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Abstract 

Group level functional connectivity analyses often aim to detect the altered connectivity 

patterns between subgroups with different clinical or psychological experimental conditions, 

for example comparing cases and healthy controls. We present a new statistical method to 

detect differentially expressed connectivity networks with significantly improved power and 

lower false positive rates. The goal of our method is to capture most differentially expressed 

connections within networks of constrained numbers of brain regions (by the rule of 

parsimony). By virtue of parsimony, the false positive individual connectivity edges within a 

network are effectively reduced, while the informative (differentially expressed) edges are 

allowed to borrow strength from each other to increase the overall power of the network. We 

develop a test statistic for each network in light of combinatorics graph theory, and provide 

p-values for the networks (in the weak sense) by using permutation test with multiple-testing 

adjustment.We validate and compare this new approach with existing methods including false 

discovery rate (FDR) and network-based statistic (NBS) via simulation studies and a resting 

state fMRI case-control study. The results indicate that our method can identify differentially 

expressed connectivity networks while existing methods are limited. 
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1  Introduction 

Group level region-based whole brain connectivity analyses have been conducted to identify 

differentially expressed connectivity patterns between cohorts with different clinical or 

experimental conditions (Craddock et al., 2009; Zalesky et al., 2012a; Fornito et al., 2013; Park 

and Friston, 2013; Guo et al., 2014; Ginestet, et al., 2014; Shehzad, et al., 2014). However, the 

high-dimensionality of connectivity features and the complex correlation structure between them 

pose difficulties to detect the truly differentially expressed connectivity features without 

introducing substantial false positive findings. Mass-univariate statistical analyses on 

connections naturally require multiple testing adjustment methods such as family-wise error rate 

(FWER) or false discovery rate (FDR) to control false positive findings (Simpson et al., 2013a; 

Varoquaux et al., 2013). Different from other types of high-dimensional data (e.g. genomics), the 

correlation between connectivity features could be affected by an explicit topological structure 

comprised of brain areas (nodes). Ignoring such topological structure related correlation may lead 

to overly conservative multiple testing adjustment and a substantial loss of statistical power (i.e. 

no positive findings) (Fan et al., 2012). There have been few attempts to investigate the 

topological structure of the differentially expressed connectivity features. Graph/network based 

population level connectivity analyses seem to be a good solution to identify differences of 

connections with topological structures by leveraging both statistical and graph theoretical 

models (Simpson et al., 2012; Zalesky et al., 2012a; Guo et al., 2014). Graph theoretical models 

are often used to model brain functional connectivity networks (Rubinov and Sporns, 2010; 

Braun et al., 2009; Bullmore and Sporns, 2009; Sporns, 2011; Simpson et al., 2011; Sporns, 2012; 

Simpson et al., 2013b; Simpson et al., 2014 ). The nodes/vertices in the graph represent brain 

areas/regions and the edges express connections between the brain areas (Sporns, 2011; Rubinov 
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and Sporns, 2010). Since most connectivity metrics are continuous (e.g. Pearson correlation), all 

edges are weighted and the overall graph including all nodes is a weighted complete graph 

(Rubinov and Sporns, 2010; Rubinov and Sporns, 2011; Zalesky et al., 2010; Zalesky et al., 

2012b). The group-wise statistical inferences are conducted based on the weighted complete 

graphs.  

There are mainly two types of commonly used group-wise connectivity graph/network analysis 

methods: 1) global network metric based methods (GNM) which first calculate graph theoretical 

metrics such as ‘small-worldness’, modularity, and transitivity or cross-entropy/ mutual 

information for each individual and then conduct statistical testing or regression analysis on the 

metrics at a group level (Marrelec et al., 2008 Rubinov and Sporns, 2010; Sporns, 2011; Sporns, 

2012; van den Heuvel et al., 2010) and similarly ; 2) differentially expressed network methods 

(DEN) such as network based statistics (NBS) and spatial pairwise clustering (SPC), which first 

perform mass-univariate statistical analysis for each edge at the group level and next assembles 

the edges as a network using optimization algorithms (Zalesky et al., 2010; Zalesky et al., 

2012a). For example, the NBS method first applies a breadth-first method to detect the network 

and then conducts permutation tests to adjust for multiple tests in the weak sense.  Both NBS 

and SPC methods have been successfully applied to neuroimaging studies and yielded many 

interesting findings (Achard et al., 2006; Fornito et al., 2012; van den Heuvel et al., 2008; van 

den Heuvel et al., 2009; Honey et al., 2008; Bassett et al., 2011; Bassett et al., 2012). In general, 

the GNM method does not involve multiple testing corrections for a single graph theoretical 

metric, because the edges are combined into a single metric. However, the GNM results often 

only include overall graph theoretical properties without information of localized nodes and 

edges (Zalesky et al., 2010). In contrast, the DEN method can reveal spatially specific 
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information rather than only averaged/summarized metrics, but it requires adjustment for 

multiple comparisons (Fornito et al., 2013). The NBS and SPC methods by Zalesky et al., 2010 

and Zalesky et al., 2012a are two widely used DEN methods, which successfully incorporate 

family wise error control with network detection by applying permutation testing. Kim et al., 

2014 conduct comprehensive comparisons of several differentially expressed network 

testing/detection methods and conclude that the NBS method outperforms the others given 

appropriate threshold values. However, these two methods may still be subject to lack of power 

when the testing results contain high false positive noises. The noises may cause the detected 

networks to include many nodes and a small proportion of supra-threshold connections such that 

the permutation testing results turn out to be not statistically significant.  

The main contribution of this paper is to present a novel method to detect differentially expressed 

networks with greatly improved power and reduced false positive edges by leveraging the 

concept of parsimony (constraining the number of nodes). The penalized objective function (e.g. 

‘lasso’ or elastic net methods) has been widely applied to high dimensional data analysis because 

the parsimonious selection of features may greatly improve a model’s reliability and 

reproducibility (Hastie et al., 2009). The effects of parsimony (of nodes) is more dramatic when 

the features are edges in networks because the number of edges is power order of the number of 

nodes. For example, if the detected network including n nodes and n(n−1)/2 edges increases its 

size by adding one more node, then the increased network contains n+1 nodes and n(n+1)/2 

edges with n more edges than the original network. Such increasing trends between the number 

of nodes and the number of edges could give rise to the power loss and high false positive rates 

for network detection, because even adding one more node (to the existing network of n nodes) 

by mistake could increase nα false positive edges and introduce other noises. Thus, we propose a 
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parsimonious differential brain connectivity network detection method (Pard) that includes most 

significantly differentially expressed connectivity edges within networks with constrained 

number of nodes. We construct an objective function that maximizes the combined significance 

levels of the edges in the target networks when using the number of nodes of each network as a 

penalty term. The objective function can be effectively and efficiently solved by spectral graph 

theory models (Von Luxburg, 2007). In addition, the detected networks reveal the topological 

structure of the differentially expressed edges. We apply permutation tests to control the 

family-error rate in the weak sense, which is a similar strategy to the NBS method (Zalesky et al., 

2010). The detailed statistical model is introduced in section 2, and followed by model evaluation 

and comparison using a simulation study and an example of analyzing resting state fMRI data.  

2  Methods 

In many group level studies, we seek to answer the question whether two groups exhibit 

differential connectivity patterns. The general statistical test can be described as: the null 

hypothesis H0 that the two groups have no difference in connectivity vs. Ha that there are 

differentially expressed connectivity networks between the two groups. To conduct the statistical 

test, we first define the networks by Pard and then evaluate the probability of the networks 

assuming the null hypothesis is true (by using permutation tests). Clearly, the power and type I 

error rate are greatly impacted by the network detection method and thus that is our main focus in 

the method section.     

Model background 

The connectivity network in neuroimaging studies is often represented by a graph with a set of 

nodes and edges G={V,E}, the set of nodes V denote a set of distinct brain areas and the edges E 
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are the connections between those nodes. To investigate the differential connectivity expressions 

between two groups of subjects (e.g. controls vs. cases), two sample tests are often conducted for 

all edges. For example, p
ij
 is the test p-value between a pair of nodes i and j. Based on all these 

testing results, we obtain a |V| by |V| testing significance weight matrix W
0
={w

ij
}  with 

w
ij
=−log(p

ij
). We utilize the “−log" transformation of p to express that the edges of small 

p-values may contain important information and hence are highly weighted. In addition, we note 

that the empirical distribution of log( )
ij

p−  often follows a Gamma distribution (with both 

parameters equal to 1 based on maximum likelihood estimation). 

Objective function of network detection 

The primary goal of differential connectivity detection is to identify the significantly 

differentially expressed edges with well controlled false positive discovery rates. In contrast to 

other high-throughput genomic or proteomic expression features, the brain connectivity features 

(edges) are spatially constrained by nodes and thus are not independent. The NBS and SPC 

methods have wisely used this property to select features with more power (Zalesky et al., 2010 

and Zalesky et al., 2012a). We also leverage this property to construct our objective function and 

furthermore add a penalty term of the number of nodes. The main objective function is to search 

the C-component clustering of the whole graph, denoted, {A
c
}

C

c=1  where ⋂
C

c=1A
c
=V  and 

A
c
∩A

c'
=∅, that allocates most significant edges within networks of small number of nodes:  

 

 
1

,

{ }
1

log( )

|
argmin

|

c c

C
c c

ijC
i A j A

A
c c

p

A=

∈ ∈/

=

−∑
∑  (1) 
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where |A
c
| represents the size (number of nodes) of the detected network cluster A

c
. The 

objective function minimizes the weights of edges between the selected networks and the rest of 

G, which ensures the edges of heavy weights (more significant) are included in some networks 

rather than left between networks. Only the edges in the detected networks are included as 

biomarkers, the optimization process can be intuitively considered to cover more 

informative/supra-threshold edges by using small-sized networks.  

The first step of the optimization is the screening step which thresholds the noisy edges of larger 

p-values, for example to let w
ij
=0 if 0ij

p p>  and we refer to the thresholded weight matrix as 

W. Then, the Laplacian matrix based on the thresholded W matrix is 

 

 L=D−W, (2) 

where the degree matrix D is defined as the diagonal matrix with diagonal element d
1
,⋯,d

n

and 
| |

1

.
V

i ij

j

d w
=

=∑   

Next, we investigate how many disconnected components/subgraphs in the overall graph G with 

the thresholded W matrix. We denote G
q
 as a disconnected subgraph/subset of G (q=1,⋯,Q and 

G=∪
Q

q=1G
q
) such that G

q
⊂G and there is no edge with weight >0 connecting between G

q
 and 

its complement subset \
q

G G . To identify the disconnected subgraphs, we conduct the 

eigen-decomposition on the Laplacian matrix L, and the number of zero-valued eigenvalues 

equals the number of disconnected subgraphs (Von Luxburg, 2007). The corresponding 

eigenvectors of zero-valued eigenvalues exhibit the allocation of nodes to the disconnected 
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subgraphs. This step is equivalent to the network detection step in NBS, but a spectral graph 

model is used rather than the breadth first search by NBS. The objective function in formula (1) 

is at minimum and equals zero, if C the total number of network clusters in formula (1) is the 

same as Q (Q>1) the number of disconnected subgraphs in G. However, rather than stopping at 

this step and performing family-wise error control, we further conduct parsimonious network 

detection within each unconnected component to identify smaller networks with a higher 

proportion of significant edges. Thus, the overall objective function becomes parsimonious 

network detection within each unconnected subgraph : 

 

 
1

,

{ }
1

   

 
ar

log( )

|
g n

 |
mi

q

k k

Kq
k k

K
iji A j A

A
k k

p

A=

∈ ∈/

=

−
∑
∑ % %

% %      (3) 

where  q
K  is the number of clusters in a disconnected  subgraph q

G  and 
1

Q

qq
C K

=
=∑  

which links between formulae (2) and (3). However, the direct optimization of formula (3) is a 

NP problem. We seek the solution by using spectral graph models. After discretization relaxation, 

it turns into the RatioCut spectral clustering problem which has been well developed by Hagen 

and Kahng, 1992. The details of the implementation of the RatioCut algorithm are illustrated in 

the following detailed algorithm. Then, the only tuning parameter for each disconnected subgraph 

is q
K , which chooses the number of clusters for K-means clustering. Rather than applying the 

conventional methods such as silhouette criteria, we develop a novel and connectivity network 

specific criteria to choose q
K  objectively by maximizing the of product of 1) the ratio of the 

total number of significant edges in all q
K  clusters to the total number of non-zero edges in the 
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disconnected subgraph (quantity) and 2) the ratio of the total number of significant edges to the 

number of edges within all q
K  clusters (quality):  

 

 

   

  

1 1, ,

1 ,

( 0) ( 0)

· .
( 0)

1

q q

k k k k

q

k k

K K

ij ij

k ki A j A i A j A

K

ij

i j

k i A j A

I W I W

I W

= =∈ ∈ ∈ ∈

<
= ∈ ∈

> >

>

∑ ∑ ∑ ∑

∑ ∑ ∑

% % % %

% %

     (4) 

The criteria in formula (4) provides a data-driven and objective pathway to select tuning 

parameters q
K  that tries to maximize the proportion of significant edges in the selected 

networks and to include most significant edges of W in the detected differential networks.  

Moreover, we provide an approach to automatically select 0p  by a grid search algorithm. We 

search 0p  in the range of (0.05, 0.1) by increments of 0.005 and select  0p  that maximizes 

the criteria below: 

   

  

1 1, ,

1 ,  1,

log( ) l

1

o

,

g( )

1

q q

k k k k

q q

k k k k

K K

k ki A j A i A j A

K K

k ki A j A

ij ij

i A j A

p p
= =∈ ∈ ∈ ∈/

= =∈ ∈ ∈ ∈/

−

÷

−∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

% % % %

% % % %

    (5) 

which is the ratio of the average intensity of log( )
ij

p−  (information intensity) within selected 

networks and the average intensity of log( )
ij

p− outside of selected networks. Note that q
K  is 

selected by formula (4). Overvall, formulae (4) and (5) ensure that most of the information 

differentiating the two groups of subjects is contained in the selected networks while minimizing 
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the sizes of the networks needed (for higher concentration). Rather than applying a penalty term 

to control the network sizes, we implement the rule of parsimony by optimizing tuning 

parameters for objective functions. Thus, our approach is not only computationally convenient 

but also less ad-hoc (to provide more reproducible results).  

Last, we apply a permutation test to provide the p-value of selected networks while controlling 

family error rates, which is similar to the family error control in NBS (Zalesky et al., 2010). 

We summarize the overall parsimonious differential brain connectivity network detection (Pard) 

algorithm as follows: 

1. Conduct statistical tests on all edges E and calculate the weight matrix W by screening (e.g. 

thresholding values p
0
): 

 
0   log( ) if ;

0  else.

ij ij

ij

p p p
w

− ≤
= 


 

2. Detect disconnected subgraphs in G: first eigen decompose the Laplacian matrix L=D−W 

and the number of zero eigenvalues of L equals the number of disconnected subgraphs, and 

the allocation of nodes to disconnected subgraphs is based on the eigenvectors with zero 

eigenvalues. 

3. Within each disconnected subgraph G
q
, search networks that include most 

informative/significant edges with constrained numbers of nodes for each network. 

Although the direct optimization of this step is NP, it can be solved by the RatioCut 

algorithm after discretization relaxation:  
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(a) Compute the first q
K  eigenvectors 

1[ , , ]
qKu uL of L, with eigenvalues ranked from 

the smallest.  

(b) Let 1[ , , ]
q

T T

KU u u= L  be a | |
q

V K×  matrix containing all q
K  eigenvectors.  

(c) Perform K-means clustering algorithm on U  with q
K K=  to cluster |V| nodes into 

q
K  networks: 

1 ,...  , q

q q

K

K KA A% % .   

4. Try all possible q
K  for each disconnected subgraph and select the optimum number of 

networks by formula (4). 

5. Select 0p  by using the criteria of formula (5).   

6. Perform permutation testing to control family-wise error rates for each detected network 

A
c
: 

(a) Shuffle the group labels for each subject T times (e.g. T=5000) and calculate W with 

the same threshold p
0
 at each shuffling t.  

(b) Obtain the most significant test statistic (e.g. Fisher’s combination test) of A
c
 as m

t
  

in each permutation and let m
0
 represent the test statistic with w

ij
>0 for original 

labeling.  

(c)Calculate the permutation p-value as how many m
t
 are larger than m

0
 divided by T, 

P
A

c

= 

#(m
t
>m

0
)

T
 and determine whether the network is significant at a 

predetermined α level. 
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7. Output the significant networks with permutation test p values.  

3  Simulations 

In this section, we simulate a case-control connectivity study including 30 subjects of healthy 

controls and 30 subjects with neural disorders to evaluate the performance of our Pard algorithm. 

We generate a overall graph G
s
 of 90 ROIs as nodes and 4005 edges for a subject s (s=1,⋯60) 

to represent the widely used first 90 Automated Anatomical Labeling (AAL) regions in 

functional connectivity analysis (Tzourio-Mazoyer et al., 2002; Zalesky et al., 2010; Zalesky 

et al., 2012a).  

We assume that the normalized connectivity metrics (e.g. correlations after Fisher’s 

transformation and z-score normalization) follow a standard normal distribution. Within the 

overall graph G, we generate a truly differentially expressed connectivity network G
D

 of size 10 

(10 nodes and 45 edges). Thus, we simulate the connectivity metrics for all subjects by 

2

2

(0, ) if , and subject is from the healthy control group;
~

(0, ) otherwise.

 s D

ij

N d i j G s
Z

N

σ

σ

 + ∈



 

Then we conduct two sample t tests to obtain p-values and weight matrix W
0

. The simulated 

data is summarized in Figure 1: Figure 1a illustrates the truth: the truly differentially expressed 

network by the red color; Figure 1b is the heatmap of −log(p
ij

) based on the p-values of two 

sample t tests between the two cohorts of the simulated data; and Figure 1c is the shuffled version 

of Figure 1b (i.e. the labels of all nodes are permuted) which may better reflect the real spatial 

distribution of significant edges in practice (Figure 1c is the input data for the differential 
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network detection algorithm). We repeat the procedures above to obtain 100 simulated data sets 

by using each set of parameters.   

Figure1 

 (a) 

(b)                   (c)                                                       

 

We then perform our Pard algorithm on W
0
 to identify differentially expressed networks. After 

thresholding (p
0
), there are no disconnected subgraphs (i.e. G is connected) due to false positive 

significant edges. Thus, the only network size tuning parameter is C, the number of clusters for 

the overall graph G. The optimum number C ranges from 49 to 62 and most 0p  are between 

0.08 and 0.10 across the 100 simulated sets. The individual edges or networks with a few nodes 

are rarely detected as significant based on the permutation test results. Figure 2 shows how the 

tuning parameter selection criteria function changes with an increasing number of clusters for 

one simulated data set, and the score is highest at C=59 (for a simualtion data set). Then, we 

perform our algorithm with C=59, and the differentially expressed network G
D

 is successfully 

detected. We then conduct permutation testing based on 10,000 times permutation and 

P
G

D

<0.001, which indicates that the detected network is significant after controlling for the 

familywise error rate. The final results are demonstrated by Figure 2b, which reveals the true 

differentially expressed network accurately.  

Figure2 

 

(a)                                      (b) 
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For comparison, we apply the NBS algorithm for differential network detection by default 

parameter (t statistic =3.1) and several other threshold values for example: 2, 2.7 and 4.  We 

also apply it to detect the differentially expressed edges by using FDR as a reference for false 

positive rates and negative rates without considering networks as output biomarkers, and we use 

q=0.1 as a cut-off. In comparisons, we consider many senarios by using different sets of 

parameters including network sizes (5, 10, 15) and different significance levels of trully 

differentially expressed edges. The significance levels of trully differentially expressed edges are 

generally determined by three factors: effect sizes (d), noise levels ( 2σ ), and sample sizes, and 

we only tune noise levels ( 2σ ) because it is redundant to tune all three factors (the same 

p-values). We let d=0.8, and sample sizes for cases and controls are both 30. Table 1 summarizes 

the means and standard errors of false postive (FP) and false negative (FN) findings under 

different settings.  

Table 1. Simulation results under different settings 

 

The true differentially expressed network is detected and tested as significant in 100 of the 100 

data sets by using the Pard algorithm for different network sizes and most noise levels, though 

there is a small chance that false postive nodes (the number of nodes ranges 2~4) could be 

included. As a contrast, the FDR method misses most of the true postives while effectively 

controlling the false postive rates.  The power increase of the Pard method relies on both the 

combined significance levels of all edges in the network and the size of the detected network, 

because a network with more significant edges and smaller number of nodes is more likely to be 

significant based on permutation testing. In addition, the NBS method could not detect the 
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differentially expressed networks in most settings, and we apply different thresholds (ranging 

from 2 to 4) and report the results (of the threshold value) with the best performance. One 

possible reason could be the false positive edges connecting a large number of nodes and thus a 

large network is detected by breadth first search, but within the detected large network there is 

only a small proportion of edges that are significant and the number of significant edges is 

similar to those of the networks from permutations. Therefore, by applying the rule of parsimony 

(constraining the number of nodes of the detected networks) our method increases the power 

substantially and excludes false positive edges effectively. In summary, the simulation study 

indicates that our proposed Pard algorithm is effective for differentially expressed connectivity 

network detection and less affected by noises (false positive edges).  

4  Data example 

This data set was collected at the Yale child study center in Yale school of medicine, one of the 

data collecting sites in the Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al., 

2014). The imaging was performed on Siemens magneto Trio scanners. The imaging data was 

obtained using a gradient echo T2*-weighted echo planar imaging sequence, echo time TE = 

25ms, repetition time TR = 2000ms, 64 × 64 matrix with 34 slices 4.0 mm tick, skip 0 mm, 

resulting in whole brain coverage with a voxel size of 3.4mm × 3.4mm ×4.0 mm. The publically 

available data set includes 28 participants (typical controls, TC) and 28 patients with Autism 

spectrum disorders (ASD), and the two groups exhibit no signifcantly different demographics 

(e.g. age and gender). During the MRI scanning, all subjects were asked to lie as still as possible, 

keep their eyes open, try not to fall asleep, and think about whatever they wanted. A black 

background with a gray central fixation cross was presented during the resting state scan, 
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although participants were not asked to fixate, it was verified that they had not fallen asleep at 

the end of the scan. 

We perform rs-fMRI data prepocessing based on the Configurable Pipeline for the Analysis of 

Connectomes (C-PAC, http://fcp-indi.github.io). The resting-state fMRI data was first slice time 

and motion corrected. The data was next registered to a standard MNI space with voxel size 

2mm
3
 and normalized to be percent signal change. The masks of the white matter (WM), the 

gray matter (GM) and the cerebrospinal fluid (CSF) were created in the standard MNI space. 

The mean time series from the WM and the CSF was calculated. The mean time series of the 

WM, CSF and the six movement parameters were regressed from the GM. A linear trend 

was removed from all the signal. The fMRI time series were filtered using a bandpass with 

passing band (0.009-0.08 Hz) and spatially smoothed with a 6mm FWHM Gaussian kernel. We 

then use the first 90 AAL ROIs as nodes, and take the weighted average of all voxels’ temporal 

profiles within each ROI as the region level signal for all subjects. The Pearson correlation 

coefficients were calculated between the 90 nodes. In this analysis, we focus on the differential 

connectivity network detection between TC and ASD. 

We first conducted two sample t tests to obtain p-values and −log(p
ij
) for all edges between TC 

and TSD (Figure 3a), and then calculated the weight matrix W
0
. Next, we applied the 

parsimonious differential connectivity network detection method to the W
0

 matrix. We 

excluded singleton nodes in G, which have all edges 0ij
p p>  connected to the rest of the nodes. 

Then, there was no disconnected subgraph in G. We implemented the optimization algorithm for 

network detection and selected the tuning parameter based on the criteria function. Based on the 

equation (5) in section 2, we selected 0p  as 0.1. Figure 3b shows the relationship between the 
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tuning parameter selection criteria function and the number of clusters, and the maximum value 

is reached at C=31. Therefore, the final results were detected by using the tuning parameter 

C=31. The results are summarized in Figure 3c, and we note that all significant edges tend to be 

along the diagonal because of the shrinkage effect. Two networks are detected and tested as 

significant by permutation tests: the first network includes 15 nodes (P<0.001) and the second 

network includes 10 nodes (P<0.001).  

Figure3 

          

(a) 

(b)                   (c)                                                       

 

Figure 4 and Figure 5 show the differentially expressed edges within the two detected networks 

(figures are generated by using BrainNet Viewer by Xia et al., 2013). Many differentially 

expressed edges have been found in previous studies (Cherkassky et al., 2006, Tyszka et al., 

2013, Di Martino et al., 2014). The first cluster mainly exhibits altered connectivity expressions 

between pre-frontal cortex, parietal cortex, middle inferior temporal cortex, and basal ganglia. 

The second cluster mainly shows differences between superior frontal cortex, limbic system, and 

occipital cortex. The details are included in Supplementary Tables 1 and 2 in the Appendix. 

For comparison, we applied both the NBS method (with several threshold values from 2 to 4) for 

differentially expressed network detection and the false positive discovery rate (FDR) control for 

individual differentially expressed edge detection. Neither of these two methods detect significant 

results, which may be caused by the noise of false positives (NBS) and ignorance of correlation 

between edges (FDR) (similar atlas-based results by Tyszka et al., 2013).  
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Fig4 

  

Figure 4: Cluster 1: 3D plots of the differentially expressed edges. The width of the edges reflects 

the significance level, and the color is coded as: red (TC<TSD) and blue (TC>TSD). 

 

Fig5  

Figure 5: Cluster 2: 3D plots of the differentially expressed edges. The width of the edges reflects 

the significance level, and the color is coded as: red (TC<TSD) and blue (TC>TSD). 

5  Discussion 

Group-wise whole brain connectivity analyses using atlas regions have been facing trade-offs 

between false positive findings and lack of statistical power (false negatives). Traditional 

multiple testing adjustment methods often could not detect truly differentially expressed features 

when trying to avoid false positive findings. Some studies conduct group-wise connectivity 

analyses within predefined regions rather than the whole brain in order to lower the stringent 

level required for multiple testing adjustment and to increase the likelihood of detecting 

statistically significant findings. Clearly, such procedures may lead to limited and inaccurate 

results. The DEN type network based methods such as NBS provide a pathway to improve the 

statistical power while controlling the FWER. DEN methods select a significant edge not only by 

the criteria of the test p-value but also the distribution of p-values of its neighborhood edges. 

Therefore, the DEN methods naturally incorporate the topological structure of the edges for 
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significant connectivity detection and improve statistical power. Note that our method only 

controls the FWE in the weak sense and thus we can only make inferences on networks rather 

than individual edges. 

The statistical power of the existing DEN methods (e.g. NBS) depends on the proportion of 

supra-threshold edges within the connected subgraphs, and a smaller proportion may lead to a 

insignificant permutation test result. From the aspect of graph combinatrics, the probability of all 

edges with small p-values clustering in a small network is extremely low and therefore the 

permutation test p-value is very small, and the organized structure of such p values yields 

important topological information of differentially expressed connectivity networks. Hence, if the 

detected network includes truly differentially expressed edges but the proportion of significant 

edges is low, the statistical power to detect these trully signficant edges is very low because the 

detected network is very likely to be tested as non-singificant using a permutation test. Therefore, 

the objective function of our Pard algorithm aims: i) to include most significant edges in the 

detected networks; ii) by constraining the number of nodes of the networks to increase the 

proportion of significant edges within the detected networks. The constraint of the network size 

in the objective function is critical to reduce the (false positive) noise to improve statistical power. 

Therefore, our Pard algorithm improves the statistical power of network detection by allowing 

edges to borrow power between each other; and meanwhile effectively controls the false positive 

findings because false positive edges are more likely to be randomly distributed rather than 

concentrated within a small network. The detected networks in turn reveal the topological 

structures of the significant edges, and the parsimonious networks are more informative because 

the shrinkage procedure removes substantial noises.  
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We implement the optimization step by using the RatioCut algorithm. Although most spectral 

clustering algorithms primarily aim to allocate similar nodes to the same cluster, our objective 

function is to capture most significant edges within constrained networks. Fortunately, the 

algorithms have been well developed to implement the optimization of our objective function 

without intensive computational load. However, for most spectral clustering algorithms, the 

selection of number of clusters can be an arbitrary and ad-hoc procedure (Von Luxburg, 2007). 

We developed a new tuning parameter selection criteria function specifically for brain 

connectivity analysis to choose the number of clusters objectively. In addition, we provide a 

similar procedure to choose 0p . We express the importance (weight) of a edge by using −log 

transformation of the test p-value rather than raw p-value or t statistic, because the scale is more 

appropriate to differentiate the small p-values (e.g. 0.001 and 0.0001) and is naturally linked to 

Fisher’s combined probability test (that has been used in cluster activity intensity analysis by 

Hayasaka and Nichols, 2004). From the computational statistics point of view, we developed a 

novel procedure to fuse network size shrinkage and ad-hoc tuning parameter selection, which 

avoids use of penalty terms (e.g. lasso and eleastic nets methods) and reduces computational 

cost. Further asymptotic properties of such procedure will be studied.  

In the simulation study, the truly differentially expressed network can only be accurately detected 

and tested as significant by using our Pard algorithm. The ABIDE data provides another example 

of increased statistical power of our method where the differential networks can only be detected 

by our Pard algorithm. The edges can borrow power from each other within the network, and the 

high proportion of small p-value edges lead to significant permutation results. The detected 

networks exhibit many significantly differentially expressed edges that have been found in 

previous studies. As we focus on methods and models in this article, due to the space limit we do 
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not intend to discuss the results in more detail from the neurophysiological aspect. We provide 

the list the edges with p-values less than 0.05 for the two clusters in tables 1 and 2 in the 

Appendix. We plan to further verify the results by applying our methods to several data sets 

including resting fMRI data sets from other sites of the ABIDE project.  

In summary, we have presented a novel parsimonious differential brain connectivity network 

detection method to discover differentially expressed connectivity features at the group level for 

fMRI data. The simulation study and data example have shown that the statistical inferences 

based on our Pard method are more powerful and reliable (lower false positive discovery rate). 

We are also optimistic that the Pard method is ready to be applied to connectivity analyses for 

task-induced fMRI data and structural connectivity network analyses.  
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Appendix 

Supplementary Table 1: The supra-threshold edges in cluster 1 

Table 1 

 

Supplementary Table 2: The supra-threshold edges in cluster 2 
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Table 2 

*Note: Since we only make inferences in the weak sense the p-values of the edges are not for 

inferences, nevertheless we use them to exhibit how individual edges are differentially expressed. 
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Fig 1(a)the heatmap of truth the connectivity between the first 10 nodes are differentially expressed 
between the two groups;  

150x100mm (300 x 300 DPI)  
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Fig 1(b) heatmap of two sample t test -log(p) values of the simulated connectivity based on 60 subjects  (30 
cases vs. 30 controls);  
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Fig 1(c) heatmap with shuffled region number of (b) is used the input of our method.  
150x100mm (300 x 300 DPI)  
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Fig 2(a) the number of cluster selection criteria function: scores of the function vs. the number of clusters;  
150x90mm (300 x 300 DPI)  
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Fig 2(b) The resulting heatmap of –log(p): the detected network is at the left-top corner.  
150x100mm (300 x 300 DPI)  
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Fig 3(a) heatmap  of  -log p values for all edges between TC and TSD;  
150x100mm (300 x 300 DPI)  
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Fig 3(b) tuning parameter selection criteria function;  
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Fig 3(c) the resulting heatmaps: detected networks along the diagonal.  
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Figure 4 Cluster 1 3D plots of the differentially expressed edges. The width of the edges reflects the 
significance level, and the color is coded as: red (TC < TSD) and blue (TC > TSD)  

149x111mm (300 x 300 DPI)  
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Figure 5: Cluster 2  3D plots of the differentially expressed edges. The width of the edges reflects the 
significance level, and the color is coded as: red (TC < TSD) and blue (TC > TSD).  
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Table 1. Simulation results under different settings 

 Pard FDR NBS 

 FP FN Network FP FN Network FP FN Network 

Size=10 

σ
2
=1 

0.3 

±0.17 
0 Yes 

0.29 

±0.06 

40.42 

±0.35 
No  0 45 No 

          

Size=5 

σ
2
=1 

4.519 

±0.47 
0 Yes 

0.19 

±0.05 

9.45 

±0.10 
No 0 10 No 

          

Size=20 

σ
2
=1 

1.33 

±0.51 
0 Yes 

3.21 

±0.18 

134.43 

±1.12 
No 0 190 No 

          

Size=10 

σ
2
=0.25 

0 0 Yes 
1.04 

±0.11 

31.91 

±0.49 
No 

6.37±

1.17 

27.28±

2.20 
Yes 

          

Size=10 

σ
2
=5 

19.64 

±2.12 

16.28 

±1.44 
Yes 

0.05 

±0.02 

44.88 

±0.04 
No 0 45 No 
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