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Hox genes encode evolutionarily conserved transcription factors that control skeletal patterning in the developing embryo.
They are expressed in regionally restricted domains and function to regulate the morphology of specific vertebral and long
bone elements. Recent work has provided evidence that Hox genes continue to be regionally expressed in adult tissues. Fibro-
blasts cultured from adult tissues show broadly maintained Hox gene expression patterns. In the adult skeleton, Hox genes
are expressed in progenitor-enriched populations of mesenchymal stem/stromal cells (MSCs), and genetic loss-of-function
analyses have provided evidence that Hox genes function during the fracture healing process. This review will highlight our
current understanding of Hox expression in the adult animal and its function in skeletal regeneration. Developmental Dynamics
246:310–317, 2017. VC 2016 Wiley Periodicals, Inc.
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Introduction

Hox genes have essential functions in patterning the skeleton dur-
ing embryonic development. Genetic loss-of-function experiments
demonstrate severe, region specific malformations of the develop-
ing embryonic skeleton. Hox function in the adult skeleton has
received relatively little attention, but recent studies have led to
increased interest in Hox gene function in this tissue. Several stud-
ies report that Hox genes continue to be expressed in the adult
bone and function during repair following fracture injury (Gersch
et al., 2005; Ackema and Charite, 2008; Leucht et al., 2008; Bais
et al., 2009; Liedtke et al., 2010; Rux et al., 2016). In this review,
we will briefly highlight the embryonic skeletal functions of Hox
genes and then review and discuss what has been reported on their
expression and function in the adult animal. These most recent
discoveries regarding Hox genes in the adult skeleton open unex-
plored avenues of research that meaningfully impact the fields of
both mesenchymal stem/stromal cell biology and fracture healing.

Hox Genes During Embryonic Development

Hox genes are among the longest studied genes in developmental
biology. This group of homeodomain-containing transcription
factors is essential for patterning the anterior to posterior axis of
the developing embryo. Spontaneous, homeotic phenotypes (seg-
ment identity transformation) were first described in Drosophila
by William Bateson and by Calvin Bridges in the late 19th and

early 20th centuries (Bateson, 1894; Bridges and Morgan, 1923;
Maeda and Karch, 2009). Edward B. Lewis provided the seminal
discovery that these phenotypes are attributed to a tightly linked
region on a single chromosome. The Bithorax complex (com-
prised of the three Hox genes; ultrabithorax, abdominalA and
abdominalB) is a cluster of genes that function in a segment spe-
cific manner to pattern the posterior body plan of the fly (Fig. 1)
(Lewis, 1978). Loss-of-function mutations in Bithorax genes
result in anterior homeotic transformations wherein body seg-
ments that normally express the mutated Hox gene acquire the
identity/morphology of more anterior regions (Lewis, 1978).
Complementary work showed that gain-of-function mutations in
more anterior segments result in posterior homeotic transforma-
tions (Schneuwly et al., 1987; Kaufman et al., 1990). Taken
together, these findings demonstrate that the Drosophila Hox
genes are the key regulators in developing the morphology of
specific body segments during embryonic development.

Importantly, Hox genes are deeply evolutionarily conserved
and common to all bilaterian animals (Garcia-Fernandez, 2005).
In Drosophila, eight colinear Hox genes are responsible for seg-
mental patterning. During vertebrate evolution, gene amplifica-
tions and chromosomal duplications gave rise to the 39-gene,
four-cluster Hox complex that is observed in all mammals (Scott,
1992; Krumlauf, 1994; Garcia-Fernandez, 2005) (Fig. 1). These 39
genes are further subdivided into 13 paralogous groups (Hox1 to
Hox13) based on sequence similarity and position within the
cluster (Fig. 1). During development, the expression pattern
and functional domain of each Hox paralogous group directly
mirrors their colinear chromosomal organization. Hox1 and Hox2
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paralogs are expressed the earliest in development and in the
most anterior regions of the embryo. The remaining paralogs are
expressed sequentially later and in more posterior regions (Fig.
1). Strong epigenetic regulation guides this spatiotemporal onset
of expression during gastrulation and limb development
(Duboule, 1994; Zakany et al., 1997; Iimura and Pourquie, 2006;
Denans et al., 2015).

Functional redundancy among the members of each paralogous
group is a critical feature of the vertebrate Hox complex. Each set of
paralogs (color coordinated in Fig. 1) establishes a similar anterior
limit of expression along the AP axis that correlates with the region
in which they function (Dressler and Gruss, 1989; Duboule and Dolle,
1989; Graham et al., 1989; Gaunt, 1991; Izpisua-Belmonte et al.,
1991; Gaunt and Strachan, 1996). Minor skeletal malformations are
common in single Hox mutant mice, while the characteristic homeo-
tic transformation phenotypes require the loss of more than one
member of a paralogous group (Condie and Capecchi, 1994; Kostic
and Capecchi, 1994; Horan et al., 1995; Fromental-Ramain et al.,
1996a; van den Akker et al., 2001; Wellik and Capecchi, 2003; McIn-
tyre et al., 2007; Wellik, 2009; Mallo et al., 2010). For example, the
anterior limit of expression for the Hox10 genes is at the thoraco-
lumbar transition of the axial skeleton. Loss-of-function mutations
in all three of the Hox10 paralogous genes results in a morphologic
transformation of the lumbar and sacral vertebrae to rib-bearing,
thoracic-like vertebrae (Wellik and Capecchi, 2003). The result is an
animal with a dramatic extension of floating ribs through the lumbar
and sacral elements. Similarly, Hox11 genes are expressed beginning
at the lumbosacral transition and loss of Hox11 paralogous group
function results in transformation of this region to a lumbar
morphology (Wellik and Capecchi, 2003).

Hox Genes in Limb Development

The posterior Hox genes (Hox9 to Hox13) are additionally
required for establishing the morphology of the skeletal elements
of the limb. The limb is subdivided into three segments patterned

from proximal to distal: the stylopod (humerus and femur), the
zeugopod (radius/ulna and tibia/fibula), and the autopod (the
wrist/forepaw, ankle/hindpaw) (Fig. 1). Hox9 and Hox10 function
in the stylopod region (Fromental-Ramain et al., 1996a; Wellik
and Capecchi, 2003; Raines et al., 2015), Hox11 in the zeugopod
region (Davis et al., 1995; Wellik and Capecchi, 2003) and Hox13
in the autopod region (Fromental-Ramain et al., 1996b). In con-
trast to the homeotic transformation phenotypes observed with
loss of Hox gene function in the axial skeleton, loss of function
in the limbs result in dramatic, region-specific malformations of
the skeletal elements.

Many attempts have been made to understand the mechanism of
Hox gene function in limb development. A collective function of all
posterior genes has been demonstrated at the earliest stages of limb
bud formation (Kmita et al., 2005; Zakany et al., 2007; Sheth et al.,
2013). However, once the three limb segments are established,
surprisingly little is known regarding the region-specific mechanism
of Hox gene function. Work on the Hox11 group of genes shows
abrogation of Ihh expression in the growth plates of the zeugopod
elements when Hox11 function is lost (Boulet and Capecchi, 2004).
This result suggests that the Pthrp-Ihh feedback loop required for
endochondral ossification is disrupted but a specific mechanism for
Hox gene function in this loop has not been established.

Defining the cell type(s) in which Hox genes are expressed is
critical to understanding their function. The Hoxa11eGFP mouse
model was generated to carefully characterize expression during
limb development. At the earliest stages, Hoxa11eGFP is observed
broadly throughout the limb bud mesenchyme, but is quickly
restricted to the zeugopod region by E12.5, the region that Hox11
paralogs pattern. As skeletal development proceeds, a layer of
fibroblasts surrounds the element (called the perichondrium) and
eventually organizes into an outer mesenchymal cell layer of and
an inner osteoblast layer (Fig. 2, E14.5) (Hall and Miyake, 2000).
Consistent with other reports of in situ expression, Hoxa11eGFP
is not expressed in the differentiating cartilage elements that will
form the zeugopod bones, but is instead expressed in the

D
E

V
E

L
O

P
M

E
N

T
A

L
 D

Y
N

A
M

IC
S

Fig. 1. Schematic of Hox gene clusters and regional expression in the embryo. Each line represents an area of a single chromosome. Color-
coding of Hox genes show the conserved relationships between Drosophila and mammalian Hox genes, and the paralogous relationships within
the mammalian cluster. The depiction of the mouse skeleton reflects the anterior to posterior patterning of the axial skeleton and the proximal to
distal patterning of the limb skeleton.
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perichondrium immediately surrounding these elements (Suzuki
and Kuroiwa, 2002; Nelson et al., 2008; Swinehart et al., 2013;
Neufeld et al., 2014). As the cartilage element matures,
Hoxa11eGFP is visualized only in the outer perichondrium imme-
diately adjacent to the layer of osteoblasts that surround the car-
tilage element (Swinehart et al., 2013) (Fig. 2). Swinehart et al.
also reported the interesting observation that Hoxa11eGFP
remains highly expressed in zeugopod regions through newborn
stages; a result that suggested continued Hox gene function
beyond initial skeletal patterning (Swinehart et al., 2013).

Hox Genes Beyond Embryonic Skeletal
Patterning

Continued regional expression of Hox genes in adult tissues has
been suggested by several independent studies, largely by the char-
acterization of cells in culture. Human skin fibroblasts dissected
from different anatomical locations were cultured and subjected to
unbiased, whole transcriptome analyses. Results reveal broadly
restricted Hox gene expression profiles that have some predictive
values regarding the anatomical origin of the cultured population
(Chang et al., 2002; Rinn et al., 2006, 2008). Similar studies of
fibroblasts from adult human organs also show differential Hox
gene expression profiles (Yamamoto et al., 2003; Takahashi et al.,
2004), demonstrating that Hox gene expression is maintained
more generally in adult tissues and organs. Another in vitro study
provided evidence to support that Hox genes are expressed in cells
that display progenitor behaviors in vitro, at least in the skeletal
system. In these analyses, bone marrow cells were isolated, plated
at low density, and depleted of hematopoietic cells. Colonies of
fibroblasts that formed from single cells (CFU-Fs) were subjected to
unbiased expression analyses and results indicate that CFU-Fs
derived from different anatomical locations display region-specific
Hox gene expression profiles (Ackema and Charite, 2008). Related
to this, cord blood MSCs and bone marrow MSCs, populations that
are used widely for tissue engineering and regenerative medicine
also display differential Hox gene expression signatures in vitro
(Liedtke et al., 2010; Bosch et al., 2012). The collective evidence

from in vitro studies support the idea that regional Hox gene
expression is maintained in adults and continues to function.

Many mechanisms of adult fracture healing are recapitulated
events from embryonic skeletal development (Vortkamp et al.,
1998; Ferguson et al., 1999; Gerstenfeld et al., 2003). Recently,
Hox gene expression, and possible function, has been reported in
mouse models of fracture injury. The first of these studies showed
that at least some homeodomain-containing genes (Msx-1, Msx-2,
Prx1, Hoxa2, and Hoxd9) are reactivated during repair of femur
fracture by section in situ hybridization and by quantitative poly-
merase chain reaction (Gersch et al., 2005). In a similar study, cal-
luses from femur fractures were subjected to microarray analysis
at several stages following injury. It was reported that Hox genes
are expressed in the fracture callus following injury of the skeleton
and remain expressed throughout the repair process (Bais et al.,
2009). A possible function for Hox genes during fracture repair
was supported using a fracture transplant model. Mesenchymal
cells were dissected from the periosteum of either the tibia or the
mandible and were transplanted into the fracture site of either the
same or the opposite bone. Results of the study show formation of
cartilage in the mandibular injury when tibial cells were trans-
planted there. Mandibular injuries heal by intramembranous ossifi-
cation (direct bone formation by osteoblasts); the presence of
cartilage in these injuries suggests that the transplanted tibial cells
(and, therefore, potentially the differential Hox function in these
cells) induced the endochondral ossification process resulting in
ectopic cartilage formation (Leucht et al., 2008).

These studies highlight exciting new potential functions for
Hox genes in the adult skeleton. However, the extent to which the
region-specificity more closely mirrors embryonic expression
patterns was not carefully examined. In a new body of work, the
adult region specificity of Hox genes was examined further using
previously generated mouse genetic models that informed embry-
onic expression patterns and functions.

Hox Gene Expression in Adult MSCs

The expression of Hox11 genes through postnatal and adult
stages was examined using the Hoxa11eGFP mouse model.
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Fig. 2. Expression of Hox11 during development and fracture repair. Hox11-expressing cells are expressed through embryonic development,
postnatal, and adult stages, as well as during fracture healing. In the embryonic skeleton, Hox11-expressing cells are observed in the outer peri-
chondrium surrounding the cartilage anlagen of the skeleton. During postnatal stages and adult stages, Hox11 continues to be expressed in the
outer periosteum surrounding the limb skeleton. It is additionally expressed in the bone marrow at both of these stages, and very highly in the
endosteum during postnatal growth. Following fracture injury, Hox11-expressing cells expand with the forming callus.
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Results reveal that Hoxa11eGFPþ cells continue to be expressed
through postnatal development of the skeleton and into adult-
hood (Pineault et al., 2015; Rux et al., 2016). Hox11-expressing
cells are observed on the outer periosteal surface of the zeugopod
long bones and they are a rare population of cells within adult
bone marrow, consistent with expression expected for a mesen-
chymal stem/progenitor population (Fig. 2).

MSCs of the bone marrow (also called skeletal stem cells) are
defined by several in vitro and in vivo characteristics (reviewed
extensively by others; Schipani and Kronenberg, 2008; Bianco
et al., 2013; Bianco and Robey, 2015). In vitro, they adhere to
plastic, form CFU-Fs (an assay of self-renewal) and differentiate
to multiple mesenchymal lineages (e.g., chondrocytes, osteo-
blasts, and adipocytes). In vivo, MSCs are a rare population of
nonhematopoietic, nonendothelial stromal cells (CD45-, TER119-,
CD31/PECAM-) and they have essential functions in bone main-
tenance and repair. Recent studies and have definitively shown
that they contribute to the mature cell types required for both
processes (Morikawa et al., 2009; Mendez-Ferrer et al., 2010;
Park et al., 2012; Liu et al., 2013; Mizoguchi et al., 2014; Ono
et al., 2014; Zhou et al., 2014; Worthley et al., 2015; Yue et al.,
2016).

In addition, they have important roles in maintenance of the
hematopoietic stem cell niche (Calvi et al., 2003; Zhang et al.,
2003; Adams et al., 2007; Mendez-Ferrer et al., 2010; Frenette
et al., 2013; Kunisaki et al., 2013). Several surface markers posi-
tively identify freshly isolated, progenitor-enriched, bone mar-
row-MSCs: CD105, platelet derived growth factor receptor-alpha
(PDGFRa), Sca1, CD51 and leptin receptor (LepR) are among the
most commonly used (Chan et al., 2009, 2013; Morikawa et al.,
2009; Houlihan et al., 2012; Kunisaki et al., 2013; Pinho et al.,
2013; Zhou et al., 2014). Recent work has shown that LepR, and
the LepR-Cre mouse model, identifies the most highly enriched
MSC population based on current methodologies (Ding et al.,
2012; Ding and Morrison, 2013; Oguro et al., 2013; Zhou et al.,
2014). This population overlaps almost exactly with a combina-
tion of two cell surface markers, PDGFRa and CD51 (Pinho et al.,
2013). Cells marked in this lineage are largely quiescent, a feature
that is shared with other defined stem cells populations (i.e.,
hematopoietic stem cells) (Zhou et al., 2014).

In our recent work, we find that Hox11-expressing cells display
all of the characteristics of a progenitor-enriched MSC. When iso-
lated from fresh bone marrow, they co-express PDGFRa, CD51,
and LepR, three markers that label progenitor-enriched MSCs with-
in the bone marrow stroma (Kunisaki et al., 2013; Pinho et al.,
2013; Zhou et al., 2014). In vitro, Hoxa11eGFPþ cells are capable
of multi-lineage differentiation and demonstrate enhanced CFU-F
capacity. In vivo, Hoxa11eGFPþ cells expand following fracture
injury and continue to co-express PDGFRa, CD51, and LepR
throughout the repair process (Fig. 2). A lineage trace of trans-
planted Hoxa11eGFPþ cells shows that they are capable of differ-
entiating to osteoblasts and chondroctyes that contribute to
fracture callus formation and repair (Fig. 2) (Rux et al., 2016).

Maintained Regional Specificity of Hox
Genes in the Adult Skeleton

The expression of Hoxa11eGFP in adult, progenitor-enriched
MSCs led to the question of whether this represents the normal
expression for other or all Hox genes in regionally restricted bone

marrow–MSC populations. Adult Hoxa11eGFPþ cells are only
found in the zeugopod region of the limb, the region in which
Hox11 functions during embryonic development. Gene expres-
sion analyses comparing specific limb segments (radius/ulna to
humerus) demonstrate that adult Hox expression patterns mirror
those established in the embryo. Expression of Hox9 and Hox10
is found in the stylopod and Hox11 is found in the zeugopod.
Similarly, bone marrow of the sternum shows expression of Hox5
and Hox6 genes. Of note, Hox expression is only detected in Lep-
Rþ bone marrow MSCs in all bones examined (Fig. 3) (Rux et al.,
2016). Together, these results support that Hox-expressing cells
maintain regionally restricted boundaries in the adult skeleton,
and that expression is exclusive to LepRþMSCs in the skeleton.

These expression studies lead to questions regarding potential
functions for Hox in the adult skeleton. To explore the function
of Hox11 at adult stages, an ulnar fracture model was used in
Hox11 compound mutant animals in which three of the four
Hox11 alleles expressed in the forelimb are mutated. The remain-
ing wild-type allele circumvents developmental defects and
embryonic lethality and allows for functional analyses in the
adult. Hox11 compound mutant animals show perturbations in
fracture repair of the zeugopod skeleton that include delayed
bridging of bone across the fracture gap and incomplete remodel-
ing. Chondrogenic differentiation and soft callus formation are
severely disrupted in the Hox11 compound mutant callus. This
results in reduced endochondral ossification and delayed bridging
of the fracture gap. Importantly, Hox11 mutant MSCs
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Fig. 3. Schematic of Hox gene expression in the adult skeleton.
Recent data lead to a proposed model where Hox genes are
expressed in adult bone marrow MSCs. The expression of Hox genes
in these cells mirrors the regionally restricted pattern of expression and
function during embryonic development.
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demonstrate a decreased ability to differentiate to chondrocytes
and to osteoblasts in vitro, revealing a function for Hox11 in
MSC differentiation. Specific to a function for Hox genes, these
phenotypes are not observed in other regions of the limb in
Hox11 mutants. Femur (stylopod) fractures in Hox11 compound
mutant animals show no perturbations in healing of this bone
(Rux et al., 2016). Combined with the demonstration that Hox9
and Hox10 genes are expressed in stylopod MSCs, this result sug-
gests that these Hox genes function in the femur like Hox11
genes function in the zeugopod, but this has not been directly
tested. These novel findings lead to a proposed model whereby
Hox gene expression and function in adult bone marrow MSCs
mirror expression patterns from embryonic development (Fig. 3).

Perspectives and Future Directions

Knowledge of the function of Hox genes in the mammalian skele-
ton has been largely limited to the patterning information they
provide during embryonic development. Results from novel work
reviewed here outline two findings that critically expand knowl-
edge about Hox expression and function beyond embryonic
development: (1) Hox genes are expressed exclusively in adult,
LepRþMSCs and maintain the same regional restriction estab-
lished during development and (2) region-specific Hox function is
critical for the differentiation of mesenchymal-lineage cells to
chondrocytes and to osteoblasts that are required for adult frac-
ture repair.

The discovery that Hox genes maintain regional restriction
during adult fracture repair is a critical new finding for the field
of fracture healing biology. It is now clear that the transcription
factors that govern initial skeletal patterning in the embryo also
function in regeneration of the adult skeleton. Importantly, the
adult regional restriction exactly mirrors the region specificity of
Hox gene function during embryonic development. An important
question that remains: Do the different Hox paralogous groups
impart different function? Elucidating these potential differences
will continue to be the focus of future studies to more completely
understand the role for Hox genes in adult skeletal repair.

Regional specificity in the context of how MSCs function in
vivo is an interesting new layer of complexity for other aspects
MSC biology. These findings also lead to questions about the
function of Hox genes in contexts that are not specific to skeletal
regeneration. For example, LepR-expressing cells perform critical
roles in maintenance of the bone marrow hematopoietic stem cell
niche (Ding et al., 2012; Ding and Morrison, 2013; Oguro et al.,
2013; Zhou et al., 2015). Studies aimed at exploring functions for
Hox genes in this context have the potential to advance knowl-
edge on homing and maintenance functions of the HSC niche.

Hox-expressing cells also represent a possible origin for adult
MSCs. Reports from several groups suggest that adult MSCs arise
from the perichondrium/periosteum during embryonic and post-
natal stages (Maes et al., 2010; Liu et al., 2013; Mizoguchi et al.,
2014; Ono et al., 2014). Of interest, Hoxa11eGFP is expressed at
these times and in these regions (Fig. 2) (Swinehart et al., 2013).
Moreover, the work reviewed here shows that they continue to be
expressed in adult MSCs. Is it possible that Hox-expressing cells
of the skeleton represent the progenitor population at all of these
stages? Lineage-tracing studies initiated during embryonic and
postnatal developmental stages will provide critical information
regarding the contribution of Hox11-expressing cells throughout
the life of the animal.

The new data that show Hox gene expression in adult bone
marrow–MSCs also leads to the broader question: Do Hox genes
function broadly in adult MSCs outside the skeleton? During
embryonic development, Hox genes are also required for many
other aspects of organogenesis. Similar to the pattern observed in
the skeleton, the function of a paralogous group of genes is
regionally restricted and is colinear with their chromosomal
arrangement. Hox3 paralogous group genes function in the thy-
mus, Hox5 genes in the lung, Hox6 genes in the pancreas, and
Hox10 and Hox11 genes in the kidney and the spleen (Roberts
et al., 1994; Manley and Capecchi, 1998; Wellik et al., 2002;
Yallowitz et al., 2011; Boucherat et al., 2013; Chojnowski et al.,
2014; Hrycaj et al., 2015; Larsen et al., 2015). In the adult, tissue
resident fibroblasts/mesenchymal cells can be isolated from all of
these organs (and more), and maintained Hox expression has also
been noted (Yamamoto et al., 2003; Takahashi et al., 2004; da
Silva Meirelles et al., 2006; Crisan et al., 2008; Worthley et al.,
2015). However, it is unclear whether Hox gene functions are also
maintained in these adult organs. As a specific example, Hox11
genes are expressed in embryonic muscle connective tissue fibro-
blasts and function in the muscle patterning of the zeugopod
limb (Swinehart et al., 2013). Whether these cells remain in adult
muscle tissue and function in maintenance and repair will be an
interesting avenue to pursue.

Despite the growing body of knowledge regarding in vivo
functions for adult MSCs, the major interest in these cells remains
in regenerative medicine/tissue engineering applications. MSCs
are capable of differentiating into bone and cartilage in vitro and
this has been a major influence on tissue engineering strategies
and in vivo transplantation methods (reviewed in Meijer et al.,
2007). Importantly, recent studies aimed at developing novel tis-
sue engineering protocols use strategies based on developmental
signaling pathways to improve efficiency for clinical use (Lenas
et al., 2009; Scotti et al., 2010). Hox genes have not been consid-
ered in this context, but they may be relevant to this effort.
Understanding the importance of regionally restricted Hox gene
expression and function will be critical in future studies involv-
ing MSCs for regenerative medicine. It may be important to
derive MSCs from regions that are appropriate for intended use in
these applications. “Matching” Hox gene function in vitro with
the intended tissue in vivo, may prove useful for the viability of
transplants. Alternatively, it may be beneficial in future tissue
engineering strategies to manipulate regional Hox gene expres-
sion/function for specific differentiation strategies. Likewise, it
will also be of interest to explore how to change Hox gene
expression status in various in vitro organ and tissue differentia-
tion strategies to develop desired differentiation outcomes that
are relevant for transplantation in vivo.

Conclusions

Regenerative and normal physiologic processes in the adult show
an increasing dependence on pathways used and established dur-
ing embryogenesis. The collective results exploring Hox genes
beyond embryonic development demonstrate that Hox gene
expression is broadly maintained in the adult skeleton. It is also
increasingly evident that the regional restriction that is estab-
lished during embryonic development is maintained. This leads to
a model whereby specific Hox genes required for patterning the
morphology of skeletal elements during embryonic development
may also be required for re-patterning the morphology of those
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elements during maintenance, regenerative and repair processes.
Continued work will provide new knowledge on this important
topic.
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