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In this paper, we introduce a novel model of the brain vascular system, which is developed based

on laws of fluid dynamics and vascular morphology. This model is used to address dispersion and

delay of the arterial input function (AIF) at different levels of the vascular structure and to

estimate the local AIF in DCE images. We developed a method based on the simplex algorithm

and Akaike information criterion to estimate the likelihood of the contrast agent concentration

signal sampled in DCE images belonging to different layers of the vascular tree or being a combi-

nation of different signal levels from different nodes of this structure. To evaluate this method,

we tested the method on simulated local AIF signals at different levels of this structure. Even

down to a signal to noise ratio of 5.5 our method was able to accurately detect the branching

level of the simulated signals. When two signals with the same power level were combined, our

method was able to separate the base signals of the composite AIF at the 50% threshold. We

applied this method to dynamic contrast enhanced computed tomography (DCE‐CT) data, and

using the parameters estimated by our method we created an arrival time map of the brain.

Our model corrected AIF can be used for solving the pharmacokinetic equations for more accu-

rate estimation of vascular permeability parameters in DCE imaging studies.
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1 | INTRODUCTION

Estimating the arterial input function (AIF) of a contrast agent (CA), the

time‐concentration curve in plasma, especially at the tissue level, has

long presented a challenge in dynamic contrast enhanced magnetic

resonance (DCE‐MR), dynamic contrast enhanced computed tomogra-

phy (DCE‐CT) and dynamic susceptibility contrast (DSC) imaging

studies. The AIF is used for estimating mean transit time (MTT), cere-

bral blood flow (CBF), cerebral blood volume (CBV), vascular transfer

rate constant (Ktrans), vascular plasma volume (vp), and extracellular‐

extravascular space (ve) in DSC and DCE studies.1,2 Using an inaccurate
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AIF profile in permeability and perfusion analyses could substantially

add bias to the estimated hemodynamic and permeability maps. This

is one of the main reasons for finding the AIF at the tissue level or in

other words, the local AIF. One of the approaches to solving this prob-

lem is modeling the vascular system in the brain and using this model

to find the dynamics of blood flow at the capillary (tissue) level.

Many researchers have attempted to model vasculature for

applications in DSC and DCE studies. Depending on the applications,

there have been different approaches to this problem, each having

their advantages and shortcomings. One approach has been model-

ing the blood circulatory system of the whole body and finding the

flow at different locations in the vascular system. In this category,

Sherwin et al. built a one‐dimensional network based on space–time

variables and linear and non‐linear modeling.3 Another modeling

approach is based on having a three‐dimensional arterial tree

embedded in a one‐dimensional representation of the arterial sys-

tem.4 Bagher‐Ebadian et al. suggested a model and algorithm based

on the blood‐circulatory system, to estimate the CA time‐concentration
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curve in arterial plasma after an intravenous bolus injection.5,6 Although

themodels above allow us to perform quantitative and qualitative stud-

ies of local and global hemodynamic quantities, none of these models

have addressed the model of blood flow at the capillary (tissue) level

in the brain.

In one study Calamante et al. proposed using independent compo-

nent analysis (ICA) in perfusion studies as a tool to define a local AIF to

obtain more accurate quantification of CBF in DSC‐MRI studies.7 The

method for finding the local AIF was based on a semi‐manual approach

and user input was required for choosing the components; moreover,

there was no method for validating the local AIF. Mouridsen et al.

defined a physiological estimation of microvasculature, which was

used for estimation of cerebral perfusion with Bayesian methods.8 In

this study, it was assumed that the AIF has a gamma variate probability

density function. Assuming gamma variate or exponential decay func-

tions for the local AIF have been used in other studies as well.9,10

Cebral et al. used a method based on MR angiograms to develop

detailed assessment of blood flow patterns from direct in vivo mea-

surements of vessel anatomy and flow rates using finite element

methods.11 The focus of this research was only on major arteries and

small arteries were not modeled.

There have been a considerable number of studies for modeling

changes in the AIF for arterial spin labeling (ASL) applications. Some

have used Gaussian kernels12 or variations of these13 for modeling dis-

persion of the AIF, which provide plausible smoothening of the AIF

box‐car shape along the arterial pathway. Hernandez‐Garcia et al. pre-

viously presented a one‐dimensional model for ASL applications that

takes into account the effects of transit times by modeling displace-

ment and decay of the inversion tag between the tagging and imaging

locations.14 In another study, Kazan et al. modeled the effects of dis-

persion in ASL15 using the mass transport equation. In another study

Gallichan and Jezzard modeled dispersion of the AIF using laminar

(parabolic) and pulsatile flow of blood in major arteries.16 This model

was designed only for ASL applications and also it considered only a

single tube with no branching, which is not the case in vascular struc-

tures. Later, Chappell et al. used a variation of this model with a

gamma‐variate kernel added to address dispersion in ASL.17 Although

these studies have suggested practical approaches for addressing

changes of the ASL bolus, none of them have considered the effects

of multiple pathways of flow through the vasculature for modeling

the overall dispersion. One of the approaches that has used laws of

fluid dynamics to estimate the changes in the bolus profile is a method

proposed by Gall et al.18 They introduced a framework for solving the

deconvolution problem in DSC using a functional form of the residue

function and also for estimating the changes in the bolus profile in

ASL applications. In this framework, the function was derived based

on the laws of laminar flow and a vascular tree model. Their results

of using this function showed excellent agreement with data measured

using ASL in early branches of the vascular tree.

The methods discussed above show different models for the AIF,

but most of these models either represent the input function only at

the level of the major arteries (such as the carotid artery), or if they

have an estimation of the input function at a lower level, the model

does not represent all the major parameters that affect the AIF at

the capillary level. Here, using an approach similar to the work done
by Gall et al.18 and Kellner et al.,19 we introduce an analytical model

of dispersion in major arteries at different levels of branching based

on laws of fluid dynamics and morphological properties of the vessels.

Next, using this model and the Akaike information criterion (AIC), we

introduce a method for estimating the structure of the vascular tree

at different locations in DCE images.
2 | MATERIALS AND METHODS

2.1 | Implementation of the vasculature model

The model we have proposed explains dispersion of the AIF based on

two different sources: dispersion in a single vessel due to laminar flow

and dispersion due to branching of the vessels down to the capillaries

and multiple arrival times of blood in the tissue due to different vascu-

lar pathways of different lengths. All modeling and visualization was

done in MATLAB (Release 2010b, MathWorks, Natick, MA, USA).

2.1.1 | Parametric expression of dispersion in single tube

The average Reynolds number (Re) for the carotid artery has been cal-

culated to be 266 and 911 for mean and peak flow rates respec-

tively,20 and since this is less than 4000 we consider the flow of

blood in the brain vessels other than the capillaries to be laminar. In

laminar flow, the velocity of the fluid in a tube is dependent on the

radial distance to the center of the tube and can be characterized as21

v ¼ v0 1−
r2

R2

� �
(1)

where v0 is the velocity of blood along the central axis of the vessel

with a radius of R. v is the blood velocity at radial distance r from this

axis. In this study, considering the time resolution of DCE imaging,

the effects of pulsatile flow of blood in the vessels are ignored and it

is assumed that flow has reached a steady state; thus, from this point

on, v0 will represent the maximum blood velocity in each vessel. Based

on Equation 1, in an approach similar to the work by Gall et al.22 and

Kellner et al.,19 we have derived a transfer function that describes

the distortion of the CA profile, after passing through a single vessel

(details are presented in the appendix):

h tð Þ ¼
0 t<t0

2t0
2

t3
t≥t0

8<
: (2)

where

t0 ¼ D0

v0
(3)

D0 is the length of the vessel, and since v0 is the maximum velocity of

blood in the vessel, t0 is the shortest time that the CA takes to pass

through the vessel; under the assumption of steady flow in the vascu-

lar system t0 can be considered a characteristic of the vessel.

2.1.2 | Dispersion due to the cascade of vessels

In the case where a cascade of vessels exists, the overall transfer func-

tion of the vessels from the input node to any node in the system is the

convolution of the transfer functions of the individual vessels in the



FIGURE 1 Morphological structure of the vascular model; branching
of arteries and arterioles has been simulated down to six levels. As
seen here, the veins and venules have larger volume and diameter
compared with arteries and arterioles. The volumetric flow rate of
blood entering this model is equal to the efferent flow. Every segment
of the capillary bed is modeled as a single tube vessel in which the flow
is non‐laminar
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pathway. In such a system, the transfer function of each vessel can be

written as follows:

h tð Þ1 ¼ 2t01
2

t3
for t≥t01 (4)

h tð Þ2 ¼ 2t02
2

t3
for t≥t02 (5)

h tð Þ3 ¼ 2t032

t3
for t≥t03 (6)

h tð Þn ¼
2t0n

2

t3
for t≥t0n: (7)

In these functions, t01 to t0n are the time delays of each individ-

ual vessel along the vascular route, from the opening of the main

artery down to the nth branching layer. The transfer function of

the vessels from the main input to the nth level of sub‐branches

can be written as

h tð Þ1 to n ¼ h tð Þ1�h tð Þ2�…�h tð Þn: (8)

2.1.3 | Fractal geometry of the vessels

Based on Murray’s branching law of vessels, when an artery bifurcates,

the radii of the daughter vessels are related to the radius of the parent

vessel through23,24

r3p ¼ r3d1 þ r3d2 (9)

If we assume that the two daughter branches are similar, the radii

of these daughter vessels and the parent vessel will be related

through

rd ¼ rpffiffiffi
23

p (10)

Therefore, the maximum velocity of blood in each of the daughter

vessels (v0d) will be
ffiffiffi
23

p
times that of the parent vessel (v0p). Also if we

assume that the length of the daughter branches is

ld ¼ lpffiffiffi
23

p (11)

the delay time of the daughter vessels (t0d) will be equal to the delay

time of the parent vessel (t0p). The benefit of employing these assump-

tions is that, while they are close to reality,25 it can reduce the number

of parameters that describe a vascular tree; instead of having an indi-

vidual t0 for each branch, one t0 can describe the entire tree from

the major artery down to the arterioles. In this case, if h(t)1 is the trans-

fer function of each branch, the general equation for the transfer func-

tion of the vascular tree will be

h tð Þ1 to n ¼ h tð Þ1
� ��n

(12)

where “*n” denotes n repeated convolutions.
2.1.4 | Simulating the CA concentration profile at different
levels of the vascular structure

To explore the feasibility of using our method for estimating the vascu-

lar transfer function parameters in DCE images, we first performed a

simulation of the CA concentration profiles. Initially we implemented

a vascular morphological model as in Figure 1, with parameters compa-

rable to real life values. The diameter of the common carotid artery in

healthy adults has been estimated to be26 6.0 ± 0.8 mm and the mean

velocity of blood passing through the internal carotid artery has been

measured to be 32.7 ± 3.0 cm/s in healthy adults.26 These values were

used as the starting points of our model implementation. Based on the

findings of Wright et al.,28 the mean and standard deviation of the

branch lengths in the brain is 25.02 ± 2.71 mm (19.35 mm–30.14 mm).

The length of the main branch of our model was set to 4 cm based on

these reported values. The model starts with one main artery; this

artery bifurcates and two daughter vessels are created with the length

and radius described in the previous section.

Using the same procedure, the daughter branches can be created

recursively till they reach the capillary level. The three main arterial

branches originating from the circle of Willis are the anterior cerebral

artery (ACA), middle cerebral artery (MCA) and posterior cerebral

artery (PCA).27 Each of these major vascular trees feeds a different part

of the brain, but since they all originate from the circle of Willis, consid-

ering the relatively low time resolution of the imaging modalities, we

assumed that the CA concentration profiles of the blood entering

these three branches are similar. According to the measurements made

by Wright et al.,28 the maximum numbers of bifurcations in these trees

are 6.15 ± 1.53 (ACA), 8.80 ± 1.40 (MCA), and 5.93 ± 1.66 (PCA). Using

these initial values and branching rules, our model was implemented
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with six levels of branching down to the capillary level as in Figure 1;

the veins and venules were implemented as the mirror image of the

arteries and arterioles, albeit with a larger radius such that the overall

volume of the veins and venules was four times that of the arteries

and arterioles.21

The flow rate in the vessels in this model was calculated by finding

the resistance of every branch based on Poiseuille’s law21 and

converting the model to an analogous electric circuit and finding the

electric current in all branches based on Ohm’s law.29 After finding

the velocity of blood in all branches of the model, the time delay (t0)

of each branch was calculated using Equation 3 and the vascular trans-

fer function between the opening of the main artery and every node

was estimated based on Equation 12. Figure 2A shows the transfer

functions between the opening of the main artery and the end of each

of the vessels in the vascular structure, down to the sixth layer of
FIGURE 2 A, The transfer functions of vessels from the opening of
the main artery down to the sixth level of the vascular branching. As
seen here, as the level increases, the arrival time and dispersion both
increase. B, Plots of the main AIF (bold curve) of a human subject along
with the local AIFs at six levels of our vascular model estimated by
convolving the main AIF with the transfer function at each level. The
AIF was sampled from the first 45 s of the DCE‐CT image series in the
voxels showing the internal carotid artery of a human subject after the
bolus injection of the CA. For easier comparison of the profile of these
curves, the peaks are scaled to the peak of the AIF. As seen here, by
moving to the higher levels of the vascular structure, the arrival time
delay becomes longer and the curves become more dispersed
branching in one vascular line. Using the profile of the CA in the carotid

artery of a human subject in a DCE‐CT image series (acquired by the

procedure that will be described in the following sections) and these

six transfer functions, the local AIF at every node was calculated, as

plotted in Figure 2B. For better visual comparison of these curves,

the peaks are all scaled to the same level as the AIF. By moving to

higher levels of the vascular tree, the arrival time of the CA profile

increases and it also becomes more dispersed.
2.2 | Estimating the vascular level of a DCE signal

In this section we describe the method we have used for solving the

inverse problem which is estimating the values of the time delay (t0)

of the vascular tree based on the CA profile sampled in the brain tissue;

this can be used for both the simulated data and data from DCE

images.

2.2.1 | Fitting the data to the models

Every voxel in the image volume belongs to one part of the vascular

tree or the capillary bed; however, except for a few major vessels, it

is not visually possible to follow the level of vessels in the branch hier-

archy. The goal is to determine the likelihood of each voxel belonging

to different branching levels of the vascular tree structure. The first

step is to estimate a transfer function (according to Equation 12) that

when convolved with a global AIF can result in the CA concentration

profile of that voxel. For practical purposes, to compensate for the

signal reduction due to volumetric fraction of vessels in tissue, a gain

factor g was added to the transfer function:

h tð Þ1 to n ¼ g× h tð Þ1
� ��n

(13)

The global AIF profile is defined as AIF(t) and the measured tissue

concentration signal of an arbitrary voxel in the brain image as CA(t).

The relationship between these two can be defined as

CA tð Þ ¼ AIF tð Þ�h tð Þ1 to x (14)

where x is the branching level of the vessels in this voxel, which gener-

ally speaking is initially an unknown value, and one of the goals is to

determine the possible value (or values) of x for this voxel. It should

be noted that in this equation the effects of the capillary bed on dis-

persing the AIF have been neglected. Using the simplex algorithm30

as a non‐linear fitting method and the sum of squared errors as the

cost function, for every possible configuration of the transfer function

(h(t)1 to 2, h(t)1 to 3, … or h(t)1 to 6), the best function transforming the

reference AIF(t) to CA(t) is found. This results in six different configu-

rations of the transfer function where each is described by [g, t0, n],

where n varies from 1 to 6 and represents the branching level of the

vessel. It should be noted that the parameters estimated for every con-

figuration of the transfer function are not dependent on the parame-

ters from other configurations and are estimated independently

every time the fitting procedure is repeated.
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2.2.2 | Model selection and model averaging using AIC

After finding the six best transfer functions (one for each of the six

branching layer configurations) or the model configurations for every

voxel, the problem of determining the contribution of each model con-

figuration should be addressed. This is necessary since each voxel

might be representing a combination of vessels from different layers

of the vascular structure; or, if it is the representative of only one ves-

sel or tissue type, the branching level of the vessel at this voxel needs

to be estimated. In our study, we used the AIC for model selection and

model averaging.31 The AIC value can be calculated using the residual

sum of squares (RSS) for each of the six models being investigated

using the following equation:

AIC ¼ 2k þ 2
k k þ 1ð Þ
n−k−1

þ n ln
RSS
n

� �
(15)

Here n is defined as the number of observations, which in our study

represents the number of image time points. k is the number of model

configuration parameters, which in our application is two for each

model configuration.We define AICmin as the AIC for the model config-

urationwith the best fit. To calculate the Akaike weights, we first define

a new variableΔi that represents the difference between the AIC values

in these six model configurations with the lowest AIC value:

Δi ¼ AICi−AICmin for i ¼ 1;2;…;6 (16)

Using these values, the Akaike weight (wi) for each model configu-

ration is estimated:

wi ¼ exp −0:5 Δið Þ
∑6
j¼1 exp −0:5 Δj

� � (17)

For each voxel, the estimated Akaike weights are considered to

be the probability of model configuration i (i = 1 to 6) being the best

model to describe the transfer function between the opening of the

main artery and this voxel. Using the Akaike weights and the esti-

mated values of the model parameters for each configuration of the

AIFL tð Þ ¼ AIF tð Þ�h tð Þest (18)

In our model, we have not included the effects of the capillaries

on the AIF, and therefore the transfer function that is estimated

using the method explained above will give an estimation of the

transfer functions of the arteries and arterioles feeding the capillary

bed, which is the reason why in this equation we have referred to it

as AIFL(t).

2.2.3 | Delay maps

As explained before, every transfer function is described with a set of

parameters [g, t0, n]. In the case of dealing with only one model config-

uration, the total delay time from the main artery opening to the voxel

being studied (or the arrival time of the CA) can be calculated as n × t0;

however, in this study, since multiple model configurations are used,

by applying the rules of model averaging using the AIC,32 the delay

time (CA arrival time) of each voxel is estimated by calculating a

weighted sum of the delay times of all model configurations, with the

model an average transfer function is calculated, which we

name h(t)est. Using this transfer function, the local AIF can be esti-

mated as follows:
weights being the Akaike weights of this voxel:

tTotal ¼ ∑
6

i¼1
wi×i t0i (19)

where t0i is the t0 of the model configuration with i branching levels.

The benefit of using this model averaging method32 to calculate the

delay time is that voxels representing tissues that are being supplied

by more than one branching level of the vascular system will have all

these vessels accounted for, and the delay time will be a weighted

average of all the possible delay times from different vascular path-

ways. This approach can also address the concept of collateral flow.

Previously, Brix et al. used a similar weighted model approach for

finding the best approximating model from three nested compart-

mental pharmacokinetic model for analysis of tissue

microcirculation.33

2.3 | Model evaluation using DCE‐CT imaging

The next step of vascular model development was evaluating the per-

formance of the model using human DCE data. After studying different

dynamic imaging modalities, DCE‐CT imaging was selected as this

modality. Compared with DCE‐MRI, DCE‐CT images have lower signal

to noise ratio (SNR) and contrast to noise ratio.34 However, other char-

acteristics of this modality made it a better choice for our study: the

signal intensity of the CT images is linearly dependent on the CA con-

centration,35 and also the temporal resolution of this modality is much

higher (~10 times) than DCE‐MR images (0.5 s versus 5 s). In addition,

CT images have better spatial resolution.36

The study was approved by the Henry Ford Health System

Institutional Review Board and written informed consent was obtained

from the subject. DCE‐CT images were acquired on a GE LightSpeed

VCT scanner with image matrix size of 512 × 512 (24 × 24 cm2 FOV)

and eight slices (5 mm slice thickness) with 99 imagepacks (89 image

sets sampled every 0.5 s for the first 44 s, one image acquired at the

50 s time point, followed by nine image sets acquired every 16 s for a

total scan time of 194 s). 50 ml of iodinated CA with a concentration

of 0.5 ml/kg was injected as a bolus using a power injector at a rate of

4 cc/s starting 5 s after start of image acquisition; the cine scan was

done for 50 s. The dynamic images were baseline corrected to make

their intensity linearly dependent on the CA concentration. Also, to

increase the SNR, especially in the tissue regions, the neighboring

voxels were averaged and the images downsized to 128 × 128. After

these pre‐processing steps, the CT images were ready to be used for

testing themodel using the approach explained in the previous sections.
3 | RESULTS

3.1 | Simulation results

3.1.1 | Estimation of the level of the simulated CA con-
centration profiles

The goal of the first part of our simulation was to explore the ability of

our method to find the correct transfer function of the vascular struc-

ture based on the AIF and the simulated CA concentration profiles as

explained previously. The different model configurations were fit to
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each of the six profiles using the fitting procedure and the model selec-

tion methods that we described. The likelihood of these profiles

belonging to each of the different model configurations was estimated

using the fitting residue value and the Akaike method. The effect of

noise on the performance of the model was evaluated by adding
FIGURE 3 A, Akaike weights of each of the simulated signals after model
AIFs being selected as the level of branching that they were simulated for.
correct branching level of the signal is almost unity for all cases. As the no
likelihood of picking the correct model configuration decreases; however, a
does not go below 0.3. B, Bias and variance of the estimated parameters f
added to the signal. These values are estimated with the described proced
structure has only one level, only one time delay is estimated and the curv
branching, the sum of the estimated parameters is used. As seen here, for al
the original values of these parameters. One of the sources of bias can be
different levels of noise to the simulated profiles. Figure 3A shows

the results of these simulations. As seen here, the added noise level

is varied between 0% to 100%, and at each of these levels the likeli-

hood of selecting the correct level of the vascular structures has been

estimated. Up to the 18% noise level, the likelihood of selecting the
averaging. The plots show the likelihood of each of the simulated local
As seen here, even at the 18% noise level, the likelihood of picking the
ise level increases, the accuracy of the system decreases and the
t the 100% noise level, the likelihood of picking the correct level index
or the six configurations of the model for 11 levels of Gaussian noise
ure and for 300 repetitions at each noise level. When the vascular
es represent the values of this parameter. For higher levels of vascular
l levels of noise, the estimates of these parameters remain very close to
the temporal resolution of the simulated signals
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correct level of the profile is almost unity for all cases. As this noise

level increases, the accuracy of the system decreases and this likeli-

hood decreases; however, at the 100% noise level, the likelihood of

selecting the correct level index does not fall below 0.3.

In Figure 3B, the bias and variance of the estimated parameters

are plotted. These values are estimated with the procedure described

above. In these graphs, each data point shows the bias and variance

of the values for each noise level. As seen here, for all levels of noise,

the estimates of these parameters remain very close to the original

values of these parameters. One of the reasons for the bias in the esti-

mated values can be the temporal resolution of the simulated data.

3.1.2 | Decomposing the simulated composite profile

When applying our method to the DCE‐CT images, it is likely that the

signal sampled from a typical voxel in the image represents a composite

of vessel segments frommore than one level of the vascular tree, which

can also be the result of collateral flow in cranial vasculature. To simu-

late these conditions, and to explore the feasibility of our method for

detecting these signals, the superposition of the CA profile from differ-

ent levels of the model was created and decomposed by the fitting

algorithm and by applying the AIC method as explained before.

Figure 4 shows a schematic diagram of our model simulation in the

case when two signals are combined. Here, the square represents a

hypothetical voxel in which vessels from both the second and sixth

levels pass through. The temporal signal sampled in this voxel, is the

weighted sum of the signals from the two vessel segments, and

depending on the effective volume of each of them in this voxel, the

level of contribution of each signal is adjusted from 0% to 100%. Also,

we added different levels of noise to the composite signal (0% to
FIGURE 4 Schematic figure showing a typical
AIF from one of the major cerebral arteries of
a human subject in DCE‐CT images and the
simulated local AIFs at the second (L2) and
sixth (L6) levels of our vascular model. In this
figure the effect of one voxel representing
vessels from two different levels has been
simulated. In this case the signal sampled from
this voxel would be the superposition of the
two signals (L6 + L2). Using this configuration,
we have studied the feasibility of our method
to distinguish and separate the signals that
form the composite signal
100%) and explored the feasibility of our method to decompose these

signals in the presence of noise.

Figure 5 shows the curves representing the Akaike weights of the

composite signals after decomposition by the method explained above.

Each curve represents the average of decomposition results from 300

repetitions at each noise level. As seen here, at noise levels lower than

50%, almost all these curves meet at the 50% contribution level point,

whichmatches our expectation. One observation in these curves is that

in cases where the contribution of either signal is not close to 50%,

when no noise is added to the signals or the noise level is small, the

Akaike weights tend to become saturated to unity or zero; this is due

to the large difference in the residue values of the fitting procedure

for the two signals in the absence of noise. However, when noise is

added, since the residues will have large values, the Akaike weights will

not become saturated in these cases.When the difference between the

levels of the two signals increases, this saturation effect will become

more evident, even in the presence of noise. These results show that,

in the no‐noise situation, the AIC does not act as an unbiased estimator.
3.2 | Results of applying the model to DCE‐CT
images

Figure 6 shows the tissue concentration signals sampled from four dif-

ferent regions (circle of Willis, a small artery which was a sub‐branch of

the MCA, a region of the normal tissue and the superior sagittal sinus)

and the corresponding tissue input signals estimated using Equation 18.

These curves show that the proposed method can describe the trans-

fer function for the arteries and capillaries very well and the recon-

structed signal matches the tissue concentration signal sampled from



FIGURE 5 Akaike weights of the simulated composite signals after decomposition. Each curve represents the average of decomposition results of
300 repetitions at each noise level. The composite signal is basically the weighted sum of the two simulated signals (the x‐axis represents the
percentage of contribution of the second signal in the composite signal) from different layers of the vascular structure. In each of the boxes above,

each plot represents one noise level: in the upper half of the box, from left to right, each dotted line indicates 0% to 100% noise level
(SNR = infinity, 100, 25, 10, 5.5, 3.6, 2.7, 1.9, 1.3, 1.1, 1) added to the composite signal and the solid lines correspond to 100% to 0% noise levels
respectively. In the absence of noise, the switching point for all of these cases occurs at the 50% level, which is what is expected. However, in the
case where the model configuration levels are consecutive, when the noise level is increased this switching point moves towards higher values, in
favor of the model with fewer parameters. The worst case is seen in Level 5 versus Level 6 when the noise level is 100%. However, even in this
case even up to 52% noise level, the cutoff threshold is still around 50%
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FIGURE 6 A, CA concentration signals sampled from four regions of aDCE‐CT imageof the humanbrain. These regions are the circle ofWillis, a small
artery which is a sub‐branch of theMCA, a region in the normal tissue, and the superior sagittal sinus. These signals are scaled to show the relative
dispersion and delay of theCAprofilesmore clearly. B, The reconstructedCAconcentration signals corresponding to the signals in A thatwere created
usingourproposed fittingandmodel selectionmethod.As seenhere, unlike the results for theother vessels, sinceourmodelwasnotdesigned for veins
and venules, the reconstructed CA concentration signal representing the sagittal sinus does not match the signal sampled from this region
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the tissue with healthy vessels. Figure 7A shows the six Akaike weight

maps for two slices of a DCE‐CT image volume. As seen in this figure,

in the Akaike map of the first model configuration, the voxels that

represent the major artery from which the AIF has been sampled have

the highest Akaike weight, (which have a value very close to unity). As

the model configuration index increases, the voxels with the highest

value shift from the major arteries to other cerebral regions. In the

map corresponding to model configurations 5 and 6, the voxels

showing the major veins such as the sagittal sinus have the highest like-

lihood of belonging to this model configuration. The reason for this is

that the transfer function was not designed to describe the changes

of the CA concentration profile in the veins and venules, and since in

the model fitting step these configurations give the lowest fitting

residue, they are selected at the best fitting model configurations.

These probability maps were used to create the blood flow delay

maps of the brain seen in Figure 7C,E. Point R in this figure shows

the reference point where the global AIF was sampled (same profile

as the AIF in Figure 2). This AIF was used to estimate the transfer func-

tion between R and all the voxels in the image. As seen here, the esti-

mated delay time is different at different parts of the brain: the arteries

such as the main arteries marked as A have a short delay time and

other areas of the brain have longer delay times and have values up

to 4 s, which is a good approximation of the MTT of the blood flow

in the brain.37 As explained above, the profile in veins (such the supe-

rior sagittal sinus marked as B) cannot be explained using this model,

and the estimated delay times in these regions are not valid. As seen in

Figure 7E, the tumor (T) shows a longer delay time. This long delay time

in the tumor area is an overestimation of the actual value. One reason

for this may be the extravasation of the CA to the extracellular‐extra-

vascular space, which results in changes of the CA concentration pro-

file in this area such that it cannot be explained solely by dispersion

and delay. This issue will be addressed in an accompanying paper.38
4 | DISCUSSION AND CONCLUSION

In this study, the first system investigation was performed on a novel

vascular model that we have developed to study the changes of the

AIF at different levels of the vascular structure, using a transfer func-

tion of a single vessel. Our investigation is based on a combination of

simplex (for fitting) and AIC (for model selection) methods, and we car-

ried out a simulation study to test our methods and also studied the

application of our method in DCE‐CT images of the human brain.

Our model can analytically explain dispersion of the CA profile at dif-

ferent levels of the vascular tree in the brain without any assumptions

about the profile of the CA, using system analysis methods. The simu-

lation results showed high accuracy in finding the level of the CA pro-

file in the vascular tree and the contribution of CA profiles at different

levels of the vascular tree. Applying this model to DCE‐CT images of

the human brain showed that the arrival time of the CA at each voxel

matched the expected data.

Our novel semi‐empirical model of the brain vascular system is

based on laws of fluid dynamics and morphology of the vascular struc-

ture in the brain. Our approach is similar to the framework proposed by

Gall et al.18 and Kellner et al.19 One advantage of this model is that it

does not make any assumptions about the profile of the CA (such as

it being a gamma variate or Gaussian function, etc.). The vascular

model in its current form does not include all aspects of the laws of

fluid dynamics and vascular physiology such as turbulence at the bifur-

cation points in the vessels; but considering the data modalities and

also the time resolution of our dynamic experiments, it can explain dis-

persion in the brain vasculature very well. However, this model

assumes no leakage of the CA from the vessels into the extravascular

space; leakage can change the profile of the measured tissue response

signal. To address leakage, permeability and diffusion parameters

should be incorporated into the model. As an extension of our model,



FIGURE 7 A, Akaike weight maps of two slices of the CT image based on the six levels (configurations) of the vascular tree model. The intensity of
each voxel in images L1 through L6 shows the likelihood of this voxel belonging to this level in the vascular tree. Based on the Akaike method, the
sum of the intensities of every voxel across the six images is unity. The images in the right‐hand column are the CT images of the same slice, a few
seconds after injection of the CA. As seen in these CT images, all the major vessels have been enhanced in intensity but there is no distinction
between the arteries and veins since they are all enhanced. B‐E, Enlarged images of the two sections of post injection CT images in A (B,D) and the
delay maps (in seconds) created using our method (C,E). ‘R’ is the reference point for measuring the glocal AIF. ‘A’ is the location of one of the main
arteries and ‘B’ shows the superior sagittal sinus. ‘T’ shows the location of the tumor
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we have included and studied the effects of some of these parameters

in our model. These will be reported in a separate paper.38 The number

of parameters that are directly estimated using the vascular model is

two; these are basically the delays of the vascular segments and a scal-

ing factor. However, other parameters can be indirectly estimated

using the estimated transfer function.

Our vascular model has demonstrated its application for study-

ing the changes of the AIF at different levels of the vascular struc-

ture and for improving the measurement of arrival time of the CA

in the dynamic contrast enhanced perfusion measurements. Kellner

et al.19 have described two approaches for measuring the tracer in

the vessel segment with laminar flow: the snapshot method, where

the CA volume is measured instantaneously, and the flow‐type

method, where local velocity contribution to the labeled CA vol-

ume is considered. Although the flow‐type model provides a better

theoretical approach, fitting the flow‐type model and snapshot

model to the ASL data showed that the transfer function of the

snapshot model gave better fits to the data than the flow‐type
model. On the other hand, the expected bolus dispersions using

these two models differ only slightly after passing through a few

bifurcations.19

The interesting point about the vascular transfer function is that it

can describe dispersion in a single vessel with only one parameter. Our

model mainly describes arteries, arterioles and capillaries, and in order

to describe the veins, venules and capillaries more parameters should

be added to the model to address the dispersion of the CA profile in

the veins more accurately. However, considering the fact that the total

volume fraction of capillaries, veins and venules makes up only about

3% of the total brain volume,39 the likelihood of selecting a voxel

representing a vein is low. For this reason and also to avoid unneces-

sary increase of the complexity of our model at this point, we did not

include this in our analysis. Despite this, since the transfer function

of the veins and venules is the closest to that of the highest level of

arterioles in our model, these vessels show the best fit to the transfer

functions describing these vessels; the results as seen in the final

Akaike weight maps (Figure 7A) show the major veins (such as the
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inferior and superior sagittal sinus) having the highest likelihood at the

highest model level, which confirms this point.

The good performance of the model fitting and selection method

in the simulation studies in presence of noise shows its robustness

for finding the vascular branching level of signals for non‐simulated

data. In the second part of this paper,38 this model will be translated

to DCE‐MR experiments for estimating permeability parameters in

these images. To extend this model to be used for perfusion studies,

the tissue input function should be estimated and for this reason the

effect of capillaries should be added to the model.

One application of this model and methods introduced in this

paper is tissue characterization; based on the vascularity of the tissue,

the CA profile can change and this can be used to classify it. As was

noted, modeling abnormal vasculature in the brain such as those in

tumors can add to the options for possible equations of the transfer

function, and by using the same procedure as described in this study

different types of tissue can be characterized in the DCE images based

on the parameters of the model, which will be part of future work.

In conclusion, we have developed a model of the vascular system

of the brain that explains dispersion of the CA profile in different loca-

tions in the brain vascular system, and has been tested using DCE‐CT

and simulated data. Even though at this point only healthy arteries and

arterioles have been included in our model, in its current form it can

give a good estimate of the transfer functions of most vessels in the

brain. Further steps in this research will involve adding parameters to

the model to describe certain effects of capillaries and also vascular

pathologies that could be used for more accurate estimation of perfu-

sion and permeability characteristics of vessels in DCE images.
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APPENDIX

DERIVATION OF THE TRANSFER FUNCTION
OF A SINGLE VESSEL WITH LAMINAR LAW

To derive an equation for the transfer function of a vessel, we start by

finding the volume of the CA and the total volume of the fluid exiting a

vessel with the length of D0, as a function of time. Initially CA is intro-

duced into the entrance of the vessel in the form of a step function,

and after flowing through the vessel it forms a parabola. The equation

of the surface of the parabola is written as

z ¼ v0 1−
r2

R2

� �
t (A:1)

where R is the radius of the vessel, r the radial distance of the parabola

surface from the axis of the vessel and z the distance from the opening

of the vessel. After time t0 ¼ D0
	
v0

the tip of the parabola reaches the

end of the vessel, and at time t ¼ D
v0= it reaches the plane z =D

(assuming that the fluid continues to flow in a cylindrical form). The

volume of the CA enclosed between the between the planes D0 and

D can be calculated as
VCA ¼ π
2
R2v0t 1−

D0

v0t

� �2

(A:2)

Prior to time t = t0 there is no CA exiting the vessel so the average

CA concentration is zero during this time. The total volume of fluid

exiting the vessel between the times t0 and t can be calculated as

Vtot ¼ π
2

R2v0t 1−
D0

v0t

� �
(A:3)

To find the CA concentration of the fluid exiting the vessel the vol-

ume of the CA exiting the vessel in an infinitesimal time should be

divided by the total volume of fluid exiting the vessel in the same time,

CAc ¼
dVCA

	
dt

dVtot=dt
¼ 1−

t
t0

� �2

for t>t0 (A:4)

and since this is the response to the unit step function, the transfer func-

tion equation can be found by differentiating this with respect to time:

h tð Þ ¼
0 t<t0

2t0
2

t3
t≥t0

8<
: (A:5)
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