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Abstract 

Hox genes encode evolutionarily conserved transcription factors that control 

skeletal patterning in the developing embryo.  They are expressed in regionally 

restricted domains and function to regulate the morphology of specific vertebral and 

long bone elements.  Recent work has provided evidence that Hox genes continue to be 

regionally expressed in adult tissues.  Fibroblasts cultured from adult tissues show 

broadly maintained Hox gene expression patterns.  In the adult skeleton, Hox genes are 

expressed in progenitor-enriched populations of mesenchymal stem/stromal cells 

(MSCs), and genetic loss-of-function analyses have provided evidence that Hox genes 

function during the fracture healing process.  This review will highlight our current 

understanding of Hox expression in the adult animal and its function in skeletal 

regeneration. 
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Introduction 

 Hox genes have essential functions in patterning the skeleton during embryonic 

development.  Genetic loss-of-function experiments demonstrate severe, region specific 

malformations of the developing embryonic skeleton.  Hox function in the adult skeleton 

has received relatively little attention, but recent studies have led to increased interest in 

Hox gene function in this tissue.  Several studies report that Hox genes continue to be 

expressed in the adult bone and function during repair following fracture injury (Ackema 

and Charite, 2008; Bais et al., 2009; Gersch et al., 2005; Leucht et al., 2008; Liedtke et 

al., 2010; Rux et al., 2016).  In this review, we will briefly highlight the embryonic 

skeletal functions of Hox genes and then review and discuss what has been reported on 

their expression and function in the adult animal.  These most recent discoveries 

regarding Hox genes in the adult skeleton open unexplored avenues of research that 

meaningfully impact the fields of both mesenchymal stem/stromal cell biology and 

fracture healing. 

 

Hox Genes during embryonic development 

Hox genes are among the longest studied genes in developmental biology.  This 

group of homeodomain-containing transcription factors is essential for patterning the 

anterior to posterior axis of the developing embryo.  Spontaneous, homeotic 

phenotypes (segment identity transformation) were first described in Drosophila by 

William Bateson and by Calvin Bridges in the late 19th and early 20th centuries (Bateson, 

1894; Bridges and Morgan, 1923; Maeda and Karch, 2009).  Edward B. Lewis provided 

the seminal discovery that these phenotypes are attributed to a tightly linked region on a 
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single chromosome.  The Bithorax complex (comprised of the three Hox genes; 

ultrabithorax, abdominalA and abdominalB) is a cluster of genes that function in a 

segment specific manner to pattern the posterior body plan of the fly (Figure 1) (Lewis, 

1978).  Loss-of-function mutations in Bithorax genes result in anterior homeotic 

transformations wherein body segments that normally express the mutated Hox gene 

acquire the identity/morphology of more anterior regions (Lewis, 1978).  Complementary 

work showed that gain-of-function mutations in more anterior segments result in 

posterior homeotic transformations (Kaufman et al., 1990; Schneuwly et al., 1987).  

Taken together, these findings demonstrate that the Drosophila Hox genes are the key 

regulators in developing the morphology of specific body segments during embryonic 

development. 

Importantly, Hox genes are deeply evolutionarily conserved and common to all 

bilaterian animals (Garcia-Fernandez, 2005).  In Drosophila, eight colinear Hox genes 

are responsible for segmental patterning.  During vertebrate evolution, gene 

amplifications and chromosomal duplications gave rise to the 39-gene, four-cluster Hox 

complex that is observed in all mammals (Garcia-Fernandez, 2005; Krumlauf, 1994; 

Scott, 1992) (Figure 1).  These 39 genes are further subdivided into 13 paralogous 

groups (Hox1 to Hox13) based on sequence similarity and position within the cluster 

(Figure 1).  During development, the expression pattern and functional domain of each 

Hox paralogous group directly mirrors their colinear chromosomal organization.  Hox1 

and Hox2 paralogs are expressed the earliest in development and in the most anterior 

regions of the embryo.  The remaining paralogs are expressed sequentially later and in 

more posterior regions (Figure 1).  Strong epigenetic regulation guides this 
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spatiotemporal onset of expression during gastrulation and limb development (Denans 

et al., 2015; Duboule, 1994; Iimura and Pourquie, 2006; Zakany et al., 1997). 

Functional redundancy among the members of each paralogous group is a 

critical feature of the vertebrate Hox complex.  Each set of paralogs (color coordinated 

in figure 1) establishes a similar anterior limit of expression along the AP axis that 

correlates with the region in which they function (Dressler and Gruss, 1989; Duboule 

and Dolle, 1989; Gaunt, 1991; Gaunt and Strachan, 1996; Graham et al., 1989; Izpisua-

Belmonte et al., 1991).  Minor skeletal malformations are common in single Hox mutant 

mice, while the characteristic homeotic transformation phenotypes often require the loss 

of more than one member of a paralogous group (Condie and Capecchi, 1994; 

Fromental-Ramain et al., 1996a; Horan et al., 1995; Kostic and Capecchi, 1994; Mallo 

et al., 2010; McIntyre et al., 2007; van den Akker et al., 2001; Wellik, 2009; Wellik and 

Capecchi, 2003).  For example, the anterior limit of expression for the Hox10 genes is at 

the thoracolumbar transition of the axial skeleton.  Loss-of-function mutations in all three 

of the Hox10 paralogous genes results in a morphologic transformation of the lumbar 

and sacral vertebrae to rib-bearing, thoracic-like vertebrae (Wellik and Capecchi, 2003).  

The result is an animal with a dramatic extension of floating ribs through the lumbar and 

sacral elements.  Similarly, Hox11 genes are expressed beginning at the lumbosacral 

transition and loss of Hox11 paralogous group function results in transformation of this 

region to a lumbar morphology (Wellik and Capecchi, 2003). 
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Hox genes in limb development 

The posterior Hox genes (Hox9 to Hox13) are additionally required for 

establishing the morphology of the skeletal elements of the limb.  The limb is subdivided 

into three segments patterned from proximal to distal: the stylopod (humerus and 

femur), the zeugopod (radius/ulna and tibia/fibula), and the autopod (the wrist/forepaw, 

ankle/hindpaw) (Figure 1).  Hox9 and Hox10 function in the stylopod region (Fromental-

Ramain et al., 1996a; Raines et al., 2015; Wellik and Capecchi, 2003), Hox11 in the 

zeugopod region (Davis et al., 1995; Wellik and Capecchi, 2003) and Hox13 in the 

autopod region (Fromental-Ramain et al., 1996b).  In contrast to the homeotic 

transformation phenotypes observed with loss of Hox gene function in the axial 

skeleton, loss of function in the limbs result in dramatic, region-specific malformations of 

the skeletal elements.   

Many attempts have been made to understand the mechanism of Hox gene 

function in limb development.  A collective function of all posterior genes has been 

demonstrated at the earliest stages of limb bud formation (Kmita et al., 2005; Sheth et 

al., 2013; Zakany et al., 2007).  However, once the three limb segments are 

established, surprisingly little is known regarding the region-specific mechanism of Hox 

gene function.  Work on the Hox11 group of genes shows abrogation of Ihh expression 

in the growth plates of the zeugopod elements when Hox11 function is lost (Boulet and 

Capecchi, 2004).  This result suggests that the Pthrp-Ihh feedback loop required for 

endochondral ossification is disrupted but a specific mechanism for Hox gene function 

in this loop has not been established.  
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Defining the cell type(s) in which Hox genes are expressed is critical to 

understanding their function.  The Hoxa11eGFP mouse model was generated to 

carefully characterize expression during limb development.  At the earliest stages, 

Hoxa11eGFP is observed broadly throughout the limb bud mesenchyme, but is quickly 

restricted to the zeugopod region by E12.5, the region that Hox11 paralogs pattern.  As 

skeletal development proceeds, a layer of fibroblasts surrounds the element (called the 

perichondrium) and eventually organizes into an outer mesenchymal cell layer of and an 

inner osteoblast layer (Figure 2, E14.5) (Hall and Miyake, 2000).  Consistent with other 

reports of in situ expression, Hoxa11eGFP is not expressed in the differentiating 

cartilage elements that will form the zeugopod bones, but is instead expressed in the 

perichondrium immediately surrounding these elements (Nelson et al., 2008; Neufeld et 

al., 2014; Suzuki and Kuroiwa, 2002; Swinehart et al., 2013).  As the cartilage element 

matures, Hoxa11eGFP is visualized only in the outer perichondrium immediately 

adjacent to the layer of osteoblasts that surround the cartilage element (Swinehart et al., 

2013) (Figure 2).  Swinehart, et al. also reported the interesting observation that 

Hoxa11eGFP remains highly expressed in zeugopod regions through newborn stages; 

a result that suggested continued Hox gene function beyond initial skeletal patterning 

(Swinehart et al., 2013). 

 

Hox genes beyond embryonic skeletal patterning 

Continued regional expression of Hox genes in adult tissues has been suggested 

by several independent studies, largely by the characterization of cells in culture.  

Human skin fibroblasts dissected from different anatomical locations were cultured and 
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subjected to unbiased, whole transcriptome analyses.  Results reveal broadly restricted 

Hox gene expression profiles that have some predictive values regarding the 

anatomical origin of the cultured population (Chang et al., 2002; Rinn et al., 2006; Rinn 

et al., 2008).  Similar studies of fibroblasts from adult human organs also show 

differential Hox gene expression profiles (Takahashi et al., 2004; Yamamoto et al., 

2003), demonstrating that Hox gene expression is maintained more generally in adult 

tissues and organs.  Another in vitro study provided evidence to support that Hox genes 

are expressed in cells that display progenitor behaviors in vitro, at least in the skeletal 

system.  In these analyses, bone marrow cells were isolated, plated at low density, and 

depleted of hematopoietic cells.  Colonies of fibroblasts that formed from single cells 

(CFU-Fs) were subjected to unbiased expression analyses and results indicate that 

CFU-Fs derived from different anatomical locations display region-specific Hox gene 

expression profiles (Ackema and Charite, 2008).  Related to this, cord blood MSCs and 

bone marrow MSCs, populations that are used widely for tissue engineering and 

regenerative medicine also display differential Hox gene expression signatures in vitro 

(Bosch et al., 2012; Liedtke et al., 2010).  The collective evidence from in vitro studies 

support the idea that regional Hox gene expression is maintained in adults and 

continues to function. 

Many mechanisms of adult fracture healing are recapitulated events from 

embryonic skeletal development (Ferguson et al., 1999; Gerstenfeld et al., 2003; 

Vortkamp et al., 1998).  Recently, Hox gene expression, and possible function, has 

been reported in mouse models of fracture injury.  The first of these studies showed that 

at least some homeodomain-containing genes (Msx-1, Msx-2, Prx1, Hoxa2 and Hoxd9) 
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are reactivated during repair of femur fracture by section in situ hybridization and by 

qPCR (Gersch et al., 2005).  In a similar study, calluses from femur fractures were 

subjected to microarray analysis at several stages following injury.  It was reported that 

Hox genes are expressed in the fracture callus following injury of the skeleton and 

remain expressed throughout the repair process (Bais et al., 2009).  A possible function 

for Hox genes during fracture repair was supported using a fracture transplant model.  

Mesenchymal cells were dissected from the periosteum of either the tibia or the 

mandible and were transplanted into the fracture site of either the same or the opposite 

bone.  Results of the study show formation of cartilage in the mandibular injury when 

tibial cells were transplanted there.  Mandibular injuries heal by intramembranous 

ossification (direct bone formation by osteoblasts); the presence of cartilage in these 

injuries suggests that the transplanted tibial cells (and therefore potentially the 

differential Hox function in these cells) induced the endochondral ossification process 

resulting in ectopic cartilage formation (Leucht et al., 2008). 

These studies highlight exciting new potential functions for Hox genes in the 

adult skeleton.  However, the extent to which the region-specificity more closely mirrors 

embryonic expression patterns was not carefully examined.  In a new body of work, the 

adult region specificity of Hox genes was examined further using previously generated 

mouse genetic models that informed embryonic expression patterns and functions. 

 

Hox gene expression in adult MSCs 

The expression of Hox11 genes through postnatal and adult stages was 

examined using the Hoxa11eGFP mouse model.  Results reveal that Hoxa11eGFP+ 

Page 9 of 29

John Wiley & Sons, Inc.

Developmental Dynamics

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
cells continue to be expressed through postnatal development of the skeleton and into 

adulthood (Pineault et al., 2015; Rux et al., 2016).  Hox11-expressing cells are 

observed on the outer periosteal surface of the zeugopod long bones and they are a 

rare population of cells within adult bone marrow, consistent with expression expected 

for a mesenchymal stem/progenitor population (Figure 2).  

MSCs of the bone marrow (also called skeletal stem cells) are defined by several 

in vitro and in vivo characteristics (reviewed extensively by others (Bianco et al., 2013; 

Bianco and Robey, 2015; Schipani and Kronenberg, 2008)).  In vitro, they adhere to 

plastic, form CFU-Fs (an assay of self-renewal) and differentiate to multiple 

mesenchymal lineages (e.g. chondrocytes, osteoblasts and adipocytes).  In vivo, MSCs 

are a rare population of non-hematopoietic, non-endothelial stromal cells (CD45-, 

TER119-, CD31/PECAM-) and they have essential functions in bone maintenance and 

repair.  Recent studies and have definitively shown that they contribute to the mature 

cell types required for both processes (Liu et al., 2013; Mendez-Ferrer et al., 2010; 

Mizoguchi et al., 2014; Morikawa et al., 2009; Ono et al., 2014; Park et al., 2012; 

Worthley et al., 2015; Yue et al., 2016; Zhou et al., 2014).  In addition, they have 

important roles in maintenance of the hematopoietic stem cell niche (Adams et al., 

2007; Calvi et al., 2003; Frenette et al., 2013; Kunisaki et al., 2013; Mendez-Ferrer et 

al., 2010; Zhang et al., 2003).  Several surface markers positively identify freshly 

isolated, progenitor-enriched, bone marrow-MSCs: CD105, PDGFRα, Sca1, CD51 and 

Leptin Receptor (LepR) are among the most commonly used (Chan et al., 2009; Chan 

et al., 2013; Houlihan et al., 2012; Kunisaki et al., 2013; Morikawa et al., 2009; Pinho et 

al., 2013; Zhou et al., 2014).  Recent work has shown that LepR, and the LepR-Cre 
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mouse model, identifies the most highly enriched MSC population based on current 

methodologies (Ding and Morrison, 2013; Ding et al., 2012; Oguro et al., 2013; Zhou et 

al., 2014).  This population overlaps almost exactly with a combination of two cell 

surface markers, PDGFRα and CD51 (Pinho et al., 2013).  Cells marked in this lineage 

are largely quiescent, a feature that is shared with other defined stem cells populations 

(i.e., hematopoietic stem cells) (Zhou et al., 2014).  

In our recent work, we find that Hox11-expressing cells display all of the 

characteristics of a progenitor-enriched MSC.  When isolated from fresh bone marrow, 

they co-express PDGFRα, CD51 and LepR, three markers that label progenitor-

enriched MSCs within the bone marrow stroma (Kunisaki et al., 2013; Pinho et al., 

2013; Zhou et al., 2014).  In vitro, Hoxa11eGFP+ cells are capable of multi-lineage 

differentiation and demonstrate enhanced CFU-F capacity.  In vivo, Hoxa11eGFP+ cells 

expand following fracture injury and continue to co-express PDGFRα, CD51, and LepR 

throughout the repair process (Figure 2).  A lineage trace of transplanted Hoxa11eGFP+ 

cells shows that they are capable of differentiating to osteoblasts and chondroctyes that 

contribute to fracture callus formation and repair (Figure 2)(Rux et al., 2016). 

 

Maintained regional specificity of Hox genes in the adult skeleton  

The expression of Hoxa11eGFP in adult, progenitor-enriched MSCs led to the 

question of whether this represents the normal expression for other or all Hox genes in 

regionally restricted BM-MSC populations.  Adult Hoxa11eGFP+ cells are only found in 

the zeugopod region of the limb, the region in which Hox11 functions during embryonic 

development.  Gene expression analyses comparing specific limb segments 
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(radius/ulna to humerus) demonstrate that adult Hox expression patterns mirror those 

established in the embryo.  Expression of Hox9 and Hox10 is found in the stylopod and 

Hox11 is found in the zeugopod.  Similarly, bone marrow of the sternum shows 

expression of Hox5 and Hox6 genes.  Of note, Hox expression is only detected in 

LepR+ bone marrow MSCs in all bones examined (Figure 3)(Rux et al., 2016).  

Together, these results support that Hox-expressing cells maintain regionally restricted 

boundaries in the adult skeleton, and that expression is exclusive to LepR+ MSCs in the 

skeleton.  

These expression studies lead to questions regarding potential functions for Hox 

in the adult skeleton.  To explore the function of Hox11 at adult stages, an ulnar fracture 

model was employed in Hox11 compound mutant animals in which three of the four 

Hox11 alleles expressed in the forelimb are mutated.  The remaining wild-type allele 

circumvents developmental defects and embryonic lethality and allows for functional 

analyses in the adult.  Hox11 compound mutant animals show perturbations in fracture 

repair of the zeugopod skeleton that include delayed bridging of bone across the 

fracture gap and incomplete remodeling.  Chondrogenic differentiation and soft callus 

formation are severely disrupted in the Hox11 compound mutant callus.  This results in 

reduced endochondral ossification and delayed bridging of the fracture gap.  

Importantly, Hox11 mutant MSCs demonstrate a decreased ability to differentiate to 

chondrocytes and to osteoblasts in vitro, revealing a function for Hox11 in MSC 

differentiation.  Specific to a function for Hox genes, these phenotypes are not observed 

in other regions of the limb in Hox11 mutants.  Femur (stylopod) fractures in Hox11 

compound mutant animals show no perturbations in healing of this bone (Rux et al., 
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2016).  Combined with the demonstration that Hox9 and Hox10 genes are expressed in 

stylopod MSCs, this result suggests that these Hox genes function in the femur like 

Hox11 genes function in the zeugopod, but this has not been directly tested.  These 

novel findings lead to a proposed model whereby Hox gene expression and function in 

adult bone marrow MSCs mirror expression patterns from embryonic development 

(Figure 3).  

 

Perspectives and future directions 

Knowledge of the function of Hox genes in the mammalian skeleton has been 

largely limited to the patterning information they provide during embryonic development.  

Results from novel work reviewed here outline two findings that critically expand 

knowledge about Hox expression and function beyond embryonic development: 1) Hox 

genes are expressed exclusively in adult, LepR+ MSCs and maintain the same regional 

restriction established during development and 2) region-specific Hox function is critical 

for the differentiation of mesenchymal-lineage cells to chondrocytes and to osteoblasts 

that are required for adult fracture repair. 

The discovery that Hox genes maintain regional restriction during adult fracture 

repair is a critical new finding for the field of fracture healing biology.  It is now clear that 

the transcription factors that govern initial skeletal patterning in the embryo also function 

in regeneration of the adult skeleton.  Importantly, the adult regional restriction exactly 

mirrors the region specificity of Hox gene function during embryonic development.  An 

important question that remains: Do the different Hox paralogous groups impart different 

function?  Elucidating these potential differences will continue to be the focus of future 
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studies in order to more completely understand the role for Hox genes in adult skeletal 

repair. 

Regional specificity in the context of how MSCs function in vivo is an interesting 

new layer of complexity for other aspects MSC biology.  These findings also lead to 

questions about the function of Hox genes in contexts that are not specific to skeletal 

regeneration.  For example, LepR-expressing cells perform critical roles in maintenance 

of the bone marrow hematopoietic stem cell niche (Ding and Morrison, 2013; Ding et al., 

2012; Oguro et al., 2013; Zhou et al., 2015).  Studies aimed at exploring functions for 

Hox genes in this context have the potential to advance knowledge on homing and 

maintenance functions of the HSC niche.   

Hox-expressing cells also represent a possible origin for adult MSCs.  Reports 

from several groups suggest that adult MSCs arise from the perichondrium/periosteum 

during embryonic and postnatal stages (Liu et al., 2013; Maes et al., 2010; Mizoguchi et 

al., 2014; Ono et al., 2014).  Interestingly, Hoxa11eGFP is expressed at these times 

and in these regions (Figure 2) (Swinehart et al., 2013).  Moreover, the work reviewed 

here shows that they continue to be expressed in adult MSCs.  Is it possible that Hox-

expressing cells of the skeleton represent the progenitor population at all of these 

stages?  Lineage-tracing studies initiated during embryonic and postnatal 

developmental stages will provide critical information regarding the contribution of 

Hox11-expressing cells throughout the life of the animal. 

The new data that show Hox gene expression in adult BM-MSCs also leads to 

the broader question: Do Hox genes function broadly in adult MSCs outside the 

skeleton?  During embryonic development, Hox genes are also required for many other 
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aspects of organogenesis.  Similar to the pattern observed in the skeleton, the function 

of a paralogous group of genes is regionally restricted and is colinear with their 

chromosomal arrangement.  Hox3 paralogous group genes function in the thymus, 

Hox5 genes in the lung, Hox6 genes in the pancreas, and Hox10 and Hox11 genes in 

the kidney and the spleen (Boucherat et al., 2013; Chojnowski et al., 2014; Hrycaj et al., 

2015; Larsen et al., 2015; Manley and Capecchi, 1998; Roberts et al., 1994; Wellik et 

al., 2002; Yallowitz et al., 2011).  In the adult, tissue resident fibroblasts/mesenchymal 

cells can be isolated from all of these organs (and more), and maintained Hox 

expression has also been noted (Crisan et al., 2008; da Silva Meirelles et al., 2006; 

Takahashi et al., 2004; Worthley et al., 2015; Yamamoto et al., 2003).  However, it is 

unclear whether Hox gene functions are also maintained in these adult organs.  As a 

specific example, Hox11 genes are expressed in embryonic muscle connective tissue 

fibroblasts and function in the muscle patterning of the zeugopod limb (Swinehart et al., 

2013).  Whether these cells remain in adult muscle tissue and function in maintenance 

and repair will be an interesting avenue to pursue. 

Despite the growing body of knowledge regarding in vivo functions for adult 

MSCs, the major interest in these cells remains in regenerative medicine/tissue 

engineering applications.  MSCs are capable of differentiating into bone and cartilage in 

vitro and this has been a major influence on tissue engineering strategies and in vivo 

transplantation methods (reviewed in (Meijer et al., 2007)).  Importantly, recent studies 

aimed at developing novel tissue engineering protocols use strategies based on 

developmental signaling pathways in order to improve efficiency for clinical use (Lenas 

et al., 2009; Scotti et al., 2010).  Hox genes have not been considered in this context, 
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but they may be relevant to this effort.  Understanding the importance of regionally 

restricted Hox gene expression and function will be critical in future studies involving 

MSCs for regenerative medicine.  It may be important to derive MSCs from regions that 

are appropriate for intended use in these applications.  “Matching” Hox gene function in 

vitro with the intended tissue in vivo, may prove useful for the viability of transplants.  

Alternatively, it may be beneficial in future tissue engineering strategies to manipulate 

regional Hox gene expression/function for specific differentiation strategies.  Likewise, it 

will also be of interest to explore how to change Hox gene expression status in various 

in vitro organ and tissue differentiation strategies in order to develop desired 

differentiation outcomes that are relevant for transplantation in vivo. 

 

Conclusion 

Regenerative and normal physiologic processes in the adult show an increasing 

dependence on pathways used and established during embryogenesis.  The collective 

results exploring Hox genes beyond embryonic development demonstrate that Hox 

gene expression is broadly maintained in the adult skeleton.  It is also increasingly 

evident that the regional restriction that is established during embryonic development is 

maintained.  This leads to a model whereby specific Hox genes required for patterning 

the morphology of skeletal elements during embryonic development may also be 

required for re-patterning the morphology of those elements during maintenance, 

regenerative and repair processes.  Continued work will provide new knowledge on this 

important topic.   
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Figure Legends 

Figure 1. 

Schematic of the organization of the Hox clusters.  Each line represents an area of a 

single chromosome.  Color-coding of Hox genes show the conserved relationships 

between Drosophila and mammalian Hox genes, and the paralogous relationships 

within the mammalian cluster.  The depiction of the mouse skeleton reflects the anterior 

to posterior patterning of the axial skeleton and the proximal to distal patterning of the 

limb skeleton. 

 

Figure 2. 

Hox11-expressing cells are expressed through embryonic development, postnatal and 

adult stages, as well as during fracture healing.  In the embryonic skeleton, Hox11-

expressing cells are observed in the outer perichondrium surrounding the cartilage 

anlagen of the skeleton.  During postnatal stages and adult stages, Hox11 continues to 

be expressed in the outer periosteum surrounding the limb skeleton.  It is additionally 

expressed in the bone marrow at both of these stages, and very highly in the 

endosteum during postnatal growth.  Following fracture injury, Hox11-expressing cells 

expand with the forming callus. 

 

Figure 3. 

Recent data lead to a proposed model where Hox genes are expressed in adult bone 

marrow MSCs.  The expression of Hox genes in these cells mirrors the regionally 

restricted pattern of expression and function during embryonic development. 
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