities. This was an improvement on the model of Fouque, Papanicolaou, and
Sircar (2000), which only has a fast scale component in the volatility model. We, on the
other hand, by accounting for stochastic interest rates, capture the same performance by
using only a fast scale volatility model.

From Figure A.4, we see that both (4.8) and Fouque et al. (2003) outperform the
model of Fouque et al. (2000), especially at the longer maturities (T = 9 months, 1 year,
1.5 years, and 2 years), and that their performances are very similar. This observation
emphasizes the importance of accounting for stochastic interest rates for long maturity
contracts.
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APPENDIX A: FIGURES
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FIGURE A.1. Implied volatility surface corresponding to (4.6), the seven-
parameter model. Here, α = 0.0063, β = 0.1034, η = 0.012, r = 0.0476 σ̄2 = 0.2576,

λ̄(z) = 0.027, (Vε
1 (z), Vε

2 , Vε
3 (z), Vε

4 , Vε
5 , Vε

6 , Vδ
1 (z), Vδ

2 (z)) = (0.9960,−0.0014, 0.0009,

0.0104,−0.6514, 0.3340,−0.1837,−0.0001).
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FIGURE A.2. Implied volatility surface corresponding to the four-parameter model
of Fouque et al. (2003). Here, r = 0.046, average volatility = 0.2546, and the pa-
rameters in (4.3) of Fouque et al. (2003) are chosen to be (Vε

2 , Vε
3 (z), Vδ

0 (z), Vδ
1 (z)) =

(−0.0164,−0.1718, 0.0006, 0.0630). Note that the parameters here and Figure A.1 are
both obtained by calibrating the models to the data implied volatility surface of Ford
Motor Company on June 8, 2007.
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FIGURE A.3. Implied volatility fit to the Ford call option data with maturities of
[17, 45, 72, 168, 285, 643] calender days on April 4, 2007. Model is calibrated across
all maturities but we plotted the implied volatilities for each maturity, separately.
Here, stock price x = 8.04, historical volatility σ̄2 = 0.3827, 1-month treasury rate r =
0.0516, estimated correlation between risk-free spot rate (1-month treasury) and stock
price ρ̄1 = −0.0327. Also α = 0.0037, β = 0.0872, η = 0.0001 which are obtained with
a least-square fitting to the Treasury yield curve on the April 4. “o,” empty circles =
observed data; “x” = stochastic vol + stochastic hazard rate + stochastic interest
rate = the seven-parameter model; small full circle = constant vol + stochastic hazard
rate + stochastic interest rate = the three-parameter model; “*” = the model of Fouque
et al. (2003) which has constant interest rate + stochastic vol (slow and fast scales) =
the four-parameter model.
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FIGURE A.4. The fit to the implied volatility surface of SPX on June 8, 2007 with
maturities [30, 60, 91, 122, 152, 182, 273, 365, 547, 730] calender days. Recall from
Section 4.1 that we use standardized options from the OptionMetrics. Models are
calibrated across all maturities, but we plot the implied volatility fits separately. The
parameters are: stock price x = 1507.67, dividend rate = 0.0190422, historical volatility
σ̄2 = 0.1124, 1-month treasury rate r = 0.0476, estimated correlation between risk-free
spot rate (1-month treasury) and stock price ρ̄1 = 0.020454. Also, α = 0.0078, β =
0.1173, η = 0.0241, which are obtained from a least-square fitting to the Treasury
yield curve. “o,” empty circles = observed data; “x” = implied volatility of (4.8),
“∗” = implied volatility of Fouque et al. (2003); small full circle = implied volatility of
Fouque, Papanicolaou, and Sircar (2000).
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APPENDIX B: EXPLICIT FORMULAE FOR THE GREEKS IN (4.5)

When h(x) = (x − K)+, we can explicitly express the Greeks in (4.5) in terms of f (x) =
1√
2π

exp(−x2/2) as

x2 ∂2C0

∂x2
= xf (d1)√

vt,T
, x

∂

∂x

(
x2 ∂2C0

∂x2

)
= xf (d1)√

vt,T

(
1 − d1√

vt,T

)
,

∂

∂α

(
x
∂C0

∂x
− C0

)
= −K B̄c(t, T)

(
T − t

β
+ exp(−β(T − t)) − 1

β2

)(
N(d2) − f (d2)√

vt,T

)
,

∂

∂α

(
x2 ∂2C0

∂x2

)
= −xf (d1)d1

vt,T

(
T − t

β
+ exp(−β(T − t)) − 1

β2

)
,

x
∂

∂x

(
∂C0

∂α

)
= xf (d1)√

vt,T

(
T − t

β
+ exp(−β(T − t)) − 1

β2

)
,

∂

∂r

(
x
∂C0

∂x
− C0

)
= −K B̄c(t, T)

(
1 − exp(−β(T − t))

β

)(
N(d2) − f (d2)√

vt,T

)
,

x
∂

∂x

(
∂C0

∂η

)
= xf (d1)

[
− 1√

vt,T

(
η

β2
(T − t) + 2η

2β3
(exp(−β(T − t)) − 1

)
− η

2β3
(exp(−2β(T − t)) − 1))

+
(

−1
2

log

(
x

K B̄c
t,T

v−3/2
t,T + 1

4
√

vt,T

))

×
((

2ρ̄1σ̄2

β
+ 2η

β2

)
(T − t) +

(
2ρ̄1σ̄2

β2
+ 4η

β3

)
exp(−β(T − t))

− η

β3
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(
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+ 3η
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))]
.
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