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Abstract

This paper is concerned with the axiomatic foundation and explicit construction
of a general class of optimality criteria that can be used for investment problems with
multiple time horizons, or when the time horizon is not known in advance. Both the in-
vestment criterion and the optimal strategy are characterized by the Hamilton-Jacobi-
Bellman equation on a semi-infinite time interval. In the case where this equation
can be linearized, the problem reduces to a time-reversed parabolic equation, which
cannot be analyzed via the standard methods of partial differential equations. Under
the additional uniform ellipticity condition, we make use of the available description
of all minimal solutions to such equations, along with some basic facts from potential
theory and convex analysis, to obtain an explicit integral representation of all positive
solutions. These results allow us to construct a large family of the aforementioned
optimality criteria, including some closed form examples in relevant financial models.

Keywords: Preferences, state-dependent utility, time-consistency, forward performance pro-

cess, time-reversed HJB equation, Widder’s theorem, Martin boundary.

1 Introduction

The classical investment problem (also known as the Merton’s problem) is concerned with
the optimal allocation of investor’s capital among available financial instruments. The pre-
cise understanding of this statement depends on the notion of optimality employed by the
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decision maker. We consider the optimality criteria that are based on the characteristics
of the terminal wealth generated by each strategy. In the academic literature, these char-
acteristics are, usually, summarized in the expectation of a utility function of the terminal
wealth. More precisely, the investor (agent) chooses a utility function, along with an invest-
ment horizon, say T , and maximizes the expectation of this function applied to the terminal
wealth payoff at time T (represented by a random variable on some probability space), over
all attainable payoffs1. One of the main advantages of this approach is the existence of an
axiomatic justification. Assume that the investor has preferences over the set of all ter-
minal payoffs (random variables, or, distributions), which form a complete order : for any
given pair of payoffs, the investor either prefers one to the other, or is indifferent between
the two (cf. [Cantor, 1915]). Then, the celebrated Von NeumannMorgenstern theorem (cf.
[von Neumann and Morgenstern, 1944]) shows that, if this complete order satisfies several
intuitive axioms, it has to be represented by an expected utility. In other words, there ex-
ists a utility function, such that, between any two payoffs, the investor always prefers the
one with larger expected utility. There exist several variations in the choice of the axioms
and in the properties of the resulting utility functions: see, for example, [Bernoulli, 1954],
[de Finetti, 1930], [Savage, 1954], [Jensen, 1967]. However, the most common set of axioms
is the one due to Von Neumann and Morgenstern, and it consists of transitivity, continuity
and independence (cf. [Jensen, 1967]). The risk aversion axiom is often added to ensure
that the diversification of a portfolio is encouraged in the resulting optimal investment prob-
lem and, in particular, the associated utility function is concave. Once the set of axioms
is chosen, we may assume, without loss of generality, that the investor’s preferences on the
set of terminal payoffs are determined by a utility function. Having chosen the appropriate
utility function, we, then, solve the associated stochastic optimization problem to find the
optimal strategy. Such problems have been widely studied under rather general assump-
tions on the market model and constitute one of the most active areas of research in the
modern theory of mathematical finance (see, for example, [Merton, 1969], [Merton, 1971],
[Kramkov and Schachermayer, 1999], [Kramkov and Ŝırbu, 2006], [Karatzas et al., 1991],
[Pliska, 1986]).

In a model where the investment decision is only made once, the outcome of the agent’s
decision is a global trading strategy, which runs up until the terminal time horizon. Then,
the optimal strategy is chosen at the initial time as the one that maximizes the expected
utility of terminal wealth. However, such a definition of optimal strategy is not natural if
the investment decisions are made at multiple times. Indeed, in the latter case, the outcome
of every decision is a local investment strategy, which prescribes the actions in the next time
period only and results in a random set of future investment opportunities, rather than in
a terminal payoff. Therefore, at each decision time, the agent needs to have a family of
preferences on the associated space of set-valued random variables. The resulting family
of dynamic preferences, also, has to be non-contradictory across time, or time-consistent.
Put simply, time-consistency means that the investor “does not regret” her past decisions.
It is best described in [Kreps and Porteus, 1978], where time-consistency is postulated as
one of the axioms, and the representation of all dynamic preferences satisfying these ax-

1See [Ekeland and Pirvu, 2008], for an equilibrium approach, which does not require an optimality crite-
rion.
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ioms, also known as recursive utilities, is developed. In the context of expected utility, it is
natural to construct the dynamic preferences by evaluating each local strategy (investment
plan over the next time period) as the maximum expected utility of terminal wealth over
all future (global) strategies that coincide with the chosen local strategy in the next time
period. The dynamic programming principle, when it holds, ensures the time-consistency of
the resulting family of dynamic preferences. In fact, it also shows that the single-decision
utility maximization problem (where the global strategy is chosen at the very beginning) is
equivalent to a time-consistent multi-decision optimization problem, in which the optimality
of the strategy is re-evaluated at each decision time. Such an equivalence (i.e. the dynamic
programming principle) turns the problem of optimal investment into a stochastic control
problem, described, for example, in [Fleming and Soner, 2006], [Krylov, 2009].

Despite the presence of an axiomatic foundation and the existence of the dynamic pro-
gramming principle, the optimality criterion based on maximum expected utility has signif-
icant limitations. One of its biggest shortcomings is the fact that only the wealth payoff at
a fixed time T is taken into account when making the investment decision. In practice, one
may want to consider additional properties of the wealth process: for example, its marginal
distributions at all time horizons T > 0. The latter choice may be reasonable if, for example,
the terminal time horizon is not known in advance. It is well known that expected utility
cannot be easily generalized to the case of unbounded time horizons (except for some specific
constructions). To illustrate the difficulty, assume that investor has chosen a time horizon T ,
along with a utility function U , and has solved the resulting optimization problem obtaining
the optimal investment strategy on the time interval [0, T ]. Assume, further, that “life does
not end” at T . Then, the investor chooses a longer time horizon T ′ > T , along with a new
utility function U ′, and constructs the optimal strategy on [T, T ′]. However, by doing this,
the investor would like to ensure that her present decisions do not contradict the future
ones. In other words, U ′ should be such that the already implemented strategy, on the time
interval [0, T ], together with the new optimal strategy, between T and T ′, form an overall
optimal investment strategy on [0, T ′], as viewed from the initial time. It turns out that the
existence of a U ′ that satisfies this time-consistency property cannot be guaranteed for an
arbitrary choice of U . Another shortcoming of the classical approach, which is one of the
main reasons why it has not become popular among practitioners, is the assumption that
the investor’s utility function at a (possibly remote) terminal time horizon is known at the
initial time. Even though there exist several methods for inferring the investors’ preferences
from their actions, these methods become less reliable as the time horizon increases.

In order to address the above shortcomings, Henderson & Hobson and Musiela & Za-
riphopoulou, independently, introduced an alternative optimality criterion for the invest-
ment problem (cf. [Henderson and Hobson, 2007], [Musiela and Zariphopoulou, 2009] and
[Musiela and Zariphopoulou, 2010a]). The associated criterion is developed in terms of a
stochastic field, indexed by T ∈ (0,∞) and by the wealth argument x ∈ (0,∞), and it
is called the forward investment performance process (FIPP). The new criterion allows to
produce a time-consistent investment strategy that maximizes the expected utility of wealth
at every time horizon T > 0, providing a natural extension of the classical approach. At
the same time, in contrast to the classical framework, the new approach only requires the
investor to specify her risk preferences at the very beginning of the trading period and not
at a (possibly remote) future time horizon.
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1.1 Forward investment performance process: axiomatic justifica-
tion

As soon as we deviate from the classical framework and agree that our investment decision
should depend on the marginal distributions of the wealth at all times T > 0, it becomes
natural to assume the existence of a family of preferences for the wealth level at every T > 0.
In other words, we assume that, for each T > 0, there exists a complete order on the space
of random variables representing the wealth payoff at time T . Assuming, in addition, that
these preferences satisfy the usual axioms of Von Neumann and Morgenstern, we conclude
that, for each T > 0, there exists a utility function UT representing these preferences. Notice,
however, that the family of utility functions {UT }T>0 does not represent a complete order
on the space of wealth processes. Indeed, for a given pair of wealth processes, the payoff
of the first process, at a certain time horizon, may have a higher expected utility than the
payoff of the second one, while the opposite relation may hold at a different time horizon.
Nevertheless, such a family of preferences may still admit an extremal element – the wealth
process that maximizes all the expected utilities and that can be attained by a strategy
which is time-consistent for all time horizons.

Unfortunately, it turns out that there are not many families of classical utility functions
that admit an extremal element in the above sense. This is why we have to extend the
classical notion of utility function and consider the state-dependent utilities (also known as
stochastic utilities). Notice that the axioms of Von Neumann and Morgenstern are formu-
lated for a space of distributions, and, in particular, the resulting preferences, based on
expected utility, only take into account the distribution of the terminal wealth. However,
in practice, the investor’s preferences often depend upon the joint distribution of the target
random variable, say XT , and an additional stochastic factor YT . For example, the payoff of
an investment strategy may be evaluated relative to the inflation factor, or to the overall mar-
ket performance. If these preferences satisfy the axioms of Von Neumann and Morgenstern
(now stated for the pair of random variables (XT , YT )), they have to be given by an expected
utility, EU(XT , YT ). Then, the utility function U(· , YT ) is called a state-dependent (or,
stochastic) utility. As the distribution of YT is usually specified in the underlying stochastic
model (e.g. stochastic volatility), the search for the optimal joint distribution of (XT , YT ),
in fact, reduces to the search for the optimal family of conditional distributions of XT , given
YT . Thinking of YT as the state, the name of state-dependent utility becomes clear, as it
describes the investor’s preferences conditional on the state. Using the traditional proba-
bilistic notation, we can also view the state-dependent utility as a random function U(x, ω),
measurable with respect to a given sigma-algebra (generated by YT ). A detailed description
of the theory of state-dependent utility can be found in [Dreze, 1961], [Karni et al., 1983],
[Karni, 1985].

Put simply, the forward investment performance process is a family of state-dependent
utilities, indexed by the time horizon T > 0, and conditioned to admit an optimal investment
strategy which maximizes all the expected utilities and which is time-consistent for all time
horizons. As mentioned above, such a family of utility functions, typically, does not produce
a complete order on the set of available investment strategies (or, the set of attainable
wealth processes). It corresponds to the case where the agent does not have preferences over
the entire space of strategies (not every two strategies are comparable), but, for any given
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time horizon T and any state of the relevant market factor YT , the investor can compare the
conditional performance of any two strategies at this time horizon. More precisely, we assume
that, for any T > 0, the investor has a complete order on the space of joint distributions of
the wealth process and the relevant stochastic factor, at time T , and this order satisfies the
axioms of Von Neumann and Morgenstern. Requiring, in addition, the existence of a joint
time-consistent optimal strategy for all these preferences, we obtain a forward investment
performance process.

Remark 1.1. It is worth mentioning that the concept of recursive utility, introduced in
[Kreps and Porteus, 1978] and [Duffie and Epstein, 1992], does not require the axiom of in-
dependence and, as a result, produces a very general class of preferences. In particular, the
resulting preferences may take into account a wide range of properties of the wealth process –
not only its marginal distributions – while remaining time-consistent. However, just like the
classical approach, the general recursive utility theory has only been developed for finite time
horizons (although some specific constructions for the infinite time horizon are possible).
From this point of view, the forward investment performance theory offers something new:
its entire purpose is to describe a general class of optimality criteria defined for all positive
time horizons, staying as close as possible to the classical theory.

1.2 Forward investment performance process: formal definition

We assume that the market consists of a bank account, whose value, without any loss of
generality, stays constant, and k risky assets S =

(
Si, . . . , Sk

)
, whose prices are adapted

càdlàg semimartingales on a stochastic basis
(
Ω,F = (Ft)t≥0 ,P

)
. All stochastic processes

introduced below are defined on this stochastic basis. As usual, by an investment strategy,

or a portfolio, we understand a vector π =
(
π1, . . . , πk

)T
of predictable stochastic processes,

integrable with respect to S. The investor starts from initial wealth level x > 0 and allocates
her wealth dynamically among the risky securities and the bank account, so that πi

t represents
the proportion of her wealth invested in Si at time t. Then, due to the self-financing property,
her cumulative wealth process Xπ,x is given by

dXπ,x
t = Xπ,x

t πT
t dSt, Xπ,x

0 = x,

provided π is S-integrable and locally square integrable. It is sometimes necessary to consider
an even smaller set of portfolios. Hence, we denote by A the set of admissible portfolios,
which is a subset of S-integrable and locally square integrable processes π. In addition, we
introduce the following notation: R+ = [0,∞).

Definition 1.2. Given a market model, as above, and a set of admissible portfolios A, a
progressively measurable random function U : Ω×R+ × (0,∞) → R is a forward investment
performance process if:

i) Almost surely, for all t ≥ 0, the mapping x→ Ut (x) is concave and increasing;
ii) For any x > 0 and any π ∈ A, the process (Ut (X

π,x
t ))t≥0 is a supermartingale;

iii) For any x > 0, there exists a portfolio π∗ ∈ A, such that
(
Ut

(
Xπ∗,x

t

))
t≥0

is a

martingale.
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The property i), in the above definition, simply states that the forward investment perfor-
mance process is a family of state-dependent utilities, defined for all positive time horizons.
The other two properties ensure that this family of utility functions has a unique time-
consistent maximizer: an attainable wealth process which maximizes the expected utilities
in the given family, for all positive time horizons and initial investment times.

Describing explicitly the space of random functions Ut(x) that satisfy the above def-
inition is still an open problem, but some results in this direction can be found, for ex-
ample, in [Henderson and Hobson, 2007], [Berrier et al., 2009], [Karoui and M’rad, 2010],
[Karoui and M’rad, 2013], [Musiela and Zariphopoulou, 2010b] and [Zitkovic, 2008]. In or-
der to present more specific results in this direction, we have to make some additional as-
sumptions on the market model. In particular, we assume that the filtration F is generated
by W , a standard Brownian motion in Rd. In addition, we assume that S is an Itô process
in Rk with positive entries, given by

d logSt = µtdt+ σT
t dWt, (1)

where the logarithm is taken entry-wise, µ is a locally integrable stochastic process with
values in Rk , and σ is a d×k matrix of locally square integrable processes. We use the notation
”AT ” to denote the transpose of a matrix (vector) A. We introduce the d-dimensional
stochastic process λ, frequently called the market price of risk, via

λt :=
(
σT
t

)+
µ̃t, (2)

where (σT
t )

+ is the Moore-Penrose pseudo-inverse of the matrix σT
t , and µ̃ is the drift of S:

µ̃i
t = µi

t + ‖σi
t‖2/2, for i = 1, . . . , k, with σi

t being the i-th column of σt. In particular, we
have σT

t λt = µ̃t. The existence of such a process λ follows from the absence of arbitrage in
the model. Notice that, in this case, the cumulative wealth process Xπ,x is given by

dXπ,x
t = Xπ,x

t πT
t σ

T
t λtdt+Xπ,x

t πT
t σ

T
t dWt, Xπ,x

0 = x,

for any locally square integrable process π.
Recall that the value function in the classical utility maximization problem, at least

formally, solves the Hamilton-Jacobi-Bellman (HJB) equation. It turns out that the following
stochastic partial differential equation (SPDE) is an analog of the HJB equation in the
forward performance theory:

dUt(x) =
1

2

‖∂xUt(x)λt + σtσ
+
t ∂xat(x)‖2

∂2xUt(x)
+ aTt (x)dWt, (3)

where at(x) is a d-dimensional vector of progressively measurable random functions, contin-
uously differentiable in x, which is called a volatility of the forward performance process.

Recently, it was shown in [Musiela and Zariphopoulou, 2010b], [Zariphopoulou, 2009],
and later in [Karoui and M’rad, 2010], [Karoui and M’rad, 2013], that, if U is a twice con-
tinuously differentiable stochastic flow (see, for example, [Kunita, 1990] for the definition),
which satisfies the above SPDE, then, for any admissible portfolio π, the process (Ut (X

π,x
t ))t≥0

is a local supermartingale (in the sense that there exists a localizing sequence that makes it
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a supermartingale), and, if, for any initial condition X∗
0 > 0, there exists a strictly positive

process X∗ satisfying

dX∗
t = X∗

t (σtπ
∗
t (X

∗
t ))

T λtdt+X∗
t (σtπ

∗
t (X

∗
t ))

T dWt, (4)

with

xσtπ
∗
t (x) = −λt∂xUt(x) + σtσ

+
t ∂xat(x)

∂2xUt(x)
, ∀x > 0, (5)

then (Ut (X
∗
t ))t≥0 is a local martingale. Of course, according to the definition, the local

supermartingale and martingale properties are not sufficient for U to be a forward perfor-
mance process. Therefore, having solved the above SPDE (3) and constructed the optimal
wealth via (4), one still needs to verify that the resulting process is, indeed, a forward in-
vestment performance process (this is analogous to the verification procedure in the classical
utility maximization theory). For example, one way to ensure that a local supermartingale
(Ut (X

π,x
t ))t≥0 is a true supermartingale, is to construct U so that inft,x Ut(x) is bounded

from below by an integrable random variable. Then, in addition, one can show by a stan-
dard argument that the local martingale (Ut (X

∗
t ))t≥0 is a true martingale if and only if its

expectation at any time coincides with its value at zero.

1.3 Representation of forward performance processes

Notice that equation (3) may be used to describe the forward performance processes through
the volatility a. On the other hand, it is not clear what the admissible choices of volatility,
for which equation (3) has a solution, are. In fact, it is not even clear which “constant”
volatilities (increasing and concave deterministic functions of x) are admissible. On the
other hand, the results of [Karoui and M’rad, 2013], given below, show that there exists a
class of volatility processes (although defined in a rather implicit way), for which (3) admits
a unique solution, for any initial condition satisfying some smoothness and boundedness
constraints. More precisely, it was shown in [Karoui and M’rad, 2013] that, for any regular
enough stochastic flows π∗

t (x) and ν∗t (x), if the volatility a is specified in the following
functional form:

at(x) = F
(
t, x, ∂xUt(·), ∂2xUt(·), λt, π∗

t (·), ν∗t (·)
)
, (6)

where F is a given deterministic operator (the same for all choices of a), then, there exists a
solution to (3), for any initial condition U0(x), which is strictly concave, increasing, satisfies
certain smoothness conditions, and takes value zero at x = 0. In addition, if the resulting
solution U is a true forward performance process (i.e. if the local martingale and super-
martingale properties are, in fact, global), then the corresponding optimal portfolio is given
by π∗. It is suggested by the authors of [Karoui and M’rad, 2013] that the above result can
be used to solve the problem of inferring the investor’s preferences. One can, in principle,
observe the investor’s optimal portfolio π∗ on some “test” market and construct the forward
performance process U that reproduces this optimal portfolio. Then, naturally, the con-
structed forward performance process should be used to determine the optimal portfolio in a
target market (with different assets and/or a different set of admissible portfolios). However,
in a different market, with a different set of attainable wealth processes, the random field U
may (and typically does) fail to satisfy the last two properties in Definition 1.2 (notice that
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the definition depends upon the set of available wealth processes). Hence, it fails to produce
a time-consistent optimality criterion in the new market.

Even though, at this stage, it is still not clear how to infer the investor’s preferences
using the forward performance theory, the results of [Karoui and M’rad, 2013] provide an
analytical representation of a class of forward performance processes. Namely, for a given
set of attainable wealth processes A, the forward performance process is described via π∗,
ν∗, and U0. Such a description constitutes an important result in the theory of forward
performance processes. In particular, it shows that, for any regular enough portfolio process
(represented as a random field), there exists a forward performance process that makes the
given portfolio optimal. However, from a practical point of view, the assumption that the
optimal portfolio π∗ is known before the optimality criterion is constructed may not always be
natural. For example, in the standard optimal investment problem, one uses the optimality
criterion in order to construct the optimal portfolio. In addition, the random field ν∗ lacks
a clear economic interpretation (although it can be described mathematically, via the dual
problem), which makes it difficult to specify its values in particular applications. Therefore,
in this paper, we use a different approach to describe the forward performance processes,
which is based on the axiomatic justification presented in Subsection 1.1, rather than on the
volatility a.

Recall that a forward performance process is defined for a given set of attainable strategies
A. Therefore, it is natural to think of it as a pair (U,A) that satisfies Definition 1.2. However,
in order to give an economic meaning to the forward performance process, one needs to relate
it to the investor’s preferences on a set of admissible trading strategies. We have accomplished
this by identifying a forward performance process with a family of state-dependent utilities.
A state-dependent utility, in turn, is defined for a given stochastic factor, which causes the
state-dependence (or, randomness) of the utility. More precisely, the state-dependent utility
represents preferences on conditional distributions, which are constructed by conditioning
on the values of the additional stochastic factor. Of course, we need to define the set of
conditional distributions before constructing preferences on it, or, equivalently, we
need to specify the additional stochastic factor before constructing the forward performance
process. Therefore, in this paper, we propose to identify a forward performance process
with a triplet (U,A, Y ), where Y represents a stochastic factor that determines the state-
dependence of U . Namely, we assume that the stochastic field U and the set of attainable
claims A satisfy Definition 1.2, and, in addition, Ut is a deterministic function of (t, x, Yt).
Thus, in order to assign an economic meaning to the forward performance process, we propose
that it be defined for a given set of attainable claims A and for a given stochastic factor Y .

Notice that the only novelty of the approach proposed above is in the additional infor-
mation which is required to identify a forward performance process. Namely, the original
approach (Definition 1.2) requires that the set of attainable claims A be given, as the ad-
ditional information needed to identify a forward performance process (i.e. the process is
defined for a given A). In the present setting, we require that the stochastic factor Yt,
generating the sigma-algebra of Ut, be given along with A. However, in the absence of any
assumptions on the stochastic process Y , there is no loss of generality in the proposed rep-
resentation. To see this, notice that, for any forward performance process U , at any time t,
there exists a random element Yt, such that Ut is a deterministic function of (t, x, Yt) (e.g.
consider the canonical mapping Yt : ω 7→ ω, where only the sigma-algebra of the state space
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of Yt changes with t). Thus, any possible limitations of the existing framework will arise from
the assumptions made on the stochastic factor Y , but not from the representation proposed
above.

Here, we investigate a regular Markovian case, where the stochastic factor Y is given
by a multidimensional diffusion process, and the universe of tradable assets is given by a
subset of its components. We say that the associated forward performance process, given
by a deterministic function of time, wealth level, and the value of the stochastic factor, is
in a factor form. In this case, it turns out that the exact functional relation is determined
uniquely by the initial preferences, and, in particular, there is no need to guess the volatility
structure of the forward performance process. We characterize the forward performance
processes in a factor form via explicit integral representations of the associated positive
space-time harmonic functions, and illustrate the theory with specific examples.

The paper is organized as follows. In Subsection 2.1, we define the general stochastic
factor model, which is a specification of the model described in this section and which remains
our framework for the rest of the paper. In Section 2.2 we introduce the forward performance
processes in a factor form, as well as the corresponding time-reversed HJB equation, and
discuss the difficulties associated with it. Sections 2.3 and 2.4 demonstrate how, in certain
cases, the HJB equation can be reduced to a backward linear parabolic equation with initial
condition. The main results of this paper are concerned with the representation of positive
solutions to the backward linear parabolic equations on the time interval (0,∞) – i.e. the
positive space-time harmonic functions. These results are given in Theorems 3.11, 3.12, and
3.16 in Section 3. Finally, we consider the closed form examples of forward performance
processes in a factor form in Section 4.

2 Forward performance processes in a factor form

2.1 Stochastic factor model

We assume that the price process of risky assets S =
(
S1, . . . , Sk

)T
is determined by the

n-dimensional (n ≥ k) Markov system of stochastic factors Y = (Y 1, . . . , Y n)
T
. This

system is defined on a stochastic basis which supports a d-dimensional Brownian motion

B =
(
B1, . . . , Bk

)T
, via

dYt = µ(Yt)dt+ σT (Yt)dWt, (7)

where, with a slight abuse of notation (compare to (1)), we introduce µ ∈ C (Rn → Rn) and
σ ∈ C

(
Rn → Rd×n

)
, and denote by Rd×n the space of d× n real matrices. We also assume

that functions µ and σ are such that the above system has a unique strong solution for any
initial condition y ∈ Rn. The first k components of Y are interpreted as the logarithms of
the tradable securities Si

t = exp (Y i
t ), for i = 1, . . . , k, and the rest n−k components are the

observed, but not tradable, stochastic factors. In particular, we obtain

dSi
t = Si

t µ̃
i(Yt)dt+ Si

t

(
σi(Yt)

)T
dWt, i = 1, . . . , k,

where σi(y) is the i-th column of σ(y), and µ̃i(y) = µi(y)+‖σi(y)‖2/2, for i = 1, . . . , n. Recall
that, in this case, the market price of risk is given by λt = λ(Yt), where λ ∈ C

(
Rn → Rd

)
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satisfies (
σi(Yt)

)T
λ (Yt) = µ̃i (Yt) , ∀i = 1, . . . , k (8)

Given a portfolio π =
(
π1, . . . , πk

)T
, with each πi being a progressively measurable

stochastic process with values in R, we will identify it with the extended n-dimensional

vector
(
π1, . . . , πk, 0, . . . , 0

)T
. Consider an arbitrary dynamic self-financing trading strategy,

which starts from initial level x > 0 and, at each time t, prescribes to keep the fraction πi
t of

the total wealth invested in Si (for each i = 1, . . . , k). Then, the cumulative wealth process
of this strategy is given by

dXπ,x
t = Xπ,x

t πT
t µ̃(Yt)dt+X

π,x
t πT

t σ
T (Yt)dWt = Xπ,x

t (σ(Yt)πt)
T λ(Yt)dt+X

π,x
t (σ(Yt)πt)

T dWt

2.2 Time-reversed HJB equation

As it was previously announced, we now assume that there exists a function V : R+ ×Rn ×
(0,∞) → R, such that the forward performance process U is given in the following factor
form

Ut (x) = V (t, Yt, x) , (9)

where Y is defined in (7). Our goal is to describe explicitly (in a way which is well suited
for implementation) a large class of functions V such that U , defined by (9), is, indeed, a
forward performance process.

Assuming enough smoothness, we apply the Ito’s formula to V (t, Yt, x) and equate the
drift and local martingale terms to those in (3). As a result, we obtain the volatility of the
forward performance process in a factor form, at (x) = σ(Yt)DyV (t, Yt, x), and derive the
following partial differential equation:

Vt + max
π∈Rk×{0}n−k

[
(Vxλ+ σDyVx)

T σπ +
1

2
Vxx(σπ)

Tσπ

]
+

1

2
tr
(
D2

yV σ
Tσ
)
+ (DyV )T µ = 0,

(10)
for (t, y, x) ∈ (0,∞) × Rn × (0,∞). Here, we denote by DyV the gradient of V (the vector
of partial derivatives), and by D2

y the Hessian of V (the matrix of second order partial
derivatives), with respect to y. It is not hard to see that, if V solves the above equation,
then, Ut (x) = V (t, Yt, x) satisfies the last two properties of Definition 1.2 locally (that is
the ‘martingale’ and ‘supermartingale’ properties are replaced, respectively, by the ‘local
martingale’ and ‘local supermartingale’ ones). The proof of the latter statement, as well as
the derivation of the above partial differential equation (PDE), are rather standard, hence,
we omit the details and, instead, refer the interested reader to [Karoui and M’rad, 2010],
[Karoui and M’rad, 2013], [Zariphopoulou, 2009], and [Musiela and Zariphopoulou, 2010b].

Before we proceed to the construction of solutions to (10), it is worth mentioning several
important features of the above equation. First, equation (10) provides another way to
observe similarities between the forward performance processes and the value functions in
the classical utility maximization theory. Indeed, the forward performance process in a factor
form satisfies the same equation as the value function, except that it does not have a pre-
specified terminal condition at a finite time horizon T : instead, the solution is supposed to
exist on the entire half line t > 0. It may seem that the above equation can be reduced

10
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to a standard HJB equation by the simple change of variables: t 7→ τ = T − t, with some
fixed T > 0. However, the resulting (standard HJB) equation can only be solved for τ > 0,
and, hence, it produces a solution to (10) only for t ∈ (0, T ). This is not sufficient, as the
main reason to introduce the forward performance process in the first place was to ensure
the time-consistency of the resulting optimization criterion on the entire half line t ∈ (0,∞).
Therefore, unlike the classical HJB equation, (10) can only be equipped with an initial,
rather than terminal, condition and has to be solved forward in time. For this reason, we
call it a time-reversed HJB equation. The requirement that equation (10) has to be
solved on the entire half-line t > 0 causes many difficulties in constructing the solutions:
on top of all the problems associated with the standard HJB equation (i.e. nonlinearity,
degeneracy), the problem at hand has to be solved in a wrong time direction, which makes
it ill-posed from the point of view of the classical PDE theory.

Despite all the difficulties outlined above, we manage to construct solutions to the above
equation, under some additional assumptions on the market model. In particular, when the
market is complete or the preferences are homothetic in the wealth variable, we characterize
explicitly the space of all strictly increasing and concave solutions to the above equation,
along with the associated initial conditions, V (0, ·, ·).

2.3 Linearizing the HJB equation: complete market case.

First, we consider the case of a complete market: i.e. we assume that, at each time t, the
first k columns of σ(Yt) span the entire Rd. Then, the maximization problem inside (10) can
be solved explicitly, and the HJB equation becomes

Vt −
1

2

‖λVx + σDyVx‖2
Vxx

+
1

2
tr
(
D2

yV σ
Tσ
)
+DyV

Tµ = 0 (11)

It is well-known that the methods of duality theory permit the linearization of the above equa-
tion (cf. [Karatzas et al., 1991]). These methods are based on the analysis of the Fenchel-
Lagrange dual of V (t, y, ·), denoted by V̂ (t, y, ·). In particular, it is a standard exercise to
check that the substitute

u(t, y, z) = −V̂x(t, y, exp(z)) = (Vx(t, y, ·))−1 (exp(z)) (12)

turns the forward HJB equation (11) into the following linear equation:

ut +
1

2

[
λTλuzz − 2Dyu

T
z σ

Tλ+ tr
(
D2

yuσ
Tσ
)]

+
1

2
λTλuz +Dyu

T
(
µ− σTλ

)
= 0, (13)

for all (t, y, z) ∈ (0,∞) × Rn+1. If we manage to find a solution to the above equation and
ensure that it is strictly positive and decreasing in z, we can then proceed backwards via
(12), to construct a function V that solves (11). This step may not always be trivial, as the
transition from Vx to V requires integration of the PDE for Vx with respect to x. However,
this method does work if, for example, we manage to derive sufficient a priori estimates of
u(t, y, z) and its partial derivatives, as demonstrated in Subsection 4.1.

11
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2.4 Linearizing the HJB equation: homothetic preferences.

The linearization proposed in the previous subsection relies on the completeness of the market
but works for an arbitrary forward performance process in a factor form. Here, in contrast, we
consider the (possibly) incomplete market models, where the forward investment performance
process is assumed to be homothetic in the wealth argument. Such processes are the natural
analogues of the popular power utilities. More precisely, we assume that, for all (t, y, x) ∈
R+ × Rn × (0,∞),

V (t, y, x) =
xγ

γ
v (t, y) , (14)

with some function v : R+ × Rn → R and a non-zero constant γ < 1. In addition, we
make the following specification of the general factor model introduced above. We assume
that n = d = 2, k = 1, that µ and σ depend only upon the second component of y, and
the instantaneous correlation between the two columns of σ is constant. In other words, we
assume that the market consists of a single risky asset, whose dynamics are given by the
following two factor model





dY 1
t = d logSt = µ (Y 2

t ) dt+ σ (Y 2
t ) dW

1
t ,

dY 2
t = b (Y 2

t ) dt+ a (Y 2
t )
(
ρdW 1

t +
√

1− ρ2dW 2
t

)
,

with a constant ρ ∈ [−1, 1] and scalar functions µ, σ, a and b, such that the above sys-
tem has a unique strong solution for any initial condition (Y 1

0 , Y
2
0 ) ∈ R2. It is shown in

[Zariphopoulou, 2001] that, in the notation

u(t, y) := (v(t, y))1/δ , with δ =
1− γ

1− γ + ρ2γ
,

the HJB equation (10) reduces to

ut +
1

2
a2 (y)uyy +

(
b (y) + ρ

γ

1− γ
λ (y) a (y)

)
uy +

1

2δ

γ

1− γ
λ2 (y)u = 0, (15)

for all (t, y) ∈ (0,∞) × Rn, where λ(y) = µ(y)/σ(y) + σ(y)/2. Thus, we have reduced the
time-reversed HJB equation (10) to a linear parabolic equation. Solving the above equation,
we obtain function u(t, y) and, taking its power, recover v and, in turn, V .

Notice however, that the above equation, as well as (13), is time-reversed: it has to be
solved forward, for t ∈ (0,∞), while the associated differential operator corresponds to a
backward equation. We would like to emphasize that there is no standard existence theory
for such PDEs. Developing some basic existence results for this type of equations is the
subject of the next section.

3 Generalized Widder’s theorem as the representation

of space-time harmonic functions

In this section, we show how to generate solutions to a class of time-reversed (ill-posed) linear
parabolic equations on a semi-finite time interval, which includes (13) and (15). These

12
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results, in particular, provide an extension of the Widder’s theorem on positive solutions
to the heat equation (see [Widder, 1963]). We recall this theorem and provide additional
comments further in this section.

3.1 Uniformly parabolic case

Here, we consider linear parabolic equations of the form

ut + Lyu = 0, (t, y) ∈ (0,∞)× Rn, (16)

with the operator Ly given by

Ly =
n∑

i,j=1

aij(y)∂2yiyj +
n∑

i=1

bi(y)∂yi + c(y), (17)

where the functions aij , bi and c are uniformly Hölder-continuous and absolutely bounded,
and such that the matrix A = (aij) is symmetric and satisfies the uniform ellipticity condi-
tion:

0 < inf
‖v‖=1, y∈Rn

n∑

i,j=1

vivja
ij(y) (18)

The operator Ly is, then, called uniformly elliptic, and the equation (16) is uniformly
parabolic. Notice that (16) can be rewritten as the evolution equation ut = −Lyu, where
‘−Ly ’ is an “anti-elliptic” (positive) operator. According to the classical theory of linear
parabolic equations (see, for example, [Evans, 2002]), in order to solve the above equation
forward in time (with a given initial condition), one needs the operator in the right hand
side to be elliptic (negative), and, hence, it cannot be applied in this case. In fact, as we
will show later, it is not always possible to construct a solution to the above equation, even
for a smooth initial condition satisfying the usual growth constraints (or, having a compact
support). Nevertheless, we will provide an explicit description of the space of all initial
conditions for which the nonnegative solution to (16) does exist.

To begin, consider the simplest possible form of equation (16):

ut + uyy = 0, (t, y) ∈ (0,∞)× R (19)

As mentioned earlier, the nonnegative solutions of the above equation are completely charac-
terized by the celebrated Widder’s theorem, given below (see Theorem 8.1 in [Widder, 1963]).

Theorem 3.1. (Widder 1963) Function u : (0,∞)× R → R is a positive classical solution
to (19) if and only if it can be represented as

u (t, y) =

∫

R
ezy−z2 tν (dz) (20)

where ν is a Borel measure, such that the above integral is finite for all (t, y) ∈ (0,∞)× R.
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As the above theorem shows, the only functions that can serve as initial conditions to
(19) are given by the bilateral Laplace transform of the underlying measure ν, namely,

u (0, y) =

∫

R
eyzν (dz) ,

provided the above integral converges for any y ∈ R. We can, now, see that there exists a
non-empty space of positive (nonnegative) solutions to equation (19), which, of course, is a
convex cone. This space is different from the spaces we usually consider when constructing
the solutions to a standard elliptic or parabolic linear equation. In particular, as follows
from the above representation, one cannot expect the solutions of (19) to be vanishing at
y → ∞ and y → −∞ simultaneously. It is also easy to see, by choosing the measure ν with
atoms at the nonnegative integers {n}, with the corresponding weights {1/n!}, that there
exists a solution of (19) with the initial condition

u (0, y) =

∫

R
eyzν (dz) = exp (ey)

Recall that the above function does not satisfy the necessary growth restriction, and, hence,
the standard heat equation

ut − uyy = 0, (t, y) ∈ (0,∞)× R,

equipped with the above initial condition, does not possess a solution. Thus, one cannot
claim that the space of solutions to (19) is “smaller” than the space of solutions to the
standard heat equation. Rather, it is a different space of functions which do not posses some
of the properties that we are used to consider natural.

Widder’s theorem was used in [Henderson and Hobson, 2007], [Berrier et al., 2009] and
[Musiela and Zariphopoulou, 2010b] to describe a class of forward performance processes
with zero volatility, which are not necessarily in the factor form proposed herein. Recall
that, here, we focus on describing the forward performance processes in a factor form, which
may have a nontrivial (i.e. non-zero) volatility. In particular, the goal of this subsection is
to describe the space of solutions to the general time-reversed uniformly parabolic equation
(16). The techniques used by Widder to prove the representation (20) are based on applying
a specific function transform in the space variable and cannot be extended easily to the
general case. Therefore, we have to develop a new method for studying equation (16) in full
generality.

In fact, the solutions to (16) are called the space-time harmonic functions associated with
the operator “∂t+Ly”. From the probabilistic point of view, these functions characterize the
Martin boundary of a space-time diffusion process (t, yt), where (yt) is the diffusion associated
with the generator Ly . For the precise definitions of Martin boundary and its relation to
harmonic functions, we refer to [Doob, 2001], [Pinsky, 1995], [Rogers and Williams, 2000]. It
turns out that one can obtain an explicit integral representation of all space-time harmonic
functions using the methods of Potential Theory. These methods allow to describe the Martin
boundary of a space-time diffusion via the Martin boundary of the space process itself, which,
from an analytical point of view, reduces the ill-posed equation (16) to a well-posed uniformly
elliptic equation. In particular, the results presented below are based on the representation
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of the minimal elements of the cone of nonnegative space-time harmonic functions, obtained
by Koranyi and Taylor in [Koranyi and Taylor, 1985]. The application of Choquet’s theory,
then, allows us to derive a representation of all solutions to (16) via the minimal solutions,
which, in turn, can be computed by solving the associated (well-posed) elliptic equations.
This result, in particular, provides a generalization of the Widder’s theorem stated above.
However, in order to apply the results of Koranyi and Taylor to the problem at hand, we
need to make some additional constructions.

Definition 3.2. The space V consists of all functions v : ((0,∞)× Rn) ∪ {(0, 0)} → R,
continuous on any set Mα := {(t, y) ∈ [0,∞)× Rn | t ≥ α‖y‖2}, for any α > 0. The set V
is endowed with the topology of uniform convergence on any compact contained in some Mα.

Definition 3.3. The spaceH consists of all functions u ∈ V, such that: u ∈ C1,2 ((0,∞)× Rn),
u ≥ 0, u(0, 0) = 1, and u satisfies (16).

Definition 3.4. Function u ∈ H is a minimal element of H if, for any v ∈ H, v ≤ u implies
v = λu, for some λ ∈ [0, 1].

The main result of [Koranyi and Taylor, 1985] provides an explicit characterization of
the minimal elements of H (i.e. the minimal positive solutions to (16)).

Definition 3.5. The set E consists of all functions v : ((0,∞)× Rn) ∪ {(0, 0)} → R of the
form v(t, y) = e−λtψ(y), with any λ ∈ R and any ψ ∈ C2(Rn), such that ψ(0) = 1, ψ ≥ 0,
and (Ly − λ)ψ(y) = 0 for all y ∈ Rn.

Theorem 3.6. (Koranyi-Taylor, 1985) The set of all minimal elements of H coincides with
E.

Proof. The proof is given in [Koranyi and Taylor, 1985] and it is based on the uniform Har-
nack’s inequality for the solutions of (16). See Appendix A for a relevant version of Harnack’s
inequality.

In fact, Koranyi and Taylor show that E is the set of all minimal elements of a larger space
of solutions. Notice that, in the definition of V , we restricted the space of functions to those
that are continuous on the parabolic shapes centered at zero. However, it is clear that all
elements of E belong to H, which, combined with the results of [Koranyi and Taylor, 1985],
yields the statement of the above theorem. The reason that we restrict our analysis to
the space H is that, in order to provide an explicit representation of all elements of H,
we need this space to be compact in a topology which makes the delta-function a continu-
ous functional. The space proposed by Koranyi and Taylor does not satisfy this property,
which is, perhaps, the reason why the aforementioned representation was not established in
[Koranyi and Taylor, 1985]. Notice that H includes all solutions to (16) which are continu-
ous at t = 0 and, hence, from an application point of view, our restriction entails no loss of
generality.

Lemma 3.7. The set H ⊂ V is compact.
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Proof. This result follows from Harnack’s inequality and Schauder estimates (see Appendix
A).

It is clear that the topology of V (and, respectively, of H) is equivalent to the topology
of uniform convergence on the sets

MR
α :=Mα ∩BR(0, 0),

for all α,R > 0, where BR(0, 0) is the ball of radius R in R1+n, centered at zero. The
Harnack’s inequality (see Appendix A) implies that, for any R > 0, there exists a constant
C(R), depending only on R, on the upper bounds of the absolute values of the coefficients
in Ly , and on the lower and upper bounds of the associated quadratic form, such that any
nonnegative solution u of equation (16) satisfies:

u(R, y) ≤ C(R)u(0, 0) = C(R), ∀‖y‖2 ≤ 1

For any λ ∈ (0, 1) and r > 0, we introduce the function vλ(t, y) := u(λ2t, yλ
√
r) and notice

that it satisfies a strictly parabolic PDE whose coefficients and the associated quadratic
form can be bounded by a function of r, uniformly over λ ∈ (0, 1). Therefore, there exists a
constant C ′(α,R) > 0, such that

u(Rλ2, y) = vλ
(
R,

y

λ
√
r

)
≤ C ′(r, R), ∀‖y‖2 ≤ rλ2, ∀λ ∈ (0, 1)

This implies that all elements of H are bounded uniformly on eachMR
α , with α = R/r. This

conclusion, together with the interior Schauder estimates (see Theorem 1 in [Knerr, 1980], or
Appendix A), yield the relative compactness of {u | u ∈ H}, {Lyu | u ∈ H}, and {ut | u ∈ H}
as the subsets of V . Thus, we conclude that any sequence in H has a convergent subsequence
whose limit belongs to H. As the topology in V is metrizable, this completes the proof of
the lemma.

Before we can formulate the main theorems, we need to recall some auxiliary results.

Definition 3.8. A function u ∈ H is an extreme element of H if, for any v1, v2 ∈ H,
1
2
v1 +

1
2
v2 = u implies v1 = v2 = u.

Lemma 3.9. The set of extreme points of H coincides with the set of its minimal elements
E.

Proof. This is a standard result from Potential Theory (cf. page 33 of [Doob, 2001]).

Lemma 3.10. The set E ⊂ V is Borel.

Proof. This is a standard result from Convex Analysis (see Proposition 1.3 in [Phelps, 2001]).

The following theorem is an immediate corollary of the above results.
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Theorem 3.11. The function u belongs to H (is a nonnegative classical solution to (16),
normalized at zero) if and only if there exists a Borel probability measure ν on E, such that,
for any (t, y) ∈ ((0,∞)× Rn) ∪ {(0, 0)}, we have

u(t, y) =

∫

E
v(t, y)ν(dv) (21)

Such a measure ν is uniquely determined by u ∈ H.

Proof. In view of Lemma 3.7, the necessity of this statement follows immediately from the
Choquet’s theorem (cf. page 14 of [Phelps, 2001]), and the sufficiency is a well known result
from convex analysis (see Proposition 1.1 in [Phelps, 2001]).

The above theorem is nothing else but a version of the abstract Martin representation
theorem (cf. Chapter XII.9 in [Doob, 2001]), with the only exception that, here, we are able
to describe the topology of E explicitly. However, the structure of the Borel measures on
E is, still, not very clear, making it difficult to apply the above representation in practice.
Therefore, below, we formulate another result, which is equivalent to Theorem 3.11, but is
better suited for computations (as demonstrated in Section 4).

Theorem 3.12. The function u belongs to H (is a nonnegative classical solution to (16),
normalized at zero) if and only if it can be represented, for all (t, y) ∈ ((0,∞)× Rn)∪{(0, 0)},
as

u(t, y) =

∫

R
e−tλψ(λ; y)µ(dλ), (22)

with a Borel probability measure µ on R and a nonnegative function ψ : R → C2(Rn), such
that ψ ∈ L1 (R → C(K);µ) for any compact K ⊂ Rn and, for µ-almost every λ, the following
holds: ψ(λ, 0) = 1 and ψ(λ; ·) solves

(Ly − λ)ψ(λ; y) = 0, (23)

for all y ∈ Rn. Such a pair (µ, ψ) is determined uniquely by u ∈ H.

Remark 3.13. The main contribution of Theorem 3.12 is that it reduces the (ill-posed)
forward parabolic equation (16), which cannot be analyzed by means of standard theory, to a
regular elliptic equation (23), which can be solved using the existing methods. In particular,
if n = 1, all positive solutions to the one-dimensional version of (23) can be described
through the two (increasing and decreasing) fundamental solutions, which, in turn, can be
approximated efficiently, for example, by a series expansion (cf. [Titchmarsh, 1946]). Some
existence results for an arbitrary dimension n are also presented in Appendix A.

Proof. Let’s prove the necessity first. We need to derive the representation (22) from (21).
Consider E as a random space, with the Borel sigma-algebra (the topology is induced by
V) and a probability measure ν on it. Recall that each v ∈ E has a unique decomposition:
v(t, y) = e−λtψ(y). Then, we fix an arbitrary ε ∈ (0, 1) and a compact K ⊂ Rn, and introduce
the following random elements:

ξ : E → C ([ε, 1/ε]) , v 7→ v(·, 0),
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η : E → C (K) , v 7→ v(0, ·),
ζ : E → R, v 7→ log (ξ(v)(1)) ,

where the ‘C’ spaces are endowed with uniform norms, making them into Banach spaces. The
above mappings are continuous and, hence, measurable. In addition, a simple application of
Harnack’s inequality (see, for example, the proof of Lemma 3.7) shows that the respective
norms of ξ(v), η(v), and ζ(v) are bounded over all v ∈ E . Next, notice that, for any
(t, y) ∈ [ε, 1/ε]×K, we have

∫

E
v(t, y) ν(dv) =

[∫

E
ξ(v)η(v) ν(dv)

]
(t, y) = [E(ξη)] (t, y) = [E (ξ E [η | ζ])] (t, y),

where the second integral is understood in the Bochner sense (see Appendix A for details),
and, to obtain the last equality, we noticed that the value of ξ(v) is uniquely determined by
the value of ζ(v). The argument (t, y) can be put in and out of the second integral in the
above, due to the fact that the delta-function is a continuous functional with respect to the
uniform topology and due to the properties of the Bochner integral (see the Hille’s theorem in
Appendix A or in [Swartz, 1992]). Next, recall the basic property of conditional expectation,
which states that there exists ψ ∈ L1 (R → C(K);µ), with µ being the distribution of ζ :
E → R, such that E [η| ζ] = ψ(ζ). Therefore, we have

∫

E
v(t, y)ν(dv) = [E (ξ ψ(ζ))] (t, y) =

[∫

E
ξ(v)ψ(ζ(v))ν(dv)

]
(t, y)

=

∫

E
e−tζ(v)ψ(ζ(v); y)ν(dv) =

∫

R
e−tλψ(λ; y)µ(dλ)

The integral on the right hand side of the above is absolutely convergent, and so is the
integral on the left hand side. Thus, we obtain the desired representation (22).

To prove that the function u defined by (22) belongs to H, we, first, recall the well known
fact (see, for example, Theorem 4.3.2 in [Pinsky, 1995]) that there exists λ0 ∈ R, such that
for any λ < λ0 the only nonnegative solution to (23) is zero. Thus, the support of µ is
bounded from below, and, hence, the integral in (22) is well defined. Next, we notice that
the mapping

R ∋ λ 7→
(
(t, y) 7→ e−tλψ(λ; y)

)
∈ E

is measurable and, hence, we can use a change of variables to deduce

u(t, y) =

∫

R
e−tλψ(λ; y)µ(dλ) =

∫

E
v(t, y)ν(dv),

for some probability measure ν on E and any (t, y) ∈ (0,∞) × Rn. We now apply the
standard result from convex analysis (cf. Proposition 1.1 in [Phelps, 2001]), which states
that an integral with respect to a probability measure over a compact convex set in a locally
convex space represents a point in this set (in the sense that the value of any continuous linear
functional applied to this point coincides with the integral of the values of this functional
applied to the integrand). In the present case, it means that u ∈ H.
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Let’s prove the uniqueness of such representation. Assume there exists another pair
(µ′, ψ′) such that

u(t, y) =

∫

R
e−tλψ′(λ; y)µ′(dλ).

Consider µ′′ = 1
2
(µ + µ′). It is a probability measure, and we have: µ ≺ µ′′ and µ′ ≺ µ′′.

Denote the densities of µ and µ′, with respect to µ′′, by p and p′ respectively. Notice that,
for µ′′-almost every λ, we have ψ(λ; 0) = ψ′(λ; 0) = 1. Thus, we obtain

u(t, 0) =

∫

R
e−tλp(λ)µ′′(dλ) =

∫

R
e−tλp′(λ)µ′′(dλ)

for all t ≥ 0. Recall that the supports of µ and µ′ have to lie in [λ0,∞), for some λ0 ∈ R.
Therefore, we obtain

∫ ∞

λ0

e−tλp(λ)µ′′(dλ) =

∫ ∞

λ0

e−tλp′(λ)µ′′(dλ)

From the uniqueness of the integral representation in the Bernstein (or, Widder-Arendt)
theorem (cf. Theorem II.6.3 in [Widder, 1946]), we conclude that p ≡ p′, and, hence, µ ≡ µ′.
As a result, we have

∫

λ0

e−tλψ(λ; y)µ(dλ) =

∫

λ0

e−tλψ′(λ; y)µ(dλ).

Finally, we apply the generalized Widder-Arendt theorem (see Theorem 1.2 in
[Chojnacki, 2002]), to conclude that ψ and ψ′ coincide, as elements of L1 (R → C(K);µ).

We finish this subsection by recovering the Widder’s representation (20) from Theorem
3.12. Recall that, if Ly = ∆ and n = 1, any solution to (23) is a linear combination of the
following fundamental solutions

ψ1(y, λ) = ey
√
λ and ψ2(y, λ) = e−y

√
λ,

for all λ ≥ 0. And there are no positive solutions to (23) if λ < 0. Thus, according to
Theorem 3.12, all nonnegative solutions to (16) are given by

u(t, y) =

∫ ∞

0

e−λt
(
c1(λ)e

−y
√
λ + c2(λ)e

y
√
λ
)
ν(dλ),

where ν is a Borel measure, and ci’s are measurable nonnegative functions, such that the
above integral converges everywhere. Changing variables in the above, we obtain the Wid-
der’s representation:

u(t, y) =

∫

R
eyz−z2 t (ν1(dz) + ν2(dz)) ,

where

ν1(dz) = 1(−∞,0](z)c1(z
2)
(
ν ◦m−1

1

)
(dz) and ν2(dz) = 1[0,∞)(z)c2(z

2)
(
ν ◦m−1

2

)
(dz),

with m1 : λ 7→ −
√
λ and m2 : λ 7→

√
λ.
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Remark 3.14. It is worth discussing the connection between the representation (22) and
the turnpike theorems, developed, for example, in [Mossin, 1968], [Cox and Huang, 1992],
[Detemple and Rindisbacher, 2010], [Guasoni and Robertson, 2012]. These papers consider
solutions to a sequence of optimal investment problems, with the same utility function and
the time horizons going to infinity. Assuming that the optimal wealth processes, for all the
optimization problems, are bounded from below by a deterministic process exploding at infin-
ity, and, in addition, that the utility function behaves like a power function, asymptotically,
for large wealth arguments, the turnpike theorems yield

u(t, y) ∼ e−λtψ(λ; y),

as the time horizon t grows to infinity. Function u, in this case, is understood as the inverse
of the marginal value function of a finite time horizon problem. Notice that our results
are in perfect accordance with the turnpike theorems: Theorem 3.12 implies that, as the time
horizon goes to infinity, the asymptotic relation of the turnpike theorems holds for a sequence
of problems with state- and time-dependent utility functions, which have power dependence
on the wealth argument. However, unlike the turnpike theorems, here, we consider only time-
consistent sequences of optimization problems, which have a common solution for all time
horizons, and we obtain an exact, rather than asymptotic, relation.

3.2 Degenerate case

Notice that not all equations arising in the portfolio optimization theory are of the form
(16). In fact, as it was demonstrated in Subsection 2.3, in complete diffusion-based markets,
the application of duality methods typically leads to the following equation:

ut + Lyzu = 0, (t, y, z) ∈ (0,∞)× Rn+1, (24)

where

Lyz =
n∑

i,j=1

aij(y)∂2yiyj +
n∑

i=1

qi(y)∂2zyi + p(y)∂2zz +
n∑

i=1

bi(y)∂yi + r(y)∂z + c(y),

with continuous functions {aij}, p, {qi}, {bi}, r, and c, defined through the parameters of
the stochastic model:

(
aij(y)

)
= σT (y)σ(y), q(y) = σT (y)λ(y), p(y) = λT (y)λ(y),

b(y) = µ(y)− σT (y)λ(y), r(y) =
1

2
λT (y)λ(y), c(y) = 0.

One can see that the quadratic form of x ∈ Rn+1, associated with Lyz ,

n∑

i,j=1

aij(y)xixj +
n∑

i=1

qi(y)xixn+1 + p(y)(xn+1)2,

is degenerate in, at least, one direction, at each point y ∈ Rn, implying that Lyz is not
uniformly elliptic (but rather degenerate elliptic), as an operator acting on functions on Rn+1.
As a consequence, many of the techniques used in the previous subsection (in particular,
the uniform Harnack’s inequality), cannot be applied to equation (24). To illustrate the
differences, we follow the ideas of previous subsection and introduce the space Ẽ .
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Definition 3.15. The set Ẽ consists of all functions v : ((0,∞)× Rn+1) ∪ {(0, 0, 0)} → R
of the form v(t, y, z) = e−λtψ(y, z), with any λ ∈ R and any ψ ∈ C2(Rn+1), such that
ψ(0, 0) = 1, ψ ≥ 0, and (Lyz − λ)ψ(y, z) = 0 for all (y, z) ∈ Rn+1.

We endow Ẽ with the topology of uniform convergence on any compact contained in

M̃α :=
{
(t, y, z) ∈ [0,∞)× Rn+1

∣∣ t ≥ α
(
‖y‖2 + z2

)}
, (25)

for any α > 0. It is, then, natural to suggest that all nonnegative solutions to (24), normalized
at zero, are given by

u(t, y, z) =

∫

Ẽ
v(t, y, z)ν(dv) (26)

for all (t, y, z) ∈ ((0,∞)× Rn+1) ∪ {(0, 0, 0)}, where ν is a Borel probability measure on Ẽ .
However, it turns out that the above representation is not complete!

Let us construct an example of equation of the type (24), which possesses a solution that
cannot be represented in the form (26). Consider the simplest case where our model reduces
to the one-dimensional Black-Scholes-Merton model, with

n = 1; σ(y) = σ ∈ (0,∞); µ(y) = µ̃− σ2/2, with µ̃ ∈ R; λ(y) =
µ̃

σ
∈ R

The equation (24), then, reduces to

ut +
σ2

2

(
uyy − 2

λ

σ
uzy +

λ2

σ2
uzz

)
+
λ2

2
uz −

σ2

2
uy = 0, (t, y, z) ∈ (0,∞)× R2 (27)

Assuming µ̃ 6= σ2 and µ̃ 6= 0, we choose a smooth function ϕ : R → [0,∞), with compact
support, taking value one at zero, and consider

u(t, y, z) = ϕ

(
λ

2
(λ− σ)t− λ

σ
y − z

)
,

for all (t, y, z) ∈ [0,∞) × R2. It is easy to check that the above function u satisfies (27).
Let us show that it cannot be represented via (26). Assume the opposite. As λ

2
(λ− σ) 6= 0,

there exist (y, z) ∈ R2 and t > 0, such that u(t, y, z) = 0 and u(0, y, z) > 0. Consider

0 = u(t, y, z) =

∫

Ẽ
v(t, y, z)ν(dv).

As all elements of Ẽ are nonnegative, we conclude that v(t, y, z) = 0 for ν-almost every v ∈ Ẽ .
Next, from the definition of Ẽ , we conclude that v(0, y, z) = 0 for ν-almost every v ∈ Ẽ , and,
therefore, u(0, y, z) = 0. Thus, we obtain the desired contradiction.

The difficulties associated with equation (24) stem from the fact that the operator Lyz

is degenerate. The above example shows that this operator may not even be hypoelliptic.
As a result, the a priori estimates of the solutions to (24), and their derivatives (such as the
Schauder estimates and Harnack’s inequality), are not readily available. These estimates are
crucial for the proofs of Theorems 3.6, 3.11, and 3.12. One can, of course, try to restrict
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the setting by imposing additional conditions on the coefficients of the model, which, al-
though not natural from a financial point of view, may ensure that the operator Lyz satisfies
the Hörmander condition, in the sense that the Lie algebra generated by the vector fields
from both the first and the second order differentials has full rank. The Hörmander condi-
tion yields hypoellipticity of Lyz . See [Kolmogorov, 1934], [Weber, 1951], [Il’in, 1964], and
[Hörmander, 1967] for the definitions, existence results, and the construction of fundamental
solutions for the equations of Hörmander type. However, the following example shows that
the Hörmander condition, and, consequently, the hypoellipticity of Lyz , is not sufficient for
the representation (26) to be complete. Consider the following version of (24):

ut + uyy + yuz = 0

This is a standard example of a parabolic equation satisfying the Hörmander condition.
In fact, its hypoellipticity was shown in [Kolmogorov, 1934]. Notice that the function
u(t, y, z) = exp (3z − 3ty − 3t2) satisfies the above equation. Assume that it can be rep-
resented via (26). Then, using the disintegration, µ(dλ, dθ) = ν(dλ, θ)ρ(dθ), we obtain

e3z = u(0, 0, z) =

∫

R
eθzν(R, θ)ρ(dθ)

From the above, we conclude that ρ(dθ) = δ3(dθ) and that ν(dλ, θ) = ν(dλ) is a probability
measure on R. Therefore,

e−3t3 =

∫

R
eλtν(dλ)

is a moment generating function of a probability distribution. However, Theorem 7.3.5 of
[Lukacs, 1970] implies that this is impossible. In fact, it is not surprising that the Hörmander
condition does not resolve our problem: this condition is not sufficient to establish the
required a priori estimates, such as the Harnack’s inequality, for solutions to (24). For
example, the existing forms of Harnack’s inequality, available in the literature, require a
stronger version of Hörmander condition, which never holds for the equations of the form
(24) (cf. [Kupcov, 1972], [Citti et al., 1993] and [Kogoj and Lanconelli, 2004]).

We have seen that (26) fails to describe all nonnegative solutions to (24), under the
standard assumptions on the model coefficients. Therefore, one can only expect the ’if’ part
of Theorem (3.11) to hold true. Such statement would allow us to describe a large (albeit
incomplete) class of nonnegative solutions to (24). However, in order to use this result,
one would need to know how to construct the elements of Ẽ . The latter may result in a
complicated problem on its own, as the associated equation

(Lyz − λ)ψ(y, z) = 0 (28)

is degenerate, and it is not immediately clear whether it has a solution and how to compute
it. In some particular cases, a change of variables in the above PDE may eliminate the second
order derivatives involving z and make the equation similar to (16), with z playing the role
of t. However, very often, such reduction is not possible, and, even when it is possible, the
coefficient in front of uz may be degenerate, so that we cannot apply Theorems 3.11 and 3.12
to characterize the nonnegative solutions of (28). In view of the above discussion, here, we

22



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

only describe a class of nonnegative solutions to (24), which can be constructed by solving a
family of uniformly elliptic PDEs (the same level of complexity as the one required to apply
Theorem 3.12).

Theorem 3.16. Consider a function u, given by

u(t, y, z) =

∫

R2

e−tλ−zθψ(λ, θ; y)µ(dλ, dθ), (29)

for all (t, y, z) ∈ ((0,∞)× Rn+1)∪{(0, 0, 0)}, with a Borel probability measure µ on R2 and a
nonnegative function ψ : R2 → C2(Rn), such that ψ ∈ L1 (R2 → C2(K);µ), for any compact
K ⊂ Rn and, for µ-almost every (λ, θ), the following: ψ(λ, θ; 0) = 1 and ψ(λ, θ; ·) solves

(
Ly − θ

n∑

i=1

qi(y)∂yi + θ2p(y)− θr(y)− λ

)
ψ(λ, θ; y) = 0, (30)

for all y ∈ Rn. Then, the function u is a nonnegative classical solution to (24) satisfying
u(0, 0, 0) = 1.

Proof. The proof is a trivial application of the Hille’s (cf. Appendix A or [Swartz, 1992])
and Fubini’s theorems.

4 Examples

4.1 Mean-reverting log-price

Consider a model for the financial market, which consists of only one risky asset S (i.e.
n = k = 1), driven by a one-dimensional Brownian motion W (i.e. d = 1), via

dSt =

(
a+

1

2
σ2 − b logSt

)
Stdt+ σStdWt,

where a > 0 and b > 0 are constants, and, as usual, we assume that the interest rate is zero.
It is easy to see that, in fact, S is the exponential of an Ornstein-Uhlenbeck process. In
particular, we obtain that Yt = logSt satisfies

dYt = (a− bYt) dt+ σdWt

The above model was proposed in [Schwartz, 1997] to model the prices of commodities.
Notice that this market model is complete, and, hence, we are in the setting of Subsection
2.3. Let us describe a family of functions V : R+ × R× (0,∞) → R, such that V (t, Yt, x) is
a forward performance process. Introducing u(t, y, z), to denote (Vx(t, y, .))

−1 (exp(z)), we
recall that the function u is expected to satisfy equation (13), which, in the present setting,
becomes

ut +
1

2

[
1

σ2

(
a+

1

2
σ2 − by

)2

uzz − 2

(
a+

1

2
σ2 − by

)
uyz + σ2uyy

]

+

(
a+ 1

2
σ2 − by

)2

2σ2
uz −

σ2

2
uy = 0 (31)
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Applying Theorem 3.16, we reduce the problem to solving equation (30), which, in the
present case, becomes

σ2ψyy +

(
2θ

(
a+

1

2
σ2 − by

)
− σ2

)
ψy +

(
θ(θ − 1)

(
a+ 1

2
σ2 − by

)2

σ2
− 2λ

)
ψ = 0

It is easy to check that the following functions solve the above ODE, for each θ ≥ 0,

ψ(λ±, θ; y) = exp
(
C±

1 (θ)y + C±
2 (θ)y

2
)
,

with the corresponding

λ = λ±(θ) = θ(θ − 1)

(
a+ 1

2
σ2
)2

2σ2
+ b

(
θ ± 1

2

√
θ(3θ + 1)

)

− 2aθ
(
a+ 1

2
σ2
)
+ aσ2

σ2
(
1±

√
3 + 1/θ

) +
2a2

σ2
(
1±

√
3 + 1/θ

)2

and

C±
1 = 1− 2θ

σ2

(
a+

1

2
σ2

)
− 2a

σ2
(
1±

√
3 + 1/θ

) ,

C±
2 =

b

2σ2

(
2θ ±

√
θ(3θ + 1)

)

According to Theorem 3.16, we can construct u via

u(t, y, z) =

∫

R
exp (−zθ)

[
exp(C+

1 (θ)y + C+
2 (θ)y

2 − tλ+(θ))ν+(dθ) (32)

+ exp(C−
1 (θ)y + C−

2 (θ)y
2 − tλ−(θ))ν−(dθ)

]
,

for arbitrary Borel measures ν+ and ν− on R, such that the integral

∫

R
e−zθν±(dθ)

converges for all z ∈ R. Recall that the function V has to be convex in x, which implies that
the function u needs to be decreasing in z. Therefore, we have to restrict measures ν+ and
ν− to have support in R+. Notice that the above family does not contain all nonnegative
solutions of equation (31): in fact, it does not even include all solutions described by Theorem
3.16. Nevertheless, it represents a large family of solutions to (31) that can be written in a
closed form.

Next, we define functions Ṽ , V : (0,∞)× R× (0,∞) → R via:

Ṽ (t, y, x) = (u(t, y, log(.)))−1 (x) and V (t, y, x) =

∫ x

0

Ṽ (t, y, s)ds (33)
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Using the equation (31), it is easy to derive a nonlinear PDE for Ṽ and notice that the
same equation arises from a formal differentiation of the HJB equation (11) with respect to
x. However, as it was mentioned in Subsection 2.3, integrating the PDE for Ṽ , to recover
the HJB equation (11) for V , is not always a trivial task and it may require additional
arguments. The following proposition takes care of these technical details. Its proof is based
on establishing the appropriate estimates for u and Ṽ , and it is given in Appendix B.

Proposition 4.1. For any a, b, σ > 0 and any Borel measures ν+, ν−, with compact supports
in (0,∞), the function V , given by (32)–(33), is well defined and satisfies the HJB equation
(11), with n = k = 1, µ(y) = a− by, and σ(y) = σ.

Let us show that V (t, Yt, x) is a forward performance process. As V satisfies the HJB
equation, it is easy to deduce that, for any portfolio π, there exists a localizing sequence
{τn}, such that the process (V (t, Yt, X

π,x
t ))t≥0, stopped at τn, is a supermartingale. Function

V , by construction, is strictly positive, hence, a standard application of Fatou’s lemma shows
that the above process is a supermartingale itself. Let us now construct the optimal wealth
process. According to (4), it should satisfy

dX∗
t = − 1

σ

(
a+

1

2
σ2 − bYt

) 1
σ

(
a+ 1

2
σ2 − bYt

)
Vx(t, Yt, X

∗
t ) + σVxy(t, Yt, X

∗
t )

Vxx(t, Yt, X∗
t )

dt

−
1
σ

(
a+ 1

2
σ2 − bYt

)
Vx(t, Yt, X

∗
t ) + σVxy(t, Yt, X

∗
t )

Vxx(t, Yt, X∗
t )

dWt

Due to the smoothness of Ṽ , the solution X∗ to the above equation is uniquely defined for
any initial condition X∗

0 > 0, up to the explosion time. The estimates (39), in turn, imply
that the logarithm of X∗ (defined, again, up to the explosion time) satisfies:

d logX∗
t = ξtdt+ ζtdWt, |ξt| ≤ c5(1 + Y 2

t ), |ζt| ≤ c5(1 + |Yt|),

with a constant c3 > 0, depending only upon a, b, σ and η. As Yt has finite moments of any
order, Xt is square integrable, for any t. Hence, log(X) is a non-exploding continuous process,
and, therefore, X∗ is strictly positive and non-exploding. The following proposition implies
that V (t, Yt, x) is a forward performance process and, thus, completes the construction. Its
proof is given in Appendix B.

Proposition 4.2. The process (V (t, Yt, X
∗
t ))t≥0 is a martingale.

4.2 Mean-reverting log-volatility

Here, we consider an example of homothetic forward performance process in a two-factor
stochastic volatility model, discussed in Subsection 2.4, for which the verification procedure
(in particular, the verification of the martingale property) becomes very simple. Consider a
two-factor stochastic volatility model for a single risky asset (i.e. n = 2 and k = 1), driven
by a two-dimensional Brownian motion W = (W 1,W 2) (i.e. d = 2), via:

{
dSt = St (κ− µYt) exp (Yt) dt+ St exp (Yt) dW

1
t ,

dYt = (a− bYt) dt+ σ
(
ρdW 1

t +
√
1− ρ2dW 2

t

)
,
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where a ∈ R, b > 0, κ ∈ R, µ ≥ 0, and σ > 0 are constants. As usual, the interest rate is
assumed to be zero. An additional assumption on b/σ is made further in this section. Notice
that the stochastic factor Y , in the above model, controls both the spot volatility, exp(Yt),
and the instantaneous drift. In particular, when the volatility is very large, the drift becomes
negative, and vice versa. The stochastic factor itself exhibits a mean-reverting behavior. As
before, we would like to describe a family of functions V : R+ × R × (0,∞) → R, such
that V (t, Yt, x) is a forward performance process. We make the additional assumption of
homothetic preferences:

V (t, y, x) =
xγ

γ
v(t, y),

for some non-zero constant γ < 1 and function v : R+×R → R which is yet to be determined.
Thus, we are in the setup of Subsection 2.4. Introducing

u(t, y) = (v(t, y))1/δ , with δ =
1− γ

1− γ + ρ2γ
,

we notice that, in this case, equation (15) becomes

ut +
1

2
σ2uyy +

(
a− by + ρσ

γ

1− γ
(κ− µy)

)
uy +

1

2δ

γ

1− γ
(κ− µy)2u = 0

Applying Theorem 3.12, we reduce the problem to equation (23), which, in the present case,
becomes

1

2
σ2ψyy +

(
a− by + ρσ

γ

1− γ
(κ− µy)

)
ψy +

(
1

2δ

γ

1− γ
(κ− µy)2 − λ

)
ψ = 0

It is, then, easy to check that the following functions

ψ(λ±; y) = exp
(
C±

1 y + C±
2 y

2
)
,

solve the above ODE, with the corresponding

λ± = σ2

(
1

2

(
C±

1

)2
+ C±

2

)
+ C±

1

(
a+ ρσκ

γ

1− γ

)
+

1

2δ

γ

1− γ
κ2

and

C±
1 = ±

κµ
σ

γ
1−γ

(
1 + ρ2γ

1−γ

)
− 2C±

2

(
a
σ
+ κρ γ

1−γ

)

√(
b
σ
+ µρ γ

1−γ

)2
− µ2

δ
γ

1−γ

,

C±
2 =

1

2

(
b

σ
+ µρ

γ

1− γ

)
± 1

2

√(
b

σ
+ µρ

γ

1− γ

)2

− µ2

δ

γ

1− γ
,

where it is assumed that

b

σ
≥ µ

(√
ρ2

γ2

(1− γ)2
+

γ

1− γ
− ρ

γ

1− γ

)
(34)
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In particular, the function

u(t, y) = ν+e−tλ+

exp
(
C+

1 y + C+
2 y

2
)
+ ν−e−tλ−

exp
(
C−

1 y + C−
2 y

2
)

solves (15), and, therefore, the following function is a solution to the forward HJB equation
(10):

V (t, y, x) =
xγ

γ

(
ν+e−tλ+

exp
(
C+

1 y + C+
2 y

2
)
+ ν−e−tλ−

exp
(
C−

1 y + C−
2 y

2
))δ

,

for arbitrary ν+, ν− ≥ 0. As in the previous example, it is straightforward to check that, for
any portfolio π, the process (V (t, Yt, X

π,x
t ))t≥0 is a supermartingale. The equation for the

optimal wealth process becomes

dX∗
t =

X∗
t

1− γ
(κ− µYt)

(
κ− µYt + σρ

uy (t, Yt)

u (t, Yt)

)
dt+

X∗
t

1− γ

(
κ− µYt + σρ

uy (t, Yt)

u (t, Yt)

)
dW 1

t

(35)
It is easy to see that ∣∣∣∣

uy (t, y)

u (t, y)

∣∣∣∣ ≤ c6(1 + |y|) (36)

Hence, we conclude that, for any initial condition X∗
0 > 0, the equation (35) has a unique

strong solution X∗ which is strictly positive. To show that V (t, Yt, x) is a forward perfor-
mance process, it only remains to apply the following proposition, whose proof is given in
Appendix B.

Proposition 4.3. The process (V (t, Yt, X
∗
t ))t≥0 is a martingale.

Remark 4.4. It is worth mentioning that the optimal wealth process, defined by (35), is
monotone in the initial wealth. This observation shows that the forward performance process
constructed in this example belongs to the class of processes characterized in
[Karoui and M’rad, 2013]. In fact, it is easy to see that the same is true for any ho-
mothetic forward performance process, defined in Subsection 2.4. As discussed in the in-
troduction, this paper does not aim to generalize the space of forward performance pro-
cesses, and, in particular, we do not consider more general processes than those studied
in [Karoui and M’rad, 2013]. Instead, this work provides a new, convenient, representation
of a large class of these random fields. Namely, the representation provided herein allows
one to start with the economically meaningful input elements (the stochastic factor Y and the
investor’s initial preferences U0) and determine the associated forward performance process,
from this input, uniquely.

5 Summary

We have described a new approach to constructing investment strategies with optimal payoffs
at all positive time horizons, where the associated optimality criteria are given by the forward
investment performance processes. We outlined the main difficulties associated with the
construction of the forward performance processes and summarized the existing results in
this direction.
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We, then, demonstrated that the theory of forward performance admits an axiomatic
justification, in the spirit of classical expected utility theory. Motivated by the axiomatic
approach, we proposed a new representation of the forward performance processes, using the
parameters that have direct economic interpretation. In a Markovian setting, the proposed
representation lead us to the analysis of forward investment performance processes in a factor
form.

We characterized the forward performance processes in a factor form via solutions to a
time-reversed HJB equation. In the case when this equation can be linearized, we obtained
an explicit integral representation of its nonnegative solutions. In particular, our results
enable us to construct the forward performance process in a factor form (explicitly, or as a
numerical solution to a standard elliptic PDE), given its initial value (the investor’s initial
preferences) and a diffusion model for the associated stochastic factor.

In the course of our study, we have obtained a generalization of Widder’s theorem on the
representation of all positive solutions to a time-reversed parabolic PDE on a semi-infinite
time interval. In order to do this, we combined the existing characterization of the minimal
elements of the space of all positive solutions with some basic facts from Potential Theory
and Convex Analysis. From a probabilistic point of view, our results provide a representation
of the Martin boundary of a space-time diffusion via the Martin boundary of the diffusion
process itself.

Further research should address the problem of solving the time-reversed HJB equation
itself. In addition to all the difficulties associated with the standard HJB equation, this
problem is ill-posed, as it has “time running in a wrong direction”. This feature makes it
very hard to determine the initial conditions for which the solutions exist, as well as to find
a tractable description of the resulting solutions.

Another related problem is the calibration of a forward performance process to the in-
vestor’s initial preferences. Our study shows that, in many cases, the forward performance
process is uniquely determined by its value at time zero. We have seen that the latter should
be interpreted as a state dependent utility function which describes the investor’s prefer-
ences at a short time horizon. In order to complete the analysis, it is important to develop
a reliable algorithm for determining this function from investor’s choices.

6 Appendix A

In this appendix, we recall some standard technical results.

6.1 Parabolic PDE

Firstly, we are interested in quantitative properties of the solutions to the parabolic PDE
(16), with the differential operator Ly defined in (17) and in the subsequent paragraph. We
make use of the following version of Harnack’s inequality.

Theorem 6.1. (Harnack’s inequality) Suppose u is a nonnegative solution to (16) in (0,∞)×
Rn. Then, for any R > 0, there exists a constant C(R) > 0, depending only on R, on the
upper bounds of the absolute values of the coefficients in Ly, and on the lower and upper
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bounds of the associated quadratic form, such that

sup
‖y‖≤1

u(R, y) ≤ C(R)u(0, 0).

Proof. This statement follows immediately from Theorem 1.1 of [Krylov and Safonov, 1980],
after time reversal and shifting the space variable, in the PDE considered in
[Krylov and Safonov, 1980].

The second result which is needed repeatedly is a version of the interior Schauder estimate.
Define the Hölder norm on a domain D ⊆ R1+n by

‖v‖D,α = sup
(t,y)∈D

|v(t, y)|+ sup
(s,x),(t,y)∈D

‖v(t, y)− v(s, x)‖
‖y − x‖α + |t− s|α/2 .

For ε > 0 and T > 0, let
DT

ε = {(t, y) : ε‖y‖2 ≤ t ≤ T}.
Theorem 6.2 (Interior Schauder estimate). Assume that the coefficients of Ly are Hölder-
continuous with the Hölder exponent 0 < α < 1. Then for any positive ε, T and δ, there
exists a constant C > 0, depending on ε, T, δ, and on the coefficients of Ly, such that

‖u‖DT
ε ,α + δ(1+α)/2‖∂yu‖DT

ε ,α + δ1+α/2‖∂2yu‖DT
ε ,α + δ1+α/2‖ut‖DT

ε ,α ≤ C sup
(t,y)∈DT + δ

ε

|u(t, y)|.

Proof. See the article of Knerr [Knerr, 1980].

6.2 Elliptic PDE

We now consider the question of positive solutions of the elliptic equation (23), with the
differential operator Ly defined in (17).

Theorem 6.3. If the operator Ly−λ has a Green’s function then equation (23) has a positive
solution. A sufficient condition for the existence of a Green’s function is

∫ ∞

0

Ex

[
e
∫ t
0 c(Xs )ds−λt

]
dt <∞,

for all x ∈ Rn, where (Xt)t≥0 is the diffusion with generator L0
y = Ly − c(y).

Proof. See Theorems 3.1 and 3.6 in Section 4.3 of Pinsky’s book [Pinsky, 1995].

6.3 Vector integration

Now we recall the construction of the Bochner integral as needed in Section 3. Let (F,F , µ)
be a measurable space (with a finite measure µ) and let B be a Banach space with norm
‖ · ‖. For simple functions of the form g =

∑N
i=1 bi1Fi

, where Fi ∈ F and bi ∈ B for each i,
we let ∫

g dµ =
N∑

i=1

biµ(Fi).
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To define the Bochner integral of a general function g : F → B, we consider a sequence of
simple functions gn such that ∫

‖g − gn‖dµ→ 0,

as n → ∞. Then, the integral
∫
F
gdµ is defined as the limit of the sequence of integrals∫

F
gn dµ, which converges in the strong topology of B. It is easy to show (cf. [Swartz, 1992])

that, whenever
∫
‖g‖dµ < ∞, such a sequence of simple functions gn does exist, and the

limit of
∫
gn dµ depends only on the function g, but not on the particular choice of the

sequence.
Like the Lebesgue integral, the Bochner interal is rather robust. A particular instance of

this robustness is that we can interchange integration and linear functionals.

Theorem 6.4. (Hille) Let g be a Bochner integrable function and T : B → R be a continuous
linear functional. Then

T

∫

F

gdµ =

∫

F

T (g)dµ

Proof. This result can also be found [Swartz, 1992].

7 Appendix B

7.1 Proof of Proposition 4.1

First, using the definition of Ṽ and equation (31), we obtain the following PDE for Ṽ :

Ṽt +
1

2
σ2Ṽyy + (a− by)Ṽy +

1

2

Ṽxx

Ṽ 2
x

(
σṼxy +

a+ σ2/2− by

σ
Ṽx

)2

(37)

− 1

Ṽx

(
σṼxy +

a+ σ2/2− by

σ
Ṽx

)(
σṼy +

a+ σ2/2− by

σ
Ṽ

)
= 0

It is a standard exercise to check that the left hand side of the above is the x-derivative of
the left hand side of the HJB equation (11), with V given by (33). Thus, in order to prove
that V solves (11), it only remains to show that the value of the left hand side of (11), with
V given by (33), converges to zero, as x ↓ 0. For this, we need to establish the appropriate
estimates of the partial derivatives of Ṽ and, in turn, of V .

Assume that the measures ν+ and ν− have supports in [1+ η, 1/η], for some η ∈ (0, 1/2),
and at least one of these measures is not identically zero (if they are both zero, then, the
statement is obvious). It follows from (32) that there exists c1 = c1(t, y) ∈ (0, 1), which is a
continuous function of (t, y) ∈ R+ × R, such that

c1(t, y)
(
x−1−η ∧ x−1/η

)
≤ u(t, y, log(x)) ≤ 1

c1(t, y)

(
x−1−η ∨ x−1/η

)
, ∀x > 0

This yields

Ṽ (t, y, x) ≤ c
−1/(1+η)
1 (t, y)x−1/(1+η) + c−η

1 (t, y)x−η , ∀(t, y, x) ∈ R+ × R× (0,∞) (38)
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It is also easy to see, using (32), that there exists c2 > 0, depending only upon a, b, σ and
η, such that

η ≤ − u(t, y, z)

uz(t, y, z)
≤ 1

1 + η
and

∣∣∣∣
uy(t, y, z)

u(t, y, z)

∣∣∣∣ ≤ c2 (1 + |y|)

hold for all (t, y, z) ∈ R+ × R2. It follows that

(1 + η)x ≤ − Ṽ (t, y, x)

Ṽx(t, y, x)
≤ 1

η
x, and

∣∣∣∣∣
Ṽy(t, y, x)

Ṽx(t, y, x)

∣∣∣∣∣ ≤ c2 (1 + |y|)x (39)

Similarly, we deduce that∣∣∣∣
uzz(t, y, z)

uz(t, y, z)

∣∣∣∣ ≤
1

η
and

∣∣∣∣
uyy(t, y, z)

u(t, y, z)

∣∣∣∣ ≤ c3
(
1 + y2

)
,

where c3 > 0 depends only upon a, b, σ and η. Next, we recall from (33) that

e−z Ṽyy (t, y, u(t, y, z)) = −u
2
y

u2z

uzz − uz
uz

+ 2
uy
uz

uyz
uz

− uyy
uz
,

to obtain ∣∣∣Ṽyy (t, y, x)
∣∣∣ ≤ c4(1 + y2)x, ∀(t, y, x) ∈ R+ × R× (0,∞), (40)

where c4 > 0 depends only upon a, b, σ and η. The estimates (38), (39) and (40), along with
Fubini’s theorem, imply that V (t, y, x) is well defined, with its y-derivatives given by:

Vy(t, y, x) =

∫ x

0

Ṽy(t, y, s)ds, Vyy(t, y, x) =

∫ x

0

Ṽyy(t, y, s)ds.

Applying the same estimates and Fubini’s theorem again, we conclude that the right hand
side of (11), with V given by (33), converges to zero, as x ↓ 0. This completes the proof of
the proposition.

7.2 Proof of Proposition 4.2

Recall, from the results discussed in Subsection 1.2, that the process (V (t, Yt, X
∗
t ))t≥0 is a

local martingale. Let us show that it is, in fact, a true martingale. Applying Itô’s lemma,
we obtain

d log V (t, Yt, X
∗
t ) = −1

2
Z2

t dt+ ZtdWt,

where

Zt = σ
Vy(t, Yt, X

∗
t )

V (t, Yt, X∗
t )

− Ṽ (t, Yt, X
∗
t )

V (t, Yt, X∗
t )

1
σ

(
a+ 1

2
σ2 − bYt

)
Ṽ (t, Yt, X

∗
t ) + σṼy(t, Yt, X

∗
t )

Ṽx(t, Yt, X∗
t )

Applying (39), we obtain:

V (t, y, x) ≤ −1

η

∫ x

0

sṼx(t, y, s)ds = −1

η
xṼ (t, y, x) +

1

η
V (t, y, x) ⇒ Ṽ (t, y, x)

V (t, y, x)
≤ 1− η

x
,

|Vy(t, y, x)| ≤ −c2 (1 + |y|)
∫ x

0

sṼx(t, y, s)ds = c2 (1 + |y|)
(
V (t, y, x)− xṼ (t, y, x)

)

⇒
∣∣∣∣
Vy(t, Yt, X

∗
t )

V (t, Yt, X∗
t )

∣∣∣∣ ≤ c2 (1 + |y|)
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The above inequalities and (39) imply that

|Zt| ≤ c6 (1 + |Yt|) (41)

Next, we use Novikov’s condition (more precisely, the “salami” method, given, for example,
in Corollary 5.14 in [Karatzas and Shreve, 2005]) to conclude that V (t, Yt, X

∗
t ) is a true

martingale. According to this method, we only need to verify that, for any T > 0, there
exists ∆ > 0, such that

E exp

(
1

2

∫ t+∆

t

Z2
s ds

)
<∞,

for all t ∈ [0, T ]. Using (41) and the representation of an Ornstein-Uhlenbeck process as a
time-changed Brownian motion, we obtain

exp

(
1

2

∫ t+∆

t

Z2
s ds

)
≤ c7 exp

(
1

2

∫ t+∆

t

Y 2
s ds

)

≤ c8 exp

(
c9

∫ t+∆

t

W 2
exp(2bs)−1e

−bsds

)
≤ c8 exp

(
c9∆ sup

s∈[0,exp(2bT )]

W 2
s

)

It is easy to see that we can choose ∆ > 0 small enough, so that the right hand side of the
above is integrable. This completes the construction.

7.3 Proof of Proposition 4.3

Applying Itô’s formula, we obtain

d log V (t, Yt, X
∗
t ) = −1

2

(
Z2

t +N 2
t

)
dt+ ZtdW

1
t +NtdW

2
t ,

where

Zt := σρ
uy (t, Yt)

u (t, Yt)
+

γ

1− γ

(
κ− µYt + σρ

uy (t, Yt)

u (t, Yt)

)
, Nt = σ

√
1− ρ2δ

uy (t, Yt)

u (t, Yt)

The estimate (36) yields |Zt|+ |Nt| ≤ c7 (1 + |Yt|). Repeating the last argument in the proof
of Proposition 4.2, given above, we conclude that V (t, Yt, X

∗
t ) is, indeed, a true martingale.
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abilité subjective. In La Décision. Paris: Colloques Internationaux du CNRS.

[Duffie and Epstein, 1992] Duffie, D. and Epstein, L. (1992). Stochastic differential utility.
Econometrica, 60(2):353 – 394.

[Ekeland and Pirvu, 2008] Ekeland, I. and Pirvu, T. (2008). Investment and consumption
without commitment. Mathematics and Financial Economics, 2:57 – 86.

[Evans, 2002] Evans, L. (2002). Partial Differential Equations. American Mathematical
Society.

[Fleming and Soner, 2006] Fleming, W. and Soner, H. (2006). Controlled Markov Processes
and Viscosity Solutions. Second edition, Springer Science + Business Media, Inc.

[Guasoni and Robertson, 2012] Guasoni, P. and Robertson, S. (2012). Portfolios and risk
premia for the long run. The Annals of Applied Probability, 22(1):239 – 284.

[Henderson and Hobson, 2007] Henderson, V. and Hobson, D. (2007). Horizon-unbiased
utility functions. Stochastic Processes and their Applications, 117:1621 – 1641.
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