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Summary: Treatments are frequently evaluated in terms of their effect on patient survival. In

settings where randomization of treatment is not feasible, observational data are employed, ne-

cessitating correction for covariate imbalances. Treatments are usually compared using a hazard

ratio. Most existing methods which quantify the treatment effect through the survival function

are applicable to treatments assigned at time 0. In the data structure of our interest, subjects

typically begin follow-up untreated; time-until-treatment and the pre-treatment death hazard are

both heavily influenced by longitudinal covariates; and subjects may experience periods of treatment

ineligibility. We propose semiparametric methods for estimating the average difference in restricted

mean survival time attributable to a time-dependent treatment, the average effect of treatment

among the treated, under current treatment assignment patterns. The pre- and post-treatment

models are partly conditional, in that they use the covariate history up to the time of treatment.

The pre-treatment model is estimated through recently developed landmark analysis methods. For

each treated patient, fitted pre- and post-treatment survival curves are projected out, then averaged

in a manner which accounts for the censoring of treatment times. Asymptotic properties are derived

and evaluated through simulation. The proposed methods are applied to liver transplant data in

order to estimate the effect of liver transplantation on survival among transplant recipients under

current practice patterns.

Key words: Landmark analysis; Observational data; Partly conditional model; Proportional

hazards regression; Time-varying covariates; Treatment effect.
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Treatment Effect on Survival via Partly Conditional Regression 1

1. Introduction

It is often of interest in biomedical settings to evaluate the benefit of a treatment on survival.

In many clinical settings, treatment is not administered right at the time of diagnosis,

such that a period of waiting time occurs for some (or perhaps all) patients. In cases

where treatment is not randomized, it is often useful to assess the benefit of treatment

under current treatment assignment patterns. Through the average effect-of-treatment-on-

the-treated (ETT; Pearl, 2009), one can evaluate the benefit of treatment as currently

practiced.

Survival probabilities are easily understood by health care professionals, as is the area

under the survival curve (restricted mean lifetime). Various authors have proposed using

Cox regression with the primary goal not being to estimate hazard ratios, but to compare

differences in survival and/or restricted mean lifetime. For example, Zucker (1998) and Chen

and Tsiatis (2001) proposed methods that involved averaging over fitted values from Cox

models. Zhang and Schaubel (2011) extended the methods of Chen and Tsiatis (2001) to

accommodate dependent censoring, then subsequently developed double-robust methods

(Zhang and Schaubel, 2012). Each of the afore-described methods applies to treatments

assigned at baseline, as opposed to time-varying treatments.

In the data structure of interest in this report, all patients begin follow-up untreated, with

some eventually receiving treatment and others dying beforehand. Pre-treatment mortality

and treatment assignment rates are dependent on longitudinal covariates (including periods

during which a subject is declared treatment-ineligible), such that a patient’s pre-treatment

death is dependently censored by the receipt of treatment. Post-treatment survival is depen-

dent on a subject’s condition at the time of treatment, and the duration of pre-treatment

follow-up time. Our objective is to contrast two scenarios: (a) treatment is never assigned

(b) treatment is assigned according to current practice patterns.
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2 Biometrics, January 2012

The proposed methods are motivated by the end-stage liver disease (ESLD) setting. The

number of available deceased-donor livers is always less than the number of patients in

need of liver transplantation. As a result, medically suitable patients are placed on a liver

transplant waiting list. Patients typically begin follow-up on the wait list (‘untreated’; i.e.,

not transplanted), such that transplantation can be viewed as a time-dependent treatment.

In the U.S., chronic end-stage liver disease patients are sequenced in decreasing order of

Model for End-Stage Liver Disease (MELD) score, a very strong predictor of pre-transplant

mortality. Transplantation results in the dependent censoring of pre-transplant death, since

MELD scores predict both wait list mortality and transplant rates. Note that patients may

be removed from the wait list (or made inactive) and, in such cases, are permanently (or

temporarily) ineligible to receive a transplant. In the setting of our interest, the effect of

treatment on the treated is of greater interest than the average causal effect, due to the

implausibility of all patients receiving treatment.

Our analysis in Section 5 is different from that in Gong and Schaubel (2013) since (i)

the former only looked at pre-transplant survival; (ii) did not compare post- versus pre-

transplant survival; (iii) reported contrasts only in terms of the hazard ratio; and (iv) did

not exclude Status 1 (acute liver failure) patients and, in fact, focused on contrasting them

with chronic ESLD patients.

We develop semiparametric methods to estimate the average effect-of-treatment-on-the-

treated through partly conditional modeling. The proposed method involves averaging over

the observed instances of treatment initiation, with the averaging accounting for the various

complexities in data structure; e.g., treatment initiation times are subject to right censoring;

patients may die before treatment is received; and patients cannot initiate treatment while

ineligible. For each treated patient, we use the accrued history (up to the time of treatment

initiation) to project out a survival curve for post-treatment residual lifetime. Based on
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Treatment Effect on Survival via Partly Conditional Regression 3

the same accrued pre-treatment history, we also project out the survival curve that would

apply in the absence of treatment. This set-up lends itself well to partly conditional modeling

(Zheng and Heagerty, 2005; Gong and Schaubel, 2013); see also the closely related concept of

landmark analysis (Feuer et al., 1992; van Houwelingen, 2007; van Houwelingen and Putter,

2012; Parast, Tian and Cai, 2014). Gong and Schaubel (2013) developed methods for fitting

partly conditional hazard regression models which apply to the absence-of-treatment setting

in our set-up. We extend the ideas in Gong and Schaubel (2013) to estimate the average ETT

through residual survival and restricted mean survival time. Although we focus on partly

conditional modeling in this report, it should be noted that other pertinent methods exist,

as described in Section 6.

The remainder of this article is organized as follows. In Section 2, we describe the proposed

methods. Asymptotic properties are provided in Section 3 (for proofs, see Supplementary

Materials), with finite-sample properties evaluated through simulation in Section 4. We apply

the proposed methods to the motivating data set in Section 5. Concluding remarks are made

in Section 6.

2. Proposed Methods

2.1 Set-up and Notation

We now formalize the ideas introduced in Section 1, in the absence of censoring. We re-

move subscripting, such that defined variates pertain to any hypothetical subject. We let

T represent treatment time, with T > 0 since subjects begin follow-up untreated. Death

time in the absence of treatment is denoted by D0. Note that, consistent with the intent-

to-treat principle, patients that initiate treatment are considered to be ‘treated’ thereafter.

Let E(s) = 1 if the patient is treatment-eligible (i.e., eligible to initiate treatment) at time

s, and 0 otherwise. A patient may oscillate between the eligible and ineligible states before
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4 Biometrics, January 2012

time D0 ∧ T , where a∧ b = min(a, b). In particular, E(s) = 0 for s > D0 ∧ T , since a patient

cannot initiate treatment more than once, and cannot initiate treatment after death. Note

that a patient may only initiate treatment while eligible; i.e., dI(T 6 s) = E(s)dI(T 6 s).

Under the above-listed Scenario (a), T = ∞. Under Scenario (b), treatment only occurs

when T < D0, in which case D0 is considered latent; D0 serves as a competing risk for T .

For a patient with treatment time T = s, D1 is the death time, such that (D1 − s)+ is the

residual post-treatment survival, with a+ = a · I(a > 0) and I(·) being the familiar 0/1

indicator function. The quantity (D0 − s)+ then represents the residual survival beyond s

that would have been observed in the absence of treatment. Note that if D0 < T , then D1

is undefined.

The covariate vector, which contains some time-varying elements, is denoted by Z∗(s). The

patient’s covariate and eligibility history up to time s is given by H(s) = {Z∗(u), E(u); 0 6

u < s}. The above described set-up is illustrated in Figure 1. For a patient with treatment-

initiation time T = s, we are interested in the average difference between (D1−s)+ and (D0−

s)+ given [H(s), T = s], with the average being taken with respect to the subdistribution

function for T .

[Figure 1 about here.]

2.2 Treatment Effect: Conditional and Average

For a patient initiating treatment at time T = s, there are two death times of interest; the

post-treatment residual death time, (D1− s)+, and the residual death time that would have

occurred in the absence of treatment, (D0 − s)+. At the time of treatment (e.g., T = s), we

observe H(s), and E(s) = 1. Conditional on [H(s), T = s], we contrast

S1(t; s|H(s), T = s) = P{(D1 − s) > t|H(s), T = s) (1)

S0(t; s|H(s), T = s) = P{(D0 − s) > t|H(s), T = s) (2)
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Treatment Effect on Survival via Partly Conditional Regression 5

the survival functions pertaining to the counterfactual variates (D1 − s)+ and (D0 − s)+,

respectively. Note that, in both S1(t; s|·) and S0(t; s|·), the time index s represents con-

ditioning time, while t refers to residual survival t time units beyond the conditioning

time, s. That is, Sj(t; s|·) pertains to a gap of t units beyond time s, which equals total

time (s + t). We assume strong ignorability (Rubin, 1978), permitting inference on the

counterfactuals (D1 − s)+ and (D0 − s)+, through observed data. The strong ignorability

assumption is detailed in the Supplementary Materials. An implication this assumption is

that S0(t; s|H(s), T = s) = S0(t; s|H(s), E(s) = 1), consistent with the counterfactuals

(D1 − s)+ and (D0 − s)+ being independent of the receipt of treatment at time s.

For fixed L > 0, restricted mean residual survival times are given by

µ1(L; s|H(s), T = s) =

∫ L

0

S1(t; s|H(s), T = s)dt (3)

µ0(L; s|H(s), T = s) =

∫ L

0

S0(t; s|H(s), T = s)dt. (4)

Conditioning on [H(s), T = s], a pertinent contrast in survival functions is then

δ(t; s|H(s), T = s) = S1(t; s|H(s), T = s)− S0(t; s|H(s), T = s), (5)

while a contrast in restricted mean residual lifetime is defined as

∆(L; s|H(s), T = s) = µ1(L; s|H(s), T = s)− µ0(L; s|H(s), T = s). (6)

Average survival functions are then defined as

S1(t) = E[S1(t;T |H(T ), T )]

S0(t) = E[S0(t;T |H(T ), T )], (7)

where, in each case, the expectation is taken with respect to the joint distribution of

[H(T ), T )] over the identifiable range of T which would in practice be capped by the
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6 Biometrics, January 2012

maximum follow-up time. Correspondingly, average restricted mean residual lifetimes are:

µ1(L) = E[µ1(L;T |H(T ), T )] =

∫ L

0

S1(t)dt

µ0(L) = E[µ0(L;T |H(T ), T )] =

∫ L

0

S0(t)dt. (8)

The ETT can then be defined in terms of mean difference in survival probability as

δ(t) = E[δ(t;T |H(T ), T )] = S1(t)− S0(t) (9)

and in terms of average difference in residual mean survival time, by

∆(L) = E[∆(L|H(T ), T )] = µ1(L)− µ0(L) =

∫ L

0

δ(t)dt. (10)

Having specified the treatment effect of interest, the remaining subsections in Section 2

describe the proposed methods for estimating δ(t) and ∆(L).

2.3 Observed data: Notation and set-up

We let Di denote the death time for subject i (i = 1, . . . , n). The time of treatment is given

by Ti, with Ti = ∞ when Di < Ti. Treatment and death times are subject to independent

right censoring, Ci, intended to represent the combination of administrative censoring and

random loss to follow-up. Observation time is then given by Xi = Di∧Ci. We define counting

processes for death, treatment and censoring, as Ni(t) = I(Di 6 t ∧ Ci), NT
i (t) = I(Ti 6

t ∧Di ∧ Ci) and NC
i (t) = I(Ci 6 t ∧Di), respectively. Recall that Ei(u) equals 1 if patient

i is eligible for treatment at time u, and 0 otherwise. Note that NT
i (t) =

∫ t
0
Ei(u)dNT

i (u),

since treatment can only be initiated for an eligible subject. The covariate vector, observed

longitudinally, is denoted by Z∗i (t). The covariate and treatment-eligibility history for subject

i as of time t is denoted by Hi(t) = {Z∗i (u), Ei(u); u ∈ [0, t)}. Covariate information is

assumed to not be available after treatment is assigned, such that the total observed history

for subject i is given by Hi(Xi ∧ Ti); such data are not required by the proposed methods.
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Treatment Effect on Survival via Partly Conditional Regression 7

2.4 Assumed Models and Estimation Methods

We now describe the assumed models for (D1
i − Ti)+, (D0

i − Ti)+, Ti and Ci. As implied by

(7) and (8), our target ETT implies averaging over the observed [Ti,Hi(Ti)] distribution.

Per (1) and (2), we achieve this by working with [(D1
i − s)+|Hi(s), Ti = s] and [(D0

i −

s)+|Hi(s), Ti = s] directly, after which we will then average explicitly. We model the partly

conditional hazard function for [(D1
i − s)+|Hi(s), Ti = s], which uses in the covariate vector

all pertinent information in the history prior to the time of treatment, Hi(Ti). The model

is partly conditional since the covariate is not updated after the time treatment is initiated.

The covariate is not updated after time Ti since we want to project residual survival from Ti

onward, and a survival projections based on traditional time-dependent model would require

a model for Hi(s+ t). In many cases, a model for Hi(s+ t) is complicated to fit accurately,

and is of little inherent interest to the investigators.

2.4.1 Post-Treatment Survival. We let λ1(t; s|H(s), T = s) denote the hazard function

corresponding to S1(t; s|H(s), T = s) from (1). We assume the following proportional hazards

model,

λ1(t; s|Hi(s), Ti = s) = λ01(t) exp{β′1Zi1(s)}, (11)

where the covariate Zi1(s) is chosen to summarize the pre-treatment history, {Hi(s), Ti = s},

pertinent to predicting post-treatment survival. Typically, time until treatment, Ti, would be

represented parametrically in the covariate vector, Zi1(s). Note that the Zi1(s) covariate is

fixed at treatment time Ti = s, reflecting the partly conditional (Zheng and Heagerty, 2005;

Gong and Schaubel, 2013) nature of (11), which uses time-dependent data ‘frozen’ at time

of treatment. This could also be considered a ‘landmark’ analysis (e.g., van Houwelingen,

2007), with landmark times being customized to each subject and set to Ti.

We assume that treatment times are independently censored by Ci. Assuming that (Di −

Ti)+ is independently censored by (Ci − Ti)+ given [Zi1(Ti), Ti], parameter estimation for
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8 Biometrics, January 2012

model (11) proceeds through unweighted partial likelihood. We denote the resulting estima-

tors for model (11) by β̂1 and Λ̂01(t), with the latter being the Breslow-Aalen (1972) esti-

mator. We estimate S1(t; s|Hi(s), Ti = s) by Ŝ1(t; s|Zi1(s)) = exp{−Λ̂1(t; s|Zi1(s))}, where

Λ̂1(t; s|Zi1(s)) = Λ̂01(t) exp{β̂
′
1Zi1(s))}, and µ1(L; s|Hi(s), Ti = s) by µ̂1(L; s|Zi1(s)) =∫ L

0
Ŝ1(t; s|Zi1(s))dt.

2.4.2 Survival in the Absence of Treatment. We begin by describing the assumed hazard

model for survival in the absence of treatment. We then outline the proposed data augmenta-

tion, which involves selecting calendar date cross-sections. Next, we detail fitting the model

through an inverse weighted and stratified log rank estimating function.

We let λ0(t; s|H(s), T = s) denote the hazard function corresponding to (2). Under strong

ignorability, note that λ0(t; s|Hi(s), Ti = s) = λ0(t; s|Hi(s), Ei(s) = 1), which we use in

listing the assumed model,

λ0(t; s|Hi(s), Ei(s) = 1) = λ00(t) exp{β′0Zi0(s)}, (12)

where Zi0(s) is chosen such that λ0(t; s|Hi(s), Ei(s) = 1) = λ0(t; s|Zi0(s)), implying that

Zi0(s) contains all elements of the history pertinent to predicting (D0
i − s)+, including all

appropriate functions of time-already-survived, s. Model (12) is partly conditional (Zheng

and Heagerty, 2005; Gong and Schaubel, 2013) since, although the hazard at time s + t is

of interest, the model conditions on information which is ‘frozen’ at time s. In contrast, a

typical (fully) conditional or ‘time-dependent’ model would condition on Hi(s+ t).

Partly Conditional Model: The motivation for using a partly conditional model is described

at the start of Section 2.4. Generally, fitting a partly conditional model requires some form

of data augmentation in which the records corresponding to each subject’s observed data

are restructured in order to facilitate fitting the assumed model. After such augmentation,

each input record has a prior time survived (e.g., si) and corresponding prior history Hi(si),

with residual survival in the absence of treatment, (Di− si)+ then being analyzed. In fitting
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Treatment Effect on Survival via Partly Conditional Regression 9

the post-treatment residual survival model (11), there is an obvious choice for each treated

subject’s conditioning time, namely si := Ti. In accordance with (2), we actually need to

project residual survival (in the absence of treatment) beyond this same conditioning time.

Although the appropriate conditioning time for projecting (1) is clear, the nature of the data

augmentation for fitting model (12) requires consideration.

Calendar Time Cross-sections: In landmark analysis, typically survival from a specific follow-

up time point (or set of specific time points) is desired, with survival probability projected out

after the chosen landmark time(s). In our case, since treatment can occur at any time point

(e.g., T = s), we need to be able to project conditional survival forward from any conditioning

time s. This suggests a partly conditional model which includes terms representing previous

time survived, s. Variation in previous time survived is then required, which means that

sampling component of the data augmentation should be based on something other then s

itself. We choose to sample based on calendar time, since each calendar time cross-section

will contain wide variation in previous time survived. As we later describe, we stratify the

model by cross-section for computational savings, which is important in large data sets like

that we analyze in Section 5. For instance, Gong and Schaubel (2013) developed a partly

conditional model which chooses the conditioning times to be the si values observed on

a randomly selected calendar date. For example, consider a particular calendar date (e.g.,

07/01/2004); input records for fitting the model would consist of si (subject i’s prior follow-

up time as of 07/01/2004), the corresponding Hi(si), and (Xi − si)+ among subjects who

(as of 07/01/2004) were alive, uncensored, yet-untreated, but eligible to initiate treatment;

i.e., {i : Xi > si, Ei(si) = 1}.

Method of Gong and Schaubel (2013): The estimation of β0 from model (12) was developed

by Gong and Schaubel (2013). The essential ideas are presented here for continuity, and
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10 Biometrics, January 2012

because the authors only derived the properties of β̂0, but not those of Ŝ0(t; s|Zi0(s)),

µ̂0(L; s|Zi0(s)), Ŝ0(t) or µ̂0(L).

To begin, we choose a set of K calendar dates, {CS1, . . . , CSK}. Each cross-section date

CSk is intended to represent a calendar date at which a set of treatment-eligible patients

(could have been but) was not treated; we model residual survival in the absence of treatment

from this date forward. For calendar date CSk, we select the cross-section of treatment-

eligible patients who were not treated (on or before that day). For patient i, follow-up time

(previous time survived) as of calendar date CSk is denoted by sik. Hence, a patient selected

into cross-section CSk must, as follow-up time sik be: alive (Di > sik), uncensored (Ci > sik),

untreated (Ti > sik) and treatment-eligible Ei(sik) = 1. Three remarks are important at this

juncture. First, treatment-eligibility is a cross-section inclusion criterion, but not a censoring

criterion; e.g., having been included in cross-section k and, hence, with Ei(sik) = 1, patient i

is not censored upon subsequently being deemed treatment-ineligible. Second, the covariate

will be frozen at sik, such that the survival projection for the residual time (D0
i − sik)+ is

based on Hi(sik). Third, a patient included in cross-section k is censored if treated; this

induces dependent censoring. Each of these remarks is formalized shortly.

We now establish additional notation pertinent to model (12). Since survival time from

cross-section is modeled, we define the following times-since-cross-section: Dik = (Di−sik)+,

Tik = (Ti−sik)+ and Cik = (Ci−sik)+ as the death, treatment and censoring time respectively

corresponding to the ith patient and measured from the kth cross section date. Figure

2 provides an illustration of how the treatment-free observation time is transformed into

time-since-cross-section times. A modified counting and at-risk processes are also defined as

Ni0k(t) = Ni(sik + t)I(Ti > sik + t) and Yi0k(t) = I(Dik ∧ Cik > t), respectively.

[Figure 2 about here.]
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Treatment Effect on Survival via Partly Conditional Regression 11

Following Gong and Schaubel (2013), we estimate β0 through the stratified model,

λ0k(t; s|Hi(sik), Ei(sik) = 1) = λ00k(t) exp{β′0Zi0(sik)}, (13)

where β0 is the same parameter in the unstratified model of interest, (12). Model (13) is quite

flexible. Non-proportionality can be accommodated by replacing β0 with β0(t), a parametric

function on t. The parameter vector could also be allowed to be a parametric function of

previous time survived; e.g., β0k, or β0(sik). Moreover, interactions between si and elements

of Hi(si) are also possible. Alternatively, van Houwelingen and Putter (2015) suggested

a stopped Cox model to avoid non-proportionality, with artificial censoring at t = L. By

breaking the stratification on k, one could also model the effect of calendar time.

Inverse weighting: Model (13) conditions on Hi(sik). However, we anticipate that Hi(sik+ t)

would be predictive of both the treatment hazard and the pre-treatment death hazard at

time (sik + t). The mutual association, even conditional on Hi(sik), between pre-treatment

death after sik, the probability of treatment after sik and Hi(sik + t) sets up dependent

censoring of (Di − sik)+ by (Ti − sik)+. The potential bias due to such dependent censoring

can be corrected through a variant of Inverse Probability of Censoring Weighting (IPCW;

e.g., Robins and Rotnitzky, 1992) which requires a model for the treatment-initiation hazard.

We fit the following two treatment hazard models:

λTi (t|Hi(t), Ei(t)) = E(sik) Ei(t)λT0 (t) exp{θ′0Zi(t)}, (14)

E(sik λ
†
ik(t; sik|Zi0(sik), E(sik) = E(sik)λ

†
0k(t) exp{θ′1Zi(sik))}, (15)

with model (14) assumed to be the correct model; model (15) is expected to be misspecified,

but is only used to provide a weight stabilizer. We assume no-unmeasured-confounders for

treatment, λTi (t|Hi(t)) = λTi (t|Hi(Di), Di), and that λTi (t|Hi(t)) = λTi (t|Zi(t)). Note that

λTi (t|Hi(t), Ei(t)) in (14) uses (total) follow-up time t (measured from time 0) as the time axis,

conditions on information on [0, t), while λ†ik(t; sik|Zi0(sik), E(sik) = 1)) in (15) uses (residual)



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

12 Biometrics, January 2012

time since sik and conditions on the history over [0, sik] given [Ei(sik) = 1]. Parameters in

(14) and (15) are estimated through standard partial likelihood (Cox, 1975).

As derived in Gong and Schaubel (2013), an appropriate weight function is given by

WA
ik(t) = Yi0k(t) exp{ΛT

i (sik + t)− ΛT
i (sik)}, (16)

where ΛT
i (t) =

∫ t
0
Ei(u)λT0 (u) exp{θ′0Zi(u)}du. The quantity WA

ik(t) can be thought of as the

inverse of the conditional probability of remaining untreated at time (sik + t), given that the

subject was untreated and treatment-eligible at time sik. Gong and Schaubel (2013) suggest

the following stabilized inverse weight,

WB
ik (t) = Yi0k(t)

exp{ΛT
i (sik + t)− ΛT

i (sik)}
exp{Λ†ik(t)}

. (17)

Note that artificially censoring subjects at t = L would be an alternative to the stabilizer.

Parameter Estimation for Model (12): An estimator for β0, denoted by β̂0, is obtained through

solving the following inverse-weighted score function,

U 0(β) =
n∑
i=1

K∑
k=1

∫ τ0k

0

Ei(Sik){Zi0(sik)−Z0k(t;β,W )}WB
ik (t)dNi0k(t), (18)

with Z0k(t;β0) = R
(1)
0k (t;β0)/R

(0)
0k (t;β0) and

R
(d)
0k (t;β0) = n−1

∑n
i=1 Ei(sik)Wik(t)Zi0(sik)

⊗d exp{β′0Zi0(sik)} with d = 0, 1, 2 and where

τ0k satisfies P{Yi0k(τ0k) = 1} > 0, and can in practice be set to the largest Xik among

subjects with Ei(sik) = 1. A Breslow-Aalen estimator pooled across strata is obtained as

Λ̂00(t; β̂0) = n−1
n∑
i=1

K∑
k=1

∫ t

0

R
(0)
0 (u; β̂0)

−1Ei(sik)WB
ik (u)dNi0k(u) (19)

for t ∈ (0, L], where R
(0)
0 (u;β0) =

∑K
k=1R

(0)
0k (u;β0).

2.4.3 Conditional Treatment Effect. Consider patient i, treated at follow-up time Ti = s

with covariate history Hi(s). Post-treatment survival probability for this patient is predicted

by Ŝ1(t; s|Hi(s), Ti = s), while predicted L−year restricted mean post-treatment lifetime

is given by µ̂1(L; s|Hi(s), Ti = s). Correspondingly, in the absence of treatment, predicted
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Treatment Effect on Survival via Partly Conditional Regression 13

survival and L-year restricted mean lifetime for subject i (from Ti onward) would be given by

Ŝ0(t; s|Hi(s), Ti = s) and µ̂0(L|Hi(s), Ei(s) = 1) =
∫ L
0
Ŝ0(t|Hi(s), Ei(s) = 1)dt, respectively.

The treatment effect corresponding to treatment initiation by subject i at follow-up time Ti

can then be estimated by

δ̂(t;Ti|Hi(Ti), Ti) = Ŝ1(t;Ti|Hi(Ti), Ti)− Ŝ0(t;Ti|Hi(Ti), Ei(Ti) = 1, Ti), (20)

in terms of survival probability, and

∆̂(L;Ti|Hi(Ti), Ti) = µ̂1(L;Ti|Hi(Ti), Ti)− µ̂0(L;Ti|Hi(Ti), Ei(Ti) = 1, Ti) (21)

in terms of restricted residual mean survival time.

2.4.4 Average Treatment Effect. Having established how to estimate the treatment effect

for a subject treated at Ti = s with covariate history Hi(s), we now describe how to estimate

the quantities of chief interest, namely δ(t) = E[δ(t|Hi(s), Ti = s)] and ∆(L) =
∫ L
0
δ(t)dt

from (9). In the absence of censoring, we could average with respect to the empirical distri-

bution of {Ti,Hi(Ti)} values. Right censoring of Ti values rules out using the sample mean,

since this averaging would then generally depend on the Ci distribution. This implies inverse

weighting the observed treatment assignments, such that the inverse weighted distribution

reflects that which would have been obtained in the absence of censoring. We use the result,

E

[∫ t

0

dNT
i (u)

Gi(u)

∣∣∣∣Hi(u)

]
= F T

i (t|Hi(t)), (22)

where F T
i (t|Hi(t)) = E[

∫ t
0
dI(Ti 6 u)|Hi(u)] is analogous to the cumulative incidence

function for Ti (with Di serving as a competing risk) and with Gi(u) = P (Ci > u|Zi(0)).

We assume the following proportional hazards model for Ci,

λCi (t) = λC0 (t) exp{α′0Zi(0)}. (23)

Observed data used to fit model (23) include {Xi, I(Ci < Di),Zi(0)}, with α0 and ΛC
0 (t) =∫ t

0
λC0 (u)du estimated through unweighted Cox regression. Note that Ci is viewed in this

report as administrative censoring, in which case (23) may not even depend on Zi(0). If in
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14 Biometrics, January 2012

fact λCi (t) depended on the Hi(t), model (23) could easily be enriched to accommodate such

dependence, with little subsequent modification to the procedures next described.

Finally, estimators of δ(t) and ∆(L) are given by

δ̂(t) =

∑n
i=1

∫ τ
0
δ̂(t;u|Hi(u), Ti = u) Ĝi(u)−1dNT

i (u)∑n
i=1

∫ τ
0
Ĝi(u)−1dNT

i (u)
, (24)

∆̂(L) =

∫ L

0

δ̂(t)dt (25)

respectively, where Ĝi(u) = exp{−Λ̂C
i (u)}, and with τ satisfying P (Xi > τ) > 0 and typically

chosen to be the maximum observed follow-up time.

3. Asymptotic Properties

We assume that the random vectors {Xi, Ni(Xi), N
T
i (Xi),Hi(Xi∧Ti)} are independent and

identically distributed for i = 1 . . . n, with all elements of Hi(t) bounded for t ∈ (0, τ ]. A

complete list of regularity conditions is provided in the Supplementary Materials document.

Theorem 1: Under certain regularity conditions, n1/2{δ̂(t)− δ(t)} and n1/2{∆̂(L)−∆(L)}

each converge asymptotically to zero-mean Gaussian processes with covariance functions

E[ξj(t)
2] and E[η2j ], respectively, where {ξ1(t), . . . , ξn(t)} and {η1(L), . . . , ηn(L)} are i.i.d.

with mean 0 asymptotically. Expressions for ξi(t) and ηi(L) =
∫ L
0
ξi(t)dt, which are quite

lengthly, are provided in the Supplementary Materials.

Variance estimators for δ̂(t) and ∆̂(L) are given by n−2
∑n

i=1 ξ̂i(t)
2 and n−2

∑n
i=1 η̂i(L)2,

respectively; where η̂i(L) and ξ̂i(t) are computed by replacing all limiting values by their

empirical counterparts. A proof of Theorem 1 is given in the Appendix. The essence of

the proof is demonstrating that, asymptotically, n1/2{δ̂(t)− δ(t)} = n−1/2
∑n

i=1 ξi(t) + op(1)

through a sequence of Taylor series expansions and applications of empirical process results.

The proof is provided for the weight, ŴA
ik(t). In practice, the stabilized weight, ŴB

ik (t)

would often be preferred. As implied by Theorem 1, the computation of the variance is quite

involved, and such computation becomes more complicated when a stabilizer is incorporated.
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Treatment Effect on Survival via Partly Conditional Regression 15

Such concerns motivate a computationally simpler form for the variance estimator, resulting

from taking Ĝi(t)
−1 and ŴA

ik(t), or ŴB
ik (t) as the case may be, as fixed. Variance estimators

for δ̂(t) and ∆̂(L) then simplify considerably. We evaluate the performance of these simplified

variance estimators through simulation in Section 4.

4. Simulations

We generated treatment-free survival to follow the assumed partly conditional model using

methods from Gong and Schaubel (2013). First, subject i enters the study on calendar date,

Bi, which is generated from a Uniform(0, b) distribution. We then generate a single binary

(0,1) group indicator Zia, taking the value 1 with probability 0.5. A longitudinal covariate,

Zi(sik), is then created and assumed to be measured at a common set of cross-section dates:

CS1, CS2, . . . , CSK . To generate data {Di, Zia, Zib} where Zib = vec{Zi(sik)}, we first let

Zib0 = bi +
∑K

k=1 log(Vik)/γ2, where bi ∼ N(µ, σ2) and Vik ∼ P (ρ), independent positive

stable random variables with index ρ. A pre-treatment death time, D0
i , is then generated

with hazard λi0(t) = V
1/ρ
i0 λ0(t) exp{γ1Zia + γ2Zib0}, where Vi0 ∼ P (ρ) and is independent

of Vik, with Λ0(t) = (t/a)1/ρ
2

and a is a constant. Setting Zi(sik) = Zib0 − log(Vik)/γ2,

the pre-treatment death hazard can then be written as λi0(t) = V
1/ρ
i0 λ0(t) exp{γ1Zia +

γ2Zi(sik) + log(Vik)}. Treatment time, Ti, is generated from the proportional hazards model,

λTi (t) = λT0 (t) exp{θ01Zia + θ02I(Ri > t)}, where λT0 (t) = d3 and θ′0 = (θ01, θ02) and the

time of treatment-ineligibility, Ri, is generated with hazard λRi (t) = λR0 (t) exp{d1Vi0}, where

λR0 (t) = d2. Thus, Ri and Di are positively correlated, which is consistent with the data which

motivated the proposed methods. Independent censoring time, Ci, is generated from hazard

λCi (t) = λC0 (t) exp{α0Zia}, where λC0 (t) = d4. Note that treatment time and pre-treatment

death time, Ti, and Di are dependent since both depend on treatment-ineligibility time, Ri.

However, the independent censoring time Ci is independent of Di conditional on Zia.

After obtaining the pertinent survival function, transforming the time scale to represent
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16 Biometrics, January 2012

time since cross-section (setting tk = t− sik), then averaging, we obtain

λi(tk|Zia, Zi(sik), Di > sik) =
λ0(tk + sik)ρ

2{Λ0(tk + sik)}(ρ
2−1)

cos(πρ/2)(ρ+1)
exp{ρ2γ1Zia + ρ2γ2Zi(sik)}.

Setting Λ0(t) = (t/a)1/ρ
2

and λ0(tk + sik)ρ
2{Λ0(tk + sik)}(ρ

2−1) = 1/a yields

λi(tk|Zia, Zi(sik), Di > sik) = exp{ρ2γ1Zia + ρ2γ2Zi(sik)}/[a cos(πρ/2)(ρ+1)].

If we define λi0k(t; sik) = λi(tk|Zia, Zi(sik), Di > sik), λ00k(t) = [a cos(πρ/2)(ρ+1)]−1 and

β0 = (β01,β02) = (ρ2γ1, ρ
2γ2), then the proportional hazards model for pre-treatment death

time is given by λi0k(t; sik) = λ00k(t) exp{β01Zia + β02Zi(sik)}.

For patients who received treatment prior to dying (Di > Ti), a post-treatment death time

(D1
i−Ti)+, is then generated via the hazard, λi1(t;Ti) = λ01(t) exp{β11Zia+β12Zi(Ti)}, where

t represents time from treatment and β′1 = (β11, β12) = (ρ2γ1, ρ
2γ2). We set λ01(t) = a1.

The complexity in the data generator is necessary to induce the partly conditional structure

of the pre-treatment survival model. The positive stable frailty has become a common choice

in the simulation of multivariate survival set-ups due to its preservation of the proportional

hazards assumption both conditionally and marginally. Analogous set-ups were used by

Zheng and Heagerty (2005) and Gong and Schaubel (2013).

We used K = 10 cross section dates, with CSk = 100 × k. For the simulation results

presented, parameter specifications were as follows: b = 500, (θ01, θ02) = (−1,−1), µ = 18,

σ = 1, (γ1, γ2) = (−1,−0.5), d1 = d2 = d3 = d4 = 0.001, and ρ = 0.8, which implies

(β01, β02) = (β11, β12) = (−0.64,−0.32); We varied a from a = 2000, to a = 5000 and

a = 7000, which led to treatment initiation rates of 10%, 15% and 20%, respectively; with

similar independent censoring rates in each case. Each data configuration was replicated 1000

times, with n = 500 subjects per replicate.

We present settings where treatment has no effect (δ(t) = ∆(L) = 0), for which a1 =

[a cos(πρ/2)(ρ+1)]−1. We also list results for a setting with a positive treatment effect (δ(t) > 0,

∆(L) > 0) induced by specifying a1 = 0.5 × 10−4. In developing appropriate parameter
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Treatment Effect on Survival via Partly Conditional Regression 17

settings, we conceptualized the time scale as representing days. For reporting purposes, time

is recorded in years, with results presented for δ̂(1), δ̂(2), δ̂(3) and ∆̂(3). The weight ŴB
ik (t)

was used throughout, with the simplified variance estimators applied.

Table 1 presents simulation results for settings with ∆(L) = 0 and ∆(L) > 0. The quantity

∆(L), with L = 3, can be interpreted as the difference of 3-year restricted mean survival time

due to treatment, among the treated. The proposed estimators appear to be approximately

unbiased, with coverage probabilities close to the nominal 95% level. Some degree of under-

coverage is observed, which is due to the approximation of the results from Section 3 by

treated the (random) weights as fixed. The under-coverage is not in unacceptable amounts,

particularly relative to the great reduction in complexity and hence computational burden

associated with the approximation.

[Table 1 about here.]

We examined the performance of the proposed methods under various degrees of model

misspecification (see Supplementary Materials). The methods generally perform adequately,

although some bias is introduced, and increases with increasing model misfit. The method

appears to be most sensitive to misspecification of the treatment initiation hazard.

5. Application to Liver Transplant Data

We applied the proposed methods to estimate the average effect of liver transplantation

among the transplanted, by Model for End-stage Liver Disease (MELD) score. This study

used data from the Scientific Registry of Transplant Recipients (SRTR). The SRTR data

system includes data on all donor, wait-listed candidates, and transplant recipients in the

U.S., submitted by the members of the Organ Procurement and Transplantation Network

(OPTN), and has been described elsewhere. The Health Resources and Services Adminis-
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18 Biometrics, January 2012

tration (HRSA), U.S. Department of Health and Human Services provides oversight to the

activities of the OPTN and SRTR contractors.

The study population included patients age > 18 wait listed between 03/01/2002 and

12/31/2009. We excluded patients who were Status 1 (acute liver failure) or previously trans-

planted. Cross-section dates were chosen every 7 days, 30 days or 90 days from 03/01/2002 to

12/31/2009, which led to K=409, 96, or 32 cross sections respectively. The transplant hazard

model, λTir(t) = Ei(t)λT0r(t) exp{θ′0Zi(t)}, was stratified by United Network for Organ Sharing

(UNOS) Region (r = 1, . . . , 11). The covariate, Zi(t), included MELD score, albumin, age,

gender, race, diagnosis of Hepatitis C, body mass index, diabetes, hospitalization, blood

type, dialysis within prior week, encephalopathy, ascites and serum creatinine.

The pre-transplant death model, λi0kr(t) = λ00kr(t) exp{β′0Zi(sik)}, was also stratified,

where k = 1, . . . , K stands for cross section and r again denotes UNOS Region. The covariate,

Zi(sik), included MELD score, albumin, age, gender, race, diagnosis, body mass index,

diabetes, hospitalization status at listing, previous dialysis, malignancy, time on wait-list

(i.e., sik itself), slope of MELD score over [0, sik], slope of albumin, percentage of time spent

in inactive status, and percent of time receiving dialysis. In the post-transplant death model,

λi1(t;Ti) = λ01(t) exp{β′1Zi1(Ti)}, Zi1(Ti) included terms for Ti, MELD score, albumin, age,

gender, race, diagnosis, body mass index, diabetes, hospitalization status at listing, previous

dialysis and malignancy and Donor Risk Index (DRI; Feng et al., 2006).

The pre-transplant study sample consisted of n = 66, 884 patients, of which 34,539 were

observed to receive a deceased-donor liver transplant. For the MELD 30-40 subgroup, weekly

cross section dates were chosen. For MELD 18-29 cross sections were drawn monthly. For

MELD 6-17, cross sections were drawn every 3 months. Note that, we also tried weekly cross

section dates for MELD 6-29 patients, which yielded almost identical results. The analysis

was based on the weight, WB
ik (t).
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Treatment Effect on Survival via Partly Conditional Regression 19

Figure 3 shows the estimated survival curves for MELD groups 6-8, 15-17, 20-22 and 36-40.

Note that the MELD score categories refer to MELD at transplant. Within a MELD category,

Ŝ1(t) can be interpreted as the average survival probability, with t representing residual time

post-transplant. Analogously, Ŝ0(t) can be interpreted as the average survival that would

have resulted in the absence of liver transplantation, among patients who received a liver

transplant. For the MELD 6-8 group, survival in the absence-of-transplantation exceeds post-

transplant survival until approximately t = 2 years post-transplant. However, Ŝ1(t) > Ŝ0(t)

for t > 2 years, with the distance between the curves widening as t increases. The early

survival advantage (absence-of-transplant versus with a transplant) for patients in the MELD

6-8 group is the combination of relatively mortality in this subgroup, combined with the risk

of surgery-related mortality (not faced unless transplantation occurs). The early survival

advantage without transplant is even observed in MELD 15-17 patients, but is much less

pronounced and very short-lived. In fact, Ŝ1(t) > Ŝ0(t) for t > 0.25 years in this subgroup.

For MELD 36-40 group, the absence-of-transplant survival curve drops dramatically during

the first couple of months, then steadily declines thereafter. Note that Ŝ1(t) curves are quite

similar across MELD subgroups, with Ŝ0(t) decreasing strongly as MELD increases.

[Figure 3 about here.]

In Table 2, we list estimates of the difference in survival probability, δ̂(t) for t = 1, 3, 5

years, as well as ∆̂(5), the difference in 5-year restricted mean residual lifetime. The group

that benefits the most from liver transplantation is clearly MELD 36-40, with an average

gain in residual survival time of ∆̂(5) ≈ 2.4 years. The next greatest gain is observed in

the MELD 30-35 group, with ∆̂(5) = 1.4 years. For MELD scores between 15 and 30, there

is little difference in the gain in 5-year restricted mean residual survival time, with ∆̂(5)

fluctuating about 1 year across the MELD 26-29, 23-25, 20-22, 18-19 and 15-17 subgroups.

Only for the MELD 6-8 group is H0 : ∆(5) = 0 not rejected.
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In the Supplementary Materials, we provide results based on the Sequential Stratification

method (Schaubel, Wolfe and Port, 2006; Schaubel et al., 2009), which features inverse

weighted time-dependent stratification to create customized comparisons groups for each

subject receiving the time-dependent treatment. Comparing our results in Table 2 to those

based on Sequential Stratification, the main difference is in the MELD 6-8 group; the models

from Sharma et al (2015) report a hazard ratio of 2.04 (p < 10−4), indicating that liver

transplant is associated with a doubling of the mortality hazard in this subgroup. In the

presence of non-proportionality (which is clear in Figure 3, particularly for this subgroup),

the hazard ratio and difference in restricted mean do not have to agree.

[Table 2 about here.]

Additional analysis is presented in the Supplementary Materials. For each MELD category,

multiplying the number of transplants by the δ̂(5) yields the number of life-years saved via

liver transplantation (considering only the first 5 post-transplant). The largest number of

transplants was in the MELD 15-17 category (5,028), but the greatest number of life-years

saved (7,649) was in the MELD 36-40 group. We estimate that 34,757 years of life were spared

based on the liver transplants observed in this analysis. The Supplementary Materials also

present plots of pre-transplant MELD profiles over time, the baseline pre-transplant mortality

hazard, the liver transplant baseline hazard, and cumulative incidence of transplantation.

6. Discussion

In this report, we develop methods for estimating the average effect on the treated of a

time-dependent treatment. The methods can be used to evaluate the benefit, in terms of

patient survival, of a treatment under current treatment assignment practices. The methods

were applied to quantify the survival benefit of deceased-donor liver transplantation among

the transplanted, by Model for End-stage Liver Disease (MELD) score.
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Treatment Effect on Survival via Partly Conditional Regression 21

The proposed methods are not intended to guide treatment decisions. For example, the

fact that we estimate a larger treatment effect for MELD 36-40 than for 30-35 does not

imply that a patient with MELD=32 should wait until his/her MELD score increases to

> 36 before they agree to be transplanted. The proposed methods cannot generally be

used to compare treatment effects, since each treatment effect is averaged differently. For

example, the difference in the treatment effect between patients transplanted at MELD 15-17

(∆̂(5) = 1.00) and MELD 12-14 (∆̂(5) = 0.59) is partly attributable to the former group

being transplanted with higher quality donor livers.

There are now many methods available for evaluating a time-dependent treatments. Marginal

Structural Models (MSM; e.g., Hernán, Brumback and Robins, 2000; Robins, Hernán and

Brumback, 2000) are not well-suited to our set-up due to the potential for treatment to

interact with time-varying covariates. Structural Nested Failure Time Models (SNFTMs;

e.g., Robins, 1988; Joffe et al., 1998; Keiding et al., 1999; Hernan et al., 2005; Taubman

et al., 2009; Vock et al., 2013) are an alternative. In particular, the method of Vock et al.

(2013) was motivated by the lung transplant setting. Versions of Sequential Stratification,

which involves stratified and inverse weighted Cox regression, have been used to evaluate the

benefit of kidney transplantation (Schaubel, Wolfe and Port, 2006) and liver transplantation

(Schaubel et al., 2009). An advantage the proposed method over SNFTMs and Sequential

Stratification is the avoidance of any parametric assumptions regarding the treatment effect.

SNFTMs assume that treatment alters the time scale through a constant, while Sequential

Stratification assumes proportionality of the pre- and post-treatment hazard functions. A fur-

ther advantage of our proposed methods over SNFTMs relates to implementation. Although

explicit coding would be required for either approach, the ‘core’ models in our method merely

involve Cox regression and, therefore, can be fitted using standard statistical software (SAS,

R) after modifying the input data appropriately.
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In estimating the ETT, we consider the absence of treatment; i.e., Ti = ∞. In setting

where this is found to be too ambitious a goal (e.g., lack of sufficiently long follow-up, in a

setting where treatment is inevitable), one could change [Ti = ∞] to [Ti > L] in describing

the absence-of-treatment scenario.

An alternative to the measures proposed in (9) and (10) would be to redefine S1(t) to

be the population average survival (i.e., averaging over the current treated and untreated

experiences), with S0(t) then representing the average population survival in the absence

of treatment. Unless strong or unrealistic assumptions were made, the ‘core’ models for

this approach would be quite similar to those in the proposed approach, except for the

pre-treatment hazard model. The proposed averaging would be preferred in many practical

settings (including the liver transplant setting which motivated our current work) since the

absence of a treatment benefit among non-recipients is made explicit.

Supplementary Materials

Supplementary Materials, referenced in Sections 3, 4 and 5, are available with this paper at

the Biometrics website on Wiley Online Library.
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Figure 1. History on [0, s) and residual survival beyond s under two scenarios. In each case,
covariate (demographic, biological) and treatment-eligibility history H(s) has accumulated,
and the subject is treatment-eligible at time s, E(s) = 1. Under Scenario (1), T = s and
(D1 − s)+ represents residual survival post-treatment. Under Scenario (0), T = ∞ since
treatment is never available, such that death time is given by D0 and residual survival
beyond time s equals (D0−s)+. Under the proposed methods, for each treated subject, partly
conditional modeling is used to project (D1 − s)+ and (D0 − s)+ given [H(s), T = s]. The
proposed effect-of-treatment-on-the-treated is then obtained after averaging over [H(T ), T ].
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i = 1

D12

i = 3

i = 2

cross section      
k = 1

cross section 
k = 2

S22 T22

S12

T2

S11 D11

D1

D3

t=0

t=0

t=0

i = 4
T4

T41S41

t=0

Note: Vertical dashed lines denote cross-section dates, while horizontal dashed lines denote treatment-ineligible period.

Figure 2. Examples of the relationship between cross-section time and follow-up time.
Four subjects (i = 1, . . . , i = 4) and two cross sections (k = 1, 2) are shown. The four
subjects begin follow-up at different calendar dates. For subject i = 1, failure times D11

and D12 correspond to cross sections k = 1 and k = 2, respectively. Note subject i = 1
is not censored at the treatment-ineligible time after cross section k = 2. Subject i = 2 is
treated and, hence, dependently censored at time T22 following cross section k = 2. Subject
i = 3 is excluded from cross-section k = 1 and k = 2 due to starting and finishing follow-up
between CS1 and CS2. Subject i = 4 is included in cross section k = 1, but then becomes
(and remains) treatment-ineligible until some a time after cross section k = 2. With respect
to cross section k = 1, subject i = 4 is censored at treatment time T41, as opposed to
being censored earlier at the beginning of the treatment-ineligible period. Subject i = 4 is
treatment-ineligible at cross section k = 2 and, hence, not included in CS2.
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Figure 3. Analysis of SRTR data: Estimated survival curves after with a liver transplant
(solid line) and in the absence of liver transplantation (dashed line) among liver transplant
recipients. The time axis t is years post-transplant.
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Table 1
Simulation results: n = 500, with weight function WB

ik(t)

Setting E[NC
i (τ)] E[NT

i (τ)] Parameter True BIAS ESE ASE CP

1 0.10 0.10 ∆(3) 0 0.040 0.204 0.190 0.92
δ(1) 0 0.012 0.089 0.082 0.92
δ(2) 0 0.016 0.092 0.085 0.93
δ(3) 0 0.022 0.094 0.082 0.91

2 0.15 0.15 ∆(3) 0 0.022 0.164 0.154 0.93
δ(1) 0 0.007 0.065 0.061 0.93
δ(2) 0 0.010 0.077 0.072 0.93
δ(3) 0 0.010 0.083 0.077 0.91

3 0.20 0.20 ∆(3) 0 0.009 0.144 0.141 0.94
δ(1) 0 0.001 0.056 0.054 0.93
δ(2) 0 0.004 0.067 0.066 0.94
δ(3) 0 0.005 0.074 0.073 0.94

4 0.10 0.10 ∆(3) 0.87 0.030 0.204 0.190 0.92
δ(1) 0.29 0.009 0.088 0.074 0.92
δ(2) 0.35 0.009 0.100 0.088 0.92
δ(3) 0.35 0.008 0.110 0.097 0.92

5 0.15 0.15 ∆(3) 0.61 0.017 0.150 0.145 0.94
δ(1) 0.19 0.006 0.054 0.052 0.94
δ(2) 0.25 0.008 0.070 0.068 0.94
δ(3) 0.28 0.005 0.082 0.077 0.92

6 0.20 0.20 ∆(3) 0.43 0.020 0.135 0.133 0.94
δ(1) 0.13 0.006 0.048 0.048 0.94
δ(2) 0.18 0.009 0.064 0.062 0.93
δ(3) 0.20 0.006 0.077 0.072 0.93

ESE = empirical standard error; ASE = asymptotic standard error CP = 95% coverage
probability; E[NC

i (τ)] = proportion censored; E[NT
i (τ)] = proportion treated; δ(t) and ∆(L)

are as defined in (9) and (10), respectively.
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Table 2
Analysis of SRTR data: Estimating the effect of liver transplantation on the transplanted (with 95% confidence

interval in parentheses), by MELD score at transplant.

MELD Score δ̂(1) δ̂(3) δ̂(5) ∆̂(5)

6-8 -0.03 0.03 0.11 0.11
(-0.05, -0.01) (-0.01, 0.05) (0.07, 0.15) (-0.03, 0.25)

9-11 -0.02 0.09 0.17 0.29
(-0.04, 0.00) (0.07, 0.11) (0.15, 0.19) (0.15, 0.43)

12-14 0.02 0.16 0.23 0.59
(0.00, 0.04) (0.12, 0.20) (0.19, 0.27) (0.43, 0.75)

15-17 0.09 0.26 0.32 1.00
(0.07, 0.11) (0.22, 0.30) (0.28, 0.36) (0.80, 1.20)

18-19 0.15 0.26 0.27 1.06
(0.13, 0.17) (0.24, 0.28) (0.23, 0.31) (0.90, 1.22)

20-22 0.19 0.29 0.30 1.23
(0.15, 0.23) (0.23, 0.35) (0.24, 0.36) (0.95, 1.41)

23-25 0.19 0.23 0.26 1.07
(0.15, 0.23) (0.19, 0.27) (0.18, 0.34) (0.79,1.35)

26-29 0.25 0.19 0.16 0.99
(0.17, 0.33) (0.11, 0.27) (0.06, 0.26) (0.59, 1.39)

30-35 0.33 0.27 0.25 1.45
(0.25, 0.41) (0.07, 0.47) (0.01, 0.49) (0.05, 2.85)

36-40 0.48 0.48 0.45 2.38
(0.40, 0.56) (0.36, 0.60) (0.33, 0.57) (1.70, 3.06)

δ̂(t) and ∆̂(L) are as defined in (24) and (25) , respectively. The time scale represents years
post-transplant.


