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T1a prostate cancers (cancer found incidentally in transurethral resection, <5% of the tissue) are 

indolent tumors of the transition zone. The overexpression of ERG and the inactivation of PTEN 

have been shown to be important drivers of carcinogenesis in large series of prostate cancer, but 

the genetics of transition zone tumors have not been well characterized. We evaluated the status 

of ERG and PTEN in formalin-fixed paraffin-embedded tissue using immunohistochemical and 

FISH analysis in 54 T1a transition zone tumors. The protein expression of ERG was determined 

using a rabbit monoclonal antibody and nuclear staining was scored as positive or negative. The 

genomic status of ERG was determined using 3 colored FISH using an ERG-TMPRSS2 tri-color 

probe set. The protein expression of PTEN was determined using a rabbit monoclonal antibody 

and cytoplasmic and nuclear staining was scored as positive or negative. The genomic status of 

PTEN was determined using dual color FISH with a PTEN probe and a CEP10 probe. We found 

ERG rearrangement in 2 of 54 tumors (4%), one with protein overexpression by 

immunohistochemistry. PTEN inactivation was seen in 13 of 54 tumors (24%). Nine of the 13 

PTEN alleles were inactivated by hemizygous deletion. No homozygous PTEN deletion was 

observed. PTEN deletion and ERG rearrangement were mutually exclusive. ERG rearrangement 

was rare compared to peripheral zone tumors and to PTEN inactivation in T1a transition zone 

tumors.  

 

 

Introduction 

Adenocarcinomas of the prostate gland arise within different anatomic zones that have 

varying clinical and molecular characteristics.[1,2] The vast majority of clinically significant 

prostatic adenocarcinomas arise in the peripheral zone, which have been widely investigated. 
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Transition zone tumors are estimated to make up 16-20% of all prostate tumors, but these tumors 

have been less extensively studied. Compared to peripheral zone tumors, transition zone tumors 

have a lower Gleason scores, lower Ki-67 labeling indices, less extraprostatic extension, seminal 

vesicle invasion, and lymphovascular invasion, suggesting they may have a limited malignant 

potential.[1-4] However, approximately 20% of transition zone tumors progress to disease that 

invades beyond the prostate, and approximately 5% have lymph node metastases.[5] Currently, 

there is no method to predict which transition zone tumors will follow an aggressive course.  

Recent discoveries have shown that peripheral zone tumors show a high prevalence of 

TMPRSS2–ERG gene fusions and PTEN inactivation, and the use of these two genetic events 

may help predict the clinical prognosis. Translocations between the TMPRSS2-ERG genes 

creates a constitutively active transcription factor that is uniquely found in approximately 50% of 

prostate tumors and thought to be essential for the carcinogenesis in this subset of tumors.[6-9] 

Large series of prostate cancer estimate PTEN inactivation occurs in approximately 18-23% of 

all tumors [6,9,10], and its loss allows for uninhibited activation of the PI3K/Akt/mTOR 

pathway and additional downstream targets. Mouse models that constitutively over-expressed 

ERG in a PTEN null background lead to highly penetrant prostate cancer that that arises much 

quicker than PTEN loss alone.[11] PTEN deletions have been associated with higher histologic 

grades, lymph node metastases and lower overall survival in TMPRSS2-ERG gene fusion 

positive and negative cancers.[6,9,12,13] Prostate cancers that lack TMPRSS2-ERG gene fusions 

and PTEN deletion have been shown to have a better prognosis, and the use of both gene 

rearrangements is the basis of a predictive model of disease reoccurrence.[14]  

Clinical course of T1a prostate cancers (tumors found incidentally in transurethral 

resection without clinically suspected tumor, making up <5% of the tissue) is variable with long 
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term followup.[15-17] The status of TMPRSS2-ERG fusions and PTEN and have not been well 

characterized in transition zone T1a tumor. These tumors typically do not receive treatment, but 

have the risk of progression to clinically significant disease. We assessed the genetic status of 

TMPRSS2-ERG fusions and PTEN in order to further understand the biology of prostate cancer 

in an attempt to find genetic predictors of aggressive behavior. Here we describe the frequency 

of PTEN inactivation and TMPRSS2-ERG gene fusions and their relationship in T1a tumors 

using human prostatic tissue removed by transurethral resection of the prostate (TURP). We 

analyzed 54 cases of Gleason score 7 or lower adenocarcinoma for the status of PTEN and 

TMPRSS2-ERG using both immunohistochemistry and fluorescence in situ hybridization.  

 

Methods 

Patients  

We identified 54 T1a prostate adenocarcinomas by reviewing TURP specimens from 

participating institutions (Indiana University, Indianapolis, USA; Polytechnic University of the 

Marche Region, United Hospitals, Ancona, Italy; Case Western Reserve University, Cleveland, 

USA; Henry Ford Health System, Detroit, MI; Cordoba University, Cordoba, Spain) between 

2003 and 2014. All TURP samples with carcinoma diagnoses were reviewed by 2 anatomic 

pathologists (KWF and LC) to confirm tumor volume was less than 5% of the resected specimen, 

meeting the criteria of the American Joint Committee on Cancer for T1a tumor staging. No 

Gleason grade 8 or higher cancers were found to have less than 5% involvement of a TURP 

sample. This research was approved by the Institutional Review Board.  

  

Immunohistochemistry 
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We evaluated the status of ERG and PTEN proteins in formalin-fixed, paraffin-embedded 

tissue using immunohistochemical staining. Briefly, 4-µm-thick sections were heated in a PT 

module (DAKO, Carpinteria, CA) in Tris/EDTA (pH 9.0) for 20 minutes and then cooled down 

to room temperature. Samples were incubated at 1:200 dilution with PTEN antibody (rabbit 

monoclonal antibody, clone D4.3 XP, Cell signaling technology, Danvers, MA) or ready-to-use 

ERG antibody (rabbit monoclonal antibody, clone EP111, Dako Carpinteria, CA.) for 30min and 

20min. respectively. This was followed by incubations with DAKO Envision Flex+rabbit linker, 

Envision HRP, and DAB+ chromogen. All other step followed the manufacturers’ provided 

protocols. A tumor was considered to have PTEN protein loss if the intensity of cytoplasmic 

staining was markedly decreased or entireley lost in more than 10% of tumor cells compared 

with surrounding benign glands.[18-21]. ERG nuclear staining was scored as positive or negative 

and any nuclear staining of ERG was considered as indicative of ERG expression.[22,23]  

 

Fluorescence in situ hybridization 

Four-micrometer-thick sections were obtained from formalin-fixed, paraffin-embedded 

specimen blocks and deparaffinized with two 15-minute washes in xylene, subsequently washed 

twice with 100% ethanol for 10 minutes each, and air-dried. The sections were heated at 95°C in 

0.1 mM citric acid (pH 6) solution (Invitrogen, Carlsbad, CA) for 10 min, rinsed with distilled 

water for 3 min, and washed with 2x saline-sodium citrate (SSC) for 5 min. Tissue digestion was 

performed by applying 0.4 ml of pepsin (Sigma, St Louis, MO, USA) solution (4 mg/ml in 0.9% 

NaCl in 0.01N HCl) to each slide and incubating the slides in a humidified box for 40 min at 

37°C. The slides were rinsed with distilled water for 5 min, washed with 2xSSC for 5 min, and 

then air dried.  
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For PTEN copy number assay, a probe cocktail containing BAC clone RP11-383D9-Orange 

(PTEN, Empire Genomics, Buffalo, NY, USA) and CEP10-Green (Abbott Molecular, Abbott 

Park, IL) diluted 1:25 in tDenHyb2 (Insitus, Albuquerque, NM, USA). The genomic status of 

ERG was determined using 3 colored FISH using a TMPRSS2 aqua probe, a 5’ ERG green probe, 

and a 3’ gold ERG probe. Five microliters of diluted probe were applied to each slide. Coverslips 

were placed over the slides and sealed with rubber cement. The slides were denatured at 80°C for 

10 min and hybridized at 37°C overnight. The coverslips were removed and the slides were 

extensively washed with two 0.1xSSC/1.5M urea solutions at 45°C for 20 min, in 2xSSC at 45°C 

for 10min, and then in 2xSSC/0.1% NP40 at 45°C for 10 min. Finally, the slides were washed 

with 2xSSC at room temperature for 5 min, air dried, counterstained with 10 µl DAPI/Antifade 

(DAPI in Fluorguard, 0.5 g/ml, Insitus, Albuquerque, NM, USA) and sealed with nail polish. 

    The hybridized slides were observed and documented using a MetaSystem imaging system 

and ISIS software (Belmont, MA, USA) under x100 oil objective. The images were acquired 

with a CoolCube 1 camera (MetaSystem) and analyzed with Isis software (Belmont, MA). The 

following filters were used: SP-100 for DAPI, FITC MF-101 for spectrum green, Gold 31003 for 

spectrum orange. Signals from each color channel (probe) were counted under false color, with 

computerized translation of each color channel into blue, green, red, or aqua. Four sequential 

focus stacks with 0.3 µm intervals were acquired and integrated into a single image to reduce 

thickness-related artifacts. For each case, 100 non-overlapping cancer cells nuclei were 

evaluated. Preparations were considered valid if >90% of the cells showed bright signals. 

Hemizygous deletion of PTEN was defined as ≥50% of tumor nuclei containing one PTEN 

signal, and with the presence of CEP 10 signals. Homozygous deletion of PTEN was defined as 

in ≥30% of tumor nuclei simultaneous loss of both PTEN signal, and with the presence of CEP 
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10 signals.[13,24,25] Cases with ERG signal abnormalities in ≥20% of the tumor cell population 

were considered to be positive.[22,26]  

 

Statistical methods 

Fisher exact tests were used to determine the association between PTEN protein 

expression and allele deletion status. Statistical significance was defined as p < 0.05 and all p 

values were two-sided. 

 

Results 

The samples we analyzed were composed of 51 Gleason grade 3+3=6 and 3 Gleason 

grade 3+4=7 prostatic adenocarcinomas, all of which involved less than 5% volume per sample. 

The average age was 73 years (range: 52-92 years), and the average specimen mass was 58 

grams (range: 3-260 g) (Table 1). 

We found ERG rearrangement by FISH in 2 of 54 tumors (4%), one with corresponding 

protein overexpression by immunohistochemistry (Figure 1 and Table 1). We did not find any 

ERG overexpression or ERG rearrangements in adjacent benign prostatic glands. We found 

PTEN protein loss in 13 of 54 (24%) tumors using immunohistochemistry (Figure 2 and Table 

2). The PTEN protein loss status was highly correlated with PTEN allele deletion detected by 

FISH method (p=0.0001). Nine of the 13 cases (69%) with PTEN protein loss showed 

hemizygous deletion of PTEN by FISH. No homozygous PTEN deletion was observed. We did 

not find any PTEN protein loss in adjacent benign tissue.  

 

Discussion 
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TMPRSS2-ERG rearrangements can be found in approximately 50% of peripheral zone 

tumors [6-9] and large series of prostate cancer estimate PTEN inactivation to occur in 

approximately 18-23% of all tumors [6,9,10]. Using a combination of IHC and FISH, we found 

that ERG overexpression (4%) is dramatically underrepresented in small T1a transition zone 

tumors. However, PTEN inactivation (24%) in stage T1a prostate cancer was similar to the most 

recent estimates of PTEN inactivation in large series of prostate cancer [6,9,10]. 

It is possible that our study using only immunohistochemistry and FISH studies might 

underestimate the true incidence of genetic PTEN inactivation, but other studies has shown a 75-

89% correlation between FISH and IHC.[6,18] A recent study has shown inactivating point 

mutations of PTEN occur in approximately 5% of samples, which would not be detected by 

FISH and IHC.[6] Even a minor upward adjustment in our estimation of PTEN inactivation in 

T1a tumors would not change the conclusion that the prevalence is similar to PTEN inactivation 

seen in peripheral zone tumors. PTEN deletion has been associated with a worse prognosis in 

peripheral zone cancers and the similar frequency of PTEN inactivation in our sample does not 

seem to be an explanation for the indolent behavior of transition zone tumors.[6,9,18,24] Larger 

data sets and prospective studies will be needed to assess the prognostic value of PTEN 

inactivation in transition zone tumors. More recent work has been done to optimize PTEN 

analysis by immunohistochemistry and that optimized four color FISH probes have been 

identified and applied in other cohorts of prostate cancer. These optimized assays have now been 

applied to a large multicenter cohort with rigorous statistical analysis. [21] The development of a 

clinical-grade, automated, and cost effective PTEN assay will facilitate further validation of 

PTEN as an important prognostic and predictive biomarker for prostate cancer.   
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TMPRSS2-ERG fusion proteins are seen in approximately 50% of prostate cancers, but 

these were dramatically underrepresented in our sample population. ERG is a member of the 

ETS family, which has 28 unique genes. Of these, FLI, ERG, ETV1 and ETV4 are commonly 

deregulated in cancer.[27] TMPRSS2 and ERG are located within 3 megabases of each other on 

chromosome 21, and large deletions, and less commonly translocations, help to explain the high 

prevalence of fusions involving ERG compared to other ETS family members.[28] ETS family 

members can also be fused to proteins other than TMPRSS2, but represent a tiny fraction of all 

fusion proteins.[29-32] ERG immunohistochemistry has approximately 85% sensitivity and 

specificity for ERG fusions confirmed by RT-PCR and can be used in conjunction with ERG 

FISH to increase confidence in identifying ERG fusion positive tumors up to 98.5%.[6,7,33,34] 

It is possible in our sample population that a different ETS family member or different partner 

other than TMPRSS2 is involved in rearrangements in some cases; however, this is unlikely to 

add a substantive fraction of ETS family-rearranged tumors, since other partners have a much 

lower incidence than ERG and TMPRSS2 was not aberrantly disrupted in any sample. 

The best defined role for TMPRSS2-ERG fusions appears to be in the initiation of 

carcinogenesis, as it is found in early lesions and typically homogenously maintained within high 

grade tumors.[22,35-37] However, there are emerging molecular pathways to carcinogenesis that 

appear to be mutually exclusive to ERG fusions: 1) Speckle-type POZ protein (SPOP) is the 

most commonly mutated gene in prostate cancer and acts as an E3 ubiquitin ligase adaptor that 

directly binds target proteins and promotes their cullin 3-dependent ubiquitination and 

proteolysis.[38,39] Mutations in SPOP occur in the substrate binding domain and prevent the 

interaction with target proteins leading to increased levels of oncogenic steroid receptor co-

activator-3 (SRC-3/AIB1) and the androgen receptor.[40-42]; 2) Chromodomain helicase DNA-
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binding protein 1 (CHD1) is a tumor suppressor located at 5q21 that is inactivated, mainly 

through deletion, in 13-26% of prostate cancers.[43-45] The loss of CHD1 inhibits AR-

dependent signaling, which is required for TMPRSS2-ETS family gene rearrangements, so CHD1 

inactivation and TMPRSS2-ETS family gene rearrangements are seldom identified in the same 

tumor.[46,47] Inactivation of CHD1 forces the developing cancer into a pathway of 

carcinogenesis that does not require TMPRSS2-ETS family rearrangements. Deletion of CHD1 

alone in cell line models of prostate cancer was insufficient to cause invasive carcinoma, and the 

additional genetic events required for malignancy remain undetermined [44]; 3) Serine peptidase 

inhibitor, Kalal type 1 (SPINK1) is overexpressed in approximately 6% of all prostate cancers 

and 10% of TMPRSS2-ETS family gene fusion negative cancers.[48,49] SPINK1 overexpression 

appears largely to be mutually exclusive with ERG fusion, and is highly associated with 6q15 

and 5q21 deletions, suggesting it represents a unique pathway to carcinogenesis.[49] SPINK1 

overexpressing tumors as sensitive to inhibition of EGFR and may be clinically amenable to 

targeted inhibition of EGFR.[50,51] 

PTEN inactivation is relatively common compared to ERG rearrangement in T1a prostate 

cancers. The low prevalence of TMPRSS2-ERG gene fusion positive cancers in our study 

suggests that the alternative molecular pathways to carcinogenesis may play a crucial role in T1a 

cancers. Further study is needed to define the role of these alternate pathways to tumorigenesis 

and assess their role in prognosis and targeted treatment regimens.  
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Figure Legends 

Figure 1 Histological and ERG status by immunohistochemistry and ERG FISH in T1a prostate 

cancer: Only a single example (1 of 54, 2%) of T1a prostate cancer (A) exhibited ERG protein 

expression by immunohistochemistry (B), and only 2 of 54 (4%) demonstrated ERG 

rearrangement by FISH (C). In each nucleus, one red-green-aqua signal triplet is closely 

juxtaposed, whereas the other copy exhibits a widely separated green signal (C). In most T1a 

prostate cancers (D), neither ERG protein expression (E) nor ERG rearrangement was present 

(F), the latter evidenced by two copies of closely juxtaposed red-green-aqua signals. 

 

Figure 2 PTEN loss in a subset of T1a prostate cancers: Among the 54 T1a prostate cancers (A), 

76% exhibited normal PTEN protein expression (B) and normal PTEN copy number (C) as 

indicated by 2 red (PTEN) and 2 green (CEP10) signals. A subset of 24% of T1a prostate cancers 

(D) showed loss of PTEN expression (E), which correlated with hemizygous PTEN deletion as 

indicated by the loss of 1 red signal (PTEN) and 2 normal green signals (CEP10). 

Table 1. Immunohistochemical and FISH assessment of ERG status 

ERG STATUS IHC + IHC - Total 

FISH Rearrangement + 1 1 2 

FISH Rearrangement - 0 52 52 

Total 1 53 54 

 

IHC: immunohistochemistry. 

 

Table 2. Immunohistochemical and FISH assessment of PTEN status 
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PTEN STATUS IHC + IHC - Total 

Deletion - 41 4 45 

Deletion + 0 9 9 

 41 13 54 

 

IHC: immunohistochemistry. 
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Figure 1 composite   . 
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Figure 2 composite  . 

 


