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Abstract: Group-level functional connectivity analyses often aim to detect the altered connectivity pat-
terns between subgroups with different clinical or psychological experimental conditions, for example,
comparing cases and healthy controls. We present a new statistical method to detect differentially
expressed connectivity networks with significantly improved power and lower false-positive rates. The
goal of our method was to capture most differentially expressed connections within networks of con-
strained numbers of brain regions (by the rule of parsimony). By virtue of parsimony, the false-
positive individual connectivity edges within a network are effectively reduced, whereas the informa-
tive (differentially expressed) edges are allowed to borrow strength from each other to increase the
overall power of the network. We develop a test statistic for each network in light of combinatorics
graph theory, and provide p-values for the networks (in the weak sense) by using permutation test
with multiple-testing adjustment. We validate and compare this new approach with existing methods,
including false discovery rate and network-based statistic, via simulation studies and a resting-state
functional magnetic resonance imaging case–control study. The results indicate that our method can
identify differentially expressed connectivity networks, whereas existing methods are limited. Hum
Brain Mapp 36:5196–5206, 2015. VC 2015 Wiley Periodicals, Inc.

Key words: connectivity; family-wise error; fMRI; network; parsimony; statistical power

r r

INTRODUCTION

Group-level region-based whole brain connectivity anal-
yses have been conducted to identify differentially
expressed connectivity patterns between cohorts with dif-
ferent clinical or experimental conditions [Craddock et al.,
2009; Fornito et al., 2013; Ginestet et al., 2014; Guo et al.,
2014; Park and Friston, 2013; Shehzad et al., 2014; Zalesky
et al., 2012b]. However, the high dimensionality of connec-
tivity features and the complex correlation structure
between them pose difficulties to detect the truly differen-
tially expressed connectivity features without introducing
substantial false-positive findings. Mass-univariate statisti-
cal analyses on connections naturally require multiple
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testing adjustment methods, such as family-wise error rate
(FWER) or false discovery rate (FDR), to control false-
positive findings [Simpson et al., 2013b; Varoquaux and
Craddock, 2013]. Different from other types of high-
dimensional data (e.g., genomics), the correlation between
connectivity features could be affected by an explicit topo-
logical structure comprised of brain areas (nodes). Ignor-
ing such topological structure-related correlation may lead
to overly conservative multiple testing adjustments and a
substantial loss of statistical power (i.e., no positive find-
ings) [Fan et al., 2012]. There have been few attempts to
investigate the topological structure of the differentially
expressed connectivity features. Graph/network-based
population-level connectivity analyses seem to be a good
solution to identify differences of connections with topo-
logical structures by leveraging both statistical and graph
theoretical models [Guo et al., 2014; Simpson et al., 2012;
Zalesky et al., 2012b]. Graph theoretical models are often
used to model brain functional connectivity networks
[Braun et al., 2012; Bullmore and Sporns, 2009; Rubinov
and Sporns, 2010; Simpson et al., 2011, 2013a; Simpson
and Laurienti, 2015; Sporns, 2011, 2012]. The nodes/verti-
ces in the graph represent brain areas/regions and the
edges express connections between the brain areas [Rubi-
nov and Sporns, 2010; Sporns, 2011]. Because most connec-
tivity metrics are continuous (e.g., Pearson correlation), all
edges are weighted, and the overall graph including all
nodes is a weighted complete graph [Rubinov and Sporns,
2010, 2011; Zalesky et al., 2010, 2012a]. The group-wise sta-
tistical inferences are conducted based on the weighted
complete graphs.

There are mainly two types of commonly used group-
wise connectivity graph/network analysis methods: (1)
global network metric-based (GNM) methods, which first
calculate graph theoretical metrics, such as “small-
worldness,” modularity, and transitivity or cross-entropy/
mutual information, for each individual, and then conduct
statistical testing or regression analysis on the metrics at a
group level [Marrelec et al., 2008; Rubinov and Sporns,
2010; Sporns, 2011, 2012; van den Heuvel et al., 2010] and
similarly; (2) differentially expressed network (DEN) meth-
ods, such as network-based statistics (NBS) and spatial
pairwise clustering (SPC), which first perform mass-
univariate statistical analysis for each edge at the group
level and next assembles the edges as a network using
optimization algorithms [Zalesky et al., 2010, 2012b]. For
example, the NBS method first applies a breadth-first
method to detect the network and then conducts permuta-
tion tests to adjust for multiple tests in the weak sense.
Both NBS and SPC methods have been successfully
applied to neuroimaging studies and yielded many inter-
esting findings [Achard et al., 2006; Bassett et al., 2011,
2012; Fornito et al., 2012; Honey and Sporns, 2008; van
den Heuvel et al., 2008, 2009] In general, the GNM method
does not involve multiple testing corrections for a single
graph theoretical metric, because the edges are combined

into a single metric. However, the GNM results often only
include overall graph theoretical properties without infor-
mation of localized nodes and edges [Zalesky et al., 2010].
In contrast, the DEN method can reveal spatially specific
information rather than only averaged/summarized met-
rics, but it requires adjustment for multiple comparisons
[Fornito et al., 2013]. The NBS and SPC methods by Zale-
sky et al. (2010, 2012b) are two widely used DEN methods,
which successfully incorporate family-wise error control
with network detection by applying permutation testing.
Kim et al. (2014) conducted comprehensive comparisons of
several DEN testing/detection methods and concluded
that the NBS method outperforms the others, given appro-
priate threshold values. However, these two methods may
still be subject to lack of power when the testing results
contain high false-positive noises. The noises may cause
the detected networks to include many nodes and a small
proportion of supra-threshold connections such that the
permutation testing results turn out to be not statistically
significant.

The main contribution of this article is to present a novel
method to detect DENs with greatly improved power and
reduced false-positive edges by leveraging the concept of
parsimony (constraining the number of nodes). The penal-
ized objective function (e.g., “lasso” or elastic net methods)
has been widely applied to high-dimensional data analysis
because the parsimonious selection of features may greatly
improve a model’s reliability and reproducibility [Hastie
et al., 2009]. The effects of parsimony (of nodes) are more
marked when the features are edges in networks, because
the number of edges is power order of the number of
nodes. For example, if the detected network including n
nodes and n(n 2 1)/2 edges increases its size by adding
one more node, then the increased network contains n 1 1
nodes and n(n 1 1)/2 edges with n more edges than the
original network. Such increasing trends between the
number of nodes and the number of edges could give rise
to the power loss and high false-positive rates for network
detection, because even adding one more node (to the
existing network of n nodes) by mistake could increase na
false-positive edges and introduce other noises. Thus, we
propose a parsimonious differential brain connectivity net-
work detection method (Pard) that includes most signifi-
cantly differentially expressed connectivity edges within
networks with constrained number of nodes. We construct
an objective function that maximizes the combined signifi-
cance levels of the edges in the target networks when
using the number of nodes of each network as a penalty
term. The objective function can be effectively and effi-
ciently solved by spectral graph theory models [Von Lux-
burg, 2007]. In addition, the detected networks reveal the
topological structure of the differentially expressed edges.
We apply permutation tests to control the family-error rate
in the weak sense, which is a similar strategy to the NBS
method [Zalesky et al., 2010]. The detailed statistical
model is introduced in Methods section, and followed by
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model evaluation and comparison using a simulation
study and an example of analyzing resting-state functional
magnetic resonance imaging (rs-fMRI) data.

METHODS

In many group-level studies, we seek to answer the
question whether two groups exhibit differential connec-
tivity patterns. The general statistical test can be described
as: the null hypothesis H0 that the two groups have no dif-
ference in connectivity vs. Ha that there are differentially
expressed connectivity networks between the two groups.
To conduct the statistical test, we first define the networks
by Pard and then evaluate the probability of the networks
assuming the null hypothesis is true (by using permuta-
tion tests). Clearly, the power and Type I error rate are
greatly impacted by the network detection method and,
thus, that is our main focus in this section.

Model Background

The connectivity network in neuroimaging studies is
often represented by a graph with a set of nodes and
edges G 5 {V,E}; the set of nodes V denote a set of distinct
brain areas, and the edges E are the connections between
those nodes. To investigate the differential connectivity
expressions between two groups of subjects (e.g., controls
vs. cases), two sample tests are often conducted for all
edges. For example, pij is the test p-value between a pair
of nodes i and j. Based on all these testing results, we
obtain a |V| by |V| testing significance weight matrix
W05fwijg with wij52logðpijÞ. We utilize the “2log” trans-
formation of p to express that the edges of small p-values
may contain important information and, hence, are highly
weighted. In addition, we note that the empirical distribu-
tion of 2logðpijÞ often follows a Gamma distribution (with
both parameters equal to 1 based on maximum likelihood
estimation).

Objective Function of Network Detection

The primary goal of differential connectivity detection is
to identify the significantly differentially expressed edges
with well-controlled false-positive discovery rates. In con-
trast to other high-throughput genomic or proteomic
expression features, the brain connectivity features (edges)
are spatially constrained by nodes and, thus, are not inde-
pendent. The NBS and SPC methods have wisely used this
property to select features with more power [Zalesky
et al., 2010, 2012b]. We also leverage this property to con-
struct our objective function and furthermore add a pen-
alty term of the number of nodes. The main objective
function is to search the C-component clustering of the
whole graph, denoted, fAcgC

c51 where \C
c51Ac5V and

Ac\A
c’5Ø, which allocates most significant edges within

networks of small number of nodes:

argminfAcgC
c51

XC

c51

P
i2Ac;j2Ac

2logðpijÞ
jAcj

(1)

where jAcj represents the size (number of nodes) of the
detected network cluster Ac. The objective function minimizes
the weights of edges between the selected networks and the
rest of G, which ensures the edges of heavy weights (more sig-
nificant) are included in some networks rather than left
between networks. Only the edges in the detected networks
are included as biomarkers, and the optimization process can
be intuitively considered to cover more informative/supra-
threshold edges by using small-sized networks.

The first step of the optimization is the screening step,
which thresholds the noisy edges of larger p-values, for
example to let wij50 if pij > p0, and we refer to the thresh-
olded weight matrix as W. Then, the Laplacian matrix
based on the thresholded W matrix is

L5D2W; (2)

where the degree matrix D is defined as the diagonal
matrix with diagonal element d1; � � � ; dn and di5

PjVj
j51 wij:

Next, we investigate how many disconnected compo-
nents/subgraphs are there in the overall graph G with the
thresholded W matrix. We denote Gq as a disconnected
subgraph/subset of G (q 5 1,� � �,Q and G5 [Q

q51 Gq) such
that Gq � G, and there is no edge with weight> 0 connect-
ing between Gq and its complement subset GnGq. To iden-
tify the disconnected subgraphs, we conduct the eigen-
decomposition on the Laplacian matrix L, and the number
of zero-valued eigenvalues equals the number of discon-
nected subgraphs [Von Luxburg, 2007]. The corresponding
eigenvectors of zero-valued eigenvalues exhibit the alloca-
tion of nodes to the disconnected subgraphs. This step is
equivalent to the network detection step in NBS, but a
spectral graph model is used rather than the breadth first
search by NBS. The objective function in Eq. (1) is at mini-
mum and equals zero, if C the total number of network
clusters in Eq. (1) is the same as Q (Q> 1) the number of
disconnected subgraphs in G. However, rather than stop-
ping at this step and performing family-wise error control,
we further conduct parsimonious network detection
within each unconnected component to identify smaller
networks with a higher proportion of significant edges.
Thus, the overall objective function becomes parsimonious
network detection within each unconnected subgraph:

argminf~Akg
Kq

k51

XKq

k51

P
i2 ~Ak ;j2~Ak

2logðpijÞ
j~Akj

(3)

where Kq is the number of clusters in a disconnected sub-
graph Gq and C5

PQ
q51 Kq, which links between Eqs. (2) and

(3). However, the direct optimization of Eq. (3) is an non-
deterministic polynomial time (NP) problem. We seek the
solution by using spectral graph models. After discretization
relaxation, it turns into the RatioCut spectral clustering
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problem, which has been well developed by Hagen and
Kahng (1992). The details of the implementation of the Ratio-
Cut algorithm are illustrated in the following detailed algo-
rithm. Then, the only tuning parameter for each
disconnected subgraph is Kq, which chooses the number of
clusters for K-means clustering. Rather than applying the
conventional methods, such as silhouette criteria, we develop
a novel and connectivity network specific criteria to choose
Kq objectively by maximizing the of product of (1) the ratio of
the total number of significant edges in all Kq clusters to the
total number of non-zero edges in the disconnected subgraph
(quantity) and (2) the ratio of the total number of significant
edges to the number of edges within all Kq clusters (quality):

PKq

k51

P
i2~Ak;j2~Ak

IðWij > 0ÞP
i<j IðWij > 0Þ �

PKq

k51

P
i2~Ak;j2~Ak

IðWij > 0ÞPKq

k51

P
i2~Ak;j2~Ak

1
: (4)

The criteria in Eq. (4) provides a data-driven and objec-
tive pathway to select tuning parameters Kq that tries to
maximize the proportion of significant edges in the
selected networks and to include most significant edges of
W in the detected differential networks.

Moreover, we provide an approach to automatically
select p0 by a grid search algorithm. We search p0 in the
range of (0.05, 0.1) by increments of 0.005 and select p0

that maximizes the criteria below:

PKq

k51

P
i2~Ak;j2~Ak

2logðpijÞPKq

k51

P
i2~Ak;j2~Ak

1
4

PKq

k51

P
i2~Ak ;j2~Ak

2logðpijÞPKq

k51

P
i2~Ak;j2~Ak

1
; (5)

which is the ratio of the average intensity of 2logðpijÞ (infor-
mation intensity) within selected networks and the average
intensity of 2logðpijÞ outside of selected networks. Note that
Kq is selected by Eq. (4). Overvall, Eqs. (4) and (5) ensure
that most of the information differentiating the two groups
of subjects is contained in the selected networks while mini-
mizing the sizes of the networks needed (for higher concen-
tration). Rather than applying a penalty term to control the
network sizes, we implement the rule of parsimony by opti-
mizing tuning parameters for objective functions. Thus, our
approach is not only computationally convenient but also
less ad hoc (to provide more reproducible results).

Last, we apply a permutation test to provide the p-value
of selected networks while controlling family error rates,
which is similar to the family error control in NBS [Zale-
sky et al., 2010].

We summarize the overall parsimonious differential brain
connectivity network detection (Pard) algorithm as follows:

1. Conduct statistical tests on all edges E and calculate
the weight matrix W by screening (e.g., thresholding
values p0):

wij5
2logðpijÞ if pij � p0;

0 else:

(

2. Detect disconnected subgraphs in G: first eigen
decompose the Laplacian matrix L 5 D 2 W and the
number of zero eigenvalues of L equals the number
of disconnected subgraphs, and the allocation of
nodes to disconnected subgraphs is based on the
eigenvectors with zero eigenvalues.

3. Within each disconnected subgraph Gq, search net-
works that include most informative/significant
edges with constrained numbers of nodes for each
network. Although the direct optimization of this
step is NP, it can be solved by the RatioCut algorithm
after discretization relaxation:
a. Compute the first Kq eigenvectors ½u1; � � � ;uKq

� of L,
with eigenvalues ranked from the smallest.

b. Let U5½uT
1 ; � � � ; uT

Kq
� be a jVj3Kq matrix containing

all Kq eigenvectors.
c. Perform K-means clustering algorithm on U with

K5Kq to cluster |V| nodes into Kq networks:

~A
1

Kq
; :::; ~A

Kq

Kq
.

4. Try all possible Kq for each disconnected subgraph
and select the optimum number of networks by Eq.
(4).

5. Select p0 by using the criteria of Eq. (5).
6. Perform permutation testing to control FWERs for

each detected network Ac:
a. Shuffle the group labels for each subject T times

(e.g., T 5 5,000) and calculate W with the same
threshold p0 at each shuffling t.

b. Obtain the most significant test statistic (e.g., Fish-
er’s combination test) of Ac as mt in each permuta-
tion and let m0 represent the test statistic with
wij > 0 for original labeling.

c. Calculate the permutation p-value as how many mt

are larger than m0 divided by T, PAc
5

#ðmt>m0Þ
T and

determine whether the network is significant at a
predetermined a-level.

7. Output the significant networks with permutation
test p-values.

SIMULATIONS

In this section, we simulate a case–control connectivity
study including 30 healthy controls and 30 subjects with
neural disorders to evaluate the performance of our Pard
algorithm. We generate an overall graph Gs of 90 ROIs as
nodes and 4,005 edges for a subject s (s 5 1,� � �60) to repre-
sent the widely used first 90 automated anatomical label-
ing regions in functional connectivity analysis [Tzourio-
Mazoyer et al., 2002; Zalesky et al., 2010, 2012b].

We assume that the normalized connectivity metrics
(e.g., correlations after Fisher’s transformation and z-score
normalization) follow a standard normal distribution.
Within the overall graph G, we generate a truly differen-
tially expressed connectivity network GD of size 10 (10
nodes and 45 edges). Thus, we simulate the connectivity
metrics for all subjects by
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Zs
ij �

Nð0;r2Þ1d if i; j 2 GD and subject s is from the healthy control group;

Nð0;r2Þ otherwise:

(

Then, we conducted two sample t-tests to obtain
p-values and weight matrix W0. The simulated data are
summarized in Figure 1: Figure 1a illustrates the truth: the
truly DEN by the red color; Figure 1b is the heatmap of
2logðpijÞ based on the p-values of two sample t-tests
between the two cohorts of the simulated data; and Figure
1c is the shuffled version of Figure 1b (i.e., the labels of all
nodes are permuted), which may better reflect the real
spatial distribution of significant edges in practice (Fig. 1c
is the input data for the differential network detection
algorithm). We repeat the procedures above to obtain 100
simulated data sets by using each set of parameters.

We then performed our Pard algorithm on W0 to
identify DENs. After thresholding (p0), there are no
disconnected subgraphs (i.e., G is connected) due to false-
positive significant edges. Thus, the only network size

tuning parameter is C, the number of clusters for the over-

all graph G. The optimum number C ranges from 49 to 62,

and most p0 are between 0.08 and 0.10 across the 100

simulated sets. The individual edges or networks with a

few nodes are rarely detected as significant based on the

permutation test results. Figure 2 shows how the tuning

parameter selection criteria function changes with an

increasing number of clusters for one simulated data set,

and the score is highest at C 5 59 (for a simulation data

set). Then, we perform our algorithm with C 5 59, and the

DEN GD is successfully detected. We then conduct permu-

tation testing based on 10,000 times permutation and

PGD
< 0:001, which indicates that the detected network is

significant after controlling for the FWER. The final results

are demonstrated by Figure 2b, which reveals the true

DEN accurately.

Figure 1.

(a) The heatmap of truth: the connectivity between the first 10 nodes are differentially

expressed between the two groups. (b) Heatmap of two sample t-test 2log(p) values of the

simulated connectivity based on 60 subjects (30 cases vs. 30 controls). (c) Heatmap with shuffled

region number of (b) is used as the input of our method. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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For comparison, we apply the NBS algorithm for differ-
ential network detection by default parameter (t-statistic
53.1) and several other threshold values; for example, 2,
2.7, and 4. We also apply it to detect the differentially
expressed edges by using FDR as a reference for false-
positive rates and negative rates without considering
networks as output biomarkers, and we use q 5 0.1 as a

cut-off. In comparison, we consider many scenarios by
using different sets of parameters including network sizes
(5, 10, and 15) and different significance levels of truly dif-
ferentially expressed edges. The significance levels of truly
differentially expressed edges are generally determined by
three factors: effect sizes (d), noise levels (r2), and sample
sizes, and we only tune noise levels (r2) because it is
redundant to tune all three factors (the same p-values). We
let d 5 0.8, and sample sizes for cases and controls are
both 30. Table I summarizes the means and standard
errors of false-positive (FP) and false-negative (FN) find-
ings under different settings.

The true DEN is detected and tested as significant in
100 of the 100 data sets by using the Pard algorithm for
different network sizes and most noise levels, though there
is a small chance that false-positive nodes (the number of
nodes ranges 2�4) could be included. As a contrast, the
FDR method misses most of the true positives while effec-
tively controlling the false-positive rates. The power
increase of the Pard method relies on both the combined
significance levels of all edges in the network and the size
of the detected network, because a network with more sig-
nificant edges and smaller number of nodes is more likely
to be significant based on permutation testing. In addition,
the NBS method could not detect the DENs in most set-
tings, and we apply different thresholds (ranging from 2
to 4) and report the results (of the threshold value) with
the best performance. One possible reason could be the
false-positive edges connecting a large number of nodes
and, thus, a large network is detected by breadth first
search, but within the detected large network, there is
only a small proportion of edges that are significant, and
the number of significant edges is similar to those of the
networks from permutations. Therefore, by applying the
rule of parsimony (constraining the number of nodes of
the detected networks), our method increases the power
substantially and excludes false-positive edges effectively.
In summary, the simulation study indicates that our pro-
posed Pard algorithm is effective for differentially
expressed connectivity network detection and less affected
by noises (false-positive edges).

Figure 2.

(a) The number of cluster selection criteria function: scores of

the function vs. the number of clusters. (b) The resulting heat-

map of 2log(p): the detected network is at the left-top corner.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

TABLE I. Simulation results under different settings

Pard FDR NBS

FP FN Network FP FN Network FP FN Network

Size 5 10;
r2 5 1

0.3 6 0.17 0 Yes 0.29 6 0.06 40.42 6 0.35 No 0 45 No

Size 5 5;
r2 5 1

4.519 6 0.47 0 Yes 0.19 6 0.05 9.45 6 0.10 No 0 10 No

Size 5 20;
r2 51

1.33 6 0.51 0 Yes 3.21 6 0.18 134.43 6 1.12 No 0 190 No

Size 5 10;
r2 5 0.25

0 0 Yes 1.04 6 0.11 31.91 6 0.49 No 6.37 6 1.17 27.28 6 2.20 Yes

Size 5 10;
r2 5 5

19.64 6 2.12 16.28 6 1.44 Yes 0.05 6 0.02 44.88 6 0.04 No 0 45 No
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DATA EXAMPLE

This data set was collected at the Yale child study center
in Yale School of Medicine, one of the data collecting sites
in the Autism Brain Imaging Data Exchange (ABIDE) (Di
Martino et al., 2014). The imaging was performed on Sie-
mens magneto Trio scanners. The imaging data were
obtained using a gradient echo T2*-weighted echo planar
imaging sequence, echo time TE 5 25 ms, repetition time
TR 5 2,000 ms, 64 3 64 matrix with 34 slices 4.0 mm thick,
skip 0 mm, resulting in whole brain coverage with a voxel
size of 3.4 mm 3 3.4 mm 34.0 mm. The publically avail-
able data set includes 28 participants (typical controls, TC)
and 28 patients with Autism spectrum disorders, and the
two groups exhibit no significantly different demographics
(e.g., age and gender). During the MRI scanning, all sub-
jects were asked to lie as still as possible, keep their eyes
open, try not to fall asleep, and think about whatever they
wanted. A black background with a gray central fixation
cross was presented during the resting state scan, although
participants were not asked to fixate, it was verified that
they had not fallen asleep at the end of the scan.

We performed rs-fMRI data preprocessing based on the
Configurable Pipeline for the Analysis of Connectomes
(http://fcp-indi.github.io). The rs-fMRI data were first
slice time and motion corrected. The data were next regis-
tered to a standard MNI space with voxel size 2 mm3 and
normalized to be percent signal change. The masks of the
white matter (WM), the gray matter, and the cerebrospinal
fluid (CSF) were created in the standard MNI space. The
mean time series from the WM and the CSF were calcu-
lated. The mean time series of the WM, CSF, and the six
movement parameters were regressed from the gray mat-
ter. A linear trend was removed from all the signals. The
fMRI time series were filtered using a bandpass with pass-
ing band (0.009–0.08 Hz) and spatially smoothed with a 6-
mm full width at half maximum Gaussian kernel. We then
use the first 90 automated anatomical labeling ROIs as
nodes, and take the weighted average of all voxels’ tempo-
ral profiles within each ROI as the region level signal for
all subjects. The Pearson correlation coefficients were cal-
culated between the 90 nodes. In this analysis, we focus
on the differential connectivity network detection between
TC and Autism spectrum disorders.

Figure 3.

(a) Heatmap of 2log(p) values for all edges between TC and TSD. (b) Tuning parameter selec-

tion criteria function. (c) The resulting heatmaps: detected networks along the diagonal. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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We first conducted two sample t-tests to obtain p-values
and 2logðpijÞ for all edges between TC and TSD (Fig. 3a),
and then calculated the weight matrix W0. Next, we
applied the parsimonious differential connectivity network
detection method to the W0 matrix. We excluded singleton
nodes in G, which have all edges pij > p0 connected to the
rest of the nodes. Then, there was no disconnected sub-
graph in G. We implemented the optimization algorithm
for network detection and selected the tuning parameter
based on the criteria function. Based on Eq. (5) in Methods
section, we selected p0 as 0.1. Figure 3b shows the relation-
ship between the tuning parameter selection criteria func-
tion and the number of clusters, and the maximum value
is reached at C 5 31. Therefore, the final results were
detected by using the tuning parameter C 5 31. The results
are summarized in Figure 3c, and we note that all signifi-

cant edges tend to be along the diagonal because of the
shrinkage effect. Two networks are detected and tested as
significant by permutation tests: the first network includes
15 nodes (P< 0.001), and the second network includes 10
nodes (P< 0.001).

Figures 4 and 5 show the differentially expressed edges
within the two detected networks (figures are generated by
using BrainNet Viewer by Xia et al., 2013). Many differen-
tially expressed edges have been found in previous studies
[Cherkassky et al., 2006, Di Martino et al., 2014; Tyszka et al.,
2014]. The first cluster mainly exhibits altered connectivity
expressions between prefrontal cortex, parietal cortex, mid-
dle inferior temporal cortex, and basal ganglia. The second
cluster mainly shows differences between superior frontal
cortex, limbic system, and occipital cortex. The details are
included in Supporting Information Tables S1 and S2.

Figure 4.

Cluster 1: 3D plots of the differentially expressed edges. The width of the edges reflects the sig-

nificance level, and the color is coded as red (TC<TSD) and blue (TC>TSD). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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For comparison, we applied both the NBS method (with
several threshold values from 2 to 4) for DEN detection
and the false-positive discovery rate (FDR) control for
individual differentially expressed edge detection. Neither
of these two methods detect significant results, which may
be caused by the noise of false-positives (NBS) and igno-
rance of correlation between edges (FDR) (similar atlas-
based results by Tyszka et al., 2014).

DISCUSSION

Group-wise whole brain connectivity analyses using
atlas regions have been facing trade-offs between false-
positive findings and lack of statistical power (false-nega-
tives). Traditional multiple testing adjustment methods

often could not detect truly differentially expressed fea-
tures when trying to avoid false-positive findings. Some
studies conduct group-wise connectivity analyses within
predefined regions rather than the whole brain to lower
the stringent level required for multiple testing adjustment
and to increase the likelihood of detecting statistically sig-
nificant findings. Clearly, such procedures may lead to
limited and inaccurate results. The DEN type network-
based methods, such as NBS, provide a pathway to
improve the statistical power while controlling the FWER.
DEN methods select a significant edge not only by the cri-
teria of the test p-value but also the distribution of p-val-
ues of its neighborhood edges. Therefore, the DEN
methods naturally incorporate the topological structure of
the edges for significant connectivity detection and
improve statistical power. Note that our method only

Figure 5.

Cluster 2: 3D plots of the differentially expressed edges. The width of the edges reflects the sig-

nificance level, and the color is coded as red (TC<TSD) and blue (TC>TSD). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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controls the FWE in the weak sense, and thus, we can
make inferences only on networks rather than individual
edges.

The statistical power of the existing DEN methods (e.g.,
NBS) depends on the proportion of supra-threshold edges
within the connected subgraphs, and a smaller proportion
may lead to an insignificant permutation test result. From
the aspect of graph combinatrics, the probability of all
edges with small p-values clustering in a small network is
extremely low, and therefore, the permutation test p-value
is very small, and the organized structure of such p-values
yields important topological information of differentially
expressed connectivity networks. Hence, if the detected net-
work includes truly differentially expressed edges, but the
proportion of significant edges is low, the statistical power
to detect these truly significant edges is very low because
the detected network is very likely to be tested as nonsigni-
ficant using a permutation test. Therefore, the objective
function of our Pard algorithm aimed: (i) to include most
significant edges in the detected networks; ii) by constrain-
ing the number of nodes of the networks to increase the
proportion of significant edges within the detected net-
works. The constraint of the network size in the objective
function is critical to reduce the (false-positive) noise to
improve statistical power. Therefore, our Pard algorithm
improves the statistical power of network detection by
allowing edges to borrow power between each other; and
meanwhile effectively controls the false-positive findings
because false-positive edges are more likely to be randomly
distributed rather than concentrated within a small net-
work. The detected networks, in turn, reveal the topological
structures of the significant edges, and the parsimonious
networks are more informative because the shrinkage pro-
cedure removes substantial noises.

We implement the optimization step by using the Ratio-
Cut algorithm. Although most spectral clustering algo-
rithms primarily aim to allocate similar nodes to the same
cluster, our objective function is to capture most significant
edges within constrained networks. Fortunately, the algo-
rithms have been well developed to implement the optimi-
zation of our objective function without intensive
computational load. However, for most spectral clustering
algorithms, the selection of number of clusters can be an
arbitrary and ad hoc procedure [Von Luxburg, 2007]. We
developed a new tuning parameter selection criteria func-
tion specifically for brain connectivity analysis to choose
the number of clusters objectively. In addition, we provide
a similar procedure to choose p0. We express the impor-
tance (weight) of a edge by using 2log transformation of
the test p-value rather than raw p-value or t statistic,
because the scale is more appropriate to differentiate the
small p-values (e.g., 0.001 and 0.0001) and is naturally
linked to Fisher’s combined probability test [that has been
used in cluster activity intensity analysis by Hayasaka and
Nichols, 2004]. From the computational statistics point of
view, we developed a novel procedure to fuse network

size shrinkage and ad hoc tuning parameter selection,
which avoids use of penalty terms (e.g., lasso and elastic
nets methods) and reduces computational cost. Further
asymptotic properties of such procedure will be studied.

In the simulation study, the truly DEN can only be accu-
rately detected and tested as significant by using our Pard
algorithm. The ABIDE data provide another example of
increased statistical power of our method, where the dif-
ferential networks can only be detected by our Pard algo-
rithm. The edges can borrow power from each other
within the network, and the high proportion of small p-
value edges leads to significant permutation results. The
detected networks exhibit many significantly differentially
expressed edges that have been found in previous studies.
As we focus on methods and models in this article,
because of the space limit, we do not intend to discuss the
results in more detail from the neurophysiological aspect.
We provide the list the edges with p-values less than 0.05
for the two clusters in Supporting Information Tables S1
and S2. We plan to further verify the results by applying
our methods to several data sets, including rs-fMRI data
sets from other sites of the ABIDE project.

In summary, we have presented a novel parsimonious
differential brain connectivity network detection method
to discover differentially expressed connectivity features at
the group level for fMRI data. The simulation study and
data example have shown that the statistical inferences
based on our Pard method are more powerful and reliable
(lower false-positive discovery rate). We are also optimistic
that the Pard method is ready to be applied to connectiv-
ity analyses for task-induced fMRI data and structural con-
nectivity network analyses.
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