
FULL PAPER

Pulseq: A Rapid and Hardware-Independent Pulse
Sequence Prototyping Framework

Kelvin J. Layton,1 Stefan Kroboth,1 Feng Jia,1 Sebastian Littin,1 Huijun Yu,1

Jochen Leupold,1 Jon-Fredrik Nielsen,2 Tony St€ocker,3 and Maxim Zaitsev1*

Purpose: Implementing new magnetic resonance experiments,

or sequences, often involves extensive programming on vendor-
specific platforms, which can be time consuming and costly.

This situation is exacerbated when research sequences need to
be implemented on several platforms simultaneously, for exam-
ple, at different field strengths. This work presents an alternative

programming environment that is hardware-independent, open-
source, and promotes rapid sequence prototyping.
Methods: A novel file format is described to efficiently store

the hardware events and timing information required for an
MR pulse sequence. Platform-dependent interpreter modules

convert the file to appropriate instructions to run the sequence
on MR hardware. Sequences can be designed in high-level
languages, such as MATLAB, or with a graphical interface.

Spin physics simulation tools are incorporated into the frame-
work, allowing for comparison between real and virtual

experiments.
Results: Minimal effort is required to implement relatively
advanced sequences using the tools provided. Sequences are

executed on three different MR platforms, demonstrating the
flexibility of the approach.

Conclusion: A high-level, flexible and hardware-independent
approach to sequence programming is ideal for the rapid
development of new sequences. The framework is currently

not suitable for large patient studies or routine scanning
although this would be possible with deeper integration into

existing workflows. Magn Reson Med 77:1544–1552, 2017.
VC 2016 International Society for Magnetic Resonance in
Medicine

Key words: Pulseq; pulse sequence programming; rapid

development; platform independent; open-source

INTRODUCTION

The rich diversity of magnetic resonance imaging (MRI)
applications critically depends on the ability to coordi-
nate various hardware components through a software
program known as a pulse sequence. This flexibility
coupled with the continued need for improved MRI

sequences (increased tissue contrast, shorter scan times,
etc.) has lead to a plethora of acquisition techniques
using a standard hardware setup. Despite this flexibility,
implementation of pulse sequences remains an arduous
task for researchers and students. Extensive development
environments are provided by MR manufacturers; how-
ever, sequence programming typically involves low-level
programming with C, Cþþ, or custom programming lan-
guages. This often inhibits researchers, whose focus is to
quickly test new ideas, demonstrate novel physics or
compare different approaches. Furthermore, the environ-
ment is extremely vendor-specific, which impedes the
translation of research across different institutions.

Some alternative programming environments have
attempted to overcome these difficulties. The Object-
Oriented Development Interface for NMR (ODIN) pro-
vides a platform-independent library for pulse program-
ming (1). Likewise, a modular Java platform for sequence
programming is described in (2). However, both frame-
works appear overly complicated requiring hundreds of
lines of source code or extensive configurations to define
a basic sequence, rendering them unsuitable for rapid
sequence development.

The open-source SequenceTree package (3) provides a

comprehensive graphical interface for platform-

independent sequence programming and simulation.

Sequences are executed by exporting vendor-dependent

Cþþ code, which must be compiled and installed on the

scanner. Although SequenceTree provides an interactive

preview of the sequence during development (3), the

compilation step increases the time between sequence

modification and execution, potentially limiting the

approach for rapid development. Furthermore, sequences

are currently restricted to trapezoidal gradients and to

the best of the author’s knowledge can only be executed

on one hardware platform.
In contrast to the open-source programming environ-

ments intended to run on standard MR systems, some

researchers have opted to replace the entire console with

custom hardware. For example, Medusa (4), provides a

scalable console including RF waveform generation, gra-

dient control and ADC sampling. Another console was

developed in the TMX platform (5), which tightly inte-

grates real measurements and simulation. Whilst these

approaches provide the maximum flexibility and control,

they prevent normal CE/FDA-approved operation of the

scanner, for example, in a clinical setting.
Other sequence programming enviroments have

emerged to perform accurate MRI simulations, such as
SpinBench (6) and JEMRIS (7). SpinBench can be paired
with the RTHawk platform to execute sequences;

1Department of Radiology, Medical Physics, University Medical Center
Freiburg, Freiburg, BW, Germany.
2Department of Biomedical Engineering, University of Michigan, Ann Arbor,
Michigan, USA.
3German Center for Neurodegenerative Diseases, Bonn, NRW, Germany.

Grant sponsor: European Research Council (ERC); Grant number: 282345
‘RANGEmri’.

*Correspondence to: Maxim Zaitsev, Ph.D., Department of Radiology, Med-
ical Physics, University Medical Center Freiburg, Freiburg, Germany. E-mail:
maxim.zaitsev@uniklinik-freiburg.de

Received 21 September 2015; revised 12 February 2016; accepted 11
March 2016

DOI 10.1002/mrm.26235
Published online 7 June 2016 in Wiley Online Library (wileyonlinelibrary.com).

Magnetic Resonance in Medicine 77:1544–1552 (2017)

VC 2016 International Society for Magnetic Resonance in Medicine 1544



however, it is not open-source and thus difficult to
extend to other platforms. Alternatively, JEMRIS is pri-
marily a simulation tool although the graphical interface
is open-source, extensible and platform-independent.
Other open-source projects provide a means to customize
the image reconstruction pipeline (8–10) although these
do not help with data acquisition.

In this current work, we implement a highly-flexible

pulse sequence programming environment named Pul-

seq, which overcomes some of the limitations of previ-

ous approaches. Central to our method is a novel file

format to compactly describe the low-level details of a

sequence. This approach decouples the sequence design

from the hardware implementation, providing a high-

degree of flexibility. We provide examples where sequen-

ces are defined with MATLAB code or the JEMRIS

graphical interface and executed on different platforms.

Currently, three vendor platforms are supported: Siemens,

GE, and Bruker. No compilation of source code is required

so arbitrary sequences can be executed immediately, as

desired for rapid sequence prototyping.

METHODS

The main components of the Pulseq environment are

illustrated in Figure 1. The high-level sequence can be

described directly in MATLAB (The Mathworks, Natick,

MA) using functions from a custom toolbox. Alterna-

tively, sequences can be programmed using the graphical

interface of the JEMRIS simulation package (7). Regard-

less of the choice of high-level interface, a sequence file

is created containing low-level sequence instructions

such as RF pulses, gradients, ADC events and delays.

This sequence file can then be executed on various plat-

forms through hardware-dependent interpreter modules.

This architecture allows for maximum flexibility of the

high-level interface and the target scanner hardware,

since the two components are decoupled through the

low-level sequence file.

High-Level Sequence Definition

The high-level sequence can be defined in multiple ways
without compromising the ability to execute the
sequence on various platforms. Figure 2 presents the
MATLAB source code required to define a basic gradient
echo sequence. The code uses functions from the mr
toolbox provided with the Pulseq project to simplify
common calculations in sequence programming. The
entire sequence is defined with standard MATLAB varia-
bles and structures, already familiar to a vast number of
researchers. The Sequence object compresses the
sequence events and outputs a sequence file in the Pul-
seq format (described below) suitable for execution. This
new toolbox is provided for two reasons. First, it allows
researchers already designing trajectories or pulses in
MATLAB to execute them immediately from the same
environment. Secondly, the toolbox demonstrates that
multiple high-level design tools are possible in the pro-
posed architecture.

An alternative method to define a sequence is to use
the graphical user interface provided by the simulation
package JEMRIS (7), shown in Figure 3. The GUI pro-
vides a drag-and-drop interface to define the sequence as
a tree structure. Advantages of this approach include
instant visualization of the gradient and RF waveforms
as the sequence is updated. Further, sequence events can
be added and removed with a few mouse clicks. In this
work, we modified the JEMRIS Cþþ code (available in
version 2.8) to recurse over the sequence tree and write
the hardware events into a Pulseq sequence file. In this
way, any sequence defined in JEMRIS can be executed
on real MR hardware. An advantage of this approach is
that exactly the same sequence can be simulated with
the Bloch equations and executed on a scanner. This is
similar to the simulation capabilities in other works (3,5)
and provides a useful comparison between simulations
and measurements.

Although the high-level sequence definition is vendor-
independent, hardware constraints such as maximum
gradient amplitude and slew rate are incorporated at this
level. Violation of these limits are reported to the user
during the sequence design. The constraints are neces-
sary to calculate the precise timing of gradient events
prior to export for scanner execution. Likewise, gradient
timing is rounded to 10 ms during the sequence calcula-
tion while preserving amplitude or area requirements.
This is the longest “raster time” of the three investigated
hardware platforms.

In this work, slice localization is performed in a sepa-
rate graphical interface that integrates with the high-level
design tools. A screenshot and description of this inter-
face is provided as Supporting Information Figure S1.

Low-Level Sequence File

The Pulseq sequence file format was designed to repre-
sent MR sequences with the following goals:

1. Low-level: The format should be sufficiently low-
level. This allows for maximum flexibility of the
high-level sequence definition and allows for sim-
ple hardware implementation.

FIG. 1. Overview of the Pulseq environment. Sequences are
described in a high-level design tool, for example, a MATLAB

script or using a graphical user interface (left). A hardware-
independent sequence format is output (middle) and executed
using a hardware-dependent interpreter module (right). Simulation

data may also be generated from the Bloch equation solver
JEMRIS.

Rapid Hardware-Independent Pulse Sequence Prototyping 1545

http://onlinelibrary.wiley.com/store/10.1002/mrm.26235/asset/supinfo/mrm26235-sup-0001-suppinfo.pdf?v=1&s=f5284cb07f4ec7193ea99d3917dad61d9558f279


2. Compact: The file size should be minimized. This

is achieved by preventing redundant definitions of

pulses and their parameters.
3. Human-readable: The basic sequence structure

should be easily understood without processing to

aid debugging. This necessitates a text-file format.
4. Easily parsed: The format should be easy for a com-

puter to parse without the need for external libra-

ries. This precludes existing formats such as XML.
5. Vendor independent: The sequence must not con-

tain definitions specific to a particular hardware

manufacturer. For example, units such as Tesla and

Volts may be required to implement low-level com-

mands but not to define the basic spin operations

constituting a sequence. The file format use units of

Hertz, meter and second.

The resulting text file is hierarchical and consists of a

timing table, which references ‘event’ objects, which in

turn can reference compressed ‘shape’ objects. Figure 4

illustrates these basic concepts of the file format. The

file contains no loops but a simple list of instructions.

This moves much of the logic to the chosen high-level

sequence tool and is made possible by the increased

memory and performance of the microcontroller hard-

ware used in modern scanners.
The definition of shape objects allow for arbitrary RF

and gradient pulses to be executed on scanner hardware.

The shapes are stored using a run-length compression

scheme on the signal derivative. This scheme highly

compresses constant and linear segments of arbitrary

shapes (e.g., block pulses or piecewise-linear gradients).

Other shapes can also benefit from this compression

when linear segments are used to approximate a continu-

ous waveform. A further advantage of this compression

is that minimal computation is required for encoding

and decoding, unlike more advanced algorithms, for

example, audio compression (11).
The file specification also defines a mechanism for

user-specific header information. This allows simple

extensions to be implemented with the current format.

In this work, for example, slice localization is performed

in a separate graphical interface (Supporting Information

Fig. S1) and the gradient rotation matrix is passed in the

file header. A detailed file specification is available from

the Pulseq website (pulseq.github.io).

Interpreter Modules

Implementation of the sequence on a real MR scanner

inevitably relies on vendor-specific hardware instruc-

tions. These instructions are initiated by an “interpreter

module,” which translates the sequence file to appropri-

ate hardware commands, as illustrated in Figure 1. The

low-level nature of the Pulseq sequence file makes it

relatively simple to implement interpreter modules for

different scanner platforms. Precise timing logic and

amplitude information is already computed by the high-

level sequence tool and stored in the file. The remain-

ing task of the interpreter is to convert each sequence

event into an appropriate hardware instruction. There

is no guarantee that a single Pulseq file can run on all

platforms, due to varying hardware and safety con-

straints. In this work, sequences were created conserva-

tively such that they satisfy the constraints of all

systems. However, if optimization for a specific

FIG. 2. A gradient-echo

sequence defined in MATLAB
with Pulseq toolbox functions.
The resulting low-level sequence

file is suitable to execute on any
MR hardware platform equipped

with an interpreter module.

1546 Layton et al.

http://onlinelibrary.wiley.com/store/10.1002/mrm.26235/asset/supinfo/mrm26235-sup-0001-suppinfo.pdf?v=1&s=f5284cb07f4ec7193ea99d3917dad61d9558f279
http://onlinelibrary.wiley.com/store/10.1002/mrm.26235/asset/supinfo/mrm26235-sup-0001-suppinfo.pdf?v=1&s=f5284cb07f4ec7193ea99d3917dad61d9558f279


platform is required, this must be performed at the

design stage prior to generating the Pulseq file. The sim-

plicity of this architecture is demonstrated here by suc-

cessful implementation of interpreter modules for three

scanner platforms.
The setup makes it relatively simple to deal with dif-

ferent vendor software versions, since only the inter-

preter module needs to be modified while the sequence

files remain unchanged. Another advantage of the inter-

preter architecture, compared to other solutions, is that

vendor-specific code does not need to be recompiled

prior to executing a new sequence. Thus a sequence can

be changed (e.g., by adding gradient pulses) and exe-

cuted immediately on the scanner. This enables very

rapid development and debugging of sequences.

EXPERIMENTS

Arbitrary RF and Gradient Shapes

A gradient echo sequence with matrix size 256 � 256,

field-of-view 220 mm, flip angle 20�, TE¼ 20 ms,

TR¼ 100 ms was defined with the MATLAB source code
shown in Fig. 2. This sequence was used to image a
cylindrical phantom containing thin Plexiglas tubes on a
3 T system (Siemens Healthcare, Erlangen, Germany)
with the proposed file format and interpreter module.

In addition to a simple gradient echo, a 2D spatially
selective RF pulse was implemented in order to demon-
strate arbitrary gradient and RF pulse shapes. The RF
pulse design closely follows (12), modified to excite the
superposition of the original target pattern with a shifted
version. Specifically, the RF pulse and excitation k-space
trajectory have the form,

B1ðtÞ ¼ Be
1ðtÞð1þ ej2pxT

0 kðtÞÞ [1]

Be
1ðtÞ ¼ ae�b2ð1�t=TÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pnð1� t=TÞÞ2 þ 1

q
[2]

kðtÞ ¼ Að1� t=TÞ
cos ð2pnt=TÞ

sin ð2pnt=TÞ

" #
[3]

where T¼ 8 ms is the pulse duration, b¼2 corresponding
to a Gaussian target excitation region of approximately

FIG. 3. A screenshot of the
modified JEMRIS graphical inter-

face for sequence design.
Sequences can be exported to a
Pulseq low-level sequence file

for execution on the scanner.

Rapid Hardware-Independent Pulse Sequence Prototyping 1547



3 cm, a was set to achieve a 20� flip angle, n¼ 8 is the

number of spiral turns and A¼ 40 m–1 is the k-space max-

imum. The sequence timing was TE¼ 20 ms and TR¼ 500

ms. Modulation by the complex exponential in Eq. [1]

excites a duplicate pattern at x0 ¼ ð5 cm;5 cmÞ, chosen to

demonstrate pulses with arbitrary phase. Fig. 5 illustrates

the final gradient and RF pulses.
The original gradient echo sequence was modified

with approximately 20 additional lines of MATLAB code

to define the excitation parameters, complex RF pulse

and gradient waveforms and include them in the

sequence for execution. This includes conversion of the

sequence into a spin echo with a spoiled 180� slice-

selective refocusing pulse and additional delays to select

a slice through the excited cylinders, as described in

(12).

Comparison of Simulated and Measured Data

A spin-echo sequence was created in JEMRIS with the

graphical interface and executed on a Siemens scanner.

This demonstrates Pulseq integration with an existing

high-level sequence design tool and allows for the com-

parison of simulation data and data acquired on an MRI

scanner. The sequence had a matrix size of 64 � 64,

field-of-view of 210 mm, flip angle of 50�, TE of 15 ms

and TR of 100 ms.
High-resolution maps of the properties of a phantom

(M0, T1, T2, T�2) were acquired in order to simulate the

sequence in JEMRIS. Parameter maps of a single 3 mm

slice at the isocenter were calculated as follows. A

multi-echo Carr-Purcell-Meiboom-Gill (CPMG) sequence

with 16 echoes spaced 13.2 ms apart was used to fit

each voxel to a single exponential function, producing

maps of proton density and T2 (13). Likewise, T�2 maps

were generated by voxel-wise fitting of an exponential to

8 echoes acquired 4 ms apart with a multi-echo gradient

echo sequence. Mapping of T1 was performed with an

inversion recovery sequence with inversion times (in

ms) of 22, 30, 50, 150, 220, 300, 1000, and 2000. Finally,

a B0 off-resonance map was calculated from the phase of

two gradient echo images with echo times spaced 1 ms

apart. All data were acquired using standard vendor

sequences at 256 � 256 resolution with a field-of-view of

210 mm. The final maps were interpolated to 512 � 512

to reduce simulation artifacts caused by approximating a

continuous integral (14).
The target sequence was simulated in JEMRIS using

the calculated parameter maps and an image was gener-

ated with a 2D discrete Fourier transform (DFT). The

low resolution of the target sequence allows the simula-

tions to accurately capture intra-voxel dephasing (15,16).

Platform Independent Sequences

A gradient echo sequence was designed in JEMRIS to

run on three different hardware platforms: 3 T Siemens

Trio equipped with a single-channel wrist RF coil (Sie-

mens Healthcare, Erlangen, Germany); 3 T GE Discovery

MR750 with an 8 channel head coil (GE Healthcare,

Waukesha, WI, USA); and 9.4 T Bruker BioSpec MRI

with a single-channel rat coil (Bruker Biospin, Ettlingen,

FIG. 4. Main elements of the Pulseq hierarchical data format

describing a simple FID. At the top level, the sequence consists
of blocks, which contain integer IDs of sequence events.
Sequence events may contain IDs of arbitrary shape objects to

describe, for example, an RF pulse shape.

FIG. 5. Gradient and RF pulse shapes to achieve 2D selective

excitation. The (top) RF magnitude and (middle) RF phase com-
bined with (bottom) a spiral trajectory excites two Gaussian cylin-
ders as described in the text. Arbitrary pulse shapes are

inherently supported in the proposed sequence format and inter-
preter modules.

1548 Layton et al.



Germany). The scanners were located across two institu-

tions. The sequence had a field-of-view of 80 � 80 mm

to ensure reasonable imaging in both the small-bore 9.4

T and the human 3 T systems. Other parameters were:

256 � 256 matrix, flip angle¼20�, TE¼ 7 ms and

TR¼ 100 ms. Data from the GE system were averaged 20

times to account for the loss of SNR due to the increased

receive coil size.
All images were reconstructed using a 2D DFT on the

raw data and sum-of-square combination was used in the

case of multiple RF channels.

RESULTS

Figure 6 displays images acquired from sequences

defined entirely in MATLAB. The gradient-echo image

in Fig. 6a represents a slice through the phantom, as

expected. Figure 6b is the result from RF and gradient

waveforms designed to achieve 2D selective excitation of

two Gaussian profiles. These images demonstrate the

correct implementation of the sequence design, low-level

sequence file, and interpreter module for arbitrary pulse

shapes.
Figure 7 demonstrates the close match between simu-

lated and measured images. The direct comparison is

possible since the same sequence is simulated and also

converted to hardware instructions for the MR scanner.

Minor contrast differences are visible, possibly due to B1

inhomogeneity or inaccurate estimation of the phantom

parameters.
Figure 8 presents images acquired from the same

sequence file on three different MR platforms. The first

two images of a phantom were acquired at the Univer-

sity Medical Center Freiburg on a 3 T Siemens and 9.4

T Bruker scanner, respectively; the third image of an

orange was measured at the University of Michigan on

a 3 T GE scanner. The images in Fig. 8a and b differ

slightly due to different RF coil characteristics and the

increased B0 and B1 inhomogeneities at the higher field

strength. The variety of platforms demonstrates the

flexibility of the proposed sequence interpreter

framework.
The compact hierarchical design of the file format

results in relatively small sequence files. Table 1 lists

the file sizes and compression ratios for the sequences

used in the results above. Compression ratios are calcu-

lated as a percentage of the size of the uncompressed

waveform data. In all cases, the entire sequences file was

sufficiently small to fit in the memory of the hardware

control units.

DISCUSSION

Flexibility

A selection of examples was chosen for this publication

although the flexibility of the framework is much greater.

FIG. 6. Image acquired directly from MAT-

LAB for a: the gradient-echo sequence
shown in Fig. 2 and b: a spin-echo

sequence with 2D selective RF excitation.
The Pulseq framework converts the MAT-
LAB source code to hardware-dependent

instructions to control the scanner.

FIG. 7. An axial image of a phantom a:
simulated with the Bloch equations and b:

acquired on a scanner. The same spin
echo sequence file was used for simula-
tion and measurement.

Rapid Hardware-Independent Pulse Sequence Prototyping 1549



A range of other sequences can be easily implemented,
depending on the given application. Furthermore, any
sequence defined in MATLAB could have also been
designed in JEMRIS, and vice versa. The choice between
MATLAB scripting and JEMRIS is largely left to the
developer. For example, some researchers prefer graphi-
cal interfaces while others may prefer to output a
sequence from the same MATLAB script containing a
pulse calculation. The advantage of JEMRIS, however, is
the ability to simulate as well as execute sequences.

In addition to state of the art sequences using standard
sequence blocks, the inclusion of arbitrary RF and gradi-
ent pulse shapes allows for a range of advanced sequen-
ces to be implemented as required for cutting-edge MR
research. For example, frequency swept adiabatic pulses
(17), oscillating gradients for diffusion measurements
(18), continuous wave acquisition (19) and acoustic
noise reduction (20) can all be implemented without
modification of the basic framework.

Openness

The pulse sequence programming environment presented
here is open-source to encourage contributions from other
researchers. Unlike other open-source projects, such as
(1,3), the focus here is an open format to represent
sequences, suitable for execution on any MR platform. It
is our opinion that existing projects (both open-source
and proprietary) would also benefit from a common
sequence file format. In this case, when a programming
interface can export sequences to this format, they can
automatically be run on various hardware platforms using
the interpreter modules provided. This is analogous to

other file types, such as images or documents, that have

benefited from a common format to share data.

Limitations

The framework presented here is primarily targeted to

research and education, where the objective is to rapidly

develop and test new sequences. As such, the low-level

sequence format was designed for simplicity and port-

ability. Features such as physiological triggering and

multiple slice rotations were deliberately omitted,

although the framework could easily be extended to

include these. Likewise, the addition of multiple RF

transmit channels is also possible. A similar extension to

multiple nonlinear encoding fields was used for data

acquisition in (21).
Advanced features such as real-time feedback (22)

would require some implementation effort and may not

be feasible. Another limitation is aggressively time-

optimized sequences where, for example, gradient ramps

of one block can overlap into another block. The absence

of loop structures in the file format leads to an increase

in the sequence file size, particularly for long sequences

such as 3D or diffusion. In this case, the interpreter mod-

ules may need to load the file in sections, during the

sequence execution.

Safety

There are no inherent safety concerns, for example,

peripheral nerve stimulation (PNS) or specific absorption

rate (SAR), using this method of sequence programming.

The platforms for which interpreter modules were imple-

mented so far perform safety checks at a hardware level

further along the chain than the environment of the

interpreter modules. This is similar to how custom

sequences, implemented in vendor-specific programming

environments, will not run if they do not pass the safety

tests. Therefore sequences designed with Pulseq are

applicable in vivo under the IRB approval conditions

similar to other research sequences.
To provide feedback to the sequence programmer prior

to scanner execution, some basic checks are performed

by the high-level design tool, such as maximum gradient

and slew rate. Additional safety constraints such as PNS

FIG. 8. Images from the same sequence file executed on a: Siemens, b: Bruker, and c: GE hardware platforms. The sequence is stored
in a novel platform-independent file and converted to hardware instructions by platform-specific interpreter modules.

Table 1

The Sequence Duration, File Size, and Compression Ratio of the
Pulseq Sequence Files Used in this Work

Sequence Design Duration Size Compression

GRE MATLAB 25.6 s 80 KB 0.017%
SE 2D RF MATLAB 128.0 s 193 KB 0.008%

SE JEMRIS 6.4 s 39 KB 0.033%
GRE JEMRIS 25.6 s 65 KB 0.014%

Compression ratios are calculated as a percentage of the size of

the uncompressed waveform data. Sequences are designed in
MATLAB or JEMRIS before exporting to the scanner.

1550 Layton et al.



or SAR are either performed at run-time or left to the
interpreter module, depending on the platform. When

safety violations are reported by the vendor interfaces,
the user must adjust the sequence and export a new Pul-
seq file. This iterative approach is suitable for prototyp-
ing but suboptimal in a clinical setting. In future, more

complex checks could be implemented in the high-level
design tool to consider the safety constraints with
respect to the dependencies between sequence blocks.

Future Directions

It is hoped that this publication will inspire other
researchers to create interpreter modules for additional
hardware platforms. For example, the ability to design

and execute sequences in a simple manner, makes the
proposed environment ideal for existing MR hardware
projects targeted toward education such as (23–25). The
translation of high-level sequence logic to human-

readable hardware events, combined with the correspond-
ing measurements, provides new opportunities for teach-
ing the principles of MR. The framework is also suitable

for short Master’s or summer projects, since the favorable
learning curve means novel data can be obtained quickly.

Advantages of the proposed framework are vendor-
independence and the minimal time between design and
acquisition. Nonetheless, deeper integration into the

existing vendor interfaces would bring several advan-
tages. For example, SequenceTree (3) tightly integrates
with an existing vendor interface to allow for interactive

slice prescription and parameter adjustment at scan
time. It may be possible to incorporate similar ideas into
the Pulseq framework.

In addition to the format extensions discussed above,
an extensive library of different sequences is required to

promote adoption of the programming environment.
These sequences should first be created in a high-level
design tool (e.g., JEMRIS or MATLAB), to allow the oper-
ator to easily change parameters prior to export to the

low-level Pulseq format. New sequences are continually
being added to the project as the use increases across
our various institutions. Furthermore, the open-source

nature of the project is expected to encourage other users
to contribute their own sequences.

Source Code and Availability

The source code for sequence design and file operations

is available from the project website http://pulseq.github.
io or via the ISMRM site MRI Unbound. The source code
is released under the MIT license and the file format is

released under the Creative Commons Attribution 4.0
license. The interpreter modules cannot be openly pub-
lished due to the use of proprietary sequence program-
ming code; however, they are available on request.

CONCLUSION

The Pulseq project is a flexible framework to create MR
sequences and immediately execute them on real hard-
ware, making it ideal for rapid sequence development.

Central to the approach is a novel sequence file format
describing all low-level events of a sequence, including

arbitrary gradient and RF pulse shapes. A standardized

file format promotes a variety of high-level design tools

and supports implementation on different scanner plat-

forms. Sequence simulation can also be integrated into

the framework, which provides useful insights into

sequence design, MR physics and signal modeling.

ACKNOWLEDGMENT

The authors thank Dr. Denis Kokorin for useful discus-

sions regarding 2D RF pulses.

REFERENCES

1. Jochimsen TH, von Mengershausen M. ODIN – Object-oriented devel-

opment interface for NMR. J Magn Reson 2004;170:67.

2. Debbins J, Gould K, Halleppanavar V, Polzin J, Radick M, Sat G,

Thomas D, Trevino S, Haworth R. Novel software architecture for

rapid development of magnetic resonance applications. Concepts

Magn Reson 2002;15:216–237.

3. Magland JF, Li C, Langham MC, Wehrli FW. Pulse sequence program-

ming in a dynamic visual environment: SequenceTree. Magn Reson

Med 2016;75:257–265.

4. Stang PP, Conolly SM, Santos JM, Pauly JM, Scott GC. Medusa: a

scalable MR console using USB. IEEE Trans Med Imaging 2012;31:

370–379.

5. Sharp JC, Yin D, Bernhardt RH, Deng Q, Procca AE, Tyson RL, Lo K,

Tomanek B. The integration of real and virtual magnetic resonance

imaging experiments in a single instrument. Rev Sci Instrum 2009;80:

093709.

6. Overall WR, Pauly JM. An extensible, graphical environment for

pulse sequence design and simulation. In Proceedings of the ISMRM

15th Annual Meeting, Berlin, Germany, 2007. p. 1652.

7. St€ocker T, Vahedipour K, Pflugfelder D, Shah NJ. High-performance

computing MRI simulations. Magn Reson Med 2010;64:186–193.

8. Hansen MS, Sørensen TS. Gadgetron: an open source framework for

medical image reconstruction. Magn Reson Med 2013;69:1768–1776.

9. Han F, Zhou Z, Sung K, Finn JP, and Hu P. A low-cost flexible non-linear

parallelized MR image reconstruction system. In Proceedings of the 23rd

Annual Meeting of ISMRM, Toronto, Canada, 2015. p. 2489.

10. Uecker M, Ong F, Tamir JI, Bahri D, Virtue P, Cheng JY, Zhang T,

Lustig M. Berkeley Advanced Reconstruction Toolbox. In Proceedings

of the 23rd Annual Meeting of ISMRM, Toronto, Canada, 2015.

p. 2484.

11. Xiph.Org Foundation. FLAC: Free Lossless Audio Codec. Available

at: xiph.org/flac/index.html, 2014. Accessed 12 February 2016.

12. Pauly J. A k-space analysis of small-tip-angle excitation. J Magn

Reson (1969) 1989;81:43–56.

13. Layton KJ, Morelande M, Wright D, Farrell PM, Moran B, Johnston

LA. Modelling and Estimation of Multicomponent T2 Distributions.

IEEE Trans Med Imaging 2013;32:1423–1434.

14. Sharp J, Yin D, Tyson R, Lo K, Tomanek B. An Integrated MR Con-

sole/MR physics simulation system. In Proceedings of the 14th

Annual Meeting of ISMRM, Seattle, Washington, USA, 2006. p. 1351.

15. Latta P, Gruwel MLH, Jell�u�s V, Tomanek B. Bloch simulations with

intra-voxel spin dephasing. J Magn Reson 2010;203:44–51.

16. Layton K, Kroboth S, Jia F, Littin S, Yu H, Zaitsev M. Improved

reconstruction of nonlinear spatial encoding techniques with explicit

intra-voxel dephasing. In Proceedings of the 23rd Annual Meeting of

ISMRM, Toronto, Canada, 2015. p. 98.

17. Tannus A, Garwood M. A diabatic pulses. NMR BioMed 1997;10:

423–434.

18. Schachter M, Does MD, Anderson aW, Gore JC. Measurements of

restricted diffusion using an oscillating gradient spin-echo sequence.

J Magn Reson 2000;147:232–237.

19. Idiyatullin D, Corum C, Park JY, Garwood M. Fast and quiet MRI

using a swept radiofrequency. J Magn Reson 2006;181:342–349.

20. Hennel F, Girard F, Loenneker T. ‘Silent’ MRI with soft gradient

pulses. Magn Reson Med 1999;42:6–10.

21. Layton KJ, Kroboth S, Jia F, Littin S, Yu H, Zaitsev M. Trajectory

optimization based on the signal-to-noise ratio for spatial encoding

with nonlinear encoding fields. Magn Reson Med 2016;76:104–117.

Rapid Hardware-Independent Pulse Sequence Prototyping 1551

http://pulseq.github.io
http://pulseq.github.io


22. Maclaren J, Herbst M, Speck O, Zaitsev M. Prospective motion cor-

rection in brain imaging: a review. Magn Reson Med 2013;69:621–

636.

23. Wright SM, Brown DG, Porter JR, Spence DC, Esparza E, Cole DC,

Huson FR. A desktop magnetic resonance imaging system. Magn

Reson Mater Phys Biol Med 2002;13:177–185.

24. Halse ME, Coy A, Dykstra R, Eccles C, Hunter M, Ward R, Callaghan

PT. A practical and flexible implementation of 3D MRI in the Earth’s

magnetic field. J Magn Reson 2006;182:75–83.

25. Cooley CZ, Stockmann JP, LaPierre C, et al. Implementation of low-

cost, instructional tabletop MRI scanners. In Proceedings of the 22nd

Annual Meeting of ISMRM, Milan, Italy, 2014. p. 4819.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. A screenshot of the custom slice geometry interface. The interface
obtains localiser images through an in-house reconstruction pipeline.
Geometry information is passed via a MATLAB structure to the high-level
design tools of the Pulseq environment, where appropriate sequence
parameters are set (including frequency and phase offsets). The gradient
rotation matrix is passed to the vendor-specific interpreter modules through
the Pulseq file header. Although the interface tightly integrates with the Pul-
seq environment, it is not currently provided as open-source due to ven-
dor-dependencies.

1552 Layton et al.


	l

