D Scavia et al. – Supporting Information

WebTable 3. Individual model parameter values

			Parameters that turn sub-routing	es on or off							
					Final or calibrated value						
Parameter	File	Spatial level	Description	Range	HU	LT	OSU	TAMU	UM		
		1	Daily curve number (CN)								
			calculation method: 0-calculate								
			daily CN value as a function of								
			soil moisture; 1-calculate daily								
ICN	.bsn	Watershed	CN value as a function of plant	0/1	0	0	0	1	0		
ICN	.0811	watersheu	evapotranspiration Channel water routing method;	0/1	0	0	0	1	0		
			0=variable travel-time;								
IRTE	.bsn	Watershed	1=Muskingum	0/1	0	0	1	0	0		
			Maximum depressional storage								
ISMAX	.bsn	Watershed	flag, $0 = \text{static stmaxd from .sdr}$	0/1	0	0	0	NA	1		
			Tile drainage equations flag;								
			1=SWAT_HKdc routine using								
ITDRN	.bsn	Watarahad	DRAINMOD; 0=SWAT TDRAIN method.	0/1	1	1	1	0	1		
IIDKN	.USII	Watershed	In-stream water quality model: 0-	0/1	1	1	1	0	l		
			do not simulate nutrient								
			transformations in stream; 1-								
			activate simulation of in-stream								
			nutrient transformations using								
			QUAL2E; 2-watqual2 simulation;								
IWQ	.bsn	Watershed	3-watqual3‡.	0/1	1	3	1	1	1		
IWTDN	.bsn	Watershed	Water table depth algorithms flag	0/1	1	0	0	0	1		
SOL P MODEL ^{Δ}	.bsn	Watershed	Soil phosphorus sub-routine: 0=new model; 1=old model	0/1	1	0	0	1	0		
SOL_I_MODEL	.0511		Parameters that were calibrated in at		1	0	0	1	0		
		1		г – т							
ADJ_PKR	.bsn	Watershed	Peak rate adjustment factor	0.5-1.5	1.474	0	1	1	1		
ALPHA_BF	.gw	HRU	Baseflow recession constant	0.1-0.99	0.937	0.254	DF	DF	DF		
		IIDII	Fraction of soil pore space from								
ANION_EXCL	.sol	HRU	which anions are excluded	0-1	DF	DF	0.5	DF	0.1		
BC1	.swq	Subbasin	Biological oxidation rate of NH_4 to NO_2 in the reach at 20° (1/day)	0.1-1	DF	0.36	0.55	0.55	0.1		
DCI	.swq	Subbashi	Hydrolysis rate of organic N to	0.1-1	DI	0.50	0.55	0.55	0.1		
BC3	.swq	Subbasin	NH4 in the reach at 20° (1/day)	0.2-0.4	DF	DF	DF	DF	0.02		
			Mineralization rate of organic P								
BC4	.swq	Subbasin	to DRP in the reach at 20° (1/day)	0.01-0.7	0.012	0.02	0.05	0.004	0.01		
BIOMIX	.mgt	HRU	Biological mixing efficiency	NA	DF	0.2	0.75	DF	0.3		
			Maximum canopy storage (mm								
CANMX	.hru	HRU	H ₂ O)	NA	DF	5.732	DF	DF	DF		
CDN	.bsn	Watershed	Rate coefficient for dentirification	0-3	1.4	0.5	1.4	.181	1.4		
CH_COV1	.rte	Subbasin	Channel cover factor 1	0-1	DF	0.048	0	0.037	0.5		
CH_COV2	.rte	Subbasin	Channel cover factor 2	0-1	DF	0.048	0	0.219	0.5		
_			Effective hydraulic conductivity								
CH_K1	.sub	Subbasin	(mm/hr)	0.025-25	9.811	DF	DF	DF	DF		
			Effective hydraulic conductivity								
CH_K2	.rte	Subbasin	of channel (mm/hr)	0.025-25	13.65	DF	DF	DF	DF		
CH_N1	.sub	Subbasin	Manning's roughness for tributary	0-0.15	0.117	DF	0.014	0.014	0.025		

			channels						
			Manning's roughness for the		0.016-				
CH_N2	.rte	Subbasin	main channel	0-0.15	0.149	0.057	0.014	0.005	0.035
CN2	.mgt	HRU	Initial SCS moisture condition II curve number	0.75-1.25†	28.1- 99.9	30-95	DF	DF	DF
	.mgt		SCS runoff curve number for	0.75-1.25	77.7	30-93	DI	DI	DI
CNOP	.mgt	HRU	moisture condition II	NA	DF	75-89	DF	DF	DF
			Depth to subsurface tile drain						
DDRAIN	.mgt	HRU	(mm) Depth to the impervious layer in	0-6000	915*	1000*	900*	~1220*	1000*
DEP IMP	.hru	HRU	the soil (mm)	0-6000	2500*	2500*	3370*	2381*	1500*
	.in u		Daily drainage coefficient	0 0000	2300	2300	5570	2501	1500
DRAIN_CO	.sdr	HRU	(mm/day)	10-51	DF	12.7	10	NA	25
EPCO	.bsn	Watershed	Plant uptake compensation factor.	0.01-1.0	1.0	0.638	1.0	1.0	1.0
			Nitrogen enrichment ratio for						
ERORGN	.hru	HRU	loading with sediment, 0 allows model to calculate value	NA	DF	1.1	DF	DF	DF
EKOKUN	.111 u		Phosphorus enrichment ratio for	INA	DI	1.1	DI	DI	DF
			loading with sediment, 0 allows						
ERORGP	.hru	HRU	model to calculate value	NA	DF	1-1.2	DF	DF	DF
ESCO	.bsn,	Watershed HRU	Soil evaporation compensation factor	0.01-1	0.78 ^{bsn}	1 ^{bsn}	0.99 ^{hru}	0.967 ^{bs}	1 ^{bsn}
	.hru					1			
GDRAIN	.mgt	HRU	Drain tile lag time (hours) Delay time for aquifer recharge	NA	NA	NA	NA	24	NA
GW DELAY	.gw	HRU	(days)	NA	3.747	DF	DF	DF	DF
	.8		Threshold water level in shallow		5., .,	51	21		21
GWQMN	.gw	HRU	aquifer for base flow (mm H ₂ O)	NA	32.41	447.6	DF	DF	DF
GW_REVAP	.gw	HRU	Revap coefficient	0.02-2	1.41	DF	DF	DF	DF
HRU_SLP	.hru	HRU	Average slope steepness (m/m)	0.75-1.25†	0.97†	DF	DF	DF	DF
		G 11 ·	Beginning month of non-flood	1.10	DE	10	DE	DE	DE
IFLOD1R	.res	Subbasin	season Ending month of non-flood	1-12	DF	12	DF	DF	DF
IFLOD2R	.res	Subbasin	season	1-12	DF	1	DF	DF	DF
			Lateral soil hydraulic						
			conductivity in tile-drained fields						
LATKSATF	.sdr	HRU	as multiple of original soil conductivity value	0.01-4	DF	2-4	1	NA	1
LAIRSAII	.501		Number of days to reach target	0.01-4	DI	2-4	1	INA	1
			storage from current reservoir						
NDTARGR	.res	Subbasin	storage	NA	DF	5	DF	DF	DF
NPERCO	.bsn	Watershed	Nitrate percolation coefficient	0.01-1	0.391	0.5	0.2	0.394	0.4
OVN	.hru	HRU	Manning's "n" value for overland flow	0.008-0.5	0.437	DF	DF	DF	DF
OVIN	.111 u		Phosphorus soil partitioning	0.008-0.5	0.437	DI	DI	DI	DF
PHOSKD	.bsn	Watershed	coefficient (m^3/Mg)	80-350	326.9	175	200	422.5	175
			Phosphorus percolation						
PPERCO	.bsn	Watershed	coefficient (m ³ /Mg)	10-17.5	10	10	10	17.16	10
PSP	.bsn	Watershed	Phosphorus availability index	0.2-0.6	0.231	0.4	0.4	0.215	0.4
			Curve number adjustment for increasing infiltration in non-			1.75-			
R2ADJ	.hru	HRU	draining soils	0-3	DF	3.0	1	DF	8*
RE	.sdr	HRU	Effective radius of drains (mm)	3-40	DF	10*	DF	NA	DF
			Threshold water level level in						
DEVADO		IDU	shallow aquifer for revap (mm		07.04	200			
REVAPMN	.gw	HRU	H ₂ O)	NA	97.06	388.6	DF	DF	DF
RS2	.swq	Subbasin	Benthic source rate for DRP in	NA	DF	0.05	0.05	0.022	0.01

		l	the reach at 20° (mg P/m ² -d)						
RS3	.swq	Subbasin	Benthic source rate for ammonium in the reach at 20° (mgNH ₄ -N/m2/d)	NA	DF	0.5	0.5	DF	1
RS4		Subbasin	Organic N settling rate in the	0.001-0.1	DF	0.05	0.05	DF	0.001
К54	.swq	Subbasin	reach at 20° (1/day) Local settling rate for organic	0.001-0.1	DF	0.05	0.05	DF	0.001
			phosphorus mineralization at 20°						
RS5	.swq	Subbasin	(day ⁻¹)	0.001-0.1	DF	0.07	0.05	DF	0.05
			Threshold value of nutrient cycling water factor for						
SDNCO	.bsn	Watershed	denitrification to occur	0.75-1.4	1.005	1	1.1	1.041	1.1
551100		() atorshou		7600-	1.000	1	15000	1.011	1.1
SDRAIN	.sdr	HRU	Tile drain spacing (mm)	30,000	DF*	13720*	*	NA	15000*
			Mean air temperature at which						
CETMD	han	Watershed	precipitation is equally likely to	5 5	1.51	1	1	1	2
SFTMP	.bsn	watershed	be rain as snow/freezing rain (°C) Initial depth of water in the	-5-5	-1.51	1	1	1	-2
SHALLST	.gw	HRU	shallow aquifer (mm H ₂ O)	NA	DF	500	DF	DF	DF
SLSUBSN	.hru	HRU	Average slope length	0.75-1.25	0.97†	DF	DF	DF	DF
SESCESIV	inu	Inte	Minimum snow melt factor (mm	0.75-1.25	0.77	DI		DI	DI
SMFMN	.bsn	Watershed	H ₂ O/day-°C)	1.4-6.9	3.547	3	4.5	4.5	2
			Maximum snow melt factor (mm						
SMFMX	.bsn	Watershed	H ₂ O/day-°C)	1.4-6.9	6.027	4.5	4.5	2.5	2
CMTMD	han	Watanahad	Threshold temperature for snowmelt (°C)	<i></i>	1 (11	0.5	0.5	2.5	2
SMTMP	.bsn	Watershed		-5-5	1.611	0.5	0.5	2.5	-2
SOL_AWC	.sol	HRU	Available water capacity Potential crack volume for soil	0.75-1.25	0.96†	DF	DF	DF	DF
SOL CRK	.sol	HRU	profile	0-1	DF	DF	DF	0.11	0.45
bol_elux	.501	Inte	Saturated hydraulic conductivity	01	DI		DI	0.11	0.15
SOL_K	.sol	HRU	(mm/hr)	0.75-1.25	0.92†	DF	DF	DF	DF
			Initial humic organic phosphorus						
SOL_ORGP	.chm	HRU	in soil layer (mg/kg or ppm) Initial labile P in the soil layer	50-250	94.906	DF	DF	DF	DF
SOL_SOLP	.chm	HRU	(mg labile P/kg soil)	5-100	7.002	DF	10	34	1
			Parameter drives the maximum						
SPCON	.bsn	Watershed	concentration of sediment the river can route	0.0001- 0.01	1e-4	1e-3	1e-4	2.3e-3	2.7e-4
		1							2.76-4
SURLAG	.bsn	Watershed	Surface runoff lag coefficient	NA	1.08	2.872	4	0.023	1
TDRAIN	.mgt	HRU	Time to drain soil to field capacity (hours)	NA	NA	NA	NA	48	NA
TIMP	.bsn	Watershed	Snow pack temperature lag	0.01-1	0.13	0.06	1	1	0.05
			Minimum value for the cover and						
			management factor for the land						
USLE_C	crop.dat	By land-use	cover	0.75-1.25	1.21†	DF	DF	DF	DF
			USLE soil erodibility factor $(0.013 \text{ metric ton } \text{m}^2-\text{hr/m}^3-\text{m}^2)$						
USLE K	.sol	HRU	(0.013 metric ton m -m/m - metric ton cm)	0.75-1.25	0.887†	DF	DF	DF	DF
USLE P	.mgt	HRU	USLE support practice factor	0.50-1.25	1.078†	0.6-1.0	DF	DF	DF
	gt		Critical velocity at which a river	0.50-1.25	1.070	0.0-1.0	DI	DI	DI
VCRIT	.bsn	Watershed	will resuspend sediments	NA	5	0	5	5	1

Notes: Values highlighted in gray for a given model indicate that the parameter was actually changed from its default value for that model. Values not highlighted were left at default (DF); since different model versions may have different model defaults, the basin-level default values were included. *Indicates value was only changed on tile-drained lands. †Indicates value was changed by a percentage, and is therefore not an absolute value for the parameter. Some values have been rounded off for presentation purposes. NA indicates the parameter was not applicable to the model given the set of sub-routines activated. DRP =

dissolved reactive phosphorus; HRU = hydrologic response unit; HU = Heidelberg University; LT = LimnoTech; N = nitrogen; OSU = Ohio State University; P = phosphorus; SWAT = Soil and Water Assessment Tool; TAMU = Texas A&M University; UM = University of Michigan; USLE = Universal Soil Loss Equation; SCS = Soil Conservation Service.

‡watqual3 routine is an adaption LimnoTech developed based on White et al. (2014).

^ASWAT 2012 revision 635 indicate in basins.bsn that 1 is the new soil phosphorus model; however, examination of the source code followed by confirmation from N Sammons (in a post to the SWAT-user group on 26 Feb 2014) confirms that setting this parameter equal to 0 will run the new soil phosphorus sub-routine.

WebReference

White MJ, Storm DE, Mittelstet A, *et al.* 2014. Development and testing of an In-Stream Phosphorus Cycling Model for the Soil and Water Assessment Tool. *Environ Qual* **43**: 215–23.