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Abstract 

Aim To investigate the effect of simvastatin on lipopolysaccharide (LPS) stimulated inflammatory 

cytokines, cell adhesion molecules, and Nuclear factor-κB (NF-κB) transcription factors in human 

dental pulp cells (HDPCs) 

Methodology The effect of LPS and simvastatin on human dental pulp cell (HDPCs) viability was 

measured using a 3-[4, 5-dimethylthiazol-2-yl] -2, 5 diphenyltetrazolium bromide (MTT) assay. 

Expression of inflammatory cytokines and cell adhesion molecules was evaluated by reverse 

transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), 

and Western blot analysis. NF

Results The viability of cells exposed to different concentrations of E. coli LPS, P. gingivalis LPS, 

and simvastatin was not significantly different compared with that of control cells (P>0.05). LPS 

significantly increased interleukin (IL)-1β (P<0.05) and IL-6 mRNA expression (P<0.05) and 

-κB transcription factors were evaluated by Western blot analysis. 

Statistical analysis was performed with analysis of variance (ANOVA). 

vascular 

cell adhesion molecule-1 (VCAM-1) (P<0.05) and intercellular adhesion molecule-1

Conclusions Simvastatin has a suppressing effect on LPS-induced inflammatory cytokine, cell 

adhesion molecules, and NF-κB transcription factors in HDPCs. Therefore, simvastatin might be a 

useful candidate as a pulp capping agent in vital pulp therapy. 

 (ICAM-1) 

protein expression (P<0.05) in HDPCs. Treatment with simvastatin significantly attenuated LPS-

stimulated production of IL-1β, IL-6, VCAM-1, and ICAM-1 (P<0.05). Treatment with simvastatin 

decreased LPS-induced expression of p65 and phosphorylation of IκB and also significantly 

decreased the phosphorylation of p65 and IκB in the cytoplasm and the level of p65 in the nucleus 

(P<0.05).  

 

 

Introduction 

Caries penetration into the pulp results in bacterial invasion and causes pulp inflammation (Hilton 

2009) as a result of the bacterial components and byproducts. Although this reaction represents a 

protective response, it can also be destructive. Unlike other body structures, the dental pulp is encased 
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in a rigid hard tissue with no collateral circulation. As a result, the pulp can become inflamed, 

eventually leading to pulp necrosis (Massey et al. 1993, Martin 2003). When the pulp becomes 

irreversibly inflamed or infected, root canal treatment is necessary, and such therapy can be 

challenging when the morphology of the canal is complex (Vertucci 2005).  

Vital pulp therapy, such as pulp capping, partial pulpotomy, or full pulpotomy is an alternative to 

pulpectomy and can be successful (Aguilar & Linsuwanont 2011). Partial pulpotomy was reported to 

be effective in treating permanent teeth with deep carious lesions (Mass & Zilberman 2011), and 

partial pulpotomy using ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA) or Dycal (L.D. 

Caulk, Milford, DE, USA) led to favourable outcomes in patients with reversible pulpitis 

(Chailertvanitkul et al. 2014). Direct pulp capping is also of value in certain cases (Willershausen et al. 

2011) with cariously exposed pulps as well as traumatic or mechanical pulp exposure (Matsuo et al. 

1996). However, partial pulpotomy and full pulpotomy have more predictable results than direct pulp 

capping in permanent teeth with cariously exposed pulps (Aguilar & Linsuwanont 2011).  

For vital pulp therapy to be successful when the pulp is inflamed, the material used to cap the pulp 

should have an anti-inflammatory effect and should also induce mineralisation to create a dentine 

bridge. Therefore, an ideal pulp capping agent should suppress inflammation and induce pulp tissue 

mineralisation during treatment for cariously exposed pulps (Komabayashi & Zhu 2010). Previously, 

ketoprofen was used to inhibit dental pulp inflammation in a laboratory model (Choi et al. 2013). 

Ketoprofen is a nonsteroidal anti-inflammatory agent that is used on oral lesion such as pharyngitis or 

inflammation of the mouth in orthodontic therapy (Choi et al. 2013). Ketoprofen has been reported to 

inhibit expression of inflammatory mediators in dental pulp cells stimulated with LPS (Choi et al. 

2013). However, ketoprofen does not have a mineralisation-inducing effect on the dental pulp (Choi et 

al. 2013).  

Simvastatin, an HMG-CoA reductase inhibitor, has been used to reduce the risk of cardiovascular 

disease. It has an excellent tolerability profile and is associated with a low risk of adverse effects 

(Pedersen & Tobert 2004, Robinson 2007). Many studies have shown that simvastatin exerts an anti-

inflammatory effect and it has been shown to prevent the inflammatory process induced by 

lipopolysaccharide (LPS) (Hernandez-Romero et al. 2008). Atorvastatin, another HMG-CoA 

reductase inhibitor, has been shown to reduce inflammation through the inhibition of nuclear factor-

kappa B (NF

Therefore, although it is possible that simvastatin could suppress inflammation in the dental pulps no 

-κB) activity (Ortego et al. 1999). In addition, simvastatin was found to have a bone 

formation–promoting effect in animal studies (Mundy et al. 1999). When injected subcutaneously or 

administered orally, simvastatin stimulated bone formation in mice calvaria and increased the volume 

of cancellous bone in rats (Mundy et al. 1999). Simvastatin has also been reported to promote 

osteoblastic differentiation and mineralisation in MC-3T3-E1 cells (Maeda et al. 2001) and to 

promote odontoblastic differentiation in human dental pulp cells (HDPCs) (Min et al. 2010). 
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study has assessed the anti-inflammatory effect of simvastatin in HDPCs. The purpose of this study 

was to investigate whether simvastatin suppresses expression of inflammatory cytokine and cell 

adhesion molecule in HDPCs. The null hypothesis tested was that there are no differences in the anti-

inflammatory effect between control and simvastatin treated groups.   

 

Material and Methods 

Cell isolation and culture  

HDPCs were isolated from intact, caries-free supernumerary teeth freshly extracted from healthy 

children 7 to 10 years of age. All procedures were conducted after obtaining informed consent. The 

study protocol was approved by the internal review board of the Chonnam National University Dental 

Hospital (CNUDH-2013-002). Immediately after extraction, the teeth were kept in phosphate buffered 

saline and were then split open. The pulp tissues were removed under sterile conditions, minced with 

a surgical knife, and placed in 60-mm culture dishes containing α-minimum essential medium (α-

MEM) (Gibco Invitrogen, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS), 

100 U/mL of penicillin, and 100 mg/mL of streptomycin in a humidified atmosphere of 5% CO2

 

 at 

37°C. Cell passage numbers from 3 to 4 were used for the following experiment.  

Cell viability assay   

Cell viability was measured using a 3-[4, 5-dimethylthiazolyl-2-2, 5 diphenyltetrazolium bromide 

(MTT) assay. For the cell viability experiments, a suspension of HDPCs at a concentration of 1×105

    

 

cells per well was seeded in 48-well plates containing α-MEM with 10% FBS. The concentrations of 

Escherichia coli (E. coli) LPS (Sigma-Aldrich, St. Louis, MO, USA) and of Porphyromonas 

gingivalis (P. gingivalis) LPS (Invivogen, San Diego, CA, USA) were set at 0.1, 1, 10, and 20 μg/mL. 

The concentrations of simvastatin were set at 0.1, 1, 5, and 10 μM. After the cells were incubated for 

24 h, MTT was added to each well for the last 4 h of the experiment, which was then stopped by the 

addition of dimethyl sulfoxide (DMSO). Optical density was determined at a 570-nm wavelength on a 

multi-well plate reader. Background absorbance of medium in the absence of cells was subtracted. 

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

The total RNA of dental pulp cells was extracted using TRIzol reagent (Life Technologies, 

Gaithersburg, MD, USA), according to the manufacturer’s instructions. Then, 2 μg of RNA was 

reverse-transcribed for the synthesis of first-strand complementary DNA (cDNA) (Gibco BRL, 

Rockville, MD, USA). The cDNA was amplified in a final volume of 20 μL containing 2.5 mmol/L of 

magnesium dichloride, 1.25 U of Ex Taq Polymerase (Bioneer, Daejeon, Korea), and 1 mmol/L of 

specific primers. Thermocycling conditions consisted of 94°C for 5 m and then 30 cycles at 94°C for 

40 s, at 55°C for 40 s, and at 72°C for 90 s, followed by a final 10 m extension at 72°C. Primer 
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sequences for PCR are described in Table 1. The PCR products were resolved on a 1.5% agarose gel 

and stained with ethidium bromide and visualised with a UV Transilluminator/Polaroid camera 

BioImaging System (UVP, LLC, Upland, CA, USA). PCR results were quantified using ImageJ 

software, version 1.47 (National Institutes of Health, Bethesda, MD, USA). The band density of each 

gene was normalized with the density of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a 

control. 

 

Western blot analysis  

Cell lysates (50 to 100 μg) were placed in a lysis buffer (30 mM of Tris-Cl [pH 7.5], 1% NP-40, 1 

mM of EDTA, 150 mM of NaCl, 1 mM of phenylmethanesulfonyl fluoride [PMSF], and a protease 

inhibitor mixture containing 1 μg/mL of aprotinin and leupeptin), separated by 12% polyacrylamide 

gel electrophoresis, and transferred to a nitrocellulose membrane (Santa Cruz Biotechnology, Santa 

Cruz, CA, USA), according to standard procedures. The membrane was blocked in 5% non-fat dry 

milk and incubated with primary antibodies for vascular cell adhesion molecule-1 (VCAM-1) and for 

intercellular adhesion molecule-1

Cells that had been incubated with 1 μg/mL of E. coli LPS or with 1 μg/mL of P. gingivalis LPS in the 

absence or presence of 5 μM of simvastatin for 24 h were harvested. The nuclear and cytoplasmic 

proteins were collected by the ProteoExtract Subcellular Proteome Extraction Kit (Calbiochem, San 

Diego, CA, USA). Western blot assay was performed, and the nitrocellulose membrane was incubated 

overnight at 4°C with primary antibodies for p-p65 (Cell Signaling), p-65, p-IκB, and IκB. After 

incubation with the specific peroxidase-coupled secondary antibodies (Thermo Scientific) for 1 h, the 

blotted bands were detected using an enhanced chemiluminescence detection kit (Amersham 

Pharmacia Biotech). Histone H1 and β-actin were used as the internal controls for the nuclear and 

cytoplasmic proteins, respectively.  

 (ICAM-1) (Santa Cruz Biotechnology), p65 (Abcam, Cambridge, 

UK), and p-IκB and IκB (Cell Signaling, Danvers, MA, USA) for 1 h at room temperature. After 

incubation with the specific peroxidase-coupled secondary antibodies (Thermo Scientific, Rockford, 

IL , USA) for 1 h, the blotted bands were detected using an enhanced chemiluminescence detection kit 

(Amersham Pharmacia Biotech, Little Chalfort, UK).  

 

Enzyme-linked immunosorbent assay (ELISA)  

Cells were incubated with 1 μg/mL of E. coli LPS or with P. gingivalis LPS in the absence or presence 

of 5 μM of simvastatin for 24 h. The levels of IL-1β and IL-6 were determined by means of enzyme-

linked immunosorbent assay (ELISA) kits (R&D Systems Inc, Minneapolis, MN, USA). In all cases, 

a standard curve was constructed from the standards provided by the manufacturer. Cytokine levels 

were normalised to the protein concentration in lysate. 
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Statistical analysis  

Data were analysed using one-way analysis of variance (ANOVA), followed by the Student-Newman-

Keuls test, as compared with control. Differences for which P-values were less than 0.05 were 

considered statistically significant.  

 

Results 

Effects of LPS and simvastatin on viability of HDPCs 

The effect of E. coli LPS, P. gingivalis LPS, and simvastatin on cell viability of HDPCs is shown in 

Figure 1. The viability of cells exposed to different concentrations of E. coli LPS, P. gingivalis LPS, 

and simvastatin was not significantly different from that of the controls (P> 0.05).  

 

Effects of LPS on expression of inflammatory cytokines and cell adhesion molecules 

To investigate whether E. coli LPS and P. gingivalis LPS induced an inflammatory reaction in HDPCs, 

the expression of interleukin (IL)-1β and IL-6 was assessed in LPS-treated HDPCs. As shown in 

Figure 2a and 2b, E. coli LPS and P. gingivalis LPS significantly increased both IL-1β and IL-6 

mRNA expression and IL-1β and IL-6 protein secretion. In addition, the expression of cell adhesion 

molecules, such as VCAM-1 and ICAM-1, was upregulated after the HDPCs were treated with both 

types of LPS (Fig. 2c). Densitometry showed that there was a significant increment in IL-1β (P<0.05) 

and IL-6 mRNA expression (P<0.05) and in VCAM-1 (P<0.05) and ICAM-1 expression (P<0.05) 

after treatment with LPS, beginning at concentrations of 0.1 μg/mL and higher (Fig. 2).  

 

Effects of simvastatin on LPS-upregulated inflammatory cytokines and cell adhesion molecules 

To determine the effect of simvastatin on LPS-induced pulpal inflammation, the expression and 

secretion of cytokines such as IL-1β and IL-6 and the expression of cell adhesion molecules such as 

VCAM-1 and ICAM-1 were examined in HDPCs stimulated with E. coli LPS or P. gingivalis LPS in 

the presence of simvastatin for 24 h. Treatment with simvastatin significantly attenuated the LPS-

stimulated expression of IL-1β (P<0.05) and IL-6 (P<0.05) in HDPCs (Fig. 3a). The inhibitory effect 

of simvastatin on the secretion of cytokines into the supernatant was measured by ELISA. Detection 

of the secreted forms of IL-1β and IL-6 confirmed that simvastatin blocked the increments in IL-1β 

(P<0.05) and IL-6 proteins (P<0.05) in the supernatant of LPS-stimulated HDPCs (Fig. 3b). The 

effect of simvastatin on LPS-stimulated IL-1β and IL-6 protein secretion corresponded to its effect on 

mRNA expression. In addition, upregulated VCAM-1 and ICAM-1 production in HDPCs stimulated 

with LPS was inhibited by simvastatin treatment (Fig. 3c) (P<0.05 compared with the E. coli LPS–

treated group; P<0.05 compared with the P. gingivalis LPS–treated group). 

 

Effects of simvastatin on LPS-stimulated NF-κB pathway 
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To determine the mechanism involved in the response to simvastatin, the effect of simvastatin on 

LPS-stimulated NF-κB pathway was examined. Simvastatin treatment significantly decreased LPS-

induced p65 expression and phosphorylation of IκB in the whole extract (Fig. 4a) (P<0.05), and it also 

significantly decreased LPS-increased phosphorylation of p65 and IκB in the cytoplasm and p65 level 

in the nucleus (Fig. 4b) (P<0.05) (P<0.05 compared with the E. coli LPS–treated group; P<0.05 

compared with the P. gingivalis LPS–treated group).  

 

Discussion 

Caries lesions are associated with bacterial penetration of the pulp which evoke pulp inflammation, 

and eventually pulp necrosis and periapical pathosis (Hilton 2009). LPS, an endotoxin of gram-

negative bacteria, mediates activity of the offending organism and induces an immune response in the 

host cells. LPS is also involved in the development of dental pulp inflammation and pulpitis. If the 

pulp can recover from the inflammatory state, the inflammation is classified as reversible pulpitis. 

Vital pulp therapy aims to treat reversible pulpitis and recover to a normal pulp state (Ward 2002). For 

the success of vital pulp therapy, factors such as age, size of exposure, state of pulp, extra-pulpal 

blood clot, and choice of capping material may affect to the outcomes (Ward 2002). Calcium 

hydroxide has been used as a vital pulp therapy for some time (Foreman & Barnes 1990). MTA has 

been used in the direct pulp capping and pulpotomy and has been associated with good results 

(Chailertvanitkul et al. 2014). Anti-inflammatory agents such as corticosteroid have also been tried as 

pulp capping agents (Obersztyn et al. 1968).  

Simvastatin has been reported to have certain pharmacological effects in various tissues and cell types, 

including a wide range of anti-inflammatory effects. In one study, simvastatin reduced IL-1β, IL-6, 

and cyclooxygenase (COX) 2 expression in human umbilical vein endothelial cells (HUVECs) (Inoue 

et al. 2000), and in another report, treatment with simvastatin reduced serum levels of IL-6 and TNF-α 

in patients with hypercholesterolemia (Musial et al. 2001). In an experimental model of 

temporomandibular joint inflammation, simvastatin injected into the joint was effective in reducing 

subsynovial inflammation (George et al. 2013). Nevertheless, no studies have been carried out to 

assess the potential anti-inflammatory effect of simvastatin in human pulp cells. In the present study, 

simvastatin effectively decreased the expression of IL-1β, IL-6, and VCAM-1 and ICAM-1 induced 

by LPS in HDPCs. The suppressive effect of simvastatin on inflammatory cytokines is similar to that 

seen in other cell types, as shown in a previous study (Inoue et al. 2000).  

IL-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) are well known as key pro-inflammatory 

mediators in the pathogenesis of inflammatory conditions (Greenhill et al. 2011, Tang et al. 2015), 

and LPS induces the expression of many inflammatory cytokines, such as IL-1β, IL-6, IL-8, and TNF- 

α, in HDPCs (Coli et al. 2004, Nakanishi et al. 2010, Choi et al. 2013, Kim et al. 2015).  

ICAM-1 and VCAM-1, which belong to the immunoglobulin superfamily of cell adhesion molecules, 
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are thought to regulate the attachment and migration of leukocytes during the inflammatory process 

(Blake & Ridker 2001). It has been reported that these molecules are expressed in inflamed human 

dental pulps and actually enhance pulp inflammation (Sawa et al. 1998). Because bacterial 

components such as LPS can induce ICAM-1 and VCAM-1 expression in dental pulp cells (Lee et al. 

2008, Nakanishi et al. 2010), IL-1β, IL-6, and ICAM-1 and VCAM-1 were used as markers of 

inflammation induction. LPS increased the expression of these inflammatory cytokines in the HDPCs. 

This finding is in accordance with results reported by others (Coli et al. 2004, Lee et al. 2008, Choi et 

al. 2013).  

NF-κB is a transcription factor that binds to the enhancer element of the immunoglobulin kappa light 

chain of activated B cells (Hoesel & Schmid 2013). In addition, the NF-κB pathway is known to be a 

key mediator of genes involved in controlling cellular proliferation and apoptosis. Therefore, NF-κB 

has an important role in regulating cellular proliferation, and activation of NF-κB can reduce 

apoptosis (Hoesel & Schmid 2013). 

NF-κB transcription factor also plays an essential role in the regulation of inflammation and the 

immune response. Inflammatory processes are associated with activation of the NF-κB signaling 

pathway (Hoesel & Schmid 2013), so inhibition of this pathway could have a potential role in 

reducing inflammation (Yamamoto & Gaynor 2001). Several transduction cascades mediate 

stimulation of the NF-κB pathway. Activation of IκB kinase causes phosphorylation of IκB, leading to 

its ubiquitination and degradation. Degradation of IκB results in the translocation of NF-κB from the 

cytoplasm to the nucleus where it induces the expression of specific cellular genes (Yamamoto & 

Gaynor 2001).  

To demonstrate the mechanism of simvastatin that inhibits inflammatory cytokine expression, the 

present study examined the effect of simvastatin on the NF-κB pathway. Simvastatin decreased the 

phosphorylation of IκB and p65 in the nucleus, which had been increased by LPS. Based on these 

results, the suppressive effect of simvastatin on LPS-induced inflammatory cytokines in HDPCs 

seems to be related to inhibition of the NF-κB pathway. This finding is consistent with a previous 

study of epidermal burn injury in mice showing that simvastatin reduced inflammatory cytokine 

production and apoptosis via downregulation of the TNF-α/NF-κB pathway (Zhao et al. 2015). 

Asl Aminabadi et al. (2013) assessed the use of simvastatin versus calcium hydroxide as a pulp 

capping agent, but the anti-inflammatory effect of simvastatin was controversial. It is possible that 

their result was related to the experimental design in that they studied the pulp in its normal state. 

Under such normal conditions, implantation materials can cause an inflammatory response (Jegat et al. 

2007). However, in the present study, LPS activated the inflammatory cytokines, which were reduced 

by treatment with simvastatin. Moreover, in the study by Asl Aminabadi et al. (2013) sodium 

carboxymethyl cellulose was used as a carrier of simvastatin, and cellulose derivatives can be 

degraded by bacteria (Reese et al. 1950). For the clinical application of simvastatin in inflammatory 
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conditions, a non-degradable carrier, such as bioglass, would have been more appropriate.  

 

Conclusion 

Simvastatin had an anti-inflammatory effect on LPS-induced inflammation in HDPCs. Therefore, 

simvastatin might be a useful candidate as a pulp capping agent in vital pulp therapy. 
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Figure legends 

Figure 1 Effects of E. coli LPS, P. gingivalis LPS, and simvastatin on cell viability of HDPCs. The 

MTT assay was used to assess the viability of HDPCs for 24 h after treatment with different 

concentrations of E. coli LPS, P. gingivalis LPS, and simvastatin. Values are expressed as means ± SD 

of three replicates of one representative experiment.  

Figure 2 Effects of LPS on the expression of IL-1β, IL-6, VCAM-1, and ICAM-1 in HDPCs. The 

cells were treated with 0.1, 1, and 10 μg/mL of E. coli LPS and of P. gingivalis LPS for 24 h. (a) The 

mRNA levels of IL-1β and IL-6 were determined by RT-PCR. (b) The protein levels of IL-1β and IL-6 

were determined with the use of ELISA kits. (c) The protein levels of VCAM-1 and ICAM-1 were 

determined by means of Western blot analysis. Values are expressed as means ± SD of three replicates 

of one representative experiment. * P<0.05, vs. control. The data shown are representative of three 

independent experiments with triplicates for each experiment.  

Figure 3 Effects of simvastatin on the expression of IL-1β and IL-6 and VCAM-1 and ICAM-1 

expression induced by E. coli LPS and P. gingivalis LPS in HDPCs. Cells were cultured with or 

without 1 μg/mL of E. coli LPS or of P. gingivalis LPS for 24 h with the concentrations of simvastatin 

as indicated. (a) The mRNA levels of IL-1β and IL-6 were determined by RT-PCR. (b) The protein 

levels of IL-1β and IL-6 were determined by using ELISA kits. (c) The protein levels of VCAM-1 and 

ICAM-1 were determined by means of Western blot analysis. Values are expressed as means ± SD of 

three replicates of one representative experiment. The data shown are representative of three 

independent experiments with triplicates for each experiment. # P<0.05, vs. the E. coli LPS–treated 

group; + P<0.05, vs. the P. gingivalis LPS–treated group.  

Figure 4 Effects of simvastatin on the NF-κB pathway in HDPCs. Cells were cultured with or without 

1 μg/mL E. coli LPS or P. gingivalis LPS for 24 h with the concentrations of simvastatin as indicated. 

(a) The protein expression of p65, phospho-IκB, and IκB was determined by means of Western blot 

analysis. (b) Protein levels of phospho-p65 and phospho-IκB in the cytoplasm and p65 in the nucleus 

of HDPCs were assessed. Values are expressed as means ± SD of three replicates of one 

representative experiment. The data shown are representative of three independent experiments with 

triplicates for each experiment. # P<0.05, vs. the E. coli LPS–treated group; + P<0.05, vs. the P. 

gingivalis LPS–treated group. 

 

 

Table 1 Primer sequences used for RT-PCR  
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Genes GeneBank number  Sequences (5′-3′ )  Length of product  

IL-1β  NM_000576.2  F: GATACAAACTGATGAAGCTCGTCA 

R: GAGATAGTGTTTTCCACATCCTGA  

172 bp  

IL-6  NM_000600.3  F: GAACAAGCCAGAGCTGTCCA  

R: TGAGGTGCCCATGCTACATT  

230 bp  

GAPDH  NM_001256799  F: AGTCACGGATTT GGTCGT 

R: ACAAGCTTCCCGTTCTCAG  

185 bp  
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