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1. Introduction 

There is arguably no retail price in the U.S. economy that is more closely watched than the price of 

gasoline.1 Fluctuations in gasoline prices not only directly affect the pocketbook of consumers, but also 

affect which cars consumers choose to buy and how close they choose to live to their workplace.  

Gasoline prices even have been shown to affect home prices and home foreclosure rates (see Hamilton 

2009; Ravn and Shan 2013). Central bankers in turn are concerned with the effects of gasoline prices on 

inflation expectations, consumer spending, and consumer confidence (see, e.g., Yellen 2011).  Being able 

to predict the price of gasoline matters not only to consumers, automobile manufacturers, and central 

bankers; gasoline price forecasts also help predict the revenue from ad valorem gasoline taxes, and they 

are considered useful more generally for assessing the outlook for inflation and economic growth. Finally, 

gasoline price predictions play an important role in microeconomic models of the automobile market and 

in the analysis of environmental policies (see, e.g., Busse, Knittel and Zettelmeyer 2012, 2013; Allcott 

and Wozny 2014). 

The EIA issues regular forecasts of the monthly and quarterly U.S. retail price of gasoline that are 

closely monitored and widely discussed by the media. Such monthly or quarterly forecasts are useful for 

both macroeconomic and microeconomic analysis. The EIA is not the only producer of gasoline price 

forecasts, however. For example, the Michigan Survey of Consumers regularly inquires about consumers’ 

expectations about future U.S. retail gasoline prices (see Anderson, Kellogg, and Sallee 2013).  Perhaps 

surprisingly, the accuracy of retail gasoline price forecasts has not received much attention by academic 

researchers. One recent exception is Anderson, Kellogg, Sallee and Curtin (2011). This study investigates 
                                                           
1 Gasoline in the United Kingdom is referred to as petrol (which is short for “petroleum”). We refer to gasoline 
throughout this paper because the standard definition of the term petroleum also includes crude oil and refined 
products other than gasoline. For example, the U.S. Energy Information Administration (EIA), which is the primary 
source for global energy market data, defines petroleum as a class of liquid hydrocarbon mixtures including crude 
oil, lease condensate, unfinished oils, natural gas plant liquids, and refined products obtained from the processing of 
crude oil such as heating oil, diesel, gasoline, kerosine, bunker fuel, or jet fuel. 
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the ability of U.S. consumers to forecast the price of gasoline, as measured by responses in the Michigan 

Survey of Consumers. Another exception is an evaluation of the accuracy of EIA gasoline price forecasts 

by Sanders, Manfredo and Boris (2009). Neither study, however, addresses the question of how to 

construct gasoline price forecasts.  There are a number of model-free methods and regression-based 

methods that can be used for constructing gasoline price forecasts. The literature has largely ignored these 

methods to date.2 One reason may have been the perception that forecasting gasoline prices beyond a few 

days is next to impossible, given publicly available information. In this view, there is no rhyme or reason 

to private-sector gasoline price forecasts, and for all practical purposes we can think of the current 

gasoline price as the best predictor of the future price. Indeed, many energy and environmental 

economists have considered the current real price of gasoline a reasonable benchmark for modelling 

expectations about the future real price of gasoline (see, e.g., Kahn 1986; Li, Timmins and von Haefen 

2009; Busse, Knittel and Zettelmeyer 2013; Langer and Miller 2013; Allcott and Wozny 2014). 

Until recently, the no-change forecast (or random walk forecast) was also considered the best 

possible forecast of the price of crude oil, but a rapidly expanding literature has overturned this 

consensus. It is well established now that one can forecast the price of crude oil in real time more 

accurately than the no-change forecast.3 Because gasoline is a product obtained from refining crude oil, 

U.S. gasoline prices are closely tied to the evolution of the price of crude oil with both prices moving 

together in the long run (see, e.g., Kilian 2010).  Hence, one might expect the ability to forecast oil prices 

to extend to gasoline price forecasts, but such a conclusion is less than obvious upon reflection. Unlike oil 
                                                           
2 A rare exception is the work of Bastianin, Galeotti, and Manera (2015), which in turn builds on preliminary 
analysis in Bachmeier and Griffin (2003). Bastianin et al. investigate the extent to which allowing for asymmetries 
in the relationship between oil and gasoline prices improves the accuracy of regression-based forecasts for the price 
of gasoline. These studies, however, are not concerned with the question of whether either model forecasts more 
accurately than the no-change forecast or how they compare with other forecasts. 
3  Examples include Alquist, Kilian and Vigfusson (2013), Baumeister, Guérin and Kilian (2015), Baumeister and 
Kilian (2012, 2014a, 2015), Baumeister, Kilian and Lee (2014), Bernard, Khalaf, Kichian, and Yelou (2015), and 
Chen (2014). 
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prices, gasoline prices are subject to changes in gasoline taxes and environmental regulations and are 

affected by refinery shutdowns as a result of routine maintenance, accidents and hurricanes (see, e.g., 

Kilian 2010). Moreover, the link between oil and gasoline prices has been affected by important changes 

in the structure of the refining market in recent years (see, e.g., Borenstein and Kellogg 2014; Kilian 

2014). Finally, the evolution of gasoline prices is also affected by changes in the market power of refiners 

(see, e.g., Borenstein and Shepard 2002; Sweeney 2015).  

The existence of these additional gasoline-market specific determinants of the price of gasoline 

does not mean that we should actually forecast these determinants, which often are essentially 

unpredictable (such as in the case of refinery fires) or have effects that are too complicated to model in a 

real-time setting (such as the effects of Californian environmental regulations on national U.S. gasoline 

markets). It does raise questions, however, about the forecasting ability of models based on aggregate oil 

market and gasoline market data that do not explicitly incorporate the microeconomic structure of 

gasoline markets. Our analysis shows that these complications notwithstanding, forecasting models based 

only on aggregate data for the gasoline and crude oil market can be useful.  

We provide a comprehensive analysis of the forecastability of the real U.S. price of gasoline, 

drawing on state-of-the-art regression-based forecasting methods. Our objective is to provide a 

benchmark for future studies and to document the merits of alternative forecasting models. The analysis is 

conducted in real-time, taking account of the delays in the availability of some data and subsequent 

revisions when data become available. We focus on the problem of forecasting the average monthly U.S. 

retail price of gasoline, as defined by the EIA, at horizons up to 24 months (or eight quarters).   

 Our analysis addresses several questions. First, we examine the accuracy of forecasts of the retail 

gasoline price based only on its own past.  We consider autoregressive, autoregressive-moving average 

and exponential smoothing forecasts. Second, we quantify the predictive content of financial market 
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variables such as gasoline futures prices or the spread between the gasoline spot price and the spot price 

of crude oil. Third, we investigate the predictive power of bivariate vector autoregressive (VAR) models 

including both retail gasoline prices and crude oil prices. Our analysis examines in detail the impact of the 

lag structure, of imposing cointegration restrictions on the VAR model, and of the definition of the price 

of crude oil.  We abstract from asymmetric VAR models, given the evidence provided by Bachmeier and 

Griffin (2003) and Bastinian et al. (2015) in favor of the linear VAR model. Fourth, we consider models 

of the gasoline market linking gasoline prices to changes in U.S. gasoline consumption. We also explore 

the use of single-equation factor forecasting models and of factor augmented VAR (FAVAR) forecasting 

models linking the price of gasoline to U.S. real economic activity. Fifth, building on recent 

developments in the literature on oil market forecasting models, we explore larger-scale VAR models that 

jointly model the global market for crude oil and the U.S. gasoline market. 

Our key finding is that substantial reductions in the mean-squared prediction error (MSPE) of 

gasoline price forecasts are feasible in real time at horizons up to two years, as are substantial increases in 

directional accuracy. The most accurate individual model is a simple bivariate VAR(1) model for real 

retail gasoline and Brent crude oil prices. This model generates MSPE reductions at all horizons ranging 

from 10% to 26% and at some horizons has statistically significant directional accuracy as high as 68%. 

These results are robust to the use of Bayesian estimation methods as proposed in Giannone, Lenza, and 

Primiceri (2015).  Even more reliable overall is a pooled forecast that assigns equal weight to the five 

most successful individual forecasting models.  The accuracy of this pooled forecast also is more stable 

over time than that of the VAR(1) model. Moreover, the implied nominal gasoline price forecast has 

lower MSPE than the gasoline price forecasts of the U.S. Energy Information Administration and the 

gasoline price expectations in the Michigan Survey of Consumers. Finally, we show that as much as 39% 
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of the widely discussed decline in the retail price of gasoline after June 2014 was predictable, but only 

when using a VAR model of the global market for crude oil augmented with the U.S. price of gasoline. 

The remainder of the paper is organized as follows. Section 2 reviews the forecasting 

environment and discusses the gasoline price data. In section 3, we motivate and describe each of the 

alternative forecasting methods and discuss their performance. Section 4 provides additional sensitivity 

analysis. We assess the role of seasonality in the monthly gasoline price data, we assess the stability over 

time of the accuracy of our preferred gasoline price forecast, we examine the potential benefits from 

pooling the most successful forecasting models, and we extend the analysis to quarterly forecasts. Section 

5 discusses how to recover nominal price forecasts from real gasoline price forecasts. We compare the 

pooled forecast with the gasoline price expectations in the Michigan Survey of Consumers and with 

quarterly EIA forecasts of the nominal price of gasoline. In section 6 we investigate how much of the 

recent decline in gasoline prices was predictable as of the end of June 2014. The concluding remarks are 

in section 7. Figures A1-A2 and Tables A1-A8 can be found in the online appendix. 

2. The Forecasting Environment 

All forecasting models are estimated at monthly frequency. We consider monthly forecast horizons up to 

two years. Forecasts at the corresponding quarterly horizons are obtained by averaging the monthly 

forecasts at quarterly frequency, as recommended in Baumeister and Kilian (2014a). The regression 

models underlying the gasoline price forecasts are re-estimated recursively in real time, as more data 

become available.  This approach has been shown in the oil price forecasting literature to be much more 

accurate than relying on rolling regressions (see, e.g., Baumeister and Kilian 2014a).  Our analysis is 

conducted in real-time, taking account of the delays in the availability of some data and subsequent 

revisions when data become available. 

2.1. Real-Time Data 
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We rely on data from a suitably updated real-time database developed in Baumeister and Kilian (2012, 

2014a) and extended in Baumeister, Kilian and Zhou (2014) and Baumeister, Kilian and Lee (2014). The 

reader is referred to these references for a detailed description of the data sources and definitions. This 

database consists of different data sets for each month in the sample. Each data set is referred to as a 

vintage and contains only the data that were known to the forecaster at each point in time. Missing 

observations at the end of each data set are nowcast based on data in this vintage. 

We add to this database real-time data for U.S. gasoline consumption and for the nominal 

volume-weighted average U.S. retail price of gasoline. The price of gasoline is reported in column 4 of 

Table 9.4 of the Monthly Energy Review. This gasoline price series is backcast from January 1978 to 

October 1973 using EIA data on the price of leaded regular gasoline, as in Kilian (2010). There are no 

revisions in the nominal gasoline price data, but there is a delay in their release. We nowcast the missing 

observations at the end of each vintage based on the monthly average of the weekly releases of the 

nominal retail gasoline price in the Weekly Petroleum Status Report. Gasoline consumption data are 

constructed as the sum of commercial, industrial and transportation sales, following Kilian (2010). 

Gasoline consumption data are subject to revisions. The real-time data were manually compiled from past 

issues of the Monthly Energy Review. Percent changes in gasoline consumption were nowcast at their 

average rate of growth in the preceding five years based on a moving-average model, taking into account 

seasonal variation in the form of seasonal dummies. 

2.2. Evaluation Criteria 

The evaluation period is January 1992 through March 2014 (or equivalently the first quarter of 1992 

through the first quarter of 2014).  The length of the initial recursive estimation period differs depending 

on data availability. No data prior to October 1973 is used in estimation. Our objective is to forecast the 
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level of the ex-post revised real price of gasoline, as measured by the observations in the September 2014 

vintage of the real-time database. 

The real-time forecasts are evaluated based on their recursive MSPE and based on their 

directional accuracy, which is of independent interest for many economic decisions. For example, the 

Michigan Survey of Consumers explicitly asks households whether they expect gasoline prices to go up 

or down in addition to inquiring about point forecasts. Directional accuracy is measured by the success 

ratio. The success ratio is the fraction of times that a method correctly predicts the direction of change in 

the real price of gasoline. Success ratios above 0.5 indicate an improvement relative to the no-change 

forecast.  For expository purposes and to facilitate comparisons with other studies, the MSPE results are 

normalized relative to the no-change forecast, with a ratio below 1 indicating a gain in accuracy. Where 

appropriate, we assess the statistical significance of the MSPE reductions based on the test of Diebold and 

Mariano (1995) for nonnested models without estimation uncertainty. We also examine the stability of 

our results across horizons, across specifications and over time. The statistical significance of the success 

ratios is assessed based on the test proposed in Pesaran and Timmermann (2009). 

3. Forecast Evaluation 

This section provides a systematic evaluation of the accuracy of forecasting methods for the monthly 

retail price of gasoline. We focus on forecasts of the real price of gasoline because for many economic 

questions it is the real price rather than the nominal price that matters. Moreover, many of our forecasting 

models are motivated by economic models relating to the determination of the real price of gasoline.4 The 

question of how to construct quarterly forecasts is addressed in section 4; extensions to nominal gasoline 
                                                           
4 Throughout the paper all real prices are obtained by deflating the nominal price by the seasonally adjusted U.S. 
consumer price index for all urban consumers. Real-time data for the monthly seasonally adjusted U.S. consumer 
price index for all urban consumers can be obtained from the Economic Indicators published by the Council of 
Economic Advisers. These data are available in the FRASER database of the Federal Reserve Bank of St. 
Louis. Additional real-time U.S. consumer price index data were obtained from the macroeconomic real-time 
database of the Federal Reserve Bank of Philadelphia. 
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price forecasts are discussed in section 5. Before considering forecasting models motivated based on 

economic theory, it is useful to assess the forecast accuracy of simple time series models for the real price 

of gasoline. 

3.1. Forecasting the real retail price of gasoline based on its own past 

It is well established that parsimonious autoregressive-moving average (ARMA) time series models often 

provide more accurate forecasts than multi-equation forecasting models (see Box and Jenkins 1970).  A 

natural starting point is the ARMA(1,1) model for the real price of gasoline in logs, ,gas
tr with logs 

denoted by lower case letters. The ARMA(1,1) model is estimated by the method of maximum likelihood. 

Forecasts |ˆgas
t h tr + of the log of the real price of gasoline are constructed iteratively from the estimated ARMA 

model conditional on the most recent data and converted to levels, |
ˆ gas

t h tR + , with upper case denoting dollar 

prices, resulting in the forecast | |
ˆ ˆexp( )gas gas

t h t t h tR r+ += , where h  is the forecast horizon. The first column of 

Table A1 shows that this ARMA(1,1) model has systematically higher MSPE than the no-change forecast 

and cannot be recommended.  

 One concern with this specification is that we cannot rule out a priori that the log of the real price 

of gasoline is a unit root process because this process appears highly persistent (see Figure A1). Indeed, a 

unit root test would not be able to reject the null of a unit root, suggesting that an alternative specification 

of the model as an MA(1) process in percent changes (IMA(1)) may be more appropriate (see Diebold 

and Kilian 2000). The second column of Table A1 demonstrates that this alternative specification 

obtained by imposing the unit root on the ARMA(1,1) process if anything has even higher MSPE ratios. 

This evidence suggests that the process actually is not well characterized as a unit root process or near 

unit root process, mirroring similar results for the price of crude oil in Alquist et al. (2013). Finally, 

relaxing the dynamic specification by specifying an ARMA(1,1) model in first differences 
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(ARIMA(1,1)),  further increases the MSPE ratios. Apart from some directional accuracy at horizon 1 for 

all three specifications, none of these ARMA models is able to beat the random walk benchmark. This 

evidence adds credence to the view that standard time series forecasting models that perform well in a 

wide range of macroeconomic applications are not suitable for forecasting the real price of gasoline. 

 An alternative approach is to rely on purely autoregressive forecasting models for the log-level of 

the real price of gasoline. Forecasts are constructed iteratively and converted to levels according to 

| |
ˆ ˆexp( )gas gas

t h t t h tR r+ += . Autoregressive models may be estimated by unconstrained least-squares methods or by 

Bayesian shrinkage estimation methods. Bayesian shrinkage estimators allow the forecaster to reduce the 

variance of the forecast at the cost of increasing its bias. These methods have been shown to be successful 

in reducing the MSPE of autoregressive forecasts in a wide range of macroeconomic applications. Our 

application relies on state-of-the-art data-driven Bayesian forecasting methods that only rely on real-time 

information (see Giannone et al. 2015). 

 An important question in specifying autoregressive (AR) or Bayesian autoregressive (BAR) 

models is the lag order. BAR models are likely to be preferable when working with less parsimonious 

models with many autoregressive lags. Table A1 shows results based on a fixed lag order of 12, which 

has also been shown to work well in forecasting the real price of oil (see Alquist et al. 2013). Further 

analysis revealed that allowing for larger fixed lag orders or, for that matter, reducing the lag order, does 

not improve on this baseline model.  Table A1 shows that this model with the exception of horizon 6 

produces no reductions in the MSPE compared to the no-change forecast, although it shows some signs of 

significant directional accuracy at horizons up to 18 months.  There is little difference between the 

AR(12) and BAR(12) specification. An alternative approach to lag order selection is to select the lag 

order of the forecasting model at each point in time, allowing the lag order to vary across the recursive 
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sample. We follow standard practice in choosing the lag order based on the Akaike Information Criterion 

(see, e.g., Marcellino, Stock, and Watson 2006). Table A1 indicates that this approach produces similar 

results to the model with fixed lag order. 

 A very different forecasting approach is recursive exponential smoothing. Exponential smoothing 

involves converting the observed series, { }
1
,

Tgas
t t

r
=

into a smoothed series { }
1
.

Tgas
t t

r
=

 Forecasts are formed 

as |ˆgas gas
T h T Tr r+ = and converted to levels by exponentiating. It can be shown that exponential smoothing 

delivers a one-sided moving average model with exponentially declining weights. This approach is 

designed for series that are not trending over time. Because the log level of the real price of gasoline in 

Figure A1 has no pronounced trend, it is a natural candidate for the application of exponential smoothing. 

Given 1 1 ,gas gasr r=  the smoothed series is constructed recursively from  

 1(1 ) , 2,..., ,gas gas gas
t t tr a r ar t T−= − + =  

where the smoothing parameter [ ]0,1 .a∈  The larger ,a  the smoother .gas
tr  For econometric applications, 

it is common to choose large values of a  (see, e.g., Faust and Wright 2013). The results in 

Table A1 are based on 0.8.a =  The qualitative results are reasonably robust to changing this parameter.  

 One would expect the exponential smoothing forecasts of the real price of gasoline to perform 

well at longer horizons if there is some mean reversion in the real price of gasoline. Such mean reversion 

would be consistent, for example, with temporary gasoline supply shortages or with transitory shifts in 

demand for crude oil.  The second-to-last column of Table A1 confirms that exponential smoothing 

performs very poorly at horizons 1 and 3, but it greatly improves on the accuracy of the no-change 

forecast at longer horizons. The MSPE reductions at these horizons range from 8% to 22%, depending on 

the horizon. Because exponential smoothing forecasts are not subject to estimation uncertainty, the 
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statistical significance of the MSPE reductions can be assessed using the test of Diebold and Mariano 

(1995).  Table A1 shows that several of the MSPE reductions are statistically significant at the 5% level 

or the 10% level. Exponential smoothing forecasts have no directional accuracy, however, at any horizon. 

 The last column focuses on an unobserved components stochastic volatility (UC-SV) forecasting 

model.  This UC-SV model was originally proposed by Stock and Watson (2007) in the context of 

forecasting inflation. The model treats the log of the real retail price of gasoline as the sum of a permanent 

component and a serially uncorrelated transitory component. Both components are allowed to be time-

varying, making the model equivalent to a time-varying IMA(1) model for the growth rate of the real 

price of gasoline. Rather than using the Kalman filter, the model is estimated using the efficient Markov 

Chain Monte Carlo (MCMC) sampler proposed in Chan (2013), building on Chan and Jeliazkov (2009).  

We adopt the same diffuse prior specification as Chan (2013). 5 

 Table A1 shows that the UC-SV model is quite accurate compared with most other models in this 

table, reaching reductions in the MSPE up to 22% accompanied by mostly statistically insignificant 

directional accuracy. One potential rationale for the UC-SV model’s forecasting success at longer 

horizons could be time variation in the process driving gasoline prices. An alternative interpretation is that 

this parsimonious model can adapt to changes in the persistence of the real gasoline price process that 

reflect shifts in the composition of demand and supply shocks in gasoline as well as crude oil markets, 

each of which imparts different dynamics, even in the absence of time variation (see, e.g., Kilian 2010). 

                                                           
5 More formally, let ,gas

t t tr τ η= +  where , ,t t tη ηη σ ζ= is the transitory component and the stochastic trend 
component, ,tτ  evolves according to 1 ,t t tτ τ ε−= +  where , , .t t tε εε σ ζ=  The log-variances  of tη  and tε  evolve as 

independent random walks 2 2
, , 1 ,ln lnt t tη η ησ σ ν−= +  and 2 2

, , 1 ,ln ln ,t t tε ε εσ σ ν−= +  ( ), ,,t t tη εζ ζ ζ=  is i.i.d. 2(0, ),N I  

( ), ,,t t tη εν ν ν=  is i.i.d. 2(0, ),N Iγ  where γ  is a scalar parameter, and tζ  and tν  are independent. The parameter γ  
is estimated recursively in real time, and the forecast of the real price of gasoline is constructed as 

( )| |
ˆ ˆexp ,gas gas

t h t t h tR r+ +=  where the expectation is estimated by Monte Carlo integration. 
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We also experimented with an UC model without stochastic volatility in the permanent component. The 

results are uniformly less accurate than for the UC-SV model and hence are not shown. 

3.2. Forecasts based on Spot and Futures Market Prices 

A natural question is whether information from financial markets about spot and futures prices may be 

used to improve the accuracy of forecasts of the real price of gasoline. For example, in the absence of a 

risk premium, standard arbitrage arguments imply that the gasoline futures prices should be the 

conditional expectation of the spot price of gasoline. This line of reasoning suggests constructing a 

forecast of the real retail price of gasoline as 

 ( )|
ˆ 1 ( ) ,gas gas h h

t h t t t t t t hR R f s E π+ += + − −    

where h
tf  is the log of the current gasoline futures price for maturity ,h ts  is the log of the corresponding 

spot price of gasoline, and ( )h
t t hE π +  is the expected inflation rate over the next h periods. The latter 

expectation is estimated recursively and in real time using the inflation gap model proposed in Faust and 

Wright (2013). We follow Faust and Wright in postulating an AR(1) model for the deviation between 

current monthly inflation and long-run inflation expectations, as measured by the 5-10 year ahead Blue 

Chip inflation forecast. The slope coefficient of this model is fixed at 0.429, corresponding to the estimate 

obtained from the 1991.12 vintage of real-time data. Forecasts are constructed by iterating the gap model 

forward and adding the predicted inflation gaps to the expected trend inflation rate.6 

Monthly gasoline futures price data for our evaluation period are available only up to a horizon of 

6 months, limiting the applicability of this approach. Moreover, the first column of Table A2 shows that 

the futures-based forecast has systematically higher MSPE than the no-change forecast. The high MSPE 

                                                           
6 Details of the construction of the inflation forecasts can be found in the appendix. Faust and Wright (2013) show 
that this model produces more accurate U.S. inflation forecasts than other models used in the literature. It should be 
noted, however, that our results are quite robust to the use of other proxies for expected inflation. 
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of these forecasts does not come as a surprise given recent evidence in favor of a time-varying risk 

premium in the market for crude oil (see Baumeister and Kilian 2014b). It would not be surprising if there 

were such a risk premium in the gasoline market as well. Although not useful from an MSPE point of 

view, futures-based forecasts show some evidence of statistically significant directional accuracy at 

horizons 3 and 6. 

An alternative approach is the use of product spread regressions, as discussed in Baumeister,  

Kilian and Zhou (2014) in the related context of oil price forecasting. This approach exploits the fact that 

the nominal spot prices of gasoline and crude oil are cointegrated. Under the maintained hypothesis of 

cointegration, current deviations of the spot price of gasoline from the spot price of crude oil would be 

expected to have predictive power for cumulative changes in the nominal spot price of gasoline: 

 ,
|

h gas gas oil
t h t t t t hs s sα β ε+ + ∆ = + − +   

where the gas
ts  is the log of the nominal U.S. spot price of gasoline, oil

ts  is the log of the nominal spot 

price of crude oil, and ,
|

h gas
t h ts +∆ denotes the cumulative change in gas

ts  over the next h  months. Analogous 

predictive regressions have become standard tools in financial economics (see, e.g., Mark 1995). Given 

recursive estimates of this relationship, one can construct the forecast of the real retail price of gasoline as 

 { }|
ˆˆ ˆexp ( ) ,gas gas gas oil h

t h t t t t t t hR R s s Eα β π+ + = + − −    

where ( )h
t t hE π +  is estimated as described earlier. As shown in Baumeister, Kilian and Zhou (2014), 

restricting α to zero may in practice reduce the MSPE of the forecast based on product spread models. 

Table A2 considers both versions of the model.  

 A potentially important question is which measure of the price of crude oil to use in the spread 

model. Traditionally, this question made little difference in that different measures of the price of crude 
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oil generally moved in parallel. This is no longer true. Since 2011, the price of West Texas Intermediate 

(WTI) crude oil has fallen below global benchmarks such as Brent. Borenstein and Kellogg (2014) and 

Kilian (2014) observe that the price of gasoline in the United States in recent years has been determined 

by the price of crude oil imported by East Coast refineries or equivalently by the price of U.S. exports of 

gasoline. This suggests that the Brent price of crude will be a better proxy in constructing the gasoline 

spot price spread than the price of WTI crude oil. Table A2 shows both versions of the model. It shows 

that there is little to choose between these specifications. Both models have higher MSPE than the no-

change forecast. In both cases, imposing 0α =  in the interest of greater parsimony reduces the MSPE 

ratios, but without generating systematic improvements relative to the no-change forecast. 

 One concern in the literature has been that product spread models may have time-varying 

coefficients. One reason is that gasoline is jointly produced along with other refined products such that 

the marginal market for refined products tends to shift over time. Another reason is that the spread model 

does not account for a range of global and domestic disturbances to the refining market including, for 

example, changes in environmental regulation and refinery outages. We therefore follow Baumeister, 

Kilian and Zhou (2014) in first recursively estimating the time-varying regression spread model 

 ,
|

h gas gas oil
t h t t t t t t hs s sα β ε+ + ∆ = + − +  . 

Given the TVP estimates, we then construct the TVP model forecast: 

 { }|
ˆˆ ˆexp ( )gas gas gas oil h

t h t t t t t t t t hR R s s Eα β π+ + = + − −     

by Monte Carlo integration as the mean of the forecasts simulated based on 1,000 Gibbs iterations 

conditional on the most recent data.7 We also explore the effects of restricting 0.tα =  Table A2 shows 

                                                           
7 In estimating this model, we postulate that 2(0, ),t h NIDε σ+  while the time-varying coefficients [ ]'t t tθ α β=  
evolve according to a random walk as 1 ,t t tθ θ ξ−= +  and tξ is independent Gaussian white noise with variance .Q  
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that for most specifications allowing for time variation in the parameters results in MSPE ratios below 1 

at horizon 1. Although the restricted TVP Brent spot price model in the last column shows some promise 

at longer horizons and produces larger MSPE reductions than any of the other spread models, overall 

spread models cannot be recommended.8 

3.3. Bivariate VAR Models of the Real Retail Price of Gasoline and the Real Price of Crude Oil 

Given the close relationship between gasoline and oil prices, at least in the long run, a natural extension of 

the univariate autoregressive forecasting models in Table A1 is a VAR model of the form ( ) t tB L y uν= +  

where ,oil gas
t t ty r r ′ =    refers to a vector including the log of the real price of crude oil and the log of the 

real U.S. retail price of gasoline, ν  denotes the intercept, 4 1( ) ... p
pB L I B L B L= − − −  denotes the 

autoregressive lag order polynomial, p  is the autoregressive lag order, L  is the lag operator, and tu  is a 

white noise innovation.  As in the univariate case, forecasts |ˆgas
t h tr +  are generated recursively and 

subsequently converted to levels.  We consider forecasts both from the unrestricted least-squares 

estimator (denoted as VAR in the tables) and the Bayesian estimator of Giannone et al. (2015) (denoted as 

BVAR). 

For expository purposes, Table A3 focuses on the Brent price of crude oil. Using a proxy for the 

global price of oil avoids the structural instability in the relationship between the U.S. prices of crude oil 

and gasoline discussed in Borenstein and Kellogg (2014) and Kilian (2014). Table A3 investigates the 
                                                                                                                                                                                           
This state-space model is estimated using a Gibbs sampling algorithm. The conditional posterior of tθ  is normal, 
and its mean and variance can be derived via standard Kalman filter recursions (see Kim and Nelson 1999). 
Conditional on an estimate of tθ , the conditional posterior distribution of 2σ is inverse Gamma and that of Q  is 
inverse Wishart. Our forecasts take into account that the model parameters continue to drift over the forecast horizon 
according to their law of motion. The first 30 observations of the initial estimation period are used as a training 
sample to calibrate the priors and to initialize the Kalman filter. 
8 Building on the analysis in Baumeister, Kilian and Zhou (2014), we also experimented with models including both 
the gasoline spot price spread and the heating oil spot price spread, which allow for interaction between the 
diesel/heating oil and gasoline retail markets. The results were similar to the gasoline spot spread model overall. 

This article is protected by copyright. All rights reserved.



17 
 

effect of changing the lag order on the accuracy of the forecast of the level of the real price of gasoline. 

The baseline is the model with a fixed lag order of 12. This model clearly outperforms the no-change 

forecast at horizons of 1, 3 and 6, with MSPE reductions between 5% and 26% and statistically 

significant directional accuracy as high as 0.70.  Because this model nests the AR(12) in Table A1, we 

conclude that past information about the real price of crude oil improves forecast accuracy. 

There is no reason for this model to be optimal, however. Reducing the autoregressive lag order 

to 6, results in MSPE reductions at all forecast horizons and statistically significant directional accuracy at 

horizons as high as 18 months. Further investigation reveals that the most accurate MSPE results are in 

fact obtained for the VAR(1) model. There is nothing to choose between the Bayesian and the 

unrestricted estimator of this model specification.  Re-estimating the lag order recursively based on the 

AIC does not systematically improve the MSPE ratios compared with the VAR(1) model. We conclude 

that substantial improvements on the accuracy of real gasoline price forecasts are possible with a very 

simple bivariate model.9 

                                                           
9 An obvious question is whether the MSPE reductions for the VAR(1) model are statistically significant. This 
question cannot be answered because none of the currently available tests of the null hypothesis of equal MSPEs are 
appropriate in our context. For example, the test of Diebold and Mariano (1995) does not apply in this setting. This 
problem is not specific to this paper. Sometimes, related studies have reported p -values based on the test of no 
predictability proposed by Clark and West (2007) for nested model comparisons with estimation uncertainty.  
Although all of the MSPE reductions for the VAR(1) model in Table 3 are statistically significant based on the latter 
test, we choose not to report these results because applying this test often results in statistically significant rejections. 
even when the MSPE ratios exceed one. For example, for the AR(12) model in Table 1, the Clark and West (2007) 
test suggests a statistically significant reduction in the MSPE for 1,h =  notwithstanding an MSPE ratio of 1.0217. 
This contradiction arises because this test is biased toward rejecting the null of equal MSPEs because it tests the null 
of no predictability in population rather than the null of equal out-of-sample MSPEs. It also ignores the real-time 
nature of the data used in our forecasting exercise (see Clark and McCracken 2013). Nor is it designed for iterated 
forecasts, rendering it invalid in the current setting. This criticism applies generically to similar tests of no 
predictability commonly used in applied work. Any such test results have to be interpreted with caution. These 
problems are compounded when dealing with forecasts based on model selection procedures or forecast 
combinations. It should be noted that the alternative test of Giacomini and White (2006), which allows for some of 
these complications, does not apply either in our context because it does not allow for recursive estimation. For 
further discussion of the problem of out-of-sample inference see Kilian (2015). 
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Table A4 takes the lag structure as given and re-examines the sensitivity of the forecast accuracy 

results to the definition of the real price of crude oil. It considers four alternative definitions of the 

underlying nominal oil price: (1) the WTI price of crude oil, (2) the U.S. refiners’ acquisition cost for 

crude oil imports with nowcasts based on the growth rate of the WTI price, (3) the U.S. refiners’ 

acquisition cost for crude oil imports with nowcasts based on the growth rate of the Brent price of oil, and 

(4) the Brent price of crude oil. Specifications (2) and (3) have been used in the related literature on 

modelling the global market for crude oil. Table A4 confirms that the choice of the oil price series 

matters. As expected, the WTI specification yields the highest MSPE ratios, whereas the Brent 

specification yields the lowest MSPE ratios. This result is consistent with the economic arguments in 

Borenstein and Kellogg (2014) and Kilian (2014) that the U.S. price of gasoline is determined by the 

price of crude oil in global markets rather than the WTI price. At some horizons, the reduction in the 

MSPE ratio can be as high as 0.08.  Thus, for the remainder of the paper, we focus on the Brent price 

only. 

Table A5 returns to the question of whether the real prices of gasoline and crude oil should be 

modelled in log-levels or not. Because oil and gasoline prices move together in the long run, as illustrated 

in Figure A2, a VAR model under the unit root null hypothesis must treat them as cointegrated.  In this 

case, a VAR model for variables in percent changes would be invalid. In contrast, the VAR model in log-

levels remains valid, but there is a possible efficiency gain from imposing cointegration in estimating the 

VAR model. The implied vector error correction (VEC) representation of this model can equivalently be 

expressed in triangular form as a VAR model for , .gas gas oil
t t t ty r r r ′ = ∆ −   This model is labelled VEC or 

BVEC in Table A5, depending on whether the model is estimated by unrestricted least squares or by 

Bayesian methods.   
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Whether imposing cointegration reduces the MSPE of the out-of-sample forecasts is an empirical 

question (see, e.g., Christoffersen and Diebold 1998).  The first two columns of the table provide the 

earlier VAR(1) and BVAR(1) results as a benchmark. Fitting a VEC(1) or BVEC(1) model generates no 

reductions in the MSPE at any horizon. Allowing for six lags improves the MSPE ratios at horizons up to 

9 months. Further improvements are obtained with 12 lags, which turns out to be the most accurate VEC 

specification overall. The use of Bayesian estimation methods makes little difference for this model. Even 

the most accurate VEC model is not as accurate as the VAR(1) model in levels, however. Thus, the 

possibility of cointegration may for all practical purposes be ignored in forecasting the real price of 

gasoline. 

3.4. Models of the U.S. Retail Gasoline Market 

Rather than linking the monthly real retail price of gasoline to the price of crude oil in global markets, 

another strategy is to model its connections to the state of the domestic economy.  A common monthly 

measure of U.S. real activity is the Chicago Fed National Activity Index (CFNAI).10 Vintages for this 

index are available from January 2001 onwards; earlier vintages are constructed as pseudo real-time data 

taking account of the 1-month delay in the availability of the index. Nowcasts are constructed using 

exponential smoothing with weight 0.95a = .11 

A natural conjecture is that the demand for gasoline and hence the real price of gasoline responds 

                                                           
10 The CFNAI is a weighted average of 85 monthly indicators of U.S. real economic activity. These indicators are 
drawn from four broad categories of data: production and income; employment, unemployment, and hours; personal 
consumption and housing; and sales, orders, and inventories. The index corresponds to the leading common factor 
contained in the growth rates of these 85 series and has been shown to be a useful gauge on current and future 
economic activity and inflation in the United States. As is standard, we rely on the smoothed version of the CFNAI 
based on a one-sided moving average filter. For further details see 
https://www.chicagofed.org/publications/cfnai/index. 
11 The same smoothing parameter value was also used by Faust and Wright (2013) for the unemployment rate, 
which is one of the components of the CFNAI index. As is typical in exponential smoothing problems, the precise 
choice of the smoothing parameter makes little difference. 
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to changes in the U.S. business cycle. One way of capturing this intuition is to construct a parsimonious 

factor forecasting model 

 ,
|

h gas
t h t t t hr cfnaiα β ε+ += + + , 

where ,
|

h gas
t h tr + denotes the cumulative percent change in the real price of gasoline expressed as a fraction 

such that ( ),
| |

ˆ ˆexp ,gas gas h gas
t h t t t h tR r r+ += +  and tcfnai  the common factor. Table A6 shows that this model does 

not improve on the MSPE of the no-change forecast at any horizon and lacks directional accuracy at all 

horizons. An alternative strategy is to construct a factor-augmented VAR (FAVAR) model including the 

real retail price of gasoline and the CFNAI. Among all such models the specification involving 12 lags 

performed best.  Even this specification offers little improvement, however. Although it has some non-

negligible statistically significant directional accuracy at horizons 1 through 9, as shown in Table A6, it 

tends to have higher MSPE than the no-change forecast and cannot be recommended.  The same is true 

for Bayesian estimates of the FAVAR model, denoted by BFAVAR in Table A6. 

 This result is not entirely surprising upon reflection, given the fall in U.S. gasoline consumption 

in recent years that was not related to the U.S. business cycle so much, but to rising gasoline prices. This 

fact suggests specifying instead a bivariate VAR model with intercept for the log level of the real price of 

gasoline and the log of U.S. real gasoline consumption. The results shown in Table A6 are based on a 

model specification involving the log-difference of the real gasoline consumption rather than the log-

level. Imposing this restriction tends to reduce the MSPE. As before, ( )| |1
ˆ ˆexp .gas gas

t h t t hR r+ +=  Table A6 shows 

that the VAR(12) and BVAR(12) specification in some dimensions improve on the corresponding 

FAVAR(12) and BFAVAR(12) models, but not by much. Clearly, neither approach can be recommended. 

This result is robust to changes in the lag order. Table A6 shows two representative examples involving 

six autoregressive lags and one autoregressive lag.  
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3.5. Joint VAR Models of the U.S. Retail Gasoline Market and the Global Market for Crude Oil 

In section 3.2 we showed that including the real price of oil in the same VAR model as the real retail price 

of gasoline greatly enhances the forecast accuracy. A natural question therefore is whether combining 

forecasting models of the U.S. retail gasoline market with forecasting models of the global price of crude  

oil may improve the accuracy of gasoline price forecasts further. Such an improvement is by no means 

self-evident, given the large dimensionality of models that combine both oil and gasoline market blocks. 

 A natural benchmark is the VAR(12) forecasting model for the real price of oil first proposed in 

Baumeister and Kilian (2012). This VAR model may be viewed as the reduced-form representation of the 

structural global oil market model developed in Kilian and Murphy (2014). It includes the percent change 

in global crude oil production, a measure of global real economic activity, the log of the real U.S. 

refiners’ acquisition cost for crude oil imports as a proxy for the global price of oil, and a proxy for the 

change in global crude oil inventories.12 For the purpose of the current paper, we augment the forecasting 

model of Baumeister and Kilian (2012) by a gasoline market block consisting of the log difference of 

U.S. real gasoline consumption and the log level of the real U.S. retail price of gasoline, resulting in a 

model with six variables.13 We follow the oil price forecasting literature in estimating the unrestricted 

VAR model with 12 autoregressive lags by the method of least squares or by Bayesian methods.  It can be 

shown that this lag order choice not only works well in forecasting the real price of oil, but also generates 

more accurate real gasoline price forecasts than shorter or longer lag structures. As before, forecasts 

|ˆgas
t h tr + of the log of the real price of oil are constructed iteratively from the estimated VAR model  

                                                           
12 The inventory data are constructed by multiplying U.S. crude oil inventories by the ratio of OECD petroleum 
inventories to U.S. petroleum inventories. Petroleum inventories are defined to include both stocks of crude oil and 
stocks of refined products. The global real activity index is constructed from data on global dry cargo ocean 
shipping freight rates as described in Kilian (2009). 
13 For the large-scale VAR models it can be shown that a specification in the log-level of real gasoline consumption 
is even more accurate by a few percentage points, but we report the results for the log-difference to maintain 
consistency with the earlier bivariate analysis. 
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conditional on the most recent data and converted to levels, resulting in the forecast | |
ˆ ˆexp( ).gas gas

t h t t h tR r+ +=   

The first two columns of Table A7 show that this large-scale model is surprisingly accurate at 

short horizons with MSPE ratios as low as 0.73 and statistically significant directional accuracy as high as 

0.69.  Not surprisingly, given the short estimation samples, the use of Bayesian estimation methods 

further improves the forecast accuracy of this high-dimensional model. The BVAR(12) model produces 

MSPE reductions between 3% and 28% at horizons up to nine months, accompanied by mostly 

statistically significant directional accuracy as high as 0.72. Thus, at short horizons, this model is more 

accurate than the VAR(1) model for the real prices of gasoline and Brent crude oil in Table A3. At longer 

horizons, this ranking is reversed, given the greater parsimony of the VAR(1) model. The next two 

columns focus on a simplified version of the first model, in which the second block only includes the log 

of the real price of gasoline, but excludes the log of real gasoline consumption. This model is marginally 

less accurate than the six-variable model at very short horizons, but marginally more accurate at horizons 

of more than 3 months. Overall, the results are quite similar. 

The remainder of Table A7 examines the robustness of these results based on another joint VAR 

model of the gasoline and crude oil markets proposed in Kilian (2010). The reduced-form representation 

of the latter model consists of the same two blocks as before, except that the oil inventory data are 

excluded from the first block.  The next two columns of Table A7 show that similar results are obtained 

with this 5-variable model than with the original specification. Likewise, after dropping real gasoline 

consumption from this model, as shown in the last two columns, the resulting 4-variable model produces 

forecasts of the real gasoline price that are about as accurate as those from the earlier 5-variable model 

including oil inventories.  
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We conclude that, at short forecast horizons, high-dimensional joint forecasting models of the 

real price of oil and the real retail price of gasoline outperform in real time not only the no-change 

forecast, but the bivariate VAR(1) model forecast based on real Brent oil and gasoline prices. This result 

is quite striking. It demonstrates that parsimony does not always win out in forecasting. 

4. Sensitivity Analysis and Refinements 

This section examines the robustness of our results along four dimensions. We first assess the importance 

of explicitly modelling seasonality in the real price of gasoline. We then examine the robustness of the 

recursive MSPE rankings over time, and we explore the benefits of pooling the most successful gasoline 

price forecasts. Finally, we extend the analysis to quarterly gasoline price forecasts. 

4.1. How Important Is Seasonality in Gasoline Prices? 

It is well known that there is pronounced seasonality in the production of gasoline. It is less clear how 

important seasonality is in the monthly retail price of gasoline. Figure A1 does not suggest a strong 

seasonal pattern. Nevertheless, formal statistical tests for deterministic seasonal effects in the growth rate 

of the monthly real price of gasoline conducted on the full sample using fully revised data indicate 

statistically significant seasonal variation during some months of the year.  Our analysis so far has not 

explicitly incorporated this seasonal variation. It can be shown that including monthly seasonal dummies 

in the forecasting models does not systematically improve its real-time forecast accuracy and in some 

cases may worsen it, indicating that the reduction in forecast bias from modelling seasonal variation is 

outweighed by the additional variance caused by having to estimate these additional parameters. Thus, 

seasonality may be ignored for the purpose of generating out-of-sample gasoline price forecasts. 

4.2. How Robust Are the MSPE Reductions over Time? 

The analysis so far has focused on the recursive MSPE ratio at the end of the evaluation sample. This 

ratio is a measure of the overall predictive power of the forecasting method. Of equal importance from the 
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point of view of an applied user is how robust these gains in forecast accuracy have been over time. This 

question may be assessed by plotting the recursive MSPE ratio, as it evolves during the evaluation period. 

In Figure 1 we address this question for the VAR(1) model of the real prices of gasoline and Brent crude 

oil, which proved most accurate overall in section 3. The forecast from this model is referred as the 

baseline forecast in Figure 1. The last observation shown for the recursive MSPE ratio in each subplot 

corresponds to the entry for this horizon shown in the earlier tables.14 

 Figure 1 demonstrates that the accuracy of the VAR(1) forecasting model has been remarkably 

stable over time.  At horizons up to 9 months, the recursive MSPE ratio has been below 1 for every month 

between the beginning of the evaluation period and March 2014. At horizons of 12 and 15 months, it has 

reduced the MSPE most of the time; even at horizons of 18 and 21 months it has remained superior to the 

no-change forecast more often than not; only at the horizons of 24 months, its relative accuracy has been 

somewhat erratic. Figure 1 establishes the robustness of the accuracy of the VAR(1) baseline forecast of 

the real price of gasoline price at horizons at least up to 15 months. This finding is by no means a 

foregone conclusion. The VAR(6) model in Table A3, for example, performs rather poorly in the first two 

thirds of the evaluation sample, especially at short horizons. Likewise, the accuracy of the large-scale 

BVAR(12) models in Table A7 and of the bivariate VEC(12) model in Table A5 is not as stable at 

horizon 1 as the bivariate VAR(1) model. We conclude that the VAR(1) forecasting model based on real 

Brent and real retail gasoline prices is preferred over the other models not only in terms of its overall 

accuracy, but also its robustness. 

4.3. Are there Benefits from Forecast Pooling? 
                                                           
14 It should be noted at this point that our concern here is with demonstrating that the VAR(1) model has had lower 
MSPE than the no-change forecast consistently over time. We are not concerned with the question of whether there 
is statistically significant variation over time in the MSPE ratios. Indeed, that question is irrelevant for our analysis. 
Moreover, tests of the latter hypothesis, as discussed in Giacomini and Rossi (2010), rely on the framework of 
Giacomini and White (2006) that only applies to forecasts based on rolling windows. Such tests are not valid in our 
setting. 
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Forecast combinations (also known as pooled forecasts) have a long tradition in macroeconomic 

forecasting (see, e.g., Timmermann 2006). They also have been shown to be helpful in forecasting energy 

prices. For example, Baumeister and Kilian (2014a) and Baumeister, Kilian and Lee (2014) establish that 

an equal-weighted combination of suitably selected oil price forecasting models is systematically more 

accurate than any individual forecast including the no-change forecast. It also is more accurate than 

forecast combinations based on recursive or rolling inverse MSPE weights. It therefore makes sense to 

explore the benefits of pooling in our context. Rather than pooling all gasoline price forecasts we 

illustrate the benefits of pooling by focusing on the five most promising forecasting approaches 

considered so far, which include the exponential smoothing forecast and the UC-SV forecast in Table A1, 

the Brent VAR(1) model in Table A3,  the Brent VEC(12) model in Table A5, and the Kilian-Murphy 

large-scale BVAR(12) specification with the real price of gasoline added in Table A7. Table 1 shows that 

combining these models with equal weights of 1/5 is superior overall to relying on the most accurate 

individual model. The pooled forecast improves on the no-change forecast at all horizons between 1 and 

24 months with MSPE ratios as low as 0.73 and success ratios as high as 0.67. It also improves 

substantially on the MSPE of the Brent VAR(1) model in Table A3 at some horizons and is only 

marginally less accurate than the VAR(1) model at the other horizons.  

In addition, the accuracy of the pooled forecast is more stable over time than that of the VAR(1) 

model forecast. Figure 1 shows that the recursive MSPE of the pooled forecast is below that of the no-

change forecast in every month of the 20-year evaluation period at all horizons except at horizon 24 and, 

even in that case, it dominates the no-change forecast at all but a few months of the evaluation period.  

Pooling forecasts systematically reduces the recursive MSPE ratio relative to the baseline VAR(1) model 
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forecast at all horizons. We conclude that pooling the five forecasting models in question with equal 

weights is the preferred forecasting approach in practice.15 

4.4. Extensions to Quarterly Forecasts of the Real Price of Gasoline 

It is straightforward to derive quarterly forecasts by averaging the monthly forecasts by quarter. This 

approach has been shown to be considerably more accurate than relying on quarterly data in the 

construction of the quarterly forecasts when forecasting the price of oil (see Baumeister and Kilian 

2014a).  Quarterly forecasts are not only required to compare our forecasting methods to existing 

quarterly forecasts prepared by the EIA in section 5, but are of independent interest to macroeconomists. 

Macroeconomic models are typically specified at quarterly frequency, necessitating the construction of 

quarterly gasoline price forecasts. The analysis of quarterly forecasts also provides an important 

robustness check, because by construction the accuracy of quarterly forecasts may not be inferred from 

that of the monthly forecasts we reported earlier (see Baumeister and Kilian 2014a).  Figure 2 shows that 

the pattern of the recursive MSPE ratios of the quarterly pooled forecasts is similar to that of the monthly 

pooled forecasts in Figure 1. The improvements in accuracy are even higher than for the monthly 

forecasts. The overall recursive MSPE reductions range from 15% to 31% with success ratios as high as 

0.71 and statistically significant directional accuracy up to 6 quarters.16  

5. A Comparison of Econometric Gasoline Price Forecasts and Other Forecasts 

A different perspective on the accuracy of pooled real-time forecasts may be obtained by comparing them 

to the short-term nominal gasoline price forecasts published by the EIA. The data source for the latter 

                                                           
15 Additional reductions in the overall recursive MSPE are possible, when selecting the most accurate forecast 
combination for each horizon, as proposed in Baumeister and Kilian (2015).  Further analysis, however, showed that 
the accuracy of this alternative pooled forecast is less robust over time, especially at horizons 1 and 24, than the 
original pooled forecast.   
16 The benchmark in Figure 4 is the same monthly no-change forecast as in the earlier analysis. This no-change 
forecast at short horizons is considerably more accurate than the quarterly no-change forecast (see Baumeister and 
Kilian 2014a). 
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forecasts is the EIA’s Short-Term Energy Outlook.  These forecasts are intended to help businesses, 

households and governments in their decision making. A natural question is how accurate these forecasts 

are and whether they may be improved upon by using the pooled forecast proposed in this paper. We 

construct quarterly nominal pooled forecasts by averaging the monthly pooled forecasts of the real price 

by quarter, as in Figure 2, and inflating these forecasts based on the method of Faust and Wright (2013).  

The benchmark is the monthly nominal no-change forecast.  Table 2 shows that the EIA forecasts are 

quite accurate at horizons up to 4 quarters as measured by the MSPE, which is in sharp contrast with the 

EIA’s much less accurate oil price forecasts (see Baumeister, Kilian and Lee 2014). Nevertheless, the 

pooled forecast is even more accurate and hence preferable.  As far as directional accuracy is concerned, 

both approaches yield improvements on the no-change forecast with no clear winner. 

  It is also of interest to compare the pooled forecast with the average expected nominal gasoline 

price implied by the Michigan Survey of Consumers.17  The evaluation sample is restricted by the 

availability of the survey data. Table 2 shows that the MSPE of the 12-month-ahead survey forecast is 

larger than that of the no-change forecast and that the directional accuracy of the survey forecast is not 

statistically significant. The pooled forecast has a lower MSPE and higher directional accuracy than the 

monthly survey forecast. One interpretation of this evidence is that the simple rules of thumb used by 

U.S. households to form gasoline price expectations are suboptimal. 

6. How Predictable was the Decline in Gasoline Prices in Late 2014? 

There has been much public discussion about the rapid decline in the U.S. retail price of gasoline since 

June 2014. The question of whether this decline was predictable is of interest to economists because it 

helps us determine the extent to which this decline must be attributed to economic shocks occurring after 

                                                           
17 Unlike Anderson et al. (2011) we do not evaluate the implied real gasoline price forecast, but the nominal price 
forecast. Our survey forecast is constructed by averaging the expected change in the nominal gasoline price across 
households and adding it to the current nominal price of gasoline. 
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June 2014. If the decline were entirely predictable as of June 2014, for example, there would be no point 

in searching for additional economic shocks after June 2014 to which to attribute this decline. Table 3 

shows several real and nominal real-time gasoline price forecasts generated as of June 2014.  It shows that 

about 39% of the price decline between June and December was actually predicted by the EIA in real 

time. Much the same result would have been obtained by forecasting gasoline prices in real time based on 

the Kilian-Murphy BVAR(12) model augmented by U.S. retail gasoline prices. In contrast, the pooled 

forecast, which overall proved clearly more accurate than the EIA forecast in Table 2, only predicted 

about 16% of this particular decline. This result suggests that the insurance against forecast errors 

provided by pooling forecasts, although effective on average, during some specific episodes may come at 

a high cost.  

In fact, the only model contained in the forecast combination to come close to the EIA forecast is 

the KM-BVAR(12) model. One reason for the favorable performance of this forecasting framework is 

that this model involves explicit forecasts of global real activity and that it anticipated falling demand for 

oil in the second half of 2014, consistent with an economic slowdown in Europe and Asia.  In addition, 

the inclusion of oil inventories and global oil production can be shown to improve the accuracy of the 

VAR model forecast substantially. As discussed in Baumeister and Kilian (2015), VAR forecasting 

models motivated by structural oil market models tend to work well during times when economic 

fundamentals show persistent variation, but less well at other times. This fact suggests that it may make 

sense to use time-varying weights in the forecast combination. For example, one may choose to depart 

from the baseline pooled gasoline price forecast in favor of the VAR forecast, when the VAR forecast 

starts tracking the realizations of the gasoline price much more accurately than the pooled forecast, and 

one may revert to the baseline pooled forecast when it no longer does. 

7. Concluding Remarks 
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The price of gasoline is arguably the most closely watched retail price in the economy. The change in the 

gasoline price in the past has been considered essentially unforecastable based on publicly available 

information. Our findings challenge this conventional wisdom. We compared a wide range of alternative 

approaches to generating short-term forecasts of the real U.S. retail price of gasoline at horizons up to two 

years, drawing on insights from the related literature on forecasting the real price of crude oil. Our 

analysis was conducted in real-time, taking account of delays in the availability of some data and 

subsequent revisions when data finally become available. We identified five forecasting approaches that 

generate systematic real-time improvements in accuracy compared with the no-change forecast. An equal-

weighted average of these five forecasts yields substantial reductions in the MSPE at all horizons up to 24 

months and significant directional accuracy. The accuracy of this pooled forecast is remarkably stable 

over an evaluation period covering the last 20 years. We also discussed extensions of our analysis to 

forecasting quarterly aggregates of the real price of gasoline as well as forecasting nominal gasoline 

prices. In the latter case, the accuracy gains are even larger with MSPE reductions as high as 31% and 

directional accuracy as high as 74%.  Finally, we compared our forecasts to expert and survey forecasts, 

and we provided evidence that as much as 39% of the decline in U.S. retail gasoline prices in late 2014 

was predictable as of June 2014.  

Our analysis provides a set of tools for forecasting gasoline prices with a wide range of 

applications in macroeconomics, environmental economics, urban economics, and public finance. Our 

results are of particular interest to central bankers, regulators, industry analysts, tax authorities, and 

perhaps, most importantly, consumers. There are a number of interesting extensions to be considered in 

future work. For example, one could extend the analysis to forecast gasoline prices at the state or regional 

level. One could also extend the set of predictors to include gasoline stocks, gasoline production and data 

on operable refining capacity, planned outages and capacity utilization (also see EIA 2014). Another 
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question of interest would be whether pre-testing for seasonal effects and specifying a more parsimonious 

model of seasonal variation in gasoline prices can improve forecast accuracy. In addition, an investigation 

into the usefulness of gasoline price forecasts in improving inflation forecasts would be of interest to 

macroeconomists (see, e.g., Hendry and Hubrich 2011).  Moreover, Edelstein and Kilian (2009) 

document that gasoline price shocks are associated with significant reductions in spending as well as in 

consumer confidence, suggesting that gasoline price forecasts may also help improve forecasts of U.S. 

economic growth.  
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Figure 1: Evolution of the Real-Time Recursive MSPE Ratio Relative to the No-Change Forecast by Horizon 
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NOTES:  The plot shows the evolution of the recursive MSPE ratio over time for the forecast evaluation period since the beginning of the 
evaluation period. The first 30 observations in each subplot have been discarded to allow the MSPE estimates to stabilize.  A ratio below 1 
indicates an improvement relative to the no-change forecast. The baseline forecast is from the VAR(1) model for real Brent and real retail gasoline 
prices in Table A3. The pooled forecast assign equal weight to the VAR(1) Brent model, the VEC(12) Brent model, the exponential smoothing 
forecast, the UC-SV model, and the Kilian-Murphy BVAR(12) specification with the real gasoline price added.  
 
 

Figure 2: Evolution of the Real-Time Recursive MSPE Ratio of the Quarterly Pooled Forecast Relative to the  
No-Change Forecast by Horizon 
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NOTES:  The pooled forecast is based on an equally weighted average of five individual forecasts. The results are constructed as in Figure 1 
except that the monthly forecasts are averaged by quarter, for quarters { }1,...,8h∈ , as proposed in Baumeister and Kilian (2014a).
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Table 1: Real-Time Forecast Accuracy of Pooled Real Gasoline Price Forecasts 
Evaluation period: 1992.1-2014.3 

 
 

 Equal-weighted 
combination of five 
forecasting models 

Monthly 
horizon 

MSPE 
Ratio 

Success 
ratio 

1 0.856  0.588* 
2 0.768  0.613* 
3 0.735  0.642* 
4 0.733  0.671* 
5 0.733  0.662* 
6 0.736  0.649* 
7 0.742  0.667* 
8 0.763  0.635* 
9 0.800  0.606* 
10 0.846 0.574 
11 0.800 0.572 
12 0.895 0.547 
13 0.897 0.541 
14 0.891 0.534 
15 0.879 0.561 
16 0.859  0.599* 
17 0.839    0.594** 
18 0.826    0.596** 
19 0.824    0.594** 
20 0.825  0.613* 
21 0.838 0.583 
22 0.857 0.553 
23 0.855 0.551 
24 0.872 0.541 

 

NOTES: The pooled forecast is an equal-weighted average of forecasts from: (1) the Brent VAR(1) 
model, (2) the Brent VEC(12) model, (3) the UC-SV model forecast, (4) the exponential smoothing 
forecast, and (5) the Kilian-Murphy BVAR(12) model specification with the real gasoline price added. 
All forecasts are generated recursively from data subject to real-time data constraints. Boldface indicates 
improvements relative to the no-change forecast. * denotes significance at the 5% level and ** at the 10% 
level based on the Pesaran and Timmermann (2009) test for the null hypothesis of no directional 
accuracy. The statistical significance of the MSPE reductions cannot be assessed because none of the 
currently available tests of equal predictive accuracy applies in this setting.  
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Table 2: Real-Time Forecast Accuracy of Nominal Retail Gasoline Price Forecasts 
 
 

Horizon Quarterly Forecasts 
Evaluated on 1992.I-2014.I 

Monthly Forecasts 
Evaluated on 2006.3-2014.3 

 EIA Pooled Michigan Survey Pooled 
  

(a) MSPE Ratios 
1 quarter 0.789* 0.717 - - 
2 quarters 0.838* 0.695 - - 
3 quarters 0.840* 0.736 - - 
4 quarters   0.895** 0.816 - - 
  
12 months - - 1.051 0.904 
  

(a) Success Ratios 
1 quarter 0.652*  0.742* - - 
2 quarters 0.693*  0.671* - - 
3 quarters 0.621*   0.586** - - 
4 quarters 0.640*   0.640** - - 
     
12 months - - 0.651  0.674* 
 

NOTES: The EIA real-time forecasts were compiled from the Short-Term Energy Outlook. The average 
expected change in the nominal price of gasoline in the Michigan Survey of Consumers was obtained 
from Soren Anderson. The pooled forecast is based on the specification underlying Table 1. The monthly 
pooled forecasts are averaged by quarter, if required, and are inflated using real-time inflation forecasts 
constructed as in Faust and Wright (2013). The benchmark is the monthly no-change forecast for the 
nominal price of gasoline. * denotes significance at the 5% level and ** at the 10% level based on the 
Pesaran and Timmermann (2009) test for the null hypothesis of no directional accuracy and, in the case of 
the survey forecasts only, the Diebold and Mariano (1995) test of equal predictive accuracy. The 
statistical significance of the other MSPE reductions cannot be assessed because none of the currently 
available tests of equal predictive accuracy applies in this setting.  
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Table 3: Selected Real-Time Forecast Paths for the U.S. Retail Price of Gasoline in Cents/Gallon:  
How Predictable Was the Decline in Gasoline Prices after June 2014? 

 

Real-Time Gasoline Price 2014 2015 
Forecasts as of June 2014 May Jun Jul Aug Sep Oct Nov Dec Jan Feb March 
Real Pooled  376 377 373 370 364 359 356 354 353 354 355 

KM-BVAR(12) 376 377 376 370 359 346 334 326 324 326 328 
EIA 376 373 367 361 359 347 337 327 327 332 341 
Actual 376 375 368 352 344 321 292 259 214 227 249 

             

Nominal Pooled  374 377 374 371 367 362 360 358 358 359 361 
KM-BVAR(12) 374 377 377 372 362 349 337 330 329 331 335 
EIA 375 373 368 363 361 350 341 331 332 337 347 
Actual 375 375 369 354 346 324 295 262 217 231 254 

         

NOTES:  Nowcasts are shown in bold; forecasts in italics. By construction the nominal and the real price coincide in the last nowcast period. The 
pooled forecast is an equal-weighted average of five individual real-time forecasts, as reported in Table 1. The KM-BVAR(12)  model is 
augmented with the real retail price of gasoline.  These forecasts are converted to nominal terms using real-time inflation forecasts constructed 
analogously to Faust and Wright (2013). The real price of gasoline is expressed in June 2014 dollars. 
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